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Abstract

Fusion power offers a promising source of clean energy for the future, however,

one of the greatest challenges in tokamak reactor design is developing materials

suitable to withstand the intense plasma-material interactions. Carbon, mostly in

its graphitic form, is currently a favorite plasma facing material in many reactors.

Diamond, however, offers many advantages over other materials but is not widely

accepted. Although diamond exhibits excellent structural and thermal properties,

tritium retention is a major concern for carbon. However, recent experimental ev-

idence suggests that diamond might fare better than other carbon structures as a

plasma facing material.

This thesis investigates the the cumulative effect of exposing diamond to high

thermal shock and tritium bombardment using classical molecular dynamics simu-

lations. Of interest is diamond’s resistance to graphitisation and the mechanisms

behind tritium retention.

Surfaces of different lattice orientation and level of hydrogen termination were

incrementally heated to temperatures in excess of 2000 K. Generally, these diamond

structures appeared to be stable up to temperatures of about 1000 K. Orientation

did play a large part in determining the temperature of phase change, as did the level

of hydrogen termination. Greater hydrogen coverages mimicked bulk continuation

and increased resistance to graphitisation.

These diamond surfaces, as well as a graphite and a diamond grain-boundary

surface, were bombarded at a range of temperatures (300-2100 K) with high fluxes

(1029 m−2s−1) of 15 eV tritium atoms in studying relative tritium retention at and

below the surface as well as sputtered hydrocarbon yields. Below temperatures of

graphitisation the diamond structure confined tritium, and thus further structural

damage, to the upper surface. The graphitic surface allowed for deeper tritium

penetration and retention. The presence of a grain boundary in the diamond slab

allowed small amounts of tritium to penetrate deep into the bulk.

Diamond surfaces were also bombarded at 300 K whilst independently varying

incident ion energy (7.5-30 eV) and incident interval time (0.3-1.2 ps). Greater ion

energies caused proportionally greater damage as well as reducing the ability of the

structure to disperse incident thermal energy. At these extremely high fluxes sputter

yield appeared to not vary with flux but was found to be proportional to fluence.
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1 Introduction

One of today’s most pressing scientific, political and social issues is that of ‘clean

energy’. That is, the generation of energy whilst having minimal effect on our envi-

ronment. Power derived from fossil fuels, such as coal, oil and natural gas, generate

as a by-product copious amounts of greenhouse gases which have been linked to

irreparable and accelerating global climate change. Access to these fuels is also

limited by their finite natural distribution and by political and economical factors.

There exists the challenge to find ethical and cost-effective power sources to meet

our ever growing energy needs. One proposal is nuclear power.

Globally, nuclear power has been extensively harnessed via the process of nuclear

fission since its commercial advent in the early 1950’s. With sufficient regulatory

controls and safe waste-disposal fission poses little negative impact on the environ-

ment. However, the potential of nuclear fusion promises even more. Not only is the

energy yield considerably higher when considering volume of fuel input, but the raw

materials for the fuel are naturally abundant or easily derived, there is comparatively

very little radioactive waste produced and no greenhouse gas production.

Soon after Einstein presented what is probably now the most widely and pop-

ularly known equation, E = mc2, in his Special Theory of Relativity, the idea of

manipulating matter into energy has played a prominent part in the worlds of science

and politics.

Although it was to be nuclear fission that would later take centre-stage, the se-

crets to nuclear fusion were sought-after first - a process so promisingly powerful it

was theorised to be what drove the stars. For example, recognising this potential,

Russian Soviet authorities offered the Physicist and Cosmologist George Gamow the

nightly use of Leningrads electrical power grid to setup a fusion research laboratory

[1], although with the advent of nuclear fission in 1939 the development of fusion

power took a back seat. However, with sufficient developments in plasma physics

and growing energy requirements, interest in the field has again grown.

Nuclear fusion in a power plant would take advantage of the energy released

due to the net mass difference between the products and ingredients in a deu-

terium/tritium reaction, with the majority of the released energy being carried off

kinetically by a produced neutron as detailed in Equation (1). Deuterium is a nat-

urally occurring hydrogen isotope found in sea water (about one part in 6000), and

tritium may be bred via nuclear decay, for example within the reactor itself through
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neutron bombardment and the subsequent decay of lithium.

2
1D +3

1 T −→4
2 He(3.5MeV) +1

0 n(14.1MeV) (1)

Figure 1: Deuterium-tritium fusion reaction [2].

In order to induce two nuclei to overcome their Coulombic repulsion to each

other, high-temperature plasmas are required, a state of matter where the pres-

sure and temperature is so high that atoms are completely ionised. Two domi-

nant promising design proposals to recreate this extreme environment have devel-

oped. Inertial-confinement fusion (ICF) involves the bombardment of small, solid

deuterium-tritium (DT) pellets with high intensity infra-red lasers causing the pel-

let surface to rapidly expand and increase pressure at the pellet core. This rapid

implosion increases internal density and for about one-billionth of a second temper-

atures rise above ten million Kelvin where fusion occurs. The second approach is to

magnetically confine the fuel. Current reactors favour the Russian tokamak design

which magnetically compresses the fuel within a toroidal configuration of magnets.

In both designs the high-energy neutrons carry away most of the energy released

in the process. This energy is then transfered to a coolant which in turn drives

conventional turbines generating electrical power.

Insulating this high-temperature stellar process from the surrounding terrestrial

environment (a temperature difference of order of magnitude 106 K) is achieved

though a combination of vacuums, electro-magnetic containment, limited plasma-

surface interaction and effective plasma-facing shielding. Intense fluxes of high-

energy neutrons pose serious engineering problems since they will not be magnet-

ically deflected and will irradiate and potentially damage the confining torus. In
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Figure 2: Left: A tokamak - General layout of super-conducting magnetic con-
tainment chamber and magnetic field confining the plasma [2] . Right: View of
the plasma inside the MAST tokamak in the United Kingdom during operation.
Culham http://fusion.org.uk/ .

addition to radiation damage, plasma-material interactions will result in chemical

and physical sputtering as well as large thermal shocks. In the ‘next-step fusion

device’, it is expected that plasma-facing material (PFM) could endure up to a cen-

timetre of erosion [3]. The plasma-facing materials challenge of future fusion power

plants centres on surviving ion-bombardment and thermal damage without contam-

inating the confined plasma.

This thesis is loosely structured into three parts: introduction, method and

results. Chapters 2 and 3 introduce the tokamak reactor design and diamond as

a plasma facing material. Chapter 4 then outlines the modifications made to the

package DL POLY 3 and how molecular dynamics simulations were employed in

this study. Chapters 5 and onward present the results of this work investigating

different, yet connected, phenomena. These results chapters are further broken

down into specific methods and results subsections.

Chapter 5 looks at the graphitisation of diamond and the effects surface topogra-

phy has on it. The following chapters all centre on the cumulative bombardment of

surfaces with tritium (varying either substrate temperature, bombarding ion energy

or incident flux) and focus on the resulting structural damage and tritium retention

levels.

In Chapters 6 and 7 diamond and graphite surfaces are bombarded with 15 eV

tritium at a fixed flux and over a range of substrate temperatures (300-2100 K).
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In Chapter 8 diamond is again bombarded but the substrate temperature is kept

fixed at 300 K whilst independently varying incident ion energy (7.5-30 eV) and flux

(bombarding interval times 0.3-1.2 ps).

In Chapter 9 a diamond grain boundary is bombarded at a fixed flux and incident

energy over a range of substrate temperatures.
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2 Reactor Design

The ‘next step’ towards a fully functioning and economically viable commercial

fusion reactor is ITER, originally the International Thermonuclear Experimental

Reactor, Figure 2 (the acronym also appropriately means journey or way in Latin).

The principal aim of this project is to demonstrate the scientific and technological

viability of fusion energy and it is projected to be operational before 2020. Located

in Cadarache, France, it is expected to cost its participants approximately US$10 bil-

lion. Those parties involved are the European Union (represented by EURATOM),

Japan, the People’s Republic of China, India, the Republic of Korea, the Russian

Federation and the USA. Whereas previous fusion reactors TFTR (tokamak Fusion

Test Reactor) and JET (Joint European Torus) have sustained power outputs of 10.7

MW and 16 MW respectively for less than a second, ITER is expected to produce

500 MW for 1000 seconds by heating 0.5 g of Deuterium/Tritium to a temperature

of 100 million K1. Later commercial reactors, functioning as power plants, will have

to generate about 1 GW of power for prolonged periods. It is also hoped that with

ITER, the heat produced by the fusion reaction will self-sustain a continued reaction

thus economising on input energy requirements.

The enterprise is also intended to pool international research and development

in the fusion energy field and to give a platform to further experimental research,

one field of which is the development of protective plasma-facing materials. There

are many demands and restrictions on a plasma facing material. For example, if

the surface is ablated or fragmented to spall and create dust, contamination of

the plasma itself might occur whilst leaving the PFM damaged and mechanically

inadequate. Exposure to intense temperatures demands materials with high thermal

conductivity.

2.1 ITER

Within the tokamak design, plasma-facing materials form the protective tiling on the

inside of a blanket around the main chamber and around the divertor plates. This

blanket around the reactor core has three main functions; to generate (or breed) fuel

tritium, to absorb and transfer energy from the high-energy neutron radiation and

to shield the rest of the structure from damage. The reference design for armour at

the divertor region for ITER currently uses a combination of carbon-based materials

and tungsten, while the reference PFM of the main chamber is beryllium. However,

1http://www.iter.org/a/index nav 4.htm
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Figure 3: The ITER tokamak cutaway showing reactor relative in size to the average
person (standing beneath righthand opening of main chamber) [4]

for a possible follow-up reactor (DEMO), which will aim at replicating something

closer to a commercial power station’s energy output (about 1 GW), the possibility

of using only carbon PFMs has been suggested [5].

Figure 4 shows the location of the main chamber components in the ITER ref-

erence design in relation to the open magnetic flux surfaces, which manipulate the

plasma. Not shown in Figure 4 are the surfaces which confine the plasma ions and

close back on themselves forming ‘closed-loops’. This region is called the plasma

core and is where nearly all nuclear energy is generated. The outer surface of the

core is referred to as the edge region, and is immediately inside the last closed flux

surface - the separatrix. The edge region contains not fully ionised impurities which

can radiate energy to the chamber wall (and are thus visible - see image of plasma

within MAST shown Figure ??), and undesirably cool the plasma. The separatrix is

the first flux surface depicted in Figures 4 and 5, and is uniquely characterised by an

intersection in the poloidal magnetic field known as the X-point. Beyond this, the

outer region consists of flux-surfaces that intersect wall material in the divertor area.

This outer region is known as the scrape-off layer (SOL), because power is rapidly
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Figure 4: Cross-section of plasma-facing materials in the ITER reference design.
The divertor plates are shown in red and will initially be made of carbon. The
upper baffles and the dome will be made of tungsten (shown in green) and the first
wall will be made of beryllium (shown in Blue). Cross-sections of the open magnetic
flux surfaces are show as light red lines (closed surfaces at the centre of the chamber
are not shown) [6].

scraped-off, and it is thinnest at the midplane in the main chamber and thickest near

the X-point. In the vicinity of the divertor plasma the SOL expands by a factor of

approximately four. This reduction in density, coupled with intentionally injected

impurities, results in a highly radiative (favourably cooling) plasma in the divertor

region.

The function of the divertor is to pump away waste helium, to control and contain

plasma impurities and generally to take the brunt of the necessary plasma-material

interactions (PMIs). This last requirement is obviously preferable in an area away
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Figure 5: Left: Divertor cassette showing the large openings in the dome support
[7]. Right: Poloidal cross-section of a tokamak plasma labeling the different plasma
regions [3].

from the core-plasma, thus reducing the chances of contamination. However, near

divertor plates, plasma temperature is comparatively low and often incident ions are

below the physical sputtering threshold of higher Z materials. The vertical target

plates will intercept the magnetic field lines of the SOL and form a ‘V’ shape with

neutral particle reflector plates which confine neutral hydrogenic particles to the

divertor channels.

Plasma facing materials will be selected for a range of desired properties. Dif-

ferent areas within the tokamak will emphasise specific requirements and so com-

promises will have to be made in catering for all. For example, PMIs will vary

drastically at different areas of the reactor with ion energies of 500 eV at the mid-

plane and upper baffle and 15 eV in the vicinity of a detached divertor [3], where

15 eV is below the physical sputtering threshold of many materials. Because of

this, exploiting various strengths in the use of composite structures is an attractive

option [5]. Generally, a lower Z material reduces the radiative effects of plasma con-

tamination at the plasma/wall interface, but a higher Z material is more resilient to

sputtering.
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2.2 Candidate Plasma-Facing Materials

Beryllium (Z=4)

Being a low Z metal, beryllium is readily ionised when an impurity within the

plasma-core and thus does not radiate large amounts of energy. This said, it does

suffer from high physical sputtering levels and has a relatively low melting tem-

perature of about 1560 K and high thermal expansion factor of 11.3 µm.m−1K−1.

Thermal conductivity at 300 K is reported to be 200 W/(m.K). However, since it is

not very reactive with hydrogenic isotopes it causes little concern regarding tritium

retention and is resistant to high thermal shock loads. The use of small surface-area

tiles would reduce the effects of low-temperature embrittlement due to exposure

to neutron radiation and incident radiation may be utilised in generating tritium

through transmutation via lithium. This nuclear decay is referred to as ‘breeding’

and makes beryllium useful as a first wall material of the main chamber.

Tungsten (Z=74)

Tungsten has been proposed for the divertor baffle areas where there will be a high

flux of neutral particles and charge exchange atoms of energies ranging from 100

eV to several keV. This bombardment can cause physical sputtering and for this

reason the high Z of tungsten is a significant advantage over other materials. Due

to its lower ionisation potential, sputtered material will accelerate away at lower

velocities and may be quickly redeposited back on the divertor surface. Because

of this it has a lower erosion rate than Be and C. Although tungsten suffers low

tritium retention, experiment has shown tungsten surfaces above 1000 K to develop

a surface ‘fuzz’ on exposure to plasmas [8, 9], which could then be a source of high-Z

dust and contaminate the plasma. Being a high Z material, tungsten would have

a greater cooling effect on the plasma as a contaminant than carbon for beryllium.

Tungsten has a melting temperature of 3695 K with a thermal conductivity of about

173 W/(m.K) and thermal expansion of 4.5 µm.m−1K−1 at 300 K.

Carbon (Z=6)

Carbon is currently the dominant material in the world’s tokamaks and it is the

historical choice for plasma facing materials [3] due to its excellent thermal properties

and the fact that carbon impurities lead to minimal radiation within the plasma.

Of all candidates for PFM, carbon-based materials, although they do have se-

rious drawbacks, are generally the superior choice. This is specifically due to the
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properties associated with diamond and diamond-like structures. Even graphite,

which is already widely used, in the basal plane shares diamond’s characteristics of

low thermal expansion coefficients and high thermal conductivity. As mentioned,

tritium retention is a major drawback for all carbon materials. Due to the high re-

activity of carbon with hydrogen and its isotopes, incident ions may bond with the

surface creating a tritium rich surface layer. In addition to this, sputtered hydrocar-

bon material may recombine with the wall. Not only does this enhance the tritium

count at the wall directly, it can encourage the development of a ‘soft’ amorphous

hydro-carbon layer which may be prone to enhanced tritium retention.

Although graphite does not readily melt, rather undergoing surface sublimation,

it does suffer from dust production when fatigued which leads to carbon and hydro-

carbons re-depositing on the surface (potentially increasing the tritium inventory)

or condensing within the plasma and thus contaminating it.
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3 Carbon as a Plasma Facing Material

Although diamond and graphite are strong candidate materials, carbon-fibre com-

posites (CFCs), amorphous hydrocarbons (a-C:H) or ‘diamond-like’ carbon (DLC)

surfaces offer a spectrum of tailored properties exploiting strength and flexibility,

which may be suitable for use throughout a tokamak chamber. CFCs are the refer-

ence material in ITER at the lower part of the divertor region due to their superior

thermal properties over Be or W. In this area they are expected to experience neu-

tron damage at a maximum of 0.1 dpa [10]. They are also resilient to excessive heat

loads in the event of sudden loss of plasma confinement or when energetic particles

rapidly escape from the edge region into the scrape-off layer - edge-localised modes.

Current CFCs have been manufactured as carbon-armoured components that can

endure a heat flux of over 20 MWm−2 [7]. By controlling the level of hydrogen sat-

uration and the sp2/sp3 bond ratio when manufactured, these films can be tailored

with varying visco-elastic properties and thus, to some extent, may be potentially

self-healing under stress and irradiation.

The processes involved with incident ionic bombardment and subsequent erosions

dominate PMIs. The release of wall material as a consequence is referred to as

sputtering and leads to issues related to plasma contamination and redeposition

back upon the plasma-facing material. Material can also evaporate due to electrical

arcing.

By any mechanism, the contamination of the plasma can lead to dilution and

unwanted radiation (cooling) due to impurities not being completely ionised. Im-

purities of low Z materials, such as carbon, are preferable since they are stripped of

their electrons a lot easier and thus radiate less when within the plasma core.

Redeposition of sputtered material on the wall leads to difficulties in controlling

fueling efficiency and limits PFM lifetimes. Redeposition of eroded material which

has chemically combined with hydrogenic isotopes can lead to tritium retention and

is a major concern since it increases the tritium inventory, which is limited due to

safety concerns.

3.1 Crystalline Structure

The irradiation of realistic surfaces will mean considering variations on an ideal

atomistically flat surface. Surface steps and large scale ripples as well as a varying

degree of hydrogen-termination at the surface will affect tritium retention, sput-

tering yield and sputtered species produced. Various molecular dynamics (MD)

investigations into the effects of atomistic surface steps on sputtering yield have
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been performed. For example, a preference for sputtered material to originate from

the periphery of a step was observed by Karolewski [11] for 3 keV Ar ions incident

on a stepped Cu (100) surface. Naturally, yield is hugely dependent on the angle of

ion incidence and interplays closely with surface step effects.

Irradiating a material will not only have direct consequences on that material’s

mechanical properties but can consequently alter the surface topography which

might leave the material susceptible to further radiation damage. Specifically, sur-

face vacancies and clusters can form steps and where bombarded atoms have not

been imparted with quite enough energy to be completely ejected, comparatively

loosely bonded adatoms can form on the surface, also altering surface topography.

Chemical vapor deposition techniques are used to ‘grow’ poly-crystalline dia-

mond films. Crystal size may be varied depending on requirements. As the topog-

raphy of a crystal surface will affect its performance, so will the presence of grain

boundaries. For example erosion of material from carbon-fibre composite surfaces

was found to mostly originate from in-between fibres [12] and at the edges of plane

for graphitic samples [13]. Experiment has also shown nano-crystalline diamond sur-

faces to sputter more than micro-crystalline [14], suggesting that grain boundaries

might also be a source of enhanced sputter.

3.2 Graphitisation

The thermodynamically driven transition of a carbon structure from a diamond (sp3-

bonded) matrix to that of a graphite (sp2-bonded) configuration has been studied

for many years. Nath [15] first proposed the mechanism of diamond’s ‘puckered’

(111) planes separating from each other and flattening to form the hexagonal planes

of a graphene sheet. Although graphite is the more energetically favourable of the

two structures, there exists a large potential barrier separating their configuration

energies. For this reason diamond is referred to as a metastable state. Overcoming

this barrier by sample heating for micro-sized diamond powder was experimentally

achieved by Seal in 1960 [16] at a transition temperature range of between 1900 K

and 2300 K. Within this range a mixture of sp2 and sp3 bonding was observed. An

apparently disordered mix of sp2/sp3 hybridisation is loosely known as amorphous

carbon (a-C).
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3.2.1 Surface Graphitisation

Variations in surface topographies will facilitate the graphitisation of diamond with

varying readiness. Such features include ‘steps’, grain boundaries, dangling bonds

and levels of hydrogen saturation. Understanding these mechanisms at the surface

can lead to a deeper knowledge of those within the sample bulk.

De Vita et al. [17] performed first principles MD simulations on a diamond slab

of 192 atoms, with one of the six (111) planes exposed as a (2x1) reconstructed

surface. When heated to about 2500 K from initially close to 0 K, bonds between

the first and second (111) diamond bilayers began to break and as a knock-on effect

atoms in adjacent layers energetically favouring pi-bonds propagate the process of

graphitisation. Once this occurred, fast graphitisation of the whole slab followed

resulting in all the diamond (111) bilayers forming graphene sheets by 3000 K.

The sequence of sp3 bond breaking and sp2 bond formation within adjacent (111)

bilayers has been studied by Los and Fasolino [18] using their own long range bond

order potential for carbon (LCBOP - which involves both short-range and long-

range components) in Monte Carlo simulations. The focus of their study was on

the dependence of graphitisation on the surface topography (non-reconstructed and

(2x1)-Pandey-reconstructed) of the (111) slabs and on the slab thickness. Simula-

tions were performed using two different cutoff ranges; 2.2 Å and 2.3 Å. The effect

of such a small difference in cutoff range had an observable effect on the reaction

path of graphitisation. Full graphitisation of a non-reconstructed slab of 384 atoms

and six bilayers took place over temperature ranges of 1300-1400 K and 1100-1200

K for the two cutoffs respectively. Here, as observed by De Vita [17] and Saada [19],

the process of graphitisation was initiated at the surface by a few bonds breaking

between the top two bilayers. Figure 6b shows how from this sp2 nucleus, graphiti-

sation propagates in a direction perpendicular to the surface.

It was observed that for slabs thicker than about six bilayers, the mechanism

of graphitisation changes from perpendicular propagation from a surface nucleus to

that of a layer-by-layer peel-away process. This is illustrated in Figure 7 where a

‘thick’ slab of 12 layers is compared to a sample with a fixed substrate, replicating

bulk diamond. The process of graphitisation is similar for each. The first graphite

layer formed at a temperature of about 2000 K, about 600 K higher than for the

‘thin’ slab. This dependence on thickness is attributed to the relationship between

the nature of bond forming-breaking behaviour and the local chemical environment,

something modelled in empirical potentials as a dependence on variables such as

bond angles and the local coordination of first and even second nearest neighbours.
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Figure 6: Snapshots during an (NPT) Monte Carlo annealing simulation of a ‘thin’
diamond (111)-slab containing 384 atoms from a) 0 K, initial configuration, to b)
and c) at 1400 K. White and gray spheres are atoms with coordination three and
four respectively [18].

For the (2x1)-Pandey-reconstructed slabs, graphitisation occurred at higher temer-

atures, highlighting the dependency on surface topography. For the first cut-off range

of 2.2 Å, phase transition temperatures for thin and thick slabs were found to be

≈2500 K and ≈2750 K respectively.

3.2.2 Bulk Graphitisation

A surface, and thus a disruption to the regular crystal structure, will be less energet-

ically favorable than a continuous bulk and so graphitisation will more readily occur

on heating. However, given enough energy, the bulk itself may undergo graphiti-

sation. Any defects to the crystal will inevitably alter its stability. For example,

high energy fusion neutrons can impart kinetic energy creating a cascade and lo-

calized melting. Marks [20] reports that this rearrangement of atoms dominantly

occurs while the temperature of the initial thermal spike (the initial 0.2 ps of the

cascade) lies in the range of 3000 K to 5000 K. This region quickly quenches after

the heat dissipates, and the result is a disordered region of defects and interstitials.

Upon annealing, it is possible for this amorphisation to recrystallise into an ordered

structure. The development of a graphitic structure over diamond will have effects

on macroscopic properties such as thermal conductivity, as well as disrupting the

integrity of the surrounding local structure.

Saada et al. [19] performed MD simulations of annealed radiation damage using

the Tersoff potential [21]. An embedded damage-region within a diamond matrix
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Figure 7: Snapshots during an (npt) Monte Carlo annealing simulation at 2250 K
and 2500 K for respectively a) ‘thick’ diamond (111) slab containing 768 atoms and
b) a diamond (111) surface with a fixed substrate, allowing no movement in the
lowest two bilayers [18].

(5120 carbon atoms, 10×8×8 conventional unit cells) was first generated by impart-

ing high momenta (416 eV = 8 × displacement energy of 52 eV) to 12 lattice atoms,

all aimed at the same point. The subsequent local heating was then quenched back

to 0 K within 2.5 ps. The result was a spherical volume of amorphous carbon of

radius ≈1.4 nm. The extent of this ‘heavy damage’ proved to be large enough to be

considered independent of the specifics of the 12 initially displaced atoms, such as

the relative trajectories to lattice orientation.

Following preparation of this damaged region, the sample was gradually heated

up to 3000 K and then annealed for 20 ps. The result was that the peripheral

atoms around the core of the damaged region rearranged as threefold coordinated

atoms (sp2 bonded) in planar graphitic layers aligned with the diamond matrix (111)

planes. The core of the damaged region, however, reformed a cluster of fourfold

coordinated (sp3 bonded) atoms. The segregation is attributed to the fact that core

atoms are able to move comparatively larger distances of several lattice sites, as

opposed to the limited movement at the damage/bulk-diamond interface. This was

the outcome for a heavily damaged region only. The conclusion was that there is

a critical density of defects of about 1022 vacancies/cm3 above which the damaged

region resolves into graphite (Figure 8). For densities below this a diamond-like
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Figure 8: The proportion of threefold and fourfold atoms in the damaged core
depends drastically on the number of bombarding atoms [19].

structure of sp3 bonded atoms regrows.

3.3 Sputtering

The phenomenon of sputtering is generally referred to as being either physical (bal-

listic and energetic in nature) or chemical (low energy bond-breaking). Although

a clean distinction between the two is not always clear, they do tend to dominate

opposite ends of the incident particle energy spectrum, with a threshold between

the two processes being somewhere around 20-40 eV (although this range can vary

wildly). With regards to chemical sputtering, the interaction of hydrogen isotopes is

only weakly dependent on isotope mass where activation energies are similar. Mass

is much more important when studying physical sputtering.

The erosion of carbon by hydrogen ions is a thermally activated process and does

not require energetic ions. In a fusion environment, plasma-facing components will

be exposed to hydrogen and hydrogen isotope bombardment (0-200 eV ions [22]).

On contact with the carbon surface, hydrogen can chemically form strong C-H bonds

and further bombardment can induce chemical sputtering. Hydrocarbon molecules

produced, CxHy, may be of varying size, x, and saturation, y. These sputtered

products could then contaminate the plasma [23]. When Balooch and Olander [24]

targeted graphite with atomic hydrogen they observed that, below about 800 K,

CH4 was the dominant reaction product and above 1200 K, it was C2H2. It is
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believed that the type of hydrocarbon sputtered is dependent on the incident ion

penetration depth, with CHy and C2Hy being the dominant products at low energies

(<15 eV). There also exists a dependence on the incident angle of bombardment,

since a glancing impact may not penetrate as deep as one that is normal to the

surface. Molecular dynamics studies have reported an angular dependence that

decreases with lower incident energies (to within the chemical sputtering regime).

