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We study arrays of mechanical oscillators in the quantum domain and demonstrate how the motions
of distant oscillators can be entangled without the need for control of individual oscillators and without
a direct interaction between them. These oscillators are thought of as being members of an array of
nanoelectromechanical resonators with a voltage being applicable between neighboring resonators.
Sudden nonadiabatic switching of the interaction results in a squeezing of the states of the mechanical
oscillators, leading to an entanglement transport in chains of mechanical oscillators. We discuss spatial
dimensions, Q factors, temperatures and decoherence sources in some detail, and find a distinct
robustness of the entanglement in the canonical coordinates in such a scheme. We also briefly discuss
the challenging aspect of detection of the generated entanglement.
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In 1959, Feynman suggested in a famous talk that it
appears to be a fruitful enterprise to think about manipu-
lating and controlling mechanical devices at a very small
scale. Since then, the study of microelectromechanical
and even nanoelectromechanical systems (NEMS) has
developed into a mature field of research [1–4].
Mechanical oscillators with spatial dimensions of a few
nanometers and very high frequencies can now be rou-
tinely manufactured. Applications of such NEMS range
from mechanically detected magnetic resonance imag-
ing, to sensing of biochemical systems, and to ultrasen-
sitive probing of thermal transport. Indeed, the NEMS
devices that are presently manufactured in experimental
studies are close to or already on the verge of the quantum
limit [1–4]. While first quantum effects are already being
observed and studied, it is interesting to see to what extent
it is feasible to prepare nanoscale mechanical oscillators
in states where the quantum nature becomes most mani-
fest: in states that are genuinely entangled in the canoni-
cal coordinates of position and momentum. This can be
interesting, as it provides another stepping stone towards
quantum state control and quantum information process-
ing in mechanical systems. They would therefore also
permit the exploration of the limiting region between
the quantum and the classical world. This might be fa-
cilitated by another application of entanglement, namely,
its use to enhance quantum measurement schemes where
entangled states represent a very sensitive probe.

The key question that will be addressed in this Letter is
how it is possible to entangle mechanical oscillators well
separated in space, without the need for making them
interact directly and with a minimum need for individual
local control which is difficult to achieve at the nanolevel.
This will be accomplished by triggering squeezing and
entanglement by a global nonadiabatic change of the
0031-9007=04=93(19)=190402(4)$22.50
interaction strength in a linear array of oscillators, but
without individually addressing any of the oscillators of
the array. In this way, one can achieve long-range entan-
glement that will persist over length scales that are much
larger than the typical entanglement length for the
ground state of the system [5]. The physics underlying
this approach, especially the nonadiabaticity require-
ment, will be discussed in more detail later on. Several
schemes to probe quantum coherence of mechanical res-
onators in different setups and situations have been pro-
posed so far [6,7]. Notably, while the earlier proposal of
entangling macroscopic oscillators [7] entangles two
adjacent oscillators in the context of a different physi-
cal setup, our scheme allows, without the need for indi-
vidual local control, for entanglement in the canonical
coordinates between nonadjacent (and possibly distant)
microscopic oscillators by entanglement transport in a
chain.

The setup that we will consider is an array of double-
clamped coupled nanomechanical oscillators as has been
experimentally studied in the micromechanical realm in
Ref. [8]. We assume that the beams are arranged in such a
manner that between adjacent oscillators a controlled and
tunable interaction can be introduced. In Ref. [8] this is
experimentally achieved by applying a voltage between
adjacent beams made from gold fabricated on a semicon-
ductor membrane that are ordered alternatingly. This in-
duces to a good approximation a nearest-neighbor
interaction that can be controlled in strength. The oscil-
lators are assumed to be cooled to temperatures such that
kT= �h! � 1 with ! being the fundamental frequency of
the oscillators, such that the array is operated deeply in
the quantum regime. Before we discuss the time and
energy scales that would be required to achieve this
regime, we will exemplify the mechanism, without tak-
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FIG. 1 (color online). The degree of entanglement as a func-
tion of time in a chain of length 8 with open boundary
conditions. Depicted in light, medium, and dark grey are the
curves for the values c � 0:3, c � 0:2, and c � 0:1 in the above
units. The figures in the lower row depict the entanglement
between the first and the last oscillator in an open chain, for the
upper row the two diametrically opposed oscillators in a ring
are considered. The figures on the left corresponds to the
noiseless case. The figures on the right show the degree of
entanglement under the decoherence and for nonzero tempera-
ture.Values are chosen that correspond to the Q factor Q � 103,
fundamental frequency 5 GHz, and temperature of 10 mK.
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ing sources of error and decoherence mechanisms into
account, as we will discuss these in some detail later. We
start with the Hamiltonian of N quantum oscillators of
mass m and eigenfrequency ! ordered on a one-
dimensional lattice, with nearest-neighbor interaction of
strength c. Setting �h � 1 and using the qk � q0k

