Calculating quasi-bound rotation-vibrational
states of HOCI using massively parallel
computers

Hamse Y. Mussa? and Jonathan Tennyson P

8 Unilever Centre, Chemistry Department, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, U.K

b Department of Physics and Astronomy, University College London, London
WCIE 6BT, UK

Abstract

We calculate positions and predissociation widths for quasi-bound states of HOCI
with total angular momentum of J=0 and J=3. An ab initio potential energy surface
is used in conjunction with a complex absorbing potential (CAP). These calculations
are performed by diagonalising a complex symmetric Hamiltonian using our discrete
variable representation (DVR) based parallel code, PDVR3D, and a truncation
and diagonalisation algorithm. The resonances are identified as those states in the
continuum, which are stable with respect to CAP and basis set parameters. Test on
the resonances are carried out using over 90 different absorbing potential heights.
Resonances of both Feshbach (vibrational trapping) and shape (rotational trapping)
are identified.

1 Introduction

A quasi-bound (resonance) state can be defined as a long-lived state of a
system which has sufficient energy to break up into fragments [1]. In other
words resonances are localized states in the continuum of the solution of the
Schrodinger equation for a system with E>0. This phenomenon is common,
and often plays and important role in energy transfer processes such as scat-
tering and unimolecular reactions. For instance, the rate of unimolecular disso-
ciation of an excited molecule (ABC)* into A+BC fragments can be controlled
by the lifetime of the quasi-bound states.

For simple systems there are two physically distinct ways of trapping quasi-
bound states which lead to the formation of Feshbach and shape resonance.
For nuclear motion problems, Feshbach resonances involve the trapping of
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energy in vibrational degrees of freedom which are not dissociative. Dissoci-
ation occurs via intramolecular vibrational redistribution (IVR). For systems
moving on a single potential energy surface, these resonances only occur for
triatomic or larger molecules but can be found for all angular momentum
states including J = 0. Conversely shape resonances are caused by the trap-
ping of states behind a centrifugal barrier and thus can occur for diatomics,
but only for states with J > 0. Shape resonances decay by tunneling through
the centrifugal barrier.

So far all theoretical studies on quasibound states of strongly bound triatomics
have concentrated on resonances of the Feshbach type. However it has long
been established, at least for Hj, that shape resonances are observable and
numerous [2]. In this case Feshbach resonances are much too short-lived to
explain the observed near-dissociation spectrum [3].

Theoretically quasi-bound states can be accurately calculated as the poles of
the scattering matrix. However, this is a difficult task which can be compu-
tationally demanding for even simple systems with three atoms. Fortunately
the quasi-bound nature of resonances makes them suited to L2 methods. Em-
ploying L? complex methods such as complex scaling [1] and complex ab-
sorbing potential(CAP) [4], one can transform the Hamiltonian representing
resonances to an L? non-Hermitian effective Hamiltonian operator. The energy
of the poles are then obtained by diagonalising the effective Hamiltonian.

Using the CAP method in time-independent calculations, several different
groups [5—12] have reported vibrational quasi-bound states (Feshbach reso-
nances) for triatomic systems. Skokov and Bowman [13] recently reported cal-
culations, in which the Coriolis coupling was ignored, on resonances of rotating
HOCI for J>1. Other studies of resonances with J > 0 have been reported for
HCO [14-18], HNO [19] and recently HOCI [20]. In particularly we note that
Weiss et al [17] found that Coriolis coupling is essential for determining the
lifetimes of the vibrational states with K = 0. However all these works cited
above concentrate on rotationally excited Feshbach resonances.

Performing exact rotation-vibration calculations which extend all the way to
dissociation remains a difficult and computationally demanding problem with-
out the extra complication of resonances for which total angular momentum,
J, is greater than 1. The characterisation of states with J > 1 above disso-
ciation is the problem that we address in this article. In order to meet this
challenge we have adapted our methods which have served well at low, medium
and high energies on computers with massively parallel processors [21] to the
resonance problem by using a CAP. Here we present resonance parameters for
HOCI with J = 0 and J = 3 calculated using the ab initio potential energy
surface due to Skokov et al [22]. For J = 0 the results are directly comparable
with the result of Skokov, Bowman and Mandelshtam [6] who used this prob-



lem as a benchmark to compare different L2 methods of calculating resonance
parameters.

