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models comprised of �nitely many moment inequalities. Building on results from the literature

on multivariate one-sided tests, I show how to test the hypothesis that any particular para-

meter value is logically consistent with the maintained moment inequalities. The associated

test statistic has an asymptotic chi-bar-square distribution, and can be inverted to construct an

asymptotic con�dence set for the parameter of interest, even if that parameter is only partially

identi�ed. The con�dence sets are easily computed, and Monte Carlo simulations demonstrate
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1 Introduction

When the assumptions of an econometric model are not restrictive enough to point identify the pa-

rameters of interest, but nonetheless impose meaningful restrictions on the values these parameters

may take, the parameters are said to be partially identi�ed.1 Much of the early research on partial

identi�cation has not focused on issues of statistical inference, and for good reason. First, su¢ cient

characterization of the identi�ed set for partially identi�ed parameters is a necessary precursor for

statistical inference. Second, in some cases, the size of the identi�ed set is signi�cantly larger than

the imprecision of estimates due to sampling variation.2 However, in order to build con�dence

regions, perform hypothesis tests, or compare set-identi�ed parameters to point estimates derived

from more restrictive models, sampling variation must be taken into account.

Until recently, much of the literature on partial identi�cation has sought to build �bounds�

for univariate parameters. That is, if the parameter of interest, �0, is univariate, the identi�ca-

tion region can often be characterized by just two numbers, the lower and upper bounds of an

interval in R. In this case, an asymptotically valid bootstrap procedure can be used to build

con�dence intervals for the entire identi�ed set, such as those constructed by Manski and Nagin

(1998) and Horowitz and Manski (2000). In these cases, the population identi�cation region can

be written as an interval [L;U ], and this procedure yields a con�dence interval
h
L̂�; Û�

i
such that

lim
n!1

Pr
�
[L;U ] �

h
L̂�; Û�

i�
= �, for a pre-speci�ed value of � 2 [0; 1]. Also in the case where the

parameter of interest is univariate, Imbens and Manski (2004) more recently show how to construct

con�dence intervals with pre-speci�ed asymptotic coverage for the parameter �0 itself, rather than

for the entire identi�cation region ��. That is, they show how to compute
h
L̂�; Û�

i
such that

inf
�2��

lim
n!1

Pr
�
� 2

h
L̂�; Û�

i�
= �, where �� denotes the identi�cation region for the true model

parameter �0.3 If the economist wishes to perform inference on �0 rather than ��, their technique

yields a strictly smaller con�dence interval for any coverage level.

Moving beyond the realm of univariate parameters, Chernozhukov, Hong, and Tamer (2004)

(CHT) develop a subsampling procedure to build asymptotically valid con�dence sets of a pre-

speci�ed level for the identi�ed set in any model in which the identi�ed set can be written as

those values that minimize an objective function. They further show in their appendix how to

modify their procedure to build con�dence sets that cover just the parameter of interest, rather

than the whole identi�cation region, with the desired asymptotic coverage probability. Shaikh

1Manski (2003) o¤ers a vast survey of models in which parameters of interest are partially identi�ed. I adopt the
term �partial identi�cation�from this text.

2See Manski and Nagin (1998), for example.
3 Imbens and Manski (2004) also show how to construct con�dence intervals

h
L̂�; Û�

i
such that

lim
N!1

inf
�2��

Pr
�
� 2

h
L̂�; Û�

i�
= � . These con�dence regions are larger than the former kind, but have the ad-

ditional quality of uniform asymptotic coverage over ��.
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(2005) also employs subsampling to construct con�dence sets for both the entire identi�ed set or

the parameter of interest. In particular he justi�es the use of an iterative procedure to construct

con�dence regions for the entire identi�ed set. While the inferential approaches of both CHT and

Shaikh are applicable in a very general class of models, their reliance on subsampling may in some

cases be computationally burdensome.

Other recent research on building con�dence regions for partially identi�ed parameters and/or

their identi�cation regions includes Andrews, Berry, and Jia (2004), Pakes, Porter, Ho, and Ishii

(2006), henceforth (PPHI), and Beresteanu and Molinari (2006). PPHI study the use of moment

inequalities to perform inference on �0 in models with agents who make optimal, or approximately

optimal, decisions from an either discrete or continuous choice set. They develop conservative

con�dence sets for model parameters, and apply their technique to two applications in Industrial

Organization: an investigation of how banks choose their ATM locations, and an analysis of the

determination of HMO hospital networks in the United States.4 To perform inference, PPHI

use simulations from a multivariate normal distribution to approximate the distribution of the

moments in their model. Their method for building con�dence sets for model parameters is

straightforward to implement, but admittedly conservative in that asymptotic coverage is at least

as high as the nominal level. Exactly how conservative their con�dence sets are depends on the

particular application, and this remains a topic for future research. Andrews, Berry, and Jia

(2004) develop a means of inference on �� in incomplete models of �rms�entry and exit decisions.

Their estimation procedure makes use of the necessary conditions for Nash Equilibrium, which are

typically moment inequality restrictions. To perform inference, they simulate these inequalities

for di¤erent parameter values, and use a bootstrap procedure to construct con�dence sets for

model parameters. They provide an application to the location decisions of Wal-mart, Kmart,

and other discount chain stores. Beresteanu and Molinari (2006) use the theory of set-valued

random variables (SVRVs) to analyze the asymptotic behavior of a class of set-valued estimators

for partially identi�ed parameters. In particular, they show how to build con�dence collections for

the identi�ed set in these models. Another related recent paper is that of Moon and Schorfheide

(2006), who focus on models that are comprised of both moment equalities and inequalities, in

which the moment equalities are su¢ cient for point identi�cation. They show that incorporating

the additional inequality restrictions in an empirical likelihood estimator can improve the e¢ ciency

of their estimates.

In this paper, I focus explicitly on models that are comprised of a �nite number of moment

inequalities, E [m (y; x; �0)] � 0, where m (y; x; �0) is a vector-valued function of random variables

(y; x), which is known up to the value of the possibly multivariate parameter �0. This class of

models includes many examples from the econometrics literature, dating back at least to Frisch

(1934), who derived bounds for � in the simple linear regression model with measurement error.

4The applications are explored in further detail in Ishii (2005) and Ho (2005).
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More recently, Klepper and Leamer (1984) extend Frisch�s result to the multivariate linear regression

model with errors in all variables. Another example of bounds that can be cast in terms of moment

inequalities are the Frechet bounds (Frechet (1951)) on the value of the joint CDF of two random

variables evaluated at any point based on knowledge of only the marginal CDFs. More recent

examples of models based on �nitely many moment inequalities include the case of interval data

on outcomes studied by Manski and Tamer (2002) when the covariate space is discrete, bounds on

treatment e¤ects5, and the case of inference on the mean of a univariate distribution with missing

data, studied by Manski (1989) and Imbens and Manski (2004).

I build con�dence regions for the parameter of interest through pointwise testing. The technique

employed in this paper makes use of prior results from the literature on multivariate hypothesis

testing, such as Kudo (1963), Perlman (1969), Gourieroux, Holly, and Monfort (1982), and Wolak

(1991).6 Speci�cally, I construct a test statistic that, under su¢ cient regularity conditions, and

when evaluated at �0, has an asymptotic distribution that is a mixture of chi-square distributions,

the chi-bar-square distribution. This test statistic can then be used to construct approximate con-

�dence sets for �0 with pre-speci�ed asymptotic coverage. For this purpose, I restrict attention to

models where knowledge of the parameter of interest is obtained by means of a �nite set of moment

inequality restrictions. As discussed above, many models previously studied in the literature can

be written in such a form. A careful distinction must be made, however, between models that

achieve partial identi�cation from a �nite set of unconditional moment restrictions, and those that

rely on an in�nite set of such restrictions. The latter case o¤ers signi�cant complication, and is not

covered in this paper.7

The procedure for building con�dence sets amounts to a test for each value of the parameter

� in the underlying parameter space. I characterize the asymptotic distribution of a test statistic

Q̂n (�) under the null hypothesis that � is an element of the identi�ed set ��, or, equivalently, that

E [m (y; x; �)] � 0. The con�dence set for �0 is then simply the set of � that are not rejected by

this hypothesis test. Because pointwise testing is based on �xed �, the theory needed to guarantee

proper asymptotic coverage relies completely on the distribution of observables.8 The procedure

I employ is relatively straightforward and easy to implement in practice in many cases of interest,

which is demonstrated with two speci�c examples. A computational drawback is that for some

models, the cuto¤ value for the test statistic Q̂n (�) di¤ers for di¤erent values of � 2 ��. That is,
the test statistic Q̂n (�) is not asymptotically pivotal because its asymptotic distribution depends

5Some speci�c examples include Manski and Nagin (1998), Molinari (2005), Balke and Pearl (1997), Manski and
Pepper (2000) and Hotz, Mullin, and Sanders (1997).

6Sen and Silvapulle (2004) o¤er a thorough compendium of this body of research.
7Also falling into the latter class are models based on conditional moment inequalities where the conditioning

variables have continuous support. In this case, one could potentially instead use a �nite number of the implied
unconditional moment inequalities to build conservative con�dence sets as described in this paper.

8 Hu (2002) uses a conceptually similar approach to building con�dence sets in a GMM framework in which a
subset of model parameters might not be point-identi�ed.
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on the variance of those components of m (y; x; �) that have expected value zero. This problem is

overcome by building conservative con�dence sets for �0 by using an upper bound on the number

of such components. The dimension of m (y; x; �), J , is clearly an upper bound, but in models

with partially identi�ed parameters there is often a smaller upper bound. This is indeed the case

in both examples of this paper.

