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ABSTRACT 
 
Buses are the unsung heroes of public transport in modern cities around the world in high, 
medium and low income countries. However, the bus system is usually cobbled by poor 
design which has resulted from poor understanding of how a busThis paper examines the 
impacts of the interactions between buses, passengers and traffic on bus operations, especially 
in relation to delays and capacity at bus stops. First, the principles of bus stop operations are 
presented. Issues like the stages of bus stop operations, the classification of times spent at bus 
stops, causes of delays, and the interaction between bus flow and stop delays are analysed. 
This leads to the necessity of microscopic simulation to study stops operations. Then, an 
illustration of the sort of understanding that can be achieved with a simulation modem is 
shown. Simulation experiments regarding arrival patterns of buses and passengers, boarding 
times, difficulties for buses to leave the stop, and vehicle capacity are presented. Results 
indicate that it is important not to underestimate the real situation found at bus stops, as 
designing for ideal conditions will be insufficient if the reality is different. 
 
 
1. INTRODUCTION 
 
Except in a few cases, buses operate in the general traffic system. Sometimes they have the 
benefit of bus lanes and other priorities to offset the effects of traffic congestion, but unless 
they are completely segregated from general traffic, they are subject to congestion. Bus stops 
constitute one potential interruption to smooth traffic flow. As this could easily affect buses, 
we need to see how we should examine bus stops for their impact on bus operations in the 
first instance. 
 
In order to make buses accessible to the people at bus stops, buses need to be able to reach the 
kerb and to be able to enter and leave the bus stop without the interruption from traffic, 
parked vehicles or other buses. The bus stop provides a service to the buses that takes a 
certain amount of time. As the number of buses attempting to use the stop within a given time 
period increases, a queue will form. We therefore have the problem of bus stop capacity, i.e. 
the number of buses able to enter the bus stop area in a given time period. This, as with most 
queuing problems, depends on the service frequency. However, unlike many queuing 
problems, the service time at the bus stop is also a function of the frequency, because this 
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affects the amount of passengers at the platform and so the time spent by the bus at a bus stop. 
Besides, the service time also depends on the arrival of passengers at the bus stop. This 
generates a concurrent queuing problem in which the service time is a function of both the 
arrival pattern of buses and passengers. All the models that deal with buses and bus stop 
operations either ignore this issue or assume either constant arrivals or inter-arrivals taken 
from a traditional distribution (e.g. exponential). For a discussion on these models, see Tyler1. 
 
In the following section, we summarise some of the concepts on bus stop operations 
developed by Tyler1. Next, the result of a set of simulation experiments on bus stop 
operations worked out by Fernández2 is shown. Then, a summary of the consequences for bus 
operations derived from simulation experiments is presented. Finally, some concluding 
comments are stated. 
 
 
2. DELAYS AT BUS STOPS 
 
2.1. Stages of Bus Stop Operations 
 
The easiest way to consider a bus stop when thinking about its functioning is as a one-armed 
signal-controlled junction. In these circumstances, we imagine a bus stop to contain a fixed 
location with one berth in which a bus can stop. If a bus is occupying the berth, no other bus 
can enter. As in a junction, its capacity is determined by the length of time a bus spends 
occupying the berth and the number of buses that could pass through the berth within a 
defined time period. The capacity of a bus stop is expressed in terms of the number of buses 
that can enter the stop area within a specified time period (usually an hour). As with any 
capacity problem, we compare the flow of buses actually using the bus stop with its capacity 
to obtain the degree of saturation. Further discussions on bus stop capacity models can be 
found elsewhere2, 3, 4. 
 
To introduce the principle, we will discuss the operational issue with a one-berth bus stop. 
Figure 1 illustrate the stages of bus stop operations: 
 
(1) An empty berth awaits the arrival of a bus. 
(2) A bus approaches to the berth. 
(3) The bus decelerates from its running speed and enters the berth. 
(4) The bus comes to a stop in the berth. 
(5) The bus opens its doors to allow passengers to board and alight. 
(6) When all the passengers have board and alight, the bus closes its doors and is ready to 

depart. 
(7) The bus checks if the exit path is clear, otherwise the bus remains at the berth waiting 

for an available gap in the traffic stream. 
(8) During the above stages, other buses can arrive and have to queue behind the stopped 

bus. 
(9) Then, the first bus accelerates away from the berth, permitting the subsequent bus to 

enter the berth 
(10) The second bus then stops in the berth in the same way as the first bus. 
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Stages (1) and (2) 

Stage (3) 

Stages (4) to (8) 

Stage (7) 

Stage (9) 

Stage (10) 
 

Figure 1: Stages of bus stop operation 
 
We can define six time periods which we can use to analyse how the operation � and hence 
the capacity � might be affected by changes to bus stops: 
 
(a) Queuing time (tq). The time spent in the queue prior to entering the bus stop. 
(b) Passenger service time (PST). The time for passengers to board and alight, plus any 

time to permit the boarding and alighting to occur or dead time (time to open and close 
doors, lower the bus, etc). 