HOCI plays a crucial role in ozone destruction in the stratosphere. Although
it is a short-lived chlorine reservoir, its rapid photolysis to produce Cl can
catalyse the conversion of other CI reservoirs such as CIONO,, which are in-
active, to active Cl. This heightens the effectiveness of Cl in the destruction
of ozone. Therefore theoretical study of the photo unimolecular dissociation
of the molecule can enhance our understanding of the HOCI role in the ozone
depletion. This problem, and the role of resonances in it, has been the sub-
ject of a number recent experimental, spectroscopic studies, see ref [23] and
references therein.

2 Method

Our adaptation of the discrete variable representation (DVR) program DVR3D
[24] to run on massively parallel computers, known as PDVR3D, has been doc-
umented elsewhere [21,25]. This program has been successfully used to obtain
rotation-vibration states up to dissociation, see for example [26], where par-
ticular use has been made of its near linear computational scaling with J for
problems with low rotational excitation.

In this work we use Jacobi co-ordinates (R,r,), where R is the dissociation co-
ordinate,distance of Cl from the centre of mass of OH, r is the OH internuclear
distance and @ is the angle between R and r. For the ro-vibrational motion
states we use a body-fixed axis system which places z-axis along R. We denote
the projection of the total angular momentum, J, on this z-axis as k.

The essence of the CAP method is the introduction of an absorbing potential
1U, which is a function of the dissociation co-ordinate, to the system in the
asymptotic region of the real potential V. Hence the effective Hamiltonian
which represents the quasi-bound system can be written as

A

H' = H —iU(R). (1)

Where H is the usual L? real Hamiltonian operator. The CAP used here and
elsewhere is given by
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where ) is the height of the absorbing potential, and R,,;, and R,,,, define the
range of the absorbing potential. Following Skokov et al [6], we use n = 3. The
absorbing potential makes H' an 12 complex symmetric Hamiltonian which
satisfies

Hep, = (En - z%>wn (3)

where F, is the resonance position, and I',, is the width (inverse lifetime of
the n'® resonance state).

To obtain the complex eigen-pairs (F, — z— and vy, ), H' is represented in a
basis set and then diagonalised. Riss and Meyer [27] showed that, despite the
artificial perturbation induced by the absorbing potential, if H'is projected on
complete basis set, the exact resonance state eigen-pairs (E,, — i%", p,) can be
obtained in the limit A — 0. In practice the eigenfunctions of H' can only be
represented by a finite basis. In a finite basis representation it is necessary to
use a finite A to localize the eigenfunctions (i.e, to reduce the basis set error).
However the artifact introduced by a particular complex absorbing potential
form increases with A [27]. Hence, in the CAP method, the best estimate of
the exact resonance state depends on A. To find the optimal A (),,) at which
the finite basis (fb) error cancels with the error due to use of finite \, the H' is

b
dE]
d\

should be a minimum and the complex eigenvalue EZ°(),,) for \,, is the best
estimate to the exact resonance ( E, — z%" )

diagonalised for a set of A values. As the errors are out of phase, at A,,

2.1 J=0
For J = 0 the matrix elements of the complex Hamiltonian can be written as

‘H,‘qbaﬂfy 5 —iA < ¢aﬂ7|U(Rﬂ)|¢aﬂ7 (4)

aﬂv

Where v, o and [ are the grids points of the DVR basis functions in €, r and
R respectively. ¢" and e, are the eigenfunctions and eigenvalues of the real
vibrational Hamiltonian H.

Within a DVR, eq. (4) can be simplified further to

aﬂ'r‘H,Waﬁv — A Z ¢aﬂ7 aﬁ'r ) (5)
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2.2 J>0

We use the two-step variational approach of Tennyson and Sutcliffe [28] to deal
with the real ro-vibrational case. The basic idea of the two-step approach is to
first solve a series of problems for which £, is assumed to be a good quantum
number, i.e. the Coriolis coupling is neglected. There are J+1 (k = 0,1, ...., J)
such ’'vibrational’ problems for the even (i.e. p = 0) rotational parity, the parity
examined in this work. For computational reasons [29], the selected DVR
'vibrational’ wavefunctions are transformed back to finite basis representation
(FBR) in 6, i.e, to associated Legendre polynomials | j, £ >. This angular back
transformation can be written [24]

Cias = > T s (6)

Y

where T} is the transpose of the normal DVR transformation matrix [24].