The paper proceeds as follows. In section 2 I present the moment inequality model on which I

focus, as well as my strategy for building con�dence regions. I state precisely what the properties

of my con�dence sets are, and distinguish them from two other types of con�dence sets in the

literature. In section 3 I describe the pointwise hypothesis testing procedure. Section 4 then

presents two easy ways to construct conservative con�dence sets based on the hypothesis test

of section 3. The methodology is computationally simple and no simulation, subsampling, or

bootstrapping is required. In section 5 I present two examples and investigate the performance of

con�dence sets in these models via Monte Carlo simulations. This includes a comparison, via both

simulation and analytically, to the con�dence sets of Imbens and Manski (2004) for the case of the

mean with missing data. It is shown that when there is positive probability of missing data, the

two types of con�dence sets are asymptotically identical for any �xed con�dence level. Section 6

concludes and o¤ers avenues for continued research. All proofs are in the Appendix.

2 The Model

Let Z � f(xi; yi) : i = 1; :::; ng be a random sample of observations drawn from population f
;F ; Pg,
where F is the Borel sets on 
. (x; y) is used to denote a representative draw of a random variable
according to distribution P . Let X , Y denote the support of the random variables x; y, respectively,
where X � Rs and Y � Rp. I take y to be the outcome variables and x covariates. Each observa-
tion (xi; yi) represents all information directly observed by the econometrician for each i = 1; :::; n.

If partial identi�cation is a result of missing data, for example, then (xi; yi) excludes those features

of individual i in the population that are missing.9 I use � to denote a representative value of the

parameter of interest, where � is known to belong to the compact space � � Rk. The set �� is

the set of values of � 2 � that satisfy the restrictions of the model, i.e. �� is the identi�ed set for
�. The �true�underlying value of � in the model is denoted �0, but in general �0 might not be

identi�ed by the restrictions of the model.

In this paper I study models based on moment inequalities. In full generality, the model is

9This is made more explicit in the missing data example of section 5.1.
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summarized by the restrictions

E [m (y; x; �0)] = E

2664
m1 (y; x; �0)

...

mJ (y; x; �0)

3775 �
0BB@
0
...

0

1CCA . (1)

J <1 is the number of moment inequalities of the model. This rules out, for example, the model

E [m (y; x; �0) jx] � 0, where X has in�nite cardinality. In summary, the model is given by the

following three assumptions.

Assumption 1 (A1: random sampling) Z � f(xi; yi) : i = 1; :::; Ng are i.i.d. observations distrib-
uted P.

Assumption 2 (A2: compact parameter space) �0 is an element of the compact space � � Rk.

Assumption 3 (A3: moment inequalities) E [m (y; x; �0)] � 0, where m (�; �; �) : Rp�Rs��! RJ .

The assumptions above yield the following identi�ed set for �0.

De�nition 1 Given assumptions (A1)-(A3), the identi�ed set for �0 is

�� = f� 2 � : E [m (y; x; �)] � 0g .

The identi�ed set for �0, ��, is the set of parameter values � that satisfy the restrictions of the

model, and thus �0 is necessarily an element of this set. If �� is a singleton, then �� = f�0g and �0
is point identi�ed. If �� is empty, the model is rejected, and if �� is neither empty nor singleton,

then �0 is only partially identi�ed. In this case, the model is informative even though �0 is not

point identi�ed. By de�nition of the identi�ed set, there is no way to distinguish between any of

the elements of �� being the true �0 on the basis of observables; any element of the identi�ed set

is a plausible value for �0, as all elements of �� are observationally equivalent by de�nition.

The con�dence sets of this paper are based on a test of the hypothesis that � 2 �� against the
alternative � =2 ��, or equivalently, the test

H0 : E [m (y; x; �)] � 0 (2)

H1 : E [m (y; x; �)] � 0,

for any �xed candidate value of � 2 �. First, I show how to perform this test with pre-speci�ed

asymptotic size �. Once the testing procedure is established for �xed �, a 1 � � level con�dence
set for �0 is constructed by taking the set of � that are not rejected by this hypothesis test.
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Formally, the constructed con�dence set obtains the desired asymptotic coverage probability

by means of standard arguments given by Lehmann (1986, pp. 90-91.). The only di¤erence here

is that if �0 is not identi�ed, the null hypothesis is composite rather than simple. In Lehmann�s

notation, let A (�) denote the �acceptance�region for the null hypothesis. That is, the test yields a

region A (�) such that one fails to reject H0 if the sample point Z = f(xi; yi) : i = 1; :::; ng 2 A (�).
To guarantee asymptotic type 1 error of no more than �, the acceptance region is constructed to

satisfy

inf
�2��

lim
n!1

Pr fZ 2 A (�)g = 1� �. (3)

An asymptotic 1� � con�dence set for �0 is then given by

CR1�� = f� 2 � : Z 2 A (�)g ,

since

lim
n!1

Pr f�0 2 CR1��g = lim
n!1

Pr fZ 2 A (�0)g � inf
�2��

lim
n!1

Pr fZ 2 A (�)g = 1� �.

If one were instead interested in a con�dence set for ��, then to obtain the same asymptotic

level of coverage 1��, a (weakly) larger con�dence set is needed. This follows from the observation
that

Pr f�� � CR1��g = Pr f\�2�� (� 2 CR1��)g = Pr f\�2�� (Z 2 A (�))g � inf
�2��

Pr fZ 2 A (�)g .

Combining this with the fact that

lim
n!1

inf
�2��

Pr fZ 2 A (�)g � inf
�2��

lim
n!1

Pr fZ 2 A (�)g , (4)

it follows that

lim
n!1

Pr f�� � CR1��g � inf
�2��

lim
n!1

Pr fZ 2 A (�)g ,

so that CR1�� is not guaranteed to have asymptotic coverage of 1� � for the entire identi�cation
region ��, even though it is guaranteed to have the desired coverage for the true parameter �0. To

obtain an asymptotically valid con�dence region for �� one needs �rst to construct an acceptance

region A� (�) with the property that

lim
n!1

Pr f\�2�� (Z 2 A� (�))g = 1� �, (5)

with associated con�dence set

CR�1�� = f� 2 � : Z 2 A� (�)g ,
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since

lim
n!1

Pr
�
�� � CR�1��

	
= lim
n!1

Pr
�
\�2��

�
� 2 CR�1��

�	
= lim
n!1

Pr f\�2�� (Z 2 A� (�))g = 1� �.

The di¤erence between the two types of con�dence sets has been discussed previously by Imbens

and Manski (2004) and Chernozhukov, Hong, and Tamer (2004, Appendix G).

The pointwise testing approach I employ here relies on a test of the hypothesis � 2 ��, and can
thus be used to build con�dence regions of the former type. That is, this paper focuses entirely

on constructing con�dence sets CR1�� for the parameter of interest �0, that satisfy

inf
�2��

lim
n!1

Pr f� 2 CR1��g = 1� �, (6)

since

lim
n!1

Pr f�0 2 CR1��g � inf
�2��

lim
n!1

Pr f� 2 CR1��g .

As long as (6) holds, CR1�� must have at least 1� � asymptotic coverage for �0.
The asymptotic coverage so obtained will not, however, be uniform over � 2 ��. If uniformity

is desired, one must instead construct a con�dence region gCR1�� such that
lim
n!1

inf
�2��

Pr
n
� 2gCR1��o = 1� �.

Imbens and Manski (2004) also show how to construct such con�dence intervals for univariate �0
in their model. Con�dence regions of this type require more stringent regularity conditions.10

3 Testing the Hypothesis that � 2 ��

In this section, I consider a test of the hypothesis (2) for a �xed candidate value of �. To test this

hypothesis, I construct a test statistic, Q̂n (�) whose asymptotic distribution, when scaled by n,

is chi-bar-square (a mixture of chi-square random variables) under the null hypothesis. The test

statistic is in general not asymptotically pivotal, but can still be used to construct conservative

con�dence sets for �0. Given the asymptotic distribution of nQ̂n (�), for any �xed �, I compute a

cuto¤ value C1�� such that

inf
�2��

lim
n!1

Pr
n
nQ̂n (�) � C1��

o
� 1� �.

10 In the model of Imbens and Manski (2004), su¢ cient regularity conditions are required to guarantee a uniform
central limit theorem over �� holds when con�dence sets of this nature are constructed. When the in�mum is taken
outside the limit, a uniform CLT is not necessary.
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A nominal �-level con�dence set is then given by

CR1�� �
n
� 2 � : nQ̂n (�) � C1��

o
.

To construct the test statistic Q̂n (�), E [m (y; x; �)] is �rst estimated nonparametrically by its
sample analog Ên [m (y; x; �)]. Then, under mild regularity conditions, it is straightforward to

characterize the asymptotic distribution of Ên [m (y; x; �)] about E [m (y; x; �)]. However, the goal
is to test whether � is contained in the identi�ed set implied by the restrictions (1). As such, I

consider the asymptotic distribution of the following minimum Wald-type statistic:

Q̂n (�) = min
t�0

h
Ên [m (y; x; �)]� t

i0
V̂ �1�

h
Ên [m (y; x; �)]� t

i
,

where V̂� is the sample variance of m (y; x; �). If the moment restrictions E [m (y; x; �)] � 0 are

true, i.e. if � 2 ��, then Q̂n (�) should be small. In this case, violations of Ên [m (y; x; �)] � 0 are
attributable to no more than sampling variation. It is worth noting that this statistic, taken as a

function of the parameter �, is in fact the sample analog of a modi�ed minimum distance (MMD)

objective function, as de�ned by Manski and Tamer (2002). The population version of Q̂n (�) is

Q (�) = min
t�0

[E [m (y; x; �)]� t]0 V �1� [E [m (y; x; �)]� t] ,

where V� is the variance of m (y; x; �). This is because Q (�) = 0 if and only if E [m (y; x; �)] � 0.
While Manski and Tamer (2002) derive conditions for consistency of MMD estimators, characteri-

zation of the asymptotic distribution of MMD estimators was left as a topic for future research.

