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A b s t r a c t - I n  certain non-stoichiometric transition metal oxides, crystallographic shear planes are 
found instead of isolated oxygen vacancies. These planes tend to form arrays with regular spacings. 
The interactions responsible for this ordering have not been understood in the past. We propose that 
the major interaction comes from elastic strain, with smaller electrostatic terms: the configuration of 
the planes is one which minimises the elastic strain energy. Quantitative results are given for a realistic 
model, and agree with the main features observed experimentally. Thus the regular array Of planes is 
stable, and the equilibrium separation of planes in the array is about half that predicted for an isolated 
pair of planes. The interaction between isolated planes proves an oscillatory function of their separa- 
tion. One can understand from its detailed form why the observed mean spacing gets smaller as the 
planes come together to form larger groups. 

1. INTRODUCTION 

ELECTRON microscopy has shown that in 
certain transition metal oxides (e.g. TiO2, 
MOO3, WO3, etc.; see the recent reviews by 
Fender [1], Tilley [2] and Anderson [3]) partial 
reduction gives rise to crystallographic shear 
planes with few, if any, isolated oxygen vacan- 
cies. The metal ions in each shear plane retain 
their original octahedral coordination; the 
excess metal is incorporated by altering the 
linkage of the octahedra. In oxides based on 
the ReOa structure, there is a change from 
corner-sharing in the perfect crystal to edge- 
sharing in the shear plane. Likewise, in rutile, 
there is a change from edge-sharing to face- 
sharing. The features of shear planes of in- 
terest here are shown by the structural changes 
observed in rutile (TiO2_x) with increasing 
oxygen deficiency, x. Shear planes are found 
even for very low deficiencies. They have 
{ 132} orientations, and tend to cluster in small 
groups. As x increases, the planes form regu- 
lar arrays extending throughout the crystal, 
giving a homologous series of 'shear com- 
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pounds'. Further reduction leads first to a 
regime in which regions of ordered { 132} and 
{ 12 ! } planes coexist, and then to a homolo- 
gous series of compounds based on {121} 
planes. 

We shall discuss the ordering of these shear 
planes, including their spacing in large arrays 
and the variation of the spacing across smaller 
groups of planes Experiment suggests a long- 
range interaction between planes (i.e. not just 
between adjacent planes) and that, as more 
and more planes are added to a particular 
group, the planes can move to minimise the 
total free energy. Plausible mechanisms of 
plane motion have been given by van Landuyt, 
Gevers and Amelinckx[4] and by Anderson 
and Wadsley[5]. Bursill and Hyde[6] have 
analysed spacings of planes in some detail. 
They show that spacings are largest near the 
outside of a given group of planes, and they 
derive a plausible plane-plane interaction 
consistent with this. Our calculations should 
give a very similar distribution of planes, but 
the interplanar interaction is very different in 
form. 

The present work suggests the main inter- 
action comes from elastic strain energy, with a 
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smaller electrostatic contribution. We argue 
that the planes adopt a configuration which 
minimises the elastic strain energy. There is 
some indirect evidence that strain is impor- 
tant. Cowley[7] has observed that there is 
considerable distortion of the octahedra near 
the shear planes, so that elastic energies may 
be substantial. Elastic interactions also de- 
scribe successfully another-case of large-scale 
periodicity, the void lattice[8-11]. Further, it 
is hard to think of other interactions which 
lead naturally to the large spacings observed; 
in TiO2_~, for example, the separations for 
isolated pairs of shear planes are about 87 ,~, 
falling to 38 A at the centre of large groups 
[6,3]. Indeed, Anderson comments[3] that 
there appears to be no simple valid explanation 
based on electron deiocalisation. 

