
Methods and Metrics for Selective Regression Testing 

Rami Bahsoon +* and Nashat Mansour* 
'Department of Computer Science, University College London, Gower Street, 

London, WClE 6BT, UK. E-mail: r.bahsoon @cs.ucl.ac.uk 
"Computer Science Prozram, Lebanese American University, P. 0. Box 13-5053, 

Beirut, Lebanon. E-mail: 

Abstract 

In corrective maintenance, selective regression testing 
includes test selection from previously run test suite and 
test coverage identification. We propose three reduction- 
based regression test selection methods and two coverage 
McCabe-based identification metrics. We empirically 
compare these methods with other three reduction and 
precision-oriented methods using 60 test-problems. The 
comparison shows that our proposed methods yield 
favourable results. 

1. Introduction 

Let TS={tl, tz, . . ., tN} be the set of N test cases used in 
the initial development of a program P. Selective 
regression testing addresses two major problems: test 
selection and coverage identification. Test selection 
problem requires a subset of test cases, R, be selected 
from TS for rerunning on the modified program P'. The 
objective is to provide confidence that no adverse effects 
have been caused by the modification. The coverage 
identification problem identifies portions of P' that 
require additional testing. This might require creating R', 
a set of new tests for P', and updating TS. This paper 
addresses both problems. 

A number of selective regression testing methods have 
been proposed for guiding the test selection. In particular, 
Mansour and El-Fakih [4] have proposed using an 
optimization formulation of the selective retesting 
problem and a Simulated Annealing (SA) algorithm for 
minimizing the number of selected test cases. Harrold, 
Gupta, and Soffa [3] have suggested a Reduction 
methodology (RED) for managing a test suite, which can 
be used for reducing the number of selected test cases. 
Agrawal, Horgan, and Krauser [2] have proposed slicing 
algorithms (SLI) that select test cases whose output may 
be affected by the modification made to the program. 

To address the test selection problem, we propose three 
reduction-based selective regression testing methods. 
These are Modification-Based Reduction version 1 
(MBRl), Modification-Based Reduction version 2 
(MBR2), and Precise Reduction (PR). MBRl improves 
the RED algorithm by accounting for the location of the 
modification made and its effects. MBR2 improves 
MBRl by selecting only test cases that execute the 
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modification. PR uses slicing in a similar way to the SLI 
algorithm to determine the useful test cases and applies a 
reduction procedure to reduce the final number of selected 
retests. We use 60 test-problems to empirically evaluate 
MBR1, MBR2, and PR and compare them with SA, RED, 
and SLL 

We approach the coverage identification problem by 
suggesting two McCabe-based regression test coverage 
metrics. These are Reachability regression Test selection 
McCabe-based metric (RTM), and data-flow Slices 
regression Test McCabe-based metric (STM). RTM 
provides an upper-bound indication of the number of 
paths that must be tested. STM is a data-flow McCabe- 
based variable-dependent metric. It computes two bounds: 
an upper and a lower bound of the regression tests 
required for covering the affected definition-use pairs. 

The rest of the paper is organized as follows. Section 2 
describes the program modelling used. Section 3 presents 
the reduction-based methods. Section 4 presents the 
regression test coverage metrics. Section 5 gives the 
experimental results. Section 6 contains our conclusions. 

2. Program modelling 

A subject program is modelled by a control-flow graph 
G with n nodes. Each node represents a control statement 
or a contiguous sequence of assignment statements. The 
nodes stands for requirements {TI, rZ, ..., rn} to regression 
test for. The graph edges represent control/data flow. TS = 
{tl, t2, ..., tN} can be expressed as a union of non-disjoint 
subsets T1 U TZ U ... U To ,  where Ti={til, tiz, ..., ki}is a 
subset of TS used to cover requirement ri. the cardinality 
of Ti is Ci. To perform slicing and data-flow based 
analysis, we extend the model to keep variables 
definitions and uses information in relevant 
segmentdnodes. 

3. Reduction-based methods 

We propose three reduction-based methods that 
improve RED algorithm by accounting for the 
modification made and its effects. These are MBRl, 
MBR2, and PR. We only present the motivations of these 
methods due to space limitation. 