The second step constructs the fully coupled ro-vibrational Hamiltonian ma-
trix using M of the eigenfunctions ng’gj’s as a basis. The ro-vibrational
Hamiltonian matrix is diagonalised yielding (J+1)x M eigenvectors, D. L
of those are then projected on to the ’vibrational’ wavefunctions to give the

ro-vibrational eigenfunctions for a given total angular momentum and parity

[1>=3"3 Dy, Clas (7)
k n

Finally the L selected eigenfunctions, | [ >, and their corresponding eigenval-
ues ¢;, are used to calculate the matrix elements of the ro-vibrational non-
hermitian matrix

<U'|H' |l>=edp —iX<l'|U(Rp) |l > (8)

for which the quadrature approximation can also be used in the R coordinate.

3 Calculations

The calculations for resonances states were performed using the potential en-
ergy surface (PES) of Skokov et al [22]. This surface has a dissociation thresh-
old of D,= 19289.2 cm™! which agrees well with the experimental value of
19289.6 cm ! [30]. It supports about 800 vibrational states. Using this PES
Skokov, Bowman and Mandelshtam [6] were able to reproduce HOCI experi-
mental vibrational energies up to 7vox (21716.33 cm™') which is well above its



dissociation threshold. This make the surface ideal for studying quasi-bound
states in unimolecular dissociation.

Both J = 0 and J > 0 problems were solved using DVR in each co-ordinate
based on formulations briefly described in section 2, but well documented else-
where[21,24,28]. In this formulation, the angular DVR functions are based on
the (associated) Legendre polynomials and the radial DVR functions based
on Morse oscillator-like functions. In this work the primitive DVR basis were
Np=96, N,=45, and N,=60 DVR functions in R, r, and 0 respectively. The
variational parameters of the Morse-like functions, r., w., and D,, were opti-
mized for the two radial motions [24]. For r they were set to 4.8295 ag, 0.01654
En,and 0.0023 E; respectively ; for R to 8.980 ag, 0.00008 E;,and 0.0000554
E. [28]. Note that the R grid was designed to extend significantly into the
asymptotic region. For this grid, tests were also performed for Ng=80 and 120
but, except for large values of Ry, (see below) the results obtained with 96
grid points were found to be stable.

The solutions to the real Hamiltonian were found using sequential truncation
and diagonalisation [24]. The final size of the ’vibrational’ Hamiltonian matrix
was truncated to 96 x N with N = 100—180, and diagonalised on 96 processors
on a massively parallel Cray-T3E computer. The lowest eigen-pairs were saved
on disk. For J > 0, this process was repeated for each k.

In the second step a fixed number of eigen-pairs from each fixed-k calculation
were used to construct the full, real ro-vibrational Hamiltonian matrix which
explicitly includes the Coriolis coupling. This Hamiltonian was diagonalised
to give a basis for solving the final, complex Hamiltonian, eq. (8). For this
step, eigen-pairs representing low-lying bound states and high-lying states
were discarded from the calculation.

For the CAP, we carried out a large number of tests with R,,;, in the range
10.0 ag — 12.0 ag and R,,., Was set to 14.0 ag. As discussed in Section 2, A\ was

varied to find Ay, for which Ef*(\,,) =~ B, — i%.

Constructing the full Hamiltonian in parallel is quite simple. As only solutions
of the real Hamiltonian in the region of dissociation need be used as basis
functions for the complex problem, the construction and diagonalisation of
the Hamiltonian for a given A\ was performed on a single processor meaning
that results could be obtained for several values of A at once by distributing
the calculations across the machine. The Hamiltonian matrix was diagonalised
using LAPACK complex matrix diagonalisation routine cgeev.



