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Abstract

A variational method for calculating excited bending states of symmet-
ric tetrahedral penta-atomic molecules is presented based on the use of
Radau coordinates and Jacobi polynomials as the basis functions. Sym-
metry is used both to reduce the size of secular matrix to be diagonalized
and to calculate potential energy matrix elements over a reduced grid of
quadrature points. Methods of treating the redundant coordinate are in-
vestigated and fitting is found to be more effective than the use of Taylor
expansions. Test results are presented for methane, for which stretch-bend
coupling and contribution due to the redundant coordinate are found to be
significant. Converged results are obtained for bending states significantly
higher than considered in previous calculations. These states will be used

as a basis for bending motions in a fully coupled stretch-bend calculation.
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1 Introduction

The vibration-rotation spectroscopy of tetrahedral XY, molecules is of consider-
able interest but difficult to treat theoretically in regimes where the assumption of
small amplitude vibrational motion is not reliable. We are interested in develop-
ing a systematic procedure for studying these systems using internal coordinates
and variational procedures which have proved very successful for highly excited
states of smaller molecules [1]. However the nine degrees of vibrational free-
dom means that complete variational calculations on five atom systems present
a considerable computational challenge.

In the previous paper [2], henceforth refered to as I, we presented a formalism
for treating the stretching motions in XY, molecules and applied it to a number
of hydrides. In this paper we address the problem of the bending motions in
such systems. The approximate separation of low-frequency bends from high
frequency stretches in molecules such as hydrocarbons has long been considered
[3]. Our main reason for performing this separation is not so much to get results
for the bend-only problem but to use the solutions of this problem to tackle the
full stretch-bend problem.

The bend-only problem presents more of a challenge than the stretch-only
one for a number of reasons. Most obviously there are five bending degrees
of freedom rather than the four stretching modes. Furthermore the bending
modes are coupled in ways that make them unsuitable for treatment using discrete
variable representation (DVR) methods [5] which have proved highly successful
in other circumstances [4]. Bending excitations generally lie at considerably lower
energy than the stretches with the same number of quanta meaning that for a
given total vibrational energy in the molecule, many more bending states have to
be considered. Finally there is well-known problem with the redundant coordinate
6, 7, 8, 9, 10] which makes the use of symmetrized coordinates in the bending

problem technically much more difficult than in the stretching case.



2 Theory

2.1 The Hamiltonian

As detailed in I, the Hamiltonian for the vibrational motions of an XY, system

in Radau coordinates can conveniently be written
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where p is the mass of atom Y, 7; is the Radau radial vector, and c; is the angle
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between the vector r; and r;. In practice it is more convenient to transform the
angular kinetic energy operator to a representation in cosine of the angles using

wi; = cos ;. This gives

B3 1 1.0 0
Tone = =+ =) —(1— W
e 2:“ zzlgz:m(rzz Taz')wij( J)a ij
h2 4 62

——Z Z Z Wik — W;jWik)

i=1 Z j#i k#£ij

The bending kinetic energy operator (3) or (4) is defined in terms of six

(4)

8wij8wik ’

tetrahedral angles, o;;. Only five of these angles are linearly independent; this
leads to the well-known redundancy condition which must be obeyed by the
Hamiltonian. The redundancy condition in internal coordinates [7, 8, 9, 6] can

conveniently be expressed as
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To utilize symmetry, we transform the Radau internal angular coordinate

variables w;;, to the Radau symmetry coordinates.

The symmetrized Radau

angular coordinates and the redundancy coordinate s, are defined
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where the redundancy coordinate is entirely determined by other five symmetric

variables, i.e. s, is a function of s,(saq, Sop, Saz, Say, Sa.). Using the transformation

(6), we can expand the redundancy condition (5) and obtain the redundancy

equation in symmetrized coordinates. An expression for s, can be determined by

solving the redundancy equation,

sp = Ag+ A1s, + Azsf + A38§ + A4S;4«

(7)

where the coefficients Ay, A1, Ay, A3, A4 are functions of the other five symmetric

coordinates Saq, Sop, Saz, Sy, S4z-
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Using Mathematica to solving this equation yields an exact solution of the redun-

dancy problem for the bending motion on XY, systems in Radau coordinates.