MBRl reduces the number of selected regression tests 
by eliminating tests that cover requirements impacted by 
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the change and those that are redundant [3]. Our approach 
to determine the requirements potentially impacted by the 
change uses reachability information derived from the 
subject program’s control-flow graph. Reachability 
information characterizes requirements that reach or are 
reachable from the modified one as potentially affected. 
MBRl only tests for such. It selects a subset R of test 
cases from TS. R must contain at least one test case from 
each Ti associated with the affected ri to secure an 
adequate coverage of the changed and potentially affected 
requirements. 

MBR2 improves MBRl by eliminating tests that cover 
a requirement characterized as potentially affected and do 
not reveal any modification. MBR2 uses these 
observations, derived from MBR1, to eliminate such tests: 
(i) not every test tk E Ti exercising a requirement, which 
reaches or is reachable from the modified requirement, 
does necessarily cover the modification; (ii) if a 
requirement, say the modified one, is not executed by a 
test case, it can not affect the program output for that test; 
(iii) a requirement that reaches or is reachable from the 
modified requiremenvsegment does not necessarily affect 
the program output of the modification-related part of the 
subject p r o g r a  For example, a control node initially 
characterized as potentially impacted by the change, 
might evaluate to unaffected requirements. Tests 
covering these paths might not reach the modification. 
MBR2 eliminates such cases. 

PR uses modification and computed relevant slices [2] 
information. PR is motivated by the following 
observations: (i) not all requirements in the program are 
executed under a test case; (ii) if a requirement is not 
executed under a test case, it can not affect the program 
output for that test case; and (iii) even if a requirement is 
executed under a test case, it does not always affect the 
program output for that test case. These observations are 
used to orient the reduction process to only select tests 
with relevant slices that contain modified requirement(s) 
and affect the output for the considered modification(s). 
Such orientation ensures that only modification-revealing 
tests are the selected, all non-modification-revealing tests 
are omitted. Thus, the method is said to be precise [ 11. PR 
also eliminates all redundant tests. 

4. McCabe-based identification metrics 

We suggest two McCabe-based [7] test selection 
coverage identification metrics. The metrics quantify the 
retesting effort; monitor retesting coverage adequacy; 
suggest bounds on regression tests; assist in generating 
tests to rerun for testing the change; and identify where 
additional tests may be required. The Cyclomatic 
complexity [7] is given by v (G) for a control-graph G. 

The Reachability regression Test selection McCabe- 
based metric (RTM) provide an upper bound of the 
number of selected regression tests that guarantee the 
coverage of requirements potentially affected by the 
modification at least once. Given that segmenunode I has 
been modified in G, The RTM upper bound, denoted by 
RU (l), computes as follows. First, remove all control 
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segments that do not reach and are not reachable from 1. 
This yields a reduced flow graph GI with the same entry 
and exit nodes as those of G. RU (1)- (GI) provides an 
upper bound of the number of linearly independent paths 
that must be retested and hence the number of tests that 
must be rerun to guarantee coverage of all ‘e .; g ments 
potentially affected by the change in.1 at least once. 

In Data-flow Slices Regression Test McCabe-Based 
Metric (STM), we extend McCabe complexity to deal 
with datdvariable modifications. STM has two bounds: 
upper and lower numbers of regression tests to cover the 
affected definition-use pairs due to data modification. 

STM upper bound, denoted a SU (A), assumes that the 
set of affected definitions-use pairs is identified using 
backwardforward algorithms of [6] due to the 
modification of variable x in segment 1 of G. Removing 
from G all paths with control segments not leading to the 
identified affected def-use pairs, we obtain a reduced 
graph GI. SU (A)=v (GI) gives the number of all possible 
independent paths from the entry node to the exit node of 
the subject program that cover the affected def-use pairs. 
Hence, the number of tests to rerun upon the modification 
of variable x in segment 1. 

To find a STM lower bound, we adjust the entry and 
exit points of the reduced program’s graph, without losing 
affected def-use testing coverage. We suggest backward 
and forward adjustment of entries. 

When a definition variable x is modified in 
segmenthode 1, we use forward adjustment: we set the 
node containing the modified variable as an adjusted 
virtual entry point. A forward-walk algorithm [6] is then 
performed to locate the uses of the variables x along all 
paths. To find an adjusted virtual exit node, we examine 
the number of returned affected def-use pairs of the 
modified variable x edited at 1. If the returned number by 
the walk is one, then we set the node containing the only 
use as an adjusted virtual exit point. Else (if it exceeds 
one), we find a node to which the obtained uses converge. 
To determine such a node, the obtained uses are marked. 
Depth-first search is then performed from the marked uses 
to the first node at which searched paths converge. This 
node is marked as the adjusted virtual exit node. 