Outside the context of estimating partially identi�ed parameters, test statistics of this form have

been used previously in the literature on multivariate one-sided hypothesis testing, e.g. Perlman

(1969), Kodde and Palm (1986), and Wolak (1991). In these prior studies, however, the distribution

of unobservables is modeled parametrically, and �0 is point identi�ed and can be consistently

estimated. Here, there is no parametric speci�cation for unobservables and �0 need not be point

identi�ed. The formulation that is closest to that considered here is that of Wolak (1991). Wolak

shows that the limiting distribution of test statistics of the form Q̂n (�) depends only on those

constraints that are satis�ed with equality at the least favorable value of � satisfying the null

hypothesis, here that E [m (y; x; �)] � 0. In his model, however, there is a known function h (�)

in place of E [m (y; x; �)]. In the setting of this paper, aside from the complication that here �0 is

only partially identi�ed, it is also the case that E [m (y; x; �)] is not a known function, but rather
must be estimated.

This is a substantial complication because, as I show in Proposition 1, the asymptotic distrib-

ution of Q̂n (�), su¢ ciently scaled, is degenerate except on the boundary of the null hypothesis.11

11Andrews (2001) considers hypothesis tests when a parameter is on the boundary of the maintained hypothesis,
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Thus, the cuto¤ value of Q̂n (�) used to compute the critical region is driven entirely by the subset

of E [m (y; x; �)] � 0 such that E [m (y; x; �)] is on the boundary of RJ+, i.e. the set of � such that
E [mj (y; x; �)] = 0 for at least one j 2 f1; :::; Jg. In Wolak�s model, this complication also arises,
but in that setting h is a known function, and the boundary of the set f� : h (�) � 0g is known.

To derive asymptotics for Q̂n (�), I impose the following two additional assumptions.

Assumption 4 (A4: �nite variance of m on ��) sup
�2��

E
�
m (y; x; �)m (y; x; �)0

�
< 1, i.e. each

element of the matrix E
�
m (y; x; �)m (y; x; �)0

�
is �nite for all � 2 ��.

Assumption 5 (A5: positive de�nite variance) For each � 2 ��, V� is positive de�nite.

Assumption (A4), along with (A1), guarantees that the strong law of large numbers and a central

limit theorem hold for E [m (y; x; �)], while assumption (A5) guarantees that V� is invertible. Under
(A1) and (A4), it follows that for all � 2 ��,

Ên [m (y; x; �)] =
1

n

nX
i=1

m (yi; xi; �)
a:s:! E [m (y; x; �)] , (7)

V̂n [m (y; x; �)] =
1

n

nX
i=1

�
m (y; x; �)� Ên [m (y; x; �)]

��
m (y; x; �)� Ên [m (y; x; �)]

�0
(8)

a:s:! var fm (y; x; �)g � V�,

and
p
n
n
Ên [m (y; x; �)]� E [m (y; x; �)]

o
d! N (0; V�) . (9)

The validity of assumption (A4) depends on the problem at hand. In the absence of (A4), what

is needed for the asymptotic results of this section are the three conditions written above; the

consistency of the sample mean and variance for E [m (y; x; �)] over ��, and a central limit theorem
for

p
n
n
Ên [m (y; x; �)]� E [m (y; x; �)]

o
for each � 2 ��.12 Because the goal here is construction

of a con�dence set CR1�� such that inf�2�� limN!1 Pr f� 2 CR1��g = 1��, it is enough for these
conditions to hold pointwise over ��. If instead the researcher�s goal was to construct a con�dence

set with uniform coverage over ��, i.e. sets such that limN!1 inf�2�� Pr f� 2 CR1��g = 1 � �,
then stronger conditions would be needed, as discussed at the end of section 2.

There are two approaches to guaranteeing the validity of assumption (A4). Because the re-

searcher cannot distinguish between �0 and any other element of ��, one way is to show that

rather than the null. However, the hypothesis test (2) can be recast so that �0 does in fact lie on the boundary of
the maintained hypothesis under the null. This point is elaborated in Appendix A.
12Both the assumption that the observations are iid and that the rate of convergence of Ên [m (y; x; �)] to

En [m (y; x; �)] is
p
n can be relaxed, as long as (7), (8), and (9) can be shown to hold at each � 2 �� for some

sequence of constants an !1 replacing
p
n.
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this assumption holds at each value of � 2 ��. This is what is done in both examples of this

paper. The second approach is to simply impose stricter regularity at �0 itself a priori. That is,

if the researcher knows that E
�
m (y; x; �0)m (y; x; �0)

0� <1, i.e. that m has �nite variance at �0,

then the identi�ed set �� can be taken to be the set of � 2 � such that E [m (y; x; �)] � 0 and

E
�
m (y; x; �)m (y; x; �)0

�
<1. Then, by assumption, (7), (8), and (9) hold at each � 2 ��.

The �rst step to deriving asymptotics for nQ̂n (�) under H0 shows formally that only those

components of E [m (y; x; �)] exactly equal to zero have a non-negligible contribution asymptoti-
cally. Before proceeding with the �rst result, I de�ne some necessary notation. For expositional

convenience, I refer to the subset of the J constraints that hold with equality at any particular

value of � as the set of binding constraints. Without loss of generality, let the �rst b (�) con-

straints be the subset of binding constraints at �, so that E [mj (y; x; �)] = 0, j = 1; :::; b (�), and

E [mj (y; x; �)] > 0, j = b (�) + 1; :::; J . Let m� (y; x; �) =
�
m1 (y; x; �) ; :::;mb(�) (y; x; �)

�0 denote
the subvector of moments that have mean zero, and let V �� = var (m� (y; x; �)). Let b � b (�0),

V � var (m (y; x; �0)), and V � � var (m� (y; x; �0)). Finally, I use Pr
n
�2j � c

o
to denote the

probability that a chi-square random variable with degrees of freedom j is at least as great as the

constant c, where �20 denotes a point mass as zero. The following proposition characterizes the

limiting distribution of nQ̂n (�) under the hypothesis that � 2 ��.

Proposition 1 Under assumptions (A1)-(A5)

lim
n!1

Pr
n
nQ̂n (�) � c

o
=

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	
, (10)

where w (b; b� j; V �) is the weights function de�ned by Wolak (1987) and Kudo (1963) evaluated
at (b; b� j; V �).

Corollary 1 Suppose that E [m (y; x; �)] > 0. Then

lim
n!1

Pr
n
nQ̂n (�) > 0

o
= 0.

Proposition 1 closely follows Lemma 1 of Wolak (1991). The �rst step to the proof shows

that the limiting distribution of nQ̂n (�) is determined only by those terms that correspond to

components of E [m (y; x; �)] that are exactly equal to 0. The contribution of the other compo-

nents vanishes in the limit as n ! 1. The �rst corollary is an immediate implication; when

E [m (y; x; �)] > 0, nQ̂n (�) is op (1).
The weights function w (b; j; V ) has arisen repeatedly in research on multivariate one-sided

hypothesis testing. It is the probability that t0 has exactly j positive components, where t0 is the
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minimizer of the probability limit of the objective function. That is,

t0 = argmin
t�0

[z � t]0 V �1 [z � t] ,

where z � N (0; V ) is a multivariate normal random variable of dimension b, and

w (b; j; V ) = Pr ft0 has exactly j positive componentsg

= Pr ft0 has exactly b� j components equal to zerog .

These weights are referred to as �level probabilities�of a chi-bar-square distribution. Closed form

expressions for the weights are given by Wolak (1987) for the case where b � 4, or where V is

diagonal. More generally, closed-form expressions for the weights have not been obtained, but

they can be approximated with arbitrary accuracy by means of simulation.13

If V �� and b (�) were known, then it would be straightforward using previously developed tech-

niques to compute the cuto¤ value C� such that
b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
n
�2j � c

o
= �. Un-

fortunately, V �� and b (�) are not known in this case. An intuitive solution would be to plug

consistent estimates into the weights function, but unfortunately this approach won�t work. It is

straightforward to consistently estimate V� = var fm (y; x; �)g, but the CDF of the limit distrib-
ution given by (10) is discontinuous in b (�), so that the problem cannot be overcome by merely

plugging in consistent estimates for V �� and b (�). This problem can, however, be overcome by

taking a conservative approach. Section 4 details how this can be done by using an upper bound

for b (�) to construct a cuto¤ value Cb
�
� such that

inf
�2��

lim
n!1

Pr
n
nQ̂n (�) � Cb

�
1��

o
� 1� �.

4 Computing Cuto¤Values For Con�dence Sets

In this section I illustrate a way to perform inference despite not knowing b (�), the number of

binding moment inequalities at any particular � 2 ��. I provide two ways to compute cuto¤

values to build con�dence sets that cover �0 with at least probability 1� � asymptotically. Both
approaches have the advantage that the cuto¤ values are extremely easy to compute with any

software package that provides values of chi-square CDFs. The �rst method is generally applicable,

while the second shows how a smaller, but still conservative, cuto¤ value can be computed when

it is known that V �� is diagonal, which is in fact the case in both examples of section 5. Both

approaches require that the researcher impose an upper bound on b (�) for � 2 ��; an obvious
upper bound is the total number of moment inequalities, J . In some settings, it may be credible to
13Sen and Silvapulle (2004, pp. 78-80).
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impose a smaller upper bound; more generally, I use b� to denote the chosen upper bound. In fact,

both examples considered in this paper are settings in which it is known that strictly fewer than

J of the constraints can bind at any given value of �. This happens because the model implies

both upper and lower bounds on the expectation of a function of �. This is not an uncommon

occurrence in models with partially identi�ed parameters.