��������
m!

p
, and

pk � p0
k=

��������
m!

p
, where q0k and p0

k are the canonical posi-
tion and momentum of the oscillators we find H �
!=2

PN
k�1�p

2
k � q2k�1� 2c� 	 2cqkqk�1
. For the mo-

ment, we assume for simplicity periodic boundary con-
ditions, i.e., qN�1 � q1, but this requirement will be
relaxed later, and set ! � 1, as in this ideal treatment
this merely corresponds to a rescaling of the time scale.
The normal coordinates are related to the previous ones
by a discrete Fourier transform, qk �

PN
l�1 e

2�ikl=NQl=����
N

p
, pk �

PN
l�1 e

	2�ikl=NPl=
����
N

p
. In these normal co-

ordinates, satisfying Qk � Qy
N	k and Pk � Py

N	k, the
Hamiltonian can be written in the form H �

1=2
PN

k�1fPkP
y
k � �1� 4csin2��k=N�
1=2QkQ

y
k g, annihi-

lation and creation operators, and expressing the time
dependent operators Qk�t� and Pk�t� in terms of these
operators, one arrives at the Heisenberg equations of
motion for the original canonical coordinates qk�t� �PN

r�1�qr�0�fr	k�t� � pr�0�gr	k�t�
 and pk�t� � @tqk�t�;
where we have defined the two functions gk�t� �PN

l�1 e
2�ikl=N sin�!lt�=�N!l� and fk�t� � @tgk�t�. In this

Letter, we are dealing with states that are Gaussian,
i.e., states whose characteristic function or Wigner func-
tion is a Gaussian. As such, it is completely character-
ized by the first and second moments [9]. The first mo-
ments will not be directly relevant for our purposes.
The second moments can be arranged in the symmetric
2N�2N-covariance matrix 	R;S�2Reh�R	hRi� �
�S	hSi�i; where R and S stand for the canonical opera-
tors q1; . . . ; qn and p1; . . . ; pn. At this point, we assume
that for times t < 0, the oscillators are not interacting and
are in the ground state. This implies that 	qn;qm �	pn;pm �

�n;m, and 	qn;pm �0, for n;m�1; . . . ;N.
In the setting of this Letter, we will assume that for t <

0 the interaction is switched off and the system is in its
ground state and time-independent. At time t � 0 the
interaction is then switched on instantaneously to en-
sure nonadiabaticity and consequently the system is out
of equilibrium and evolving in time for t > 0 accord-
ing to the equations of motion for the second moments
given by 	qn;qm�t�� �an;m�t��dn;m�t�
=2, 	qn;pm�t��
�bn;m�t��en;m�t�
=2, 	pn;pm�t� � �cn;m�t� � an;m�t�
=2,
where an;m �

PN
k�1 fk	nfk	m, bn;m � @tam;n=2, cn;m �PN

k�1 @tfk	n@tfk	m, dn;m �
PN

k�1 gk	ngk	m, and
en;m � @tdn;m=2.

Before we discuss in detail the nonadiabaticity require-
ment and other idealizations as well as the physics behind
this approach we demonstrate the success of the approach.
We are now in the position to study the entanglement of
two very distant oscillators when we trace out all the
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others. The chain is translationally invariant, and hence,
a single oscillator, say labeled 1, can be singled out, and
we may look at the degree of entanglement as a function
of time and discrete distance. We quantify entanglement
in terms of the logarithmic negativity, defined as
EN�"� � logk"TAk1 for states ", where "TA is the partial
transpose and k � k1 denotes the trace-norm. This quantity
is an upper bound for distillable entanglement and has an
interpretation of an asymptotic preparation cost [10].

