Molecular cluster decay viewed as escape from a potential of mean force
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We show that evaporation from a quasi-stable molecular cluster may be treated as a kinetic problem involving
the stochastically driven escape of a molecule from a potential of mean force. We derive expressions for the
decay rate, and a relationship between the depth of the potential and the change in system free energy upon loss
of a molecule from the cluster. This establishes a connection between kinetic and thermodynamic treatments
of evaporation, but also reveals differences in the prefactor in the rate expression. We perform constant energy
molecular dynamics simulations of cluster dynamics to calculate potentials of mean force, friction coefficients
and effective temperatures for use in the kinetic analysis, and to compare the results with the directly observed
escape rates. We also use the simulations to estimate the escape rates by a probabilistic analysis. It is much
more efficient to calculate the decay rate by the methods we have developed than it is to monitor escape directly,
making these approaches potentially useful for the assessment of molecular cluster stability.

. INTRODUCTION

Vapours are not simply collections of separated molecules or monomers: they also contain molecular clusters, growing &
evaporating by molecular gain and loss. These ephemeral condensed structures play a central role in the nucleation of aerc
from metastable, or supersaturated vapours. The bulk condensed phase is thermodynamically more stable than the metas
vapour, but the transition can only proceed through the growth of molecular clusters, and so their stability is crucial. If a clust
manages to grow larger than a certain critical size, it stands a good chance of becoming a macroscopic droplet, but the dynarr
route by which molecules cluster and form a condensed phase is rather complicated. Given a configuxatrmieziules (a
specification of the positions and momenta of all the atoms) and a set of intermolecular forces, we need to know how ma
large (supercritical) molecular agglomerates are likely to be produced after a certain time. We need to compute this numl
for an arbitrary choice of initial condition consistent with the constraints applied to the system, such as average density a
temperature. The need to consider all possible initial states requires a use of statistics: an ensemble average.

The full characterisation of the dynamics would require knowledge of the complete trajectoryMfpaliticles. This is
huge amount of information, and the traditional simplification is to classify the system in terms of the populations of molecule
clusters contained within it as time progresses. Rather than following the time evolutidh pdgitions and momenta, the
dynamics are represented by the evolution of the cluster populations. Often it is sufficient to monitor the cluster populatiol
up to a maximum cluster size of the order of 100, and the amount of information involved is then considerably less than a ft
dynamical description.

The dynamics of population evolution for an ensemble of trajectories, starting from all conceivable initial states, can b
modelled using a simple set of rate equations proposed by Becker and DoFimgevolution ofi(t), the mean population at
timet of clusters consisting afmolecules, is described by

?TT = Bi—1ni—1 — ¥ini — BiN +Vi+1Nit1, @
wheref; is the mean rate at which monomers attach to cluster ofiseedy; is the rate at which they detach from the same
cluster. The terms on the right hand side in equation (1) represent gaiciusters from the growth ofi — 1)-clusters, loss
by the decay tdi — 1)-clusters, loss by growth t@ + 1)-clusters, and gain by decay @f+ 1)-clusters. The growth ratd
are proportional to the monomer population The attachment of dimers and larger clusters is ignored. The Becker-Déring
equations may be solved for a metastable vapour to give a steady state nucleation rate, which is related to the proportion o
initial molecular configurations that evolve to produce a large growing agglomerate in a certain time interval.

Let us not forget, though, that the nucleation phenomenon is an example of irreversible thermodynamics, the statistic
physics of systems far from equilibrium, and rigorous methods do not exist to treat such systems matheméhicatiy
near-equilibrium approximations are available. The complicated real molecular dynamics are represented in the Becker-Dor
treatment by the simple rate equations shown above. The growth and decay processes are assumed to proceed at rates that ¢
only on the gross properties of the system (temperature, etc) and not on the previous history of individual clusters, or indeec
populations of clusters. This is equivalent to saying that the transition processes are Markovian: there is a constant probabi
per unit time that a cluster will gain or lose a molecule. So it is important to note that the Becker-Doring equations are empiric
equations constructed to solve an idealised problem: the validity of the approximations when applying them to real nucleati
systems has not been established. Despite these simplifying assumptions, the Becker-Déring model (and its various extensi
is a very useful approach. The equations can be solved analytically, which is a great advantage. It is a true kinetic treatmen
nucleation, requiring only knowledge of the mean rates of cluster growth and decay.



The main alternative point of view for describing the nucleation process is based on thermodynamics, or more particularly t
theory of free energy fluctuations. One identifies a transition state, again a molecular cluster, which is in unstable thermodynat
equilibrium with the metastable vapdur According to the theory of free energy fluctuations, such a state is formed with
probability proportional to exp-AW*/kT), whereAW* is the reversible work of formation of the cluster. This approach is
very useful, though it is often implemented using continuum thermodynamics®jdaas applying these to small molecular
agglomerates raises a number of questions and problems. The classical theory of nucleation may be derived in this way,
treating the transition state as though it were a macroscopic droplet. Microscopic calculations of cluster free energies are m
acceptable, but more laborious.

One can establish a connection between the free energy fluctuation theory and the Becker-Doring treatment if the rate coe
cients in the latter are expressed as differences in free energy between various clusteAkimasyh there is some uncertainty
in the mapping, this connection can be usefully exploited. The decay rate in a kinetic treatment of cluster population dynami
is difficult to calculate, and so it is useful to be able to relate it to a thermodynamic quantity and then to calculate this quanti
through equilibrium statistical mechantc¥’

There is also scope for calculating a decay rate using the near-equilibrium statistical mechanical techniques mentioned ab
which employ a mix of equilibrium thermodynamic properties of clusters and the kinetics of change. This brings a notion of tim
into equilibrium thermodynamics which is otherwise absent, and which has to be added by ad-hoc arguments from the kine
theory of gases. The methods are based on linearised non-equilibrium thermodynamics going back té*Casdgieveloped
for this application by Reguera ettéland by Schenter et .