(c) Internal delay (ti). The time waiting to leave the bus stop, when the bus is ready to leave 
but is obstructed by other buses in the stop area. 

(d) External delay (te). The time waiting to leave the bus stop, when the bus is ready to 
leave but is obstructed by other traffic outside the stop area. 

(e) Dwell or occupancy time (to). The total time spent by a bus at a bus stop, which is the 
sum of time periods (c) to (e). 



 5

(f) Clearance time (tc). The minimum time between the departure of one bus and the arrival 
of a subsequent bus in the berth. 

 
The clearance time (tc) has to be added to the dwell time (to) to take into account the time 
taken to enter and leave the berth, which includes the time periods spent decelerating, 
accelerating, and travelling down the bus stop. In some cases, the internal (ti) and external (te) 
delays are concurrent, in which case the greater of the two is used in the estimation of the 
dwell time and capacity. As in a junction, the queuing time (tq) is a useful indicator of the 
adequacy of the bus stop capacity. 
 
Apart from the direct effects on the capacity, it should be noted that the sum of all these time 
periods shows the delay imposed on a bus by a bus stop. This in turn affects the commercial 
speed of the bus service � the distance divided by the total travel time between any two points 
of the route � because it adds to the time taken to operate from the start to the end of a bus 
route. 
 
2.2. Time Allocation to Space 
 
We need to design a bus stop so that it can accommodate the number of buses wishing to use 
it in such a way that they can perform properly. This means to stop as close and parallel to the 
platform as possible. In this case, the service being provided by the bus stop is time. Time is 
related to space in the sense that these operations need to take place in space and thus the time 
is allocated to the utilisation of a defined amount of space. In most urban areas, such space is 
a scarce resource. Therefore we need to know how much space is required in order to obtain 
an accessible bus stop under local operating conditions such as bus flow and passenger 
demand. Only once this has been achieved can we consider the detailed position of the bus 
stop and its accessibility. This is because a bus stop with insufficient capacity will be 
incapable of delivering buses close enough to the kerb to provide acceptable accessibility for 
the passengers. 
 
Some of the time periods described above can be considered to be constant � for example, 
clearance time. However, other periods depend strongly on the actual arrival times of the 
individual buses and the number of passengers boarding and alighting as a consequence. For 
example, a bus arriving after an interval of several minutes following the departure of the 
previous bus can expect to pick up more passengers than one that arrived after only a few 
seconds. The latter would benefit from a very short PST, but possibly suffer an increased 
internal delay as the previous bus could obstruct its departure. Instances of such time-
dependent obstructions can only be analysed through the use of microscopic simulation 
models, and this is the reason why such models have been developed (see Tyler1 for further 
discussion).  
 
2.3. Operational Issues at Bus Stops 
 
2.3.1 Passenger service time (PST) 
 
From the point of view of the operation of a bus stop, PST is the most obvious time period to 
consider first. A passenger takes a certain amount of time to board and alight. This can be 
averaged to give a marginal boarding time per passenger; the effect of variation in boarding 
times per passengers is an important issue (and discussed hereafter). The ticketing system has 
an enormous effect on the marginal boarding time. First, if all passengers must pass the driver 
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in order to show a pass, pay a fare or � even worst � cross a turnstile, this places a constraint 
on how many doors could be available for boarding and increases the PST. Secondly, 
passengers have to pass the driver and/or a turnstile in more or less a single file. This reduces 
the rate at which people can enter the vehicle and thus increases the marginal boarding time 
and so the PST. 
 
