Monodromy of the LiINC/NCLi molecule
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Abstract

Using the potential surface of Essers, Tennyson, and Wormer in [Chem. Phys. Lett.
89 (1982) 223] we show that the system of bending vibrational states of the isomer-
izing molecule LiNC/NCLi has monodromy. On the basis of a deformed spherical
pendulum model we explain dynamical and geometric reasons of this phenomenon
and of its absence in the similar system HCN/CNH.

Monodromy is an interesting property of certain quantum systems whose levels
cannot be labelled globally by one set of quantum numbers. More precisely,
even though such systems have no obvious subsystems, each with its own set
of quantum numbers, quantized energy cannot be expressed as one smooth
function of any quantum numbers. Dynamical meaning of this phenomenon
can be uncovered [1,2] by analyzing monodromy of the corresponding classical
analogue. For the details of the classical theory see [3] and references therein.

Monodromy is not uncommon. It has been found in several fundamental
atomic and molecular systems, notably the perturbed hydrogen atom [4],
Stark effect in rotating dipolar molecules [5], rotating quasi-linear triatomic
molecules [6], systems with coupled angular momenta [7], H3 [8]. Floppy tri-
atomic molecules with linear equilibrium configuration(s) is another candidate
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for a system with monodromy [9]. In this letter we describe monodromy of
LiNC/NCLi. We compare this system to HCN/CNH, which we have analyzed
recently in [10].

Our study of LINC/NCLi uses the two—dimensional potential [14] which gives
the energy of the LiNC configurations as function of the bending angle v and
Li-to-NC stretch distance R for the length r of the N-C bond fixed at 2.186
bohr. We assume approximate separability of the two degrees of freedom cor-
responding to overall rotations of the molecule about the two axes which are
roughly orthogonal to the N-C axis and we only consider states without such
rotations. For these states the total angular momentum J equals the angu-
lar momentum ¢ induced by the rotations of Li about axis N-C. The other
bending degree of freedom is described by v, and the remaining third degree
is stretching vibrations of R. We find the minimum energy path R(7y) and
consider small stretching oscillations about this path. The frequency of these
oscillations and the bending mode frequencies are incommensurate. This al-
lows us to average the stretching mode out using the quantum analogue [13]
of the canonical perturbation theory [11,12] and introduce stretching quan-
tum number ngr. We obtain the reduced effective bending mode Hamiltonian
Hypnp(py,7y) and use it for the ground stretching state with ng = 0. We study
all /-states and the advantage of our approach is that the value of quantum
number £ is predefined.

Energy E (103 cm'l)

LiNC levels i
n IN?!_! |IQV?!§ 1 ‘O‘ l ‘A

o by b e b e e b b Y o b b
35 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35
Vibrational angular momentum |

[ Sadovskii 14-Sep-2003
o
1

Fig. 1. Energy—momentum diagram of the LiNC/NCLi system computed for the
potential in [14]. Filled and hollow circles show levels attributed to the LiNC and
NCLi minimums; bold solid lines show energies of classical relative equilibria.

Using Hy(py,y) we computed quantum energies for each ¢. The energies (of
the £ = 0 band origins?) are in good agreement with full quantum calculations
in [15] and this justifies our approach (at least for small £7). We also found



energies of classical relative equilibria which correspond to Li rotating about
the axis of N-C at constant v and can be found as equilibria of the classical
analogue system with Hamiltonian Hy(p,,~y) for £ # 0. For £ = 0 we have two
stable linear equilibria of which LiNC is the lowest in energy and a barrier
separating the two wells.

Results of our computation are presented in the form of the energy—-momentum
diagram shown in fig. 1. This diagram should be considered as a two-leaf
surface. The leafs are bounded by the energies of relative equilibria. In fig. 1,
the smaller NCLi leaf and the larger LiNC leaf are shaded white and gray
respectively. The NCLi leaf is closed, while the LiNC leaf is unbounded from
above. The NCLi leaf is glued along its upper boundary to the LiNC leaf.
This latter has therefore a critical “cut” surrounded by regular values of the
energy—momentum map.

The energies of quantum states form a lattice in each of the leaves. As the
labels imply, the two leaves represent states localized near the LiNC and NCLi
equilibria, but the LiNC leaf also includes delocalized states which correspond
to Li making complete tours in v about NC. While NCLi states are all “locked”
in their leaf, there is nothing to separate localized LiNC states from delocalized
states at sufficiently high ¢. Of course, the energy-momentum diagram has
only two dimensions and the two leaves and their lattices are shown overlapped
in fig. 1.

