
P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2003VOLUME 90, NUMBER 15
Active Traveling Wave in the Cochlea
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A sound stimulus entering the inner ear excites a deformation of the basilar membrane which travels
along the cochlea towards the apex. It is well established that this wavelike disturbance is amplified by
an active system. Recently, it has been proposed that the active system consists of a set of self-tuned
critical oscillators which automatically operate at an oscillatory instability. Here, we show how the
concepts of a traveling wave and of self-tuned critical oscillators can be combined to describe the
nonlinear wave in the cochlea.
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wave to provide a unifying description of active cochlear
mechanics.

for small disturbances. Equations (3) and (4) together
yield a linear wave equation for the pressure, with local
The sounds that we hear are detected within the coch-
lea of the inner ear, a fluid-filled duct which is coiled like
the chamber of a snail’s shell. This compartment is par-
titioned along almost its entire length by the basilar
membrane (BM). Incoming sound waves set the BM
into motion and its minute vibrations are monitored by
specialized sensory hair cells [1]. The pioneering experi-
ments of von Békésy [2], which were conducted on ca-
davers, demonstrated that sound excites a traveling wave
on the BM, whose amplitude reaches a peak at a place
which depends on the frequency. This suggested that the
cochlea acts as a spatial frequency analyzer. When it
became feasible to measure the BM response of living
specimens, a marked difference from von Békésy’s re-
sults was revealed. The sharpness of filtering was greatly
enhanced and the response displayed pronounced non-
linear behavior close to resonance [3–6]. These observa-
tions, together with the discovery that ears spontaneously
emit sounds at specific frequencies [7], provided direct
evidence for an active nonlinear amplifier in the cochlea
[1], as had been foreseen by Gold [8]. But just how the ear
could reliably employ an active process without suffering
from unstable behavior has long been a matter of concern.

An active amplifier which overcomes this difficulty has
recently been outlined [9–11]. It has been proposed that
the cochlea contains a set of dynamical systems, each of
which is maintained at the threshold of an oscillatory
instability by a self-tuning mechanism. Poised at this
critical point, on the verge of vibrating, each system is
especially responsive to periodic stimuli at its own char-
acteristic frequency. The concept of self-tuned critical
oscillators [10] can account for the main features of
hearing (sharp frequency selectivity, extreme sensitivity,
and wide dynamic range) and also for interference effects
such as two-tone suppression and the generation of com-
bination tones [12]. In this Letter, we marry the concept
of critical oscillators with the physics of the traveling
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Cochlear waves.—The basic physics of cochlear waves
may be described most succinctly by a one-dimensional
model [13–17]. The BM separates the cochlear duct into
two channels which are connected at the apex by a small
aperture, the helicotrema. A sound stimulus impinging on
the oval window, at the base of the cochlea, causes
changes in the pressures P1�x; t� and P2�x; t� in both
channels. Here t is the time and x is the position along
the cochlea, with the oval window at x � 0 and the
helicotrema at x � L. The pressure gradients induce lon-
gitudinal currents J1�x; t� and J2�x; t�, which flow in op-
posite directions in the two channels. We define the
relative current j � J1 � J2 and the pressure difference
p � P1 � P2. Then the balance of pressure gradients and
inertial forces in the fluid may be written

	@tj � �bl@xp; (1)

where 	 is the fluid mass density, l is the height of each
channel, and b is the breadth of the BM. The conservation
of fluid volume implies that a variation in the current
along the cochlea must be accommodated by a movement
of the cochlear partition. We describe such deformations
of the BM by its height h�x; t� as a function of time and
position. Then the conservation law is

2b@th� @xj � 0: (2)

Combining this with Eq. (1), we obtain an equation for
the BM acceleration:

2	b@2t h � @x�bl@xp�: (3)

The pressure difference p acts to deform the BM. If the
response is passive (e.g., in the dead cochlea), the re-
sponse relation close to the basal end, where the stiffness
K�x� of the BM is high, takes the simple form

p�x; t� � K�x�h�x; t�; (4)
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wave propagation velocity

c�x� �
�
K�x�l
2	

�
1=2
: (5)