PST must include time for boarding and alighting passengers and must consider all the 
doorways of the bus. There are many specifications of the PST as a function of the number of 
boarding and alighting passengers. For example, Fernández2 quote a working paper by Gibson 
and Fernández proposing the following general model found in Santiago de Chile: 
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'''

2
''
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'
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'
00

expmax δβββδβδββ
δββ

+−++++

++=
    (1) 

 
where 
pij : boarding (i=b) and alighting (i=a) passengers per bus by door j  
{βi} : vector of parameters to be calibrated 
{δk} : vector of dummy variables 
 
Parameters β0 are dead times, βb are fractions of the marginal boarding time per passenger, 
and βa are parameters related to the marginal alighting time per passenger. Table 1 shows the 
values of the parameters. The dummy variables are δ1 = 1, if the platform is crowded; δ2 = 1, 
if boarding passengers are 4 or more per bus; and δ3 = 1, if the bus is crowded (e.g. aisle is 
full). Otherwise, δk = 0 in all cases (with k = 1, 2, 3). 
 
The dummy variable δ2 is active for a boarding rate of 4 or more pass/bus, because in 
Santiago passengers must pay the driver; so only 3 passengers can be stored in the entrance. If 
there is a fourth passenger wishing to board, the queue will reach the platform and the bus 
must wait at the berth. As can be seen in the table, in such a case a single boarding file would 
increase the PST by 15 to 23% at each bus stop. 
 

Table1: Values of parameters of the PST model 
Type of bus stop Parameters (units) 

Kerb bus stop On a dedicated island 
β0 (s) 1.17 0.00 
β0� (s) 0.00 2.34 
βb (s/pass) 3.48 2.99 
βb� (s/pass) 0.34 0.40 
βb�� (s/pass) 0.78 0.43 
βa (s/pass) 1.44 2.00 
βa� (pass)-1 0.00 0.035 
βa�� (s/pass) 0.76 1.14 
 
2.3.2 Queuing time 
 
Queuing time is another important way in which the design of a bus stop can affect the way in 
which a bus service operates. It is also an outcome of a bus stop with insufficient capacity. If 
a bus cannot enter the stop area it must wait in a queue before the bus stop until a berth is 
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available. This causes delays to passengers in the vehicle and creates problems for passengers 
wishing to board the bus. The length of this queue and the time a bus has to spend in it 
indicate the extent to which the stop is lacking in capacity.   
 
One way of increasing the capacity of a bus stop would be to increase the number of berths, 
as this would allow more buses to call at the stop at the same time. Let us consider the case 
where the new berth is immediately adjacent to the current one. In this case, the berths are not 
independent: a bus in the rear berth would not be able to leave if there were a bus occupying 
the front berth. Under these conditions, the additional berth does not double the capacity of 
the stop: there will be periods when only one bus can be accommodate at the stop; e.g. when 
the front berth is unoccupied and a bus is stopped in the rear berth. As a result, the addition of 
a second berth would increase the capacity by about 50%. Similarly, a third berth would add a 
further 30%, a fourth 20% and so on1, 16. Even these increases only apply when drivers stop as 
a matter of course in the berth nearest to the exit. Poor performance in this respect will further 
reduce the capacity of the stop. 
 
2.4. Flows and Delays at Bus Stops 
 
Just taking the PST and the queuing time into account, the overall delay to a bus at a bus stop 
is the sum of these two times  (in section 2.1 we have mentioned the other elements of delay 
at bus stops, but for the purposes of simplification in this illustration we are only using these 
two). Each is affected by bus frequency and thus by the bus flow but in different ways. Figure 
2 shows a simple example of the nature of the effects that arise. As the bus flow increases, the 
amount of time spent serving passengers falls because each bus serves fewer passengers. As 
the congestion increases the amount of time each bus spends in the queue before the bus stop 
increases. The total time has a minimum between the lowest and the highest flow values. If 
the frequency of a service were low, the best way to improve PST would be to deal with the 
boarding process (including ticketing system, use of doors, design of the entry hall of the bus, 
and design of the entry and exit path of the bus stop). Where frequency is high, a better course 
of action would be to resolve the capacity problem at the bus stop so that it could cope with 
the large number of buses trying to use it; for example, by means of multiple two-berth bus 
stops4. 
 
One interesting outcome is that the total delay is insensitive to the actual flow of buses for 
much of the range. However, we can see two points at which the slope of the total delay 
changes markedly: in this example these points are found at bus flows of about 70 and 160 
buses per hour. These figures correspond to the degrees of saturation of about 40% and 80%, 
respectively. This effect is quite common and gives rise to the suggestion that a reasonable 
design flow for a bus stop is approximate 60% of its theoretical capacity5. In fact, in this 
example the design flow (120 bus/h) produces the minimum total delay (42.75 seconds). 
 
