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A Hybrid 3-D Reconstruction/Registration
Algorithm for Correction of Head
Motion in Emission Tomography

B. F. Hutton, Senior Member, IEEE, A. Z. Kyme, Y. H. Lau, D. W. Skerrett, and R. R. Fulton, Senior Member, IEEE

Abstract—Even with head restraint, small head movements
can occur during data acquisition in emission tomography that
are sufficiently large to result in detectable artifacts in the final
reconstruction. Direct measurement of motion can be cumber-
some and difficult to implement, whereas previous attempts
to use the measured projection data for correction have been
limited to simple translation orthogonal to the projection. A fully
three-dimensional (3-D) algorithm is proposed that estimates the
patient orientation based on the projection of motion-corrupted
data, with incorporation of motion information within subse-
quent ordered-subset expectation-maximization subiterations.
Preliminary studies have been performed using a digital version
of the Hoffman brain phantom. Movement was simulated by
constructing a mixed set of projections in discrete positions of the
phantom. The algorithm determined the phantom orientation that
best matched each constructed projection with its corresponding
measured projection. In the case of a simulated single movement
in 24 of 64 projections, all misaligned projections were correctly
identified. Incorporating data at the determined object orientation
resulted in a reduction of mean square difference (MSD) between
motion-corrected and motion-free reconstructions, compared to
the MSD between uncorrected and motion-free reconstructions,
by a factor of 1.9.

Index Terms—Emission computed tomography, image recon-
struction, image registration, motion compensation.

I. INTRODUCTION

I N BOTH single-photon emission computed tomography
(SPECT) and positron emission tomography (PET), patient

motion is common due to the long acquisition time. Since
reconstruction algorithms operate on the assumption that the
object to be imaged is stationary during acquisition, any move-
ment may give rise to artifacts in the reconstruction. Although
head restraint is routinely used in brain studies, the likelihood of
motion remains high, particularly with noncompliant patients.
Even with the small movements recorded with head restraint,
measurable effects can be demonstrated [1]. Moreover, as
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detector resolution improves, the need for correction of motion
increases.

Several groups have used direct measurement to detect or es-
timate motion with subsequent correction. These include use
of radio-frequency devices [2], video monitoring [3], optical
trackers [4], [5], or less expensive mechanical devices [6]. Cor-
rection in PET has included direct modification of individual
coincidence lines of response [2] or acquisition of a new frame
when significant motion is detected [3], [7]. In SPECT (or in
PET systems that rely on detector rotation), there is further com-
plication since motion may occur during detector rotation. This
both distorts projections and leads to incomplete data corre-
sponding to a stationary position of the patient. A method of
direct three-dimensional (3-D) reconstruction incorporating the
average location for each projection has been developed previ-
ously by our group [8]. Others have suggested alternative ap-
proaches to 3-D reconstruction incorporating motion informa-
tion (e.g., [9]). In general, the use of devices for direct mea-
surement can be cumbersome or expensive and usually requires
careful calibration.

Several groups have attempted to correct for motion without
direct measurement. Estimated projections from reconstructed
data have been realigned with measured projections. However,
correction has been limited to the translation of projections only
[10], [11]. Others acquired data as a series of short studies so that
motion in each frame was minimized. Subsequent correction is
then achieved either by rejecting data when motion occurs [12]
or by registration of the multiple frames [13]. Neither technique
provides a general solution for data-driven motion correction.
The purpose of this paper is to present a hybrid technique that
involves registration to determine the 3-D orientation of the pa-
tient at each projection angle, incorporating this information in
a fully 3-D reconstruction.

II. DESCRIPTION OF THEALGORITHM

The method will be described for a dual-head right-angled
SPECT system [Fig. 1(a)], which is sensitive to all six degrees
of freedom associated with rigid motion. However, the approach
is generally applicable to a range of detector or collimator ge-
ometries. Reconstruction is normally performed using the mea-
sured projections to reconstruct individual planes. However, if
motion of the object has occurred during data acquisition, some
projections will be incorrectly located relative to the object for
conventional multiplane two-dimensional (2-D) reconstruction.