Critical oscillators.—In the active cochlea, the passive
response is amplified by a force-generating system. This
system comprises a set of mechanical oscillators which
are supported on the BM, and which are positioned in
such a way that they can drive its motion. The character-
istic frequency !r�x� of the oscillators is a function of
position along the membrane. In general, such oscillators
could either vibrate spontaneously and thus generate mo-
tion in the absence of a stimulus, or they could be quies-
cent and behave like a passive system. A particularly
interesting case arises at the boundary of these two re-
gimes, when every oscillator operates exactly at the criti-
cal point where it undergoes an oscillatory instability.
Automatic regulation to this critical point —or Hopf bi-
furcation—can in general be achieved by using a robust
self-tuning mechanism based on local feedback control
[10]. If the BM contains such self-tuned critical oscilla-
tors, its deformation h in response to pressure differences
across the membrane p has characteristic properties as a
function of frequency and amplitude, and nonlinear am-
plification occurs.

In order to describe this system, we first consider an
individual oscillator. Its characteristic response to peri-
odic forcing at frequency ! can be written in a general
form as [10]

~pp � A�!�~hh � Bj~hhj2~hh: (6)

Here, ~hh and ~pp are the Fourier amplitudes at the forcing
frequency and A and B are complex coefficients. This
expression follows from a systematic expansion in the
oscillation amplitude ~hh which is valid close to the Hopf
bifurcation (comparable to a Landau expansion of the
free energy of thermodynamic systems near a critical
point). Proximity to an oscillatory instability thus
automatically provides for generic nonlinearities. The
dominant nonlinearity is cubic, a result that follows
from time-translation invariance. The linear response
coefficient A vanishes at the characteristic frequency !r
of the oscillator so that, at this particular frequency, the
response becomes purely nonlinear for small amplitudes.

Thus, if we focus on a particular location x of the BM,
its response displays a nonlinear resonance when the
frequency of the stimulus is equal to the local character-
istic frequency !r�x� of the oscillators. The shape of the
resonance, for nearby frequencies, can be described by
expanding the function A�!� in powers of!�!r�x�. For
frequencies that differ substantially from the local char-
acteristic frequency, on the other hand, we expect the
active system to contribute little to the BM response. In
particular, when ! � 0, the BM deflection is governed
only by its passive stiffness, according to Eq. (4). We now
assert that the simple functional form
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A�x;!� � ��!r�x� �!�; (7)

where � is a real constant, captures the essential features
of this BM response. Clearly, it satisfies the requirement
that the linear response coefficient at location x can be
expanded about !r�x�. Second, it indicates that the pas-
sive stiffness is proportional to the characteristic fre-
quency: K�x� � A�x; 0� � �!r�x�. This corresponds
well with experimental data. The frequency-place map
and the elasticity of the BM have been carefully mea-
sured. Characteristic frequency and stiffness both de-
crease approximately exponentially with distance along
the cochlea, falling by about 2 orders of magnitude
from base to apex [2,18]. We therefore supplement
Eqs. (6) and (7) with

!r�x� � !0e
�x=d; (8)

to obtain the full position-dependent response of the BM.
We take the coefficient B, describing the nonlinearity
close to resonance, to be a purely imaginary constant,
B � i�. This simple choice ensures that Eq. (6) has no
spontaneously oscillating solution for ~pp � 0, as required
at the critical point.

Active traveling waves.—Combining Eq. (3) for the
BM acceleration with the response of an active mem-
brane, described by Eq. (6), we obtain a nonlinear wave
equation for the BM deformation. In frequency represen-
tation, it reads

� 2	b!2~hh � @xfbl@x�A�x;!�~hh � Bj~hhj2~hh�g: (9)

The complex solutions of this equation ~hh�x� � H�x�ei��x�

describe the amplitude H and the phase � of the BM
displacement elicited by a periodic stimulus with in-
coming sound pressure p�x � 0; t� � ~pp�0�ei!t.