If we wish to design bus stops with appropriate capacity and buses able to take full advantage 
of them, we need to understand these arrival-dependent processes in considerable detail. 
Calculations based on average arrival rates are not sufficient for the analysis and so we have 
turn to microscopic simulation to study operations at bus stops. 
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Figure 2: Flows and delays at bus stops 
 
 
3. A SIMULATION ILLUSTRATION 
 
3.1. A Simulation Model and Experiments 
 
The simulation model used in this study is called PASSION (PArallel Stop SimulatION) and 
has been described elsewhere2, 3, 4. This model was developed as part of our research at the 
Accessibility Research Group, University College London and allows us to see what would 
happen at a single berth bus stop under a variety of operating conditions. The complexity of 
the problem is such that the development of the model required a parallel computer to 
represent all the various concurrent processes. Once we could understand what was going on 
at the bus stop, it was possible to represent the problem in a serial form and accordingly a PC-
based simulation model was written. In order to illustrate the sort of information provided by 
the model, an example of a PASSION output file is shown in Figure 3. The model is now 
being translated into visual C++ for a friendlier interface. 
 
One hypothetical example was defined for this illustration. The operational characteristics of 
this example are shown in Table 2. Specific experiments were performed to test operational 
impacts of bus stops. The objective is to provide a ceteris paribus analysis of the results due 
to changes of some isolated factors The factors to be analysed are arrival patterns, boarding 
times, obstructing exits, and bus capacity. The same set of variables and parameters was used 
for all the experiments, unless otherwise is stated. The initial conditions assumed an empty 
bus stop and the event that terminates the simulation was the departure of the last bus that 
arrives during one-hour simulation period. 
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***************************************************************** 
*  PASSION 4.2 : PArallel Stop SimulatION - R.Fernandez (2000)  * 
***************************************************************** 
 
Data  of  this  run: 
==================== 
Stop identification   : My_example_run 
Routes using the stop :   1 routes 
Simulation period     :  52 min 
Bus flow              :  22 bus/h  (sd bus headways: 122.13 s) 
Boarding  demand      : 390 pass/h (sd pas arrivals:  14.82 s) 
Aligthing demand      :  67 pass/h 
Two doors, parallel boardings and alightings... 
Free exit... 
 
Results of this run: 
==================== 
Mean pas waiting time :   1.63 min   (max:   6.12 sd:   1.46) 
Mean pas on platform  :  17.79 pass  (max:  49.00) 
 
Mean bus pas   delay  :  37.11 s/bus (max:  99.34 sd:  29.44) 
Mean bus extra delay  :   0.00 s/bus (max:   0.00 sd:   0.00) 
Mean bus queue delay  :   5.62 s/bus (max:  69.42 sd:  17.66) 
Mean bus total delay  :  47.73 s/bus (max: 104.34 sd:  31.24) 
 
Berth capacity        :  85.50 bus/h (sat:   0.26) 
Mean bus queue length :   0.03 buses (max:   1.00) 
Exit time deviation   : 151.24 s 
 
Queue characteristics : 
----------------------- 
Queue Freq Q.Time 
(bus) (%)  (s) 
  0    89     0 
  1    11    53 
 
Bus characteristics: 
-------------------- 
Bus  Route Arriv Board Aligt Platf Queue Q.Del P.Del E.Del T.Del Exits A.Time Bus Cap 
(no) (key) (s)   (pas) (pas) (pas) (bus) (s)   (s)   (s)   (s)   (s)   (s/pas) (pas) 
   1   1   227    33     1    33     0     0    69     0    74   301    1.3      50 
   2   1   578    28     6    28     0     0    60     0    65   643    1.3      50 
   3   1   646     4     1     4     0     0     9     0    14   660    1.3      50 etc. 
 
Passenger characteristics: 
-------------------------- 
Pass Route Arriv Wait  B.Time 
(no) (key) (s)   (s)   (s/pas) 
   1   1     1   226    1.9 
   2   1     2   225    2.3 
   3   1     3   224    1.6 etc. 

Figure 3: Example of a PASSION output 
 

Table 2: Operational characteristics for the experiments 
Variables and parameters Assumed values 
Stopping bus flow (bus/h) 50 
Boarding demand (pass/h) 100 
Alighting demand (pass/h) 50 
Clearance time between buses (s) 10 
Dead stopping time (s) 1.0 
Marginal boarding time (s/pass) 2.0 
Marginal alighting time (s/pass) 1.5 
Number and use of doors 2 one-way doors 
 
The operational conditions tested were the following: 
1) Distributions of inter-arrivals. These can be either: 

a) Exponential distributions; or 
b) Actual inter-arrivals in a real case. 
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2) Boarding times. Three cases were examined: 
a) Quick boarding (e.g. using passes); 
b) Normal boarding (e.g. pay to the driver); and 
c) Slow boarding (e.g. a cash-operated turnstile). 