Previous explanations of the regular arrays 
of shear planes have been very tentative, 
drawing analogies with such diverse phe- 
nomena as spinodal decomposition and the 
electronic properties of metallic alloys. Clapp 
[12] has given a provocative discussion which 
includes some of the features of our model. He 
argues that the regularity is a result of a purely 
repulsive interaction between planes associ- 
ated with lattice strain. Unfortunately, this is 
not consistent with observation: planes to 
order in groups, rather than staying as far 
apart as possible. One major difference in our 
approach is that we show the elastic terms 
(including both Clapp's 'phonon' and 'inter- 
atomic interaction' contributions) give an 
interaction which is not monotonic in separa- 
tion, but gives a minimum energy at a finite 
separation. The internal energy proves to be 
the important part of the free energy; as in 
Clapp's analysis, we find the configurational 
entropy of the planes quite negligible. The 
existence of the minimum is a consequence of 
the periodic microscopic structure of the 
individual shear planes. 

In the following sections we describe a 
model which retains the important features of 
real shear planes, but which is simple enough 
for detailed calculations. We assume that only 

one type of shear plane occurs, and we shall 
not discuss the reasons for this plane to be 
stable relative to isolated vacancies or other 
orientations. The energy per unit area of a 
shear plane in an infinite array is then cal- 
culated, and we also calculate the interaction 
of two isolated planes as a function of separa- 
tion. We shall show that the elastic interaction 
energy between planes has minima for suitable 
configurations and that the predicted spacings 
for these minima are in good qualitative and 
satisfactory quantitative agreement with ex- 
perimentally observed separations. 

2. MODELS OF THE SHEAR PLANES 

Our aim is to obtain reasonable estimates of 
elastic strain and electrostatic energies of real 
systems with shear planes and their depen- 
dence on interplanar spacing. We now de- 
scribe a simple model which contains the 
important features. Further details for the 
model and its application to the void lattice 
are given in Ref. [10]. 

Estimates of the strain energy are most 
easily obtained in terms of 'defect forces'. The 
regions between the planes may be regarded 
as perfect crystal distorted by the presence of 
t h e  shear planes. The defect forces are an 
array of forces which represent the effect of 
the shear planes, and which produce the same 
distortion in each region. We shall calculate 
the strain energy for suitable arrays of these 
defect forces in an anisotropic elastic con- 
tinuum. Whilst some information about de- 
tailed atomic positions is lost in the continuum 
approximation, the model should give reason- 
able values for strain energies at the large 
interplanar spacings met in practice. We shall 
also use a continuum model in estimating the 
electrostatic energies, which can be calculated 
from the interactions of appropriate arrays of 
point charges in a dielectric continuum. 

In our detailed calculations we assume that 
the continuum is an isotropic dielectric, but 
with cubically anisotropic elastic properties. 
Previous work on the void lattice[9, 10] sug- 
gested that elastic anisotropy was important 
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and the present assumptions are the simplest 
which retain some degree of anisotropy. No 
effects of the shear planes themselves on the 
elastic properties are considered quantita- 
tively, although experience with the void 
lattice [1 l] suggests that such corrections may 
affect the precise values of the spacings. 

In principle, the defect forces could be 
obtained from a detailed study of the local 
strain near isolated planes. These results were 
not available to us. Instead, we have tried 
several plausible models for both the defect 
forces and the charge distribution associated 
with the planes, subject to two general con- 
ditions. First, we assume each plane electri- 
cally neutral overall. Secondly, we recognise 
the atomic structure within each plane by 
giving the defect forces a periodicity which 
corresponds to that of the crystal structure. 