In a study where a-C:H targets were bombarded with tritium [22] it was found that

ions over a range of incident angles showed yield differences of the order ten-fold for

energies of 150 eV depending on angle of incidence, but with no discernible difference

in yield for ions at about 50 eV, regardless of angle.

3.3.1 Chemical Sputtering

From experimental observations Güntherschulz first highlighted the importance of

chemical interactions to the erosion of bombarded material [25]. A definition of

chemical sputtering has been offered as “a process whereby ion bombardment causes

or allows a chemical reaction to occur which produces a particle that is weakly bound

to the surface and hence easily desorbed into the gas phase” [26]. Generally, when

incident ions chemically interact with plasma-facing surface atoms, the subsequent

release of atoms and molecules from the surface is referred to as chemical sputtering.

The incident reactive ions can form compounds with the surface of the target mate-

rial. Depending on the bonding properties of this surface layer, this can increase or

decrease sputter yield [27]. This process typically dominates erosion processes at low

ionic energies (<100 eV) and high surface temperatures. This is an especially impor-

tant problem for carbon based materials and is susceptible to a complex mixture of

parameters including surface temperature, incident ionic species and energy as well

as intensity. With carbon, incident hydrogen ions may form loosely bound hydro-

carbon molecules saturating surface carbon atoms which reduces the ionic threshold

energy for sputtering. For example, at room temperature this can be to about 2 eV

for graphite. Where the surface temperature is above 400 K, the thermal release of

hydrocarbons occurs. However, this increase in chemical erosion is capped and then

decreases for temperatures above 600 K where hydrogen molecular recombination

can occur before the complete hydrogenation of the surface. This trend is depicted

in Figure 9 showing a maximum yield for when surface temperature is 600-800 K.

There have been many studies into understanding the individual steps behind the

process of chemical erosion of carbon by incident hydrogen. Figure 11 is taken from

[28] and emphasises thermal activation barriers and the formation of hybrid carbon
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Figure 9: Temperature dependence of the erosion yield of pyrolytic graphite by
deuterium ion bombardment at different ion energies as measured by weight loss [3].

spx radicals in between sp2 and sp3 as the crucial step to forming sputter products.

This work centred on the bombardment of graphite but is assumed to hold for other

carbon structures. Figure 11 shows four individual processes. There is the hydro-

genation of carbons, not thermally activated, but proportional to the cross section

kH . Irradiation of this leads to hydrogen desorption with cross section kD. There

is the thermally activated CH3 chemical erosion above 400 K at rate kX . Above

600 K the thermal decomposition of spx radicals and recombination of H2 inhibits

the reaction process and reduces the yield for higher temperatures. The combined

effects of these two processes results in a peak yield over a range of substrate tem-

peratures (see Figure 9). The conclusion was that sputter yield for an incident flux

is not related to hydrogen concentration, but to the concentration of hydrogenated

spx centres, which in turn is directly proportional to the sp3 concentration.

The first experimental investigations into chemical sputtering demonstrated a

temperature dependence of sputter yields for graphite [29, 30, 31, 32]. With in-

creasing temperature the C-H reaction rate increases but then above 800 K the

recombination of H2 reduces the surface saturation and thus sputter yield. Incident
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Fig. 2. HREEL spectra measured after exposing 6 monolayer thick 

C: H films to several 100 ML of thermal H atoms at various tem- 

peratures. The dashed lines indicate principal vibrations. Pri- 

mary energy 7 eV, specular direction. 

impact induced hydrogenation reaction at C: H film 

surfaces reported earlier [ 6 1. An evaluation of the 

data given in Ref. [ 61 via the rate equation 

H-atom induced chemical erosion 

-d[CH sp2]/dt= [CH sp2]crH@, (1) 

with the bracketed items as concentrations, an as hy- 

drogenation cross-section and 0 as the flux of H at- 

oms revealed OH = 4.5 AZ. 

As seen in Fig. 2, spectra measured after exposing 

the film surfaces above 400 IS to H atoms exhibit less 

sp3 C-H stretch intensity but growing sp2 C-H stretch 

vibration intensity. At 700 K the C-H stretch loss 

peak is clearly dominated by sp2-type C-H vibra- 

tions. In parallel with the growing sp2 C-H stretch 

mode the C=C stretch mode at 1580 cm-’ and sp2 

C-H deformation modes around 700 cm-’ develop, 

further stressing the fact that at the surface of the C: H 

film (aromatic) sp2 related groups get the most 

prominent species. 

Fig. 3. Scheme of reactions which are initiated by H impact and 

temperature at C:H films or other hydrogenated carbon sub- 

strates. The elementary reactions are illustrated at an individual 

two-carbon entity of the C: H surface. 

One must conclude that under impact of H the hy- 

bridization of carbon atoms at a C:H film surface 

change from sp3 to sp2 character in the temperature 

range 400 to 700 K. Again we emphasize that this 

phenomenon is only present with H atoms impinging 

at the surface. It is suggested that this change may be 

correlated with the H atom impact induced erosion 

reaction deduced above. 

In order to exploit this in more detail, Fig. 3 col- 

lects in a scheme the reactions already identified ear- 

lier. This scheme is intended to emphasize the reac- 

tions which are suggested to contribute to the present 

findings. We do not infer that all reactions which pro- 

ceed at hydrogenated C substrates are included in this 

diagram. 

On the left of Fig. 3 the reaction sequence of hydro- 

genation of a sp2 entity via an intermediate radical 

‘sp” state is shown. This radical intermediate is nec- 

essary as one H atom can only hydrogenate one C 

center at a time. Therefore, the neighboring C center 

must assume this spX state. Repetitive application of 

hydrogenation with a final C-C bond-breaking which 

may involve rearrangements will lead to, for exam- 

ple, a methyl group as indicated in the figure. On the 

right of Fig. 3 the H atom impact induced dehydro- 

genation reaction of a sp3 entity via molecular hydro- 

gen release is drawn. Clearly, this reaction also has an 

Figure 10: Schematic of chemical erosion cycle as presented by Horn et al. [28].
Thermally activated processes are indicated.

ion energy also influences maximum yield. For graphite, it was found that between

300 eV and 3000 eV ions on pyrolytic graphite had a yield peak at 800 K [33].

With lower bombarding energy (100 eV) the maximum peak broadens and shifts to

a slightly lower temperature (600 K), but the methane production yield is higher.

Yamada et al. [34] found that at a given temperature there is an incident energy

which gives a maximum yield, typically about 1 keV. Roth et al. [29] found this

energy dependent maximum to reduce with decreasing substrate temperature.

As well as a dependence of incident ion energy, the temperature of sputter yield

maxima were found to increase with increasing ion flux [35, 36, 37]. Above fluxes of

1021 m−2s−1 the temperature maximum reaches about 1000 K. It has been suggested

that at this temperature the system shifts from CH4 production to H2 release [38]

and yield decreases with further increasing flux. Normalizing the data to 30 eV bom-

bardment Roth et al. [39] fitted using Bayesian probability theory [40] (Equation 2;

low-flux yield Ylow (E, T ) = 0.08; threshold flux φ0 = 6× 1021 m−2s−1; z = 0.54.)
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Y (E, T, φ) = Ylow (E, T )
1

1 + (φ/φ0)
z (2)

Letter

limit as in the later publication an increase of the yield data
with increasing surface temperature from 250 to 550˚C was
found. As for JET, the contribution of heavier hydrocarbons
was determined to be about equal to that of methane.

TEXTOR. The data shown in figure 4 were obtained
spectroscopically at the TEXTOR test limiter and published
in [15]. Both, density and limiter position scans were
made and spectroscopic parameters were calibrated in situ
by hydrocarbon gas puffs. A scan of radial positions of the
test limiter leads to higher plasma temperatures for higher ion
fluxes, in contrast to most other data measured under divertor
conditions, where the plasma density was changed. For all data
points the edge plasma temperature and density were provided.
Actually, the TEXTOR data require the largest normalization
factor as edge plasma temperatures in few cases reaching
values of up to 60 eV. The energy normalization at the highest
fluxes results in a factor of 0.5, in good agreement with the
energy scaling in the PISCES B experiment (see figure 1). As
seen in JET and Tore Supra, heavier hydrocarbons contribute
to the erosion yield about as much as methane does.

Recent experiments clarifying the flux dependence under
different limiter geometries are presently under way in
TEXTOR. Additionally, it seems that the hydrogen flux derived
from the D-gamma line emission may have been the lower
limit because of the molecular influence on the emission of
the atomic line radiation. The hydrocarbon production yields
should, therefore, be treated as the upper limit.

JT-60U. The results for JT-60U shown in figure 4 were
taken from the optical spectroscopic determination of the
CD- and C2-band measurements at the outer divertor [25].
For all data points the plasma temperatures were provided,
ranging from 7 to 19 eV, and normalized to the particle energy
of 30 eV. Earlier data [26] from the inner divertor may have
included detachment effects at the divertor plate with much
lower plasma temperatures and are not included here.

The JT-60U data are the only ones not calibrated in situ
by hydrocarbon gas puffs and rely on spectroscopic detection
efficiencies (D/XB) measured in PISCES [27]. The evaluation
of spectroscopic signals for heavier hydrocarbons using the
parameters from PISCES led to unusually high contributions
of C2Dx hydrocarbons, up to a factor of 3.5 larger than that
of methane. The reason for this strong contribution is not
known and more investigation is required, if possible using
in situ quantification by calibrated gas puffing. The CD4 data
were considered for the resulting fit to the flux dependence as
all other data, although the result from this joint endeavour is
that the D/XB must be in situ calibrated. JT-60U has finished
installation of the gas inlet for the in situ calibration by using
hydrocarbon gases and will be able to give revised sputtering
yield data by the end of 2004.

ASDEX Upgrade. ASDEX Upgrade is the only device
in which the chemical erosion yield was measured at room
temperature. As the erosion mechanism appears to be different
from the thermal emission at elevated temperatures [3], no
scaling of these data was done to Tmax. In ASDEX Upgrade
the recent in situ calibration results in a slight dependence of
the spectroscopic parameter, D/XB, on ion flux (i.e. electron
density), while earlier evaluations [28] assume a constant
D/XB = 50. This measured dependence tends to soften

Figure 3. Flux dependence of the chemical erosion yield at room
temperature, as measured in ion beam experiments [6] and in the
divertor of ASDEX Upgrade [29]. The solid line is a fit to the data
using equation (1), resulting in a flux dependence as !−0.7 at high
fluxes.

Figure 4. Flux dependence of the chemical erosion yield for Tmax
and an ion energy of 30 eV determined from spectroscopic
measurements in different fusion devices and plasma simulators.
The solid lines are fits using Bayesian probability theory and its
confidence intervals [31].

the decrease of the erosion yield with ion flux to values
of about !−0.7 (see figure 3). All the ASDEX Upgrade
measurements up to now have been performed considering
only D/XB of CD from CD4, and do not take into account
directly higher hydrocarbons in the eroded flux and the effect
of higher hydrocarbons on D/XB for CD from CD4. A detailed
evaluation of the results is in progress [29, 30].

After this re-evaluation and normalization of the data,
the following set of high-flux data for methane production
at Tmax is available (see figure 4). The data are for D ions,
normalized to an incident ion energy of 30 eV and considered to
be taken at or near Tmax. While individual data sets in a narrow
range of fluxes cannot distinguish clearly flux dependences
(PISCES, JET, JT-60U) the ensemble of data points and the

L24

Figure 11: Dependence of chemical sputtering yield, Y , (at Tmax) on incident flux,
φ. Data normalised to incident ion energies of 30 eV. Plot following Equation 2.
Taken from [39]

Swift Chemical Sputtering

In 2000 Salonen et al. identified the mechanism of ‘swift chemical sputtering’ [41]

in which C-C surface bonds are broken by incident ions which do not have enough

kinetic energy to physically sputter (see Figure 12). With swift chemical sputter-

ing the impinging ions briefly find themselves between bonded carbon atoms thus

repelling them and breaking the C-C bond. Different from conventional physical

sputtering, this process has an upper ion energy limit as well as a lower one. The

reason for this being that not only do the incident ions require enough energy to

position themselves between two bonded carbon atoms, but too much energy will

see that they spend too little time there to repel the carbons and will instead move

on to penetrate deeper into the sample network. Since this interaction time depends
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Figure 12: Mechanisms of physical and swift chemical sputtering of carbon in tar-
get sample for bombarding hydrogen ion kinetic energies above and below required
threshold energies [41]

on ion velocities, it also depends on ion masses and therefore there is also a depen-

dence on isotopic species, with heavier hydrogen isotopes having the larger ‘energy

windows’. This mechanism requires timescales of the order of 10 fs to simulate, and

has also been extended to helium ions [42].

3.3.2 Physical Sputtering

When plasma ions impact on solid surfaces they elastically impart some kinetic en-

ergy to the wall atoms. If these target atoms are then energetic enough to overcome

surface binding energy they can escape back out towards the plasma where they

are then said to have physically sputtered. Incident ionic energies can range from

≈500 eV at the chamber midplane to about ≈15 eV around the divertor (with an

upper limit at the divertor expected to be about 100 eV) where 15 eV is below the

typical physical sputtering threshold for most materials [3]. The threshold energy

of physically induced sputtering due to light ions bombarding heavy materials can

be analytically approximated by the following equation2 .

Eth =
(M1 +M2)

4

4M1M2(M1 −M2)2
Es (3)

In Equation 3, M1 and M2 are incident and target particle masses respectively

and Es is the surface binding energy. This illustrates the dependence of the threshold

2Equation 4 of [3], which was taken from [43]
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energy of a surface incident with light-ions on the surface atomic mass.

The sputtered yield is dependent on incident energy in the following way3:

Y = QSn(E)

(
1− Eth

E

)2
(

1−
(
Eth
E

) 2
3

)
(4)

Sn (E) describes the energy deposited in elastic collisions. Values for the param-

eters Q and Eth can be found in reference [45].

Hydrogen Enhanced Physical Sputtering

Although chemical sputtering may be the dominant process in the divertor region,

the way in which carbon and hydrogen interact will play an important role. It is

therefore interesting to observe the effect hydrogen has on physical sputtering. Maya

et al. [46] used the Brenner potential [47] in MD studies, bombarding a-C:H films

with 150 eV Ar ions in a background of low energy (0.5 eV) hydrogen, and found that

the effects of what is essentially physical sputtering may be enhanced by the presence

of hydrogen at the surface. Due to the ion bombardment, surface carbon bonds are

broken (to a depth≈8 Å) by conventional physical sputtering. If not ejected from the

surface they would perhaps reform C-C bonds, however, the hydrogen atoms present

passivate these open bonds resulting in linear hydrocarbon chains projecting out of

the surface. A hydrocarbon group with one C-C bond connecting it to the bulk

structure will erode easier than one that is multiply connected, and so it was found

that this new surface arrangement was prone to releasing unsaturated hydrocarbon

molecules upon further bombardment. Thus the presence of hydrogen resulted in

a sputtering yield higher than that expected from the simple addition of reported

chemical and physical levels. Maya et al. refer to this mechanism as ‘hydrogen

enhanced physical sputtering’.

In addition to the amplified effects of physical sputtering, the species of molecule

ejected were in general seen to contain more carbon atoms. Specifically, hydrocar-

bon chains containing four to six carbons were released whereas in the absence of

hydrogen, molecules of no more than three carbons were observed. The same study

also reported that ion bombardment did not result in additional hydrogen diffusion

into the bulk material at 300 K.

3Equation 5 of [3], originally [44]
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3.4 Tritium Retention

The retention of hydrogen isotopes, especially tritium, is a major issue for reactor

design and carbon in particular. Due to strong carbon/hydrogen bonding, carbon

is a particularly problematic material as it can retain tritium at and just below the

surface. The term hydrogen is used in this section to refer to hydrogenic ions in

general.

In limiting hydrogen retention the diffusivity and solubility of the material needs

to be understood. For tungsten and beryllium the hydrogen-solubility is known to

be very low. This is not the case for the array of carbon structures, however, but

an already hydrogen-saturated surface may reduce the solubility of the material and

the use of a porous structure offers a solution to the problem of retention directly

by allowing easier tritium transport (and thus escape) within the sample. This idea

is behind the inclusion of nano-tubes or other fullerenes in building a matrix of

channels in CFCs. In conjunction with research into low tritium retention materials

is the development of techniques to remove deposited material. These include high

temperature baking (> 300 K) in an oxygen atmosphere and low-pressure plasma

discharge cleaning [48].

3.4.1 Hydrogen Trapping and Release

Incident hydrogen isotopes will eventually saturate the surface with a layer of thick-

ness dependent on ionic stopping range (i.e. incident ion energy) [49]. The hydro-

gen/carbon ratio at which saturation occurs will depend on the structure, but for

graphite this can be ≈0.4-0.5 H/C at room temperature with graphite saturation

occurring at coverages of about 1021 m−2 in tokamak conditions [3]. Generally this

decreases with higher temperatures [50]. Further exposure will have little effect on

the hydrogen concentration unless there is opportunity for surface diffusion along

porous channels or grain boundaries [51, 52]. Where channels exist it may be pos-

sible for hydrogen to transport deeper and potentially become trapped, typically

at defects in the crystal structure. Defects may be limited by careful manufacture,

but they can easily evolve when the sample is exposed to radiation. Thus, although

porosity may provide accelerated hydrogen release, it can also allow deeper pene-

tration and access to defects.

Increasing the temperature of a saturated surface would encourage the thermal

release of hydrogen. For hydrogen implanted graphite at temperatures above 800

K, molecular hydrogen release begins, gradually becoming atomistic at about 1300

K and above [53].
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Although once a steady-state erosion is established the incident and reflected

fluxes on a hydrogen saturated surface are similar, the incident ions compete with,

and can replace, ions already present [54, 55, 56]. Thus there exists the possibility of

exposing a tritium-rich surface to bombardment of another isotope by some plasma-

operational mechanism in an effort to induce tritium release via isotope exchange

and so reduce the wall tritium inventory.

3.4.2 Co-deposition

Eroded surface material can chemically combine with isotopic hydrogen, become

ionised and accelerate towards the wall and redeposit. Carbon and hydrocarbon

will continually erode from and gather on the sample surface. When this build

up exceeds erosion there exists a net deposition. Unlike tritium retention by im-

plantation via bombardment, co-deposition increases the thickness of the hydrogen

retentive surface layer, and thus its tritium containing capacity. For low density

polymer-like carbon films exposed to a low temperature plasma, with incident par-

ticle energies below 100 eV, co-deposition accumulates with a high H/C density ratio

of ≈0.8-1 [57]. Such conditions would exist in the vicinity the divertor. It has been

determined that co-deposition is the dominant process of long-term fuel retention

with carbon plasma-facing materials and so the major drawback for carbon is its

tendency to chemically trap tritium in co-deposited layers at a rate estimated to

be 5 g (±50%) T/(400 second pulse) [7]. There is also the concern that carbon

and hydrocarbons that have eroded from the vertical target plates can form thick,

hydrogenated coatings on cool surfaces which may then also trap tritium. Studies

have shown that the co-deposition of carbon-tritium molecules can vary from 10%

to 40% of the amount of fuel introduced [58].

3.5 Diamond Exposed to Plasmas

Polycrystalline diamond films have excellent thermal properties with thermal con-

ductivities roughly a third of that of crystalline diamond, which is one of the highest

known at 900-2320 W/(m.K) (with an impressively low thermal expansion factor

of 0.8 µm.m−1K−1). They also exhibit low sputtering levels and are practical to

produce, costing around US$ 30,000 kg−1 [5]. Diamond is also relatively robust

against irradiation (with a displacement energy at about 80 eV) and the high cova-

lent bonding energy means good sputter resistance.



3.5 Diamond Exposed to Plasmas 27

If diamond is to be considered as a PFM (poly-crystalline films, for example)

then understanding its limitations is essential in optimising design. Although of-

fering exceptional thermal conductivity and low thermal expansion, carbon-based

materials are problematically prone to tritium retention. This encompasses surface

damage via sputtering and redeposition. Specifically for diamond, though, is the

issue of thermally induced graphitisation - the three-fold sp2 bond hybridisation of

carbon is energetically favorable over four-fold sp3 bonding. Such a phase change

may also be enhanced by the effects of radiation damage. The understanding and

suppression of this process would be greatly beneficial.

At this level, the only mechanical property expected to drastically change is the

thermal conductivity. A three-dimensional diamond-like carbon structure with high

graphitisation energy will limit any volume change. For a temperature range 600-

1500 K, dimensional change due to irradiation would be less than 0.1-0.2% [59, 60].

At high temperatures (1100-1300 K), defects could even be partially annealed, lim-

iting reductions in thermal conductivities to between 100 and 150 W/(m.K) [10],

which is at the lower end of desirable performance criteria.

Recently there have been some promising experimental results which suggest that

diamond may be a suitable candidate for a divertor region plasma-facing material.

De Temmerman et al. [61] exposed micro-crystalline (MCD) and nano-crysatlline

(NCD) diamond coated molybdenum substrates and graphite samples side-by-side

to high density (3-8×1019 m−3), low temperature (0.3-2.0 eV) plasmas (Figure 13).

The sample temperature of the graphite sample was measured to be 800-1000 ◦C

during exposure (they were unable to directly measure the diamond sample tem-

peratures either because temperatures were below the detection limit of 500 ◦C or

because of the unknown emissivity of diamond). Their MCD and NCD crystalline

grain sizes were 0.5-2.0 µm and 50 nm respectively. They observed that the NCD and

the MCD samples showed a reduced chemical erosion compared with the graphite

by a factor of 2. This ratio was also observed in earlier experiments for much higher

ion energies of 200-800 eV [62]. Between the diamond samples, De Temmerman et

al. found the NCD coating showed the largest emission of CH, possibly linked to the

increased amount of sp2-like bonding present at the surface due to a higher density

of grain boundaries [63]. Boron doping of the diamond showed further reduction in

sputter yield [64, 65] as well as reducing arcing by increasing the electrical conduc-

tivity of the sample.
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Phys. Scr. T138 (2009) 014013 G De Temmerman et al

Figure 2. SEM pictures of pure micro-crystalline diamond samples
(a) as-deposited, (b) after exposure in Pilot-PSI and (c) of a
boron-doped micro-crystalline sample after exposure in PISCES.

bonds. For higher electron temperatures (figure 3(b)), a peak
corresponding to sp2 carbon is found, shifted towards lower
energy compared to the diamond peak. Similar observations
were made for samples exposed in DIII-D, i.e. no modification
of the C1s core level spectrum was measured for the
sample exposed under detached conditions, while a partial
amorphization (appearance of sp2 carbon) of the surface
occurred for the samples exposed under ELMy H-mode
conditions. On the other hand, as shown in figure 4, Raman
spectroscopy measurements of the MCD samples exposed in
Pilot did not evidence any significant modifications of the
bulk of the samples. Both the diamond peak (at 1333 cm−1)
and the G-band at 1570 cm−1 (corresponding to graphitic
carbon) are identical for the unexposed and exposed samples.
However, for the sample shown in figure 3(b), a shift of the
diamond peak from 1333 to 1336 cm−1 is observed, which
is assumed to be due to strains induced in the film by the
plasma exposure. As expected, amorphization of the diamond
structure only occurs within the penetration depth of the
incoming particles and the bulk remains unaffected under the

Figure 3. XPS measurements of the C1s core level spectra of a
MCD coatings after exposure in Pilot-PSI with (a) Te ∼ 0.5 eV and
(b) Te ∼ 1.5 eV. Note that the shift in binding energy between those
two samples is due to the insulating properties of diamond and
subsequent charging of the samples.

Figure 4. Raman spectra (laser excitation wavelength 514 nm) of a
MCD sample before and after exposure in Pilot-PSI under different
conditions.

investigated conditions. The amorphization of this interaction
zone will lead to an increase of the chemical erosion rate
of diamond. Indeed, lattice damage created by transfer of
kinetic energy from the incoming particles to the lattice
atoms will provide open bonds for hydrogen attachment [17].
Earlier experiments have shown, however, that the chemical
sputtering yield of diamond by hydrogen ions with energies in
the range 0.2–0.8 keV, remains lower than that of graphite [18]
by about 50%. The lower the incident particle energy the
larger the difference between chemical erosion of graphite and
diamond.

4. Conclusions

First experimental investigations of diamond coatings under
fusion-relevant conditions have shown that diamond has some
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Figure 13: The 10 µm thick MCD film of grain sizes 0.5-1.0 µm a) pre-exposure to
the plasma and b) after exposure to a fluence of 7×1024 ions m−2. Reproduced from
[61]

After exposure to tokamak plasmas (in MAST) Porro et al. [14] detected the

partial amorphisation of diamond surfaces within the penetration depth of the inci-

dent particles. This conclusion was based on the observation of increased sp2 bonded

carbon at the surface following bombardment using Raman spectroscopy. They also

concluded that the MCD surfaces showed better resistance to the plasma impact

than did the NCD. All incident deuterium was detected in the first 250 nm of the

surface, with the MCD retaining almost a third the amount of fuel as did the NCD,

something again attributed to the relative surface densities of grain boundaries.

In the same study, Porro et al. exposed MCD, NCD and graphite samples to

a linear plasma device (Pilot-PSI) and found that the temperature of the graphite

sample (1000 ◦C) was systematically much higher than for the diamond samples

(300 ◦C). This, they attributed to the high thermal conductivity of diamond in

comparison to graphite. It was also concluded that the behavior of diamond did not

tend to that of graphite with increasing fluence (total bombardment per unit area

for a given period of time).

To summarise, carbon materials have high thermal conductivity and low thermal

expansion which make them suitable as a PFM where they will experience intense

heat loads. Of all of carbon’s structures, these desirable features are most pro-

nounced in diamond. If material is sputtered from the surface and contaminates

the plasma, a low Z number material, such as carbon, is preferable. Diamond has

shown promise in this respect with sputter yields reported to be half that of graphite.

However, due to its reactivity with hydrogen, high levels of tritium retention is a

potential disadvantage faced by all carbon based materials. The structure of the

material is expected to play an important role here.
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4 Modelling

There are various techniques for calculating the properties and structural config-

urations of simulated materials. Monte Carlo (MC) methods take a sample and

randomly vary some aspect marginally (such as individual atomic positions or num-

ber of atoms present) whilst evaluating the total configuration energy before and

after the alteration, and subject to some probabilistic selection criteria, it may be

accepted. One variation attempt represents one MC step, which is repeated many

times over and so the simulation evolves.

Whereas MC randomly samples energy profiles, molecular dynamics (MD) simu-

lations attempt to represent the physical process by which particles interact. Rather

than imposing random perturbations in the system, MD directly evaluates inter-

atomic forces and allows the system to respond accordingly. Newton’s equations

of motion are solved at regular time-steps in order to update atomic accelerations,

velocities and thus positions for the next time step.