4.1 Cuto¤ values for general V �

The asymptotic distribution of nQ̂n (�) obtained in Proposition 1 for any �xed � 2 �� is discon-
tinuous in the unknowns b (�) and V �� . However, whatever V �� , an upper bound on b (�) can be

used to construct a cuto¤ value that can used to perform the hypothesis test (2). This cuto¤ value

can then be used to build conservative, asymptotically valid con�dence sets for �0. The following

corollary provides the main result.

Corollary 2 Let (A1)-(A5) hold. Let sup�2�� b (�) � b�. Then for any c > 0,

sup
�2��

lim
n!1

Pr
n
nQ̂n (�) � c

o
� 1

2
Pr
�
�2b� � c

	
+
1

2
Pr
�
�2b��1 � c

	
.

The proof follows from the fact that the weights function satis�es the properties 0 � w (b; j; V �) �

1=2,
bX
j=0

w (b; j; V �) = 1, and Pr
n
�2j > c

o
is increasing in j, for any c > 0. The upper bound on

the tail probability of the limit distribution of nQ̂n (�) is obtained by putting as much weight as

possible on the highest terms of the chi-bar-square summation of (10). Results on the upper bound

on chi-bar-square tail probabilities have been used in prior research, going back at least to Perlman

(1969).14 Exactly how slack the inequality is depends on the feasible values of the variance matrix

V �� over � 2 ��. Wolak (1991) discusses the possible slackness of such bounds in his framework.

I leave investigation of the slackness of this bound in this framework to future work.

This corollary gives a way to construct asymptotically valid con�dence sets for �0. This is

because an implication of the corollary is that if Cb
�
� solves

1

2
Pr
n
�2b� � Cb

�
�

o
+
1

2
Pr
n
�2b��1 � Cb

�
�

o
= �, (11)

Then

CR1�� =
n
� 2 � : nQ̂n (�) � Cb

�
�

o
14Perlman derives upper bounds on tail probabilities of mixtures F distributions that employ the same weights

function.
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has asymptotic coverage probability of at least 1� � for �0 since

lim
n!1

Pr
n
nQ̂n (�0) � Cb

�
�

o
= 1� lim

n!1
Pr
n
nQ̂n (�0) � Cb

�
�

o
� 1� sup

�2��
lim
n!1

Pr
n
nQ̂n (�) � Cb

�
�

o
� 1� 1

2
Pr
n
�2b� � Cb

�
�

o
+
1

2
Pr
n
�2b��1 � Cb

�
�

o
= 1� �.

The cuto¤ value Cb
�
� is trivial to compute using standard statistical software that can compute

values of the chi-square CDF.

4.2 Computing conservative cuto¤ values when V � is diagonal

When V �� is a diagonal, then w (b (�) ; j; V �� ) only depends on b (�) and j, but not V
�
� . This is

because the weights function depends only on the correlation matrix associated with V �� . When

all of the o¤ diagonal elements of V �� are zero, the weights function takes the simple form given by

the following corollary. This result also provides a smaller cuto¤ value for the hypothesis test (2)

and thus a smaller con�dence region for �0 when V �� is diagonal.

Corollary 3 Let (A1)-(A5) hold. Suppose that V �� is diagonal and that sup�2�� b (�) � b�. Then

w (b (�) ; j; V �� ) = w (b (�) ; j; Ib) = 2
�b(�)

�
b (�)

j

�
, (12)

and 8c � 0

sup
�2��

lim
n!1

Pr
n
nQ̂n (�) � c

o
�

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j � c

	
. (13)

Just as Corollary 2 provides a way to construct conservative con�dence sets for �0 so does

Corollary 3 when V � is diagonal. By the same reasoning as in section 4.1, if Cb
�
� solves

b�X
j=0

2�b
�
�
b�

j

�
Pr
n
�2j � Cb

�
�

o
= �, (14)

then

CR1�� =
n
� 2 � : nQ̂n (�) � Cb

�
�

o
has asymptotic coverage probability for �0 of at least 1� �.

4.3 Computing Con�dence Sets

In this subsection, I brie�y outline the steps required to compute a con�dence set CR1�� for �0
with asymptotic coverage of at least 1 � �, when sup�2�� b (�) � b� and assumptions (A1)-(A4)
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hold.

1. Compute the unique value of C1�� such that

sup
�2��

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � C1��

	
= �.

- If V � is diagonal, this is the value of C1�� that solves

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j � C1��

	
= �.

- If V � is not diagonal, this is the value of C1�� that solves

1

2
Pr
�
�2b� � C1��

	
+
1

2
Pr
�
�2b��1 � C1��

	
= �.

2. Choose a �ne grid G of candidate values of � over the parameter space ��. For each � 2 G,
compute nQ̂n (�). If nQ̂n (�) � C1��, then � 2 CR1��. If nQ̂n (�) > C1��, then � =2 CR1��.

Appropriate choice of grid values G depends on the particular application. How �ne the grid

should be depends on the desired level of precision for CR1��. If �� is known to be su¢ ciently

regular (e.g. closed and convex), certain values of � may be able to be included or discarded without

explicitly evaluating nQ̂n (�).

5 Examples

In this section I provide two speci�c examples of moment inequality models that have appeared

previously in the literature. I demonstrate how to build con�dence sets for model parameters, and

I perform Monte Carlo simulations to evaluate the �nite sample properties of the con�dence sets

in these two cases.

5.1 Example 1: Estimating the Mean of a Univariate Random Variable with
Missing Data

Consider the setup of Imbens and Manski (2004): Let f(xi; zi) : i = 1; :::ng be a random sample

from a population of (x; z) pairs with support [0; 1]�f0; 1g, where z = 1 indicates that x is observed,
while if z = 0, x is not observed. The probability that x is observed, p = Pr fz = 1g, is assumed
to be less than one, and is not known to researcher, but is consistently estimated by its sample

analog. The goal is inference on �0 � E [x]. Let �1 = E [xjz = 1], which is identi�ed by the
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sampling process. This model yields two moment inequalities:

� � �L � p � �1,

� � �U � p � �1 + 1� p,

or, in the form of (1),

E [m1 (x; z; �)] = E [� � xz] � 0, (15)

E [m2 (x; z; �)] = E [1� z + xz � �] � 0.

The identi�ed set for �0 in this model is

�� = [�L; �U ] ,

and the variance of m (x; z; �) is

V� = V = var (�xz; xz � z) =
 
�2l �lu

�lu �2u

!
,

where

�2l = var (xz) ,

�2u = var (xz � z) ,

and

�lu = cov (xz; z)� var (xz) .

Q̂n (�) is given by

Q̂n (�) = min
t1;t2�0

 
Ên [� � xz]� t1

Ên [1� z + xz � �]� t2

!0
V̂ �1

 
Ên [� � xz]� t1

Ên [1� z + xz � �]� t2

!
,

where V̂ is the sample analog of V . In this case, the required assumptions are satis�ed due to the

observations being i.i.d., and the fact that x and z both have bounded support. Thus m (x; z; �)

must have �nite expectation and variance for each � that satis�es (15). Since p < 1, only at

most one of E [m1 (x; z; �)] or E [m2 (x; z; �)] can be equal to zero. Thus, the maximum number

of binding constraints is one, and V � is just a number, and is therefore diagonal so that corollary

3 applies.15 Applying this result, the cuto¤ value for nQ̂n (�) needed to build a con�dence set for

15 In fact, because in this case the limit distribution of nQ̂n (�) is a sum of only two terms, the weights are known
exactly. Each of the two terms of the summation must have weight 1

2
.
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�0 with at least 1� � asymptotic coverage is the unique value of c� that solves

1

2
Pr
�
�20 � c�

	
+
1

2
Pr
�
�21 � c�

	
= �.

Since c� > 0, Pr
�
�20 � c�

	
= 0, and this equation simpli�es to

1

2
Pr
�
�21 � c�

	
= �.

5.1.1 Simulations

I simulate iid draws of (x; z) in order to compare con�dence regions constructed according to the

moment inequality approach to those of Imbens and Manski (2004). The two approaches yield

nearly identical results. Let the moment inequality con�dence set of level � be denoted CMI
� , for

moment inequalities, and the Imbens/Manski con�dence set CIM� . The sets CIM� are constructed

as described in section 4 of their paper. Their sets have the added bene�t that their coverage is

uniform over all � 2 [p � �1; p � �1 + 1� p].
I run simulations under two di¤erent speci�cations for the distribution of (x; z). For the �rst

speci�cation, I draw x from the uniform(0; 1) distribution and z from the Bernoulli(p) distribution,

independently of each other, inducing joint distribution F1. Under this speci�cation, x is miss-

ing completely at random. The second distribution, denoted F2, is one in which (x; z) are not

independent of each other, so that missingness is not at random. In this case, x is distributed

beta(4; 2) conditional on z = 0, and beta(2; 4) when z = 1. In this case, x tends to be higher

when it is not observed; the conditional distribution of x given z = 0 stochastically dominates that

of x given z = 0, with E [xjz = 0] = 2=3 and E [xjz = 1] = 1=3 . For each simulation, for the

speci�ed values of p and n, I draw a dataset from the speci�ed population distribution of (x; z).

The simulated sample data is then f(~xi; zi) : i = 1; :::; n; ~xi = xi if zi = 1, ~xi = ; if zi = 0g. To

evaluate the empirical coverage probability of the con�dence regions, I compute the bounds for the

population identi�cation region [�L; �U ] and check to see if each of these points is contained in the

two con�dence regions. I keep track of how often these points are in the identi�cation regions over

many simulations. Formally, the procedure is as follows:

1. Specify the number of simulations to draw, R, the sample size for each simulation, n, p, and

�.

2. De�ne REJIML ; REJIMU ; REJMI
L ; and REJMI

U , and set them all equal to 0. These variables

will keep track of the number of times each of the two procedures reject �L 2 �� and �U 2 ��.