The specific model used in the later sections 
is an idealisation of a { 100} plane in the ReO3 
structure. The perfect crystal can be regarded 
as alternating {100} planes . . .ABAB . . . .  
where the A planes contain oxygen alone and 
the B planes are, on average, ReO2. We con- 
sider shear in the { 110} direction. Each shear 
plane may be constructed by removing an A 
plane, and by moving the crystal on one side 
through a nearest-neighbour Re-O spacing, 
D/2,  parallel to one of the cube axes in the 
plane. The separation T of the two adjacent B 
planes will usually differ slightly from D/2.  A 
small section of such a plane is shown in Fig. 
1. Qualitatively, we expect four types of 
force. These are listed in detail in the Appen- 
dix. First, since the metal ions will be brought 
rather close, we put forces F~ on them which 
repel them out of the plane. Secondly, we sus- 
pect that the oxygen ions will be pulled into 
the plane, although this is not critical. There 
are two inequivalent sets of oxygens, depend- 
ing on whether the nearest metal ion in the 
plane is along or normal to the shear direction. 
Forces F2 and Fa are applied to the oxygens. 
All the forces F1, F2, F3 are normal to the 
shear plane. Finally, we add forces F4 parallel 
to the shear plane. These forces appear be- 
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Fig. 1. Model of the forces associated with the shear 
plane. Only atoms adjacent to the plane are shown (metal 
atoms being full circles, oxygens open circles) and only 
one repeating unit given. The four types of force are 

F , ( ~ ) ,  F2 (---~), F 3 ( " , )  and F4(~) .  

cause the crystal near the shear plane would 
prefer to adopt a different lattice parameter 
from the perfect host crystal. Several sets 
have been tried, with very little effect on our 
results. The set used for the results given later 
is shown in Fig. 1, and has lower symmetry 
than the other features of our model. This 
additional complexity in forces F4 compen- 
sates slightly for the oversimplifications in 
other aspects, notably that real shear planes 
have even lower symmetry than does our 
model. The in-plane forces F4 need not act at 
nearest-neighbours of the shear plane only, 
and we have chosen a larger effective separa- 
tion U. 

The parameters chosen for the following 
calculations are these: 

]F1]:IF2[:IFaI:[F4[ = 3: 1: 2: 1: 
U/3 = T = Nearest-neighbour 

Re-O separation. 

The ratios of elastic constants[13, 14] chosen 
are: 
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cH:c~2:c44= 16:7:5.  

Clearly there is a fair degree of arbitrariness 
in our model. We have tried many other sets 
of parameters, and shall comment on the 
effects of these variations. Here we merely 
observe that the absolute magnitudes of the 
F~ and c~ do not affect the predicted spacings, 
although the absolute values of the energies 
are proportional to F~Z/ck~. 

3. ENERGY OF AN ARRAY OF PLANES 

3.1 Calculation of elastic energies 
The energy of a distorted lattice containing 

no shear planes is quadratic in the displace- 
ments x of the atoms: 

EL(x) = EL(0) +�89 A . x  (3.1) 

where A is the force-constant matrix. The 
effects of the shear planes are represented by 
defect forces F, which give an extra term in 
the energy: 

Eo(x) = - -F .  x, (3.2) 

written as a sum over the first Briliouin Zone 
of the lattice 

1 
AE = - -2N ~ F(q)" G(q)" ~'(- q)' (3.4) 

q 

where N is the number of unit cells. G(q) is 
given in Ref. [13] for a cubic elastic con- 
tinuum as: 

TKiKj ] 
c44(~# (q) = + [AiS'J-- AiAj 1 + 3~ ~ XIK~2J 

t = 1 ,3  

(3.5) 

where the K~ are the direction cosines (qJq) of 
q and 

At(q) = (1 +SKiZ) -~ (3.6) 

The dimensionless factors depend only on the 
elastic constants, co: 

"y = ( C 1 2 - -  ~ C44)]C44, 
= ( C l l  - -  C12 - -  2C44)/C44. 

(3.7) 

omitting a large term independent of x which 
represents the formation energy of the shear 
plane in an undistorted lattice. The equilibrium 
distortion is found by minimising (EL+E o), 
and it is readily shown that the relaxation 
energy is AE, where 

AE ---- --�89 A-' ..F. (3.3) 

The matrix A -~ is the Green's function of the 
lattice, and can be written[1 3] in terms of the 
elastic constants for an elastic continuum. 