Before we consider the entanglement created in this
way, let us first remind ourselves about the entanglement
structure of the ground state of the harmonic lattice
Hamiltonian: there, the bi-partite entanglement between
two distinguished oscillators is only nonzero for nearest
neighbors. Next-to-nearest neighbors are already sepa-
rable for all parameters, as are more distant oscillators,
even in case of an arbitrarily large correlation length of
the chain when approaching criticality [5].

This is very much in contrast to the situation encoun-
tered here: Astonishingly indeed, we find that even very
distant oscillators become significantly entangled over
time. This dependence is depicted in Fig. 1. For a time
interval �0; t0�, t0 > 0, the state of the oscillators with
labels 1 and n is separable, then, for t > t0 it becomes
entangled. This time t0 is approximately given by t0 �
n=�2$��; There is what can be called a finite ‘‘speed of
propagation’’ of the quantum correlations, which is in
fact closely related to the speed of sound in this chain.
190402-2
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The amount of entanglement roughly falls off as 1=n, but
becomes strictly zero after a finite distance. For c � 0:1,
for example, this happens for n larger than 500. This
long-range nature of the entanglement is remarkable.

The central idea behind the method above is the fact
that an instantaneous change in the potential of a single
harmonic oscillator in its ground state will generally
make its state time dependent and squeezed. In the
same way a change in the coupling strength between
oscillators drives the systems away from equilibrium. In
the course of the subsequent time evolution the squeezing
is then transformed into entanglement due to the nearest-
neighbor coupling. The origin for this is the fact that time
evolution is described by a Hamiltonian quadratic in the
canonical coordinates and therefore has an effect analo-
gous to passive optical elements. Finally, this entangle-
ment propagates, as every other excitation, through the
chain and can therefore lead to entanglement.

In any realistic setting, this switching can not be in-
stantaneous, and an important question is how fast the
switching process must be in order to generate significant
entanglement. Figure 2 depicts the amount of entangle-
ment in the first maximum when the interaction strength
is linearly increased over a time interval �0; t0
. We find
that for times t0 < 1, any nonzero switching time is un-
problematic. This is because the change in coupling
strength is faster than any eigenfrequency in the system,
preventing an adiabatic following. For very slow switch-
ing, t0 � 1, most entanglement is lost because the system
can adiabatically follow the parameter change.

Let us now turn to the discussion of a realisation in
NEMS of such an array. Presently, NEMS made from SiC
have been manufactured experimentally with frequencies
around 1	 10 GHz, with spatial dimensions of the order
of 10 nm [1–4]. Doubly clamped beams have the advan-
tage of higher fundamental frequencies with the same
spatial dimensions. The Q factors for NEMS of these
dimensions achieve values of significantly more thanQ �
103 [11]. Concerning the extent to which the ground state
can initially be reached, cooling of the oscillators to
10 mK seems feasible [12] using a helium dilution refrig-
erator [1], [4] (for the possibility of the equivalent of laser
cooling to the ground state, see Ref. [13]).
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FIG. 2 (color online). Maximum degree of entanglement be-
tween the end points as a function of the switching time t0 in
the above units for a chain of length eight and c � 0:1. The
dotted line represents the unit frequency of a free oscillator.
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Decoherence mechanisms cannot be entirely avoided in
a quantum system so close to macroscopic dimensions.
After all, Q factors describe nothing but the coupling
strength to external degrees of freedom beyond our con-
trol. Most of the dissipation and decoherence is expected
to be due to the coupling with the degrees of freedom of
the substrate to which the resonator is connected. Let us
now specify the decoherence model [14]: In the setting
described here, we are not in the high temperature limit,
but close to zero temperature. Secondly, we do not have
product initial conditions: in a realistic setting, the chain
and the environment are initially not in a completely
uncorrelated state, but rather in the Gibbs state of the
coupled joint system, and then driven away from equilib-
rium [15]. We have hence modeled the decoherence pro-
cess by appending local heat baths consisting of a finite
number M of modes to each of the oscillators with ca-
nonical coordinates qkj ; p

k
j for k � 1; . . . ;M. We choose an

Ohmic spectral density in which case the Langevin equa-
tion for the Heisenberg picture position becomes the one
of classical Brownian motion in the classical limit; i.e.,
the coupling is specified by the Hamiltonian Hj �

( ~!j�qj �
PM

i�1 q
i
j�; where ~!j � j�=M, and �> 0 is a

cutoff frequency. This Hamiltonian induces decoherence
and dissipation, and the number ( > 0 has in our analysis
been chosen in such a manner that the energy dissipation
rate reflects exactly the rate 1=Q corresponding to the
experimentally found Q factors (see, e.g., Refs. [1,17]).
With this value of ( , the initial state before switching on
the interaction is the Gibbs state of the canonical en-
semble of the whole chain including the appended heat
baths. The resulting map is nevertheless a Gaussian op-
eration, such that it is sufficient to know the second mo-
ments to specify entanglement properties. This model
grasps in the simplest possible manner the various noise
processes [18] in NEMS.

The plot on the right-hand side of Figure 1 depicts the
behavior of the degree of entanglement for system pa-
rameters that are close to those used in actual experimen-
tal settings. We see that the scheme is surprisingly robust
against noise processes and nonzero temperatures.
Comparably low Q factors are not particularly harmful
given the large speed of propagation; yet too high tem-
peratures, turn the correlations into merely classical ones.
This effect is evidently more harmful for longer chains.
Notably, for two oscillators, quite large values of the de-
gree of entanglement can be achieved. For example, for a
two-oscillator system, with system parameters as in the
plot at the right of Fig. 1, the degree of entanglement as
quantified in terms of the log-negativity reaches values
larger than 0.6 for c � 0:4. Assuming the ability to cool
to 10 mK, oscillators with fundamental frequencies of
2 GHz would be sufficient to generate entanglement. This
would be the most feasible starting point.

The most significant technological challenge in an
experimental realization of this scheme (and actually
190402-3
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any scheme that involves entanglement in the canonical
coordinates of oscillators at the nanoscale) is the actual
detection of entanglement. We would need to couple the
two chosen oscillators to canonical coordinate trans-
ducers whose output is proportional to position and mo-
mentum, which is fed into an amplifier that produces a
classical signal [19]. What has to be measured with very
high sensitivity are the second moments of the canonical
coordinates qm, qn, pm, and pn, i.e., covariance matrix
elements. If not all entries can be assessed, bounds of the
type EN�"��maxf0;	log��h�qn	qm�2i�h�pn�pm�

2i�=
2�
g may be used to estimate the degree of entanglement.
If only a position transducer is available, stroboscopic
measurements may be employed where only two mea-
surements per cycle are performed (note that pm�t � 0� �
qm�t � �=4� and position and momentum are interchang-
ing roles with frequency !) [19]. Alternatively, continu-
ous single-transducer measurements may be performed
which make use of only a position transducer and a sinu-
soidally modulated output [19]. This leaves us with the
problem of measuring position and momentum with great
accuracy: conventional optical transducers are not appli-
cable in NEMS, but near-field optical sensors or piezo-
electric detectors may be used [1]. References [3,20]
describe and make use of a balanced electronic detection
scheme of displacement. The most promising to date
appears to be a capacitive coupling of an electrode placed
on a resonator to the gate of a single-electron transistor,
as studied theoretically in Ref. [21] and experimentally in
Refs. [2,22]. The sensitivity reached in such setups is
rapidly increasing, and is presently about a factor of 4.3
away from the quantum limit of the considered oscillator
[22], while this factor was still about a 100 a year ago, and
it is argued that with these techniques, the quantum limit
could well be reached in the not too far future
[2,12,21,22]. Note that the chain of mechanical oscilla-
tors may also be used as a quantum channel [23].

We have presented a method of entangling mechanical
oscillators on the nanoscale which are located at macro-
scopically different locations at the ends of a chain,
without the need of addressing each of the oscillators in
the chain. We have introduced the suggested setup for-
mally, and have discussed issues of decoherence and
measurement. As such, the scheme is not yet a fully
feasible scheme ready for experimental implementation.
Yet, it is the hope that this letter can point towards
significant next steps that could be taken when further
exploring the quantum domain with nanoelectrome-
chanical devices.
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