3. Perform the following procedure R times.

(a) Draw a random sample of (~x; z) of size n from the population.
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(b) Compute CIM� and CMI
� . CMI

� is given by the set of � that satisfy nQ̂n (�) � c�, where
� = 1

2 Pr
�
�21 � c�

	
and �21 denotes a random variable with the chi-squared distribution

with 1 degree of freedom.

i. If �L =2 CIM� increment REJIML , and if �U =2 CIM� increment REJIMU .

ii. If �L =2 CMI
� increment REJMI

L , and if �U =2 CMI
� increment REJMI

U .

4. From theR simulations, computedCP IM� = min
n
P̂
�
�L 2 CIM�

�
; P̂
�
�U 2 CIM�

�o
anddCPMI

� =

min
n
P̂
�
�L 2 CMI

�

�
; P̂
�
�U 2 CMI

�

�o
. This is the observed probability with which the two

con�dence sets were guaranteed to cover �0.

Note that even though a particular value of �0 was used for the simulations, any value of �0 in

the interval [�L; �U ] could generate the same distribution of observables for some data generation

process consistent with the maintained modeling assumptions. Thus, a con�dence set for the true

underlying model parameter �0 must achieve the desired asymptotic coverage for each �0 2 [�L; �U ].
The procedure above measures the observed frequency with which this occurs because for either of

the con�dence sets CI�,

min
�2[�L;�U ]

P̂ (� 2 CI�) = min
�2f�L;�Ug

P̂ (� 2 CI�) ,

since each type of con�dence set is a closed interval.

Tables 1 and 2 compare the empirical coverage of each of the two con�dence sets for di¤erent

choices of n; p; � when (x; z) � F1, while tables 3 and 4 do the same for (x; z) � F2. The number
of repetitions �xed at R = 5000 in all cases. For the results reported in Tables 1 and 3, p = 0:7,

while for those in Tables 2 and 4, p = 0:9. The empirical coverage probabilities for both types of

regions are very close to each other and approximate the desired target coverage probability rather

well. The case where the observed coverage probabilities of the two types of di¤er most are those

sets with nominal level 0:99. In this case, the coverage from moment inequality approach is always

slightly less than the coverage of Imbens and Manski�s con�dence sets, though both are very close

to the nominal level in all cases. As discussed in the subsequent section, this is an consequence of

the modi�cation that Imbens and Manski make in order to achieve uniform asymptotic coverage of

all � over ��.

5.1.2 Analytical Comparison to Imbens and Manski (2004)

Straightforward examination of the boundaries of the con�dence intervals obtained by the method

of Imbens and Manski (2004) and the moment inequality method of this paper shows that the

nearly identical empirical coverage probabilities of the two procedures is no accident. Indeed, as
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Table 1: Observed coverage probabilities for p=0.7 when x is uniformly distributed on the unit
interval and missing completely at random.
Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIM CMI CIM CMI CIM CMI CIM CMI

N � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7496 0:7496 0:8514 0:8514 0:9514 0:9514 0:9982 0:9888
500 0:7520 0:7520 0:8498 0:8498 0:9516 0:9514 0:9986 0:9896
1000 0:7514 0:7514 0:8516 0:8516 0:9504 0:9504 0:9978 0:9888

Table 2: Observed coverage probabilities for p=0.9 when x is uniformly distributed on the unit
interval and missing completely at random.
Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIM CMI CIM CMI CIM CMI CIM CMI

N � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7540 0:7510 0:8554 0:8544 0:9498 0:9494 0:9956 0:9884
500 0:7492 0:7492 0:8484 0:8484 0:9460 0:9460 0:9974 0:9882
1000 0:7482 0:7482 0:8484 0:8484 0:9454 0:9454 0:9978 0:9906

Table 3: Observed coverage probabilities for p=0.7 when x|z=1 is distributed beta(2,4) and x|z=0
is distributed beta(4,2).
Target Coverage (p = 0:7) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIM CMI CIM CMI CIM CMI CIM CMI

N � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7470 0:7470 0:8464 0:8464 0:9480 0:9480 0:9960 0:9854
500 0:7430 0:7430 0:8458 0:8458 0:9464 0:9464 0:9968 0:9882
1000 0:7474 0:7474 0:8502 0:8502 0:9484 0:9484 0:9972 0:9904

Table 4: Observed coverage probabilities for p=0.9 when x|z=1 is distributed beta(2,4) and x|z=0
is distributed beta(4,2).
Target Coverage (p = 0:9) 0:75 0:85 0:95 0:99

Actual Coverage for �0: CIM CMI CIM CMI CIM CMI CIM CMI

N � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
100 0:7352 0:7352 0:8296 0:8292 0:9346 0:9340 0:9916 0:9890
500 0:7566 0:7566 0:8488 0:8488 0:9452 0:9452 0:9978 0:9890
1000 0:7358 0:7358 0:8374 0:8374 0:9446 0:9446 0:9954 0:9878
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the sample size increases, the boundaries of the two types of con�dence intervals converge to one

another in probability for any �xed con�dence level.

The con�dence intervals of Imbens and Manski have upper and lower CI bounds of

CIIM =
�
LIMn ; U IMn

�
,

where �Cn satis�es16

�

 
�Cn +

p
n

�̂U � �̂L
max (�̂u; �̂l)

!
� �

�
� �Cn

�
= 1� �, (16)

and the boundaries of the region are given by

LIMn = �̂L � �Cn � �̂l=
p
n,

and

U IMn = �̂U + �Cn � �̂u=
p
n.

When there is a strictly positive probability of missingness (p < 1), then
p
n
�
�̂U � �̂L

�
tends to

1 an n ! 1. Thus, the term �
�
�Cn +

p
n �̂U��̂L
max(�̂u;�̂l)

�
of (16) converges to one for any �nite �Cn,

so that
�Cn

p! z1��,

where z1�� denotes the 1 � � quantile of the standard normal distribution. This is the �rst step

in showing the asymptotic equivalence of the two con�dence sets, and is stated formally in the

following proposition.

Proposition 2 Let the assumptions of section 5.1 hold. Then

�Cn
p! z1��,

LIMn �
�
�̂L � z1�� � �̂l=

p
n
�

p! 0,

and

U IMn �
�
�̂U + z1�� � �̂u=

p
n
�

p! 0.

The con�dence intervals proposed in this paper for Example 1 are given by

CIMI = f� 2 � : nQn (�) � c�g ,
16 Imbens and Manski (2004) consider three di¤erent types of con�dence intervals. The one used here is the only

one given for the case where p is a parameter to be estimated, which is the case in Example 1. This con�dence
interval provides uniform asymptotic coverage over ��, rather than just for the true �0.
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where c� solves
1

2
Pr
�
�21 � c�

	
= �. (17)

Proposition 3 shows that this region corresponds to a closed interval with endpoints LMI
n and

UMI
n , de�ned below. In conjunction with Proposition 2, it follows that LIMn � LMI

n
p! 0 and

U IMn �UMI
n

p! 0, so that under the stated conditions, the two con�dence intervals are asymptotically

equivalent.

Proposition 3 Let the assumptions of section 5.1 hold. Then

CIMI =
�
LMI
n ; UMI

n

�
,

where

LMI
n = �̂L � z1�� � �̂l=

p
n,

and

UMI
n = �̂U + z1�� � �̂u=

p
n.

For the model studied in example 1, these propositions show that the two con�dence sets are

asymptotically identical. However, they di¤er in the excluded case of point identi�cation (i.e. when

there is no missing data). The �rst term of the IM inequality is included in order to guarantee

uniform asymptotic coverage of �0 even as p! 1, i.e. over all possible lengths for the identi�cation

region, including a point for the case where p = 1. The moment inequality approach requires

that the researcher impose an upper bound on the number of binding constraints; when there

is missing data, so that p < 1, then only one constraint may bind. In the case of no missing

data, both constraints are satis�ed with equality, so the correct upper bound on the number of

binding constraints on this case is two, not one. When the maximal number of binding constraints

is two rather than one, application of Proposition 1 gives a larger value for c�, so as to ensure

asymptotic coverage of at least 1 � �. The correction that Imbens and Manski use to guarantee

uniform coverage in this model, and which can apply to either case, does not appear to have a

straightforward analog to models with arbitrarily many moment inequalities.

The cost of Imbens and Manski�s uniformity correction is a slightly larger con�dence set for any

�xed nominal level. This is straightforward from algebraic inspection of (16) and (17). The latter

condition can be reformulated as 1�� (�c�) = 1��, by which it can be seen that relative to (16)
the latter condition replaces the term �

�
�Cn +

p
n �̂U��̂L
max(�̂u;�̂l)

�
with 1. For �xed � 2 (0; 1), this

requires that �Cn > c�, and in turn that CIMI � CIM . However, as n grows large, the di¤erence

between the two con�dence intervals becomes negligible. For any sample size, the di¤erence is

greater for higher con�dence levels due to the ��atness� of the normal CDF at its upper tail; in

this case the di¤erence in �Cn in c� is higher because � is nearly �at at its 1 � � quantile. This
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is why the coverage of the two types of con�dence sets di¤ers the most for 1 � � = 0:99 in the

simulations.

5.2 Example 2: Mean Regression with Interval Outcome Data

In this subsection I consider one of the models studied by Manski and Tamer (2002) as another

simple example. Let a random sample of size n of (y1; y0; x) be observed by the econometrician,

where:17

y� = �0 + �1x+ u,

y0 = �oor (y�) ,

y1 = ceil (y�) .

The econometrician does not observe y�, but knows that P fy0 � y� � y1g = 1, P fy0 = y1g < 1,
and that E [ujx] = 0 and E

�
u2jx

�
< 1. The econometrician�s goal is inference on the model

parameters � � (�0; �1), and I use B� to denote the identi�ed set for �.18 Thus the conditional

moment restrictions

E [�y0 + �0 + �1xjx] � 0,

E [y1 � �0 � �1xjx] � 0,

are satis�ed for all x 2 X . If X is �nite, then this yields a �nite number of unconditional moment

inequalities, two for every element of X . The moments all have �nite mean and variance because
of the restrictions on u.