First principles MD evaluates inter-atomic forces directly from fundamental

quantum-mechanical theory, whereas traditional MD is computationally cheaper

and uses an empirically parametrised potential to describe bond strength as a func-

tion of the atomic local environments (for example, nearest neighbour separation,

bond angles and local coordination numbers of neighbours). The analytic potential

of classical MD is differentiated with respect to position in order to obtain forces

and thus accelerations.

Both MC and MD modelling techniques have been employed in studying a range

of properties, such as phase transitions and surface reconstructions. However, these

two methods are not necessarily comparable. Dynamical information, such as atom

velocity and trajectory, is lost with MC, although it is able to sample probabilisti-

cally less likely structural changes, an advantage over MD which may be constrained

to regions of phase-space isolated by large potential barriers. Timescales also differ.

Although MC does not necessarily simulate a duration of time, if atomic movements

are considered to occur on a pico to nanosecond scale, an MC simulation of 100,000

moves per atom would correspond to 10−7 to 10−4 seconds. This is substantially

longer than MD simulated times which are of the order of nanoseconds. In both

cases the principal constraints on total simulated time scale are computational pro-

cessing speed and code efficiency.

If an understanding of the dynamics of a system is desired, rather than solving
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mountains of complex first principles calculations, classical MD offers a compro-

mise in that, although relying on what is essentially only a coarse approximation to

atomistic interactions (the empirical potential), depending on the the success of that

approximation, it allows a range of useful dynamical properties to be observed in

detail inaccessible to experiment. The whole sequence of events in projectile-surface

interactions and phase-transitions are recorded whilst the nanoscopic topography

of the structure is easily observed and manipulated, and all this whilst recording

dynamical properties of the system. An accurate empirical potential contains all

the necessary assumptions relating to system properties, such as binding energies,

and melting temperatures. Overwhelmingly, it is the accuracy of this empirical po-

tential which influences the reliability of molecular dynamics simulations. Although

the time-scale and sample-size of the simulation is drastically limited by computa-

tional capability, this approach (over, for example, Monte Carlo methods) also offers

interesting graphical representations of the detailed processes observed.

4.1 Molecular Dynamics Setup

In this study the MD code DL POLY 3 [66] was used employing the AIREBO po-

tential [67] to evaluate carbon and hydrogen/tritium interactions. As with any other

MD package, DL POLY requires an input list of the atomic names and positions:

the CONFIG file. As well as coordinates, atomic velocities and accelerations are op-

tional if this is a continuation from a previous simulation (in which case a REVIVE

file is also normally required). The inter-atomic potential desired is named and de-

fined in the FIELD file, where all necessary user variable parameters required for

that potential are listed. Finally a CONTROL file is used to state the nature of the

simulation by operational variables (such as time step size, temperature, thermostat

required, etc...) and output requirements (in addition to the standard OUTPUT

file other files such as trajectory history, radial distribution and defect analysis may

be required).

On starting the simulation, input files are read in and system parameters and

settings are initialised as required. Once this is done, the main MD loop is iterated

for the required number of time steps, at each of which atomic forces are evaluated

(here by the airebo forces subroutine) and positions updated using an integration

algorithm solving Newton’s equations of motion. The thermostat is used to regu-

larly check and maintain physical properties of the sample, such as temperature, by

scaling velocities appropriately.
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4.1.1 Integration Algorithm

Particle interactions within the simulated system are described by a potential which

is dependent on, among other things, inter-atomic separation. The gradient of this

potential gives us the strength of those forces due to attraction and repulsion. Since

time is discretised, Newton’s equations of motion are solved at each time step and

so values for individual particle acceleration, velocity and thus atomic positions are

updated for the next time step. This introduces errors since we are dealing with

variables which are not continuous in time, and which share an inter-dependency.

The specifics of this update depend on the algorithm of choice (e.g. Verlet, Ve-

locity Verlet and Leap-Frog Verlet, Figure 14). In this study, the Velocity Verlet

(VV) algorithm was employed, developed by Swope et al. [68] in 1982. In an effort

to minimise rounding errors, it takes advantage of partial integration over half time

steps.

From initial values for position, r (t), velocity, v(t), and acceleration, a(t), at

time t, values at time t+δt are arrived at by using Taylor expansions and half-time-

steps by the following procedure.

r (t+ δt) = r (t) + δtv (t) +
1

2
δt2a (t) (5)

v

(
t+

1

2
δt

)
= v (t) +

1

2
δta (t) (6)

Forces and thus accelerations at time t + δt are then evaluated by the forces

subroutine based on positions at time t and used to complete the velocity evaluation

over the full time-step.

v (t+ δt) = v

(
t+

1

2
δt

)
+

1

2
δta (t+ δt) (7)

4.1.2 Thermostat

Depending on the requirements of the simulation in hand, various macroscopic prop-

erties may be designated as varying or fixed. For example these may be total system

volume, energy, temperature, pressure and number of particles present. In the course

of this study the Nosé-Hoover (nvt and npt) and Langevin thermostats4 were used.

The Nosé-Hoover thermostats holds either volume or pressure constant while scal-

4See the DL POLY 3 manual: http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/

http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/
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Figure 14: Schematic representation of the integration procedures where stored
values are represented by shaded boxes. a) Original Verlet, b) Leap-Frog Verlet &
c) Velocity Verlet

ing all velocities based on how much total thermal energy of the system is off the

target temperature by. The Langevin thermostat stochastically scales velocities of

selected atoms to a desired temperature, effectively coupling the system to a heat-

sink. Atoms are typically chosen to be only those at a given distance from the edges

of the simulation cell.

These macroscopic attributes are related to individual atomic kinetics by way of

the classical equipartition of energy over all degrees of freedom. Thus temperature

and velocity are considered as related in the following way (assuming the system is

in thermal equilibrium).

〈v2
α〉 =

kBT

m
(8)

Where vα is a particle’s α component of velocity (e.g. a cartesian or polar dimen-

sion). This is extended as a sum over all particles, N , to define the instantaneous

temperature, T , of the system at time t.

kBT (t) ≡
N∑

i=1

mv2
α,i (t)

3N
(9)

At the heart of molecular dynamics simulations are Newton’s equations of motion

(Equations 10 and 11). These are iteratively evaluated and particle trajectories due

to inter-atomic interations are mapped.
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dr (t)

dt
= v (t) (10)

dv (t)

dt
=

f (t)

m
(11)

By applying modifications to Newton’s equations it is possible to control various

macroscopic properties such as temperature, volume and pressure.

Nosé-Hoover (nvt) Thermostat

The nvt Nosé-Hoover thermostat holds MD cell dimensions and atom content fixed

whilst allowing the control of system temperature by the introduction of an artifi-

cial thermostat mass, qmass. This is defined by target system energy (from target

temperature, Text, where f in Equation 16 is degrees of freedom), σ, and a time con-

stant of temperature fluctuations, τt. Using these, a coefficient, χ (t), is introduced

in addition to the forces evaluated using the inter-atomic potential (Equation 13).

This modification to acceleration is proportional to velocity and acts as a friction

term, scaling temperature.

dr (t)

dt
= v (t) (12)

dv (t)

dt
=

f (t)

m
− χ (t) v (t) (13)

dχ (t)

dt
=

2Ekin (t)− 2σ

qmass
(14)

qmass = 2στ 2
t (15)

σ =
f

2
kBText (16)

Nosé-Hoover (npt) Barostat

The Nosé-Hoover Barostat acts much in the same way as the above described ther-

mostat but allows for variations in cell dimensions. To do this, as well as the

thermostat co-efficient, χ (t), Newton’s equations of motion are also coupled to a

barostat co-efficient of friction, η (t), which maintains a desired system pressure.
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dr (t)

dt
= v (t) + η (t) (r (t)−R0 (t)) (17)

dv (t)

dt
=

f (t)

m
− [χ (t) + η (t)] v (t) (18)

dχ (t)

dt
=

2Ekin (t)− 2σ − kBText
qmass

(19)

As for the (nvt) thermostat, σ represents the target thermostat energy, and qmass

is the artificial mass of the thermostat. Also included here is a correction for the

system centre of mass, R0.

In a similar way to how the differential of χ (t) is related to the difference between

system energy and desired energy, so the differential of η (t) is to the difference be-

tween instantaneous pressure, P (t) (evaluated from kinetic energy and virial terms),

and the desired average pressure, Pext. The added artificial barostat mass is pmass,

and τP is the user defined time constant of pressure fluctuations.

dη (t)

dt
= 3V (t)

P (t)− Pext
pmass

− χ (t) η (t) (20)

pmass = (f + 3) kBTextτ
2
P (21)

To accommodate a constant pressure, the MD cell volume is allowed to change,

keeping the shape of the cell constant, according to the following relationship.

dV (t)

dt
= 3η (t)V (t) (22)

Langevin Thermostat

Within fluids, particles randomly interact with others in their vicinity stochasti-

cally as described by Brownian Mechanics. It is from this principle that a Langevin

thermostat controls the temperature of a system, in effect implicitly representing

this interaction as atoms vibrate about lattice sites in a solid. Developed by Paul

Langevin, every particle considered is coupled to a viscous background and a stochas-

tic heat bath. This serves to reduce the velocity of ‘hot’ particles and stochastically

increase the velocity of ‘cold’ particles towards the desired temperature.
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dr (t)

dt
= v (t) (23)

dv (t)

dt
=

f (t) + R (t)

m
− χv (t) (24)

In Equation 24, particle accelerations are obtained from forces evaluated using

the inter-atomic potential which are then modified by a stochastic force, R (t). Ac-

celerations are then further moderated by a friction term proportionate to velocity.

As it is implemented in DL POLY 3, the Langevin thermostat enables the user

to temperature scale the outer perimeter of the MD cell to a designated depth.

4.1.3 Periodic Boundary Conditions

Simply modelling the interactions between a list of particles in effect treats the

simulation as a sample isolated within a void. What is more often desirable is the

study of a region that is otherwise surrounded by a continuation of matter. For

example, particles suspended in a solution or the continuation of a crystal lattice.

Simulating ever larger samples would reduce the influence of edge effects, but this

is computationally costly. A commonly used method of removing these surfaces all

together is the use of periodic boundaries. This simply means that the simulated

cell is replicated across boundaries in each Cartesian direction. For example, if a

particle leaves the cell boundary in the negative x-direction, it reappears from the

positive x-direction.

Although this may be considered as creating an infinitely large cell in that there

are no boundaries, the actual simulated size is still important. Larger samples reduce

consequences due to self-interations. For example, if particles experience long-range

forces to a distance of 10 Å, then it would make sense to have a cell size at least

twice a large as this to avoid self-interaction or two particles interacting twice in

opposite directions.

Generating periodic boundaries is normally done in simulation codes by tem-

porarily creating additional atoms just beyond the edge of their MD cells. In Figure

15 a Cartesian two dimensional MD cell has been copied eight times in creating this

buffer of image-atoms. A more efficient method in practice is to only copy those

image-atoms which are adjacent to the MD cell perimeter. DL POLY 3 does this

by constructing a ‘halo’ around the MD cell (Figure 16). This technique is also used

in distributing a simulation across multiple processing units (see Section 4.3 on halo

construction and parallelisation).
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Figure 15: Two dimensional schematic of periodic boundaries. The two molecules
in the MD cell both leave the cell and re-enter on the respective opposite sides.
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Figure 16: Two dimensional schematic of periodic boundaries created using ‘halo’
atoms. There are only seven real atoms (solid outlined atoms) in the MD cell, but
these may be replicated more than once as halo atoms (dashed outlined atoms).
In this example the water molecule is only copied once, but the carbon chain is
copied three times. The thickness of the halo, r, is determined by the range of the
inter-atomic potential.

4.1.4 Potential

The method by which atomic positions are re-evaluated over periodic time-steps

mapping trajectories in time is described above in Section 4.1.1. The dynamical

properties of the system are derived from three-dimensional lists of three properties

of each particle: position, velocity and acceleration. Using basic classical mechanics,
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at each time-step atomic positions, ri, are updated using atomic velocities. Veloci-

ties, vi, also relate to kinetic energy and so the temperature of the system. Similarly,

these velocities are updated using the acceleration of each particle. Acceleration,

ai, is derived from inter-atomic forces using Newton’s second law, and inter-atomic

forces, f i, are obtained from the first differential in space of the inter-atomic poten-

tial, Ui.

fi = mai (25)

fi = −∂Ui
∂r

(26)

It is therefore clear that the accuracy with which a simulation represents real

processes depends on the accuracy of the inter-atomic potential. In molecular dy-

namics using an empirical potential, that interaction typically takes an analytic form

which has been parameterised to mimic experimentally observed properties.

At each time-step the MD code will loop over all atoms, i, and evaluate the

strength of its bonding to neighbour atoms, j. The simplest evaluation is a two-

body potential: one that only considers atoms i and j and vector separation rij. An

example of this is the Lennard-Jones potential (Equation 28).

rij = |rj − ri| (27)

Uij (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(28)

Although this is a computationally cheap potential and good in the simple case

of soft-spheres in a fluid state, it does not consider the detail of the chemical environ-

ment, for example, bond rotations, lattice structure or number of bonded neighbours.

Additional considerations such as these are important when simulating covalently

bound lattice structures such as diamond and graphite. To include factors such as

this bond-order potentials were developed that were able to adapt the bond environ-

ment.

Early simulations of the sputtering of organic molecules centred on course-grain

methods which fundamentally did not allow for molecule fragmentation - a process

which plays a vital role in the development of a carbon-based surface topography.

One of the first empirical bond-order potentials employed in the simulation of carbon

was the the Tersoff potential (Equation 29) in 1989 [21]. Although a two-body
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potential, in evaluating the i-j bond it also considers iatom’s other neighbours,

k, though the bond-order term bij. In doing this a preference for three nearest-

neighbours (sp2 bonding) and lattice structure (bond angles, θjik) are incorporated.

Uij (rij) = U repulsive
ij + bijU

attractive
ij (29)

The Tersoff potential is still used today due to its successful treatment of reg-

ular graphite (or rather graphene) and diamond crystals. However, intermediate

lattice configurations, involving amorphous carbon (mixed sp2/sp3 bonding), hy-

drocarbon molecules and long-range effects, require an even greater consideration of

the structural environment when evaluating covalent bond strengths. This need to

include chemical reaction processes has led to the the development of many poten-

tials. Marks et al. [69] have implemented an Environment Dependent Interaction

Potential (EDIP) in the study and formation of amorphous carbon. In a similar

effort to include long-range and reactive effects in studying the process of grapitisa-

tion Los and Fasolino [18] have developed a Long-Range Bond Order Potential for

Carbon (LCBOP). There have also been extensions to Tersoff’s original work leading

to detailed hydrocarbon bond-order potentials such a Brenner’s Reactive Empiri-

cal Bond Order (REBO) potential [47], and its most recent incarnation, Stuart’s

Adaptive Intermolecular REBO (AIREBO) potential [67].

Each of these potentials were developed by their respective authors in studying

different, yet related, aspects of carbon and hydro-carbon behavior, all of which

would make them suitable for employment in this project. For example, Marks

used the EDIP to simulate the growth of amorphous structures which suggests it

would be well equipped to mimic the complex bond hybridisation important to the

diamond to graphite phase change. Los and Fasolino used their LCBOP in the

study of diamond surface reconstructions, something which is especially important

in studying surface effects, relevant to graphitisation and bombardment. However,

the AIREBO potential has a much wider use within the scientific community. This is

jointly due to its historical linage and known ability to describe bond-hybridisation

because of its specific parameterisation to small hydrocarbon molecules. Because of

this it was decided to use the AIREBO potential in this study.

4.2 The AIREBO Potential

The AIREBO potential [67] is essentially the REBO potential but with two addi-

tional terms: a long-range (> 2 Å) Lennard-Jones term and dihedral term (Equation

30). It has been decided to use the AIREBO potential in in the present study. To
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successfully model chemical sputtering and structural damage, a sophisticated po-

tential is needed that takes into consideration the chemical processes involved. For

carbon and hydrogen this means adequate treatment of bond rotations and carbon

sp2 and sp3 bonding with a considered intermediate reaction process rather than,

for example, simply a weighted average of the two bond strengths.

EAIREBO
total =

1

2

∑

i

∑

j 6=i

[
EREBO
ij + ELJ

ij +
∑

k.6=i,j

∑

l 6=i,j,k

Etors
kijl

]
(30)

The main component of the AIREBO potential, however, is still the REBO5

potential, which itself is fundamentally modelled on the original Tersoff potential

by taking the following form.

EREBO
ij = V R

ij (rij) + bijV
A
ij (rij) (31)

In Equation 31, the total covalent bond energy between two atoms, i and j,

is evaluated as the superposition of repulsive, V R
ij (rij), and attractive, V A

ij (rij),

pair terms with the latter being modulated by the many-body bond-order term, bij.

This bond-order term reflects the chemical environment of the i-j bond and has been

the focus of progressive modifications in extending the original Tersoff potential’s

reactive sensitivity.

V R
ij (rij) = wij (rij)

(
1 +

Qij

rij

)
Aije

−αijrij (32)

V A
ij (rij) = −wij (rij)

3∑

n=1

B
(n)
ij e

−β(n)
ij rij (33)

In Equations 32 and 33, wij (rij) is a bond-weighting factor that smoothly switches

off the potential as inter-atomic separations approach the short-range cut-off (≈ 2

Å). The bond-order term itself is dependent on not only inter-atomic separation,

rij, but also the coordination numbers (of principal and secondary atoms - i, j, k &

l), bond angles (including dihedral) and conjugation effects. It is broken down into

three parts: the principal contribution is from the covalent π- and σ-bond compo-

nent, then there is a radical and conjugation term (πrcij ) and a weak dihedral term

(πdhij ).

bij =
1

2

[
pσπij + pσπji

]
+ πrcij + πdhij (34)

5The following detail of the REBO potential is given here as that described by Stuart et al. as
the main component of the AIREBO potential [67].
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These last two terms are largely derived from tricubic splines dependent on the

local coordination numbers of atoms i and j, Nij and Nji respectively, and the local

measure of conjugation of the i-j bond, N conj
ij .

Nij = NC
ij +NH

ij (35)

NC
ij =

(∑

k 6=i

δkCwik (rik)

)
− δjCwij (rij) (36)

N conj
ij = 1 +

[∑
k 6=i,j δkCwik (rik)S

′ (tconj (Nki))
]2

+
[∑

l 6=i,j δlCwjl (rjl)S
′ (tconj (Nlj))

]2 (37)

The two elements summed over in Equation 37 (over atoms k and l) essentially

count the level of bonding surrounding either end of the i-j bond as far as second

nearest neighbours (i.e. Nlj will count all l-atom’s nearest neighbours - n-atoms).

Figure 17: The local environment of the i-j bond is considered to first and second
nearest neighbours for the AIREBO potential, whereas only atom k is considered
with the Tersoff potential. As atoms are looped over in the various summations all
possible ‘m-k-i-j-l-n chains’ contribute.

The covalent nature of the bond is described by the pσπij and pσπji terms which

depend on bond angles, θ, a two-dimensional coordination number cubic spline term,

P , and a hydrogen-sensitive factor, λ.

pσπij =

[
1 +

∑

k 6=i,j

wik (rik) gi (cosθjik) e
λjik + Pij

]− 1
2

(38)

Equation 38 sums over the secondary atoms k and evaluates the environment of

the i-j bond from the perspective of atom i. For pσπji , the summation is over atoms

l, which correspondingly considers the environment about atom j. Further to this,



4.2 The AIREBO Potential 41

tertiary atoms m and n are involved in evaluating the degree of bond conjugation

(Equation 37 i.e. the nearest neighbours of atoms k and l are also considered, atoms

m and n). Figure 17 demonstrates such a possible m-k-i-j-l-n chain within a dia-

mond lattice.

The two additional components in the AIREBO potential (Equation 30) are the

long range Lennard-Jones term and the torsional term. This Lennard-Jones (LJ)

term loops over atoms of a separation < 10 Å and is based around the standard

12-6 potential (Equation 39). This, in turn, is subject to a bond-order term, b∗ij,

and a switching function, Cij, turning off inter-atomic forces between chemically

connected atoms (i.e. atoms in the same molecule).

V LJ
ij (rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(39)

ELJ
ij = S (rij)S

(
b∗ij
)
CijV

LJ
ij (rij) + [1− S (rij)]CijV

LJ
ij (rij) (40)

This LJ bond-order term, b∗ij, is similar to the one shown above (Equation 34),

except that if the inter-atomic separation exceeds the maximum parameterised for

(about 2 Å), then this upper limit is used in evaluating b∗ij rather than the actual

distance of separation.

b∗ij = bij|rij=rmin
ij

(41)

The additional torsional term evaluates the angle between the i-j-l and k-i-j

planes and is parameterised to limit bond rotation for complex hydrocarbons.

In their original 2000 publication, Stuart et al. compared their the performance

of their AIREBO and the original REBO with experimental results in reproduc-

ing structural, mechanical and energetic properties of diamond and graphite (these

results are reproduced in Tables 1 and 2). The Lennard-Jones term in the full

AIREBO caused a slight contraction of the crystal lattice parameters, however the

fit to experiment figures is still good. The diamond bond energy at 298 K is also

within 1 kcal/mol of the experimental value and the addition of the Lennard-Jones

term allows the AIREBO potential to correctly reproduce the inter-graphite layer

separation.

In a 2007 paper Liu and Stuart [70] extended this original work to allow for

the Lennard-Jones term to be more adaptive in an effort to better model under-
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Property REBO AIREBO Experiment

rCC (Å) 1.544 1.540 1.5445
c11 (GPa) 1070 1120(30) 1079(5)
c12 (GPa) 120 130(20) 124(5)
c44 (GPa) 720 770(20) 578(2)

Bond Energy (kcal/mol) 169.0 171.1 170
Vacancy formation E (eV) 7.2 7.0 7.2

Table 1: Properties of diamond as evaluated by Stuart et al. [67]. Bond-length,
rCC ; elastic constants, c (at 298 K).

Property REBO AIREBO Experiment

rCC (Å) 1.420 1.396 1.415
rl (Å) ... 3.354 3.354

c11 (GPa) 1060 1150 1060(20)
c12 (GPa) 150 150 180(20)
c13 (GPa) ... 10 15(5)
c33 (GPa) ... 40 36.5(1.0)

Vacancy formation E (eV) 7.5 7.7 7.6

Table 2: Properties of graphite as evaluated by Stuart et al. [67]. Bond-length, rCC ;
graphitic plane separation, rl; elastic constants, c.

saturated hydrocarbons. Testing the sensitivity of the van der Waals interaction

they examined the pair correlation function for various hydrocarbon fluids. Their

results for liquid methane are reproduced in Figure 18. An extensive study of other

species and their reproduced properties, including details of spline table calibrations,

can be found in their 2007 paper [70].

Los et al. [71] compared the energy barriers of graphitisation for a few potentials

in a study of carbon-onion formation from nano-diamond crystals. In comparison

with DFT calculations they found the REBO potential to overestimate the bar-

rier height which then delayed graphitisation, and underestimated the width of the

barrier. Although the AIREBO also overestimated the height of the barrier, the

additional long-range term replicated the barrier behavior above 2 Å separation.

The Marks’ EDIP and the LCBOPII potential of Los et al. were a close fit to the

DFT results.



4.2 The AIREBO Potential 43

Figure 18: Carbon-carbon pair correlation function gCC for liquid methane at 92 K
as evaluated by Liu and Stuart in their 2007 AIREBO potential [70].

Figure 19: Energy barrier of graphitisation (within nano-diamonds in the formation
of carbon-onions) as reproduced by Los et al. [71]. The symbols represent DFT
results, the dotted line the REBO potential, the dashed line the AIREBO potential,
the dashed-dotted line the EDIP potential and the full line the LCBOPII potential.
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4.3 DL POLY run with AIREBO potential

With continued advances in computer processing capabilities and efficient code par-

allelisation, more detailed and accommodating potentials may be employed with

limited extra computational costs. It is hoped that, although the AIREBO po-

tential employed in this study is hugely more complicated than its predecessors, a

considered restructuring of the forces up-date algorithm in DL POLY 3 and faster

available processing resources will mean that the added accuracy in simulating car-

bon bond mixing is worthwhile.

The present version6 of DL PLOY 3 [66] does not include the AIREBO poten-

tial. It was therefore required to add this option. Due to inherited similarities, it

was logical to take structural lead from the current Tersoff subroutines. However,

whereas the Tersoff potential only considers secondary atoms j and k, the AIREBO

potential sums over all possible i-j-k-l-m-n chains (see above section 4.1.4 detailing

the AIREBO potential mathematical form and Figure 17) and has consequences for

parallelisation efficiency.

In coding the AIREBO potential I have implemented a number of changes to

the current structure that vastly reduce computational time. Specifically, these are

an inclusion of a neighbour list construction, identification of regular structures (i.e.

diamond and graphene lattices) and more than halving the amount of ’halo atoms’

needed to simulate continuous boundary conditions. The following is a pseudo-code

outline of a simulation run with airebo forces in DL POLY 3.

Sequence of DL POLY 3 MD simulation run - AIREBO potential:

1. System Initialise (read input files, set parameters)

2. Main MD loop - over all time steps

• Particle Exchange*

• Halo Construction*

• Forces Evaluation (plus energy, virial and stress tensor)

• Export Halo Forces†*

• Position Update Using Forces7

6Version 3.09.4, September 2008
7The specifics of this general step depend on the integration algorithm used (i.e. Velocity Verlet,

Leap-Frog, etc.). For example, partial timestep integration could happen before and after the forces
subroutine
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3. Print Stats and Output Files

*message passing between parallelised domains
†a new subroutine that I have specifically added for use with AIREBO forces

only

On initialising DL POLY 3 in parallel, the workload is divided into domains and

shared between each processor (node), this is referred to as domain decomposition

(see Figure 20). From the point of initialisation, every node is equivalent (except

that only one will print to the output files) and runs independently of the others

during the course of the entire simulation. That is except for at regular intervals

when the time comes to communicate particle information (via Message Passing

Interface (MPI) subroutines). At this point, every node will pass information to its

neighbour (say first to its neighbour in the positive x-direction) and then wait to

receive from its neighbour in the opposite direction (in this example, the negative

x-direction). By this mechanism, each node is therefore roughly in sync with every

other throughout the whole simulation. Stages at which this message passing is

done are marked with an * in the above simulation run layout and typically straddle

either side of the forces evaluation. Running DL POLY 3 in serial is very much like

running in parallel, except that where inter-node communication would otherwise

occur, the one node communicates with itself.

Particle Exchange Subroutine - relocate particles

On domain decomposition, the MD cell (globally all the atomic positions) is divided

spatially between the number of nodes involved. This is done by dividing the MD

cell dimensions and thus its contents, not the other way around. That is to say

that an atom’s position during the simulation determines on which node it is listed.