We shall calculate AE, and hence the energy 
per shear plane in terms of Fourier-trans- 
formed forces F(q) and Green's function (~(q). 
The two main advantages of working with the 
transforms are that the Green's function can 
be given exactly, rather than by a perturbation 
expansion in the anisotropy, and that we may 
exploit the geometric periodicity of the shear 
plane structures. The relaxation energy is 

The way in which energy minima can occur 
at finite separation can be seen from expres- 
sions like (3.3). If there are two defects, with 
forces Fi and F2, then (3.3) shows that the 
interaction energy between them can be 
written as the scalar product of the displace- 
ments A -1 . F1 due to one with the forces F2 
due to the other. Now the defects here are 
planes, each with their internal periodic struc- 
ture. The displacement field is complicated, 
but is periodic in any plane parallel to the 
shear plane. As we bring the two planes closer 
and closer from a large initial separation, there 
will be spacings which optimise the relation 
between the forces F2 and displacements 
A -1 . F1 to minimise AE. The minimum corre- 
sponds to an optimum phase relation of the 
forces of one plane with the displacements of 
the other. In Sections 3.2 and 3.3 we show this 
quantitatively by calculating the elastic strain 
energy as a function of the spacing. 
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3.2 Elastic energy of an infinite periodic array 
of planes 

We now calculate the strain energy per unit 
area per plane in the array.  I f  the planes are 
all normal  to the x axis, then only certain dis- 
crete values of qx will occur  in (3.4). The  
periodicity in the x direction means  that all 
t ransforms F(q) of  the forces  vanish unless q 
reflects this periodicity. Thus ,  if the planes 
occur  every L unit cells, finite F(q) occur  only 
at L equally-spaced planes in the Brillouin 
Zone.  For  the sys tem discussed here, L can 
be regarded as the spacing of  the planes in 
units of  D,  the period of  the structure within 
any individual plane. 

In the same way,  simplification occurs  be- 
cause the forces associated with each shear  
plane have the translational symmet ry  o f  the 
plane itself. The  forces repeat  under  transla- 
tions D in the y or z directions. The  conse- 
quence is that (3.4) need be summed over  a 
finite number  of  points only in the Brillouin 
Zone.  The  exact  number  is proport ional  to the 
separation, L. Since I ] (q )  i s .known analyti- 
cally, AE can be evaluated exact ly for our  
model in a closed analytic form. We have used 
a computer  to evaluate (3.4) because  of  the 
algebraic complexi ty  of  the terms,  no approxi-  
mation is involved. 

The  energy per  unit a rea  of  a m em ber  of  the 
infinite periodic array is shown in Fig. 2(a) as 
a function of interplanar spacing. The  main 
feature is a minimum at a finite spacing L = LA 
of about  4 t imes the spacing of the forces 
within the plane. The  energy increases rapidly 
away from the minimum. At  very  close spac- 
ings, when adjacent  planes start  to overlap,  
the energy begins to decrease  again with 
spacing. This  is a consequence  of the details 
of  the model and almost  certainly lacks any 
physical significance. Similar unphysical  be- 
haviour  at very small spacings was found for 
the void lattice. We return to this point later. 

The  value of LA is insensitive to many of the 
parameters .  The  opt imum spacing varies little 
with elastic anisotropy,  nor  does it depend sig- 
nificantly on the relative magnitudes of  the 
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Fig. 2. Shear plane energies as a function of the spacing, 
L, measured in units of the period within each plane. Adj- 
acent planes overlap in the shaded regions L < 1.5. Elastic 
energies alone are given; electrostatic terms are repulsive 
and only appreciable below L - 3. (a) Energy per plane in 
an infinite array; (b) Energy for a pair of isolated interact- 
ing planes. The energy zeros are shifted for clarity; both 

tend to the isolated-plane limit at large L. 

four  types of elastic forces (although the mini- 
mum disappears  for the special case of  elastic 
isotropy and F4 = 0). The  opt imum spacing 
in units of  the period within the plane changes 
appreciably only with one parameter:  L a 

increases with the plane ' th ickness '  U. We 
have  tried several  related models of the defect  
forces,  and find very similar values of LA. 