As (7) is a quartic equation, it actually has four solutions. However, inspection

of these shows that only one solution is real,

where,
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It should be noted that this solution does not correspond to the one given by

Mladenovié [10] which is complex for much of coordinate space apart from a

region near the equilibrium configuration. Our final expression for s, is fairly

complicated but can easily be evaluated numerically. These numerical evaluations
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will be used below to obtain approximation formula to represent the redundancy
coordinate through fitting to an exact solution.
Considering the redundancy, the expression for the bending kinetic energy

operator can be obtained with Mathematica using chain rule as

K2 0? 0
Ly 2 Y-l ey S 1
Q,U) %: 7 0g;0y; M Z,: 0 (15)

To/(

where ¢; = Sa4, Sop, Sag, Say, S4.. The term ¢;; and ¢; are given by
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This expression for the bending kinetic energy operator is exact but difficult
to work with since the redundancy coordinate, s,, appears regularly. To evaluate
matrix elements involving this coordinate without approximation would require
performing many numerical quadratures each as expensive as the integral over
of the potential. As discussed below, we therefore chose to approximate the

contribution of this term.

(16)



Table 1: Basis sets for 1, angular motions.

basis functions label case
|ab > A, m=0a=b I
J(lab>+ba>) Ay m=0a#b I
25 (lab — [ba >) A m=0a#b II
|ab > E, m#0 III
|ba > Ep m # 0 11T

2.2 Symmetry and basis functions

For the bending problem, we evaluate the kinetic energy matrix elements for each
of five possible total symmetry types denoted in standard point group notation
Ay, Ay, E, Fy, Fy. For a symmetrized basis set it is necessary to consider basis
functions which satisfy the rules of Hougen, see the table 9 of ref. [11]. As in I,
symmetrized functions can be divided into different types. There are three cases
for the v, mode and four for the v, mode. As the angular basis is a product of
the basis in each mode this gives 12 different basis types.

Table I illustrates the three cases for the v vibrations. The cases are classified
by their value of the mode function of the quantum numbers m = mod(a — b, 3),
where |ab > means a and b are the number of quanta in modes sp, and sg
respectively and we take a > b. It is simpler to define the four cases for the vy
mode, for which |def > defines a basis state d quanta in s4, e in s4, and f in
S4z,and d > e > f.

Case A |ddd >
Case B |dee >
Case C  |ddf >
Case D |edf > (18)

The total angular wavefunction is a sum over symmetry products of the basis
function in the v, and v, [11]. For example, consider v, case I and v, case B,

the total wavefunction with A; total symmetry is given in terms of the vector



coupling coefficient of Halonen [7] as

1
—lab > (|dee > +|ede > +|eed >). 19
\/g\ (1 | | ) (19)

In this work we employ Jacobi polynomials to represent the angular motions.
i >= Ni(1 — 2) (1 + 2) P (x). (20)

where NV; is a normalization constant, and « and [ are variational parameters,
which are determined for the system investigated. P,,(f“’ﬂ) (x) is a standard Ja-
cobi polynomial. These polynomials are orthogonal with respect to the weight
function (1 — z)*(1 + z)? on the domain [—~1,1]. The variable x is relate to
symmetry coordinate ¢ via the relationship 2 = , where the scale factor L
maps the symmetry coordinate domains into [—1,1]. L = %, 2, v2,v2,v/2 for

g = 524, S2b, S4z, S4y, S4, Tespectively.

2.3 The kinetic matrix elements

In the domain [—1, 1] of the Jacobi polynomial, the matrix elements of the angular
kinetic operators can be computed exactly using quadrature. A complete matrix
element expression for the kinetic operator with symmetrized basis functions can
be constructed by computing the matrix elements of the three operators consid-
ered in turn below. In each case matrix elements can be computed exactly, to
within the limits of rounding errors, using an appropriate Gauss-Jacobi quadra-
ture scheme.

< y|3(1 - x2)3|1/ >= N, N, Izijipga@ (2:) D) () (21)

ox ox =

where
D () = PO @)l ) (1+2) = (84 )(1 = 2)] = 21 = ) P (22)

x; and w; are the points and weights of M-point Gauss-Jacobi quadrature based

on P]E,?_l’ﬂ_l) with M > max(v,v') 4+ 2 [12].
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Using the same quadrature scheme, the matrix elements of 2”2 can be ob-

ox
tained by
%, ul o
< wla" oV >= Ny No 3w B () D (1), (23)
x i=1
where
B () = 2" P*(2) (24)

D () = PP (2)](o + %)(1 +1)— (B+ %)(1 —2)] - 2(1 = 22) PP (25)

1%

62

Finally the matrix elements of 1"~
T

can be computed using M-point Gauss-
Jacobi quadrature based on P2 2?7 with M > max(v, ') +4 using the expres-
sions

2

or?