One important consequence of this is that the MD cell should preferably be of a

roughly uniform density and regular shape in order to ensure efficient work-load

sharing. However, because during the course of the simulation, unless fixed, atomic

positions will change, it is necessary to constantly update relevant domain lists with

departures and new arrivals. This is handled by the relocate particles subroutine

which calls on deport atomic data in each of the six cartesian directions. Since

atomic positions were last updated, any particles which have thus left one domain’s

region have all of their associated information stored in a buffer which is then passed

in the relevant direction. On receiving similar information from the adjacent domain

in the opposite direction, the arriving atomic stats are unpacked and added to this
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Figure 20: When a job is parallelised, the volume of the original MD cell is split
into domains where any atoms within are handled by each node until they happen
to move into the neighbouring domain.

domain’s remaining atoms.

Halo Construction Subroutine - set halo particles

When defining atomic positions and overall MD cell dimensions in the initial CON-

FIG file, boundary conditions are also detailed. It is possible to identify a cell

boundary (say the positive x-y plane) and the boundary in the opposite direction

(in this case, the negative x-y plane) as being spatially simultaneous. This means

that if a particle were to drift continuously in the positive z direction, it would leave

the MD cell through the positive x-y plane and reappear by the negative x-y plane.

This effectively simulates an infinitely continuous ‘bulk’. To create this effect dur-

ing forces evaluation, the domain edge in one direction is used as the blue-print for

creating a list of completely new ‘halo’ atoms to be added onto the corresponding

opposite surface. If continuous boundary conditions are used in all directions, this

results in the real atoms on a domain being surrounded by a blanket of halo atoms.

Halo construction is also an important feature of parallelisation since where the

initial MD cell is divided, halos are exported between adjacent nodes, replicating
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a continuation of simulation space through cleaved surfaces (see Figure 21). Halo

export is done in the same manner as detailed above in the relocate particles sub-

routine, but here calling on the MPI subroutine export atomic data in each direction.

Figure 21: 2D schematic diagram of the halo construction of two parallel nodes
(where the whole MD cell has been split in the x-direction between N0 & N1). A
node will have a map indicating which neighbouring node to communicate with
in each direction (even if that neighbour is itself, as in diagrams C and D). For
example, in simulating continuous boundary conditions in all directions and a con-
tinuation between the two nodes, N0 will pass atomic information to N1 in the
±x-direction (diagrams A and B). In the y-direction the nodes would communicate
with themselves since they both span the whole MD y-dimension (diagrams C and
D).

In accommodating the new airebo forces subroutine within DL POLY 3, modifi-

cations were made to the existing MPI subroutines (relocate particles and set halo particles

calling on deport atomic data and export atomic data respectively) employed in com-
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municating between domains, as well as the introduction of the new subroutine

merge halo particles, which calls on export force data. The necessity for this is due

to the fact that the AIREBO potential considers m-k-i-j-k-n chains of adjacent

atoms in evaluating the energy of i-atom, where the Tersoff potential only required

looping over the neighbours j-i-k, meaning that a thicker halo is required to simulate

the continuous boundary.
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Figure 22: A) For every i-atom in the Tersoff potential, atoms j and k are two of
its nearest neighbours. If i-atoms are confined to the core and inner halo layer (h1),
then a total halo thickness of ×2 maximum bond length is required. By imposing
this constraint, all possible involvement of the core atoms in j-i-k chains is seen,
and so force information need only kept for core atoms on each domain. B) For
the AIREBO potential, if the i-atom is confined to the core (real, non-halo atoms),
then a halo thickness of ×3 maximum bond length is needed. However, since this
does not mean that every involvement of a core atom in every possible chain is seen
(e.g. where m-atom is the only core atom), force information due to its involvement
would be lost. For this reason, i-atoms are confined to the core and j-atoms to the
core and first halo layer, and force information is kept for halo atoms, as well as
core, and then combined with that of their parent atoms on which ever domain they
were copied from.

With the current tersoff forces code a halo of thickness ×2 the maximum bond

length is required to simulate continuing boundaries. In this case the primary i-

atom loop selects atoms only from the domain core and the inner of the two halo

layers (see Figure 22). Configuration energy is only accumulated for i-atoms that

lie within the core. This ensures that every possible i-j bond is seen once, even if

it crosses a node boundary (into the halo). Similarly, forces are only kept for i, j

and k atoms which are within the core. This means that for any atoms within the
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halo, that form part of a chain that straddles the boundary, forces are accumulated

on the neighbouring node where the same chain is seen by the original atoms that

were used as a template for the mentioned halo.

In the airebo forces subroutine, there is a similar primary loop over all i-atoms

(although for core atoms only) and a secondary loop over j-atoms (potentially from

first halo layer - h1) - k,l,m and n loops are nested within this were needed.

Energy is evaluated and accumulated for all i-atoms. In evaluating forces, every

atom in the m-k-i-j-k-n chain experiences a force due to its involvement in the i-j

bond environment. If forces are to only be kept for core atoms, as with tersoff forces,

then, in the extreme case, i-atoms would have to be taken from up to the third halo

layer (h3) allowing for only the l-n segment to straddle the core/halo boundary.

However, this would require a halo of thickness ×5 the maximum bond length to

ensure that all chains are considered. This becomes a problem since that as you

increase halo thickness, the number of halo atoms increases proportionally to the

radial extension to the power of three (an expanding surface), seriously increasing

computational cost. In getting around this, forces are now kept for halo atoms too,

and are then communicated back to the original atoms of which they are copied

images of. If we also restrict i-atoms to the core of the domain, then the maximum

halo required is only ×3 the maximum bond length, and every m-k-i-j-k-n combi-

nation is seen once, either by this domain or the neighbouring one. This is far more

acceptable, since in comparison the Tersoff requires a halo thickness of factor ×2.

See Figure 22 for examples of the ‘straddling-chain’ scenarios discussed above.

Export Halo Forces Subroutine - merge halo particles

This subroutine was added because force information is now being kept for halo

atoms where atom chains are unique to this node since halo thickness is kept to a

minimum of ×3 the maximum bond length as discussed in the above section (see

the chain where only the m-atom is within the core in Figure 22 for an example of

such chains - in this case m-atom is a halo particle on the neighbouring domain,

which would have to send back force information to this node obtained from its

involvement in this chain). The function of this subroutine is to export this halo

force data back to the domain from where the halo atoms were copied from. The

halo forces are to be added to those of their corresponding parent core atoms and

so all possible m-k-i-j-k-n atom chains are covered.
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The structure of merge halo particles is closely modelled on set halo particles,

the substantial differences being the reversal of the order of data export (now z, y

then x) and the call on export force data (also new) rather than export atomic data.

This ensures that every halo atom returns to its original domain core. For this to

happen, when halo atoms are initially exported, the index of the original core atom

is now also exported so that when the halo atom is returned following force evalua-

tion, it can easily be identified with its parent atom.

AIREBO Forces Subroutine

As with the original tersoff forces code, i-j bond properties are evaluated first, en-

ergy and virial terms are accumulated and then forces can be evaluated. A schematic

sequential outline of the airebo forces subroutine is given below (for a more detailed

pseudo-code outline see below in section 4.3.1). The reason there are two secondary

j-atom loops is that the whole bond-order term, bij, is required as well as its com-

ponents in evaluating forces.

Sequence airebo forces call:

1. Link-Cell Decomposition

2. Neighbour List Construction (using Link-Cells)

3. i-atom Loop - primary loop (using Neighbour List)

• j-atom Loop - secondary loop

– Bond Order Term - bij

– Evaluate Energy (i-j Bond)

• j-atom Loop - secondary loop

– Evaluate i-j-k-l-m-n Forces, Virial & Stress

There are, however, differences in the structure of airebo forces subroutine in

comparison with tersoff forces. Other than the need to keep halo force data (as de-

tailed in the above two sections), these differences have to do with link-cell structure,

neighbour list construction, allocated array sizes and double-counting. The aim of

these improvements is to minimise the time taken in running though airebo forces
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at each time-step.

In both tersoff forces and airebo forces the whole node (halo and core) is cut up

into a grid of cubic link-cells of dimensions marginally larger than the maximum

bond cut-off. All atoms are looped over and depending on their positions they are

added to the contents lists of these link-cells. Having link-cell dimensions of about

the maximum bond cut-off ensures that for an i-atom in any given cell, any potential

j-atoms are known to be either in the same link-cell or in the 26 cells surrounding

it. The purpose of this procedure is clear when a loop over all j-atoms is needed

for every i-atom. Without the link-cell allocation the loop would have to cover all

other (n-1) atoms on the node. With the link-cells set up, a j-loop over only those

27 link-cells in the immediate vicinity is required.

However, since within the AIREBO potential the local coordination number of

any particular atom (the number of nearest neighbours it has) is called upon many

times throughout the code, it makes sense to have this information at hand from

the beginning. Thus it is worth constructing nearest neighbour lists before bond-

order properties are evaluated. Incidentally, this is also favorable when looping over

j-atoms since with neighbour information the loop only need run over known neigh-

bours rather than potential neighbours. For example, a diamond carbon atom will

have only four nearest neighbours. However, since each link-cell may contain four or

more atoms, this can easily lead to a j-loop over about 100 potential neighbours. It

is obvious that this can unnecessarily become computationally costly. Hence link-

cells are now only used in constructing neighbour lists, which are in-turn used in

evaluating all other bond properties.

Whilst an atom is having the number of nearest neighbours counted at the start

of the code, it also makes sense to evaluate values that depend on atomic separa-

tion (such as screening constants) as this is done. These may then be called upon

later in the code when needed. A drawback to this would be the need for large

and memory intensive multi-dimensional arrays to store all these data. In order to

overcome this cost it is assumed that for the majority of the simulation time and

volume, forces will be evaluated for near equilibrium regions. In assuming this, we

can expect to come across atoms with coordination numbers no greater than four

or five (say, mxnab=5). So arrays are allocated to this dimension at the start of

airebo forces and filled as neighbours are counted. If, however, a local coordination

greater than mxnab is encountered, then airebo forces is immediately exited and
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re-called for the same time step with mxnab re-set. Automatically, mxnab is set to

one more than the largest number of neighbours encountered at the previous step

anyway. This simple method accommodates those rare occasions where local order

is rapidly disrupted, (such as a thermal spike during rapid displacement cascades)

but also keeps memory costs and time in allocation to a minimum for the majority

of the simulation.
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Figure 23: CPU times for AIREBO, REBO and Tersoff potentials compared for a
diamond slab and an amorphous slab. The difference between the AIREBO and the
REBO times is dominantly due to the larger Lennard-Jones loops required in the
full AIREBO potential. However, the difference between the two carbon structures
for the AIREBO and REBO compared to the Tersoff demonstrate the effectiveness
of the code optimisation measures for a regular lattice. Image b) is a close up on the
REBO and Tersoff times only. The closeness of the REBO and Tersoff diamond runs
is due to the use of adaptive array sizes, neighbour lists and lack of double counting,
as detailed above, despite the REBO being a greatly more expensive potential.

One final difference between the old tersoff forces subroutine and the new air-

beo forces is probably the simplest but most time-saving feature. Due to the sym-

metric mathematical form of the AIREBO potential, energy and forces for a bond

i-j are identical in size and magnitude to those of the bond j-i. By removing the

factor of one half in Equation 30 and ensuring bonds are looped over only once (by

imposing that with respect to indices i-atom < j-atom), run time is reduced by half.

In direct comparison, dual-node, parallelised8 DL POLY 3 runs were performed

for the AIREBO, REBO (this REBO, i.e. AIREBO less LJ and torsional terms) and

the original Tersoff potentials for diamond and amorphous slabs (periodic in x and

y directions) of 15552 carbon atoms of volume (68.6× 70.3× 18.5) Å3. CPU times

8Dual-core processing unit - 2 × GenuineIntel Intel(R) Xeon(R) CPU 5130 @ 2.00 GHz, 4096
KB cache
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for a range of MD steps are compared in Figure 23. The advantages due to these

optimisation features are clear for the different times of the AIREBO/REBO runs

on the two surfaces. In other words, for the ideal diamond structure computational

costs were vastly reduced. It is also worth noting that there is not a great deal

of difference between the times for the REBO and Tersoff diamond runs. Despite

the REBO bond-order term being greatly more complex and requiring many more

nested neighbour loops, this is primarily attributed to the use of neighbour lists for

the main atom loops and the opportunity to not double count bonds.

Final testing of this execution of the AIREBO potential in DL POLY 3 was

performed by evaluating bond energies for various structures, such as bulk C-C

bonds in diamond, graphitic and amorphous structures as well as those of known C-

C and C-H bonds within small hydrocarbon molecules such as methane, ethane and

ethylene. During the coding of the AIREBO potential into DL POLY 3 it was also

important to test and benchmark the accuracy of the code itself (i.e. my coding) as

well as the potential. This was done by evaluating configuration energies and atomic

forces for various small bulk samples. In order to consider extreme cases, away from

the regular lattices (for which much of the bond conjugation and torsional terms in

the potential become zero), a cell of hydrogen and carbon atoms was rapidly super-

heated and quenched in a random structure (even a physically accurate ‘amorphous’

structure would not truly be random since there will still be few over coordinated

atoms or highly strained bonding). This allowed much of the spline subroutines and

lattice-recognition code to be tested. These tests were compared with results using

an alternate code for the AIREBO potential provided by the principal author of

the potential, Steven J. Stuart. Input parameters for the potential were taken as

those in Stuart’s original paper [67]. However, some spline parameters used in this

project differ very slightly from those quoted in [67]. These were instead taken from

Stuart’s source code, which had been updated since the publication of the initial

paper.

4.3.1 Subroutine Pseudo Code

Pseudo code outlining the md vv.f90 call sequence is shown in Figure 24. This is

as found in the original DL POLY 3 source code, similar to that implemented for

the Tersoff potential, but with an additional subroutine, merge halo particles.f90,

limiting the need for excessively large halos as detailed above in section 4.3.

A pseudo code outline of AIREBO implimentation in airebo forces.f90, a new
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md_vv.f90
xscale()
relocate_particles()

Do While (airflag == 0)

End Do
airebo_forces()

set_halo_particles()

merge_halo_particles()

thermostat
end

Scale atom positions with any 
change in MD cell shape

Transfer data for atoms which have 
moved between nodes

Transfer data for atoms 
which have moved 

between nodes

Generate halo

Evaluate Forces & 
Energy

Subroutine Call

MPI Subroutine

Main Subroutine

AIREBO Specific

Figure 24: md vv.f90 pseudo code outline.

subroutine within DL POLY 3, is given in Figures 25, 26, 27 and 28. Refer to

the DL POLY 3 user manual (http://www.cse.scitech.ac.uk/ccg/software/

DL_POLY/MANUALS/USRMAN3.09.pdf) for further details on forces subroutine impli-

mentation. Labels of relevant equations given in brackets correspond to Sutuart et

al. original AIREBO paper [67].

iatm Do-Loop
jatm Do-Loop
If-Gate Exit from loop/s
Subroutine Call

Neighbour array overload 
break - re-run with larger 
bounds

Full AIREBO only (not REBO)

Neighbour List Energy/ForcesLink-Cell
Sections of evaluation:

Figure 25: Legend for airebo forces.f90 pseudo code outline given in Figures 26, 27
and 28.

http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/MANUALS/USRMAN3.09.pdf
http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/MANUALS/USRMAN3.09.pdf
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.airebo_forces.f90
Do (iatm, nlast)

End Do
- divide atoms into link-cells

Do (icell, all cells)
Do (iatm, all atms in icell)

Do (jcell, jshell)
Do (jatm, all atms in jcell)

- evaluate rij

If (r_ij < cut-off)
nab(iatm) =+ 1
nab(jatm) =+ 1
If (nab > mxnab)

mxnab = nab
airflag = 0
- exit to md_vv()

End If
- store i-j neighbour info

xij, yij, zij & rij

nlst (list of an atm's nighbours)
screening terms (A4)
dihedral screening terms (A17)
Vr (repulsive term) (A3)
Va (attractive term) (A7)
local co-ordination no. (A11)

End If (rij < cut-off)
If (r_ij < 3σ) & (jatm ≤ natms)

LJnab(iatm) =+ 1
LJnab(jatm) =+ 1

Ne
ig

hb
ou

r L
ist

 C
on

st
ru

ct
io

n

Figure 26: Image 1/3 - airebo forces.f90 subroutine pseudo code.
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If (LJnab > LJmxnab)
LJmxnab = LJnab
airflag = 0
- exit to md_vv()

End If
- store LJ i-j neighbour info

rij

LJnlst (list of an atm's LJ nighbours)
LJreal (index as a real neighbour)

End If (AIREBO)

End Do (jatm)
End Do (jcell)
Do (LJ-jcell, LJ-jshell less the jshell)

Do (LJ-jatm, all atms in LJ-jcell)
- evaluate rij

If (r_ij < 3σ)
LJnab(iatm) =+ 1
LJnab(jatm) =+ 1
If (LJnab > LJmxnab)

LJmxnab = LJnab
airflag = 0
- exit to md_vv()

End If
- store LJ i-j neighbour info

r_ij
LJnlst (list of an atm's LJ nighbours)
LJreal (index as a real neighbour)

End If (rij < 3σ)

if (jatm in halo1) LJdouble = 0.5

End Do (jatm)
End Do (jcell)

Figure 27: Image 2/3 - airebo forces.f90 subroutine pseudo code.
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End Do (iatm)
End Do (icell)

Do (iatm, natms)
Do (jatm, iatm's neighbours)

- call i-j neighbour info from arrays
bij_evaluate() - bij (A8)
- energy: Vr + bij Va
- forces: (dVr/dr) + bij (dVa/dr)

bij_forces() - dbij/dr
+ energy and forces AIREBO torsion (A1/A27)

End Do (jatm)
Do (LJ-jatm, iatm's LJ-neighbours) (iatm < LJ-jatm)

- call LJ i-j neighbour info from arrays
LJ_connectivity() - Cij (A26)

- screening function S(tr(rij)) (A21/A23)
- VLJ & dVLJ/dr

If (Cij = 0) next in loop

If (S(tr(rij)) != 0)
- scale rij      rij[min] (7)
- adjust loacal co-ordination no. for scaling
bij_evaluate() - bij (A25)
- bij screening function S(tb(bij*)) (A21/A25)
bij_LJ_forces() - dbij/dr

End If
LJ_forces() - all but dbij/dr 
- LJ energy

End Do (LJ-jatm)

End Do (iatm)

Figure 28: Image 3/3 - airebo forces.f90 subroutine pseudo code.
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5 Thermally Induced Graphitisation

Of all carbon structures, diamond offers the most impressive thermal properties.

This is down to its strong tetrahedral sp3 bonding. However, one of the main

criticisms of diamond as a plasma facing material is the fact that it is only a meta-

stable phase and can graphitise or amorphise given enough thermal energy. This is

one reason why only graphite and amorphous carbon based materials are currently

used in tokamaks.

Understanding the mechanism behind this phase change therefore has great im-

portance for diamond’s candidacy as a plasma facing material. It will also bear on

following chapters in this thesis which explore the dependence of temperature on

performance considerations such as tritium retention and sputter yield.

5.1 Method

Three planes of the diamond crystal lattice were separately exposed as surfaces

and then terminated with hydrogen in varying coverages in a comparative study in

resistance to graphitisation on heating.

These surfaces were the diamond (100), (110) and (111) conventional unit cell

planes. If the origin is taken to be at the centre of a cube, each of these planes has

an equivalent plane in the opposite direction planes respectively (for example, see

the (111) plane and its opposite in Figure 29) - the (1̄00), (1̄1̄0) and (1̄1̄1̄). For each,

permutations of each index reveals similar planes. For example, with diamond the

(100) plane, the (010) and (001) planes are similar in structure yet perpendicular to

the (100), and each has its equal in the opposite direction. Where for the (100) case

there are in total three similar yet inequivalent planes, for the (110) and (111) planes

there are six and four similar surfaces respectively. Since it is the (111) diamond

layers which preferentially become graphene layers, it is worth noting that there are

four possible orientations for this to occur within any sample.

Three diamond slabs of approximately 16000 atoms and of similar dimensions

were orientated so that each one of the chosen surface structures were parallel to the

x-y plane, that is perpendicular to the z-axis. These then served as the templates for

further modifications. For each orientation a sample was created where the slab was

periodic in all directions, simulating crystal bulk. Similarly, a surface was created by

changing this to periodic in the x and y directions only, and so exposing as a surface

either the (100), (110) or the (111) conventional diamond planes. These may be

considered as cleaved surfaces, cut from an ideal bulk, and in this respect they are

ideal and unrelaxed. For each orientation, one of these surfaces was left ‘clean’ and
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Figure 29: Cubes showing the (100), (110) and (111) Miller planes (the (1̄1̄1̄) is
also shown, taking the centre of the cube as the origin). These planes through
the diamond conventional unit cell form the x-y surfaces of the three basic samples
heated in this section.

one was terminated with hydrogen; a single hydrogen atom was added above every

surface carbon for every bond severed in creating the surface, and so passivating

all dangling bonds. For the (111) surface, slabs with degrees of hydrogenation were

also made, where surfaces were terminated with 50% and 25% random hydrogen

coverage and another was half covered with a strip of hydrogen leaving half the slab

exposed, totaling 12 samples in all.

In preparation, these 12 samples were each heated up from 10 K to 300 K over

10 temperature increments, each lasting 3 ps simulation time (3000 0.001 ps time-

steps) - 9 Kps−1. This was done so as to relax the sample, allowing velocities

to eventually come into equilibrium at room temperature. The thermostat used

was an npt Nosé-Hoover thermostat which maintains pressure and temperature as

constant, allowing for the system volume to expand or contract and so adjusting

bond-lengths to energetically favorable separations as described by the current state

of the AIREBO potential.

Following relaxation, the samples were then gradually heated up from 300 K to

anywhere between 2000 K and 4000 K, depending on resistance to graphitisation, at

regular steps of 5 ps and temperature increments of 34 K9. This heat-up was done

using an nvt thermostat, maintaining the relaxed slab dimensions (in the periodic

directions only). For slabs (i.e. not bulks), the bottom atoms were frozen to a

depth of approximately 25%-30% total slab thickness (specifics given in Table 3).

Marked as ‘frozen’, these atoms automatically have zero velocity throughout the MD

run. This was done so as to simulate a continuation into a bulk in the -z direction,

meaning that only the +z surface was truly exposed as a surface. Subsequently,

9Each of these temperature-steps ran for 5000 time-steps of 0.001 ps and represents a separate
initiation of DL POLY 3 - taking just under 10 minutes cpu time to run. Each simulation was a
restart of the previous, but with a slightly higher temperature.
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even if all of the free atoms were to graphitise due to heating, these fixed atoms

would remain in the relaxed diamond configuration.

Sample Dimensions C Atoms Frozen Surface Atoms

(100) 71.6× 71.6× 17.9 Å3 16000 4000 (25.00%) 800 (5.00%)
(110) 60.1× 77.9× 20.0 Å3 16896 5280 (31.25%) 1056 (6.25%)
(111) 68.1× 69.8× 18.5 Å3 15552 4320 (27.78%) 864 (5.56%)

Table 3: Sample details. ‘Frozen’ atoms are along the -z surface of the slab form
and are fixed so as to simulate bulk continuation. ‘Surface atoms’ are those on the
+z surface of a slab who have had bonds severed in the process of creating a slab.

5.2 Surface Structure

A preliminary estimate of surface energies may be taken by considering the number

of bonds broken in cleaving a slab from the bulk (i.e. removing periodic boundary

conditions in the z direction). The relaxed C-C bond energy within bulk diamond

is here is 3.68 eV, as evaluated with this AIREBO code at an average bond length

∼1.54 Å. These surface energy estimates (given in Table 4) are rather crude in

that not only do they not allow for surface reconstruction, but they also assume

that severed surface bonds behave as if they were still within the bulk medium.

Inevitably, in creating the surface, bond hybridisation will vary from that of an

ideal diamond sp3.

Sample Surface Area Broken Bonds ∆Energy Surface Energy
Å( m2) eV Jm−2 (eVÅ−2)

(100) 5133.52 (5.13×10−23) 1600† 5888.0 9.19 (0.57)
(110) 4677.51 (4.68×10−23) 1056 3886.1 6.66 (0.42)
(111) 4752.73 (4.75×10−23) 864 3179.5 5.36 (0.33)

Table 4: Surface energies of unrelaxed surfaces as cleaved from the ideal bulk based
on bond-breaking alone (i.e. not talking into account the disruption to the contin-
uous crystal this causes). The lowest surface energy is for the (111) surface.
† The (100) surface atoms have each had two bonds severed, where as for the (110) and (111), only
one bond per surface atom was cut in cleaving the surface.

As outlined above, these surfaces were heated to 300 K over 30 ps under an npt

thermostat, allowing for bond-length relaxation and surface reconstruction. For all

orientations the x-y dimensions of the slabs did not vary much during this time.

Bond lengths and energies between atoms generally below the first couple of surface

layers remained pretty much as was found within bulk diamond (i.e. at about 1.54
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Å and 3.68 eV). Total configuration energy for each slab was evaluated before and

after this heating process, representing un-relaxed (ideal) and relaxed structures

respectively. The difference between these energies and those of the bulk for the

same samples under the same conditions is in effect the energy required to create

two surfaces (±z sides of the slab). Half of this is taken as the surface energy and

is given here alongside other reported values in Table 5.

(100) (110) (111)
Unrelaxed a) This study 10.96 3.73 5.29

(ideal) b) DFT 9.72 7.48 8.12
c) Brenner 6.64 4.03 2.77
d) Tersoff 7.57 4.95 4.04

Relaxed a) This study 10.44 2.37 4.98
b) DFT 9.40 5.93 6.43
c) Brenner 5.03 2.02 1.39
d) Tersoff 6.16 3.26 2.66

Table 5: Surface energies (Jm−2) for the three exposed surfaces before and after
allowed relaxation. Results a) are from the present study. Results b) were evaluated
by Stekolnikov et al. in 2002 using density functional theory and the VASP code [72].
Results c) and d) were evaluated using molecular dynamics in 1991 by Halicioglu et
al. and compare the Tersoff and Brenner potentials [73]. In each set of data, the
lowest surface energy is shaded grey.

Generally, surface energies evaluated using a potential (Table 5) are lower than

those estimated by simply counting broken bonds (Table 4). This is true too of the

unrelaxed case, for although no structural repositioning of atoms has occurred, the

extent to which the the local environment at the surface differs from the bulk has

affected nearby bond strengths.

(100) Surface

For the (100) slab, each surface atom is only bonded to two atoms below which

themselves are sp3 bonded in the diamond structure and are thus unable to recip-

rocate in forming double-bonds with the surface atoms. The result is that the only

real difference in bonding strength was for those bonds with atoms immediately at

the surface where bond energies dropped to about 3.33 eV from the bulk value of

3.68 eV. For this reason, little difference is seen between the relaxed and unrelaxed

surface energies (a feature also observed by Stekolinkov et al. [72] in their DFT

calculations). The weakening of these bonds results in an even greater energy differ-

ence between surface and bulk than estimated due to bond breaking alone, and so,
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unique to the (100) case, we see a larger surface energy than predicted in Table 4.

