\documentclass[12pt]{report}
\pagestyle{plain}

\chapter{Interoperable Systems: an introduction}
\section*{Anthony Finkelstein}
\section{Scope}

This short chapter introduces interoperable systems and attempts to distinguish the principal
research strands in this area. It is not intended as a review. Significant review material is
integrated with each of the succeeding chapters. It is rather intended to whet the appetite for
what follows and to provide some initial conceptual orientation.

This book concerns the architecture, modelling and management of interoperable computing
systems. Our collective research agenda addresses all aspects of interoperable systems
development, including the business and industry requirements and environments for
distributed information services.

Our definition of interoperability is a broad one (it can be usefully contrasted with the rather
narrow definition implicit in Wegner, 1996). Interoperable systems are systems composed
from autonomous, locally managed, heterogeneous components, which are required to cooperate
to provide complex services. Such systems are generally distributed and have significant
non-functional constraints on their operation. The systems are open and are subject to
continuing change. Interoperability is that property of components and of the means by which
the components are composed which ensures that they jointly meet the service requirements
placed on them. In other words interoperability is the ability of components, and groups of
components, to interact effectively to achieve shared goals.

It is worthwhile examining each of the elements of this definition separately.

Autonomy is the most important characteristic of an interoperable system. It means, in essence,
that each component of such a system can operate independently of the other components in its
environment. It implies a degree of context independence and of local management. An
autonomous component can be thought of as analogous to what is coming to be known as a
computational agent.

Such autonomous components may be implemented or realised in different ways. They may be
based on different programming technologies or embed a different model of their environment.
They may achieve similar goals in very different ways. They are, in short, heterogeneous.

Clearly a collection of autonomous and heterogeneous components do not constitute an
interoperable system. Interoperability arises from the need of the autonomous components to
cooperate that is jointly contribute to the provision of a service. The essential challenge of
providing support for the construction of interoperable systems is to establish the best balance
between the compatibility required for cooperation and the concommitant loss of autonomy and



heterogeneity.

A service is an activity or set of activities performed by a component or set of cooperating
components on behalf of a client, which may itself be a component, set of components or external
agent. What distinguishes a service from the conventional conception of a function is its
granularity - it tends to be a relatively complex composite - its longevity - it tends to be
relatively shortlived, services are frequently changed and reconfigured - its independence - a
service has an independent definition which may not be in the control of any of the agents
contributing to it. Ideally the implementation of a service is transparent to the clients of that
service. For a very interesting discussion of services see Cohen (1995).

Generally clients have strong requirements on the quality of service. This has two aspects: the
service must accurately implement the service definition; the service must meet so-called
"non-functional” requirements such as performance, security, dependability and so on. What
make the non-functional requirements of particular concern is that they cannot be simply
determined from the behaviour of the individual components but instead from the composition of
the components and the means by which they cooperate.

Our definition of an interoperable system subsumes logical distribution. Physical distribution
is however not a defining characteristic of an interoperable system but most interoperable
systems of the type discussed below are physically distributed. This means that the support for
cooperation between components must be appropriate to distribution with all that this implies.
It also means that heterogeneity of components may be accompanied by heterogeneity of the
platforms on which those components reside

Openness is a term used in a variety of senses. By openness in this context we mean that
components, and of course services, may be added or removed from the system at any stage. The
external agents who do this are themselves autonomous and there are no guarantees that they
will add these components in a safe or consistent manner. An underlying assumption is that at
least some of these agents may be competitors who wish to offer the same services with
"improved" quality of service.

Interoperability is the ability of components to cooperate to achieve shared goals or to
participate in services that require the components to interact. In such a setting an external
agent can set service requirements and can establish whether these service requirements will
be met

Motivation

Given the nature of the definition above it may seem unncessary to provide an extensive
motivation for the study of interoperable systems. However, because interoperable systems
have rarely been studied as a coherent class of system it is worthwhile to review the main
reasons why they are worthy of attention. This motivation discusses why interoperable systems
are important from an industrial/business perspective and complements this by considering
some example domains.