N
<vlg" =V >= N,N, 3 w; D) () DS () (26)
=1

where

DA (z) = PB) ()] (a+ %)(1 +1)— (B+ %)(1 — )] =2(1 = 2®) PP ()" (27)

2.4 The potential matrix elements

There are two ways to evaluate the matrix elements of the different potential
functions. The computationally most efficient method, as employed by Carter and
Bowman in the normal coordinate program multimode [13] and by others, is to
expand the potential energy function as a power series in the internal coordinates

used in the calculation. For Radau symmetrized coordinate variables this means

V(S2a, S2b; Saz, Say, S4z) = Y Cijklmséas%bsljxsiysg. (28)
ijkim

With this form of V, the matrix elements are separable and can be computed by
the Gaussian quadrature in each dimension using standard Gauss-Jacobi quadra-
ture based on P,ﬁf; #) with M > max(v, v'). This method is simple and quick but

necessarily approximate.
To obtain a complete expression for the matrix elements it is necessary to use
multi-dimensional quadratures. The full matrix elements over an arbitrary angu-

lar potential energy function can be evaluated using five dimensional quadrature.
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Taking advantage of the symmetry of the basis but not the quadrature this gives
an expression
< abdef,T|V|a'b'de f',T" >=

My Mo Mg My My

Z Z Z Z Zwaﬂvée‘pgbdef(aﬁV{se)‘I’E;b'd'e'f' (aByde)V (aBvyde) (29)

a=1p=17=14§=1e=1
where a8 and ~yde represent points in quadrature of the sy and s, respectively and
Wapyse is the corresponding products of weights. This approach is very demanding
on both memory and CPU time. As in I, we therefore derived formulae for
symmetrized quadrature which only requires evaluation of the potential function
at the reduced set of unique points given by My > a> > 1land My >~v>§ >
€ > 1. This complicates the expression for the potential matrix elements as this
symmetrization mixes different components (denoted I'; below) for degenerate

representations. The new expression is:

< abdef,T|V|a'b'de f',T" >=

1M2aM47

T Z Z Z Z Z waﬁ’)’&é O!ﬂ"}/df Z \Ijabdef Ojﬂ’yée) a’b'd’e'f’ (05,6’)/66) (30)

a=1p=1y=14§=1e=1
where h, the degree of degeneracy, is 1, 2, 3 for A, E and F representations
respectively. The new weight wy,s. 5, is related to the standard weight wag,sc by a
factor, W, which depends on the number of symmetry related occurrences of the
given geometry, see Table 2.

The new algorithm is not only more efficient in computer time, since it signifi-
cantly reduces the number of potential evaluations, it also uses much less memory
as fewer wavefunctions are stored in memory at the integration points. In prac-
tice the speed-up is a factor of between 3 to 12, depending on the details of the
problem under investigation, and the overall memory requirement is reduced by
a factor of more than 10.

Besides taking the maximum advantage of symmetry in the computation, our
program also provides a way of fully treating the redundancy problem for XY,
systems. We have coded both methods of computing potential energy matrix

elements. The more approximate, expansion based, method was used for most
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Table 2: Weighting factor W for the possible combination of symmetrized angular
grid points.

vy case vy case grid points W

1 aayyy 1
1 2 aqyye 3
1 3 aaydd 3
1 4 aayde 6
2 1 afyyy 2
2 2 afiyye 6
2 3 afydd 6
2 4 afyoe 12

of our test calculations to save time but final answers presented below are based
on evaluation of the complete angular potential of Schwenke and Partridge [14].
For testing proposes, we used an approximate Radau angular potential obtained
from fitting from the global methane potential function of given by Schwenke and

Partridge [14] to expansion in the form

V ($2a; S2b> Saz, Say> 542) = Cao000 (55, + 535) + Coo200 (55, + 53, + 51.)- (31)

3 Computational details

3.1 Redundancy

Redundancies in angular coordinates can occur whenever an atom is bonded to
more than three other atoms (or more than two in a plane). XY, molecules are
prototypes for the redundancy problem which arises because only three indepen-
dent vectors can be defined in ordinary three dimension space, so that one bond
vector may always be written as a linear combination of the other three.