3) Exit modes from the stop area. Three possibilities were studied (see Figure 4): 
a) Unobstructed path from the bus stop; 
b) The exit is controlled by a traffic signal; and 
c) The exit is partially obstructed by other vehicles. 

4) Capacity of vehicles. Two conditions were tested, either: 
a) There is no restriction to board the bus; or 
b) Buses have a limited capacity for boarding passengers. 

 

(a) Free exit 

(b) Traffic signal ahead 

(c) Partially obstructed 
 

Figure 4: Exit conditions tested in the experiment 
 
The result of the aforementioned experiments with the simulation model PASSION are 
summarised next. 
 
3.2. Arrival Patterns 
 
In a discrete event simulation much of the model behaviour depends on the statistical 
distributions that are chosen to model the objects of the system. The distributions are used to 
model uncertain or indeterminate behaviour, such as the varying intervals between successive 
arrivals at a queuing system. As Pidd6 suggested, they are appropriate when the process that 
produces this behaviour cannot be understood in any deterministic sense. However, evidence 
indicates that outputs obtained under the assumption of Poisson arrivals of buses and 
passengers at bus stops do not agree with those obtained if the actual sequence of arrivals is 
used2. This was tested with data collected at bus stops in London and Santiago. Two analyses 
were made. These are described next. 
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3.2.1 Analysis of field data 
 
In current descriptions of bus operations, arrivals at bus stops are represented as stochastic 
phenomena where the particular interval between pair of events is chosen from a distribution. 
Thus, Gibson et al7 assume Cowan's M3 shifted negative exponential distribution8 to describe 
the headway between buses. Similarly, other authors9 ,10 state that passenger arrivals follow a 
Poisson distribution; therefore, the inter-arrivals should follow a traditional negative 
exponential distribution6. In Figures 5 and 6 the frequency comparison of actual bus 
headways and passenger inter-arrivals with exponential distributions for the case of London 
are shown. A chi-square test was applied to compare the theoretical negative exponential 
distribution with the sample data11. The null hypothesis to be tested is: data are IDD random 
variables with negative exponential distribution. The results of this test are shown elsewhere2. 
In all cases the test rejects the null hypothesis. Therefore, despite the resemblance of the data 
to the exponential distribution, the statistical test indicates that a negative exponential 
distribution would not represent the arrival process of buses and passengers at bus stops. 
 

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

9 0 1 8 0 2 7 0 3 6 0 4 5 0
H e a d w a y s  ( s )

Pr
op

or
tio

n

O b s e r v e d E x p . D i s t r
 

Figure 5: Distribution of bus headways at Manor House Stn bus stop 
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Figure 6: Distribution of passenger inter-arrivals at Manor House Stn bus stop 
 
3.2.2 Analysis of output sensitivity 
 
The question then arises: Are the outputs sensitive enough to the hypothesis of exponential 
arrivals? In order to test the significance of the differences Fernández2 performed a hypothesis 
test for the mean outputs based on the t-student distribution. Results indicate that in some 
cases model outputs obtained with the actual sequence of arrivals are statistically different to 
those assuming exponential arrivals. 
 
In the case of Santiago, the queue and total delay to buses were statistically different. This can 
be explained due to the scattered behaviour of passenger demand, for which exponentially 
distributed arrivals can be assumed. However, the existence of an upstream traffic signal in 
conjunction with the high bus flow makes the assumption of exponential arrivals of buses 
unrealistic. Indeed, buses tend to arrive in pairs in this case. As a consequence, the interaction 
between an almost Poisson arrival of passengers with a batch arrival of buses makes 
statistically different the delay to buses at this bus stop. In the case of London, batch arrivals 
from a metro station makes relevant the use of the actual sequence of passenger inter-arrivals 
at this bus stop, for the waiting time was statistically different if Poisson arrivals are assumed. 
However, in terms of the other outputs, the assumption of Poisson arrivals would be 
reasonable from a statistical point of view, at the cost of a less thorough estimation of the bus 
stop performance. 
 