0018-9499/02$17.00 © 2002 IEEE
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(a)

(b)

Fig. 1. (a) Measured projections are used to reconstruct an estimate of the
activity distribution in the object, shown here for a dual-detector SPECT system.
This reconstructed estimate may contain motion artifacts. (b) The reconstructed
estimate is reoriented so as to result in the best match between the constructed
(forward-projected) projections and the original measured projections.

Provided the movement was relatively small, the multiplane re-
construction will still be a reasonable estimate of the activity
distribution. This corrupted estimate can be used to construct a
set of 2-D projections that can be directly compared with the
measured projections. As a result, one can determine the 3-D
orientation of the reconstructed object that will result in the op-
timal match between constructed (forward-projected) and mea-
sured projections. This is achieved by implementing a fully 3-D
rigid-body registration of the object where the optimal object
position and orientation are determined using the simplex al-
gorithm [see Fig. 1(b)]. The cost function is formulated as the
mean squared difference (MSD) between the constructed and
measured 2-D projections. Note that the MSD is evaluated for all
projections acquired simultaneously (i.e., the right-angled pair
of projections in our case).

Once the optimal position and orientation of the object are
determined, the corresponding projections will be correctly
aligned for use in updating the reconstruction. A useful prop-
erty of the ordered-subsets expectation-maximization (OSEM)
algorithm is utilized [14]. Since each subiteration involves the
use of only a subset of projections, these can be chosen so
as to include projections recorded when the object was in a
particular orientation. A similar approach was used previously
for incorporation ofmeasuredmotion in 3-D reconstruction
[8]. In the case of a dual-detector system, the subset contains
the pair of projections for which the object orientation has
been optimized, but may include additional projections that
correspond to the same object orientation. The process is

repeated for each projection pair, progressively improving the
reconstructed estimate with correctly aligned projections.

In practice, reconstruction usually involves attenuation cor-
rection, ideally based on transmission data. Attenuation correc-
tion is easily incorporated into the above algorithm by reposi-
tioning the reconstructed attenuation map to match the emission
position and orientation at all times.

III. M ETHODS

A. Demonstration of Feasibility

To assess the operation of the algorithm, a digital version of
the Hoffman brain phantom (128*128*80) was used. Complete
projection sets (64*40*64) were constructed by forward-pro-
jecting the phantom in its unmoved position (as a motion-free
reference) and at various orientations of the phantom. The pixel
size was 4.4 mm. Projection included attenuation and distance-
dependent resolution but no scatter. Motion-corrupted studies
were created by substituting 90projection pairs from the mis-
aligned set into the motion-free set.

To demonstrate feasibility, simple one-dimensional reorienta-
tions were examined. The object was translated in the-direc-
tion (0.5, 1, 2 pixels) and rotated about the-axis (1 , 2 , 4 ).
In each case, two situations were simulated, whereby either four
or 12 orthogonal pairs of consecutive, reoriented projections
were substituted in the total of 64 projections. These preliminary
tests were conducted with noise-free data. Each dataset was re-
constructed and the degree of distortion in the reconstruction
assessed using the MSD between motion-corrupted and mo-
tion-free reconstructions. Using the corrupted reconstruction,
projections were generated and MSD calculated by comparing
the constructed projections with both the motion-free and reori-
ented projections. MSD was averaged for all projection angles.
The ratio of MSD for the reoriented versus motion-free projec-
tions was calculated for the range of orientations.

B. Identification of Wrongly Oriented Projections

The same phantom was used to further evaluate the method, in
particular to assess performance in the presence of noise. Again
one-dimensional reorientations were examined: 1.5-pixel trans-
lations in the - and -directions and 3 rotations about the-
and -axes. In all cases, the reoriented projections were pairs
10–15 (projections 10–15 and 26–31) of 64 projections. It was
assumed that the response for theand degrees-of-freedom
could be considered equivalent. Noise levels representing1
and 2 clinical noise were incorporated into the projection data,
using 50 thousand counts per projection as typical of clinical
brain SPECT.