Implicit in any microscopic theory of nucleation, however, is the need for a clear definition of what is meant by a cluster
This is a subtle matter, and one which has received considerable atfehttoff Intuitively, a cluster should comprise a set
of molecules located close to one another. The simplest definitions employed are indeed geometric, requiring the molecule:
lie within a specified volume, or within a certain distance of one another. Selecting the arbitrary confining volume or maximur
molecular separation is not necessarily a problem: these are essentially variational parameters, chosen to match the free er
of the system described by cluster populations to the true free energy of the system described\byeljecés of freedom.
However, with geometric definitions no attempt can be made to eliminate situations where component molecules are not er
getically bound to the cluster. This has a consequence that the decay of a cluster defined in such a mannet Mahleovian
The rogue decays consist of situations where a molecule is unbound and simply passing by the other molecules. When it pa
out of range, the ‘cluster’ would decay. However, the probability of cluster decay in these circumstances is not independent
time: it depends on when the passer-by first came within range of the other molecules. The required time independence «
Markovian decay rate is a characteristic of dynamics where molecules are bound for times much longer than the time taken
a molecule to cross the cluster at a typical velocity. Escape is stochastic, caused by the concentration of energy in one mole
by a random series of collisions.

We have recently developed a definition of a cluster involving energy rather than pésitibis widely recognised that an
energetic rather than a positional criterion is an indicator of a quasi-bound stiictifé We have added the essential feature
that in order to escape from a cluster, a molecule needs not only to acquire positive energy, through thermal fluctuations,
must also be able to move away from the cluster, avoiding recapture. In order to check this second requirement, it is hecess
to perform molecular dynamics to determine the future trajectory of the system. It is possible to implement such a schen
and to determine mean decay rates as a function of cluster energy affd Smailar studies of the molecular dynamics of
condensation and escape have been performed by others, notably &chéaf We find that the decay rate is Markovian, so
that clusters defined in our physically realistic scheme show the necessary features for use in the Becker-Déring equations.

This paper takes our ideas a stage further. Calculating mean decay rates by counting escaping molecules in molecular
namics is quite time-consuming, and it would be valuable to be able to extract this information in some other way. This wou
allow our methodology to be extended to more complex systems that would be too computationally demanding to treat by dire
simulation. Our strategy is to represent the decay as a stochastic process, described by a suitable mathematical scheme, an
to determine the parameters which enter that scheme by studying the cluster trajectory.

In this paper we also illustrate the connection between kinetic and thermodynamic treatments of nucleation. Kinetic theori
of nucleation are based on models of the elementary rates of cluster growth and decay, while thermodynamic models r
on calculating the work of formatioAW* of an unstable critical cluster. In section Il, we consider the Langevin dynamics
of molecular escape from a cluster, and show that the rate of escape depends on the depth of the potential of mean ft
holding a particle in the cluster. The potential of mean force is also related to the steady state one-particle density profi
A statistical mechanical analysis is then used in section Ill to establish that the depth of this potential is related to a chan
in free energy associated with cluster decay. Using these results, we can show that the kinetic nucleation rate is proportic
to exg(—AW* /kT), and hence that the Becker-Dd&ring kinetic treatment is equivalent to the thermodynamic treatment, at lea
in certain circumstances. Furthermore, we can avoid the calculation of cluster free enétdfaéwe wish, and compute
potentials of mean force from molecular dynamics simulations instead, and hence calculate decay rates. This could be a
convenient route to the determination of nucleation rates.

In section IV we illustrate these connections by estimating cluster decay rates in various ways. We calculate potentials
mean force, friction coefficients and particle density profiles, and hence a kinetic decay rate. We consider two versions of t
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rate prefactor: one involving the Langevin friction coefficient, and the other based on the principle of detailed balance. W
go on to describe a further approach to the problem based on purely probabilistic arguments. The information needed for
these schemes can be extracted efficiently from the molecular dynamics simulations. We show that the estimated mean lifetil
closely match the lifetimes obtained by direct counting of molecular escapes. In section V we draw our conclusions and comm
on the application of our methods to more complex situations.

II.  KINETIC THEORY OF CLUSTER DECAY

We begin by taking the point of view that cluster decay corresponds fundamentally to the escape of a molecule from
three dimensional potential well created by the other molecules, driven by a random force. Nowakowski and Rutk&hstein
developed models of cluster decay starting from a similar assumption. However, they modelled the escape as a diffusive proc
along an energy coordinate, while we consider the motion of a molecule in real space.

We model the radial motion of an individual molecule, with respect to the cluster centre of mass, using a stochastic differenti
equation:

mf = f(r)_m+f(r7t)a (2

wherer is the radial positionmis the molecular mass. The right hand side of equation (2) is the stochastic force on the molecule
representing the interactions with the other molecules in the cluSteris the mean (time- and velocity-averaged) force on the
molecule at positiom. The second and third terms on the right hand side of equation (2) introduce deviations from the meal
force: the velocity dependence of this deviation is described using a dissipative term involving the friction cogf{iotro
be confused with the cluster decay rgfe It represents the drag experienced by a molecule moving through a cloud of other
molecules. The stochastic nature of the problem is representédayelocity- and position-independent random force, with
zero mean and correlation functid(r t) f(r.t')) = (2ykT/m)d(t —t’), wherek is Boltzmann’s constant and whefehas the
characteristics of a temperature, as we shall see. Equation (2) clearly takes the form of Langevin’s equation for noise-driv
dissipative motion in a potential well.