As with the MD simulations run by Halicioglu et al. [73], little surface restructuring

was observed. However, the DFT calculations exposed a possible dimerisation of

adjacent (100) surface atoms (which are otherwise only bound to two sp3 carbons

below the surface). This (2×1) reconstruction offers a much lower surface energy of

about 5.71 Jm−2, lower than that of the (110) surface from the same study. Rus-

sell et al. [74] experimentally found the (100)(2×1) dimerisation bond to exhibit

properties similar to Ċ-Ċ bi-radicals (with a dangling bond at each surface carbon)

rather than the C=C double bond found in alkenes.

(110) Surface

Each surface atom on the (110) slab has had one bond severed in creating the surface,

and is bonded to two other surface atoms and one sp3 carbon below the surface. It

is the strong bond mixing (4.48 eV at an interatomic of about 1.45 Å) between these

adjacent three coordinated surface carbon atoms that drastically reduces the (110)

surface energy. So much so, that contrary the estimate on bond-breaking alone,

the (110) slab termination is found here to be the lowest energy surface. Although

energy values differ greatly, the DFT calculations performed by Stekolinkov et al.

also found the (110) to be the lowest (1×1) energy surface - a feature expressed by

neither the Tersoff nor the Brenner potentials.

(111) Surface

As with the (110) surface, the (111) surface atoms have each had one bond broken

in creating the slab. However, each of these is bonded to three sp3 carbons below

the surface (each one of which is bound to three surface atoms and only one other

sp3 atom, directly below itself). The surface layer and this first layer of sp3 carbons

beneath it form the first (111) ‘bilayer’ - the two component layers of this bilayer

are not separated by much in the z-direction and contain the hexagonal structure

which preferentially forms the graphene planes on graphitisation.

Since these surface atoms are bonded to otherwise diamond carbons (and not

other non sp3 bonded atoms), there is not a large energy difference on relaxation.

However, this is for the conventional (1×1) structure. The surface energy may be

reduced by allowing some of the surface atoms to break their bond with the sp3

carbon below. Although a bond is broken, there are now strongly bonded adjacent

sp2 atoms at the surface. In their DFT calculations, Stekolinkov et al. found this

(2×1) surface reconstruction to have a surface energy as low as 4.06 Jm−2. This
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behavior at the surface was only really observed in the present study when the

sample temperature was raised to above 600 K. Although surface energy is indeed

reduced, this process of forming sp2 regions at the surface and breaking bonds with

the below bilayer serves to propagate the process of graphitisation, which inevitably

leads to a lower configuration energy overall where sp2 C-C bonding in graphite is

of about -5 eV.

Hydrogen Terminated Surfaces

Surface H coverage (100) (110) (111)
100% a) AIREBO -4.60 -5.44

b) DFT -9.11 -9.99 -8.19
50% a) AIREBO -3.94* 0.17

50% (strip) a) AIREBO 0.69
25% a) AIREBO 2.06

Table 6: Passivating surface dangling bonds with hydrogen reduces surface energy
(Jm−2). The (111) surface was terminated with a range of levels of random coverage
and also a solid strip covering 50% of the surface.
* One hydrogen for every (100) surface atom (monohydride), for which two bonds each have
been broken in creating the surface. Thus classified here as only 50% coverage, although perhaps
comparable with the 100% termination for the other samples.

Terminating the sample surfaces with hydrogen passivates otherwise dangling

bonds. The effect of this is to somewhat restore lattice structure near the surface

to that of the bulk material, and carbon-hydrogen bonds are stronger than carbon-

carbon bonds, so for the 100% coverages we have a negative surface energy (Table

6).

The (100) surface was not so easily 100% terminated. If the clean surface car-

bons do not dimerise in an effort to reduce surface energy, they have two dangling

bonds each. Thus 50% coverage would relate to a monohydride phase where each

surface carbon atom has only one hydrogen, and 100% coverage results in a dihy-

dride phase. It has been argued [75] that this dihydride phase is highly strained due

to H-H repulsion and difficult to form. In the present study it was found that at

room temperature a dihydride (100) slab quickly lost molecular hydrogen from the

surface leaving a mixture of single and double hydrogen terminated carbon atoms

at the surface. The monohydride surface however was stable and of a low surface

energy considering the number of bonds broken in creating the clean surface from

the bulk.
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A Note on Images

In the following images of the carbon slabs in this section, the only elements

present are hydrogen and carbon. Hydrogen is represented as small white spheres.

Carbon, however, is colour-coded depending on the number of nearest neighbours

each atom has.

No. Nabs. Bond Colour

< 2 Red

2 Light Purple

3 sp2 Grey

4 sp3 Beige

> 4 Dark Purple

5.3 Heating

(111) Surface

The lowest energy surface by dangling bond density, the (111) planes readily become

graphene sheets on heating. All the surface sp2 atoms form half of the top bilayer.

For this reason, graphitisation nucleates at, and propagates from, the surface. As

seen in Table 7, a clean slab enters a period of phase transition at about 500 K, as

opposed to 2500 K for a bulk sample. Passivating the surface dangling bonds with

hydrogen has been shown to go some way to simulating bulk continuation [76] with

regards to the surface carbon structure, but also to some degree mimicking bulk

graphitisation behavior as seen here.

Sample Temp (K)
Bulk 2500

H-terminated 100% 2000
H-terminated 50% (random) 1000

H-terminated 50% (strip) 500
H-terminated 25% 500

Clean 500

Table 7: Temperature at which the (111) diamond structure begins to re-order
(beginning of graphitisation). Although bonds begin to break at the clean surface
at about 500 K, the top bilayer does not really begin become a graphene plane until
about 700 K. With the 50% strip, only the clean half graphitises at such a low
temperature
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Clean Slab & Bulk

As mentioned, all the dangling bonds along the (111) surface correspond to half the

atoms in the top bilayer. These in effect have already undergone the sp3 to sp2 change

associated with graphitisation. On heating to above 500 K, the remaining sp3 atoms

at the surface easily break their inter-bilayer bond with the bilayer below and slowly

the surface forms a clean graphene sheet and peels away (Figure 31). In addition,

since the sheet is also periodic in the x-y plane, there are no dangling bonds at any

edge needing satisfying, and so with no contortion can remain relatively flat. This

layer-by-layer graphitisation of the clean surface can be seen in the configuration

energy profile in Figure 30.

Figure 30: Plot of lattice energy (eV) with time (ps) for heating of the clean (111)
slab - little heating (500 K, until which there is a gradual increase in configuration
energy) is required before the atoms along the underside of the surface bilayer begin
to break bonds with the upper atoms of the one below forming regions of adjacent
sp2 atoms on the surface. Although bonds are broken, stronger ones are formed and
so the overall configuration energy is reduced. This lowers the surface energy (in
comparison to the diamond bulk) but nucleates layer-by-layer graphitisation. The
first bilayer begins to peel away at about 800 K, and this continues until just over
1500 K at about 200 ps, when the final un-frozen layer has finished separating. On
cooling back to 300 K (>290 ps) the level to which the configuration energy has
reduced in graphitising is apparent.
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Figure 31: The (111) slab towards the end of the graphitisation process. The top
four (111) bilayers have completely ‘peeled’ away into neat graphene sheets (the
bottom two and a half form the frozen region).

Figure 32: Bonding ratios (sp2/sp3) of the clean (111) slab - as the sample is
heated, there is a smooth decrease in the level of sp3 bonded atoms which is matched
by an equal and opposite trend in the sp2 bonding. The initial 10% sp2 bonding is
due to the ±z surfaces, and the final 8% sp3 is due to the frozen -z carbons.
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Figure 33: Plot of lattice energy (eV) with time (ps) for heating of the bulk (111)
sample - The diamond structure is maintained during most of the heating process
with no obvious point for graphitisation to nucleate from. As the sample is heated
the configuration energy becomes less negative due to thermal excitation. Between
2700 K and 2800 K (490-525 ps) the structure undergoes rapid phase change from
an all sp3 diamond bonded one to a sp2 graphitic one. On cooling back to 300 K
(not shown) the total configuration energy has been reduced to about -125000 eV
(8.03 eV per atom or 5.36 eV per sp2 bond).
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Degrees of Surface Hydrogenation

Passivating an otherwise clean surface with hydrogen goes some way to replicating a

continuation into a bulk medium as far as the structure of the surface carbon atoms

are concerned, and duly increases the temperature of graphitisation to something

comparable with a bulk sample rather than a surface. However, because on heating

the surface carbons in the presence of hydrogen cannot form clean sp2 bonds with

their carbon neighbours there is a certain degree of disorder towards the surface. In

addition, in the (111) surface case, the carbon-hydrogen bonds exist in an orientation

were otherwise bond-breaking would occur in graphitisation (perpendicular to the

(111) plane). Because of this, the hydrogenated (111) surface resisted graphitisation

until approximately 2000 K (in comparison with the clean slab at 500 K). Somewhat

a mixture of features from the bulk and clean slab samples, graphitisation did not

necessarily begin at the surface as with the clean slab, nor did it easily propagate

uniformly as with the bulk which resulted in many domains of graphite orientated

along different (111) directions.

Simulations for surfaces randomly covered covered with hydrogen for 25%, 50%

and 100% dangling-bond saturation were heated and displayed almost proportional

suppression of graphitisation to their level of saturation, which eventually occurred

at 500 K, 1000 K and 2000 K respectively. While termination with hydrogen may be

energetically favorable for the surface, it also hinders the propagation of graphitisa-

tion from the surface down into the bulk. For the lightly terminated case (25%) this

results in not completely separated graphene-like layers and a high degree of surface

disorder. Instead of a layer-by-layer peel-away mechanism, surface regions where

there is a relative lack of hydrogen act as a nucleus for graphitisation which prop-

agates perpendicular to the surface. These pyramidal islands of sp2 bonds expand

and where possible merge, thus in some way under-cutting the hydrogen terminated

regions. This happens to a lesser extent for the 50% terminated case and the final

sample is left with interconnected and irregular graphene ‘layers’ with some sp3 left

throughout.

When analysing the configuration energy profiles with time, as seen above in the

(111) slab, there is generally a period of steady energy increase with temperature

before the structure changes. As seen in Figure 35, with the onset of graphitisation,

the configuration energy smoothly drops, but due to the subsequent surface disorder

it rapidly fluctuates and greatly increases. Because of this, although the underlying

majority of the sample may have cleanly graphitised, the surface disorder clouds the
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Figure 34: Random 50% hydrogen terminated (111) slab - Left: At 1000 K, seen from
above. Domains of graphitisation (orientated in one of the four (111) directions)
can be seen here to begin merging - this is just before the surface really started
to become disordered. Right: The period of graphitisation (beneath the surface)
begins at about 700 K (100 ps) and reduces the rate of increase of configuration
energy with temperature before the surface disorder drastically increases at 1000 K
(160 ps). Graphitisation is complete after about 2000 K and on cooling back to 300
K there is a clear energy difference between the two ordered structures, despite the
surface disorder.

energy profile and generally reports a higher configuration energy than what was

probably expected.
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Figure 35: For the 25% hydrogen terminated (111) sample, the majority of the
surface carbon atoms are sp2 bonded and on heating encourage neighbouring atoms
on the underside of the top bilayer to break bonds with those of the bilayer below
in an effort to reduce configuration energy. This is as with the clean surface and is
here represented by the smooth decrease in energy between 700 K and 1500 K (100-
220 ps). After this period the surface becomes disordered as the hydrogen prevents
convenient graphene layers forming. However, the spread of sp2 bond forming (which
stops after about 2200 K) was initiated at the surface and has resulted in sub-surface
graphene layers orientated parallel to the surface. Despite this, disorder dominates
at the surface over any crystal structure which cancels out any gain in configuration
energy due to graphitisation of sub-surface layers. This is why on cooling back to
300 K there is no substantial gain in energy.
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Figure 36: Bonding ratios (sp2/sp3) of the 25% random hydrogen terminated
(111) slab - Although there is a significant level of sp2 bonding in the final sample,
these do not form ordered graphene sheets.
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A surface with a strip of hydrogen termination which covers roughly half the

surface was also heated. As one would expect, the exposed clean half underwent

graphitisation as did the fully clean sample at about 500 K (Figure 37). At about

2000 K the section under the hydrogen strip began to undergo a phase change and

the surface began to disorder. Where these graphene layers from the clean half met

the bulk diamond underneath the hydrogen strip, graphitisation was encouraged,

but rather than completely undercut the hydrogen surface, these graphene layers in

the x-y plane bonded with (111) planes which intersected the frozen diamond thus

resulting in curved graphene layers. Although the surface disorder of the hydrogen-

terminated surface disrupted clean graphitisation, exposure to the clean graphene

encouraged a small degree of order (Figure 38).

Figure 37: 50% strip hydrogen terminated (111) slab, 1500 K - The left half of the
sample surface is terminated with hydrogen and resists graphitisation to a much
higher temperature than the clean surface which has already formed graphitic lay-
ers parallel to the surface. Above this temperature, the graphitisation begins to
undercut the hydrogen terminated surface and sp2 bond forming propagates.
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Figure 38: 50% strip hydrogen terminated (111) slab, 2500 K - sp2 bond forming
has spread to the hydrogen terminated half of the slab (left-hand side) but has
not necessarily formed graphene layers parallel to the surface. Graphitic layers
underneath the clean surface (right-hand side) merge with (111) layers of a different
orientation forming curved sheets.
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(110) Surface

With the (110) sample, the clean surface was stable to much higher temperatures

(Table 8) than the (111) surface. This is due to the fact that there are no partially

sp2 bonded (111) bilayers ready to become graphene sheets as there are with the

(111) surface.

Sample Temp (K)
Bulk 3100
Clean 2400

H-terminated 1900

Table 8: Temperature at which the diamond structure begins to re-order (beginning
of graphitisation).

Since for the (110) surface there is no dominant orientation for graphene lay-

ers to form (the four (111) directions are equally as likely), domains develop which

merge at interfaces resulting in a ‘herring-bone’ pattern. The combined effect of

this can result in graphene layers that zig-zag. The four (111) planes can make two

pairs which result in this pattern. For the clean (110) slab (see Figure 39), this

causes surplus would-be graphene left at the surface, in one of these zig-zag valleys,

to close up on itself and form tube-like structures. Although some sp2/sp3 mixing

exists at domain interfaces, this is surprisingly efficient in maximizing the number

of sp2 bonds.

The hydrogen-terminated surface graphitised at a slightly lower temperature

than did the (111) hydrogenated surface and with a lot less disorder with about

90% of the unfrozen carbons taking on sp2 bonding. This is because two (111)

planes exist perpendicular to the (110) surface which may gradually separate and

uniformly propagate graphitisation. This develops as pyramidal domains nucleated

at the surface where there is more freedom for structural change (see Figure 40).

The final graphene layers remain straight because the ends are generally terminated

with hydrogen and thus they do not need to satisfy any dangling bonds (Figure 41).
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Figure 39: Clean (110) slab at 300 K, post-heating - Zig-zag graphene layers leave
cylindrical tubes at the surface as they seek to satisfy dangling bonds at the edge
of graphene layers.
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Figure 40: Hydrogen terminated (110) slab at 2068 K, pre graphitisation. Some
pyramidal domains of graphite have nucleated at the surface and are propagating
into the slab.
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Figure 41: Hydrogen terminated (110) slab at 2918K, post graphitisation. The two
(111) planes perpendicular to the (110) surface have preferentially graphitised. The
slab is orientated so that a corner of the sample in the x-y plane is pointing out of
the page - this is so that the graphine layers can be seen better in a snap-shot.
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Figure 42: Left: Hydrogen terminated (110) slab at 2918 K, post graphitisation
- Top view of the sp2 bonded carbon only (other carbon removed from image).
The graphene layers form perpendicular to the (110) surface where the dangling
bonds of the graphene sheet edges are already passivated with hydrogen. There
are two (111) planes perpendicular to the surface, and without any obvious choice
of orientation they form the herring-bone pattern of connected domains. Right:
Bulk (110) at 300K, post graphitisation - The bulk does not have the preference
of passivating layers in any one direction and so graphene orientation in the other
two (111) directions also occurs (not necessarily perpendicular to the surface, in this
case the majority is parallel).
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(100) Surface

Sample Temp (K)
Bulk 2400

Clean (1×1) 700/1700
(1×1):H 1000
(1×1):2H 500

Table 9: Temperatures at which the (100) diamond structure begins to re-order
(beginning of graphitisation).

The bulk (100) sample underwent clean graphitisation between 2400 K and 2800

K as did the (111) bulk. Interestingly, the clean (1×1) surface began to undergo sp2

bond forming at the surface (and just below) at 700 K until 1000 K, but then stopped

until at about 1700 K. Only from this temperature on did graphitisation begin to

propagate into the sample properly, with complete graphitic sp2 restructuring at

about 2500 K (Figure 43). The final sample had very little surface disorder.

The (100) monohydride surface, (1×1):H (one H atom for each surface C), cleanly

graphitised between 1000 K and 2000 K with little surface disorder. However, the

dihydride surface, (1×1):2H, was problematic from the beginning with hydrogen

release at room temperaure. Surface disorder encouraged graphitisation at low tem-

perature (500 K) resulting in about 80% sp2 bonding by 2500 K but with large

surface disorder and hydrocarbon molecules breaking away from the surface. In a

DFT study, Sang Yang et al. [77] concluded that this (1×1):2H surface was ener-

getically unstable due to strong H-H repulsion between adjacent surface sites. This

favorably relaxed to the (1×1):H structure which Yuemei L. Yang and D’Evelyn [75]

found to be the most stable (100) surface over the temperature range of 298-1500

K.

5.4 Chapter Summary

This chapter is a comparative study of the behavior of three ideal diamond orienta-

tions on heating. The general conclusion drawn is that surface reconstruction plays

a large role in stablising against graphitisation. Where atoms are able to easily form

sp2 bonds with reciprocating neighbours graphitisation happens at lower tempera-

tures. The extreme case is the clean (111) surface which begins to undergo a phase

change above 500 K.

Temperature thresholds reported here, especially the high temperatures of graphi-

tisation, do not necessarily relate to experimental values, and vary wildly here be-
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Figure 43: Plot of lattice energy (eV) with time (ps) for heating of the clean
(100) sample - As with all others, heating the sample gradually decreases the
configurational lattice energy. In addition to this, there are two periods of sp2 bond
forming which sharply reduce lattice energy. One between 700 K and 1000 K where
the surface (and just below) predominantly adopts sp2 bonding, and then again
between 1700 K and 2000K where graphitisation propagates through to the rest of
the slab.

cause these are simulations of uniform, ideal surfaces. As seen with the gradated

hydrogenation of the (111) surface, if sp2 bond formation can take place in one area

it will act to initiate the process of graphitisation. Generally speaking, it is observed

that at about 600 K the surface is able to restructure slightly. Depending on the

surface, this will either initiate graphitisation, as with the (111) case, or simply min-

imise surface energy further, as with the (100). Above this, true graphitisation may

occur above 1000 K, again depending on the structure. With the bulk and (111)

100% hydrogenated samples diamond structure remained to very high temperatures

because there was no defect to initiate sp2 bond formation.

Of the bulk samples, it is surprising to see the (110) sample graphitising at such

a distinctly different temperature from the other two since in the bulk form these

orientations are essentially equivalent. This is most likely due a size effect: although

the diamond structure is similar in all directions, graphite is not. This could very

well have an effect on the temperature of this phase change since the diamond (111)
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Temp (K)
(100) (110) (111)

Bulk 2400 3100 2500
Clean 700/1700 2400 500

H-terminated 100% 500† 1900 2000
H-terminated 50% 1000# 1000∗

H-terminated 50% (strip) 500
H-terminated 25% 500

Table 10: Summary of temperatures of graphitisation for different diamond orien-
tations and at varying degrees of surface hydrogenation.
∗ random coverage
† dihydride (1×1):2H surface
# monohydride (1×1):H surface

hexagonal layers contract on graphitising.

For the clean surfaces, the (110) sample offered by far the lowest surface energy.

This concurs with it having the highest temperature of graphitisation, close to that

of the bulk diamond. The (111) surface is particularly susceptible to graphitisation

since all upper-surface atoms are already sp2 bonded and already make up half of

the first (111) bilayer, which preferentially becomes a graphene sheet. The (100)

surface underwent two periods of obvious structural change, the first of which was

at about 700 K. Since this initial change was localised at the surface only, it can

perhaps be attributed to a surface reconstruction closer to the energetically favor-

able (2×1) dimerisation mentioned above [72, 77]. True graphitisation begins to

penetrate below the (100) surface at about 1700 K.

Terminating the surfaces with hydrogen, in an effort to passivate dangling bonds

and replicate a bulk-like sp3 bonding, had the greatest effect on the (111) surface.

It seems the strong influence of the surface sp2 bonded atoms on their neighbours

does rapidly induce layer-by-layer graphitisation. Passivating these dangling sur-

face bonds not only removes the immediate opportunity to form sp2 bonds with

neighbours but restores diamond tetrahedral bonding, whereas the (100) and (110)

surface energies may be lowered by forming fewer but stronger bonds, and not in the

tetrahedron structure. Where the clean (111) surface does not reconstruct a great

deal, with surface atoms not forming stronger bonds with neighbours, it does read-

ily reform the diamond structure on hydrogenation. Reducing the level of random

hydrogen coverage reduced the temperature of graphitisation, since propagation of

sp2 bond forming nucleates from un-passivated atoms. A lower limit of about 25%
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coverage results in graphitisation at a similar temperature to the clean surface. How-

ever the upper graphene sheets in this case are not so orderly due to the presence

of remaining hydrogen.

The (110) H-terminated surface, however, graphitised at about the same temper-

ature as the (111) but with a lot more order. This is due to the hydrogen atoms in

the (110) structure passivating dangling surface bonds, which then later terminate

the ends of the graphene layers, allowing neat vertical graphite strips to form.

The monohydride (100)(1×1):H surface did not passivate all surface dangling

bonds (only one of two per surface atom) and lead to graphitisation at quite a low

temperate, one only marginally better than that of the clean (100)(1×1) surface.

However, graphitisation in this case was relatively neat. In contrast, the dihydride

(100)(1×1):2H surface rapidly disordered at the surface at very low temperatures

(>300 K) and therefore quickly allowed disorderly graphitisation to propagate. In

concurrence with Sang Yang et al. [77] findings, it is concluded that this dihydride

configuration is not stable, despite allowing for greater surface bond passivation. A

promising alternative is a (2×1) dimerisation between two adjacent surface atoms

plus a single hydrogen bonded to each - the (100)(2×1):H reconstruction.
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6 Diamond Tritium Bombardment

A plasma facing component in the divertor region of a tokamak will be exposed

to high fluxes of hydrogen and its isotopes. For ITER this is expected to be of

power loads ∼10 MWm−2 [78] which corresponds to ion fluxes of φ = 2-6×1024 ions

m−2s−1 at energies 10-30 eV. As mentioned above, a major disadvantage of using

carbon is its high reactivity with hydrogen. This can lead to enhanced sputtering

and tritium retention. The severity of this, however, is hugely dependent on the

carbon structure, including carbon bond-hybridisation ratios, lattice regularity and

hydrogen saturation. Experiments have shown that even within the sub-category of

carbon fibre composites, sputtering yields can differ drastically due to topological

differences, for example, where erosion was observed to occur preferentially between

fibres [12]. It is therefore reasonable to expect that the rigid diamond lattice may

behave very differently from other carbon structures, such as graphite and amor-

phous carbon, on exposure to fusion plasmas.

In this section, diamond surfaces of temperatures 300-2100 K were exposed to

incident 15 eV tritium atoms at a flux of φ = 1029 ions m−2s−1. The tritium ions

were modelled using hydrogen parameters but with three times the proton mass.

Note that throughout this section, and others relating to tritium bombardment, the

terms atom and ion may be used interchangeably to refer to the incident particle even

though charges are not explicitly modelled. Similarly, use of the terms hydrogenation

and hydro-carbon are extended to refer to bonding with hydrogenic isotopes as well.

6.1 Method

The surfaces detailed in Section 4, the clean and hydrogenated (100), (110) and (111)

diamond orientations, were gradually heated up in Section 5 in investigating their

resistance to graphitisation. In this section, each surface was taken at temperatures

300 K, 600 K, 900 K, 1200 K, 1500 K, 1800 K and 2100 K and exposed to tritium

bombardment at about one incident ion every 0.3 ps. The exact interval time was

varied slightly accommodating for small differences in bombarded surface area in

keeping the incident flux fixed (see Table 6.1).

Whereas in Section 5, where the samples were prepared and heated to the desired

substrate temperatures, a Nosé-Hoover nvt thermostat was used in scaling all atomic

velocities, here a Langevin thermostat10 was employed to scale only a selection. The

10See the DL POLY 3 manual: http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/

http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/
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samples were made from bulk material by opening-up the z-boundary and effectively

creating a vacuum. The slabs remained continuous in the x-y plane, and it’s here

at the edges of the cell that the Langevin thermostat stochastically adds/subtracts

random elements of velocity depending on the desired temperature. The influence

of the thermostat was limited to within 4 Å of the cell edges and ion bombardment

was targeted at the surface at least 6 Å from the edge. This outer perimeter thus

acts as a heat sink, removing incident energy as it dissipates, without the need to

actively scale the velocities of any atoms involved with bombardment interactions.

Atoms within the first 2 Å of the slab underside were frozen and only the topside

was bombarded with tritium.
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Figure 44: Schematic cross-section of a bombarded sample. Atoms initially in the
frozen region are chosen to be fixed, i.e. they never acquire any velocity. Carbon
atoms that at any point fall within the temperature scaled region are subject to the
Langevin thermostat. Incident tritium atoms bombard a surface at least 2 Å from
this scaled perimeter. Later in this section depth profiles in the z-direction will be
taken in quantifying structural damage and tritium retention, this is sampled from
within the bombarded surface 4 Å from the scaled regions. Distances are labelled
in Angstroms and not drawn to scale.

Each incident tritium was introduced to the system at a height of 10 Å above

the surface with a kinetic energy of 15 eV. Impact site coordinates were selected

randomly, as were off-normal incident angles in the range 0◦ < θ < 80◦ (the az-

imuthal angle was completely randomized). A velocity-Verlet integration algorithm

[79] with time-steps of 1 fs was used and an interval of about 0.3 ps was chosen

between incident impacts, which corresponds to an ion flux φ = 1029 ions m−2s−1.
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Material was considered as sputtered or reflected if it was found 10 Å above the

surface at the end of each 0.3 ps run and was removed from the simulation. Exact

times in between impacts for the different surfaces are given in Table 6.1.

Slab Bombarded Area Impact Interval

(100) (72.16-12)×(72.16-12) = 3619.23 Å2 0.265 ps

(110) (60.40-12)×(78.31-12) = 3209.40 Å2 0.300 ps

(111) (68.58-12)×(70.33-12) = 3300.31 Å2 0.291 ps

Table 6.1 - Bombarded areas and impact time intervals fixing incident tritium flux

to φ = 1029 ions m−2s−1. Bombarded areas are evaluated as the product of total

surface dimensions less 6 Å in both directions. Thus the bombarded area is at

least 2 Å from the 4 Å temperature scaled perimeter.