It is worth dividing the industrial/business concerns with interoperable systems into two
further aspects loosely termed push and pull. On the push side businesses are finding



themselves with systems which must interoperate. They have legacy software which
incorporates important business information or controls key devices and is therefore business
critical. These pieces of software must work together with other pieces of more recent software,
which may be purchased off-the-shelf. The legacy software is autonomous, in the sense of being
designed and built for stand-alone use. It is also heterogeneous being based on legacy software
technologies and platforms. Interoperability provides a way to work with the mess that
constitutes many organisations software base. Because most industrial/business concerns are
not as coherent or organised as software system engineers would demand they be 'push-
interoperability' is not just an issue of legacy, parts of large decentralised organisations are
continually acquiring software and subsequently discovering that they would like these to
cooperate.

'Pull interoperability’ is a feature of the highly dynamic environment in which most
industrial/business concerns find themselves. Commercial advantage accrues to the organisation
which can most rapidly innovate new services or respond to services offered by their
competitors. Most such services, think for example of airline traveller incentive programmes,
require a new set of software services to be built across existing components.

Added to these is the fact that there are emerging market opportunities in existing interoperable
settings, for example by providing domain interfaces (aka vertical facilities) within CORBA or
value added services over the Internet.

To appreciate these concerns it is worthwhile briefly considering some example domains where
interoperability is a critical issue.

Mobile Computing — Conventional assumptions about the future of computing have concentrated
on workstations with extensive memory, sophisticated interfaces and high bandwidth
communication. These assumptions have been subverted by the trend towards mobile devices
such as pagers, active badges, pocket computers, hand-held scanners, personal entertainment
systems and so on. These devices use cellular radio, infrared or other wireless communication.
There is a major commercial interest in developing services which incorporate these devices -
mobile Internet access, sports results delivery, security tagging and tracking - the list is
almost endless. Mobility implies distribution and, commonly, fluid connection patterns.
Components are added and removed with considerable frequency. The services, which change
rapidly, depend on a technologically heterogeneous infrastructure delivered and controlled by
many parties, device vendors, communications providers, service suppliers. The limitations of
the devices and communications place particular emphasis on global service requirements such
as fault tolerance.

Electronic Commerce — Anybody who has used the Internet, and particularly those who have
ordered books, T-shirts and CD-ROMs through WWW, will be aware of the growth of electronic
commerce - markets mediated by computing and communications technology. Advertising,
search and evaluation of competing products, bidding, bid assessment, contracting, payment and
even delivery, in the case of digital services such as video, music and software, are being
undertaken within networks of globally distributed computing resources. The ability to design,
deliver and exploit such electronic commerce services rapidly confers significant business
advantage. The growth of services such as independent brokering forces the pace of
interoperability. The services present important non-functional requirements, of which



notable examples are security and confidentiality.

Software Engineering — The infrastructure required to support software engineering is itself a
particularly interesting example of the class of system we are discussing. Software development
is often carried out in a distributed setting with many different, partially or wholly
autonomous, individuals, groups and organisations participating. The information that is
produced and deployed is heterogeneous. The need to engage in cooperative work and to integrate
elements developed in this setting present service requirements for an appropriate development
environment.

Telecommunications — The change in the commercial and regulatory position of
telecommunications companies set alongside technological change has raised a new set of
challenges. Telecommunications providers are increasingly concerned with developing user-
oriented services, as distinct from simply selling telephone calls. These services, features in
telecommunications terminology, must operate in a heterogeneous setting with equipment from
a variety of suppliers and must be compatible with services provided by other vendors and with
other services that they are providing. Elements of the services are to be provided by legacy
systems whose behaviour is ill-understood and for which change and evolution are particularly
problematic. As in the focus applications discussed above, there are critical non-functional
requirements constraining service delivery, in this case primarily reliability and availability.

Research Contributions

From a research standpoint interoperability brings together many of the most critical issues in
computing research. Autonomy, heterogeneity, distribution and openness manifest themselves in
many different forms and cut across many conventional divisions within computing. Research on
interoperability is about finding working solutions to the challenges of interoperability without
excessive knock on consequences.

Autonomy embraces many of the issues presented by component technologies, the challenges are
those of developing a sound encapsulation scheme and a means of realising components which do
not have side effects on each other.