It is a standard manipulatidhito convert the Langevin description, with large friction coefficient, into a Fokker-Planck, or
Smoluchowski equation:
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which represents the evolution @ (r,t), the probability density that the molecule should lie at radial positidrhe right hand
side of the above equation may be written-akJ /or where is a radial probability current given by

ynlw(fWkTa;V), @)

and so the steady state solution of equation (3) for the case Wheb is
W(r) Oexp(—®(r)/kT), (5)
where®(r) is the potential of mean force, related to the mean fdi@¢ through

do

e 6)

We see now how the parametkiin the random force plays the role of temperature, since equation (5) looks like a Boltzmann
distribution. The7 = 0 solution is not what we are seeking, however. The escape problem has a characteristic boundary conditi
W(re) =0, wherer is the radius at which a particle escapes (is removed) from the system. We can implement this bounda
condition by first writing the steady state current in the form

J= —l:r-];exp(—db/kT)c?r (Wexp(®/KT)). @)

The currenty is found by integrating equation (7):

'r‘; exp(®(0) /KT) W (0) = /0 " exp((r)/KT)dr ®)



which leads to
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This theory has been extensively appfietb the case of particle escape over a barrier from a one-dimensional potential
well, as illustrated in Figure 1(a). By expandidyr) as®(r) ~ P(re) — %moog(r —re)? near the peak in the potential at a
radiusre, One can evaluate the integral in equation (9). Assuming further that the potential well is harmomie=&aso that
P(r) ~ P(0) + smuw?r2, and deep compared wikT, one can also approximate’(r) ~ (2/m)2rytexp(—r2/2r3), where the
profile widthry is given byrg = (kT/m)%/2w~1, wherew is the natural angular frequency of oscillation of a particle close to the
bottom of the well. Recall that we are here considering a one dimensional problem §¢ thag dimensions of inverse length.
Hence(0) ~ (2m/TkT)%2w and we obtain the escape rite

2000

J= Ty exp(—A®P/KT), (10)

whereA® = d(re) — ®(0) is the depth of the potential well.

In our case, however, we need to consider the escape of a molecule from a three dimensional potential of mean force i
free space, as shown in Figure 1(b}/(r) is a probability per unit volume and the escape ratg'ls= 41w27, wherere
is the radius (apparently arbitrary at this point) at which escape is considered to take place. As before, Hé&®Gave

(foe4mr2exp(—(®(r) — @(0))/KT) dr)*l and the escape rate is

Jin = KTr2 exp(—Ad/KT)
oy (Jgeexp((P(r) — D(re)) /KT)dr) (foer2exp(— (P(r) — P(0)) /kT)dr)’

The value ofre seems arbitrary, but in fact it is related to the cluster definition; the mathematical scheme which determine
whether a molecule may be classed as part of a cluster or not. We shall return to this point later. The principal feature of equat
(112) is the exponential dependence on the déybhof the potential of mean force. The shape of the potential determines the
integrals in the denominator. The time scale in the escape rate is provided by the friction coefficient. Therefore, if we ce
establish the potential of mean force, the effective temperature and the friction coefficient, by studying a molecular dynami
trajectory, for example, then we can use this Langevin analysis to determine the kinetic deg4y.rate

11)

. THERMODYNAMIC THEORY OF CLUSTER DECAY
A. Detailed balance in equilibrium

We now turn our attention to relating the kinetic description of cluster decay just described to standard treatments of t
problem starting from equilibrium thermodynamics. Such treatments involve free energy differences between clusters of varic
sizes. How does the cluster free energy relate to the potential of mean force, and what is the fundamental inverse timescal
the theory corresponding to the friction coefficient?

The thermodynamic, or equivalently statistical mechanical treatment of cluster decay is based on the following detailed b:
ance condition in the population dynamics of clusters described by equation (1):

Bi—1nf 4 =vinf, (12)

wheren? is the population of clusters of sizén thermodynamic equilibrium with a vapour, which for convenience we take to
be a saturated vapour. To a good approximatitimese populations are given by

n® = Z explips/KT), (13)

where|s is the chemical potential of the saturated vapour, Arid the cluster canonical partition function, given by

1
Z :W/ l(|:|1drkd|0keXIO(—Hi/kT), (14)

wherehis Planck’s constant andpy are the position and momentum of partiklendH; ({r, pk}) is the cluster Hamiltonian,
which takes the usual fortd; =U ({rx—ri}) + 3} pﬁ/Zm with mrepresenting the particle mass. The prime on the integral sign
denotes the limitation of the phase space integration to molecular configurations satisfying a prescribed cluster dgfisiition.
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of course, related to the cluster free eneffgshroughz; = exp(—F /KT). The growth ratgs;_1 is proportional to the population
of monomers in the vapour, and so we can Wte; = 3{_,n;. Hence, according to equation (13)

¥i = Bi_1exp(—(FL+Fi-1— F)/KT) = Bi_ exp(—AF /KT), (15)

WhereAF F1+ F_1—F is the free energy change associated with monomer loss. It remains to evaluate the growth coefficiet
{1, but this is not straightforward. In the absence of a better approach, the kinetic theory of collisions between a monom

and a spherical cluster is often used to provide the estififate= (R?/V) (8nkT /m)*/?, whereR is the somewhat ill-defined
(i — 1)-cluster radius, and is the system volume.

We now have two expressions, equations (11) and (15), for the cluster decay rate. These must be consistent with each othe
least in some circumstances. The principal similarity is the presence in each of an exponential of, respectively, the depth of
potential of mean force, and the change in free energy upon decay. We seek now to demonstrate that these quantities are rel

B. The potential of mean force in statistical mechanics

The strategy we shall follow is to evaluate the potential of mean force acting on a particle in the cluster using canonic
statistical mechanics, and to see how it relates to cluster free energies.

Let us consider the mean radial force on a molecule at a distganitem the centre of mass of a cluster iofmolecules.
Without loss of generality, let us fix the origin of coordinates at the centre of mass of the system, and also set the total line
momentum to zero. The mean radial force is then given by the following phase space integral:

f(ri) = %/ rLdrkdpkdmé(kiz ) <Z I0k> <—> exp(—Hi/kT), (16)

where the function

= / /erkdpkdplé (kilrk> > (;;») exp(—Hi/KT), (7)

when normalised is related to the equilibrium one-particle probability density:

- <r>//'a<r1>dr1. (18)