It was decided to use only the REBO part of the whole AIREBO potential (see

Section 4.2 for details of the potential). The additional Lennard-Jones term in the

AIREBO is especially useful for modelling gaseous hydrocarbon particles but comes

at a huge computational cost (see Figure 23). Since we are simulating what is largely

a dense solid over large time scales (large by molecular dynamics standards), and

those molecules which are sputtered are quickly removed, it was decided that this

was a compromise worth making. The dominant bond-order term which considers

carbon bond hybridisation strength is integral to the REBO part and preliminary

tests showed little difference in using the two for this simulated environment.

In Section 5 the three surface orientations were found to graphitise at differ-

ent temperatures. This was attributed to the energetic stability of the surfaces,

largely based on bonding (severed and reconstructed), and orientation of the con-

ventional (111) planes (which preferentially form the graphitic layers). In addition,

the passivation of dangling bonds with hydrogen went some way to replicating bulk

continuation of the material and so increased resistance to graphitisation. Through-

out all of this we are dealing with ideal structures. On bombardment with tritium,

however, following induced damage at the surface there remains little to distinguish

between the samples other than orientation of the original (111) planes. This consid-

ered, it is not then surprising that following initial surface disruption, the nature of

bombardment damage and tritium retention showed no dependence on crystal ori-

entation (Figure 45). Similarly for the the hydrogen-terminated surfaces, not only

was there no clear distinction between the different orientations, but once surface

hydrogen had initially been removed via bombardment there was little difference
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between the clean and hydrogen-passivated surfaces. With this in mind, and for the

sake of continuity, only the (110) clean surface will be discussed in detail throughout

this section, but may be taken as an example of the general case. If anything, with

regards to tritium retention, it may be argued that the (110) surface would possibly

present a worst-case-scenario since here the conventional (111) diamond planes are

perpendicular to the surface. The reason being, as seen in the above Section 5, given

enough energy these (111) diamond planes preferentially form the graphitic layers.

In this situation inter-layer bonds are severed and intra-layer bonds are strength-

ened, thus potentially opening up direct routes for tritium transport into the bulk

material.
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Figure 45: Tritium retention profiles at 600 K after a fluence of 6000 T for the
three clean surface orientations: (100), (110) and (111). Dashed vertical lines show
positions of the (110) diamond layers. Depth profiles, tritium retention levels and
level of damage were similar for all three surfaces.

6.2 Structural Damage

At each substrate temperature 18000 cumulative impacts were executed, equivalent

to a total simulation time of 5.4 ns and a fluence of 5.4×1020 ions m−2.

As explored above in Section 5, diamond will undergo a phase transition and

graphitise given enough energy. It is reasonable to expect this change at about

1000 K. Bombardment of the original diamond surfaces over the temperature range

300-2100 K will cover this and so it is possible to contrast the bombardment of an

ordered diamond structure with one that has been thermally damaged/graphitised.
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Final images of the bombarded slabs at from 300 K to 18000 K are shown in Figures

46, 47, 48 and 49.

300 K, 15.0 eV, 0.3ps, 18000 T

600 K, 15.0 eV, 0.3ps, 18000 T

Figure 46: 300 K and 600 K (110) slabs following bombardment with 18000 tritium
atoms. Tritium accumulates at the surface, and also produces protruding hydrocar-
bon chains. Below the retentive area the diamond structure is maintained.

If the incident ions do not have enough energy to sputter material kinetically (<

30 eV for carbon) the term chemical sputtering is used to highlight the significance

of chemically breaking bonds in the sputtering of material. As an extension to this,

Salonen et al. [80] highlight a process they term Swift Chemical Sputtering. The

underlying mechanism of this involves the impinging ion having enough kinetic en-

ergy to place itself in-between two otherwise chemically bonded atoms and so break

the bond. If the bond was the last C-C connection between a hydrocarbon and the

substrate, the molecule may be sputtered. It was observed in this study that when

the ideal diamond surface is initially bombarded, it is by this process that surface

atoms begin to break bonds with those below. As more bonds become broken, the

surface loses more of its ideal structure, opening up more dangling bond sites re-
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900 K, 15.0 eV, 0.3ps, 18000 T

1200 K, 15.0 eV, 0.3ps, 18000 T

Figure 47: 900 K 1200 K (110) slabs following bombardment with 18000 tritium
atoms. At temperatures approaching the graphitisation threshold diamond structure
is lost near the surface. This allows for deeper tritium penetration and longer
protruding hydrocarbon chains.

ceptive to bonding with incoming tritium and allowing incident ions to penetrate

deeper. This quickly leads to structural damage and disorder in the diamond surface

and so discussing specific surface orientations begins to lose significance.

In the current simulations it was observed that as carbon material was eroded

from a diamond structure, tritium accumulation at the surface developed in-between

what remained of the diamond layers. This can be clearly seen in the 600 K atom

depth profile plotted in Figure 51a. Beneath this, and to the same x-axis scale, Fig-

ure 51c shows a depth profile of carbon atoms only, distinguishing between atoms

with four or three nearest neighbours (either other carbon atoms or tritium) inter-

preted as sp3 and sp2 bonding respectively. Highlighted here is that as carbon atoms

are eroded, adjacent carbon atoms remain roughly in their original positions. The

number of atoms with two or one nearest neighbours was negligible, demonstrating

that even with a strong preference to form sp2 bonds, remaining carbon atoms retain
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1500 K, 15.0 eV, 0.3ps, 18000 T

1800 K, 15.0 eV, 0.3ps, 18000 T

Figure 48: 1500 K and 1800 K (110) slabs following bombardment with 18000 tri-
tium atoms. At temperatures above the graphitisation threshold diamond structure
throughout the sample which allows for much deeper tritium retention.

their original diamond co-ordinates.

Increasing the substrate temperature leads to further structural damage. As the

temperature threshold of graphitisation is approached, given that the incident ions

also impart a certain amount of thermal energy at the surface, the upper layers in

which tritium is deposited lose a lot of their diamond structure. This is evident at

900 K in Figure 51b where retained tritium is no-longer accumulated in tidy peaks

behind diamond layers. Looking at the carbon bond-type profile at 900 K (Figure

51d) the extent of bond breaking penetrates much deeper than the tritium does

and there is little sp3 bonding within the tritium retention area (>15 Å from the

bottom of the slab). Despite this, carbon atoms below the tritium retention remain

in original diamond z-positions. The profile of this sp2 bonding suggests that this

is a surface induced effect (i.e. not simply due to substrate temperature), since it

reduces away from the surface, and could be an artifact of these extremely high
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2100 K, 15.0 eV, 0.3ps, 18000 T

Figure 49: 1800K (110) slab following bombardment with 18000 tritium atoms.
With exception of the frozen lower 2 Å and atoms immediately above the structure
has graphitised, allowing deeper tritium penetration
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Figure 50: Carbon bond-hybridisation mixing with increasing temperature (sam-
pled 5 Å from cell edges and bottom surface). Although bond breaking becomes
significant, and the population of sp2 bonding increases, for 900 K, these carbons
remain in diamond like positions (see Figure 51d).

fluxes (105 orders of magnitude larger than actual divertor conditions). However,

despite this, the depth at which tritium is retained is not too dissimilar from the

600 K case (∼5 Å below the original surface). This suggests that even though the

upper surface suffers greater damage, and bond-breaking has propagated down in to

the sample, the remaining diamond-like structure beneath prevents deeper tritium

penetration.
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Figure 51: (110) atom depth profiles at 600 K and 900 K following bombardment
with 18000 tritium atoms at a flux of φ = 1029 ions m−2s−1. a) and b) show atom
depth profiles and the extent of tritium retention. c) and d) show the bonding
ratios of carbon atoms. Seen here is that even though sp2 bonding is forming due to
damage, remaining carbon are situated in the original diamond positions. e) and f)
show the saturation of carbon atoms within the damaged region. Above about 1000
K the diamond lattice begins to break down. Below this temperature the residual
diamond structure, beneath surface damage, prevents deeper tritium penetration
and thus further damage.
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At temperatures above ∼1000 K the samples have all largely graphitised (as

seen in the sp2/sp3 ratios in Figure 50 and bond-type profiles at 1500 and 1800

K in Figures 52c and 52d). This temperature is slightly lower than was found in

Section 5 for the ideal surfaces (i.e. without defects) but does correspond to the

surface induced graphitisation of the partially hydrogenated samples (see Section

5.4). Since the progression of graphitisation with temperature seems to be surface

induced (see Figure 51d) the graphitisation is most likely enhanced by surface dam-

age and incident energy flux due to bombardment. Figure 49 shows the 1800 K slab

following bombardment. In this case, the graphitic layers have formed herringbone

(see Section 5.3 on the (110) graphitisation pattern) zig-zags perpendicular to the

x-z plane. These layers facilitate greater tritium transport deeper into the slab.

At 1500 K and 1800 K, Figures 52a and 52b show that tritium can penetrate to

a depth of at least ∼10 Å below the original surface. In addition to this, tritium

is retained to a similar height above the original surface. This is not simply due

to protruding hydrocarbon chains, as with the lower temperature samples, but also

due to swelling. The inter-graphitic-plane separation is ideally ∼3 Å, about twice as

large as the C-C bond separation that existed between the planes as diamond (111)

layers. Although this is not a ‘clean’ graphitisation, in that the there are small do-

mains of perpendicular graphitic layer orientation, there will still be some extension

into the z-direction. Adding to this, we now have incident tritium atoms damaging

what graphitic structure exists as well as positioning in-between the layers, thus

enhancing swelling.

In summary, the majority of the structural damage observed in these simulations

was dominantly due to substrate temperature, i.e. thermally induced graphitisation.

Thus it is reasonable to consider the low-temperature and high-temperature samples

as different structures, specifically diamond and graphite-like respectively.
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Figure 52: Depth profiles like Figure 51 for the 1500 K and 1800 K (110) sam-
ples following bombardment with 18000 tritium atoms at a flux of φ = 1029 ions
m−2s−1. Positions of the original pre-bombardment diamond layers are shown with
dashed light-blue lines. Greater structural damage due to substrate temperature
(graphitisation) allows for deeper tritium penetration.
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6.3 Tritium Retention

During the course of bombardment, the majority of incident tritium was reflected,

especially initially when the target was a clean and relatively undamaged diamond

surface. Naturally, as the surface became damaged, and more C-C bonds were bro-

ken, and thus receptive to incident tritium, the rate of retention increased. During

this initial surface damage period, at all temperatures, there was a net tritium reten-

tion rate of about 26%. After 6000 incident ions (an equivalent fluence of 1.8×1020

ions m−2) this rate dropped-off and the surface tritium levels began to saturate (Fig-

ure 53a). Samples that strongly remained diamond-like (300 and 600 K) showed a

convergence to a saturation level of 1200 tritium atoms (a surface density of 3.7×1019

ions m−2). The graphite-like samples (≥ 900 K) did not clearly converge to a par-

ticular level within the given simulation time, which could be due to the ability of

tritium to diffuse down into the sample (as discussed above) and neither easily des-

orb nor hinder further accumulation at the upper surface. Examining final tritium

retention levels (Figure 53b) shows a clear difference between the two temperature

dependent structures with retention levels rapidly increasing for temperatures ≥ 900

K. This corresponds to the temperature driven structural change shown in Figure

50, but then there is a significant drop in apparent tritium retention > 1500 K. This

drop can be explained by considering reflection and desorption rates.
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is reduced by half.

In direct comparison, dual-node, parallelised5 DL POLY 3 runs were performed for the

AIREBO, REBO (this REBO, i.e. AIREBO less LJ and torsional terms) and the original

Tersoff potentials for diamond and amorphous slabs (periodic in x and y directions) of 15552

carbon atoms and of volume (68.6 × 70.3 × 18.5) Å3. CPU times for a range of MD steps

are compared in figure 6. The advantages due to these optimisation features are clear for the

different times of the AIREBO/REBO runs on the two surfaces. In other words, for the ideal

diamond structure computational costs were vastly reduced. It is also worth noting that there

is not a great deal of difference between the times for the REBO and Tersoff diamond runs.

Despite the REBO bond-order term being greatly more complex and requiring many more

nested neighbour loops, this is primarily attributed to the use of neighbour lists for the main

atom loops and the opportunity to not double count bonds.
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Figure 53: Tritium retention - low-temperature (300 and 600 K) structures saturate
at about 1200 retained atoms. Above 600 K there is a sharp increase in retention,
peaking at 1500 K and then decreasing.

Tritium will leave the system by either reflection, desorption or be sputtered as

part of a hydrocarbon molecule. In these simulations, a particle/molecule is con-

sidered as reflected if found >10 Å above the surface by the end of the impact run

(∼3 ps) and is, or contains, the incident tritium atom, otherwise it is classed as
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desorbed. This reflection rate will clearly be dependent on surface structure, since

a disordered surface will be less dense and regular, thus allowing the incident ion

access to deeper impact sites. Figure 54 shows two plots relating to tritium reten-

tion over three periods: up to a fluence of 6000, up to a fluence of 18000 and the

period between 6000 and 18000 (i.e. retention during saturation/initial damage,

total retention and retention post-saturation/damage). The most important is the

third period, post-initial damage, since this more accurately represents something

closer to a steady-state situation. Over such short simulation times (∼5 ns) it is

important to distinguish between effects of the initial ideal surface and the damaged

surface.

In understanding thermally activated mechanisms it is necessary to examine rel-

ative dissociation energies of the atoms/molecules involved. Figure 55 shows tem-

peratures at which various bond types are likely to be broken by thermal vibrations

and thus result in desorption. This is evaluated using an Arrhenius rate equation.

Rdesorption = νExp

[
− E

kBT

]
(42)

For a given temperature, T , the exponential term is proportional to the fraction

of atoms in a Maxwell-Boltzmann distribution that will have kinetic energies greater

than E, the activation energy of desorption, taken here to be the bond energy as

evaluated by the simulation code used throughout these simulations. Although this

energy may not necessarily be the dissociation energy required to break a bond in

individual dynamic environments, it is a good guide to threshold temperatures above

which one may expect significant desorption. What is considered as a ‘significant’

desorption rate (Rdesorption) is arbitrarily taken to be anything corresponding to

above about 10% of all particles after one minute. Since rates rapidly rise (shown

by the closeness of the 10%, 20% and 30% lines in Figure 55) once E ≈ kBT ,

this seems an appropriate figure to take. The prefactor, ν, is interpreted as a

temperature-independent attempt frequency based on the assumption that bound

atoms vibrate at about 1013 times per second.

In Figure 55 bond-energies are quoted for C-T and C-C bonds (dashed red and

solid blue lines respectively). Carbon to carbon bonds are evaluated for diamond

like and graphite-like structures as 3.7 and 5.5 eV. What is important regarding des-

orption, are the bond energies for hydrocarbon molecules and tritium atoms bound

to surface carbon atoms. The lowest bond energy of 3.2 eV is for a tritium bound

to a carbon which is otherwise sp3 bonded to three neighbouring carbons and cor-
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responds to an activation temperature just below 1100 K. A similar temperature

has been noted before as a threshold for thermal desorption [81]. Where the surface

carbon atom is not bound to three other carbons but more tritium atoms, main-

taining a neighbour count of four, the C-T bond becomes much stronger (about 4.4

eV) and relates to a temperature of about 1430 K. Bonds between tritium and car-

bon where the carbon has only two or one other carbon neighbours are at about the

same energy. The weakest bound hydrocarbon molecule to a surface carbon is a CH3

which has a C-C bond strength of about 3.9 eV and corresponds to a temperature

of about 1260 K. Less saturated molecules, CH2 and CH1, are progressively stronger

with C-C energies of 5.3 and 6.0 eV respectively. It is this threshold temperature

of 1430 K for tritium bound to surface carbons that gives rise to the increase in

atomic reflection/desorption seen in Figure 54 and thus the decrease in net tritium

retention above 1500 K. Pospieszczyk et al. [53] found that for graphite at wall

temperatures above 1300 K thermal release of hydrogen is dominantly in its atomic

form.

Figures 54a, 54c and 54e show the combined amount of tritium reflected and

desorbed as either molecular or atomic tritium (T2 or T). A common feature to the

plots is a minimum. This is at 1500 K for 6000 tritium and 1200 K for 18000. It is

the reflection/desorption minimum of the 6000 tritium curve which gives rise to the

local maximum seen in Figure 54e at 1500 K, even though the post-damage minimum

is clearly at 1200 K. This shift to a lower temperature maximum for post-damage

retention may simply be due to weaker C-T bonding with increased saturation and

reduced incident energy dissipation amongst surface atoms due to lattice damage.

On breaking these figures down into reflected and desorbed components the cause

of these minima is apparent. Figures 54b, 54d and 54f show this and are weighted

so that a T2 molecule counts twice as much as a T atom. Generally, the amount of

tritium reflected/desorbed as single atoms is at least twice that as for molecular tri-

tium. Also, with increasing temperature, the amount of reflected material decreases

whereas the amount of desorbed material increases.

The reflection rate is strongly dependent on surface condition and in this respect

is a secondary effect of an increasing substrate temperature. For example, there is a

much larger atomic reflection rate for the pre-damaged period, a feature of the early

bombardment of a clean, ideal diamond surface. The desorption rates, however,

generally have the same form for both pre- and post-damage periods. This suggests

a dominant dependence on substrate temperature rather than surface structure,

although the two influences are difficult to separate.

With increasing temperature reflection rates decrease and desorption rates in-
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Figure 54: Reflection/desorption curves. Left: Net. Right: Reflection and desorp-
tion shown separately for T and T2. With increasing temperature, a decreasing
reflection rate (due to structural damage) and an increasing desorption rate (due to
thermal activation) results in the minima seen in the figures on the left.

crease. A small step exists in this otherwise gradual trend which corresponds to the

structural change quantified in Figure 50. A larger drop in reflection rates compared

with the increase in desorption at this point leads to the net increase in tritium re-

tention seen above 600 K. This is a feature common to the atomic, T, and molecular,

T2, yet for the former there is an increase in both reflection and desorption above
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Figure 55: Temperatures at which desorption rates become significant (>20%) after
one minute for various bond-energies based on Equation 42. As evaluated by the
MD code used in these simulations and in order of increasing bond energy, they are:
i. The T-C bond of a tritium atom bound to an otherwise sp3 bonded carbon
(whose other neighbours are carbon atoms) is of about 3.2 eV and corresponds to a
temperature of about 1050 K.
ii. At 3.7 eV is the C-C bond between two sp3 atoms (which have only carbon
neighbours, i.e. diamond-like) this is 1200 K.
iii. For the C-C bond between a CT3 molecule and a carbon atom (irrespective of
that C atoms neighbour environment) this is 3.9 eV and a temperature of 1260 K.
iv. At 4.4 eV and 1430 K is the C-T bond energy where the carbon atom has four
neighbours (as in the first bond quoted, i.) but the other three are not all carbon.
C-T bonds where the carbon atom has only three and two neighbours have similar
energies of 4.55 and 4.51 eV respectively.
v. The C-C bond connecting a CT2 molecule is about 5.25 eV, closer to the sp2

bond strength (compare with bond iii.), and relates to a temperature close to 1700
K.
vi. The strongest bond is between two sp2 bonded carbons whose neighbours are
carbon (i.e. graphite-like) at 5.5 eV and corresponds to a temperature of 1800 K.

1500 K. As noted above and in Figure 55 line iv, this high temperature increase is

primarily due to the enhanced thermal desorption of tritium bound to various car-

bon complexes. This increase in desorption (and thus decrease in ‘sticking rates’)

gives rise to the net decrease in retention seen above 1500 K.
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6.4 Sputtering

Sputter yields are important, not just in monitoring structural damage, but also

because sputtered material may contaminate the plasma itself and redeposit on the

reactor inner wall, potentially enhancing tritium retention.

As with tritium retention trends, there are clear before and after surface-damage

periods, again about the 6000 incident tritium mark. Following initial damage,

sputter yields in terms of carbon loss settle into linear trends with continued bom-

bardment. Figure 56a shows the remaining number of carbon atoms of the original

16896. Final carbon counts are shown in Figure 56b. In general the higher tem-

perature samples sputtered more carbon than the lower temperature, also there is

a local maximum in the curve at 1500 K and what appears to be the beginning of

a sputter decrease at 2100 K. The shape of the curve closely resembles that of the

tritium retention levels, or rather the level of tritium not retained, specifically for

the post-damage period (Figure 59f).
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Figure 56: a) Amount of carbon remaining of the original 16896 atoms as bombard-
ment progresses. Linear sputter rates develop after a fluence of about 6000 ions. b)
Final carbon count for the different temperatures. Generally the more material is
lost for the graphite-like high temperature cases than for the low temperature cases
where the diamond lattice remains largely intact.

The most common species of hydrocarbon sputtered, in terms of molecule count

and mass, contained a single carbon atom, and progressively larger molecules were

less frequent. From Figure 57, it is clear that it is these single carbon molecules

which dominate the carbon sputtering process as larger molecule counts remain

comparatively similar for pre and post-damage samples despite the temperature

increase. As with the tritium desorption curves (Figure 54f) there is a sharp increase

in C1Hy yield for temperatures above 900 K.
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Figure 57: Sputtered CxHy molecule type. a) Molecule count. b) Mass weighted
count

Mostly, within the 0.3 ps time period in-between successive bombardments, hy-

drocarbon molecules sputtered did not contain the incident tritium atom (compare

counts in Figures 57a and 58a ). Although an incident ion need not be combined

with the sputtered molecule, and the sputtering due to bombardment rather than

desorption may take a little longer than the allowed 0.3 ps, it is interesting to note

a decrease in ‘reflected’ hydrocarbon molecules above 1800 K (Figure 58a). Ab-

sent from the reflected hydrocarbon graph (Figure 58a), but seen in the sputtered

molecule count (Figure 57a), is the enhanced sputter yield at 1200 K. This is due

to a combination of structural change and the increased desorption rates above this

temperature as evaluated in Figure 55. These desorption threshold-temperatures

play a large role in sputter yields, seen in the difference in count scales for Figures

57 and 58, from hundreds for desorption to tens for reflection respectively.

On the whole, however, comparatively little tritium is removed from the surface

via hydrocarbon sputter/desorption, as compared with atomic and molecular des-

orption (roughly only one sixth of net tritium not retained). The amount of tritium

in ejected hydrocarbons is shown in Figures 59a, 59c and 59e (compare with T and

T2 Figures 54a, 54c and 54e) and shows a clear maximum as with previous graphs,

but with hydrocarbon tritium content sputtered roughly the same at the two tem-

perature extremes. This is because with increased temperature there is an increase

of carbon sputtered (Figure 57) yet the saturation of these molecules (Figure 58b)

reduces due to enhanced surface desorption.
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Figure 58: a) Sputtered molecule count where incident tritium is part of sputtered
product. b) Sputtered molecule tritium saturation, taking all carbon atoms as hav-
ing a coordination of four as 100%
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Figure 59: Left: Amount of tritium sputtered via hydrocarbons strongly correlates
with tritium refection/desorption levels (i.e. surface saturation) shown on the left
of Figure 54. Right: Net effect of reflection, desorption and hydrocarbon sputter on
tritium retention. Figure 59d corresponds to Figure 53b showing final retention
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6.5 Diamond Etching Mechanism

Figure 51 shows a strong diamond structure remaining immediately below the tri-

tium retention region for low temperature (< 900 K) bombardment. This residual

structure is largely responsible for lower tritium retention and sputter yields and

can be explained by examining how damage develops with time. Figure 61 shows

the build-up and erosion of tritium with time. Tritium is able to penetrate deeper

only as upper layers are eroded but is still generally confined to inter-layer positions

as much of the diamond structure remains. This gradual layer-by-layer erosion and

the lack of any evidence for tritium diffusivity through the diamond lattice confines

retention and structural damage to the top four to five diamond layers only.
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Figure 60: Tritium penetration with temperature after fluence 18000 T a) At low
temperatures the diamond structure prevents deep penetration and causes retained
tritium to gather in between diamond layers. b) At higher temperatures the diamond
structure is lost and tritium penetrates much deeper and is not confined to inter-layer
positions.

Recent experimental evidence has reported that on exposure to a plasma, di-

amond will form a thin amorphous hydrocarbon layer at the surface above a sur-

viving diamond structure [64]. Results of simulations presented here concur that,

although material is eroded, the damage due to low energy (15 eV) bombardment

is confined to the surface. It also appears that the depth of this damage remains

roughly of a constant thickness as diamond layers are successively eroded. This

layer-by-layer mechanism is responsible for limiting the tritium retention to what

the damage region can accommodate in satisfying carbon sp2 bonding and for pre-

serving a diamond structure below. Considering this, it is possible that what Porro

et al. [64] identified as an amorphous layer based on Raman spectroscopic obser-

vations of sp2/sp3 concentrations could still in fact retain a certain amount of the
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Figure 61: Tritium depth profile of the 600 K sample at different fluences. Tritium
gathers initially at the surface and below the first two diamond layers. As carbon
material is sputtered from these layers the tritium is able to penetrate deeper and
so can accumulate behind successively deeper layers. This layer-by-layer etching
means the remaining diamond structure below the damaged region localises damage
and thus tritium retention to the surface.

original diamond structure (Figure 51c).

Limiting structural damage of the diamond lattice to near the surface will mean

that the exceptional thermal properties for which diamond would be a desirable

plasma-facing material would remain for the bulk of the material. Specifically, the

rapid transfer of heat away from the surface would help limit further thermally

induced structural damage such as graphitisation or amorphisation.

6.6 Chapter Summary

The dependence that tritium retention levels and sputtered products of diamond

have on substrate temperature was studied under a fixed tritium flux (1029 ions

m−2s−1) and incident ion energy (15 eV). The surface bombarded was initially dia-

mond, but due to the temperature range covered (300-2100 K) reconfiguration to the

diamond structure due to thermally induced graphitisation occurred above about

1000 K (Figure 50). Therefore, with increased substrate temperature, not only are

thermally activated desorption barriers crossed (Figure 55) but also the nature of

the structure bombarded is radically different (compare Figures 46 and 49). The
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combination of these two features can be seen in many of the above figures. The

structural change is evident where there is a sudden change above 1000 K (for exam-

ple in the total sputtered hydrocarbon count in Figure 57), and thermal thresholds,

such as those outlined in Figure 55, can explain features such as the rapid decrease

in tritium retention above 1500 K (for example Figure 59b).