Suppose, for example, that X = f1; 2g. Then (1) is

E [m (y1; y0; x; �)] =

0BBBB@
E [�y0jx = 1] + �0 + �1
E [y1jx = 1]� �0 � �1
E [�y0jx = 2] + �0 + 2�1
E [y1jx = 2]� �0 � 2�1

1CCCCA �

0BBBB@
0

0

0

0

1CCCCA . (18)

As in example 1, the variance of m (y1; y0; x; �) does not depend on �, and can be consistently

17The functions �oor and ceil round their argument down and up, respectively, to the nearest integer value.
18For this section, since the goal is inference on model parameters in a linear model, I use � to denote the parameter

of interest rather than �0.
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estimated by

V̂ =

0BBBB@
�̂201 �ĉ1 0 0

�ĉ1 �̂211 0 0

0 0 �̂202 �ĉ2
0 0 �ĉ2 �̂212

1CCCCA ,
where �̂2ij =dvar (yijx = j), and ĉj = ccov (y1; y0jx = j). Q̂n (�) is given by

Q̂n (�) = min
t�0

(E [m (y1; y0; x; �)]� t)0 V̂ �1 (E [m (y1; y0; x; �)]� t) .

Furthermore, because E [y1jx] > E [y0jx], at most only one of the �rst two components and one of
the last two components of E [m (y1; y0; x; �)] can equal zero for any value of �. Thus, at most 2

of the inequalities can bind at any �, and the variance of the binding inequalities, V � is diagonal.

As a result, the method for constructing con�dence sets when V � is diagonal is applicable.

5.2.1 Simulations

In this section I simulate the model described above, i.e.

y� = �0 + �1x+ u,

y0 = �oor (y) ,

y1 = ceil (y) ,

where it is known by the econometrician that E [ujx] = 0, E
�
u2jx

�
< 1, and only a random

sample of (y0; y1; x) are observed. The econometrician knows that y� 2 [y0; y1], but does not

observe y�. In particular, but unbeknownst to the econometrician, the following parameter values

and distributions comprise the data generation process:

� x takes the values 1 or 2, each with equal probability.

� u is distributed according to the standard normal distribution.

� x and u are iid and independent of each other.

� (�0; �1) = (1; 1).

10,000 draws were made from this DGP, comprising the �population�. Simulated data were

then drawn as random samples from this population. The population identi�ed set for � = (�0; �1),

B�, is shown in Figure 1.

This is the set of values for � that are consistent with the distribution of (y0; y1; x) and the

knowledge that P fy0 � y� � y1g = 1 and E [ujx] = 0. Thus, for any value of � in this region,
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β0

β1

Figure 1: The identi�ed set for (�0; �1) in model 2.

there is some distribution of x and u consistent with the maintained assumptions that yields the

observed distribution of (y0; y1; x). Even though � = (1; 1) in the simulations performed, any other

value of � in this set could be used to obtain the simulated distribution of observables. Although

the goal of my con�dence regions is a pre-speci�ed coverage level for the true �, the region must

cover any �xed � in this set with at least the pre-speci�ed probability, since they are all consistent

with the distribution of observables and a priori knowledge. As discussed in the introduction, this

is inherently a di¤erent goal than building a con�dence region for the entire identi�ed set.

With the simulated data in hand, the following procedure was used to evaluate the empirical

coverage probability of nominal 1�� con�dence regions for � constructed by computing the cuto¤
value for nQ̂n (�) as described in section 4.2:

1. Specify the number of simulations to draw, R (in this case 5000), and the sample size for each

simulation, n.

2. Perform the following procedure R times.

(a) Draw a random sample of (y0; y1; x) of size n from the population.

(b) For each � 2 �� compute Q̂n (�).

(c) If nQ̂n (�) > c�, reject the null hypothesis that � 2 B�, where c� is the unique value
that satis�es

1

2
Pr
�
�21 � c�

	
+
1

4
Pr
�
�22 � c�

	
= �.
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Nominal Coverage: 0:75 0:85 0:95 0:99

Actual Coverage for n = � � � � � � � � � � � �
100 0:7544 0:8492 0:9460 0:9868
500 0:7430 0:8436 0:9490 0:9884
1000 0:7452 0:8438 0:9458 0:9870
2000 0:7516 0:8494 0:9452 0:9900

Table 5: Coverage Probabilities for con�dence regions based on pointwise testing with 5000 repe-
titions.

This corresponds to weights for a 2 � 2 diagonal variance covariance matrix given by
equation (12) from corollary 3.

3. For each � 2 B�, compute the fraction of simulations for which H0 was not rejected, denoted
C� (�). Because any � 2 B� can generate the observed distribution of observables, the

coverage probability for � is P (� 2 CR1��) � inf
�2��

C� (�) � Ĉ1��, where CR1�� is the

1�� level con�dence region for �. Ĉ1�� is the observed probability with which CR1�� was
guaranteed to contain the true � in these simulations.

If the con�dence sets are asymptotically valid, it should be that Ĉ1��
p! c as N !1 for some

c � 1� �. Table 5 shows empirical coverage probabilities obtained from the above procedure for

various pre-speci�ed values of n and �, and for a value of R = 5000. In all cases, the observed

coverage probability was very close to the nominal level, with the greatest di¤erence being 0:007.

Interestingly, it appears that as n increased, the observed coverage probability approached the

nominal con�dence level from below.

Finally, Figures 3 and 4 show two examples of con�dence regions for � taken to be the set of

� 2 B that are not rejected by the pointwise testing procedure at the 0:95 level for n = 100 and

n = 1000. The �gures illustrate how, as one would expect, the size of the con�dence set shrinks

as n increases for a �xed coverage probability.

6 Conclusion

The con�dence sets of this paper are guaranteed to provide a pre-speci�ed level of asymptotic

coverage for a parameter of interest in models that consist of a �nite number of moment inequalities.

Many models in this class have appeared in the literature, and these models comprise a large

subset of models with partially identi�ed parameters. The method for constructing con�dence

sets is conservative, but easy to implement, as no bootstrapping, subsampling, or simulation is

required. Despite their conservative nature, the con�dence sets performed well in the Monte Carlo

experiments conducted.
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Figure 2: A representative 0:95 coverage region for (�0; �1) based on a sample of 100 observations.
The black region denotes the population identi�ed set, while the encompassing blue/shaded region
is the 0:95 con�dence set for the parameter � = (�0; �1).
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Figure 3: A representative 0:95 coverage region for (�0; �1) based on a sample of 1000 observations.
The black region denotes the population identi�ed set, while the encompassing blue/shaded region
is the 0:95 con�dence set for the parameter � = (�0; �1).
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The �ndings of this paper have naturally lead to some avenues for further research. First,

the cuto¤ values for the test statistic nQ̂n (�) are computed by making use of an upper bound on

the feasible number of moments that bind at �. This provides a worst case for the values of the

weights function of the asymptotic chi-bar-square distribution of nQ̂n (�). If the true weights for

the asymptotic distribution of nQ̂n (�) can be consistently estimated, then a smaller cuto¤ value

for nQ̂n (�) could possibly be estimated for any size test. If this could be done, the conservative

nature of the con�dence sets could potentially be alleviated. However, such an approach would

likely not be without computational cost, since a di¤erent cuto¤ would need to be computed for

each value of �.

Furthermore, this paper focuses on building con�dence sets for just the parameter of interest

�0. There have been two other types of con�dence sets that have appeared in the literature on

partially identi�ed parameters, as discussed in section 2. Which type is appropriate depends on

the context and the researcher�s goal in any particular application. It would be of interest to

determine whether the testing procedure of this paper could be modi�ed to construct con�dence

sets with uniform asymptotic coverage over the identi�ed set ��, or con�dence sets for �� itself.

Appendix A: The Boundary of E [m (y; x; �)] in RJ+ and the Boundary
of ��

An implication of Proposition 1 is that the asymptotic distribution of nQ̂n (�) is degenerate when

E [m (y; x; �)] > 0, converging to zero in probability. Put another way, nQ̂n (�) only has a non-

degenerate limiting distribution when E [m (y; x; �)] lies on the boundary of RJ+, the nonnegative
orthant in J dimensional Euclidean space. This section examines the relationship between the

boundary of E [m (y; x; �)] in RJ+ and the boundary of the identi�ed set ��. Toward this end, let

D�� � f� 2 �� : E [mj (y; x; �)] = 0 for at least one j 2 f1; :::; Jgg

be the set of � 2 �� such that E [m (y; x; �)] lies on the boundary of RJ+. Let

@�� �
n
� 2 �� : for every open neighborhood of �, N� � Rk, N� * ��

o
be the boundary of �� in �. In order to characterize the relationship between these two sets, I

consider the implications of the following two assumptions.

Assumption 6 (A6: continuity) E [m (y; x; �)] is continuous in �.

Assumption 7 (A7: monotonicity) 8j = 1; :::; J , E [mj (y; x; �)] is strictly monotone in at least

one component of �.
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First, it is easy to see that if E [m (y; x; �)] is not continuous in �, @�� need not be contained in
D��. This is because if E [m (y; x; �)] has jump discontinuities, it is possible that E [m (y; x; �)] > 0
but that there exists an arbitrarily small � in Rk such that E [m (y; x; � + �)] < 0, i.e. E [m (y; x; �)]
�jumps� from the interior of RJ+ to the exterior of RJ+ at �. Proposition 4 shows that the con-

trapositive is in fact true; if E [m (y; x; �)] is continuous in �, then @�� � D��. In turn, this

implies that if assumption (A5) holds, the asymptotic distribution of nQ̂n (�) is degenerate at 0

on the interior of ��. Proposition 3 proceeds to show that when combined with continuity, the

monotonicity requirement of assumption (A6) is su¢ cient to conclude that @�� and D�� are equal.