3.3 Elastic energy of a pair of planes 
The  interaction of a pair of  planes as a func- 

tion of  spacing is more  difficult, since the 
periodicity of  an array cannot  be exploited. 
Howeve r ,  we can still use (3.4). The  differ- 
ence is that, instead of a sum over  discrete 
values of  qx, we now have a one-dimensional  
integral over  qz. The  summations  over  q,  and 
qz are not affected, since the structure of  the 
individual planes is not altered. The  depen- 
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dence on spacing is most easily included in a 
different way than when dealing with the 
periodic array. For the periodic array the 
transformed forces l~(q) for any one plane 
were independent of spacing, since the origin 
of coordinates was taken to be the plane itself. 
The dependence on L came through the 
specific values of qx over which the sum was 
taken. For the pair of planes it is most con- 
venient to choose the origin of coordinates to 
be midway between the planes. The trans- 
formed forces for the two planes together then 
depend on L, giving F(q,L). This approach has 
a number of technical advantages: the physical 
content is unaltered. 

The energy as a function of separation is 
shown in Fig. 2(b). The striking feature is that 
the energy oscillates as a function of L. This 
is a general property, and not specific to the 
force model we have taken. The ultimate 
source of the oscillations is the dependence of 
the F(q,L) on L. This dependence can be 
understood as follows. F(q) is the Fourier 
transform of the forces associated with the 
two planes: 

F(q,L) = ~ ~ F,,(I,,) exp (iq. lp), (3.8) 
p = 1 , 2  I 

where p labels the planes and Fv the defect 
forces acting at sites I~,. Now the sets of defect 
forces F1 and F2 are identical apart from a 
relative displacement L along the x-axis, since 
the planes are equivalent. This can be ex- 
ploited by writing the site coordinates, Iv, as 
the sum of an internal coordinate, 1, measured 
from some standard origin within each plane, 
and the coordinate (X~,O,O) defining the origin. 
-T-he only dependence on spacing L comes 
from Xp; in our case, XI is L/2 and X2 is -L/2. 
Equation (3.8) becomes: 

F(q,L) = ~ Y~ F(I) exp (iq. l+iqxXp) 
p = l , 2  1 

p =  1,2 

=2cos(Lqx/2)[~ F(i) exp (iq. 1)] . 

The important factor is cos (Lqx/2): there is 
an oscillatory dependence of F(q,L) on L. It is 
still possible to devise systems for which AE 
varies monotonically with L, but for all cases 
for which we find minima there are oscillations. 

The oscillations in AE are not strictly 
periodic, for the minima get closer together at 
larger spacings. It is most unlikely that the 
apparent minimum at very small spacings is 
significant. At very small spacings a number 
of interactions become important which are 
omitted in our model, notably chemical effects 
and anharmonic corrections. Other omitted 
terms in Fig. 2 are the electrostatic contribu- 
tions, which are repulsive, and which become 
particularly important below L -  3. Thus 
the first physically-significant minimum is at 
L p -  8, about twice the optimum spacing 
L - 4 found for the array. Like LA, Lp is in- 
sensitive to the elastic anisotropy and to most 
details of the defect forces. 

3.4 Electrostatic energies 
The type of electrostatic forces can best be 

illustrated by an example of cation ordering in 
a non-shear structure. Consider a system 
Ti,A2BO2,+m which orders with the cation 
sequence. . .  Ti Ti A B A Ti Ti . . . .  Then each 
of the layers A B A will have a different charge 
distribution from the sequence TiTiTi they 
may be assumed to replace. The difference 
corresponds to an array of electric quadru- 
poles. Quadrupolar terms should always be 
present, although dipole contributions may 
also appear in some structures. 