3.1 J=0

The real vibrational Hamiltonian was diagonalised by using sequential diago-
nalisation truncation approach: for each R grid we solved a 2D Hamiltonian
in @, and r keeping the lowest N = 150 eigenfunctions. This reduced the final
real 3D Hamiltonian size to 14400 which was then diagonalised. To test con-
vergence, we repeated the procedure for other 3D-Hamiltonians with sizes of
9600, 11520, 15840 and 17280. The results obtained showed little sensitivity
to this choice, for example the resonance widths varied by less than 0.1 %,
and only results for N = 150 are reported.

The N = 150 calculations were performed on 96 MPP Cray-T3E processors
which took approximately 1.5 hours of real time. 2304 eigenfunctions of the
14400 size matrix were retained. The lowest 480 states were neglected. Tests
were performed which used the next 1248, 1430, 1632 and 1824 states to
construct the non-hermitian matrix. Again our results are insensitive (less than
0.1% variation in the resonance widths) to this choice and only results obtained
using 1824 states are reported here. To determine EI°(),,), we constructed
and diagonalised the non-hermitian matrix for values of A ranging from 0.00E,
to 2.06 E;, and for a range of values of R,,;,.

3.2 J=3

To solve this problem, we used the same primitive DVR functions, and pa-
rameters, and N = 100 for the ‘vibrational’ matrix size. The following steps
outline how the non-hermitian ro-vibration Hamiltonian was solved:

(1) The real 'vibrational’ problem was solved in the same fashion as the
J = 0 Hamiltonian but repeated four time for £ = 0, 1, 2, 3. For each &
the lowest 1920 eigenfunctions were retained.

(2) The chosen eigenfunctions were used as a basis set for constructing the
fully coupled real ro-vibrational Hamiltonian which results in a matrix
of size 7680. Its diagonalisation gave 7680 L? eigenfunctions. The term
values between 18700 cm~! and 22300 cm™!, either 3072 or 3456 states
in total starting at state 2800, were selected. Again our results show
little sensitivity to this choice and the larger value is used for the results
reported below,

(3) The selected states were used as a basis, see eq. (8), to construct the
non-Hermitian ro-vibrational Hamiltonian which was then diagonalised.

(4) Step three was repeated for over 90 times for different values of A, similar
to those used for the J = 0 calculations.

(5) The resonance positions and the widths were identified as those which



were stable with respect to variation of the height of the absorbing po-
tential.

This process required approximate 6 hours on 192 processors of the Cray-T3E.

4 Results

The quasi-bound states were calculated for HOCI for total angular momentum
J =0, 1 and 3. We determined the resonance states using both graphical and
numerical analysis.

In the graphical method we plotted A-trajectories of the complex eigenvalues
of H' in the complex plane. The resonance states were identified as those
whose trajectories showed pronounced stabilities [1,27]. The resonance energy

of the state was identified as the value of the point where the trajectory was

dEf®
dax

EJP(\,,) was taken as our best estimate of the resonance energy. Figure 1

shows resonance energy trajectories of the four lowest J = 3 quasi-bound
states. For each trajectory an arrow indicates the position of EJ?()\,).

slowest i.e. ‘ ‘ was a minimum. Here A should be the optimal value . Hence

In the numerical analysis we inspected how the complex eigenvalues change
B Qi) =B (V)
Air1—A;
ated with a complex eigenvalue family in which the rate showed stability was

identified as a quasi-bound state.

. The state associ-

with A. For our analysis we used the rate

Then, with the justifiable assumption that the rate is varies slowly in the

vicinity of the resonance energy, EJ*()\,,) was obtained using this equation

Eib()\m) B Efb ()‘op)

n

9
/\z‘+1 - )‘op ( )

_ Egb(/\op) B Eib()‘ifl)
B )\op - /\i—l

1.e.

) E*(Nis1) </\op — )\il) + Ef*(X\i1) </\i+1 - )\op>
E’I]: (AOP) = )\.+1 o )\'71 (10)

For equal intervals of A ( A, — A\i-1 = Aiy1 — Agp ), which was the case in this
work,

_E*N1) + BIM (M)

EL* () :

(11)



In practice for almost all states considered here EI°(\;_;) = EJ*(\;;;) in the
vicinity of the resonance, and visual inspection was sufficient to give reliable
results.