In each case, the motion-corrupted estimate was for-
ward-projected at all projection angles. Each orthogonal pair of
constructed projections was compared with the corresponding
pair from the original projection set (representing “measured”
projections) using MSD as the measure of similarity. Plots
of MSD as a function of projection pair were assessed both
visually and statistically (t-test) for the significance of a peak at
the location of misaligned projection pairs. To assess whether
smoothing noisy projection data altered the ability to differ-
entiate unmoved from misaligned projections, a 2-D Gaussian
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filter [full width half maximum (FWHM) of 2.5 pixels] was
applied to the measured and constructed projection data prior
to the similarity calculation. Results were generated for the 3
rotation ( -axis) case only.

C. Identification of Object Orientation

The objective of the proposed algorithm is not only to iden-
tify where movement has occurred but also to determine the ob-
ject position that coincides with the orientation at which these
projections were acquired. Provided that the similarity measure
used is “well behaved,” it should clearly identify the optimum
orientation. The behavior was tested as follows.

The motion-corrupted estimate was progressively reoriented
(same single dimension as the introduced corrupting motion). At
each orientation, the degree of similarity between the measured
and constructed projection pairs was calculated using MSD (as
above). For those projection pairs that were misaligned, plots of
MSD as a function of reconstruction orientation were assessed
to determine the presence and location of a minimum. This min-
imum describes the ability of the algorithm to correctly identify
the object orientation corresponding to reoriented projections.
The influence of Gaussian smoothing was assessed for each of
the one-dimensional reorientations (Fig. 5 and Table III).

D. Continuous Versus Stepwise Motion

In reality, the patient cannot be assumed to occupy a single
fixed position in each projection, but rather movement is likely
to be continuous during acquisition. Continuous motionwithin
a projection was simulated by gradually increasing the degree
of movement and averaging the multiple projections that were
generated. This was done for three cases of rotation about the

-axis. In each case, the mean rotation for the projection was 3
but the range of movement was varied: a) 2to 4 in nine steps,
b) 1 to 5 in nine steps, and c) 0to 6 in thirteen steps. The
simulated motion represented alinearly changingrotation with
time in the projection (although it could be equally representa-
tive of more complex motion). This was achieved by giving an
equal weighting to each component projection in the average.

To compare the influence of motion independent of any con-
sequential corruption of the reconstruction, a motion-free re-
construction was reoriented and used to generate projections for
comparison with the motion-corrupted projections.

E. Preliminary Validation

A preliminary validation of the complete motion correction
algorithm was performed using the Hoffman brain phantom.
Projections were generated from the reoriented phantom using

2 pixels, 1 pixel, and 2 pixels for and translations
respectively, and 4 , 2 , and 4 for and rotations,
respectively. Twelve projection pairs were selected from this re-
oriented dataset and substituted into the original motion-free set
of projections before introducing a clinical level of noise into
the mixed projection data. Motion-free data at the same level
of noise were reconstructed using OSEM with subset size of
four (one iteration) as a reference. The motion-corrupted pro-
jection data were reconstructed under the same conditions. The
proposed motion correction algorithm was applied as follows.

a) Constructed projections (attenuated) were generated from
the motion-corrupted reconstruction by forward projec-

TABLE I
MSD BETWEENCORRUPTED ANDMOTION-FREERECONSTRUCTIONS

TABLE II
RATIO OF MSD BETWEEN THECONSTRUCTED ANDREORIENTEDPROJECTIONS

AND MSD BETWEENCONSTRUCTED ANDMOTION-FREEPROJECTIONS

tion. The MSD between each pair of constructed and
“measured” projections was calculated and used to iden-
tify misaligned projection pairs. Smoothing of projections
was not used.

b) All nonmisalignedprojection pairs identified via a) were
reconstructed using OSEM with a subset size of four (one
iteration). We refer to the reconstruction utilizing only
those projection pairs that were found to be consistent as
a partial reconstruction.

c) Starting with the projection pair that resulted in the highest
MSD [in a)], the orientation of the partial reconstruction
estimate was optimized so as to minimize the MSD be-
tween the constructed and measured projections for this
pair (using 200 iterations of the simplex algorithm). At
each iteration, both emission and attenuation data were
reoriented.

d) The (optimally) reoriented partial reconstruction estimate
can be updated with this projection pair using a single
subiteration OSEM. However, in our case, the current op-
timized orientation was sufficient for all remaining mis-
aligned projection pairs. These were incorporated into the
reconstruction using six subiterations of four projections.
This produced the motion-corrected reconstruction.