The. energy--of the array can be found by 
methods exactly analogous to the strain energy 
treatments. For present purposes, however, 
qualitative arguments suffice. It is easily seen 
that the interaction is repulsive and that it falls 
off rapidly at large spacings, as does the field 
of an isolated quadrupole. This repulsion helps 
to counteract the decreases in elastic energies 
at very close spacings, and may shift the 
minima to slightly larger spacings. 

A rough estimate of the separation L• at 
which the quadrupole and-strain-terms are 
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equally important can be found by comparing 
the interaction energies of an isolated pair of 
the component quadrupoles with that of a pair 
of force dipoles. It is very hard to determine 
relative magnitudes of the defect forces with- 
out detailed microscopic information not avail- 
able at present. The data we used assumed a 
force dipole such as to give a volume change 
of 10A 3, a value 1-6.1012 dynes/cm 2 for Cl, a 
dielectric constant of 10 and a quadrupole of 
total length 8 A. Whilst these may not be pre- 
cise, our feeling is that LQ is about 3, rather 
less than LA; the strain terms dominate near 
the minimum. The magnitude also depends on 
the distribution of charge over the plane; in 
the special case of a uniform charge distribu- 
tion, the quadrupole terms vanish identically. 

We have also considered other electrostatic 
contributions, including the effects of small 
numbers of isolated vacancies and of ionisable 
defects between the planes. These contribu- 
tions appear to be negligible. 

4. DISCUSSION 

Several predictions of our model can be 
compared with experiment. First, it predicts 
correctly that planes prefer to order into a 
regular array. The spacing depends on the 
structure within the individual planes and on 
the elastic properties of the crystal. Quantita- 
tively, the model predicts a spacing LA of 
about four times the width of the repeating 
unit within each plane. In the crystals of 
interest, the repeat units are probably in the 
range 6-10,~, so spacings from 24 to 40 A 
might be expected. Observed spacings are 
indeed in this general range, although we can- 
not claim any precise agreement because of 
the simplicity of the model. 

The second prediction is that the separation 
of planes in pairs, Lp, should be about twice 
that for planes in large arrays. This is fully in 
line with observations of Bursill and Hyde [6] 
(see also Ref. [3], p. 25) on reduced rutile. 
There pairs of crystallographic shear planes 
are separated by about 87 ,& in TiO1.988, 
whereas the spacing at the centre of large 

groups in TiO1..~73 was about 38 A, a ratio of 
2-29. Again, agreement is as good as one 
might hope for such a simple model. One 
obvious omission is the effect of the shear 
planes on the elastic constants, an effect which 
is important in the void lattice [11 ]. Here one 
effect would be a composition dependence of 
the elastic constants and hence of L4 and L~,. 
The rather good agreement of the observed 
ratio with experiment suggests this effect is 
not very large. We also note that if the shear 
planes affect the elastic constants, one can no 
longer talk of a purely pairwise interaction 
between planes; the interaction between any 
two planes will be modified by the presence of 
a third. 

The third prediction is that the interaction 
between pairs of planes is oscillatory. This is 
very different from the simple (AL- ' -BL-")  
potential with which Bursill and Hyde at- 
tempted to fit their data. So far as the variation 
of spacings over groups of planes is concerned, 
both forms will give the same general features, 
namely closer spacings near the centre of 
groups. This can be understood from Fig. 2(b). 
Two planes A and B together tend to lie at a 
spacing Lp given by the first minimum. A 
third plane C can be placed at the same dis- 
tance from B. But the interaction of A and C 
favours a separation smaller than 2Lp (about 
10 per cent smaller for this model). The separa- 
tion finally achieved will be a compromise, 
rather smaller than the pair separation. The 
picture becomes more complicated as more 
planes are added, but in the end the correct 
spacing LA for the array must be reached. The 
oscillatory interaction does, however, have 
the interesting consequence that pairs of 
planes may occur at a number of different dis- 
crete separations, corresponding to the differ- 
ent minima of Fig. 2(b). 