In summary, it was shown that the use of some standard distributions for modelling bus stop 
interactions is valid only for that subset of cases for which the assumption of Poisson arrivals 
seems reasonable. Otherwise, we could be modelling any bus stop, but none in particular, 
which could lead to errors in design and evaluation of bus services. 
 
3.3. Boarding Times 
 
It is widely accepted that boarding times of passengers have a large impact on bus operations. 
Therefore, in order to explore this phenomenon changes in the marginal boarding times were 
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made. Three values were tested, named quick (1.5 s/pass), normal (3.0 s/pass) and slow 6.0 
s/pass) boarding times. In addition, the effect of the variability in boarding times was 
investigated. To that end, the feature of PASSION that allows the user to specify a different 
boarding time per passenger was used. Thus, boarding times between 1.5 and 6.0 s/pass were 
allocated to each boarding passenger.  
 
Figures 7, 8 and 9 summarise the results for the different arrival patterns considered. As can 
be seen in the figures there is a sharp drop in capacity as the PST increases as a consequence 
of the increase in the boarding time. The relationship, however, is less than proportional. On 
average, a rise in the mean boarding time from 3 to 6 s/pass produces a 23% drop in capacity. 
This implies, however, an acute increase in the mean queue length (two or three times) 
coupled with a 40% increase in the delay. It should be noted that average boarding times of 
nearly 3 to 6 s/pass have been reported elsewhere for various bus types12, 13. Thus, the 
scenario is not unrealistic and demonstrates that different boarding times at the same bus stop 
have important repercussions, whatever the arrival pattern of buses assumed. 
 
In contrast, it would seem that the sole variability in boarding times does not produce more 
repercussions than the increase in its average value. In fact, as can be seen in the figures, if 
boarding times vary between 1.5 and 6.0 s/pass the results are similar to those obtained for a 
3.75-s/pass average. Lobo13 who studied the effect of the number of old-aged persons in 
boarding times had already suggested this outcome; the conclusion was the same as here: the 
average is a good indicator. 
 
To summarise, the great influence of boarding times in the bus stop efficiency was 
corroborated in the case where passengers have to pass the driver on entry to the bus, as was 
the feasibility of capturing this influence by means of an average value to be used in a PST 
model. Therefore, the management of stop operations must consider this behavioural variable 
in order to accommodate the demand. Thus, changes in the design of vehicles and stops can 
be decided; e.g. door width, steps height, internal bus space, ticketing system, use of doors, 
raised platforms, etc. 
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Figure 7: Effect of boarding times on bus stop capacity 
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Figure 8: Effect of boarding times on bus delay 
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Figure 9: Effect of boarding times on bus queue 
 
3.4. Obstructing Exits 
 
According to an analysis of variance made by Fernández2, this was the main influential factor 
on delays at bus stops. Its effect should be studied according to the type of phenomenon that 
produces the obstruction. Two possibilities were explored: obstructions due to traffic when a 
bus is trying to re-enter to a traffic lane from an off-line bus stop (e.g. bus bay) and 
obstructions due to the operation of a traffic signal in the same lane of an on-line bus stop. 
 
3.4.1 Effect of exit controlled by gaps in the adjacent lane 
 
As a way of illustration of this effect, Figure 10 shows the average bus stop performance as a 
function of the flow in the adjacent lane derived from the result of the experiments. To 
summarise the results, the figure shows the bus stop capacity in tens of buses per hour, the 
total delay in seconds per bus, and the mean queue length in hundredth of buses. 
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Figure 10: Effect of exit controlled by gaps 
 
As can be seen in the figure, there is a gradual deterioration in the performance of the bus stop 
as the adjacent flow increases in relation to the possibility of unobstructed exits (represented 
in the figure a zero flow in the adjacent lane). However, this does not affect the waiting 
passengers in terms of their waiting time or platform density. Compared with unobstructed 
exits, the main impacts are a reduction in bus stop capacity from up to 40%, an increase in bus 
delays from up to 70%, and a rise in queue lengths of up to 5 times as large. 
 
These results imply that the provision of overtaking facilities at bus stops is necessary. It 
should be noted that flows of nearly one thousand vehicles per hour per lane are common in 
many roads where buses operate. In those cases, a significant drop in bus stop performance is 
expected if buses have to re-enter to the traffic stream. Thus, bus boarders should be preferred 
to bus bays if the improvement of bus operations is sought, even if the frequency and demand 
seems relatively low � less than one bus per minute and just 2 boarding passenger per bus in 
our example. 
 