Both the motion-free and motion-corrupted reconstructions
were transformed to the same orientation as the motion-cor-
rected reconstruction and the MSD between the motion-free
reconstruction and both the motion-corrupted and motion-cor-
rected reconstructions calculated.

IV. RESULTS

A. Demonstration of Feasibility

The results of the feasibility study are summarized in Ta-
bles I and II. The degree of distortion in the reconstruction due
to incorrectly positioned projections increases with increasing
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(a) (b)

(c) (d)

Fig. 2. MSD between constructed and original projection pairs plotted as
a function of projection pair number for four different misalignments: (a) a
1.5-pixelx-axis translation; (b) a 1.5-pixelz-axis translation; (c) a 3x-axis
rotation; and (d) a 3z-axis rotation. In each case, projection pairs 10–15 have
been misaligned. Curves are shown for no noise (thick unbroken line),�1
clinical noise (unbroken line), and�2 clinical noise (broken line).

magnitude of reorientation and is sizeable for large translations
(Table I). Despite the sizeable corruption in the reconstruction,
correctly oriented projections are well differentiated from mis-
aligned projections (Table II). In general, this ability to identify
projections was independent of the degree of distortion (com-
pare results for 8/64 versus 24/64 reoriented projections).

B. Identification of Wrongly Oriented Projections

Results illustrating the ability to differentiate misaligned from
unmoved (correctly aligned) projection pairs are shown in Fig. 2
for the four motion-simulated data sets. The horizontal axes
show 32 projection pairs (orthogonal projections) and the ver-
tical axes represent the MSD between original and constructed
projection pairs. The feasibility of using the original and con-
structed projections to distinguish motion-affected projection
pairs from unmoved pairs is demonstrated by the presence of
peaks in the MSD corresponding to misaligned projections. The
differences in peak height, and to a lesser extent curve shape,
across the four plots indicate that the type of misalignment had
a measurable influence on the ability to detect the misaligned
projections.

Two effects of adding noise to the data are demonstrated.
First, the curves are offset by an increasing amount that is ap-
proximately constant across all angles for a particular noise
level. This bias in MSD is much larger than the random variation
introduced into the curves themselves. For the translational and

-axis rotational misalignments, the peak averages are signifi-
cantly different from the baseline average at the clinical noise
level . Only in the case of the 3 -axis rotation

(a) (b)

Fig. 3. MSD versus projection pair for the case of 3x-axis rotation,
illustrating the effect of smoothing the original and constructed projections
prior to the MSD calculation. This is shown for the case of (a)�1 clinical
noise and (b)�2 clinical noise.

(a) (b)

(c) (d)

Fig. 4. MSD between one of the misaligned original projection pairs
and its corresponding constructed projection pair, plotted as a function of
the reconstructed object orientation. This is shown for the four different
misalignments: (a) a 1.5-pixelx-axis translation; (b) a 1.5-pixelz-axis
translation; (c) a 3 x-axis rotation; and (d) a 3z-axis rotation. Curves are
shown for no noise (thick unbroken line),�1 clinical noise (unbroken line),
and�2 clinical noise (broken line).

[Fig. 2(d)] did variability between projection pairs due to clin-
ical noise (thin line) conceal the peak that was visible in the
noiseless case (thick line).

Fig. 3 demonstrates that Gaussian smoothing of both the orig-
inal and constructed projections significantly reduces the effects
of noise (both random variation and bias) in the case of-ro-
tation. For clinical noise [Fig. 3(a)], smoothing resulted in the
MSD of all misaligned pairs becoming distinct from the base-
line. For twice clinical noise [Fig. 3(a)], smoothing resulted in
an identifiable peak that was previously concealed .