To test stability of our results with respect to the CAP parameters, the width
of each resonance was analysed as function of R,,;, and A. Table 1 presents
results for three typical J = 0 resonance states. As expected, in all cases
the value of )\,, increases with R,,;, for a given basis set. Stable results are
obtained for R,,;, in the region of 11.0 ay and this value is used for the results
presented below. However it should be emphasized that the choice of CAP
parameters remains the largest source of uncertainty in these calculations.

Table 2 compares our results against those of Skokov et al [6], who used two
different methods to determine their resonance parameters. The resonance
energies agree well in all three calculations, but there are notable differences
between all three calculations for the widths. Our calculations used larger
basis sets than those of Skokov et al and, as can be seen from the energies,
which behave variationally, are better converged. We are confident that this
improved convergence means that our estimates for the resonance widths are
also more reliable. Thus, for example, Skokov et al report a width of 0.042 and
0.0042 cm™! for the resonance at 20194 cm™!. Our calculations give a width
significantly narrower, 3 x 107° cm™!, than either of these values. Our result is
stable to varying R, A, the size of the initial basis and the size of the final
basis used to diagonalize the complex Hamiltonian. We thus believe that this
result represents the true value for the resonance width given by the potential
of Skokov et al [22] and that our more stable results are a consequence of using
significantly larger basis sets which is made possible by the use of a parallel
computer. Our results and Skokov et al’s agree quite well for the highest 3
resonances. We do not know if this observation is physically significant or
simply coincidence.

The J = 3 calculations were performed for even (p = 0) rotational parity.
As it is relatively quite easy to calculate the rotational constants for most
of the vibrational states from J = 1 ro-vibrational states, we also performed
J =1 calculations as a guide to assignment. However the centrifugal barrier
for J =1 is too low to support shape resonances.

Table 3 compares resonances states with J = 0 and J = 3, K = 0,p = 0.
Our calculation gives a value for the HOCI vibrational ground state rotational
constant, By, of 0.503 cm!. Hence for the (000) state the J =3, K =0,p =0
rotation level lies 6 cm™! above the J = 0 state. It can be seen that the
rotationally excited resonances which we identify in Table 2 generally lie 5 —
7 cm ! above a J = 0 Feshbach resonance.

Just above the dissociation limit of 19289.2 cm™ we find two broad (T" > 0.1



cm™) J = 0 resonances at 19294.04 and 19295.10 cm™'. In this region we
find four narrow resonances with J = 3, K = 0,p = 0, which do not appear
to be the counterparts of these or any other J = 0 resonances. These are
the resonances depicted in Fig. 1 and resonance parameters for the states are
given in Table 3. In this region we find 4 resonances in less than 10 cm™! for
J = 3. This should be contrasted with the J = 0 calculations, or indeed the
J = 3 calculations at higher energy, where their resonances are well spaced
and separated on average by more than 50 cm~!. These low-lying resonances
have all the characteristics of shape resonances.

The width of the shape resonances we identify increase systematically with
energy which is consistent with more rapid tunnelling as the resonance state
approaches the top of the barrier. However it would probably be unwise to
read too much into this trend. In one-dimensional problems such as the di-
atomic vibrator, shape resonances occur due to trapping behind a barrier in
the vibrational coordinate which is also, per force, the dissociating coordi-
nate. However a multidimensional vibrator can trap (vibrational) energy in
non-dissociating degrees of freedom, yielding Feshbach resonances. The J =0
states just below dissociation will vary as to their distribution of vibrational
energy and one might expect the lifetimes of rotationally excited resonances
associated with these states to vary accordingly.

5 Conclusions

We have presented fully converged calculations of HOCI for J =0 and J =3
using an L? complex potential methods. We have identified a number of J = 0,
Feshbach-type, resonance for which it is also possible to identify associated
rotationally excited resonances states. In addition we have also found four
low-lying rotationally excited resonances which have no resonance counter-
parts with J = 0. The ‘shape’ resonances have not been previously identified
in above dissociation calculations on chemically bound triatomic molecules.
Although the spectroscopic methods used to study HOCI (see ref [23]) are not
well-suited to the detection of shape resonance, shape resonances are known to
be numerous and to play an important role in at least some near-dissociation
processes [2]. The methods outlined here provide a tractable means of detect-
ing and parameterizing these long-lived resonance states.
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Table 1
Variation of the resonance widths with R, and A, for three resonances with
J=0

Rouin/a0 E = 19335.86 cm™! E =19603.01 cm ! E =19905.91 cm !