In the absence of monotonicity, Continuity alone is not enough for for the two sets to be equivalent.

Proposition 4 Let assumptions (A1)-(A3) as well as (A6) hold. Then @�� � D��.

Proposition 5 Let (A1)-(A3),(A6), and (A7) hold. Then @�� = D��.

So far the analysis has centered around the boundary of ��, which is the boundary of the null

hypothesis in (2). The hypothesis test can be recast however as

H0 : Q (�) = 0

H1 : Q (�) > 0.

Because Q (�) = 0 if and only if E [m (y; x; �)] � 0, and Q (�) is nonnegative, this is exactly the

same null and alternative. Written this way, the hypothesis test has the property that Q (�) is on

the boundary of the maintained hypothesis Q (�) � 0. In related work, Andrews (2001) studies the
problem of hypothesis testing when a parameter is on the boundary of the maintained hypothesis.

Appendix B: Proofs

As a preliminary step to proposition 1, I �rst prove the following Lemma.

6.1 Lemma

Consider the minimization problem

QP = min (x� t)0 V �1 (x� t) s.t. t1 � 0, (19)

where x; t 2 RJ , and x1; t1 2 Rb, b � J , s.t. t = (t01; t02)
0 and x = (x01;x

0
2)
0. Let V11 be the b � b

leading submatrix of V so that

V =

 
V11 V12

V21 V22

!
.
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Then

QP = min (x1 � t1)0 V �111 (x1 � t1) s.t. t1 � 0. (20)

Proof. Let � � V �1 and partition � so that

� =

 
�11 �12

�21 �22

!
,

where �11 is b� b and �22 is J � b.� J � b. Let t� be the value of t that solves QP , so that

QP = (x� t�)0 � (x� t�) .

The Kuhn-Tucker conditions for (19) are

(i) For j = 1; :::; b, Either t�j = 0 and [�� (x� t�)]j � 0, or t�j > 0 and [�� (x� t�)]j = 0.

(ii) For j = b+ 1; :::; J , [�� (x� t�)]j = 0.

By conditions (i) and (ii),

��11 (x1 � t�1)� �12 (x2 � t�2) � 0, (21)

��21 (x1 � t�1)� �22 (x2 � t�2) = 0. (22)

Solving for (x2 � t�2), the latter condition is

(x2 � t�2) = ���122 �21 (x1 � t�1) . (23)

Now

QP = (x� t�)0 � (x� t�)

= (x1 � t�1)
0 �11 (x1 � t�1) + (x1 � t�1)

0 �12 (x2 � t�2) + (x2 � t�2) [�21 (x1 � t�1) + �22 (x2 � t�2)]

= (x1 � t�1)
0 �11 (x1 � t�1) + (x1 � t�1)

0 �12 (x2 � t�2) ,

by (22). Now using (23) it follows that

QP = (x1 � t�1)
0 �11 (x1 � t�1)� (x1 � t�1)

0 �12
�
��122 �21 (x1 � t�1)

�
= (x1 � t�1)

0 ��11 � �12��122 �21� (x1 � t�1)
= (x1 � t�1)

0 V �111 (x1 � t�1) ,
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where the last equality follows by the partition inverse result.19 All that remains is to show that

t�1 minimizes (20): min (x1 � t1)
0 V �111 (x1 � t1) s.t. t1 � 0, but this follows from the Kuhn-Tucker

minimization condition (i) as shown below:

The Kuhn-Tucker conditions for t�1 that solves (20) are for j = 1; :::; b;

either t�j = 0 and
�
�V �111 (x1 � t�1)

�
j
� 0; or t�j > 0 and

�
�V �111 (x1 � t�1)

�
j
= 0:

()

either t�j = 0 and
�
�
�
�11 � �12��122 �21

�
(x1 � t�1)

	
j
� 0;

or t�j > 0 and
�
�
�
�11 � �12��122 �21

�
(x1 � t�1)

	
j
= 0.

,

either t�j = 0 and
�
�
�
�11 (x1 � t�1)� �12��122 �21 (x1 � t�1)

�	
j
� 0;

or t�j > 0 and
�
�
�
�11 (x1 � t�1)� �12��122 �21 (x1 � t�1)

�	
j
= 0

,

either t�j = 0 and f� [�11 (x1 � t�1) + �12 (x2 � t�2)]gj � 0;

or t�j > 0 and f� [�11 (x1 � t�1) + �12 (x2 � t�2)]gj = 0

by (23), but this is exactly condition (i) from the Kuhn-Tucker conditions for the initial program

(19):

With Lemma 6.1 in hand, I now prove Proposition 1.

6.2 Proposition 1

Proof. Let
vn �

p
n
�
Ên [m (y; x; �)]� E [m (y; x; �)]

�
,

and

v�n �
p
n
�
Ên [m

� (y; x; �)]� E [m� (y; x; �)]
�
.

19 If V = ��1 then V11 =
�
�11 � �12��122 �21

��1
.
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Then

nQ̂n (�0) = min
t�0

n �
h
Ên [m (y; x; �)]� t

i0
V̂ �1�

h
Ên [m (y; x; �)]� t

i
= min

t�0

�
vn +

p
n (E [m (y; x; �)]� t)

�0
V̂ �1�

�
vn +

p
n (E [m (y; x; �)]� t)

�
= min

t�0

�
vn +

p
nE [m (y; x; �)]� t

�0
V̂ �1�

�
vn +

p
nE [m (y; x; �)]� t

�
= min

s
[vn (�)� s]0 V̂ �1� [vn (�)� s] subject to s = t�

p
nE [m (y; x; �)] ; t � 0

= min
s

[vn (�)� s]0 V̂ �1� [vn (�)� s] : s � �
p
nE [m (y; x; �)] .

Partition s such that s = (s0b; s
0
c)
0, so that sb are the �rst b elements of s, corresponding to those in-

equalities that bind, and sc the remainder. Furthermore, let ~m (y; x; �) = (mb+1 (y; x; �) ; :::;mJ (y; x; �))
0.

Then because E [mj (y; x; �)] = 0 for j � b,

nQ̂n (�) = min
s

[vn (�)� s]0 V̂ �1� [vn (�)� s] : sb � 0, sc � �
p
nE [ ~m (y; x; �)] .

Because
p
nE [ ~m (y; x; �)]!1 as n!1, and V̂�

p! V�, it follows by a Slutsky Theorem that

nQ̂n (�)
p! min

s
[vn � s]0 V �1� [vn � s] : sb 2 Rb+, sc 2 RJ�b,

and by Lemma 6.1,

min
s

[vn � s]0 V �1� [vn � s] s.t. sb 2 Rb+, sc 2 RJ�b = min
s2Rb+

[v� � s]0 V ��1� [v� � s] ,

where v� � N (0; V �� ) by (9) which holds under (A1) and (A4). Thus

nQ̂n (�)
p! min
s2Rb(�)+

[v� � s]0 V ��1� [v� � s] .

The statistic mins2Rb+ [v
� � s]0 V ��1� [v� � s] measures the distance of the normal random variable

v� from the nonnegative orthant. By Wolak (1991)

Pr

(
min
s2Rb+

[v� � s]0 V ��1� [v� � s] � c
)
=

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	
:
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6.2.1 Corollary 2

Proof.

sup
�2��

lim
n!1

Pr
n
nQ̂n (�) � c

o
= sup

�2��

0@b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	1A
� 1

2
Pr
�
�2b� � c

	
+
1

2
Pr
�
�2b��1 � c

	
,

where the equality of the �rst line follows from Proposition 1. The rest of the proof follows from

Sen and Silvapulle (2004, pp. 80-82), but I repeat the argument here for clarity. The inequality

follows because

0 � w (b; j; V �� ) � 1=2,
bX
j=0

w (b; j; V �� ) = 1,

and

Pr
�
�2j � c

	
is increasing in j for all c.

6.2.2 Corollary 3

Proof. The �rst part, (12), follows from Wolak (1987) who derives the result for V � = �2I,

and from Sen and Silvapulle (2004, Proposition 3.6.1 (11)). The latter result is that the weights

function only depends on the variance through its associated correlation matrix. If V � is diagonal,

the correlation matrix is the identify matrix, so that w (b; j; V �) = w (b; j; Ib). The second part,

(12), follows from the fact that
bX
j=0

2�b
�
b
j

�
Pr
n
�2j � c

o
is monotonically increasing in b, so that

sup
�2��

lim
n!1

Pr
n
nQ̂n (�) � c

o
= sup

�2��

b(�)X
j=0

w (b (�) ; b (�)� j; V �� ) Pr
�
�2j � c

	
= sup

�2��

b(�)X
j=0

2�b(�)
�
b (�)

j

�
Pr
�
�2j � c

	
�

b�X
j=0

2�b
�
�
b�

j

�
Pr
�
�2j � c

	
.
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6.3 Proposition 2

Proof. �Cn is implicitly de�ned by equation (16):

�

 
�Cn +

p
n

�̂U � �̂L
max (�̂u; �̂l)

!
� �

�
� �Cn

�
= 1� �,

where � is the cumulative distribution function for the standard normal distribution. Since this

function is continuous and monotone increasing, it follows that the left hand side of this equation

is also continuous and monotone increasing in �Cn, so that �Cn is uniquely de�ned as a function of

the sample and �. Furthermore, �Cn is a continuous function of
p
n �̂U��̂L
max(�̂u;�̂l)

. Because for any

�nite �Cn, �
�
�Cn +

p
n �̂U��̂L
max(�̂u;�̂l)

�
! 1 in probability as n ! 1 for p < 1, continuity of �Cn as a

function of
p
n �̂U��̂L
max(�̂u;�̂l)

along with a Slutsky Theorem implies that �
�
� �Cn

� p! �, and the claims

of the proposition follow directly.