C. Identification of Object Orientation

The ability of the proposed algorithm to correctly identify the
orientation of the object is illustrated in Fig. 4. The horizontal
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TABLE III
OBJECTDISPLACEMENT THAT RESULTS IN THEMINIMUM MSD BETWEEN

CONSTRUCTED ANDMEASUREDPROJECTIONS

(a) (b)

Fig. 5. MSD versus object orientation for the case of 3x-axis rotation,
illustrating the effect of smoothing the original and constructed projections
prior to the MSD calculation. This is shown for the case of (a)�1 clinical
noise and (b)�2 clinical noise.

axis in this case represents the set of discrete orientations used
to investigate the similarity measure. In the cases tested, a single
minimum MSD was clearly identified with no obvious local
minimum. This behavior was preserved even when noisy data
were used. Qualitatively, the curves were more shallow for ro-
tation compared to translation. Vertical bars on the plots indicate
the minimum found for each of the four orientations. Bars are
also shown on the horizontal axis at the actual magnitude of the
applied misalignment. The concordance between the extracted
and actual misalignments was highest for the-axis translation
[Fig. 4(b)]: 1.44 pixels for noiseless data and 1.39 pixels for
both 1 clinical noise (thin unbroken line) and2 clinical noise
(thick unbroken line), compared with the applied translation of
1.5 pixels. The performance was worse for the-axis translation
[Fig. 4(a)], though the estimated value was still in excess of 1
pixel (1.08) for clinical noise. Extracted values for the 3-axis
[Fig. 4(c)] and -axis [Fig. 4(d)] rotations in the clinical noise
case were 1.87and 0.53, respectively. Results varied for the
different affected projections, as summarized in Table III.

The result of smoothing projections is presented in Fig. 5 for
the case of 3 -axis rotation. Smoothing resulted in a shift

Fig. 6. Plots of MSD versus orientation of the reconstructed object for various
continuousrotational misalignments about thex-axis. The mean rotation in each
case was 3 and the range of rotations about this mean was varied (see figure
legend). All rotations were simulated to be linearly changing with time during
the projection. Data shown included a clinical level of noise.

of the extracted minima closer to the applied misalignment:
3.08 for 1 clinical noise [Fig. 5(a)] and 3.88for 2 clinical
noise [Fig. 5(b)]. Results for the other displacements are sum-
marized in Table III. Even for 3 -axis rotation, a minimum
was identified in the range 1.16–2.04for 1 clinical noise with
smoothing.

D. Continuous Versus Stepwise Motion

Results showing the ability to correct projection pairs mis-
aligned by “continuous” -axis rotation (with increasing range
about a fixed mean of 3) are presented in Fig. 6. Irrespective of
the range of rotation, the curve shapes were similar and the ex-
tracted minima (shown by vertical bars) were clustered close to
the mean rotation of 3. This suggests that even with significant
movement during projections, the average position of the object
is identified. Incorporation of projections at the average object
position should minimize the effects of movement, although this
needs verification.

E. Preliminary Validation

The exploratory step enabled all misaligned projection pairs
to be correctly identified, the misaligned pairs being easily dis-
tinguished from non-misaligned pairs. The optimum parameters
for position and orientation of the object were2.12 pixels,

0.84 pixels, and 1.97 pixels for , and translation, re-
spectively; and 4.09 , 3.28 , and 5.36 for , , and
rotation, respectively (the corresponding applied values were 2
pixels, 1 pixel, 2 pixels; and 4, 2 , 4 ). Two slices of the re-
constructed phantom are illustrated in Fig. 7 for (a) motion-free,
(b) motion-corrupted, and (c) motion-corrected data. After cor-
rection with the proposed algorithm, MSD compared with the
motion-free reconstruction was reduced by a factor of 1.9 for
the complete brain. Reduction of motion artifacts is evident in
the subtracted images (below). Identifiable areas of reduced per-
fusion (as indicated by arrows) return to normal after correction.
For comparison, an “ideal” difference image is displayed (lower
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(a) (b) (c)

Fig. 7. The top two rows illustrate reconstructions for (a) motion-free data,
(b) motion-corrupted data, and (c) motion-corrected data. In the bottom two
rows are (a) motion-free minus motion-corrupted, (b) motion-free minus
motion-corrected, and (c) motion-free minus the “ideal” motion-corrected.
Arrows indicate areas of apparent reduction in perfusion due to motion that are
improved after motion correction.

right). This is the difference between an ideally corrected re-
construction that incorporates data at the correct position and
orientation and the rotated motion-free reconstruction. The mo-
tion-corrected result (lower middle) is similar to the ideal result,
with both demonstrating some low-level differences that cannot
be accounted for by noise alone. Residual differences between
motion-corrected and motion-free data may have been further
reduced with additional OSEM iterations.