3.4.2 Effect of exit controlled by a traffic signal 
 
The analysis of the influence of a traffic signal controlling the exit from the bus stop indicates 
a decrease in capacity and increases in delays and queues compared with unobstructed exits. 
An average reduction in bus stop capacity of 50% and an average increase in delay of more 
than two times are observed when unobstructed exits are compared to an exit controlled with 
a traffic signal with a 100-second cycle time and 0.4 green to cycle time ratio. The same 
comparison indicates that queues up to 5 times as much can be develop. Two factors have 
influence in this situation: the cycle time and the green ratio. In fact, the lower average impact 
occurs in the case of short cycle time (50 s) and high green ratio (0.6). Gibson14 had already 
reported a reduction in bus stop capacity induced by the existence of a nearby downstream 
signal of up to 40%. 
 
Results of further experiments produced with PASSION are shown in Figure 11. These show 
the reduction of the base bus stop capacity (unobstructed) as a function of the green ratio for a 
long and short cycle time, under the hypothesis of random arrivals of buses and passengers. It 
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can be observed in the figure that for long and short cycles a significant lost in capacity is 
obtained as the green ratio decreases. On average, this means a 22-bus/h lost in capacity per 
one-tenth decrease in the green ratio. In addition, it seems that over a green ratio of 0.4 the 
cycle length has a negligible effect. 
 
To summarise, the presence of a traffic signal controlling the exit from a bus stop always 
brings a reduction in performance. If this situation cannot be avoided, the signal timings must 
seek to maintain this drop in performance as low as possible. The experiments performed with 
PASSION give information about how this could be achieved. For instance, a green ratio 
above 0.6 produces a reduction in bus stop capacity of less that 20%, irrespective of the cycle 
time. 
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Figure 11: Effect of a traffic signal on bus stop capacity 
 
3.5. Bus Capacity 
 
Previous researchers have studied the issue of the bus capacity on bus operations along a 
route. For example, Oldfield and Bly15 postulated the following functional forms of the 
Average Waiting Time (AWT) as a function of the load factor of the vehicles: 
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where 
φ= k/K : load factor of vehicles 
k : load of vehicles 
K : capacity of vehicles 
f : frequency of vehicles 
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ε, z, γ : parameters 
 
These authors state that ε depends on the level of φ; however, they postulate that if φ is low 
enough and passengers arrive at random, ε is around 0.5. They also indicate that there are few 
empirical evidences about the values that should take the parameters z and γ. In addition, they 
state that if the demand is not homogeneous in time and space, the impact of bus capacity will 
be concentrated at some few stops. Therefore, the impact over the entire route will be 
reduced. However, those passengers that cannot board some of the overloaded vehicles will 
increase in their waiting time, with consequences on the perceived level of service. 
 
At an isolated bus stop two outcomes are expected from a reduction in bus capacity: (a) an 
increase in the number of waiting passengers at the platform and their waiting times, for not 
all of them can board the first bus that arrives if this is overloaded; and (b) a reduction in the 
passenger service time (PST) as a consequence of the smaller number of boarding passengers 
per bus. These potential outcomes were examined in our experiments. To that end, two cases 
of spare capacity were considered: buses arriving with limited spare capacities (from 0 to 10 
passengers) and buses with virtually unlimited spare capacity (50 passengers). The results 
show a minimal fluctuation on the performance of the bus stop due to the spare capacity of 
buses. The outcome (b) was only a slight reduction in PST, which in turn meant a negligible 
benefit on bus stop delay and capacity. The outcome (a) was an increase of the platform 
density of about 10 to 20%, but the effect was not enough to change the maximum values of 
the waiting time and platform density. There was, however, one exception: the case of regular 
arrivals of buses and passengers in which the maximum figures of waiting time and platform 
density were double those of unlimited capacity of vehicles. It seems in this case that the 
introduction of the only random perturbation (the variation in capacity of vehicles) produces 
important effects on passengers. 
 
In summary, it would appear that the capacity of the vehicles has more influence on bus stop 
performance if regular arrivals are considered; that is, if frequency of buses and demand rate 
of passengers are assumed constant. This is a simplifying assumption in analytical models of 
bus operations along a route like those of Oldfield and Bly15, and may have an effect on other 
questions of bus operations such as route demand, line-haul capacity, vehicle scheduling, and 
operating cost. Therefore, the relaxation of some assumptions used in analytical models which 
is provided by our simulation approach could also shed light on these issues. 
 