For small pressures, the nonlinearity described by the
cubic term in Eq. (9) is significant only close to the
resonant place which, inverting Eq. (8), is xr �
d ln�!0=!�. Far from this characteristic place, we obtain
a linear wave equation which can be solved in the WKB
approximation [14,16]. The approximate solution can be
expressed as

~hh�x� �
1

�!r�x� �!�
3=4

exp

�
i
Z x

0
dx0 q�x0�

�
; (10)

with local wave vector

q�x� �
�
2	
l�

�
1=2 !

�!r�x� �!�1=2
: (11)

At the basal end of the cochlea, x < xr, q is real and the
solution is a traveling wave with a position-dependent
wave vector. As the wave propagates, its wavelength
diminishes and its amplitude builds up, until it ap-
proaches the place of resonance. In the immediate vicin-
ity of the characteristic place, A decreases according to
Eq. (7) while ~hh increases. Thus, the cubic term in Eq. (9)
rapidly becomes more important than the linear term.
158101-2
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FIG. 1. The active traveling wave on the BM for three differ-
ent frequencies (f � 370 Hz, 1.3 kHz, and 4.6 kHz) whose
corresponding characteristic places are xr=L � 0:25 (top), 0.5
(center), and 0.75 (bottom). Instantaneous BM displacement
h�x; t� (black lines) and wave amplitude H�x� (gray lines) are
shown for two stimulus amplitudes, characterized by sound
pressure level. Parameter values: Cochlear dimensions L �
35 mm and l � 1 mm; fluid density 	 � 103 kg=m3; parame-
ters governing the frequencies of the active oscillators !0 �
105 s�1 and d � 7 mm, providing a frequency range of 100 Hz–
16 kHz. We choose � � 104 Pa=ms, which implies a volumetric
stiffness of the BM varying in the range 6� 106–109 Pa=m.
There is only one free parameter in our calculations, � �
1023 Pa=m3, which we choose to fit the nonlinearity of the
response according to sound pressure level. For simplicity, it is
assumed that the middle ear raises sound pressures by 20 dB,
independent of frequency.
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This cuts off the divergence in Eq. (10) and leads to a
strongly nonlinear BM response. The wave peaks at x �
xp < xr, where the response displays the characteristic
nonlinearity of critical oscillators, ~hh�xp� � ~pp�xp�1=3

[10,11]. From Eq. (10), we find that ~pp�xp� �
A�xp�1=4 ~pp�0�, while the crossover from linear to nonlin-
ear response implies that A�xp� � jBjj~hh�xp�j

2. We thus
find that the peak amplitude has a power-law response:

h�xp� � p�0�
�; (12)

as a function of the stimulus pressure at the base, with an
exponent � � 0:4. At positions beyond the characteristic
place, x > xr, the wave vector q becomes imaginary,
indicating the breakdown of wave propagation. The BM
displacement decays very sharply in this regime.

Numerical solutions.—Full solutions to the nonlinear
wave equation, Eq. (9), can be obtained numerically. It is
most convenient to solve the equation for the pressure
~pp�x� which satisfies

�!~pp � �A� Bu�~pp��@2x~pp; (13)

with ! � 2	!2=l and where we have assumed for sim-
plicity that b and l are constant along the cochlea. The
variable u � H2 is the squared deformation amplitude
and is a nonlinear function of ~pp. Indeed, it follows
from Eq. (6) that u�~pp� is the unique real and positive
root of the cubic equation,

j~ppj2 � jAj2u� �A�B� AB��u2 � jBj2u3: (14)