Finally, the dependence of strain energy on 
array spacing helps to clarify the change from 
one type of shear plane to another when the 
oxygen deficiency is sufficiently great. An 
example was mentioned in Section 1, namely 
the observed change from {132} to {121} 
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shear planes as x, the oxygen deficiency, is 
increased. The interactions between the shear 
planes play a role which is illustrated in Fig. 3. 
The figure shows schematically as functions 
of x the free energies per vacancy assimilated 
for a system which may contain shear planes 
of two possible types I and II. The abscissa is 
the reciprocal of the number of vacancies 
assimilated per unit volume, and is propor- 
tional to l/x; for a given type of plane, this is a 
measure of the mean separation of adjacent 
planes. 

The differences between the energy curves 
for the two types of plane occur because of 
three factors, all of  which are associated with 
differences in the defect forces. These are 
first, the differences in energy of isolated 
planes of type I and II from Madelung ener- 
gies, covalency and similar contributions, 
second, the different number of vacancies 
which can be assimilated per unit area because 
of the different geometries, and third, the 
different values of spacing L which minimise 
the interaction energies between the planes. 
At low deficiencies, the energy of the isolated 
planes is the dominant factor. But as the 
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deficiency is increased, the strain energy 
becomes more important. A change from 
Type I to Type II planes is expected if there 
is a crossover in the energy curves, as shown 
in Fig. 3. In other systems, with different 
parameters and geometry, it is possible that a 
single type of plane may be favoured at all 
accessible deficiencies. In such cases cross- 
overs are not expected. 
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Fig. 3. Schematic diagram of energies per vacancy assimi- 
lated for two alternative shear plane arrays which take up 
different numbers of vacancies per unit area. The oxygen 
deficiencies correspond in the two cases. The differences 
in energy come partly from the energies of the isolated 

planes and partly from the different interactions. 

APPENDIX 

Defect forces for shear planes 
If there is a single shear plane normal to the x axis in an 

infinite crystal, then the defect forces and the sites at 
which they operate are as follows: 



T H E  O R D E R I N G  OF C R Y S T A L L O G R A P H I C  S H E A R  P L A N E S  

Force Site 

F1(-- 1,0,0) �89  
F~(1,0,0). UT,O,D)  

F2(1,0,0) ~ - -T ,O,O)  
F2( -  1,0,0) ~T , O , D)  

F3(1,0,0) ~ - - T , D , D )  
F3( -  1,0,0) ~T , D , O)  

F4(0,1,0)], �89 O,O,O) 
F4(0,0,1)J 

F,(O,-- 1,0)] ~(U,O,O) 
F4(0,0,-- 1 )J 

Because of  the periodic structure within the plane, equiva- 
lent forces occur at sites related by translations D in the y 
or z directions. In consequence,  the Fourier  transforms of 
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the set of  defect forces are only finite for values of qu and 
q~ which are multiples of 2rc/D. The transforms for indi- 
vidual planes are trivial to obtain, and we shall not quote 
them. 

If  we now consider two shear planes separated by L in 
the x direction, then it is straightforward to write down the 
positions and magnitudes of  the defect  forces. With the 
ratios of  forces given in Section 2, the Fourier transforms 
can be written, for wavevector  (q:~, 2rrM/D, 2rcN/D) as: 

F(q,L)  = F cos (q~LI2) 
(4i sin (qxTI2)SmSNo+ 2 cos (q,~T/2) [8~10&x.~ 

+ 3&~l&x.l], 4 sin (q.~,U/2), 4 sin (qxU/2)). 

When we consider  an infinite array of  planes, the only 
values of  q~ which give finite values of  F(q) are integral 
multiples of 2zdL. 