By symmetryg£ is a function of radius only. We proceed by considering its radial derivative:
i
drl = kT/ rLdrkdpkdp16<kZ ) <z pk) (—) exp(—Hi/KT)
o 0 i
+ [ Marpaps - (8( 3 rc) |3( 3 pe) exp(—Hi/kT), (19)
: |<I:L org kzl kZl |

assuming the integration limits do not depend gnFortunately, the second term on the right hand side of equation (19) can be
simplified. We represent the derivative of the delta function as the lin(®¢§ 5 ri+ (r1+€)f1) —8(3hr+ (r1—€)f1)) /2
ase — 0, wheref; is a unit vector in the direction af,. Consider the integral

| = zis /'/ kII_Ldrkdpkdp15 <k;22rk+ (r1+s)F1> 5 (kzlpk> exp(—Hi/KT), (20)

and make the transformation — ry —ery/(i — 1) for k= 2,i. If H; is a function of spatial differencegy —r|) this term
becomes

| = zlg/lndrkdpkdpl{)(lz rk>6<klzlpk> exp(—Hi(ri+ery/(i—1)) /KkT), (21)

k=1

which may be expanded as

i i : € OH;
| = Zg/erdrdedeES(kerk) <Z k> exp(— rl)/kT)< (—ZI.)kT6r1> (22)



Hence

dg 1 1Y /4 i i oH; .
an = kT (1+i—1>/ k|'Ldrkdpkdp16<k 1rk> 6<k;pk> <_6r1> exp(—H;/kT), (23)

or more simply

= () s, (24
which can be integrated to give
—i(P(ry) —P(0
&(r1) =&(0) eXp( 8 (l(r_lz_)k-r( ))> J (25)

thus establishing through equation (18) a connection between the potential of meab fancethe equilibrium one-particle
density profile:

qu(I’j_)

p(ry) O eXp<_(il)kT) . (26)

This is the analogue of the particle probability density(r) in the Langevin problem, which is related to the potential of
mean force according to equation (5). In equation (26) we see an additional facfdr-efl). It appears because the mean
force on a particle in the cluster is created by the remainind particles with the added constraint that the centre of mass of
the entire system lies at the origin. If the first delta function in equation (16) had not inctydedhe sum, then the factor
i/(i—1) in equation (26) would not have arisen. Thus the fixed centre of mass constraint is responsible for the differenc
between equations (5) and (26). As a check, consider a two particle system with interaction potentis¥hen the radial
displacement of particle 1 from the centre of mass;isthe mean force if(r1) = —@(2r1). The potential of mean force
is ®(ry) = — [ f(r)dr = [ @(2r)dr = (1/2) [** ¢ (y)dy = @(2r1)/2. Hencep(r1) O exp(—@(2r1)/KT) in agreement with
elementary expectations.

Now let us establish a connection betweéeand a cluster partition function. Let us consider

17, ) 1 1 s . 5
] / Zi_1exp(—pi/2mkT)dps = @W/ kl:Ldrkdpkdpl eXp(_ (HI—1+ p1/2m) /kT) ) (27)

and then insert unit integralﬁé(zilrkf R)dR andf6(zi1 pk — P) dP into the right hand side. Particle 1 introduced here is
assumed to lie far away from the other particles. Next make a transformation of coordinatesy — R/i, R — R} fork=1)i,
and{px — px — P/i, P — P} for k= 1,i, for which the Jacobean is unity, giving

Z}i\;l _ (i_ll)!h?,i/lerdrkdpkdplé (Z rk> dRd < 1pk> dP exp(— (Hi_1+ pZ/2m+P?/2m#?) /KT), (28)

k=1 k=

where) is the thermal de Broglie wavelength= h/(2rmkT)Y/2. The particle positions; are measured with respect to the
centre of masR/i, and the momenta with respect to the total momerfuiow, if particle 1 is very distant from the remaining
particlesH;_1 + pf/Zmz H;. Performing the integrals ov& andP then gives

Zi_1 v i3 g d i i
—_— = drdpkdp1 0 o —Hi(r{ — kT 29
2 (— 1D )\3/ k|:L rdpidps (kzlrk k;pk exp(—Hi(ry — «)/kT), (29)
whereV is the system volume, or equivalently
Vid
Zi_y= WE(W) (30)
Therefore we have established the connection
3(i—1) i _ 1)
ooy =D R KT, 31)



Similarly, &(0) is related td5. Equation (14) may be written, using the same insertions and transformations:
1 o i i )
Z = W/ l!jldrkdpkti ( > rk> drRd (k;pk> dP exp(— (H; +P?/2mi?) /kT), (32)

k=1

which yields

1 h3V|
Zi=org /Erl )dra, (33)

sothat/’&(rq)dry = <h3 Di3)vis )exp(—F./kT). However,[” &(r1)dr; = £(0)/p(0) from equation (18), so

h3071”!A3

£(0) = p(0) "5 eXP(—Fi/KT). (34)

Hence from equations (25), (31) and (34) we can establish our prime result

o o0l (R R)KT) —ip(@ exp( G 2O (@)
or equivalently
F —F_1=KkTIn(ipi(0)A%) — ﬁmi, (36)

whereA®; = ®(0) — d(0). The subscript on Ad; indicates that the depth of the potential of mean force depends on cluster
size, and similarly the one-particle density at the centre of masddpendent, and hence the need for a subscrip{0n

The expression for the free energy change in equation (36) makes perfect physical sense, particularly if we rewrite it in t
form

OF =Fit Ry F = A0 —KTIn(ip (OV), (37)

with Fy = —kTIn(V /A%). The left hand S|de is the change in free energy upon evaporation. The first term on the right hand sid
may be written as a sum of two terr(1$+ )ACDI The first termA®; is the reversible work done on a molecule by external
forces when it is slowly dragged out of amluster but work is also done on the remaining molecules in order to keep the total
centre of mass stationary. The total force on the remaining molecules is equal and opposite to that on the single molecule,
the distance their centre of mass moves-isl times smaller. The free energy change will therefore include this reversible
work. This accounts for the second contribution to the sum. Furthermore, there is entropic change in free energy upon fi
identifying and holding one of the component molecules of the cluster stationary at the centre of mass, and then releasing it fr
the position outside the cluster to which it has been pulled. Considering the cluster for the moment to be a bag of(ijplume
the first change is roughlT In(v(i) /i) (the factor of ¥i to account for the choice in molecule) and the seconekiInV. We

note thatv(i) ~ 1/p(0) and therefore recover the last term on the right hand side of equation (37).