Equation (13) for ~pp can be solved, starting from x � L
and integrating towards x � 0. As a boundary condition,
we impose zero pressure difference at the helicotrema,
~pp�L� � 0, because the two cochlear channels are con-
nected there. A second boundary condition specifies the
value of @x~pp at x � L. By varying this pressure gradient
at the helicotrema, we find solutions that correspond to
waves entering the cochlea at x � 0 with different pres-
sure amplitudes ~pp�0�. The profile of BM displacements
can then be obtained from the solution ~pp�x� via

~hh �
~pp

A� Bu�~pp�
: (15)

Basilar membrane response.—Examples of traveling
waves are displayed in Fig. 1 for two different sound
levels and varying stimulus frequencies. Waves initi-
ated at x � 0 propagate with growing amplitude and
decreasing wavelength until they reach a point of reso-
nance, beyond which they decay rapidly. At 40 dB sound
pressure level (SPL), the resonance is sharp and the peak
response occurs at a location very close to the character-
istic place x � xr, where the frequency of the active
oscillators is equal to the stimulus frequency. At 80 dB
SPL, the resonance is much broader and the location
x � xp of maximal response shifts towards the base, in
agreement with experimental observations [6].
158101-3
The response at a particular location on the BM ex-
hibits the qualitative properties of cochlear tuning that
have been observed experimentally [3–5]. Figure 2(a)
displays the gain !j~hhj=j~pp�0�j of BM velocity, ob-
tained from our numerical solutions, as a function of
stimulus frequency for different sound levels. At low
frequencies, the response is linear and the gain is in-
dependent of the stimulus amplitude. As the stimulus
frequency approaches the resonant frequency, the re-
sponse becomes nonlinear and the gain diverges as the
SPL declines. At higher frequencies, the response drops
precipitously. The magnitude of the BM displacement,
shown in Fig. 2(b), is typically several nanometers at
resonance, in quantitative agreement with experimental
158101-3
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FIG. 2. Response of the BM at a fixed position as a function of stimulus frequency, for different sound pressures. The
characteristic frequency of the active oscillators at that location is 5 kHz. (a) Velocity gain, i.e., BM velocity divided by sound
pressure of the stimulus. (b) Corresponding BM displacement. (c) Phase difference between stimulus and BM oscillation.
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data [4]. The phase � of the traveling wave at a par-
ticular location on the BM is displayed in Fig. 2(c).
As observed experimentally, it decreases with in-
creasing frequency—gradually at first, but more
abruptly as resonance is approached—and then varies
only little at frequencies higher than the characteristic
frequency.

Discussion.—In many recent cochlear models, sections
of the BM are considered to behave as inertial oscillators
which are either lightly damped (in passive models)
[14–16] or driven by internal forces (in active models)
[19–21]. The characteristic frequency at a particular
location is then the local resonant frequency of the
BM, which varies as the square root of the stiffness.
A problem with this interpretation is that, in order to
obtain the observed range of characteristic frequencies,
the stiffness of the BM would have to vary by more than
4 orders of magnitude from base to apex. The measured
variation is only a factor of 100 [2,22]. This difficulty
is circumvented by our theory, where the range of fre-
quencies at which the BM resonates is determined by the
frequencies of the oscillators that are ranged along it, and
is not governed by the stiffness or the inertia. Some
models of the active cochlea are very specific and rely
on additional degrees of freedom, secondary resonances
of time-delayed feedbacks [21]. Such descriptions lack
the simplicity and generality of our approach and
miss the generic nature of the power-law nonlinearities
[10,11,23] conferred by the Hopf bifurcation.

In this Letter, it has been our aim to provide a con-
cise, coherent interpretation of a wide variety of observa-
tions, rather than a detailed fit of individual data. We
have not sought to specify the physical nature of the
active oscillators. The electromotility of outer hair cells
has been implicated in active amplification in the
mammalian cochlea [1,24–27], but the motile response
of hair bundles may also play a role. Indeed, the hair
bundles of frog hair cells have recently been demonstrated
to behave as Hopf oscillators [26,27]. Because the re-
sponse of self-tuned critical oscillators are generic, our
analysis remains valid whatever the physical basis of
force generation.
158101-4
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