V. DISCUSSION

In this paper, we present a new algorithm that permits data-
driven correction for changes in patient position during emission
tomography acquisition. The algorithm combines 3-D registra-
tion with a method for sequentially updating the 3-D reconstruc-
tion to include misaligned projections at the correct orientation.
The feasibility of the technique has been demonstrated and the
algorithm was used to reduce the distortion due to a complex
motion. These early findings are very promising; however, con-
siderable additional work is necessary to fully explore the ap-
plicability of the technique.

Some insights to the technique are presented. The ability to
identify translated projections appears to be relatively insensi-
tive to noise, presumably due to the large differences found in
projections compared to noise. This is not the case for rotation,
especially around the-axis, where reorientation was hard to

identify, even using the two orthogonal views. However, distor-
tion in the reconstruction due to this rotation was also relatively
small, and therefore it appears less critical that this particular
motion is exactly corrected. This will require verification for
other movements and activity distributions.

There clearly are other factors that require further investi-
gation. The corrupted initial reconstruction that incorporates
wrongly positioned projections must be used to differentiate be-
tween correctly aligned and misaligned projections. However, it
may be preferable to utilize only projections that are identified
as correctly located in the initial estimate for reconstruction,
building on this reconstruction as projections are reoriented
(as was implemented in the case of the preliminary validation
study). This needs more detailed analysis, as constructed
projections are likely to be inaccurate below some lower limit
in the number of projections (hence iterations) included in the
reconstruction.

Throughout the work presented in this paper, attenuation cor-
rection was included in the reconstruction and, consequently,
the construction of projections also incorporated attenuation
in the forward projection. The attenuation map was reoriented
throughout the process to maintain its correspondence with the
emission data, and therefore misregistration should be no worse
than in the motion-free case. In effect, it is not necessary to
include attenuation in the motion detection algorithm; provided
the reconstructed estimate is not corrected for attenuation,
forward projection without attenuation should still provide a
match for correctly aligned projections. In this case, attenuation
correction can be applied to the final reconstruction. This has
the potential to significantly improve the processing time for
the motion-correction component of the algorithm. Work is
in progress to further assess the need for attenuation in the
algorithm.

The cost function used in this paper was the mean squared
difference between constructed and original (measured) projec-
tions. Previous study of cost functions applicable to intrasubject
SPECT registration demonstrated that this was preferable to al-
ternative cost functions [15]. The simplex algorithm was used to
find the “best” orientation so as to minimize the cost function.
This may not be optimal in terms of speed or susceptibility to
local minima; however, alternatives have not yet been explored.

The changes in patient position defined the grouping and or-
dering of projections rather than any considerations of main-
taining subset balance that may be required by OSEM. Certainly
for the dual-head geometry assumed in this paper a subset size
of two is suggested, smaller than normally recommended for
OSEM (although in most cases projection pairs can be grouped
into larger subsets). This may be cause for concern, although
there is no theoretical reason why the rescaled block iterative
(RBI) algorithm [16] could not be used in place of OSEM. The
RBI approach is not limited by subset imbalance such as may
occur with two orthogonal views. As an alternative, when the
correct orientation of all projections is known, a general 3-D re-
construction could be performed.

Although the algorithm has been applied here in neurological
studies, the technique should be extendable to other types of
study provided the assumption of rigid-body motion holds. This
requires further evaluation.
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VI. CONCLUSION

A hybrid 3-D reconstruction/registration technique is pre-
sented that corrects for changes of patient position during
emission tomography acquisition. There is considerable scope
for additional work to identify the limits of applicability of the
technique, likely to be influenced by the magnitude and timing
of motion and the underlying activity distribution. However,
these preliminary results demonstrate that the proposed algo-
rithm shows considerable promise as an automated data-driven
motion-correction technique.
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