At temperatures below 1000 K much of the diamond structure remains intact

despite the surface bombardment (Figure 51). Those carbons near the surface also

show a preference to form sp2 bonding (Figure 51d). The fact that it is these carbons

which later sputter, producing under-cordinated hydrocarbon molecules, contradicts

the assumption of Horn et al. [28] that it is the sp3 surface radicals which lead to

sputtering (Figure 11). This could however be a feature of the high fluxes and

short simulation times used here. Despite this, the remanence of these carbons in

the original diamond positions, even within the damaged region, causes retained

tritium to build-up between the original diamond layers. Only as upper layers are

gradually eroded away do deeper layers become accessible, in effect limiting the

retentive layer to about 6 Å. The result of this is a layer-by-layer erosion mechanism

(Figure 61) and the concentration of retention to the upper few diamond layers.

Only with the onset of a thermally induced structural phase change does the depth

of this retentive layer increase. Practically, in a fusion environment, confinement of

retention to the upper surface would not only limit damage to the material itself

but could also facilitate easier tritium reclamation on cleaning.
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7 Graphite Tritium Bombardment

In Chapter 6 cumulative tritium bombardment simulations were run on diamond

(110) surfaces over a range of substrate temperatures. At higher temperatures des-

orption rates for various bond-energies become important factors affecting sputter

yield and tritium retention. In addition to this, as explored in Chapter 5, at temper-

atures above about 1000 K the diamond structure begins to undergo a phase-change,

reconfiguring diamond-like sp3 bonding to graphite-like sp2 hybridisation. Although

sp2 bonds are stronger than sp3, the tetrahedral diamond structure enhances car-

bon’s physical properties and, as demonstrated above, plays a major role in confining

damage due to bombardment and thus tritium retention to the upper surface. Sec-

tion 6 discusses these features and relates them to the structural change due to

substrate temperature. In this section those structural differences are compared

with each other at similar temperatures. Whereas in Section 6 what is referred

to as graphite-like and compared against diamond is also at a higher temperature,

here a diamond sample is first thermally graphitised and then cooled back down to

substrate temperatures desired before bombardment.

7.1 Method

The graphite samples bombarded in this section were taken from Section 5 which

studied thermally induced phase-changes. The clean (110) diamond surface was

heated to 3000 K over 5 ps increments of 34 K. The under side of the diamond slab

was frozen to a depth of 4 Å ensuring there was in effect only one surface. The

processes of bombardment and analysis were identical to those described above for

diamond in Section 6.1.

The purpose of this section is to compare the bombardment of diamond and

graphite-like surfaces at the same substrate temperature. The choice of a suitable

graphite sample is complicated due to significant differences between different crys-

tal orientations. For example, the ideal graphite inter-layer spacing of about 3.35 Å

is quite large in comparison to these sample sizes. Since it was the diamond (110)

surface bombarded above in Section 6, graphitised (110) samples from Section 5.3

were an obvious choice. Although these did not ‘cleanly’ graphitise, preferring in-

stead a herring-bone formation (Figure 62), pretty much all free (non-frozen) atoms

formed sp2 bonds and clearly not in a random amorphous structure. Of all 16896

carbon atoms, 3649 (22%) were frozen. The unfrozen region expanded vertically on

heating reducing the sample density. As mentioned, this is not an ideal crystal and

so may be expected to have a higher density than that reported for graphite. There
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Graphitised (110) Slab pre-bombardment

Figure 62: Graphitised slab pre-bombardment. The (110) diamond slab as initially
heated to 3000 K and then cooled to desired substrate temperatures. The bottom
4 Å were frozen in the diamond configuration frozen (22% of slab).

is a spectrum of reported densities for real carbon structures depending on bonding

ratios and structure (evident in the diversity of ‘amorphous’ carbon materials) but

these roughly range from about 1.8 g.cm−3 for amorphous carbon to 2.3 g.cm−3 for

graphite and 3.5 g.cm−3 for diamond. Although it is difficult to confidently extrap-

olate a density from such small, non-uniform MD samples, the initial graphitised

structures used here were of a density of about 2.6 g.cm−3.

7.2 Carbon Sputter and Tritium Retention

Since the stronger sp2 bonding is stable over the temperature range studied here

(300-2100 K), in contrast to the diamond sp2 case, there is no real structural dif-

ference between the two temperature extremes. Because of this the carbon etching

rate is similar for all temperatures (Figure 65a) with only a very slight increase

with increasing temperature (Figure 65b), most likely due to surface carbons being

slightly less tightly bound due to them having greater kinetic energy.

Figure 65b compares the final carbon counts at different temperatures for these

graphite samples and the diamond samples from the above section. A steady-state

etching rate was established for the diamond case after a fluence of about 6000 tri-

tium (Figure 56a). For these graphite samples it takes longer for the rate of loss of

carbon to settle (see Figure 65a). This is better seen in Figure 67a where the tritium

saturation levels for the various temperatures are reached after a fluence of about

12000 tritium. It is, therefore, perhaps not a fair comparison to simply consider final

carbon counts following a fluence of 18000 tritium for the two samples (Figure 65b).

A better comparison of carbon sputter rates is to compare the amount of carbon lost

after a fluence of 12000 tritium, once a steady-state erosion has been established for
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300 K, Graphitised, 15.0 eV, 0.3ps, 18000 T

900 K, Graphitised, 15.0 eV, 0.3ps, 18000 T

Figure 63: The graphitised sample at 300 K and 900 K following bombardment with
18000 tritium atoms.

all surfaces. This is shown for both the diamond and graphitised cases in Figure 66.

Generally, sputter rates for both samples increase with temperature until about 1800

K when they begin to reduce. In the diamond case, there is also a distinct increase

in sputter rate after 900 K. As discussed in Section 6.4, this increase for diamond

is due to structural change (beginning of graphitisation) after about 1000 K. Before

this temperature the graphitised surface sputter rate is about 20-40% more than the

diamond surfaces. Above this temperature, the diamond sputter rates are actually

greater than the graphitised, but they then converge for temperatures about 1500

K. This sharp increase for diamond above 1000 K was attributed to the thermally

induced formation of sp2 bonds at the surface, breaking confinement due to the dia-

mond structure, and the increased thermal desorption of CH3 radicals bound to the

surface (Figure 55). Although the diamond structure does undergo the beginning

of a phase change towards graphitisation, its density is still higher than that of the
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1200 K, Graphitised, 15.0 eV, 0.3ps, 18000 T

2100 K, Graphitised, 15.0 eV, 0.3ps, 18000 T

Figure 64: The graphitised sample at 1200 K and 2100 K following bombardment
with 18000 tritium atoms.

graphitised samples (which were graphitised up to a temperature of 3000 K) which

leads to a greater tritium concentration at the surface and thus the presence of more

tritium saturated carbons. As the graphitisation of the diamond surface becomes

more complete the sputter rates converge.

There is a much clearer distinction between the two surfaces in terms of tri-

tium retention. In Section 6.3, the remaining diamond structure beneath a surface-

damage region was attributed with limiting total tritium retention and confining it

to the surface, even at higher temperatures (> 1000 K) where the upper part of the

slab begins to graphitise. In the absence of that residual diamond structure tritium

is able to penetrate deeper and so the surface is able to accommodate more before it

saturates. This is shown in Figure 67b which plots final tritium retention levels. For
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Figure 65: a) Carbon count during bombardment. Loss of material due to sputtering
settles to steady rates after a fluence of about 12000 tritium. b) Final carbon count
for the graphitised samples compared with those for the diamond samples (diamond
line reproduced from Figure 56b).
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Figure 66: Amount of carbon sputtered after a fluence of 12000 tritium (i.e. once
steady-state erosion has been established)

temperatures below 1000 K the graphite sample retained 50-75% more tritium than

did the diamond surface. Above this, graphite still retained more than diamond,

but this difference went from about 30% at 1200 K to 18% at 2100 K.

Generally, there is an initial increase in tritium retention with increasing tem-

perature for both surfaces. The graphitised surface then gradually retains less for

temperatures above 1000 K due to enhanced thermal desorption. For the diamond

surface, the initial increase does not happen until about 1000 K, above which the

surface gradually graphitises with higher temperatures. For both surfaces retention

reduces above 1500 K where the thermal desorption of tritium bound to the surface

increases significantly (see Figure 55).



7.3 Chapter Summary 111

      3000 6000 9000 12,000 15,000

2400

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Incident T

Re
ta

in
ed

 T

300 K
600 K
900 K

1800 K
2100 K

Tritium Retention

1200 K
1500 K

(110)_graphite

Tritium Retention
Graphitised, Fixed Flux: 0.3 ps, Ion Energy: 15 eV

(a)

2100300 600 900 1200 1500 1800

2400

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

Temperature (K)

Fi
na

l T
 c

ou
nt

Final Tritium Retention
18000 T, Fixed Flux: 0.3 ps, Ion Energy: 15 eV

Graphitised

Diamond (110)

(b)

Figure 67: a) Tritium retention during bombardment. The surface saturates at
different temperatures after a fluence of about 12000 tritium. b) The final tritium
count following a fluence of 18000 tritium. Graphite surfaces retain more than the
diamond due to deeper ion penetration. Above 1500 K significant tritium desorption
reduces the retention for both diamond and graphite.

7.3 Chapter Summary

In this section graphitised surfaces were exposed to tritium bombardment and com-

pared against the diamond surfaces from the previous chapter. In the case of the

diamond surfaces, residual diamond structure beneath a damaged surface region

confined and limited tritium retention (Section 6.3). Without this structural con-

finement, tritium was able to penetrate deeper and so the graphitised surface at all

temperatures studied here retained much more, up to 75% for the 600 K case (Figure

67). For temperatures below 1000 K, the graphite surfaces sputtered more carbon

material than did the diamond. This will have consequences for tritium retention

via hydrocarbon redeposition.

The depth of this tritium retention region for the diamond and graphite samples

at 600 K is seen in Figure 68. Where the diamond structure remains beneath the

damaged region, retention penetrates to a depth of about 6 Å (and in tidy peaks

between the diamond layers, Section 6.5). For the graphitised surface at the same

temperature this is closer to about 9 Å. In comparison, a recent experimental study

on the retention of deuterium in hard amorphous hydrocarbon films at 650 K [82]

found the development of a soft retentive layer on the surface to a depth of 14 Å. The

erosion yield and product spectrum of surfaces have been found to depend strongly

on the a-C:H structure [83, 84, 85].
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Figure 68: 600 K tritium depth profile for graphite and diamond following bom-
bardment. The graphite surface retained approximately 75% more tritium and over
a deeper retentive region.
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8 Flux & Ion Energy Dependence

The net power load on the divertor will depend on two variables: the energy of

incident ions and the rate at which they bombard. As stated above, for ITER this

is expected to be a load of ∼10 MWm−2 [78] at energies 10-30 eV and ion fluxes

of φ = 2-6 × 1024 ions m−2s−1. Various mechanisms to cool the plasma to this

level are being considered, for example injecting impurities and reduced magnetic

confinement.

Although incident ion energy may vary depending on design and operation mode,

generally it is expected to be below the physical sputtering threshold (∼30 eV). It

is therefore of interest to examine how, at a fixed flux and substrate temperature,

diamond performs under bombardment over such a range of ion energies. As well

as this, although the pico-second time-scales of molecular dynamics simulations

restricts us to extremely high fluxes (∼1029 ions m−2s−1), well above what may be

physically expected, it is also worth varying fluxes within our computational limit.

8.1 Method

The following simulations were conducted much as those from the above Chapter 6.1

where the effects of substrate temperature were investigated. Differences are that

the thermostat no longer applies to the perimeter of the slab, but the region within

2 Å of the frozen atoms. The bombarded area was also extended to cover the whole

surface (Figure 69). This in effect confines the heat-sink to the underside of the

slab. The purpose of this was so that the temperature gradient in the z-direction,

and thus thermal conduction of energy away from the surface, may also be observed.

Cumulative bombardment simulations of 18000 tritium ions were carried out

on the (110) diamond surface examining, separately, the dependence on incident

ion energy and flux on surface damage and sputter yield. These were all carried

out at substrate temperatures of 300 K, well below graphitisation and desorption

thresholds.

In examining the dependence of flux, the diamond surface was bombarded with

18000 15 eV tritium ions at intervals of 0.3 ps, 0.6 ps, 0.9 ps and 1.2 ps. Correspond-

ing fluxes at these interval times are given in Table 8.1. Although these rates span

only a comparatively small range considering that divertor fluxes are expected to be

∼1024 ions m−2s−1, it is clear from the wall times required to run these simulations

that such physical fluxes are not currently possible with molecular dynamics of this

scale.



8.1 Method 114

Temperature Scaled Region

2

Incident Tritium

Frozen Region

θ

z

x-y plane

Bombarded Surface

2

10

Figure 69: Schematic cross-section of a bombarded sample. Distances are labelled
in Angstroms and not drawn to scale.

Interval Time Ion Flux Simulation Time Wall Time

(ps) (ions m−2s−1) (ns) (days)

0.3 7.05× 1028 5.4 13.5

0.6 3.52× 1028 10.8 26.0

0.9 2.35× 1028 16.2 38.3

1.2 1.76× 1028 21.6 51.1

Table 8.1 - Fluxes and total times simulated for 18000 bombardments of the entire

(110) surface (4.73× 10−17m2) varying the interval time between consecutive

impacts. Wall time taken for these simulations is also given for a job split over one

quad-core processing unit (about the maximum number of cores in terms of

efficiency due to scalability issues).

Simulations studying effects dependent on incident ion energy were carried out in

a similar manner. Here, substrate temperature was scaled to 300 K and the interval

time in between consecutive ion impacts was held fixed at 0.6 ps (φ = 3.52 × 1028

ions m−2s−1, just over one third of the flux used in Chapter 6.1). Four cumulative

bombardment simulations were run with tritium energies of 7.5 eV, 15.0 eV, 22.5

eV and 30.0 eV.
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8.2 Incident Flux

Current experimental limitations mean that there is little data available for fluxes

above about 1019 ions m−2s−1, whereas due to computational limitations simulations

are rarely able to model fluxes below about 1028 ions m−2s−1. Divertor region

fluxes are expected to be in between these two at about 1024 m−2s−1. Not only are

simulations restricted to high fluxes, because of the computational costs only times

scales of the nano-second order are possible. This limits the range of high fluxes

which can be modelled. Despite this, this section looks at the dependence of sputter

yield and tritium retention over the flux range available. In previous simulations in

this thesis, tritium has bombarded surfaces at intervals of 0.3 ps and 0.6 ps. Here

this is extended to 0.9 ps and 1.2 ps. Although this is however still a very narrow

range of fluxes covered (all still of the order 1028 ions m−2s−1) and therefore its

quite difficult to confidently extrapolate much of a trend from the data, this is still

of interest and relevant to understanding the nature of the simulations themselves.

Four diamond surfaces were bombarded with 18000 tritium atoms at these inter-

val times which correspond to total simulation times given in Table 8.1. Therefore

it is worth bearing in mind that not only is the rate of incidence a factor, but also

total simulation time as well.

The depth of damage and tritium retention appears to be independent of flux

variation over this range (Figures 70, 71 and 72). There is also little diffusion into

sample seen over larger time scales, although due to the rigidity of the diamond

lattice, these times may still be too short of observe this. At this high flux regime,

the sputter yield is proportional to the fluence rather than flux. This means that

there is negligible background sputter and all material removed from the surface

is directly due to the incidence of a tritium and not simply its presence at the

surface. Figure 73a shows that over this flux range the amount of hydrocarbon

sputter containing the incident ion increases and then levels off after 0.9 ps. This

does not necessarily mean that more sputtered material contained the incident ion,

but rather that this interval time is comparable to the time taken for the ion to

sputter material. Thus what has previously been generally classed as desorption is

not necessarily independent of the incident ion. Because net tritium retention does

not change over this range this suggests that it takes a maximum of about 1 ps for

the incident ion to to induce a surface hydrocarbon to sputter. Interestingly the

percentages of reflected and desorbed atomic and molecular tritium (Figure 73b)

level off earlier, by about the 0.6 ps interval time. Assuming that the time taken

for an incident ion to simply be reflected from this height above the surface (10 Å)
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15.0 eV, 0.3 ps, 18000 T, 300 K

15.0 eV, 0.6 ps, 18000 T, 300 K

Figure 70: Final surfaces following bombardment of diamond at 300 K with tritium
at intervals of 0.3 ps and 0.6 ps. There is little obvious difference between the two.

is about 0.6 ps and the time taken for an incident ion to sputter a hydrocarbon is

about 1 ps, this suggests that the time taken for the ion to chemically interact at

the surface is on average about 0.4 ps.

Although the total amount of carbon sputtered due to bombardment remains the

same for the four fluxes, with increasing interval time (decreasing flux rate) there is

a small decrease in the amount of single carbon atoms sputtered which is matched

by an equal increase in the amount of carbon sputtered as double carbon molecules

(Figure 74b). With increasing interval time there is also an apparent increase in the

saturation of the hydrocarbon molecules and so the amount of tritium sputtered as

part of a hydrocarbon molecule (Figure 75). This is the case even for the single

carbon molecules despite its noted decrease in yield. The increase in tritium leaving

the surface as part of a hydrocarbon molecule is matched by a decrease in the total

amount of atomic or molecular tritium either desorbed or reflected (Figures 76a and

76b respectively).

These observed trends with flux are possibly linked to the mobility of tritium

already at the surface. With increasing interval time surface tritium atoms have

longer to find more stable and stronger bonding situations before they are bom-
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15.0 eV, 0.9 ps, 18000 T, 300 K

15.0 eV, 1.2 ps, 18000 T, 300 K

Figure 71: Final surfaces following bombardment of diamond at 300 K with tritium
at intervals of 0.9 ps and 1.2 ps. There is little obvious difference between the two.
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Figure 72: Tritium retention. All surfaces saturated after a fluence of about 9000
tritium. These retention profiles are virtually indistinguishable and suggest no de-
pendance on flux over this range.

barded by another tritium. With the gradual increasing of average bond strength

less atomic or molecular tritium is released (Figure 76b), which is dominantly due
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Figure 73: a) Amount of hydrocarbon material to be sputtered within the given
incident interval time. This levels off after about 1 ps suggesting that this is the
maximum time taken to sputter material from this bombardment height. b) Percent-
age of incident tritium that was either reflected within the interval time or desorbed
as either atomic or molecular tritium. These values level off after an interval time
of about 0.6 ps. The net amount of tritium leaving from the surface without being
bonded to a carbon atom remains about the same, corresponding to the constant
level of tritium retention seen for the four fluxes.

1.30.2 0.6 0.9 1.2

600

0

100

200

300

400

500

Interval Time (ps)

M
ol

ec
ul

e 
Co

un
t

0.3

Sputtered CxHy Molecule Count
300 K, Fixed Ion Energy: 15 eV

C1Hy

C2Hy

C3Hy

C4Hy

(a)

1.30.2 0.6 0.9 1.2

9000

0

1000

2000

3000

4000

5000

6000

7000

8000

Interval Time (ps)

W
ei

gh
te

d 
M

ol
ec

ul
e 

Co
un

t

0.3

Mass-Weighted Sputtered CxHy Molecule Count
300 K, Fixed Ion Energy: 15 eV

C1Hy

C2Hy

C3Hy

C5Hy

C4Hy

(b)

Figure 74: a) A breakdown of the hydrocarbon sputter yield. With increasing
interval time there is a slight increase in single carbon sputter at the expense of the
double carbon sputter. b) The same data but weighted for molecule mass illustrating
the constant net yield for the four fluxes.

to a drop in atomic release (Figure 77). If the tritium is not released in its atomic

or molecular form but remains bonded to surface carbons, then it makes sense that

when these carbons are sputtered, they have a greater tritium saturation (Figure

75). A slight increase in surface carbon saturation could also be responsible for the

increase in double carbon molecule yield at the expense of the single carbon yield,

since in the presence of more tritium adjacent carbons are less likely to reform a
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Figure 75: a) The amount of tritium sputtered as part of a hydrocarbon molecule.
b) Saturation of the sputtered hydrocarbon molecules. Both figures illustrate the
increase in tritium content with increasing interval time (decreasing flux).
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Figure 76: Tritium can leave the surface as either part of a hydrocarbon molecule
(Figure a), or in its atomic or molecular form (Figure b). Although there is a net
increase in tritium removed from the surface as part of a hydrocarbon molecule
(Figure a), this is matched by a decrease in the amount of tritium either reflected
or desorbed in its atomic or molecular form.

bond.
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Figure 77: The amount of tritium which leaves the surface not as a hydrocarbon
(Figure 76b) can be broken down into atomic and molecular contributions. The
decrease in reflected or desorbed tritium with increasing interval time is mostly due
to a decrease in atomic tritium (Figure a) rather than molecular tritium (Figure b).
Both graphs drawn to the same scale.
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8.3 Incident Ion Energy

Generally, in terms of damage and sputter yield due to bombarding energy, there

are considered to be two regimes. High energy ions have enough kinetic energy to

ballistically knock atoms out of bonds and also to penetrate deeper into a structure

before losing their energy. This is known as physical sputtering. Reducing the

incident energy reduces the sputter yield and damage. Low energy particles which

do not have enough energy to physically sputter may still cause damage through

their chemical reactivity. This is referred to as chemical sputtering. The threshold

where one regime finishes and another begins is not always clear, nor is it necessarily

a unique value.

For carbon in general as a divertor material it is chemical sputtering which

presents one of the biggest problems. Due to the high reactivity of carbon with

hydrogen there are serious concerns regarding tritium retention in the wall and

sputtered hydrocarbons contaminating the plasma or redepositing elsewhere within

the chamber. It is expected that divertor ion bombardment will be of energies of

about 15 eV, below the typically quoted physical sputtering threshold for carbon

of about 30 eV. It is therefore important to understand how the sputter yield and

tritium retention of diamond depends on incident ion energy about this expected

value.

Figures 78 and 79 show four images of the (110) surface following cumulative

bombardment with 18000 tritium ions of 7.5 eV, 15.0 eV, 22.5 eV and 30.0 eV. It

was decided to conduct these simulations at 300 K. Although divertor temperatures

will be higher than this, the aim here is to isolate effects due to incident ion energy on

diamond and so a temperature well below graphitisation and significant desorption

temperatures is desired.

As these images clearly show, with progressively increasing ion energy the sur-

face suffers greater damage both in terms of tritium penetration and the production

of protruding hydrocarbon chains. This is a reasonable trend to expect, since the

greater kinetic energy an incident ion has, the greater probability it will be able

to penetrate further into the diamond structure. Deeper penetration means deeper

disruption to the diamond structure and thus a thicker damage layer. The layer-by-

layer mechanism by which incident ions damage and remove material was identified

in Chapter 6. As tritium gains access to deeper diamond layers due to damage,

it is able to disrupt the above structure and thus perpetuate progressively deeper

penetration. This process is taking place here at all incident energies where below

the damaged layer there are clear borders with the surviving diamond structure.
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07.5 eV, 0.6ps, 18000 T, 300 K

15.0 eV, 0.6ps, 18000 T, 300 K

Figure 78: Final samples following bombardment with 18000 tritium atoms at con-
stant flux and substrate temperature (0.6 ps intervals and 300 K) but different ion
energies. From top to bottom: 7.5 eV, 15 eV. This is not a cross-section but a view
of the whole slab side-on.

After a fluence of about 6000 ions carbon sputter for all energies settles down

to to steady rates (Figure 80a). Net tritium retention also converges to different

saturation levels depending on ion energy (Figure 81a). As would be expected, the

largest ion energy removes the most carbon and leads to the greatest tritium re-

tention, but there seems to be a linear relationship between ion energy and sputter

yield and tritium retention (Figures 80b and 81b)).

Examining the sputter material itself also reveals this direct proportionality with

increasing energy (Figure 82). As observed in previous chapters the majority of the

sputtered material is made up of single and double carbon molecules. In fact, almost

as many carbon atoms are sputtered as double-carbon molecules as single-carbon

molecules (Figure 82b). Extrapolating these linear trends down to lower energies

gives us x-axis intercepts of 5.73 eV and 6.50 eV for C1Hy and C2Hy molecules

respectively. It is interesting to observe that these energies are comparable to the
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22.5 eV, 0.6ps, 18000 T, 300 K

30.0 eV, 0.6ps, 18000 T, 300 K

Figure 79: Final samples following bombardment with 18000 tritium atoms at con-
stant flux and substrate temperature (0.6 ps intervals and 300 K) but different ion
energies. From top to bottom: 22.5 eV and 30 eV. This is not a cross-section but a
view of the whole slab side-on.
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Figure 80: Carbon atoms remaining of the original 16896 during bombardment by
tritium atoms over a range of incident energies. a) A steady-state carbon loss is
established after a fluence of about 6000 tritium ions on what was originally a clean
surface. b) Final carbon count for the various energies. The amount of carbon
removed appears to be directly proportional to the bombarding ion energy.
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Figure 81: Tritium retention following bombardment at various ion energies. a)
After about 6000 incident ions the surface seems to saturate at a level depending
on incident ion energy. b) Final tritium levels following bombardment with 18000
ions. These correspond to saturation densities of 2.93× 1019 m−2, 3.60× 1019 m−2,
4.31 × 1019 m−2 and 5.29 × 1019 m−2 for ion energies 7.5 eV, 15.0 eV, 22.5 eV and
30.0 eV respectively.
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Figure 82: Sputtered hydrocarbon species with varying ion energy. There is a linear
increase of sputter with increasing ion energy, clearly seen for the smaller molecules
which form the majority of the yield. a) Molecule count. b) Count weighted for
molecule mass.

stronger carbon-carbon/carbon-tritium bonds formed within the damaged upper

surface structure (Figure 55). This is not to say that sputtering would necessarily

be zero below these energies, but that the simple presence of tritium alone may not

be enough to remove large amounts of material. More that perhaps the incident ion

must have enough energy to place itself between two otherwise bound atoms before

significant sputter may occur. This is the underlying principle behind the sputter

mechanism proposed by Salonen et al. which they call swift chemical sputtering [80].

Figure 83a shows the amount of tritium lost from the surface as part of a sput-
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Figure 83: a) The net amount of tritium carried away by different sputtered hydro-
carbons at varying incident ion energies. b) The saturation of those hydrocarbon
molecules as a percentage. Fully saturated sp3-like bonding is considered as 100 %,
i.e. CH4, C2H6, etc...)

tered hydrocarbon molecule. With the exception of the 30 eV case, this looks similar

to the hydrocarbon molecule count shown in Figure 82. However, the 30 eV and

the 22.5 eV simulations show approximately the same amount of tritium sputtered

via hydrocarbon molecules for all species, breaking what otherwise appears to be

the linear trend of Figure 82. This high energy plateau is because, although more

molecules are being sputtered, the tritium saturation of those molecules is less than

for lower energies. Figure 83b shows the saturation of these sputtered hydrocarbons

over the range of incident energies. For the single carbon molecules there is a linear

decrease in saturation as striking as that of the increase for sputter count (Figure

82a). The product of these two straight lines is what is effectively plotted in Figure

83a.

The reduction in saturation of sputtered molecules with increasing energy is due

to the ability of these incident ions to penetrate deeper into the diamond surface.