6.4 Proposition 3

Proof. By de�nition, the 1� � con�dence set CIMI for �0 is given by

CIMI = f� 2 � : nQn (�) � c�g ,

where
1

2
Pr
�
�21 � c�

	
= �.

Simplifying yields
p
c� = �

�1 (1� �) ,

and

nQn (�) =
n

�̂l�̂u � �̂2lu
min
tl;tu�0

8<: �̂u �
�
�̂l (�)� tl

�2
+ �̂l �

�
�̂u (�)� tu

�2
�2�̂lu �

�
�̂l (�)� tl

��
�̂u (�)� tu

�
9=; . (24)

Clearly,
h
�̂L; �̂U

i
� CIMI , since for any � on this interval, Qn (�) = 0. The cases of interest are

thus those where � � �L (�̂l (�) < 0) and � � �U (�̂u (�) < 0), which are mutually exclusive. To
prove the result, I consider each of these two cases separately, and use the Kuhn-Tucker conditions

for (24), which are a special case of the problem analyzed by Kudo (1963). These conditions are

that for j = l; u either�
tj = 0 and

@Qn
@tj

(�) � 0
�
or
�
tj � 0 and

@Qn
@tj

(�) = 0

�
, (KT)
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where
@Qn
@tl

(�) = �2�̂2u
�
�̂l (�)� tl

�
+ 2�̂lu

�
�̂u (�)� tu

�
,

and
@Qn
@tu

(�) = �2�̂2l
�
�̂u (�)� tu

�
+ 2�̂lu

�
�̂l (�)� tl

�
.

Case 1 (�l < 0) In this case the Kuhn-Tucker conditions yield that the minimizing values of (tl; tu)
are t�l (�) = 0 and t

�
u (�) = �̂u (�) �

�
�̂lu=�̂

2
l

�
� �̂l (�). That t�u (�) � 0 can be veri�ed by using the

conditions that �̂u (�) > 0 and �̂u (�) > ��̂l (�), which are implications of �̂l (�) < 0 and �U > �L.
Plugging in t�l (�) and t

�
u (�) and simplifying yields

nQn (�) =
n

�̂2l
�
�
� � �̂L

�2
,

so that � 2 CIMI i¤
n

�̂2l
�
�
� � �̂L

�2
� c�.

Since the case where � � �L < 0 is being considered, this holds i¤

�pc� �
p
n

�̂l
�
�
� � �̂L

�
,

or equivalently,

LMI
n � �,

where

LMI
n � �̂L �

�̂lp
n
��1 (1� �) .

Case 2 (�u < 0) The Kuhn-Tucker conditions yield that the minimizing values of (tl; tu) are
t�u (�) = 0 and t�l (�) = �̂l (�) �

�
�̂lu=�̂

2
u

�
� �̂u (�). That t�l (�) � 0 can be veri�ed by using the

conditions that �̂l (�) > 0 and �̂l (�) > ��̂u (�), which are implications of �̂l (�) < 0 and �U > �L.
Plugging in t�l (�) and t

�
u (�) and simplifying yields

nQn (�) =
n

�̂2u
� (�U � �) ,

so that � 2 CIMI i¤
n

�̂2u
� (�U � �)2 � c�.
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Since the case where �U � � < 0 is being considered, this holds i¤

�pc� �
p
n

�̂u
� (�U � �) ,

or equivalently,

� � UMI
n ,

where

UMI
n � �U +

�̂up
n
��1 (1� �) .

6.5 Proposition 4

Proof. Let � 2 @��, but suppose that � =2 D�� for contradiction.
� 2 @�� ) � 2 ��, which implies that E [m (y; x; �)] > 0. Therefore, there exists an open

neighborhood of E [m (y; x; �)] contained in RJ+, say N . Let N� be the inverse image of N , i.e.

N� � ft 2 � : E [m (y; x; t)] � Ng .

Because N is an open subset of RJ+, E [m (y; x; t)] � N ) E [m (y; x; t)] > 0. By the continuity of
E [m (y; x; �)] under (A5) N� is an open neighborhood of �, and N� � �� since E [m (y; x; t)] > 0 for
all t 2 N . Therefore, there exists an open neighborhood of � that is contained in ��, contradicting
the supposition that � 2 @��.

6.6 Proposition 5

Proof. Proposition 4 shows @�� � D��, so all that is needed is to show @�� � D��. Let

� 2 D�� so that E [mj (y; x; �)] = 0 for some j. By (A6), E [mj (y; x; �)] is monotone in some

component of �, say �k(j). Let � > 0, and let v (�) be a k-vector with k (j) component � and

all other components zero. By the strict monotonicity of E [mj (y; x; �)] in �k(j), 8� 2 Rk, either
E [mj (y; x; � + v (�))] < 0 or E [mj (y; x; � � v (�))] < 0, so that � 2 @��.

References

Andrews, D. K., S. T. Berry, and P. Jia (2004): �Con�dence Regions for Parameters in

Discrete Games with Multiple Equilibria, with an Application to Discount Chain Store Location,�

Working Paper, Yale University.

Andrews, D. W. K. (2001): �Testing When a Parameter is on the Boundary of the Maintained

Hypothesis,�Econometrica, 69(3), 683�734.

36



Balke, A., and J. Pearl (1997): �Bounds on Treatment E¤ects from Studies with Imperfect

Compliance,�Journal of the American Statistical Association, 92(439), 1171�1176.

Beresteanu, A., and F. Molinari (2006): �Asymptotic Properties for a Class of Partially

Identi�ed Models,�Working paper, Cornell University.

Chernozhukov, V., H. Hong, and E. Tamer (2004): �Parameter Set Inference in a Class of

Econometric Models,�Working Paper, Princeton University.

Frechet, M. (1951): �Sur Les Tableaux de Correlation Donte les Marges sont Donnees,�Annals

de l�Universite de Lyon A, (14), 53�77.

Frisch, R. (1934): Statistical Con�uence Analysis By Means of Complete Regression Systems.

University Institute for Economics, Oslo, Norway.

Gourieroux, C., A. Holly, and A. Monfort (1982): �Likelihood Ratio Test, Wald Test, and

Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters,�

Econometrica, 50(1), 63�80.

Ho, K. (2005): �Insurer-Provider Networks in the Medical Care Market,�Working paper, Harvard

University.

Horowitz, J. L., and C. F. Manski (2000): �Nonparametric Analysis of Randomized Experi-

ments with Missing Covariate and Outcome Data,�Journal of the American Statistical Associ-

ation, 95(449), 77�84.

Hotz, V. J., C. H. Mullin, and S. G. Sanders (1997): �Bounding Causal E¤ects Using Data

From a Contaminated Natural Experiment: Analysing the E¤ects of Teenage Child Bearing,�

Review of Economic Studies, 64(4), 575�603.

Hu, L. (2002): �Estimation of a Censored Dynamic Panel Data Model,�Econometrica, 70, 2499�

2517.

Imbens, G., and C. F. Manski (2004): �Con�dence Intervals for Partially Identi�ed Parameters,�

Econometrica, 72, 1845�1857.

Ishii, J. (2005): �Interconnection Pricing, Compatibility, and Investment in Network Industries:

An Empirical Study of ATM Surcharging in the Retail Banking Industry,�Working paper, Har-

vard University.

Klepper, S., and E. E. Leamer (1984): �Consistent Sets of Estimates for Regressions with

Errors in All Variables,�Econometrica, 52(1), 163�184.

37



Kodde, D. A., and F. C. Palm (1986): �Wald Criteria for Jointly Testing Equality and Inequality

Restrictions,�Econometrica, 54(5), 1243�1248.

Kudo, A. (1963): �A Multivariate Analog of a One-Sided Test,�Biometrika, 59, 403�418.

Lehmann, E. L. (1986): Testing Statistical Hypotheses. John Wiley and Sons, New York.

Manski, C. F. (1989): �Anatomy of the Selection Problem,�The Journal of Human Resources,

24(3), 343�360.

(2003): Partial Identi�cation of Probability Distributions. Springer-Verlag, New York.

Manski, C. F., and D. Nagin (1998): �Bounding Disagreements About Treatment E¤ects: A

Case Study of Sentencing and Recidivism,�Sociological Methodology, 28, 99�137.

Manski, C. F., and J. V. Pepper (2000): �Monotone Instrumental Variables: With an Appli-

cation to the Returns to Schooling,�Econometrica, 68(4), 997�1010.

Manski, C. F., and E. Tamer (2002): �Inference on Regressions with Interval Data on a Regressor

or Outcome,�Econometrica, 70(2), 519�546.

Molinari, F. (2005): �Missing Treatments,�Working paper, Cornell University.

Moon, H. R., and F. Schorfheide (2006): �Boosting Your Instruments: Estimation with

Overidentifying Inequality Moment Conditions,�Working paper, University of Pennsylvania.

Pakes, A., J. Porter, K. Ho, and J. Ishii (2006): �The Method of Moments with Inequality

Constraints,�Working paper, Harvard University.

Perlman, M. D. (1969): �One-Sided Testing Problem in Multivariate Analysis,�The Annals of

Mathematical Statistics, 40(2), 549�567.

Sen, P. K., and M. J. Silvapulle (2004): Constrained Statistical Inference: Inequality, Order,

and Shape Restrictions. Wiley-Interscience, New York.

Shaikh, A. M. (2005): �Inference for Partially Identi�ed Econometric Models,�Working paper,

Stanford University.

Wolak, F. A. (1987): �An Exact Test for Multiple Inequality and Equality Constraints in the

Linear Regression Model,�Journal of the American Statistical Association, 92(399), 782�793.

(1991): �The Local Nature of Hypothesis Testing Involving Inequality Constraint in

Nonlinear Models,�Econometrica, 59(4), 981�995.

38