When a use is modified, we perform backward 
adjustment. Backward adjustment follows the same 
concept of that of forward. But, it sets the node containing 
the modified use variable as an adjusted virtual exit node. 
It uses backward-walk of [6] to locate the definitions of 
the variables x along all paths and reverse-depth-first 
instead to converge to a virtual entry node. 

STM lower bound computes as SL (A)=v (GI), where 
GI is a reduced graph with virtual entry and exit nodes. 
This gives the number of all possible subpaths that must 
be tested to ensure the coverage of affected def-use pairs 
(from the virtual entry node to the virtual exit node). The 
STM lower bound suggests rerunning SL (A) as the 
minimum number of tests. 

RTM and STM bounds can be employed to guide the 
test selection process for coverage-based regression 
testing methods. For example, data-flow methods of [6] 
tends to include all redundant tests in the regression suite 



satisfymg the affected def-use pairs and, in some cases, 
leads to a high number of selected tests. This fact has 
been experimentally observed [5]. To select a reduced 
regression test suite with redundant tests eliminated, we 
recommend using STM bounds to guide the test selection 
process. 

Inclusiveness 
Lowest 
Inclusiveness 

5. Empirical results for test selection methods 

68% 54% 18% 37% 46% 21% 

We have generated 60 test problems from 17 program 
modules to empirically compare MBR1, MBR2 and PR 
with three reduction and precisionaiented methods. 
These are SA, RED, and S U  We base our comparison on 
the following four quantitative criteria. (i) Percentage 
number of selected tests, # R  (ii) Execution time of the 
code implementing the method, bxec; (iii) Precision to 
measure the methods ability to omit non-modification- 
revealing tests [l]; and (iv) Inclusiveness to measure the 
extent a method selects modification-revealing tests [ 11. 
In Tables 1 and 2, we present aggregate results for the 60 
test problems. 

Table 1 shows that the PR algorithm yields the least #R 
72% of the time. This is because PR omits all non 
modification-revealing and redundant tests. PR is the 
fastest (kXec). MBRl shows slight improvement in #R 
over RED. Because most of the modules used exhibit 
strong inter-segment dependency, MBRl tends to test for 
almost all segments in a similar way to RED. The results 
show that MBRl’s #R varies with the location of the 
modified segment and its degree of reachability to other 
segments. MBR2 selects fewer tests when compared to 
h4BRl due to its ability to omit tests that do not reach the 
modification. 

Table 1. Aggregate results for #R and taeC 

Table 2. Inclusiveness and precision aggregate results 

Highest 

Table 2 shows that PR (like SLI) is fully precise. This 
is due to its ability to omit all non-modification revealing 
test cases and select only ones that are modification 
revealing. The inclusiveness of PR depends on the 
selected test cases with relevant slice containing a 
modified requirement and is generally low; if there are 
several redundant test cases with relevant slices traversing 

a modified segment, PR attempts to select only one of 
them MBR2 omits tests that fail to execute the 
modification and shows improved precision over MBRl 
and RED. When testing for programs with segments 
exhibiting low reachability to the modified one, MBRl 
tends to give higher precision values than that reported by 
RED. The inclusiveness of SA, RED, MBR1, and MBR2 
is low, since: (i) RED does not explicitly target 
modification revealing test cases due to its independence 
of the location of the modified segment, and (ii) if several 
modification revealing test cases traverse a particular 
segment, RED, MBR1, MBR2 and SA attempt to select 
only one of them. 

6. Conclusions 
We have proposed three reduction-based regression 

test selection methods (MBR1, MBR2, and PR) and two 
McCabe-based metrics (RTM and STM) for regression 
test coverage identification. We have empirically 
compared MBR1, MBR2, and PR to three reduction 
methods: SA, RED, and SLL The results show that three 
methods offer reduction in the test suite. In contrast with 
RED, they are dependent on the modification made to the 
subject program PR selects the least number of tests for 
most the test problems with full precision. MBR2 selects 
fewer tests than RED and MBRl most of the time. PR 
selects fewer tests than SLI while maintaining full 
precision like SLL 

The RTM metric is an upper bound metric. It provides 
an indication of the number of potentially affected paths 
that must be retested. The STM metric yields an upper 
and a lower bound on the number of tests to rerun for 
testing the affected definition-use pairs. 
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