Heterogeneity involves being able to map between languages, either directly or across some
wrapper or intermediate interface layer. The research challenge lies in identifying the
mappings and designing wrappers and interface layers. Identifying the mappings may range
from the relatively straightforward relationships between certain programming languages to
the complexities of mapping between different data models and query schemes implemented in
different databases.

Distribution is still a significant issue. Designing distributed systems at a realistic scale and
with the required levels of dependability lies at the state of the art of industrial practice. In
research terms being able to manage such systems is of continuing interest.

Openness remains the most slippery of the issues in the sense that it presents such a wide range
of related challenges. The most important of these is the provision of mechanisms which allow
components to be added and removed from running systems. With such basic mechanisms in
place the issue of safe system evolution becomes critical.



Threading through, and uniting all these research issues is a single common problem -
composition. How, when you bring components together can you gain some assurance of their
joint behaviour. More particularly, how can you gain some assurance that properties of
components, or sets of components, that had previously held, will continue to hold when further
components are added. Without such an assurance, in an open setting services may interact with
each other in unanticipated and undesireable ways - feature interaction in telecommunication
terms. This is a foundational concern within computing and seems unlikely to yield to an
immediate solution.

Figure 1 below shows the principal contributory components of the research on interoperable
systems and the most important relations between these components.

We distinguish two basic threads: a systems technology thread, focusing on the software and
systems required to support interoperable systems; a software engineering thread, focusing on
the development and evolution of interoperable systems. Intersecting with these we can see
three major research areas: modelling and specification; distributed systems; systems
architecture. In each of the areas the main elements of the research are set out: within the
software engineering thread these are development activities; in the systems technology thread
relations are the layers of system services. The arrows mark the important relations, which is
where the immediate challenges lie: relating requirements to application architecture; mapping
applications to interoperation infrastructure; relating operating system services to system
architecture; relating system management and evolution to the capabilities of the
infrastructure; and so on.



software engineering systems technologies
modelling &
specification requirements
design & application
architecture
|
distributed
systems construction applications
system management interoperation
& evolution infrastructure
T 1
systems
architecture operating system
services
platforms
Interoperable Systems Research
Figure 1.

Inevitably not all aspects of interoperability are covered in the book, but a considerable amount
of the most important ground is covered. Interoperation infrastructures are extensively
discussed in our account of emerging industry standard middleware (CORBA and DCOM) and how
such infarstructures can be augmented. System management is discussed in the context of
interoperation infrastructures. Composition is treated both formally, in an analysis of
compatibility, and from a software architectural standpoint. The book covers in some detalil
interoperability in the context of data management. This forms part of an attempt, regretably
only partially successful, to present the issues of database interoperability and distributed
object interoperability within a common framework. From a practical point of view databases
consitute both a common class of legacy component and data management a common class of
service required in an interoperable setting. Indeed, it can be argued that because of issues such
as charging for, auditing the use of, and brokering interoperable services the ability to achieve
database interoperability at all levels but most particularly the semantic level is a prerequisite
for the provision of generally interoperable systems.

Future

The work reported in this book constitutes the starting rather than the stopping point of work
on interoperable systems. We have reached a point where, perhaps, we have a more accurate
understanding of the nature and scale of the challenges. In the terms of \cite{brooks87} we are
able to distinguish the "essence" of interoperability, discussed above, from the "accidents" such
as conflicting standards, particular wrapper technologies and so on. Just as in standard



systemdesign we have moved to a situation in which a 'normal’, ‘common or garden' application
is distributed and concurrent, so we predict a situation in which all systems will be required to
be interoperable. The problems of achieving interoperability will not be the province of, for
instance, specialists in legacy systems integration or telecommuncations system developers, but
will be those shared by all programmers.

Acknowldegements

This work was supported by the EC Europe-Australia Cooperation Project ISI. | would like to
acknowledge the contribution of Jeff Kramer and Jeff Magee with whom | have had a number of
most interesting discussions on this topic.

Bibliography

\bibliographystyle{plain}

\bibliography{acwfbib}
\end{document}