 
4. SUMMARY AND CONCLUSIONS 
 
The results and conclusions from our work can be summarised in the following main points. 
 
First, it is shown that the actual arrivals at bus stops do not always follow a Poisson process, 
as is usually assumed. It was also stated when and why the differences in model outputs 
coming from Poisson and actual arrivals are statistically significant. In that case, a general-
purpose distribution cannot be used to model bus stop interactions. This leads to the necessity 
of microscopic simulation of bus, passenger and traffic interactions at bus stops to understand 
this seemingly simple problem. We postulate that the oversight of this fact has led, in many 
cases, to ill-designed bus stops. For example, the capacity at bus stops is rarely considered in 
the UK because the view is that buses are relatively few in number. However, bus flows, 
although low, are not regular and thus are characterised by very high flow rates over short 
periods of time, in particular in London where bus frequencies have been increased as part of 



 18

the congestion charging initiative. In this case, oversaturation is expected during those 
periods. The visible outcomes of this are queues of buses at bus stops. One effect of this is 
that buses stop away from the berth and passengers must walk towards them, often into the 
roadway and into what can be a difficult and confusing traffic environment around the bus 
stop. As a consequence, poor accessibility to public transport is provided. 
 
Secondly, the arrival patterns of buses and passengers have their prime impact on the 
passenger service time (PST) of which the boarding time is the principal component. Once a 
number of boarding passengers interact with a bus, the boarding time is greatly affected by 
the fare collection system. Thus, the worst condition is an on-board collection mechanism for 
which a single door and a single line must operate. In such a condition, the number of 
passengers that the entrance hall of the vehicle can store plays an important role. In addition, 
according to the PST model, no only the fare system affects boarding times, but also the 
crowding conditions at the platform. Both conditions � a small entrance hall and a crowded 
platform � may increase the boarding time in about 30-40%; so the PST and the delay at the 
bus stop of each stopping bus is increased. This in turn has a damaging effect on route 
performance. 
 
Thirdly, it was shown that any obstruction in the bus exit from the stop has a negative impact 
on bus stop operation � and so on bus route operation. Conventionally, however, it is 
considered legitimate to consider that the less a bus stop affects private cars the better. The 
problem is that this is usually the main � and sometimes the only � criterion to define how a 
stop will be located and built, and the common perception is that the impacts of bus stops on 
private car are very bad. Even worse, most tools for traffic analysis end up reinforcing these 
views, prioritising the circulation of cars over the accessibility of the bus system. 
Nevertheless, buses need sufficient road space near the bus stop so that they can leave and 
enter the traffic stream and not be obstructed by other vehicles. Therefore, bus stops need to 
be located in such a way that they are not adversely affected by traffic management measures 
such as traffic signals, car parking, or off-line bus bays. As the overriding need is to make bus 
stops accessible, we have to decide where the priority lies: a bus stop which is inaccessible 
prevents some people from boarding, so we should only move away from the accessibility 
requirement in extreme circumstances. 
 
Fourthly, the effect of buses arriving with limited capacity is not so important as to change the 
performance of a bus stop. Our experiments showed that in only two cases the restriction in 
bus capacity might affect the bus stop operation: (a) under the assumption of regular 
(constant) inter-arrivals of buses and passengers; and (b) if the spare capacity of buses is 
similar to the mean number of boarding passengers per bus. In the rest of the cases, other 
effects are more important. The assumption (a) is common in analytical models and this 
seems to be the reason why it has been a matter of concern in the literature. When this 
assumption is released, however, the real-world issues for bus stop operation are unveiled. 
 
Finally, the discussion in this article suggests a number of issues that need to be addressed 
before we can begin to design a bus stop to allow greater accessibility to the bus system. It 
seems clear that a bus stop with insufficient capacity will be unable to deliver an accessible 
interface between buses and passengers. Therefore, it is an essential prerequisite that bus 
stops are constructed so that they can accommodate the number of buses and passengers that 
will be using the stop. To that end, the analysis of bus stop operations requires the use of 
specialised microscopic simulation models. These models must incorporate the possibility of 
allowing exact arrival and departure data for both buses and passengers so that different bus 
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stop designs can be tested against real and repeatable situations; we have given one example 
of detailed analysis of different effects in order to detect and analyse these problems. As a last 
word, it is important not to underestimate the real bus flows in the bus stop � designing for a 
regular bus service and passenger arrivals will be insufficient if the reality is different. 
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