Equation (35) is an exact relation between the depth of the potential of mean force confining a molecule to a cluster, and
difference in cluster free energy before and after the loss of that molecule. It suggests a method for calculating differences in f
energy between and(i — 1)-clusters by evaluating the depth of the potential of mean force confining particles-ester,
together with the particle probability density at the centre of mass. It is an alternative to methods such as umbrella samplil
which has been applied to this very probfeta

We now combine equation (37) with the detailed balance expression (15) to getitister decay rate:

oo (80 w5

m

This result is based on the assumption that the decay rate in a situation of detailed balance would apply for cases when
system is out of equilibrium. The prefactor in square brackets is an approximation based on kinetic theory for the collision ra
of a monomer onto a spherical cluster of radius

Equation (38) should be compared with equation (11), the result from Langevin kinetics. First, though, we need to multipl
the potential in equation (11) by a factigh(i — 1), to take account of the condition of fixed centre of mass, and we must also
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multiply V¥ by i since any one of theconfined particles might escape. We should also add sufficethe well depth and the
escape rate. We arrive at

Jin ikTr2 exp(—iAd; /(i — 1)KT)
LMy (JoRexp(i (P(r) — @(re)) /(i — DKT)dr) (Jo° r2exp(—i ((r) — @(0)) /(i — 1KT)dr)

The principal difference between equations (38) and (39) then lies in the prefactors multiplying the exponential terms. Th
should not be a surprise since the Langevin equation approach, and the friction coefficient which appears in 8gyation (

a phenomenological representation of the molecular dynamics, and as we have just noted, the prefactor in the thermodyna
escape rate is only approximate. The radiandR in each expression ought to take approximately the same value, but they
might differ. The reliability of the two prefactors may be judged by comparison with real escape rates, which we shall addre:
in the next section.

First, though, there are some interesting further connections to draw between the potential of mean force and cluster pr
erties. In thei — o limit, i — F_1 is equal to the chemical potential of the condensate and hence the chemical potentia
Ms = KT In (ps)\?’/kT) of a saturated vapour, wheg is the saturated vapour pressure. If we employ equation (36), and use
ipi(0) ~ p in the limit of largei, wherep is the density of the condensate, then

(39)

Ps
AP, = —KTIn . 40
<Pl kT> (40)
This is similar to the Clausius-Clapeyron equation, showingAld@at is related to the molecular latent heat of evaporation.
Another useful procedure is to construct the equilibrium populatfoof ani-cluster by repeated use of equation (36). We
write

|:|_|:|_1_us:A<Dw—iI1A¢i+kTIn(lpip(|O)), (41)
so that through equation (13),
[ [ ;
e exp(—(F —i — e P 1 _J ae
nf = exp(—(F —iys) /KT) =n§ ]EL ) exp( kT 2 (Atbm leqJJ)) . (42)

The reference population chosen here is that of the dimer rather than the monomex,§)ds zero. However, the dimer
population can be related to the monomer population throggh —ByVp2, whereB; is the second virial coefficient of the
vapour, defined through the equatipe= kT (pv+ sz\z,), with p andpy the vapour pressure and density respectively. Equation
(42) is therefore an expression for the equilibrium populationadisters given in terms of quantities readily determined from
molecular dynamics studies of clusters: densities at the centre of mass and depths of potentials of mean force. We do not r
to calculate free energies explicitly. We intend to explore equation (42) in future work.

IV. CALCULATING THE ESCAPE RATE FROM MD SIMULATION
A. Cluster definition and molecular simulation

We have previously described microcanonical molecular dynamics (MD) simulations of clusters of argotf.afbinese
were performed both to implement new ideas for a realistic cluster definition and to compute cluster lifetimes for a variety ¢
sizes and energies. Our aim is now to calculate the lifetime of these clusters indirectly by studying the simulation trajectory a
evaluating the cluster properties needed in the theoretical formulae described in the previous section. We shall also develop |
a third, simplified procedure for estimating the lifetime, using a probabilistic approach. These studies will demonstrate that tl
complex dynamical behaviour of molecular clusters can be described in terms of a simple model, parametrised through deta
MD simulations.

Any scheme to estimate the lifetime must implement a cluster definition. We consider that a particle becomes unbound wh
its kinetic energyK becomes greater than the modulus of its potential endrgiye. total energy is positive), but only if the
dynamics subsequently carry the particle far away from the cluster, avoiding recapture. Not all particles that acquire positi
energy necessarily escape. This is illustrated in Figure 2, which shows the total &ergdyof a particle near the edge of
a cluster as a function of time. Only one of the three positive energy excursions (indicated by arrows) lead to decay, giving
recapture probabilitR. = 2/3 in this example. From counting the proportion of positive energy excursions that lead to cluster
decay in extensive MD simulations, the success facteiRl was found to be about 0.12 for clusters of about 50 atoms. Only
about one in eight positive energy excursions leads to escape. A higher proportion of particles escape when the clusters
smaller and the surface curvature is greater, as would be expected.



B. Potential of mean force approach
1. Langevin-derived prefactor

We can use the MD simulations to calculate the potential of mean force, friction coefficient and temperature for use in tt
theoretical expressions for the decay rate derived in previous sections. The potential of me&(ifpriséound by averaging
the force on a particle when at a radiugrom the cluster centre of mass. The temperafliref the cluster is obtained by
numerically fitting a Maxwell-Boltzmann distribution to the particle velocity distributions obtained from each trajectory.

The friction coefficient is found by mapping the actual molecular dynamics onto the Langevin dynamics. The radial com
ponent of the apparent acceleration of a particte (v(t + 6t/2) —v(t — dt/2))/dt for a given time intervabt along the MD
trajectory will not in general equal the radial component of the actual force on the particle atdivided by the mass, due to
the finite value o®t. We ascribe the discrepancy to the sum of the friction force and the random force in the Langevin equatio
(2). Itis clear then what to do: we average the mean discrepancy force, and plot it against particle velocity to extract the frictic
force element.

In Figure 3 we give such a plot for an example dataset @tith 0.4 ps, demonstrating the linear correlation between friction
force and velocity. The slope of the dotted line fit to this behaviour is our estimate feor different values obt a similar
correlation is found, and the slope of the linear fit is shown against Figure 4. Fordt — 0 molecular dynamics and not
Langevin dynamics then holds so there is no discrepancy force and the appgoss to zero. For largét, the correlation
between force discrepancy and velocity is lost in noise from the random force contribution. There is a regime between the
limits where the apparent friction coefficient is about 2.5psuggesting that Langevin dynamics is an adequate description
for timescalesdt in the region of 0.4 ps.