We determine the monodromy of LINC/CNLi using the elementary cell method
of Zhilinskii [7] which blends the initial approach in [1,2] and the methods used
to describe the defects of crystal lattices. We begin by choosing a nearly square
elementary cell of the LiNC lattice at £ = 0 and energy E ~ 4000 cm™!, i.e.,
above the singular cut, see fig. 1. This cell reflects our choice of local quantum
numbers, it defines neighbour states whose one or both quantum numbers dif-
fer from those of the given state by 1. We continue our elementary cell along
the path which goes counterclockwise around the cut in small steps. Note that
in the overlap area of the LINC and NCLi leaves, we can only use LiNC states
(black dots in fig. 1). At each step the next cell is defined unambiguously by
the current cell, i.e., by the current choice of local quantum numbers. However,
when we come back to £ = 0 and E ~ 4000 cm ! after one tour, the final cell

¢ does not correspond to the original cell []. The transformation is given by
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the monodromy matrix M = ) , the monodromy is 1 (the off-diagonal el-
10

ement of M). Note that a very similar phenomenon has been recently studied
in [8], where it was somewhat misleadingly called “island monodromy”.

The origins of monodromy of LiNC/NCLi can be best understood after com-
paring the bending motion of LINC/NCLi to that of the spherical pendulum



in [3, Chap. IV.3]. This latter can be represented as a motion of a particle
placed in a linear potential V' (z) = z, e.g., in the field of gravity, and con-
strained to a sphere. It has one stable equilibrium at the bottom of the sphere
that corresponds to the minimum energy and one unstable equilibrium; both
equilibria are at £ = 0. In the image of the energy-momentum map, the un-
stable equilibrium together with all its homoclinic orbits is represented by an
isolated critical point, shown by a black circle dot in fig. 2, left.
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Fig. 2. Energy-momentum values (left to right) of the spherical pendulum [3,
Chap. IV.3], LINC/NCLi (e < 3), this work, and HCN/CNH (e > 1) [10].

Comparing the above to the molecular sytems LiNC/NCLi or HCN/CNH, we
notice two principal differences: the potential and the “shape”. Both linear
equilibria of these molecules are stable. This can be described qualitatively
if the linear potential of the pendulum is replaced by a quadratic potential
V(z) = z + ¢2?. The shape is given by the distance R between Li (or H) and
the CN diatom at different values of the bending angle v along the minimum
energy path of the potential surface. In the spherical pendulum R is fixed.
As shown in fig. 3, the molecules are shaped more like a peanut because Li
(or H) can get closer to the diatom in the T-configuration when vy ~ 7. We
can model such shape using R(7) = Rmax(l — €sin?v) where € > 0 is the
asphericity parameter.

Fig. 3. Geometry of the HCN/CNH and LiNC/NCLi systems computed using the
potentials in [16] and [14] respectively.



When the deformation of the original spherical pendulum system is small,
i.e., for ¢ and € small compared to 1, the energy-momentum map should not
change a lot. Concrete computations [10] show that the isolated singular point
(fig. 2, left) becomes a small triangular “island” leaf (fig. 2, center) glued to the
main leaf along its upper boundary as we already explained before. However,
when € > % this new leaf, which represents the motion localized near the
second stable linear equilibrium, becomes unbound from above at sufficiently
high ¢ (fig. 2, right). At such large € the singular cut, along which the two
leafs are glued together, is no longer a finite segment. This cut now separates
the energy-momentum values of the motion localized near the equilibria from
those of the delocalized motion (“rotation” about the diatom). As a result,
we can no longer loop around the cut in the domain of the regular energy—
momentum values, as we did for LINC/NCLi (fig. 1). Consequently, systems
with € > % do not have monodromy.

The value of € = % has a remarkably simple geometric meaning. At this value,
the shape of the system bifurcates so that for e > % the molecule develops a
“waste”. A simple rough estimate gives ¢ = 0.26 for LiCN and ¢ = 0.36 for
HCN. Indeed, the HCN/CNH system (fig. 3, left) has a small waste, while
LiNC/CNLi is convex. So the conclusion in [10] that the HCN/CNH molecule
has no monodromy (fig. 2, right) comes as no surprise.

In the present letter, we have considered the vibrational subsystem of LiNC
that includes two stretching and two bending degrees of freedom and have
shown that this subsystem has monodromy. Before extending this statement
to the complete system, we should investigate the interaction between these
degrees of freedom and the two remaining degrees related to overall rotations
of the molecule. In our treatment based on [11-13] we neglected these rotations
by excluding the respective part of the kinetic energy. While this might be an
appropriate approximation in HCN/CNH where H does not influence signifi-
cantly the inertia tensor, it becomes more problematic in LiNC/NCLi because
Li is heavier and moves at larger distances. The complete rotation—vibration
system requires, therefore, further study.

As the number of known fundamental quantum systems with monodromy
grows, it becomes important to understand how this phenomenon can be mani-
fested and exploited experimentally. Such study involves additional theoretical
expertise in semiclassical theory, wavepacket techniques, and geometric phase,
as well as knowledge of modern experimental methods in the time domain.
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