For tetrahedral molecules the relation between the internal vectors can be
written using the determinant eq. (5). The six linear combinations of the six
w;j define the five symmetrized coordinate variables (saq, S2b, Saz, Say, S4-) and a

redundancy coordinate variable s,.. The redundancy coordinate is entirely deter-
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mined by the other five, i.e. s, is a function s,(S24, S2b, Sag, S4y and Sa.), and it
must transform with A; symmetry.

There are a number of different approximate approaches to treating the redun-
dancy problem for XY, molecules. Halonen [7] expressed the six bond angles as a
second-order power series expansion in the five symmetrized coordinates. Raynes
et al. [8], derived an analytic approximation for s, using a Taylor expansion in
terms of the symmetrized coordinate variables. These two approaches have so far
only been employed for low-lying vibrational states in XY, molecules, for which
no exact solution of the redundancy problem has been employed. Here we test
the Taylor expansion method and a new procedure based on fitting expansion
coefficient of s,.

Through sixth-order the Taylor expansion for s, can be written as follows

15
sr =9 Anfn

n—1
f1 =85, + iy + sk
fo= S4x54yS4z
fs = iz + 84y + 51,
fa= (534 + 53) (s, + 53, + 54.)
f5 = S1aShy + Six51. + 51,54
fo = (83, — 35245%) (51, + 34y + 51,
fr = (554 + 55) SaaSaySz
fs = S1054y54:(54, + 54, + 51,)
Jo = Siwszy84z
fro = (siy + 55, + 51,) (S4e + Sy + 54.)
Jir = (85, + 55) (S4e + 34y + 54,)

= (55, + SQb)(84w84y + 53,55, + 54y54z)

fi3 = (52a + 32b + 282a82b)(84z + S4y + 54z)
J1a = 24 (820. 332b)(52a + 321)) (3495 + 54y + S4z)

f15 = S?L:v + S4y + 84z’ (32)

14



where A, are the coefficients of the expansion and f, are basis functions which
must have A; symmetry. These expressions can be compared with those of Raynes
et al.[8] whose fourth-order Taylor expansion contained ten terms. Through
fourth-order our expression only contains five terms, ie n < 5 in eq.(32), since
the other lower order terms presented by Raynes et al. can be shown to make a
zero contribution [16].

Table 3 gives numerical values for the coefficients obtained using Taylor ex-
pansions up to second-, fourth- and sixth-order. We actually tested Taylor ex-
pansions through tenth-order but found little sign of convergence in this series or
our results obtained using them. An alternative approach was therefore adopted
and it was decided to fit the A, coefficients to computed values of our redundancy
coordinate at the points defined by our numerical integration procedure. Table 3
also gives coefficients for our best fit, defined as the one which reproduced s, with
the smallest standard deviation, o, for 1000 integration points located about the
minimum of the potential. We tested a number of other fits but found our results
to be fairly insensitive to the fit employed providing that it was reliable. It should
be noted that the expansion coefficients given in Table 3 are molecule indepen-
dent: although we explicitly consider methane here they should be appropriate
for other XY, tetrahedral molecules.

We have used the approximate expression of s, in our expression for the
symmetrized Radau angular kinetic operator (13) and tested the various approx-
imations. Table 4 gives A; symmetry energy levels for methane computed using
the approximate expansion coefficients for s, given in Table 3. The results show
that in all cases the effect of the redundancy condition increases significantly with

vibrational excitation. For states up to 6000 cm™!

above the ground state, the
redundancy condition has a rather minor (~ 0.1 cm™) effect on the band origins.
For higher states this effect can reach 30 cm ™. Again the results obtained for the
lower vibrational levels are fairly insensitive to the method of representing s,., but
for higher levels significant differences (up to 10 cm™!) occur between different
methods. In general the sixth-order Taylor expansion appears to overestimate

the contribution of s,. We consider results obtained by fitting s, to be much the
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Table 3: Coefficients, A,,, of the expansion of the redundancy coordinates, see

eq. (32).