Aop/Ep, T/cm™! Aop/Ep T/em™! Xop/Er, T/em™!
10.50 0.01 0.015 0.01 0.023 0.01 0.013
10.75 0.02 0.011 0.02 0.018 0.02 0.011
11.00 0.07  0.0064 0.04 0.013 0.09 0.0071
11.25 0.09 0.0057 0.12 0.011 0.14 0.0067
11.50 1.10  0.0057 1.11 0.011 1.12  0.0066

Table 2

Comparison between this work and that in ref.[6]. E is the resoanance energy or
band origin and T" is the width. The quantum numbers are as given in ref.[6]: OCl
stretch, bend, OH stretch.

State This work Skokov et al [6]
Method A Method A Method B
E/em™! T/em™! E/em™! T/em™ E/ecm™ T/cm™!
315 19603.01 0.013 19603.17 0.00011 19603.02 0.0014
035 19610.32 0.0082 19610.50 0.067 19610.45 0.21
106  19848.38 0.0010 19848.76  0.0019 19848.78  0.000089
016  20194.38 0.00003 20194.62 0.042 20194.67 0.0042
135 20291.82 0.0014 20291.84 0.079 20291.92 0.02
415  20300.90 0.046 20300.91 0.19 20301.02 0.36
206  20573.13 0.0080 20573.41  0.0056
306  21279.43 0.034 21279.53 0.043
007  21714.53 0.0080 21716.33 0.012

Method A: diagonalisation and truncation.

Method B: filter diagonalisation.
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Table 3: HOCI resonance energy term values, E, and
widths, I, for the rotational ground state and J = 3.

J=0 J=3k=0,p=0
E/em™ T/ecm™! E/em™' T'/em™!
19308.75  0.0050
19335.86  0.0064 19340.95 0.012
19402.55 0.0019 19408.00 0.0020
19424.37 0.0086 19427.20 0.0023

19427.63 0.0021
19459.63 0.037 19468.18 0.056
19554.98 0.00072
19603.01 0.013 19608.38  0.0066
19605.92  0.0044 19611.75 0.028
19610.32  0.0082
19616.07  0.00099 19620.98 0.0056
19778.15 0.0068 19783.33 0.060
19848.38  0.0010 19854.25  0.0060
19874.65 0.030 19881.26 0.082
19905.91 0.0071 19911.57 0.026
19946.87 0.0018 19951.71 0.0041
20170.56 0.00052 20175.91 0.0012
20194.38 0.00003 20200.32  0.0066
20291.82 0.0014 20297.47 0.013
20300.90 0.046 20306.29 0.13
20573.13 0.0080 20578.82 0.012
20589.38 0.0013 20594.76  0.00096
20602.18 0.0056 20609.11 0.0080
20656.93 0.0011 20661.03 0.020
20868.53 0.0068 20873.38 0.0096
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20897.96
20913.68
20963.04
20984.56
21101.69
21279.43
21332.86
21338.57
21376.02
21398.04
21464.91
21690.82
21714.53

0.0025
0.00013
0.00069
0.0014
0.00028
0.034
0.00015
0.00060
0.0044
0.0025
0.00054
0.00014
0.0080

20902.05
20918.78
20968.55
20989.98
21105.28
21284.98
21337.98
21344.38
21381.98
21403.68
21469.97
21696.63
21720.62

0.013
0.00019
0.028
0.00025
0.12
0.0022
0.035
0.039
0.013
0.029
0.0016
0.0050
0.0042
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Table 4
HOCI energy term values, E, and widths, I', in cm~! for low-lying resonances with

J =3.

E T
19294.33  0.000015
19296.13  0.0042
19296.99 0.0082
19300.15 0.016

Figure Caption

Figure 1 Resonance positions and widths as a function of A for the four lowest
resonances in the HOCI calculation with J = 3,p = 0. The arrows show the
value of the energy and width (I") determined for each resonance.
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