A typical profile of potential of mean forc@(r) for a cluster of 50 argon atoms at -2.98 kJ/mol per particle (or abeub0.6
K24 is shown in Figure 5. The profile for this size is reasonably flat at the cluster centre and then rises to a plateau. The ot
particle density profile given by equation (26) is therefore approximately uniform out to a radius of about 6 A, and then falls t
zero, as shown in Figure 6. This density profile is reminiscent of the density profiles calculated in density functional treatmer
of cluster structur®.

Now we can calculate the kinetic decay rate using equation (11). The results are shown in Figure 7. We employ escape r:
reof 11,12, 14.5and 17 A fdr= 10, 25, 50 and 100 respectively. These are estimates of the radii at which the potential of mea
force first reaches zero for each cluster size, averaged over cluster energy. The condition for particle escape is therefore tha
particle is able to reach the top of the free energy barrier, though this is a very rough treatment of a complicated problem. T
idea is illustrated in Figure 5 for the case of the 50 cluster at -2.98 kJ/mol per particle. The escape radiissin the region
of the 14.5 A quoted. Plots for different energies show slightly different escape positions, and rather than complicate the mox
by using an energy dependent valua gfwe choose a value dependent only on cluster size. Also note that it is rather delicate
to determine the position of the ‘lip’ of the potential well when the data are noisy. The uncertainties are less crucial than at
uncertainty in the depth of the well, however.

An energy-independent escape radius is equivalent to imposing a cluster definition that requires particles to lie within a giv
distance of the centre of mass, irrespective of energy. We have previously demonstrated that a geometric cluster definition v
an energy-independent Stillinger radius cannot account for the observed cluster stdbilitiesefore, deviations are therefore
to be expected.

We can simplify the model so that only the depth of the well and not its shape enters the theoretical expression. We ¢
parameterise of the model to fit to the data. If we assume the potential of mean force is a square well wiibdapthradius
Rs, then equation (39) reduces to

i — 3irekT
' myRE (1 — (Rs/re))
if Ad; > kT. We can estimate the range of the square Relising the one-particle profile(r) and the escape radius takes a
position about one Lennard-Jorne$~3.4 A) beyond this. Reasonable choices of the representative radii for the various cluster

sizes can produce lifetimes in as good agreement with the directly observed data as the lifetimes given in Figure 7. Worki
with equation (43) has some advantages over equation (11) since the required input is easier to determine.

exp(—iAd; /(i — 1KT), (43)

2. Detailed balance-derived prefactor

An alternative approach to estimating the decay rate is to employ equation (38), based on detailed balance and thermodyn
ics. This time we need to estimate the radRisf a shell defining the capture cross-section of the cluster. Symmetry would
suggest that we should estim&dy determining the radius at which the particle escape is most likely. This radius is obtained
for each cluster size using the probabilistic method described in the following section. This gives captlReofa]ill0, 11
and 12 A fori = 10, 25, 50 and 100 respectively, as ilustrated fer50 in Figure 9(e).
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We need estimates of the one-particle density at the opigfinin order to use equation (38). For example, Figure 6 suggests
a value of 50 x 10~* A=3 for thei = 50 cluster. Similar analyses of data can proyide) for all cluster sizes and energies in
our simulations. We can then calculate the mean lifetimes shown in Figure 8. Once again, agreement with the directly obsen
mean lifetimes is reasonable, bearing in mind the estimatidd @hoosingR on a different basis might improve the fit. The
error in the predicted values is energy dependent, which is consistent with our previous conclusions that a geometric clus
definition cannot reproduce the correct energy dependence of decay rates.

We note that the prefactors in equations (38) and (43) have similar structyre: if a relaxation time, which we estimate
to be a typical molecular separati®fil/® divided by a typical thermal velocitgkT /m)¥/2, and if we estimate the central one-
particle density to b@(0) ~ R~2 then the prefactor in (38) reduces (&m)Y/2kT#/3/(myR?), showing clear similarities to the
prefactor in equation (43).

C. Probabilistic approach

The value of MD simulation is that a wealth of information is available about the system under consideration. We have alrea
exploited this in fixing the parameters for the kinetic and thermodynamic treatments. But we can go further and develop a thil
probabilistic approach to estimate the cluster decay rate. It turns out that this approach reproduces the observed decay rat
well as if not better than the approaches described in the previous section, and involves fewer assumptions.

The simulation trajectories are used to calculate the probability deP(sity= 41r2p(r) for a particle to be found at a particular
distance from the centre of mass. An example is shown in Figure 9(a). Similarly, the means and variances of the single partic
kinetic and potential energiés andU, respectively, can be obtained as a functiom.cfhe distribution of the potential energy
of a particle at a given radiusis approximately Gaussian. The mean potential engrgy as a function of is shown in Figure
9(b). Note however that it is the potential of mean fode@) and notU (r) that is responsible for the binding, and one should
contrast the shapes ofand® in Figure 5.

Let us now calculate how often particles violate our cluster definition. First, they must acquire a total energy greater the
zero. The probability?(K > |U[;r) that a particle ha& > |U| at a givenr can be calculated by combining the kinetic and
potential energy probability distributions as shown schematically in Figure 9(c), and integrating over the states whose to
energy is positive. For convenience, we make the approximation that the kinetic energy distribution can be treated as a Gauss
The total energy distribution can then be characterised by adding the means of the individual distributions and their varianc
in quadrature. This simplification only introduces a small error since it is the larger variance of the potential energy whic
dominates the combined energy distribution. The resulting probability pR(file> |U|;r), is shown in Figure 9(d). As would
be expected, if a particle is close to the top of the well then there is a good probability that its total energy will be positive
Conversely, particles very close to the centre of mass will always be energetically bound. The probability density that a partic
will be found at positiorr with positive energy is then obtained by multiplyiRgr) by P(K > |U|;r). The probabilityPyos that
a particle in the cluster possesses positive energy is then given by integrating the resulting distributi@s @hewn in Figure
9(e). The probability that it might then escap®jiss(1— Rc).