Taylor expansion fit
order 2 4 6 6
Ay 0.088388 0.088388 0.088388 0.089289
As 0.353553 0.353553 —0.438848
As —0.005064 —0.005064 0.023515
Ay 0.008286 0.008286 0.014551
Ay 0.174015 0.174015 0.004119
Ag 0.004510 —0.153037
Ay 0.198874 —0.138866
Ag 0.287262 0.225502
Ag 0.720486 0.065709
Aio 0.106242 —0.072155
Ay 0.003639 0.040529
A 0.116614 —0.062144
A 0.004714 0.547565
Ay 0.027063 —0.360509
Aqs —0.008703 —0.008703
o 0.12191 0.084142 0.09125 0.019341
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most reliable because this expansion reproduces s, much more accurately.

3.2 Basis set convergence

Table 5 shows convergence of our calculations with increasing basis set size for
an A; symmetry calculation on methane. The energy levels of other symmetry
show similar behaviour on the size of the highest Jacobi polynomial used in each
one dimensional bending basis set, N. The results where computed using the
M = N + 3 rule [15] for numerical quadrature, meaning that for N = 20 we used
23 quadrature points per coordinate, and using the fitted expression for s,.
Table 5 shows that N should be at least 20 to get converged results for the
higher bending states. With N = 20, the dimension of the A; secular matrix is
2405. Comparing the N = 20 and N = 18 calculations shows that most energies
below 15500 cm™!, the lowest 100 A; bending states, are converged to within
0.3 cm~!. There are 4 exceptions to this, all of which are shown in Table 5
(I =66,70,72 and 74), whose energies are only converged to within 3 cm!. For
the lowest 60 states, which lie up 10,000 cm~! above the ground state, N = 18 is
sufficient to get good convergence. Tests showed similar convergence behaviour

for calculations with A,, E, F; and Fy symmetry.

4 Results

Using a Jacobi polynomials basis set defined by N = 18 gives secular problems
of dimension 1550, 1355, 2898, 4063 and 4235 for A;, A,, E, F; and Fy sym-
metries respectively. This basis is sufficient to converge the results presented to
within 0.3 cm~!. These calculations used a fully coupled angular potential func-
tion, as a result they took one week on one processor of a 250 MHz DEC alpha
DS20 workstation. It should be noted that potential evaluations were performed
only for the A; calculations and then reused for the other symmetries since they
shared the same quadrature grid. The calculations were performed using the ab

initio methane potential calculated by Schwenke and Partridge [14]. Table 6 only
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Table 4: Absolute energies of the A; bending vibrational state number I in cm ™!

as a function of expansion used for the redundancy coordinate, s,. Energies are

given relative to the s, = 0 calculation, which neglects the redundancy condition.

sp=0 Taylor expansion fit

order 0 2 4 6 6
I=1 3431.274 0.140 0.274 0306 0.343
2 5984.535 0.454 0916 1.177  1.039
6440.637  0.255 0.283 0.302 0.401
7222.189 1.112 1.610 1.942  2.137
7445.158 0.568 0.916  0.902  1.205
7896.552  0.210 0.281  0.303  0.302
8409.484 1.526 2.414 2358 3.638
8489.778 1.236  2.245 3.269  2.339
8886.749  0.573  0.898 1.079  1.113
10  8955.060 0.668 0.952 1.191 1.175
11  9380.661 0.301 0.304 0.267 0.532
21 10949.659 2.883 4.832 7.928  4.499
31 11969.963 5.922 7.424 7976 12.498
41 12789.834 1.318 2.843 2.491  3.827
51 13366.135 5.905  9.527 17.469 7.710
61 13982.622 2.891 4.417 4.089 6.366
71 14459.499 1.581 1.892 1.939  2.320
81 14743.727 5818 7.348 11539  8.779
91 15138.463 4.621 6.344 6.927 7.970
101 15463.334  2.802 4.199 5.867 4.930
121 16023.862  5.270  9.086 14.585 10.359
141 16610.863 5.325  4.525 5.983  5.194
161 17053.193 2.947 6.751 7.869  4.988
181 17468.922 1.299 6.444 8.723 7.754
201 17872.361  5.234  5.013 21.564 18.944
221 18176.821 12.735 16.334 18.637 21.182
241 18529.023 3.327  2.753  3.159  3.414
261 18867.521 17.947 20.188 19.422 20.635
281 19192.338 14.180 20.614 25.141 27.550
301 19396.017 12.982 16.545 21.171 24.859
321 19664.849  3.042 5.658 3.921  7.641
341 19891.067 -0.298 4.169 3.221  3.602
360 20145.897  3.860 19.458 15.19%g 22.465
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Table 5: A; bending vibrational state number I in ¢cm™

1

as a function of one-

dimensional basis set size, N. Results expansion used for the redundancy coor-

dinate, s,. Absolute energies are given for N = 20; for N < 20 results are given

as the difference with the N = 20 result.