As seen in Figures 78 and 79, the lower energy ions do not penetrate as much as

the higher energy ones and so the tritium is concentrated closer to the surface. This

also means that damage is restricted to the penetration depth of incident ions, thus

the direct proportionality seen in the above plots. Greater damage means more

sites receptive to incident tritium and the loss of confinement of tritium retention

to the upper surface, reducing saturation. The reduction in sputtered hydrocarbon

saturation reflects this.

A reduced tritium density at the surface with increased ion energy is a conse-



8.3 Incident Ion Energy 126

325 15 22.5

200

0

20

40

60

80

100

120

140

160

180

Ion Energy (eV)

'R
efl

ec
te

d'
 C

xH
y C

ou
nt

Sputtered CxHy Containing Incident T Ion
300 K, Fixed Flux: Interval 0.6 ps

7.5 30

Figure 84: Sputtered hydrocarbon count where the incident tritium is part of the
ejected molecule. The number of molecules sputtered in this way only make up
about one fifth or less of the total hydrocarbon yield (compare with scale in Figure
82).

quence of the broader difference in structure of the damaged region. Low energy

ions are not able to penetrate below the first couple of diamond layers and so re-

tention is restricted to within this range. As mentioned, this is why the sputtered

hydrocarbons from the 7.5 eV case have the greatest saturation. For the single car-

bon molecules the average saturation is about 50% (Figure 83b) at 7.5 eV. Since

comparatively few sputtered hydrocarbons contain the incident tritium (compare

scales in Figures 83a and 84a), yet background desorption seems to be negligible

(i.e. what is classed as hydrocarbon desorption here appears to still be directly due

to the impact of an incident tritium - Chapter 8.2), and since the majority of surface

carbon atoms have three neighbours it is safe to assume this sputter is due to sp2-like

carbons with two tritium which have their only C-C bond broken due to the incident

ion (Figure 85c). With increased ion energy structural damage increases producing

longer surface-chains and the sputter saturation reduces to just below 25% for the

30 eV case, which by similar reasoning is produced by under-coordinated chains

(Figures 85d, 85h and 85i).

As seen in Figures 78 and 79, with greater ion energy an increasing feature pro-

duced by the damage is protruding hydrocarbon chains. For the 7.5 eV case, where

damage is localised to a very thin layer, these chains are mostly composed of sp2

saturated single carbon atoms. Increasing the ion energy results in longer chains

and more of them. This allows for larger hydrocarbon molecules to be sputtered,

but these are comparatively rare and do not affect the results presented here sig-

nificantly. One significant consequence of these larger chains, however, is that, due

to their reduced saturation and greater flexibility with size, they are more likely
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Figure 85: Saturations of possible single and double carbon surface molecules which
could be sputtered due to the breaking of the C-C bond binding it to the surface
(the black dashed bond), assuming the incident tritium does not combine with the
molecule. For the low energy 7.5 eV bombardment the majority of surface carbons
are sp2 bonded resulting in 50% saturation of sputtered material (see Figure 83b),
but with larger, under-coordinated surface hydrocarbon chains sputter saturation
reduces.

to multiply-connect. That is, they are not necessarily only connected to the sur-

face by one C-C bond, nor are they strictly chains any more but more networks

of hydrocarbon complexes, which possibly represents an upper limit to the size of

these surface-chains. Figure 86a is a crude count of surface chains. It is crude in

that it only counts linear hydrocarbon chains and does not accommodate for large

multiply-connected networks, i.e. it will only count additional protruding chains on

such networks. This is why, even with still increased damage between the 22.5 eV

and 30 eV simulations, the single carbon chain count plateaus, and the larger chain

counts apparently decrease - this feature is an artifact of the analysis and due to

increased multiple connectivity.

A consequence of the growth of this carbon-chain web due to an upper limit on

chain size is what possibly caused atomic tritium and reflection rates to converge

to similar values for the two highest energy ions (Figure 86b). With larger carbon

networks which are increasingly under-coordinated, reflected and desorbed atomic

tritium have an increased chance of re-combining with another carbon site or other
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Figure 86: a) Count of linear hydrocarbon chains protruding from the surface due
to bombardment. Multiply-connected chains are not accommodated for, hence the
apparent reduction for the 30 eV case despite increased damage and sputter. Higher
energy damage results in reduced tritium saturation for surface carbons and thus
greater multiply-connected carbon networks. b) Percentage of incident tritium to
leave the surface in either atomic or molecular form. The convergence of the high
energy atomic tritium lines is due to the increased surface damage creating a carbon-
web increasing the chances of recombination of reflected or desorbed tritium.

bound tritium atoms, hence the decrease in the rate of atomic desorption with en-

ergy and the steady increase in molecular desorption.

8.4 Loss of Thermal Conduction with Damage

One of the attractive features of diamond as a plasma facing component is its ex-

tremely high thermal conduction. This is a common feature among carbon materials

in general, but significantly enhanced for the diamond tetrahedral structure. Mod-

elling thermal conduction is not a simple task with empirical molecular dynamics

and on such small scales. However, whereas electron heat transfer in metals is a

significant contributor to energy diffusion, in diamond the dominant transfer mech-

anism is via lattice vibration and so classical MD may not be so inappropriate.

By temperature scaling only the atoms on the under-side of the sample a heat

sink is created at one end in the negative z-direction only. The purpose of this

was to monitor the degradation of thermal conductivity with damage. To do this,

temperatures of non sputtered/incident material were averaged over 600 images at

different times. These images were taken from 10 trajectory history files containing

snapshots of atomic velocities every 0.01 ps (thus 60 images for each 0.6 ps bom-

bardment run - MD time-step was 0.001 ps), and the 10 history files were evenly
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sampled from the last 500 bombardments. These time averaged temperatures for

the four ion energies are given in Figure 87. Generally, the depth of structural dam-

age is just less than that of tritium penetration. As has been discussed, increasing

ion energy leads to greater and deeper damage. This is reflected in Figure 87 where

the 7.5 eV sample, which suffers the least damage, remains at the desired 300 K.

With progressively increasing ion energy, and thus damage, the thermal conduction

of the structure reduces.

As mentioned above, this may not be an accurate representation of a true average

temperature due to modelling limitations, and because this is a time average covering

short, high energy events over larger time scales. Also, an analytic solution for

heat diffusion would be inappropriate on scales comparable to the bond lengths

themselves. What is presented here is a comparative assessment of the structural

damage on an atomistic scale and a demonstration of its consequences. In reality,

the small target area following bombardment experiences something like a localised

thermal-spike. The ability of the substrate material to diffuse that energy quickly

will therefore have greater impact on sputter and desorption yields.

8.5 Chapter Summary

Although this study on flux dependence only covers a comparatively short range and

on a scale many orders of magnitude larger than what may be physically expected,

an interesting feature observed here is that sputter yield seems dominantly to be

proportional to total fluence (Figure 74b). In other words, the additional time in

between impacts does not allow for a significant increase in background desorption.

This suggests that hydrocarbons sputtered are a direct consequence of an incident

ion, whether or not that ion is part of the sputtered molecule.

The amount of structural damage suffered by the surface and thus carbon sputter

due to bombardment appears to be directly proportional to incident ion energy

(Figures 80 and 82). This in turn leads to a similar proportionality in the increased

tritium retention (Figure 81) and decrease in saturation of that retentive layer and

thus sputter material (Figure 83b). However, for all ion energies, below the damaged

layer the diamond structure remains intact and prevents any further retention. This

also confines loss of thermal conductivity to the damaged layer (Figure 87). Also,

increasing incident ion energy leads to the formation of carbon chains (Figure 86a)

which coupled with a reduced tritium saturation form carbon networks above the

surface. This causes a slight reduction in the rate of tritium desorption or reflection

(Figure 86b) since this under-coordinated, low-density web offers more sites for
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Figure 87: Average temperature sampled from the final 0.3 ns of each simulation.
Where the diamond structure degrades due to bombardment, the thermal conduc-
tivity of the material is reduced. This is seen here as the gradual increase of surface
temperature with increasing ion energy. This is only a time-based average and does
not reflect the high thermal peak a region will experience on impact, but more the
ability of surrounding material to dissipate energy.

recombination and thus slightly higher retention than the otherwise linear trend

would suggest (Figure 81b).
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9 Diamond Grain Boundary Tritium Bombard-

ment

The surface structure of bombarded materials will affect plasma-material interac-

tions. For example, Yamada et al. [34] experimentally found significant dependence

of sputter yield on the type or grade of graphite. In previous chapters, atomistically

flat diamond surfaces were initially used in studying the effects of tritium bombard-

ment. However, as seen in Chapter 6, the surface quickly loses its initial lattice

order and forms what has been referred to in this thesis as a retentive damage layer.

Beneath this, the diamond structure of samples below about 1000 K survived (below

graphitisation temperatures). Obviously a real diamond sample will not have such

an ideally flat surface, but since the damaged layer developed in previous chapters

was of a thickness of about 10 Å, it is unlikely that surface features such as steps

can be meaningfully modelled on these scales.

Other than surface ‘roughness’, another feature common in real diamond sam-

ples exposed to plasmas are grain boundaries. Polycrystalline films are grown with

diamond crystals of various sizes. Where two domains of different lattice orientation

meet there will be irregular bonding and a disruption to the continuous diamond

structure. Seen in Chapter 6, it was the survival of this continuous structure be-

neath the damage layer that then prevented further tritium retention. This chapter

investigates the affect on tritium retention of bombarding a diamond surface with a

grain boundary.

9.1 Method

A grain boundary sample was generated using the MIDAS software [86] by bringing

together two cuboidal diamond crystals. The relative lattice orientations of the two

halves were such that a (170)/[001] symmetric tilt boundary was created in the y-z

plane down the centre of the final cell, perpendicular to the surface (Figure 88), and

was initially relaxed using the Tersoff potential [21] in DL POLY.

The slab contained 29568 carbon atoms in total and was continuous in the x-y

plane, effectively replicating the grain boundary at the x-axis extremities (results

are given for atoms at least 8 Å away from the outer parameter and so only the

central grain boundary is studied). The slab was open in the z-direction, creating

a two surfaces. Preparation and bombardment was similar to that from Chapter

6. The cell was relaxed from 10 K to 300 K over ten steps of 3 ps with the npt

Nosé-Hoover thermostat and the REBO component of the AIREBO potential [67].
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(a)

(b)

Figure 88: Original grain boundary. A (170)/[001] symmetric tilt boundary was
created through the centre of the slab running along the y-z plane. a) A view down
the y-axis. The upper surface was bombarded and the underside was frozen to a
depth of 4 Å. The lattice was continuous in the y direction (into the page). The
cell was also continuous in the x direction (left to right), which effectively created a
boundary at the x extremities. b) A view of the surface from above (looking on the
x-y plane down the z-axis)

Cell dimensions varied very little during this and were finally (78.89×75.49×28.53)

Å3, exposing a surface area of 5.96×10−17 m2. At a bombardment rate of one 15 eV

tritium atom every 0.3 ps this is gave an effective bombardment flux of 5.60×1028

ions m−2s−1 (Figure 89).

As in previous chapters, atoms within 4 Å of the underside were then designated

as frozen and the sample then heated to 2100 K over 34 K steps of 5 ps using the

nvt Nosé-Hoover thermostat. Surfaces at temperatures 300 K, 600 K, 900 K, 1200

K, 1500 K, 1800 K and 2100 K were independently bombarded with 18000 tritium

atoms.
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Figure 89: Schematic of surface bombardment. The outer 2 Å of the x-y param-
eter was temperature scaled using a Langevin thermostat. The whole surface was
bombarded, but only atoms at least 8 Å away from the outer parameter of the x-y
plane were sampled for statistics shown in Figure 92. The angles of bombardment,
θ, were individually selected randomly from 0-80◦ to the normal.

9.2 Tritium Retention

The effect of surface temperature on sputter type and yield was investigated in

previous chapters. Of interest here is the effect of this grain boundary on tritium

retention and the formation of the surface-damage layer.

As seen with all other surfaces so far, with increasing fluence, the surface begins

to saturate with tritium and a steady-state erosion is established for all temperatures

(Figure 90a). Also seen in Chapter 6 is the effect of temperature on tritium retention.

Generally, with increasing temperature up to about 1000 K the diamond begins to

graphitise and the surface retains more tritium (Figure 90b). This then begins

to decrease for temperatures above 1500 K where tritium-carbon bonds are more

likely to break due to thermal vibrations (Figure 55). The range of temperatures

covered in this chapter are the same as those previously used, but are shown here

more for completeness. In terms of tritium retention at the grain boundary, these

temperatures show similar behavior and only the 900 K data will be consistently

referred to as an example in discussion.
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Figure 90: a) Amount of tritium present at the surface as a function of fluence. As
in other chapters, here there is an initial period of increase in retention. This rate
reduces as a surface saturation is approached. b) Final tritium count following a
fluence of 18000 ions. With increasing temperature the diamond structure begins
to graphitise and retains more tritium. Above about 1500 K the desorption rate of
tritium noticeably increases and reduces retention levels.

Figure 91a shows the same view as Figure 88a of the sample at 900 K following

bombardment with a fluence of 18000 tritium. As observed in previous chapters,

the diamond structure is clearly damaged at the surface and a retentive layer has

formed. Below this, the undamaged diamond structure prevents deeper tritium

retention. Figure 91b shows the same image, but with the carbon atoms removed,

leaving only retained tritium.

Figure 91b shows that there is only marginally more tritium retained at the

surface above the grain boundary. This is shown graphically in Figure 92a where

there is a peak present at the grain boundary, but one which is not significantly

larger than the overall retention across the surface. As seen in previous chapters,

tritium which is retained at the surface is trapped in the damage layer. Where

surface damage is greater larger amounts of tritium are retained, for example, with

increasing temperature and thus graphitisation. In these simulations, the surface

region about the grain boundary showed only marginally more damage than the rest

of the surface and so tritium retention at the surface is otherwise fairly uniform.

The accumulation of a small amount of tritium much deeper below the surface

damage layer, at the bottom of the grain boundary, is also visible in Figures 91b and

92b. The amount of tritium which has accumulated here is relatively small, but its

presence may be indicative of a mechanism for enhanced tritium retention at grain

boundaries or other defects in general.

Figures 93 and 94 show the same view as Figure 91b but at periodic levels of
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900K, 18000 Tritium

900K, 18000 Tritium - Carbon removed from image

(a)

(b)

Figure 91: a) View along the grain boundary of the 900 K slab following bombard-
ment with 18000 15 eV tritium atoms. The surface shows the formation of a retentive
damage layer, below which the remaining diamond structure prevents deeper pen-
etration. Where the diamond structure is disrupted due to the gain boundary, a
small number of tritium atoms have been able to diffuse down to the bottom of the
slab. b) The above image with carbon atoms removed leaving only retained tritium.

fluence. The presence of tritium at the bottom of the grain boundary is seen early

on, before surface saturation. It appears that the grain boundary is acting as a

channel for tritium diffusion down into the sample. Tritium is collecting at the

bottom of the ‘free’ slab, just above those carbon atoms which are within 4 Å of

the underside and are ‘frozen’. They do not penetrate this frozen layer since, by

definition, those frozen carbon atoms do not respond to their environment. As time

progresses and the surface becomes more damaged and retains more tritium the

population of tritium at the bottom of the grain boundary also increases. It is

unlikely that these tritium are collecting due to an impact normal to the surface

directly above the grain boundary because of the 9 Å thick shielding damage-layer.
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Figure 92: a) Relative population of tritium retention as a function of position
along the x-axis. A peak is seen above the grain boundary, however this is not
especially large compared with levels of retention throughout the rest of the slab.
This suggests that the damage region, and thus tritium retention, is fairly uniform
despite the presence of the grain boundary. Data collected here includes only those
atoms 8 Å from edge of slab in the x-y plane. b) Relative population of tritium as
a function of depth (along the z-axis). As seen in previous chapters, the retentive
layer at the surface is only about 9 Å thick. Below this, a small amount of tritium
has gathered above the frozen carbon atoms.

900 K, 02020 Tritium

900 K, 03891 Tritium

900 K, 05763 Tritium

900 K, 07642 Tritium

Figure 93: Images similar to Figure 91b at periodic stages of fluence.

It is therefore reasonable to assume that these atoms collecting above the frozen

layer arrive there by diffusion down the grain boundary from the underside of the

damage-layer. It is not unexpected that these snapshots at intervals of fluences

about 2000 impacts do not capture this diffusion, showing tritium only partially

along the grain boundary, considering the relatively few penetrating atoms.

The exact amount of tritium collecting at the bottom of the grain boundary

is shown in Figure 95. By the end of the bombardment, after a fluence of 18000
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Figure 94: Images similar to Figure 91b at periodic stages of fluence.

atoms, a total of only 14 have ended up at the bottom of the grain boundary. After

a fluence of about 6000 atoms, the rate at which tritium collects at the bottom of

the grain boundary appears to be constant. This is shown by a linear line of best

fit in Figure 95 and would suggest that as the surface begins to saturate (seen after

a fluence of 6000 atoms in Figure 90a) the rate at which tritium diffuses down the

grain boundary becomes constant. In other words, the level of tritium penetration

is directly related to the saturation of the surface.

9.3 Chapter Summary

As demonstrated in previous chapters, below temperatures of graphitisation (about

1000 K) although the upper 9 Å of the surface suffers damage and retains tritium,

remaining diamond structure below this prevents further penetration and thus limits

tritium retention to the surface. In this chapter a grain boundary was introduced

perpendicular to the surface, running through the centre of the slab along the y-z

plane. The damage layer at the surface appeared to show relatively uniform retention

despite the presence of this grain boundary (Figure 92a).

The accumulation of a very small amount of tritium at the bottom of the grain

boundary is seen in Figure 91, and graphically in Figure 92b. It appears that, in

the absence of the regular diamond lattice, the grain boundary acts as a channel
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Figure 95: The amount of tritium that collects at the bottom of the grain boundary
gradually increases as the retentive damage layer at the surface saturates (compare
with Figure 90a). Assuming a linear trend after a fluence of 6000 tritium, this gives
a rate of tritium accumulation at the bottom of the grain boundary of 1.39 ns−1

(i.e. one tritium every 0.72 ns).

allowing the diffusion of tritium deeper below the surface. Although this number is

small, it may be responsible for increased retention levels and on larger time scales

could possibly lead to further disruption to the diamond crystals leading yet to

further retention. Porro et al. [14] observed experimentally that micro-crystaline

surfaces retained less fuel and resisted fusion plasmas better than did nano-crystaline

surfaces. A similar trend has been observed in graphite where there was significantly

more hydrogen retention for high density pyrolytic graphite surfaces [87, 88] over

high density mono-crystal graphite [51, 88].

Although grain boundaries of polycrystalline surfaces may not be as ideally ‘flat’

(i.e. atomistically flat) as those simulated here, these simulations do further high-

light the role of maintaining crystal structure beneath a damage layer in limiting

fuel retention to the surface.
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10 Summary

Chapter 5 took diamond surfaces of three lattice orientations and heated them from

near zero to temperatures of up-to and above 2000 K. The effect of surface orienta-

tion and surface energy were considered in observing the process of graphitisation.

As expected, in all three cases, the (111) diamond planes would separate from each

other and flatten out to form graphene sheets. The ease with which these planes

could undergo this restructuring determined the temperature at which the slabs

graphitised. For the (111) surface, these layers were free to ‘peel’ away from each

other. For this reason the (111) surface appeared to graphitise at the lowest tem-

perature of 500 K. Graphitisation temperatures for the other surfaces were much

higher, because these (111) layers were not free to separate easily. Interestingly,

the (100) surface underwent what appears to be a surface reconstruction above 700

K, this then stabilised the surface against further structural change until 1700 K.

Surface termination with hydrogen proved to enhance the resistance of structure

against a phase change to higher temperatures, mimicking something like a bulk

continuation. It may be assumed that these ideal surfaces offer extreme limits to

the temperature of graphitisation, which has been reported at a range of tempera-

tures depending on the specifics of the structure studied. Generally, graphitisation

set in at temperatures above about 1000 K. This reported range of temperatures

does, however, demonstrate the dependence of the lattice thermal stability on sur-

face structure. For example, the initial surface restructuring at 700 K resembled the

(100) dimerisation of surface atoms (which is an energetically favorable structure)

and stabilized the bulk diamond below against further phase change until 1700 K.

Chapter 6 looked at the bombardment of a diamond surface with tritium ions

over surface temperature range of 300-2100 K. Incident flux and ion energy were

held constant at 1029 ions m−2s−1 and 15 eV. Over this temperature range, ther-

mally activated desorption of various C-C and C-T bonds led to a decrease in tritium

retention above 1500 K. Following initial bombardment the upper surface became

damaged, and the three lattice orientations examined in Chapter 5 showed little dif-

ference between them. Below 1000 K, this surface damage was limited to the upper

few atomic layers of the surface with a residual diamond structure. Below this the

diamond lattice was undamaged. The surviving rigid diamond structure not only

confined damage to the upper surface, but also tritium retention. As bombardment

continued, and carbon material was sputtered, this damaged layer remained of a

constant thickness as it progressed deeper, suggesting a layer-by-layer erosion.
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Chapter 7 showed results from the bombarded graphite surface produced in

Chapter 5 and was similar to Chapter 6 in method. At comparable temperatures,

where surviving diamond structure in Chapter 6 confined tritium to the upper sur-

face, the graphitic surfaces allowed transport deeper into the bulk. This not only

increased net tritium retention, but also encouraged further damage. Confining tri-

tium to the surface could also be beneficial if periodic cleaning of the PFMs were to

be performed. For temperatures below 1000 K, the diamond surfaces also sputtered

less hydrocarbons than did the graphite surfaces which would have consequences or

tritium retention elsewhere via redeposition.

Chapter 8 discusses results from diamond bombardment simulations similar to

that of Chapter 6, but held surface temperature constant at 300 K and independently

varied either the incident tritium energy or the flux.

Interval times in between successive 15 eV ions was between 0.3 ps and 1.2 ps.

This flux range is still very small, and the flux very high, compared to experimental

values, but restricted by computational resources. At this high flux, and over such

a short total simulation time (18000 impacts) sputter yield appeared to be propor-

tional to fluence rather than flux, suggesting that all sputter was directly due to

the impact of an incident ion. At this surface temperature, desorption times were

obviously too long to have a significant influence here.

Incident ion energies ranged from 7.5 eV to 30 eV, just below the physical sput-

tering threshold. Surface damage, and thus tritium retention, increased with increas-

ing ion energy. Where the incident ion had more energy and a greater penetration

depth it was able to disrupt the diamond structure. This not only had consequences

on sputter yield and tritium retention, but also on thermal conductivity. With a

‘looser’ surface structure, incident energy diffuses through to the bulk slower and

could have consequences for high flux bombardments. Unfortunately, as already

stated, a comprehensive comparison of the cumulative bombardment over a suitable

range of fluxes is beyond our computational resources.

In Chapter 9 a diamond surface with a grain boundary was bombarded. Grain

boundaries are a potential source of increased sputter material and tritium retention.

These simulations were performed on a 600 K surface, and no additional damage

about the surface of the grain boundary was observed. consequently there was little

additional tritium retention at the grain boundary itself. However, there was a slow

build up of tritium at the bottom of the grain boundary. Once the surface became
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saturated and a steady state erosion set-in, the build-up of tritium appeared to be

linear with time. Penetration of tritium along grain boundaries could not only have

consequences for net tritium retention, but also with enhancing structural damage

of the crystal away from the surface damage layer.

The purpose of this project was to investigate the suitability of diamond as a

plasma facing material within a tokamak reactor. The molecular dynamics simula-

tions performed here suggest that diamond may indeed be a preferable choice over

other carbon materials. Although the sputtering yield may not be drastically differ-

ent, these diamond surfaces have shown to have much lower tritium retention levels

than the graphite-like sample at all studied temperatures. This feature would mark

diamond out as the superior carbon based plasma facing material. The one condi-

tion to this would be the preservation of the diamond structure below the surface

damage layer. With this intact the material would be able to efficiently remove heat

from the surface, further adding to diamonds desirability as divertor armour. How-

ever, this condition would be undermined with the thermally induced graphitisation

of the structure. From these simulations this appears to occur at temperatures

above 1000 K. It is not clear exactly what operational surface temperature can be

expected, but a figure often mentioned is about 900 K. Of course, for materials of

high thermal conduction, such as diamond, this could be even lower. To summarise,

diamond appears to be a better plasma facing material for temperatures below 1000

K, and above, although structure degrades due to graphitisation, it appears to fare

no worse than a fully graphitised surface.

For CFCs, the thickness of the ‘sacrificial layer’ is estimated at a maximum of

20 mm, and perhaps 40 mm for very high thermal conductivity grades. Net erosion

depends on levels of physical and chemical sputtering, but it has been suggested that

Si doped carbon may reduce chemical erosion by a factor of 2-21
2

when compared

with pure carbon [89]. Other than hydrogen termination, it has been suggested that

silicon-doping within the carbon structure may increase resistance to graphitisation

and chemical sputtering. Salonen et al. [90] observed a reduction in sputter yield in

MD simulations on small amorphous carbon surfaces. Porro et al. experimentally

found that doping diamond with Boron reduced the sputter yield as well as allowing

for electrical conductivity (reducing arcing). Experiment has also shown the that

silicon doping of graphites and carbon-fiber-composites can reduce chemical erosion

by a factor of 2-3 [91, 12, 92]. Although the physical mechanisms leading to this

reduction in erosion are not currently well understood, it is generally attributed to
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longer Si-C bond lengths, compared to C-C bonds, and greater multiple re-bonding

of almost sputtered material. Further modelling of carbon, and specifically diamond,

as a suitable PFM could focus on the role of doping in reducing sputter yields.
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11 Appendix

Slab Configuration Energies Pre-Graphitisation

Pre-Relaxed Configuration Energy (eV) Surface Energy

Sample Bulk Cleaved ∆E eVÅ−2 Jm−2

(100) -117874.64 -110851.10 7023.55 0.6841 10.959

(110) -124475.30 -122296.01 2179.29 0.2330 3.732

(111) -114571.95 -111430.28 3141.67 0.3305 5.295

Table 11a. Unrelaxed bulk - whole and cleaved

Relaxed (300 K) Configuration Energy (eV) Surface Energy

Sample Bulk Cleaved ∆E eVÅ−2 Jm−2

(100) -117089.10 -110395.28 6693.83 0.6520 10.445

(110) -123816.94 -121341.12 2475.81 0.2647 4.230

(111) -114206.71 -107776.11 6430.61 0.6765 10.838

Table 11b. Relaxed bulk - whole and cleaved

Relaxed (300 K) Configuration Energy (eV) Surface Energy

Sample Bulk Surface ∆E eVÅ−2 Jm−2

(100) -117089.10 -110459.57 6629.53 0.6457 10.344

(110) -123816.94 -122430.15 1386.79 0.1482 2.375

(111) -114206.71 -111249.71 2957.00 0.3111 4.984

Table 11c. Relaxed bulk and relaxed surface
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