A correction must then be made to account for the fact that the probability density fuRgtipacquired from the MD is
depleted by the exclusion of configurations corresponding to decay events, since the trajectories are post-processed to rer
unbound states as described in referedte [Therefore, we only see the positive energy excursions that do not lead to decay:
in Figure 2 the excursion leading to escape would be ignored and we would count only two events instead of three. T
actual number of such events should be obtained from the apparent number by renormalisation by a f@g&groofabout
1/0.78 ~ 1.28 for the 50-cluster. This method also provides the velocity distribution for the escaping atoms at the instant c
decay and when they have completely separated from the cluster, as shown in Figure 10.

It remains to determine a timescaléor the decay rate, or equivalently an attempt rate for escazpeVe have seen that this
timescale is provided in the kinetic approach by the Langevin friction coefficient; in the thermodynamic approach by a captu
rate of monomers by a cluster, together with a detailed balance condition, and in other ways in other tr€atierestimate
the timescale from our MD simulations in the following way. Encounters with neighbouring particles cause fluctuations in th
energy of a particle. These fluctuations drive the slower diffusion of the particle’s position within the potential well, but are als
the driving force behind the excursion of a particle into a positive energy state. We regard the energy fluctuation timescale
the inverse of the frequency of attempts to achieve positive energy. The timeggaketherefore obtained by calculating the
average time for the total energy of a particle to pass through its mean value at a given valeddt is the timescatesqgefor
r near the edge of the cluster that is relevant to the escape process. The decay rate of a clusids difisizgiven by:

rob I:)pos(]- - Rc)
= Tedge(1)Re

Figure 11 shows the mean lifetimes obtained using this probabilistic scheme for a range of cluster sizes and energies. Thel
clearly an excellent agreement with the results obtained previfusisough direct simulation. The probabilistic, single particle
model of the cluster dynamics therefore provides a very good representation of the complex many body problem.

(44)
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V. CONCLUSIONS

In this paper we have developed a two statistical models, one based on stochastic kinetics and the other on probabilities
account for the observed rates of decay of simple molecular clusters. The stochastic kinetics approach is based on a represent
of single molecule motion using a Langevin equation of motion, and the probabilistic model uses data acquired from molecul
dynamics simulations to determine the statistics of how often molecules violate the imposed cluster definition and leave.

These statistical models enable us to view the evaporation of a molecule from a quasi-bound many-body system as a sir
particle escape problem. Both the kinetic and the probabilistic models can reproduce the measured cluster lifetimes to a h
degree of accuracy. This suggests that it should be possible to develop methods to obtain decay rates for clusters that are so
lived that their lifetime would be impossible to measure directly. The accuracy of the methods in predicting cluster lifetime
for such systems will depend upon the amount of data available for use in the analysis. In particular, it is necessary to genel
some nearly unbound configurations in order to determine the depths of the potential energy well and the potential of me
force. Simulation data where molecules are extracted slowly from the cluster by an external force, or allowed to drift towarc
the cluster from outside the simulation cell, could be employed where necessary to provide the required information.

These schemes are very similar in spirit to the potential of mean force calculations that are routinely used in MD studi
to obtain thermodynamic quantities for complex systm©ur methods are precisely designed to enable us obtain accurate
kinetic data for the study of non-equilibrium processes, such as nucleation.

We have taken the view here that kinetic or probabilistic modelling provides perhaps the most realistic basis for determining t
rate of decay, though equilibrium thermodynamic methods have traditionally been the principal tools in this area. However, v
have made some progress towards establishing connections between the kinetic and thermodynamic approaches. In partic
we have shown that the depth of the confining potential of mean force, which is a major ingredient in the kinetic statistic:
decay rate, may be related to the difference in free energy of the clusters with and without the departing molecule, as long
the cluster is to a large degree in internal thermal equilibrium. The kinetic rate of escape is therefore related to equilibriu
thermodynamic properties of the cluster. This conclusion has been suggested in the past by identifying nucleation rates deri
by kinetic schemes with rates derived on the basis of thermodynamic transition state theory. The uncertainty in the calcula
decay rate lies, as has often been found before, in determining the so-called kinetic prefactor, or equivalently a timescale.
our kinetic approach, the timescale is provided by the phenomenological Langevin friction coefficient, while the thermodynam
methods used here appeal to a principle of detailed balance and employ a timescale from the collision rate between monon
and clusters. Other thermodynamic approaches provide timescales in different ways. In the probabilistic approach used here
timescale is extracted from the fluctuation behaviour of single particle energies. Ultimately, it is a comparison with the dec:
rates determined by microscopic molecular simulation that test the validity of each of these approaches.

This connection between kinetic and thermodynamic approaches reveals potential points of departure too. The solution:
the Langevin equation we employ are valid in the strong friction regime. How does the kinetic decay rate compare with a fre
energy difference when particle inertia is taken into account (weak friction)? In this situation, the relatively slow collision rate
between particles within the cluster may mean that the full range of microcanonical states is not explored over the timescale
cluster decay. Similarly, systems that are slow to equilibrate after cluster growth may not fully explore conformational spac
before a subsequent monomer collision occurs, so that the current state of the cluster (and hence its decay rate) becomes col
to cluster growth. In both of these situations, the relationship between the free energy and the decay rate becomes less obv
There are clearly several areas where the relationship between the kinetics and thermodynamics of cluster decay is yet t
explored.
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Figures

Figure 1. In the Kramers problem, the escape of a particle is considered for the type of potential shown in (a), with a local
harmonic well centred at= 0 and a locally harmonic barrier at=re. For particle escape from a cluster, the confining
potential of mean force is more like (b). The escape radius arbitrary, but can be related to a typical position at which
the cluster definition is violated.

Figure 2. The total energy and distance from centre of mass of a particle near the edge of a cluster, in a typical example. -
vertical arrows indicate the three energy excursions. Only the last of these events leads to cluster decay.