I 20 18 17 16 15
1 3430.93 0.00 0.00 0.00 0.00
11 9380.13 0.00 0.00 0.00 0.00
21 10945.11 0.01 0.04 0.05 0.14
31 1195691 0.12 044 0.59 1.03
41 1278598 0.00 0.02 0.03 0.07
51 1335746 0.17 0.79 0.81 1.35
61 13976.08 0.03 0.15 0.18 0.65
66 1421541 287 691 1.35 042
70 1431719 217 7.71 6.61 12.38
71 14457.15 0.00 0.02 0.03 0.14
72 14463.83 1.65 4.78 3.95 10.37
75 14551.37 1.39 4.47 4.64 10.49
81 1473299 039 156 1.81 4.51
91 15129.37 0.22 091 1.32 255
94 15232.15 0.08 041 0.36 2.34
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considers pure bending states whose experimental band origins are known; a full
set of calculated bending vibrational band origins for methane, covering all 5
symmetries, has been placed in the journal archive.

Schwenke and Partridge’s calculations [14], also given in Table 6, include full
bend-stretch coupling. This is undoubtedly the major difference between their
results and ours. It can be seen that for methane, as was already concluded
from our stretch-only calculations presented in I, bend-stretch coupling produces
significant shifts in the vibrational band origins. The importance of these stretch-
bend coupling effects for methane means that little is to be gained from a direct
comparison of our results to the experimental data. However we note that our
method is capable of getting converged results over the entire range of energies for
which experimental data are available, which extends to over 25,000 cm~!. This
suggests that with the inclusion of stretch-bend coupling this procedure should
be capable of addressing problems which cannot be tackled by other variational

approaches.

5 Conclusions

We have developed a fully symmetrized, general variational method for treating
the bend-only vibrational motions of XY, systems. Particularly important for
computational efficiency is our procedure for computing matrix elements over
the potential energy surface by considering only the unique points on the surface.
Our method includes explicit consideration of the redundancy coordinates, albeit
with some approximation. We find that for methane including this redundancy
condition accurately is essential for bending vibrational states lying 6000 cm™!
or more above the ground state.

Test calculations performed on methane extend very considerably the range
of bending states for which converged variational results have been obtained.
Comparison of our results with previous low energy studies confirms our previ-

ous conclusion [2] that stretch-bend coupling is strong in methane. The results

reported here for the bending motions, and in the previous paper [2] for the
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1

Table 6: Band origins, in cm™", of the bending vibrational states of methane

using the potential energy surface of Schwenke and Partridge [14].

ViVal/3Vy observed [14] this work
0001 1310.76 [17] 1311.76 1288.59
0100 1533.33 [17] 1533.26 1443.12
0002 2587.04 [17] 2580.92  2451.29
0002 2614.26 [17) 2616.30 2542.08
0002 2624.62 [17) 2627.40 2720.34
0101 2830.32 [17] 2831.77 2792.49
0101 2846.08 [17] 2847.04 2868.45
0200 3063.65 [17] 3063.74 2916.06
0200 3065.14 [17]  3065.74 3255.06
0003 3870.49 [18] 3878.34 3726.43
0003 3909.18 [18] 3917.83 3927.77
0003 3920.50 [18] 3929.98 3773.67
0003 3930.50 [18] 3940.98 3836.44
0102 4104.61 [18] 4109.08  4065.97
0102 4128.72 [18] 4136.63  3894.45
0102 4133.02 [18] 4140.19 4205.02
0102 4142.86 [18] 4150.21  3987.77
0102 4151.22 [18] 4159.19 4126.59
0102 4161.87 [18] 4160.73  3947.02
0201 4348.70 [18] 4355.27 4374.71
0201 4363.59 [18] 4369.53 4395.11
0300 4592.00 [18] 4599.15 4649.99
0300 4595.27 [18]  4599.15 4640.74
0300 4595.45 [18]  4599.45 4696.99
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stretching motion represent the first steps in our development of a general fully
coupled, symmetrized, variational procedure for XY, systems appropriate for
treating much higher levels of vibrational excitation than have been considered
so far. We are presently working on a general computer program to use these
stretching and bending results as a basis for a fully coupled, nine-dimensional

calculations; results of which will be reported in due course.
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