Figure 3. The average radial discrepancy force per unit mass on a particle in the cluster, plotted against particle radial veloc
obtained by analysing the dynamics on a time intedvat 0.4 ps. The dotted line represents a fit to the expected linear
behaviour. The slope is the negative of the friction coefficient.

Figure 4. The apparent friction coefficient in the Langevin interpretation of the molecular dynamics, for a range of timestey
ot used in the evaluation of the particle acceleration. The expected behaviour at large ardd Ensakn, and the plateau
region centred at abodt = 0.3 ps represents the optimal value of the friction coefficjent

Figure 5. The potential of mean force for a 50 atom argon clusfErab0.6 K, obtained from averages of the mean force as a
function of radius, derived from MD simulation.

Figure 6. The one particle density profiiér) for the 50 atom argon cluster at an energy of -2.98 kJthpér particle T ~ 50.6
K), obtained from MD simulation.

Figure 7. Mean lifetimes of argon clusters of various sizes and at a range of total energies, calculated using the kinetic appro
of equation (39) (open circles) and measured directly by MD simulation (filled circles).

Figure 8. Mean lifetimes of argon clusters of various sizes and at a range of total energies, calculated using the thermodyna
approach of equation (38) (open circles) and measured by MD simulation (filled circles).

Figure 9. These plots illustrate the probabilistic method for estimating escape protRgility (a) the one-particle probability
densityP(r) is shown as a function of distancérom the centre of mass. The data shown is for the 50 particle cluster at
an energy of -2.98 kJ mot?4. In (b) we show the mean potential energy well created by this 50 particle cluster. In (c),
we give, on the left, the normalised probability distributions for the potential en¢i@yll line) and the kinetic energik
(dashed line) at = 12 A. For convenience, the observed Maxwell-Boltzmann kinetic energy distribution is approximated
by a Gaussian, as shown. The normalised probability distribution for the total energy, shown on the right, is obtained |
combining these two distributions. Integrating this distribution for positive energies gives the probabilKy:that| for
this value ofr. The derived probability that a particle has positive energy at a given posittoshown in (d), again for
a 50 particle cluster at an energy of -2.98 kJ mgparticle*. The probability density that a particle at positiomas
positive energy is then the product of the distributions in (a) and (d). Two cases are shown in (e), for 50 particle cluste
at temperatures of = 50.6 K (full line) and T = 55.4 K (dashed line). The probability that a particle should acquire
positive energyPyos is then the area under these curves.

Figure 10. The velocity distribution for the escaping atoms at the instant of cluster decay (dashed line) compared with that 1
particles bound within the cluster (dotted line). The data shown is for a 50 particle clu3tet &0.6 K. The particles
that escape are ‘colder’ than the average: they have given up kinetic energy in favour of potential energy as the bonds w
their neighbours are loosened. The energy distribution of the escaped particles when far from the cluster is shown a
solid line. It clearly does not take the equilibrium shape.

Figure 11. A comparison of the cluster lifetimes calculated using the probabilistic method (open circles) with those measur
from the MD simulations (filled circles).



(a)

® = D(0) +%ma)2r2

D =P(r,) —%mwf(r—re)2

Figure 1:

(b)

o

14




15

() SSBw Jo 811u80 Wol) soue)sI(g

|

AV

20

15 1

10

(jow/ry) ABiaus |10

100

80

60

40

20

Time (ps)

Figure 2:



16

_ _
nU nU nU nU nU nU nU

@

1 Ll Ll Ll
o
e

_sd ) ssew jun Jad 8210} uoljoly aAl08Yg

Velocity (A ps'1)

Figure 3:



y(ps™)

2.6

2.4 A
2.2 1
2.0 1
1.8 1
1.6 1
1.4 -
1.2 1
1.0 -
0.8 1

>

0.0 0.1 0.2 0.3
ot (ps)

Figure 4:

0.4

05

17



Potential of mean force (kT)

—

5

Distance from centre of mass (A)

10

Figure 5:

15

20

18



0.0006

0.0005 H

0.0004 -

0.0003 -

0.0002

density p(r) (A”)

0.0001 H

0.0000 . . . . . . . .
0 2 4 6 8 10 12 14 16 18

Distance from centre of mass (A)

Figure 6:

19



1400

1200 -

—
(-
(-
o

800 -
600 -
400 H

Cluster lifetime (ps)

200 H

=100

-4.0

-3.9

-3.0
Energy per particle (kJ/mol)

-2.5

Figure 7:

-2.0

-1.5

-1.0

20

-0.5



=50
2000
m
=
~ 1500 izo5
£
£ 10001 1100 i=10
L -
2 Q\%ﬁb E\\xau,__. G
&
0 !\""
40 35 30 25 20 -5

Energy per particle (kd/mol)

Figure 8:

-1.0

21



Distance from centre of mass r (&)

Figure 9:

Distance from centre of mass r (&)

025 0
(a) 2 (b)
= -2
E 0.20 35
4
z z
T 015 g 4
3 5
- =
£ o010 £ 8
i 3
o a -10
a 005 c 5
e
=
0.00 T T T _14
0 5 10 15 20 0 2 4 6 8 10 12 14 16 18 20
Distance from centre of mass r (&) Distance from centre of mass r (A)
1.0
A
= 0.8 /\ (C)
Iy
g 06 \
>
8 04 |
8
£ \
02 \
00 VA NN
-6 -4 -2 0 2 6 -6 -4 -2 0 2 4 6
Energy (kJ/mal) Energy (kJ/mol)
=)
A
X 7e-4
- (e)
0.8 d £ Ges €
o
S (d) 2 /\
& 08 LS [
E T ded
2 04 o
£ E 3e4
3 o
g 02 5 24
f= ©
a <
0.0 z o4
30 . ‘ ‘ ‘
0 5 10 15 20 a_c_’ 0 5 10 15 20 25

22



Probability density

0.008

&
o
=)
&

0.004 -

0.002 -

0.000

23

Velocity (m 3'1)

Figure 10:

500



1400

1200 A

ps)

1000 A

800 1 =25 1
600 - a

400 -

200 - q\*ho

Cluster Lifetime

40 35 30 25 20 15 1.0
Energy per particle (kJ/mol)

Figure 11:



