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ABSTRACT 
 

The current capacity of the rail network is limited by the train positioning system 

employed.  Trains are kept further apart than the minimum safe stopping distance 

because their positions are not known precisely.  GPS offers a potential solution to 

this problem and would also allow a reduction in track-side positioning infrastructure 

and possibly even track-side signals, resulting in cost savings.  However, the high 

reliability requirement for such a safety-critical application means that there are many 

problems that must be overcome before GPS is useable. 

 

One of the most serious obstructions to the use of GPS stems from the nature of the 

railway; a considerable proportion of the network runs through cuttings, which reduce 

the number of visible of GPS satellites.  In practice, there must be a minimum of five 

satellites visible at all times since error detection is essential for safety.  This criterion 

is often not met in the presence of obstructions.  We do however have an additional 

piece of information about the position of a train – we know it is located on the track.  

A technique is being developed in the UCL Department of Geomatic Engineering 

which incorporates knowledge of the track location into the positioning solution.  This 

should improve precision and reliability as well as allowing a position with a 

minimum of three visible satellites.  This project analyses the effectiveness of this 

technique by creating an Excel spreadsheet that computes both this ‘Track Known’ 

solution and the conventional ‘Track Unknown’ solution.  This allows both the 

general quality of GPS positioning in a cutting and the benefits of the Track Known 

solution to be assessed.   

 

Analysis of the spreadsheet reveals that location within Britain does not greatly affect 

the quality of position obtained, but the azimuth of the cutting creates significant 

variation.  It is shown that high precision knowledge of the track makes little 

difference to the Track Known improvement, allowing the potential for good results 

with a low-precision and easily obtainable track database such as may be obtained 

from existing mapping sources.  Steeper cutting sides are seen to significantly 

increase the benefit of the Track Known solution, but positioning still becomes 

unreliable as the cutting sides increase above 35°.   
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1. INTRODUCTION 

 

1.1 BACKGROUND 
Positioning on the railway is currently achieved through the division of the track into 

sections of about 1 km, each of which may only contain a single train.  The presence 

of a train in a given section causes a current to flow between the rails, enabling the 

control centre to determine which sections are occupied.  This system guarantees a 

safe distance between consecutive trains, but is inefficient since this spacing may be 

further than the minimum required stopping distance.  Currently, increasing the 

capacity of the railways means making trains longer rather than more frequent, which 

is not beneficial for passengers.   

 

Positioning by GPS could improve the efficiency of the railway network because 

more precise knowledge of the location of trains would allow them to be run closer 

together whilst retaining safe minimum distances.  This method could reduce 

maintenance costs due to a lower requirement for track infrastructure.  Advanced 

applications might allow track-side signals to be replaced with a ‘virtual signal’ 

system, where instructions are transmitted to the driver via a screen in the cab. 

 

A significant problem with the use of GPS for such an application is the necessity for 

at least five (to enable error detection) visible satellites to compute a position.  In open 

terrain or on aircraft this is easily achievable, but railways often run through deep 

cuttings and tunnels for long stretches with the result of a loss of position for a 

significant period of time.  This is obviously unacceptable in a safety-critical 

application.    

 

A technique is being developed within the UCL Department of Geomatic Engineering 

which allows knowledge of the location of the track to be included in the positioning 

solution.  This is useful for trains (since we know the train is always on the track) and 

also has applications for other vehicles that are restricted to travel along known lines, 

e.g. vehicles along roads.  This technique should allow a solution to be computed with 

a minimum of two satellites (three for error detection) and increase the precision and 

reliability of the position thus obtained. 
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1.2 PROJECT AIM 
The aim of this project is to determine the benefits to GPS positioning in a railway 

cutting of including knowledge of the track in the least squares solution.  ‘Track 

Known’ and ‘Track Unknown’ solutions will be compared for different cutting 

azimuths, locations, side slopes and track precisions. 

 

1.3 PROJECT OUTLINE 
An Excel spreadsheet will be developed to generate appropriate data to make such 

comparisons.  This report will consist of a description and analysis of the spreadsheet, 

which has been submitted electronically alongside it.   

 

After some initial discussion (chapter 2), the inputs and outputs of the spreadsheet are 

described (chapter 3), followed by an explanation of the calculations used in the 

spreadsheet (chapter 4).  The solved and unsolved problems encountered are then 

discussed (chapter 5) and the spreadsheet is tested against simulated and real data 

(chapter 6).  The results of the spreadsheet are then analysed and conclusions drawn 

about the usefulness of the Track Known solution (chapter 7).  Finally, suggestions 

for further work are presented (chapter 8). 
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2. INITIAL DISCUSSION 
 

This chapter details issues surrounding the construction of the spreadsheet. 

 

2.1 UTILISING KNOWLEDGE OF THE TRACK 
2.1.1 OVERVIEW OF THEORY 

The theory behind the technique for including knowledge of the track into the least 

squares adjustment is outlined below.   

 

The track is broken down into a series of straight lines, each defined by the co-

ordinates of two end points.  We know the train is restricted to the track and can 

determine on which segment it currently lies by extrapolating from previous positions.  

This information can be included in the positioning solution by projecting the 

equation of the current track line to two planes, initially the X-Y and X-Z planes, as 

illustrated by figure 2.1 (see section 5.1.1 for discussion).  Each projected line gives 

one equation in the least squares formulation, so knowledge of the track gives two 

additional equations. 

 

 
Figure 2.1: Projection of Track onto X-Y and X-Z Planes 
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2.1.2 TECHNIQUES FOR INCORPORATING KNOWLEDGE OF THE TRACK INTO LEAST 

SQUARES 

This section describes the process followed during the course of developing the theory 

outlined in 2.1.1 for inclusion in the least squares positioning solution.   

 

(i) Track Line as Observation Equations 

The formulation of the least squares equations is the same as for Track Unknown, 

but each projected line is included as an additional observation.  

The projected lines give two functional equations:  

 

( ) 111 ,,, cXmYtZYXf pPppp −−=Δ , and 

( ) 222 ,,, cXmZtZYXf pPppp −−=Δ . 

where 
12

12
1 XX

YYm
−

−
= , 

12

12
2 XX

ZZm
−

−
= , 1111 XmYc −= , 1212 XmZc −= . 

22111 ,,,, YXZYX  and 2Z are fixed parameters.   

 

These two observation equations can be linearised and included in the A  matrix as 

formulated for the Track Unknown solution (as described in section 4.2.2 (i)): 
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When constructing lC  for this problem we have to decide which value represents 

the precision of the observation of the line: the precision of m or the precision of 

c ?   

 

On reflection it is apparent there are two observed parameters per equation (m  

and c ).  In order to solve this problem a general least squares approach must 

therefore be adopted. 
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(ii) General Least Squares with Track Line as Observation Equations 

This technique allows us to have more than one observed parameter per equation 

and so allows inclusion of the two projected line equations as observations.   

 

The least squares equations must be formulated as bCvAx =+ . 

A , x  and lC  are as formulated for the Track Unknown solution (as described in 

section 4.2.2) and   
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If Q is defined as TCCWQ 1−= , then the solution is 

bQAAxQA TT 11 −− = . 

 

We can compute ( ) ( ) 11,,, −−= AQAC TtZYX
x  and 

[ ]{ }1111111 −−−−−−− −= CWQAAQAACWQCWC TTT
v  (Cross, 1984). 

We can then proceed as described in section 4.2.2. 

 

This method enables a position to be determined with a minimum of two visible 

satellites, although the solution is not necessarily located on the track.  It would be 

possible to project the solution to the nearest point of a track database, but a 

simpler technique is to constrain the solution to the line of the track. 

 

(iii) Track as Constraint Equations  

In this method the line equations are constraints rather than observations, with the 

result that the solution will always lie on the track.   

 

Since the track lines equations are not observations, it is not necessary to employ 

general least squares.   
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We have A ,  x  and lC  the same as in the track unknown solution (see section 

4.2.2) with the two equations of the projected lines as in (i) above, and want to 

constrain the solution to lie on both of these projected lines.   

 

The two line equations must be expressed in the form dEx = : 
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d . 

 

This is added as a constraint and the solution is then computed using hyper 

matrices as described in section 4.2.3 (iv) – (xiv), except that xC , 
lC ˆ , vC  and the 

external reliability vector are the same as in section 4.2.2, 1N  is a 66×  matrix, 

kp  is 1×n  and 1p  is 16× .   

 

This technique will ensure a position which lies on the track.  However, low track 

precision may reduce the quality of the solution because the track effectively has 

infinite weighting.  The track precision is not factored in to the least squares 

adjustment, so this effect will not be quantified.  Therefore overly optimistic 

results will be produced when using a low-precision track database. 

 

(iv) Track as Constraint Equations with End Points as Variables 

The technique decided upon and implemented in the spreadsheet (see section 4.2.3 

for construction of matrices) is the same as (iii) above, but with the introduction of 

the co-ordinates of the two end points of the track, ( )111 ,, ZYX  and ( )222 ,, ZYX , as 

variables that can be changed as a result of the adjustment.  This means that the 

solution is constrained to lie on the track, but the position of the track is refined by 

each GPS measurement made along it.  Therefore low precision end points will be 

improved and will not reduce the precision of the solution.  It is also possible that 

this technique could be used to collect and refine data for a track database. 
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2.2 SATELLITE POSITION DATA 
Satellite co-ordinates were obtained from a precise ephemeris file for 21/05/05 

downloaded from the National Geospatial Intelligence Agency website1.  This file 

was edited with a macro-based text editor and imported into Excel, providing WGS84 

co-ordinates for each satellite at 15 minute intervals throughout a 24-hour period. 

 

2.3 USE OF ALONG-TRACK RESULTS   
It is likely that the computed position would either be constrained to lie on the track or 

projected to the closest point on a track database.  Train operators need to determine 

the minimum safe distance between trains and hence are only interested in positional 

uncertainty or detection of gross errors in the along-track direction.  This is therefore 

the primary area of interest in our analysis.   

 

2.4 NOTATION 
(a) Superscript on a covariance matrix (C) refers to the co-ordinate system, e.g. 

( )tZYX
xC

,,,  is the covariance matrix of the parameters in the Cartesian co-

ordinate system (WGS84), containing 2
Xσ , 2

Yσ  and 2
Zσ  as well as the variance 

and covariance of any other parameters. 

(b) Subscript P refers to the provisional co-ordinates of the test point: 

( )ppp ZYX ,, . 

(c) Subscript 1 or 2 refers to the co-ordinates of point 1P  and point 2P  

respectively, at either end of the straight line of track containing the test point: 

( )111 ,, ZYX  and ( )222 ,, ZYX .  

(d) The phrase “Track Precision” refers to 222111 hh σσσσσσσ λφλφ ====== . 

(e) ‘n’ refers to the number of visible satellites in a given epoch.   

                                                
1 http://earth-info.nga.mil/GandG/sathtml/PEexe.html  
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3. SPREADSHEET OUTLINE  
 

This chapter describes the inputs and outputs of the spreadsheet and justifies the 

values chosen.   

 

3.1 INPUTS 

§ Latitude, longitude and height (WGS84) of two points 1P  and 2P  that define 

the straight line of track upon which the train currently lies: ( )1111 ,, hP λφ= , 

( )2222 ,, hP λφ= . 

§ The precision of these points.  Precisions in National Grid co-ordinates are 

effectively the same as in geodetic co-ordinates: ( )212
1

2
1 ,, hσσσ λφ , ( )222

2
2
2 ,, hσσσ λφ . 

§ The approximate current position TP  as a proportion of the distance along the 

vector from 1P  to 2P .  This provides a provisional position which is required 

to calculate satellite visibility and to formulate constraint equations: k. 

§ Rotation angle about the Z-axis of the two projection planes.  See section 5.1.1 

for a discussion of this.  In the UK, the best value is around 45°: ζ. 

§ Values for calculation of upper bound on Marginally Detectable Error (MDE).  

Percentage of good observations rejected and percentage chance of detection: 

α  and β , respectively.  See section 3.2 (a) for discussion of values chosen. 

§ Variance of a vertical GPS pseudo-range measurement in metres: 2
rσ . 

§ Satellite elevation cut-off angle – satellites are disregarded below this angle.  

See section 3.2 (b) for further discussion of values chosen.   

§ The angle from the GPS receiver to the top of the cutting on each side ( )ω .  

Although the calculations (see figure 4.1) assume the receiver lies on the 

bottom of a V-shaped cutting, this situation can be though of as representing 

the regions from where signals are blocked rather than the physical shape of 

the cutting.  ‘Right’ and ‘Left’ are defined relative to the vector 21 PP → : 

Rightω , Leftω . 

§ ‘No Position’ cut-off for Alongσ  and Max Alongδ .  If the results are greater than 

this then ‘No Position’ is returned.  See section 5.1.2 for discussion of the 

reason for this and section 3.2 (c) for justification of values chosen. 
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3.2 JUSTIFICATION OF INPUT VALUES 
(a) Upper Bound on MDE: choice of α  and β  

§ α : The higher this value, the higher proportion of ‘good’ (i.e. no gross 

error) observations that are rejected.  A standard value of 1% has been 

chosen. 

§ β : Train positioning is a safety critical application, so we need to be 

extremely confident of detecting gross errors of the size specified.  The 

chosen value for this input is therefore very high, at 99.999999% 

(advised by Martyn Thomas of the Rail Safety and Standards Board). 

 

(b) Satellite Elevation Angle Cut-Off 

The usual value for survey applications is 15°, but here we are more interested 

in obtaining a position in the presence of obstructions rather than high 

precision.  We therefore use the more tolerant value of 10° to increase the 

number of potentially visible satellites.  

 

(c) ‘No Position’ Cut-Offs 

These values were advised by Martyn Thomas of the Rail Safety and 

Standards Board: 

§ mAlong 10=σ ; 

§ Max mAlong 150=δ . 

 

(d) Variance of a Vertical Pseudo-Range Measurement, 2
rσ  

This was taken as a standard value of mr 12 =σ . 

 

3.3 INTERMEDIATE OUTPUTS 
§ Azimuth of cutting: β . 

§ Gradient of cutting: κ . 
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3.4 FINAL OUTPUTS 
For each epoch: 

§ Number of visible satellites. 

§ For Track Known and Track Unknown solutions:  

§ Precision - along-track standard error: Alongσ . 

§ External reliability – maximum gross error in along-track position that 

is undetectable with probability β (as defined in section 3.1): 

Max Alongδ . 
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4. SPREADSHEET CALCULATIONS 

 

This chapter presents the calculations used in the spreadsheet, along with some 

derivations.   

 

4.1 GENERAL CALCULATIONS 
(i) Transformation of End Points of Line from Geodetic Co-ordinates to 

Cartesian Co-ordinates 

If a and e are specified WGS84 parameters then for each end point we can define 

( )2
1

22 sin1 φ
ν

e

a

−
= .  Then  

( ) λφν coscoshX += ; 

( ) λφν sincoshY += ; 

( )( ) φν sin1 2 heZ +−= . 

 

(ii) Transformation of End Point Precision from Geodetic Co-ordinates to 

Cartesian Co-ordinates 

Precisions entered in National Grid co-ordinates ( )hNE ,,  are effectively the same 

as in geodetic co-ordinates ( )h,,λφ , due to the small values involved. 

We form ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
2
2

2
1

hNEhNE

0

0
222111

h

E

lC
σ

σ

 , a 6x6 matrix. 

Rotating this gives a full covariance matrix:  
( ) ( ) T

ll RRCC 222111222111 hNEhNEZYXZYX = , where  

1

sinsincoscoscos000
cossinsincossin000
0cossin000
000sinsincoscoscos
000cossinsincossin
0000cossin −

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−

=

φλφλφ

φλφλφ

λλ

φλφλφ

φλφλφ

λλ

R . 
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(iii) Calculation of Vector from 1P  to 2P  

The vector 21 PP →  is ( ) ( )ZYXZYX ΔΔΔ+ ,,,, 111 λ , where  

12 XXX −=Δ , 12 YYY −=Δ  and 12 ZZZ −=Δ . 

 

(iv) Calculation of Provisional Test Point in Cartesian Co-ordinates 

We have specified k  in section 3.1 as the position of the provisional point given 

as the proportion of the distance along 21 PP → .  The provisional point is then: 

( ) ( ) ( )ZYXkZYXZYX ppp ΔΔΔ+= ,,,,,, 111 . 

 

(v) Transformation of Provisional Point from Cartesian Co-ordinates to 

Geodetic Co-ordinates 

If a, b and e are specified WGS84 parameters, we define: 

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

= −

2
1

22

1tan

pp

p

YXb

aZ
u ; 

( )2
1

22 sin1 pe

a

φ
ν

−
= ; 

( )2
2

1 e
e
−

=ε . 

Then  

( )

( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
= −

uaeYX

ubZ

pp

p
p

322
1

22

3
1

cos

sin
tan

ε
φ ; 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

p

p
p X

Y1tanλ ; 

ν
φ

−=
p

p
ph

cos
. 
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(vi) Computation of Azimuth of Cutting, β  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ+Δ−Δ−

Δ+Δ−
= −

11111

111

sinsinsincossin
cossintan

φλφλφ
λλ

β
ZYX

YX .   

This is the azimuth from 1P  to 2P : over short distances the azimuth from 2P  to 1P  

will be effectively the same. 

 

(vii) Computation of Gradient of Cutting, κ  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ+Δ+Δ

−
= −

222

121sin
ZYX

hh
κ . 

 

(viii) Rotation of Cartesian Co-ordinates for Vector 21 PP →  and TP  

In order to project the vector 21 PP →  onto the two specified planes, each element 

is rotated by a specified angle ξ  (see section 3.1) about the Z-axis (for 

explanation see section 5.1.1).  The provisional point TP  is also rotated. 

ξξ sincos' YXX −= ; 

ξξ cossin' YXY += ; 

ZZ =' . 

 

(ix) Projection of Rotated Vector 

We have a rotated vector 21 PP → : ( ) ( )ZYXZYX ʹ′Δʹ′Δʹ′Δ+ʹ′ʹ′ʹ′ ,,,, 111 λ . 

Projection to the '' YX −  plane gives the vector ( ) ( )YXYX ʹ′Δʹ′Δ+ʹ′ʹ′ ,, 11 ; 

Similarly , projection to the '' ZX −  plane gives the vector ( ) ( )ZXZX ʹ′Δʹ′Δ+ʹ′ʹ′ ,, 11 . 

 

(x) Calculation of Gradients of Projected Lines, 1m  and 2m  

We have the vector equations of two projected lines, as shown in (ix) above. 

The gradient on the '' YX −  plane is 
X
Ym
ʹ′Δ

ʹ′Δ
=1  

and the gradient on the '' ZX −  plane is 
X
Zm
ʹ′Δ

ʹ′Δ
=2 . 
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(xi) Calculation of Statistic for Upper Bound on MDE, u
id  

bad ui += , where a and b are found from the standard normal distribution tables: 

a from 2-tailed test with probability α ; 

b from 1-tailed test with probability β . 

Whereα  and β  are defined in section 3.1 with values justified in section 3.2 (b). 

 

4.2 CALCULATIONS FOR EACH EPOCH 
4.2.1 CALCULATION OF SATELLITE VISIBILITY FOR EACH SATELLITE 

(i) Computation of Satellite Azimuth and Elevation 

The satellite co-ordinates are known in WGS84: in order to compute the azimuth 

and elevation they must be translated and rotated into a local topographic co-

ordinate system, aligned with the National Grid with the origin at the test point. 

 

In WGS84 the satellite co-ordinates are ( )SeS
e

S
e ZYX ,, ; the co-ordinates of the test 

point are ( )PeP
e

P
e ZYX ,, .   

 

Then the translated co-ordinates are:  

( ) P
e

S
eppp

S
e

S
ep XXhvXX −=+−= λφ coscos ; 

( ) P
e

S
eppp

S
e

S
ep YYhvYY −=+−= λφ sincos ; 

( )( ) P
e

S
epp

S
e

S
ep ZZhevZZ −=+−−= φsin1 2 . 

Where ν  and e are as defined in 4.1 (v).   

 

Rotating gives (in the local topographic co-ordinate system): 

p
S
epp

S
ep

S
t YXX λλ cossin +−= ; 

p
S
eppp

S
eppp

S
ep

S
t ZYXY φλφλφ cossinsincossin +−−= ; 

p
S
eppp

S
eppp

S
ep

S
t ZYXZ φλφλφ sinsincoscoscos ++=  
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Then satellite azimuth ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

S
t

S
t

Y
X1tanα   

and satellite elevation 

( ) ( )( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

= −

2
1

22

1tan
S
t

S
t

S
t

YX

Z
ρ . 

 

(ii) Calculation of Gradient Addition, υ  

This value is used to partially correct the results for a sloping track line (i.e. 

21 hh ≠ ).  See section 5.2.1 for discussion. 

 

ακυ cos= , where κ is the gradient of the cutting (4.1 (vii)) and α  is the azimuth 

of the satellite ((i), above).  If 0<υ  then it is set to 0 to prevent the inclusion of 

additional satellites, as explained in section 5.2.1. 

 

(iii) Computation of Bearing of Satellite from Axis of Cutting, γ  

The axis of the cutting is the line of the railway, as defined by the vector 21 PP → .  

The bearing from the axis of the cutting to the satellite is βαγ −= , where α  is 

the azimuth of the satellite ((i)) and β  is the azimuth of the cutting (4.1 (vi)). 

 

(iv) Testing to Determine Over which Side of the Cutting the Satellite Lies 

If °<≤ 1800 γ  then the minimum visible satellite elevation angle for the specified 

γ  is computed using the elevation angle Rightω ; if °<≤ 360180 γ  then it is 

computed using Leftω .  See section 3.1 for the definition of Rightω  and Leftω . 
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(v) Computation of Minimum Visible Elevation Angle, µ ʹ′  

Figure 4.1 illustrates the derivation of the minimum elevation angle µ  at which a 

satellite at a bearing of γ  from the axis of a cutting elevation ω  is visible. 

 
Figure 4.1: Minimum Visible Elevation Angle 

 

From figure 4.1 we have 
a
b

=ωtan .   

Since the scale is arbitrary we can assume 1=a , so b=ωtan . 

We can then compute 
γγ sin
1

sin
==

ad  (γ  is computed in (iii) above).   

From this we can calculate 
22

cos
db

d
+

=µ , and so ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
= −

22

1cos
db

d
µ .   

The gradient addition is then added to give υµµ +=ʹ′ .   

 

(vi) Determination of Satellite Visibility 

A given satellite is visible if µρ ʹ′≥ , i.e. its elevation is greater than minimum visible 

elevation angle calculated for that satellite in (v) above.  . 
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4.2.2 CALCULATION OF TRACK UNKNOWN SOLUTION 

(i) Formation of Design Matrix, A  

The linearised observation equations for n satellites give us  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1

1
1

222

111

nnn nml

nml
nml

A


; 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

=

p

p

p

p

t
dZ
dY
dX

x . 

If the co-ordinates of satellite i are ( )iii ZYX ,,  and the co-ordinates of the test 

point are ( )ppp ZYX ,,  then  

( ) ( ) ( )( )2
1

222
p

i
p

i
p

i

i
p

i

ZZYYXX

XX
l

−+−+−

−
= ; 

( ) ( ) ( )( )2
1

222
p

i
p

i
p

i

i
p

i

ZZYYXX

YY
m

−+−+−

−
= ; 

( ) ( ) ( )( )2
1

222
p

i
p

i
p

i

i
p

i

ZZYYXX

ZZ
n

−+−+−

−
= . 

 

(ii) Formation of Covariance Matrix of the Observations, lC  

We have 

( )
( )

( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

n

l

f

f
f

C

ρ

ρ

ρ

…



…

00

00
00

2

1

.  

If 2
vσ  is the specified variance of a vertical pseudo-range measurement (section 

3.1) and iρ  is the elevation angle of satellite i (section 4.2.1 (i)), then 

( )
i

v
if

ρ
σ

ρ 2

2

sin
=  . 

We can then compute the weight matrix 1−= lCW . 

 

(iii) Calculation of Covariance Matrix of the Parameters, ( )tZYX
xC

,,,  

( ) ( ) 1,,, −
= WAAC TtZYX

x , a 4x4 matrix. 
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(iv) Rotation of ( )tZYX
xC

,,,  to ( )thNE
xC

,,,  

In order to obtain along-track results, the covariance matrix of the parameters is 

initially rotated to the local topographic co-ordinate system.   
( ) ( ) TtZYX

x
thNE

x RRCC ,,,,,, = , where  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

=

1000
0sinsincoscoscos
0cossinsincossin
00cossin

ppppp

ppppp

pp

R
φλφλφ

φλφλφ

λλ

 . 

 

(v) Rotation of ( )thNE
xC

,,,  to ( )thAlongAcross
xC

,,,  

( )thNE
xC

,,,  is rotated to align with the track direction to provide along-track results. 

( ) ( ) TthNE
x

thAlongAcross
x RCRC ʹ′ʹ′= ,,,,,, , where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=ʹ′

1000
0100
00cossin
00sincos

ββ

ββ

R . 

β  is the azimuth of the cutting as computed in section 4.1 (vi). 

 

(vi) Calculation of Covariance Matrix of the Observed Parameters, 
lC ˆ  

( ) TtZYX
xl AACC ,,,

ˆ = , an nn×  matrix (where n is the number of visible satellites).   

 

(vii) Calculation of Covariance Matrix of the Residuals, vC  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−=

2

2
1

2
1

ˆ

vn

v

v

llv CCC

σ

σ

σ

…
…

, an nn×  matrix. 

 

(viii) Calculation of Upper Bound on MDE for each Observation, u
iΔ  

If 
vi

i
i σ

σ
τ = , then the upper limit on Marginally Detectable Error for the ith 

observation is ii
u
i

u
i d στ=Δ , where u

id  is calculated as in section 4.1 (xi). 
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(ix) Calculation of External Reliability (X,Y,Z) 

To calculate the effect on the solution of the maximum gross error undetectable 

with specified probability (see section 3.1) in the kth observation, we form 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ=

0

0




u
kkp .  We then evaluate ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
−

t
Z
Y
X

WpAWAA k
TT

δ

δ

δ

δ

1 . 

where δ  represents the effect of the largest undetectable error on that variable. 

This process is carried out for nk ...1= . 

 

(x) Rotation of External Reliability Vector to (E,N,h) 

In order to obtain along-track results, the external reliability vector is initially 

rotated to the local topographic co-ordinate system.   

pYpXE λδλδδ cossin +−= ; 

pZppYppXN φδλφδλφδδ cossinsincossin +−−= ; 

pZppYppXh φδλφδλφδδ sinsincoscoscos ++= . 

pφ  is the latitude and pλ  is the longitude of the provisional point (4.1 (v)). 

  

(xi) Rotation of External Reliability Vector to (Across,Along,h)  

The external reliability vector is then rotated to align with the track direction to 

provide along-track results. 

βδβδδ cossin NEAlong += ; 

βδβδδ sincos NEAcross += . 

β  is the azimuth of the cutting as computed in4.1 (vi). 

The maximum Alongδ  of all observations for a given epoch represents the 

maximum possible error in position that is undetectable with the specified 

probability (section 3.1).  
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4.2.3 CALCULATION OF TRACK KNOWN SOLUTION 

(i) Formation of Design Matrix, A  

See section 2.1.2 for discussion of methods for incorporating knowledge of the 

track into the least squares adjustment. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0

1

1
1

100000
010000
001000
000100
000010
000001

0

222

111

nnn nml

nml
nml

A



; 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

=

2

2

2

1

1

1

dZ
dY
dX
dZ
dY
dX
t

dZ
dY
dX

x

p

p

p

, 

where 
( ) ( ) ( )( )2

1
222

p
i

p
i

p
i

i
p

i

ZZYYXX

XX
l

−+−+−

−
= ; 

( ) ( ) ( )( )2
1

222
p

i
p

i
p

i

i
p

i

ZZYYXX

YY
m

−+−+−

−
= ; 

( ) ( ) ( )( )2
1

222
p

i
p

i
p

i

i
p

i

ZZYYXX

ZZ
n

−+−+−

−
=  as before (see section 4.2.2 (i)) 

Here x  is a 110×  matrix and A  is a ( ) 106 ×+n  matrix.  

 

(ii) Formation of Constraint Equations 

We have two constraint equations corresponding to the projection of the line to 

each plane: 

( ) 112221111 ,,,,,,,,, cXmYZYXZYXtZYXf pPppp −−=Δ , 

( ) 222221112 ,,,,,,,,, cXmZZYXZYXtZYXf pPppp −−=Δ , 

 

where 
12

12
1 XX

YYm
−

−
= , 

12

12
2 XX

ZZm
−

−
= , 

and 1111 XmYc −= , 1212 XmZc −= . 
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These need to be expressed in the form dEx = , with x  as in (i) above. 

Linearisation gives both equations as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

0
0

2

2

2

2

2

2

1

2

1

2

1

22222

2

1

2

1

2

1

1

1

1

1

1

11111

x

Z
f

Y
f

X
f

Z
f

Y
f

X
f

t
f

Z
f

Y
f

X
f

Z
f

Y
f

X
f

Z
f

Y
f

X
f

t
f

Z
f

Y
f

X
f

ppp

ppp  

( ) ( ) ( )

( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
Δ

−
Δ

−
Δ

⎟
⎠

⎞
⎜
⎝

⎛
Δ

++
Δ

−

−
Δ

−
Δ

−
Δ

⎟
⎠

⎞
⎜
⎝

⎛
Δ

++
Δ

−

0
0

10101010

01011001

11
2

21
2

2

11
1

21
1

1

x
XX

X
XX

X
mXX

XX
XX

X
mm

XX
X

XX
X
mXX

XX
XX

X
mm

pppp

pppp

 

 where 12 XXX −=Δ .  

 

(iii) Formation of Covariance Matrix of the Observations, lC  

( )[ ] [ ]

[ ]

( )
( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

n

l

l

f

f
f

C

C

ρ

ρ

ρ

…



…

00

00
00

0

0

2

1

ZYXZYX 222111

 

where ( )222111 ZYXZYX
lC  is the full covariance matrix of the precisions of the end 

points of the line as calculated in section 4.1 (ii), 2
vσ  is the specified variance of a 

vertical pseudo-range measurement (section 3.1), iρ  is the elevation angle of 

satellite i (section 4.2.1 (i)) and ( )
i

v
if

ρ
σ

ρ 2

2

sin
=  . 

We can then compute the weight matrix 1−= lCW .   

Both W  and lC  have dimension ( ) ( )66 +×+ nn . 

 

(iv) Formation of Hyper Matrix, 1N  

The constraints are applied to make a 1212×  hyper matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=

01 E
EWAA

N
TT

.   

 

 



 22 

(v) Calculation of Covariance Matrix of the Parameters, ( )tZYX
xC

,,,  

( ) [ ]
[ ] [ ]⎥⎦

⎤
⎢
⎣

⎡

××

×
=−

22102
210,,,

1
1

tZYX
xCN , a 1212×  matrix.   

That is ( )tZYX
xC

,,,  comprises the top left 1010×  elements of 1
1
−N  (Leick, 2004). 

 

(vi) Rotation of ( )tZYX
xC

,,,  to ( )thNE
xC

,,,  

In order to obtain along-track results, the covariance matrix of the parameters is 

initially rotated to the local topographic co-ordinate system.   

 

The rotation only applies to ppp ZYX ,,  and t, the top left 4x4 matrix of ( )tZYX
xC

,,, .  

This is because the other entries in ( )thNE
xC

,,,  for the Track Known solution are 

variances and covariances of the line end points 1P  and 2P , and we are not 

interested in the precision of these in the along-track direction.  This rotation is the 

same as section 4.2.2 (iv). 

 

(vii) Rotation of ( )thNE
xC

,,,  to ( )thAlongAcross
xC

,,,  

This rotation is the same as section 4.2.2 (v). 

 

(viii) Calculation of Covariance Matrix of the Observed Parameters, 
lC ˆ  

This is the same as section 4.2.2 (vi), except it results in an ( ) ( )66 +×+ nn  

matrix. 

 

(ix) Calculation of Covariance Matrix of the Residuals, vC  

This is the same as section 4.2.2 (vii), except it results in an ( ) ( )66 +×+ nn  

matrix. 

 

(x) Calculation of Upper Bound on MDE for each Observation, u
iΔ  

This is the same as section 4.2.2 (viii), except there are 6 additional observations. 
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(xi) Formation of Hyper Matrix For External Reliability Calculation, kp1  

For each observation, we form 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ=

0

0




u
kkp , a ( ) 16 ×+n  vector.  Then we can 

calculate 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

0
01

k
T

k

WpA
p . 

 

(xii) Calculation of External Reliability (X,Y,Z) 

To calculate the effect on the solution of the maximum error undetectable with 

specified probability (section 3.1) in the kth observation, we evaluate: 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

2

2

2

1

1

1
1

1
1

Z
T
X
Z
Y
X
t
Z
Y
X

pN

p

p

p

k

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

,  

where δ  represents the effect of the largest undetectable error.   

This process is carried out for ( )6...1 += nk .  

 

(xiii) Rotation of External Reliability Vector to (E,N,h) 

This is the same as section 4.2.2 (x). 

 

(xiv) Rotation of External Reliability Vector to (Across,Along,h)  

This is the same as section 4.2.2 (xi). 
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5. SPREADSHEET PROBLEMS 
 

This chapter discusses the problems encountered during the construction of the 

spreadsheet.  Section 5.1 covers those which have been solved, whilst section 5.2 

covers problems where the solution lies beyond the scope of this project. 

 

5.1 SOLVED PROBLEMS 
5.1.1 ERRORS IN EXTERNAL RELIABILITY CALCULATIONS FOR TRACK KNOWN 

SOLUTION 

For cutting azimuths close to 90° or 270°, high (>60°) cutting side angles and few 

visible satellites (3-4), it was observed that the variances of the residuals for 21,XY  

and 2Y  were often small (<10-10m) and negative.  This occurred irrespective of which 

two planes the track line was projected to (from X-Y, X-Z and Y-Z).  These values 

should never be negative as this implies 2
ˆ

2
ll σσ < , i.e. we know the parameter worse 

after least squares adjustment than before.  It is therefore likely that these values result 

from small calculation errors made by Excel.  Numbers stored on a computer have 

finite length and hence precision, so dividing by very small numbers can create a very 

large and inaccurate number.  This is a particular problem in matrix multiplication or 

inversion, both of which are used extensively in the spreadsheet.  Analysis of such 

problems is beyond the scope of this project, a geometrical consideration of the 

situation is given below. 

 

The test points all lie within the UK.  Since the X-axis of WGS84 passes through 

Greenwich, the test lines are all very close to this axis: with azimuths of 90° or 270° 

they are parallel to the X-Y plane.  Errors in the Y co-ordinate of either end point will 

have no significant effect on the gradient of the projection to any plane.  If we look at 

the constraint equations (section 4.2.3 (ii)) we can see that the Y co-ordinate of each 

end point does not feature directly, but rather is included through the gradient.  

Therefore large errors in the measurement of these co-ordinates would not 

significantly change the values entered into the least squares adjustment, effectively 

making error detection on these measurements impossible.   
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This theory was corroborated by increasing the longitude of the test points by 45°, 

which caused the errors to disappear. 

 

It was therefore decided to project the lines to two different planes, 'YX −ʹ′  

and '' ZX − , where the '',,' ZYX co-ordinate system differs from WGS84 by a rotation 

of ζ  about the Z-axis (see figure 5.1).  This angle is chosen to keep the track line in 

the middle of the 'X  and 'Y  axes – in the UK a value around 45° is suitable and is 

one of the spreadsheet inputs described in section 3.1.   

 

 
Figure 5.1: Rotation of Axes by ζ  

 

5.1.2 COMPARISON GRAPHS UNINTUITIVE: INTRODUCTION OF “NO POSITION” CUT-

OFF PARAMETERS 

When preparing a comparison between Track Known Alongσ  and Track Unknown 

Alongσ  across a range of cutting side angles it was noted that the results were 

unintuitive.  Averaging Alongσ  over 24 hours and 180° of cutting azimuths produced a 

graph as shown in figure 5.2.  
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Figure 5.2: Graph of Alongσ  Averaged over Time and Cutting Azimuth against Cutting Angle 

 

It seems unlikely that increasing the cutting angle (and hence obscuring satellites) 

would increase the mean precision of position so significantly, so there must be a 

problem with our averaging technique. 

 

After investigation it was discovered that for some epochs with four visible satellites 

(the minimum for a Track Unknown solution), Alongσ  was very high (in some cases 

>20 km).  It is likely that this is due to poor satellite geometry for that epoch which 

has less effect on the Track Known solution due to the inclusion of two additional 

equations.     

 

It is clear that a position with kmAlong 20=σ  is not useful, so a parameter was 

introduced to specify the maximum allowable Alongσ .  Above this value “No Position” 

is returned.   

 

The same problem was encountered and solution implemented for Max Alongδ .  The 

values of these parameters were set at 10m for Alongσ  and 150m for Max Alongδ , as 

described in section 3.2 (c). 
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5.2 UNSOLVED PROBLEMS 
5.2.1 CALCULATIONS ASSUME HORIZONTAL CUTTING 

The method for determining the minimum visible elevation angle for a satellite of 

given bearing from the line of the cutting (section 4.2.1 (v)) is only accurate with the 

initial valueµ  for horizontal cuttings, i.e. where each end point has the same height.  

In an attempt to address this problem, the gradient correction κ  (calculated in section 

4.2.1 (ii)) was introduced to enable satellites obscured in the up-hill direction to be 

disregarded.  In order to determine which additional satellites are made visible in the 

down-hill direction it is necessary to know the distance from the current location to 

the bottom of the hill, as well as the terrain behind.  This is beyond the scope of this 

spreadsheet so the current implementation only reduces the number of visible 

satellites, giving pessimistic results in such a situation.  

 

5.2.2 ERRORS WHEN PRECISION OF ENDPOINTS IS LOW RELATIVE TO LINE LENGTH 

It was noted that errors occurred in the spreadsheet when the precision of the 

endpoints was low relative to the length of the track line they defined.  These errors 

are caused by small negative residual variances, similar to those in section 5.1.2.  In 

this situation the magnitude of the errors is much greater (~10-1m) and the variances 

of the residuals of the pseudo-range measurements are affected instead.  The problem 

occurs for all slope sides when the standard error of position of the end points is 

similar to the distance between them.  Increasing this distance removes these errors. 

 

Such a situation is unlikely to occur in reality – the standard error of position may be 

1m or less, whereas the track sections will be tens of metres or more.  Therefore this 

is not a problem in practice.  A negative residual variance checking procedure was 

implemented to cause ‘No Position’ to be returned rather than an error for these 

situations. 
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6. SPREADSHEET VALIDATION 
 

This chapter presents the results of validation tests made on spreadsheet.  

 

6.1 COMPARISON WITH LEICA SATELLITE AVAILABILITY 

PROGRAM 
To test the accuracy of the satellite visibility portion of the spreadsheet, the number of 

visible satellites for each epoch was compared to that predicted by Leica’s Satellite 

Availability program.   

 

Four comparisons were made, for cutting side angles of 10°, 30°, 50° and 70° with the 

following parameters: 

 

§ Cutting azimuth °= 0α ; 

§ Slope of cutting: RightLeft ωω = ; 

§ Test point: ϕ  = 052° 00’ North, λ  = 000° 07’ West, h = 90m; 

§ All other parameters were as specified in section 3. 

 

The number of visible satellites for each method was compared for each epoch 

throughout 24-hours.  Due to different epoch intervals in the spreadsheet and the 

Satellite Availability program, the epoch interval for these comparisons was 30 

minutes.   

 

The cutting was simulated in the Satellite Availability program by the addition of 

visibility obstructions.  This feature requires an obstruction elevation to be entered 

every 10° of azimuth – these values were calculated for each cutting angle using the 

technique described in section 4.2.1 (v).  See Appendix A.1 for a listing of the 

azimuth and elevation point inputs for the obstruction file. 

 

See Appendix A.2 for the results of this comparison and A.3 – A.6 for graphs of each 

cutting angle.   
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The two methods of satellite visibility determination agree closely, in general having 

less than one satellite difference and following the same trends over time. 

 

A detailed analysis was made of the visible satellites in the first epoch with cutting 

angle 10°.  Figure 6.1 shows the satellites and their corresponding azimuth and 

elevation angles: 

 

Satellite
PRN Visible? Azimuth α (°) E l e v a t i o n  ρ  ( ° ) V i s i b l e ? A z i m u t h  α  ( ° ) E l e v a t i o n  ρ  ( ° )

1 Y e s 3 0 0 3 4 Y e s 3 0 1 3 4

2 Y e s 8 9 2 7 Y e s 9 4 2 8

4 Y e s 4 1 1 7 Y e s 4 5 1 9

5 Y e s 8 3 5 3 Y e s 8 3 5 8

6 Y e s 1 9 7 4 3 Y e s 2 0 0 3 9

9 Y e s 1 3 7 2 1 Y e s 1 3 8 2 4

1 4 Y e s 2 4 7 4 1 Y e s 2 4 9 4 1

2 0 N o 3 4 2 4 Y e s 3 4 5 5

2 5 Y e s 3 0 5 2 7 Y e s 3 0 5 2 9

3 0 Y e s 2 8 0 8 1 Y e s 2 7 6 7 8

Spreadsheet Leica

 
Figure 6.1: Comparison of Visible Satellites at 00:00 with Cutting Angle 10° 

 

Note that satellite PRN 20 lies below the satellite elevation cut-off for the spreadsheet 

(10°).  Other than this difference, the same satellites are visible in both methods with 

almost the same azimuth and elevation.  This indicates that the similar number of 

visible satellites is not coincidental and supports the accuracy of the spreadsheet. 
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6.2 COMPARISON WITH COLLECTED DATA 
Satellite visibility data was collected in Cleveland Street, London for four epochs at 

15 minute intervals.  The street chosen is straight, level and treeless with buildings of 

relatively uniform height on both sides in order to simulate as closely as possible the 

assumptions made in the spreadsheet. 

 

The test position was obtained from the GPS data.  The elevation of each ‘cutting’ 

side was determined using a total station in the same location as the GPS receiver.  

The azimuth of the ‘cutting’ was determined using a compass on the ground and by 

measurement on a street map.   

 

A comparison between the collected data and the spreadsheet was made of the 

satellites visible at each epoch.  The spreadsheet used the following inputs: 

 

§ ϕ  = 051° 31’ 22” North, λ  = 000° 8’ 30” West, h = 86.841m; 

§ Date: 24/08/2005 (new ephemeris file used); 

§ °= 74Leftω ; 

§ °= 46Rightω ; 

§ Obstructions in the along-track directions all below the 15° cut-off; 

§ Azimuth of cutting °= 320β . 

§ All other parameters were as specified in section 3. 

 

The results of this comparison are given in figure 6.2. 
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Time Satellite
Epoch PRN L1 L2 Azimuth α (°) Elevation ρ (°) Visible? Azimuth α (°) Elevation ρ (°) Min. Vis. Elev (°)
14:00 9 TR TR 280 64 0 280 64 66

18 TR TR 266 36 0 267 37 70
26 TR TR 150 49 1 150 50 31
29 TR TR 148 37 1 148 38 25

14:15 7 TR TR 81 35 0 82 36 41
9 TR TR 287 71 1 286 71 63

26 TR TR 152 41 1 152 43 36
29 TR TR 150 29 1 150 31 31

14:30 5 TR TR 222 38 0 223 38 74
9 TR TR 296 77 1 295 77 56

26 TR TR 154 35 0 154 36 40
14:45 7 TR SH 66 34 0 67 35 45

9 TR TR 317 84 1 317 84 11
26 TR SH 155 28 0 156 29 43

Experiment Spreadsheet

 
Figure 6.2: Comparison of Visible Satellites over Four Epochs 

 

There is a considerable difference in the number of visible satellites although the 

azimuth and elevation of each satellite is similar in both methods.  Analysis of the 

spreadsheet shows that many of the satellites are a few degrees below the minimum 

visible elevation angle, as calculated in section 4.2.1 (v).  It is possible that the signals 

have been diffracted, but given the number of satellites affected it is more likely that 

this indicates a failure of the spreadsheet to model the obstructions adequately.  The 

‘cutting’ sides are assumed completely uniform, whereas in reality even a carefully 

chosen site such as this has enough variation to significantly alter the obtained results.  

 

Several satellites, in particular PRN 18 at 14:00 and PRN 5 at 14:30 were visible to 

the receiver even though they were far below the minimum visible elevation angle, as 

calculated in the spreadsheet.  This may indicate a greater deviation of the assumed 

model from reality in these directions, or the signals might be received after reflection 

or diffraction.   

 

This experiment shows that the spreadsheet is inadequate for the accurate modelling 

of satellite visibility in a given cutting.  If this was required then a detailed model of 

the cutting sides would have to be used.  However this does not mean that the 

spreadsheet is useless, since we can still obtain general results that will be useful in 

determining the benefits of the Track Known solution. 
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7. ANALYSIS 
 

This chapter utilises the completed spreadsheet to compare Track Unknown and 

Track Known solutions with the aim of determining the benefit derived from 

incorporating track knowledge in the positioning solution. 

 

7.1 ACHIEVING A USEFUL COMPARISON 
The initial step in quantifying the improvement gained using the Track Known 

solution is to determine which values are good indicators of quality or quality 

improvement.   

 

After some initial analysis, it was ascertained that comparing the mean over all epochs 

of Alongσ  or Max Alongδ  is a poor indicator of improvement.  There were often epochs 

where only the Track Known solution had a position with high values that biased the 

mean.  This resulted in some comparisons showing that the Track Known solution 

was worse than Track Unknown: this is impossible since the Track Known solution 

adds information to the least squares adjustment so it should be at least as good.  A 

more representative statistic is the mean across all epochs of the improvement in 

Alongσ  or Max Alongδ . 

 

Our main interest is obtaining a position, rather than precision or reliability per se.  

The conditions of this are:  

§ At least 5 (Track Unknown) or 3 (Track Known) visible satellites (required for 

error detection); 

§ Alongσ  and Max Alongδ  do not exceed the specified cut-off limits.   

 

Within these conditions, improvements in precision or reliability are not especially 

useful.  Therefore, when comparing the improvement from Track Unknown to Track 

Known, the most useful statistic is the additional proportion of epochs where a 

position satisfying the above criteria is possible, i.e. the proportion of epochs where a 

position is only possible with the Track Known solution. 

 



 33 

 

In subsequent analyses we look at the following statistics (where appropriate): 

 

§ Number of visible satellites; 

§ Proportion of epochs with error detection; 

§ Improvement in Alongσ , Max Alongδ  and proportion of epochs with error 

detection, both as absolute values and a percentage improvement over the 

Track Unknown solution. 

 

7.2 ANALYSIS 
This section consists of a series of analyses with the ultimate aim of providing a 

general idea about the improvement in positioning gained when using the Track 

Known solution in various situations. 

 

7.2.1 ANALYSIS OF THE EFFECT OF CUTTING AZIMUTH 

It is necessary to determine if the azimuth of the cutting has a significant impact on 

the results obtained.  If it does, then in order to apply the results of further analysis to 

the general case we will need to average over cutting azimuth. If not then a single 

azimuth can be used. 

 

The mean over 24-hours of each statistic was computed for every 10° of cutting 

azimuth ( β ).  Due to the symmetry of the cutting we need only test for °<≤ 1800 β . 

 

The spreadsheet input variables were: 

§ Precision of track: m1=σ ; 

§ Slope of cutting: °== 45RightLeft ωω ; 

§ Test point: ϕ  = 054° 08’ 00” North, λ  = 003° 49’ 30” West, h = 100m; 

§ All other parameters were as specified in section 3. 

 

See Appendix B.1 for a table of the results and B.2 – B.5 for graphs of the 

improvement in each statistic against cutting azimuth.   
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There is a significant variation in the results obtained for different cutting azimuths, 

not least the mean number of visible satellites.  The graphs B.2 – B.5 show that the 

mean Track Known improvement over 24-hours varies significantly with cutting 

azimuth.  For example, the improvement in the proportion of epochs where it is 

possible to obtain a position ranges from 22.9% with a 130° cutting azimuth to 

106.7% with a 10° cutting azimuth.  This significant difference means that subsequent 

comparisons need to be averaged over azimuth in order to draw general conclusions. 

 

7.2.2 ANALYSIS OF THE EFFECT OF LOCATION 

We need to determine if the location of the cutting within Britain is significant for the 

results obtained.  If there is significant variation with location then we will have to 

look at several points around the country in order to determine a general conclusion 

about the value of the Track Known solution.  If they do not, we can make all 

subsequent analysis at a location in the centre of the country and apply the 

conclusions generally. 

 

A comparison was made between two extreme points on the railway network: 

SW – Penzance: ϕ  = 051° 07’ 00” North, λ  = 005° 33’ 00” West, h = 100m; 

NE – Aberdeen:  ϕ  = 057° 09’ 00” North, λ  = 002° 06’ 00” West, h = 100m. 

 

This analysis has two components.  The first involves a comparison of the number of 

visible satellites, the precision and the reliability in each location for each epoch over 

24 hours, with the aim of determining how different the GPS positioning conditions 

are at each location.   

 

For this comparison, we are interested in the potential difference in satellite 

positioning at each location irrespective of the existence of a cutting.  Therefore we 

can set the slope sides to 0°, ignore the Track Known solution and compare the Track 

Unknown statistics 22
AcrossAlongPosition σσσ +=  and 22

AcrossAlongPosition δδδ += . 

This means that the direction of the track has no effect, but we can compare results for 

each epoch directly and avoid any potential distortion from averaging over cutting 

azimuth.  The spreadsheet therefore had the following input variables:  
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§ Slope of cutting: °== 0RightLeft ωω ; 

§ All other parameters were as specified in section 3. 

 

Note that since there are no obstructions to visibility, error detection is possible for all 

epochs.   

 

See Appendix C.1 for a table of results and C.3 – C.5 for graphs of satellite visibility, 

Positionσ  and Max Positionδ  for each location against time. 

 

There is some variation between the two locations, although they follow a similar 

pattern.  However, we can see from table C.1 and that the difference when averaged 

over all epochs is fairly small, e.g. 8.1 visible satellites in Penzance and 8.5 in 

Aberdeen. 

 

The second comparison was made with a 45° cutting slope, averaged over time and 

azimuth.  The aim of this was to determine the effect of location on the improvement 

gained with the Track Known solution.   

 

The spreadsheet inputs were: 

§ Slope of cutting: °== 45RightLeft ωω ; 

§ All other parameters were as specified in section 3. 

 

Table C.2 displays these averaged results and shows that although there is some 

variation with location this is fairly small, e.g. 67.9% improvement in the proportion 

of epochs with error detection in Penzance compared to 80.7% in Aberdeen.   

 

In subsequent sections we will therefore draw generalised conclusions from analysis 

of a single location, the mean of these two positions: 

ϕ  = 054° 08’ 00” North, λ  = 003° 49’ 30” West, h = 100m;  

 

When this result is combined with section 7.2.1, we can infer that in general cuttings 

in the East-West direction are better for positioning than those in the North-South 

direction (see table B.1 and graph B.2). 
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7.2.3 ANALYSIS OF THE EFFECT OF TRACK PRECISION 

We are now in a position to determine how the precision of the track database affects 

the Track Known solution.  The improvement in each statistic, averaged over azimuth 

and 24 hours, was calculated for a range of different track precisions.  For the purpose 

of this analysis, “Track Precision” refers to 222111 hh σσσσσσσ λφλφ ====== . 

 

The spreadsheet inputs were : 

§ Slope of cutting: °== 45RightLeft ωω ; 

§ Test point: ϕ  = 054° 08’ 00” North, λ  = 003° 49’ 30” West, h = 100m;  

§ Mean taken over azimuth (every 15°); 

§ All other parameters were as specified in section 3. 

 

See Appendix D.1 for a table of results and D.2 – D.4 for graphs showing how the 

improvement in each statistic changes with track precision.   

 

We can see from these results that the improvement gained from the Track Known 

solution is reduced with lower end-point precision, until with m100=σ  the benefit is 

minor (we can only position in an extra 1.7% of epochs).  Table D.1 shows that a very 

precise track database brings little benefit: for m001.0=σ  the mean improvement in 

the proportion of epochs with error detection is 66.9%, whereas for m1=σ  it is 

66.3%.  Even with m5=σ  we have a 62.5% improvement and at this level of 

precision it may be possible to obtain track data from digital maps, which would be 

much cheaper than surveying the whole railway network. 

 

7.2.4 ANALYSIS OF THE EFFECT OF CUTTING SIDE ANGLE 

The final analysis aims to determine the effect of the steepness of the cutting sides on 

the usefulness of the Track Known solution.  The improvement in each statistic, 

averaged over azimuth and 24 hours, was calculated for a range of different cutting 

side angles.  Since the results were averaged over azimuth we keep RightLeft ωω =  for 

ease of comparison.   

 

The spreadsheet inputs were: 

§ Precision of track: m1=σ ; 
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§ Test point: ϕ  = 054° 08’ 00” North, λ  = 003° 49’ 30” West, h = 100m;  

§ Mean taken over azimuth (every 15°); 

§ All other parameters were as specified in section 3. 

 

See Appendix E.1 for a table of results and E.2 – E.5 for graphs showing how the 

improvement in each statistic changes with cutting side angle.   

 

Graph E.2 indicates that there is a linear relationship between the angle of the cutting 

sides and the number of visible satellites. 

 

We can see from table E.1 and graphs E.3 – E.5 that the Track Known solution 

provides a greater percentage improvement as the cutting side angle increases.  This 

means that the Track Known solution is relatively more useful in steeper cuttings.  

This is intuitive since steeper cuttings mean fewer visible satellites, which makes the 

two track equations relatively more important for the quality of the solution, or for 

obtaining a solution at all.  

 

7.3 CONCLUSION – ANALYSIS OF THE EFFECTIVENESS OF 

THE TRACK KNOWN SOLUTION 
Appendix F presents a summary of the proportion of epochs where it is possible to 

position as the cutting side angles increases.  Here a track precision of 1m is assumed 

and results are averaged over cutting azimuth and 24 hours.   

 

Incorporating knowledge of the track into the positioning solution provides a 

substantial benefit for GPS use in cuttings, for example in a 40° cutting a it allows a 

position with the specified criteria (section 7.1)  85.5% of the time, a substantial 

improvement over the 58.3% for unassisted positioning.  However, this improvement 

is still insufficient to allow GPS to be used to reliably position trains, since for 

example in a 60° cutting the proportion of epochs a position is possible is less than 

30%, even with the Track Known solution.  It is therefore unlikely that GPS by itself 

could be used as the primary positioning system on a train, even assisted in this 

manner.  This issue will be discussed further in sections 8.2 and 8.3.   
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8. FURTHER WORK 

 

8.1 MORE REALISTIC MODELLING OF CUTTING SIDES 
The current model assumes uniform cutting sides that extend infinitely along the track 

direction.  More sophisticated modelling of the shape of the cutting sides would 

improve the accuracy of the spreadsheet results. 

 

It would be possible to use a photogrammetric video camera which can distinguish the 

sky, or a laser scanner mounted on a train at the same height as the GPS receiver to 

create a model of nearby obstructions as the train runs along the track.  The main 

problem with this is that it may be hard to tell whether identified obstructions will 

block GPS signals or not.   

 

Another solution to the problem of precise modelling of the sides would be to place 

GPS receivers on trains and record which satellites are visible at which times.  

Eventually a database could be built up which would cover the whole railway network 

for all time periods. 

 

8.2 INCREASING THE NUMBER OF SATELLITES 
It would be interesting to expand this study to include the additional satellites of 

GLONASS and those of Galileo, once it is operational.  Including both of these 

should approximately triple the number of available satellites, allowing a position to 

be determined in a much higher proportion of epochs.  For example, table E.1 shows 

that in a 70° cutting the mean number of visible satellites is 2.2 (averaged over cutting 

azimuth and 24 hours) which is insufficient to compute a position.  Assuming roughly 

similar numbers of visible satellites for GLONASS and Galileo we have 6.6 visible 

satellites, allowing error detection. 

 

It may be possible to increase the coverage using pseudolites, devices of known 

position that emit GPS-like signals.  These could be placed in tunnels and stations to 

allow positions to be determined in such locations.  However, this would mean a 

much greater requirement for expensive track infrastructure. 
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8.3 INTEGRATION WITH OTHER SYSTEMS  
Due to the requirements of satellite visibility it is unlikely that GPS could be used as a 

stand-alone positioning system, even utilising a comprehensive track database.  There 

will always be stretches of track where insufficient satellites are visible, not least in 

tunnels and stations.  This loss of position is unacceptable in such a safety-critical 

application.   

 

The most suitable systems for integration with GPS are either an inertial surveying 

system or a wheel-mounted odometer. GPS could be used to control the build-up of 

errors from these sensors and they could cover the periods when GPS was inoperable.  

However, these systems give the change in position between two epochs, whereas 

GPS gives the position at each epoch.  It is therefore not possible to directly include 

measurements from either of these in the positioning solution as set up in the 

spreadsheet – a more sophisticated technique such as a Kalman Filter is required and 

this is beyond the scope of this project.   
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APPENDIX A 
 

 
COMPARISON OF SPREADSHEET SATELLITE VISIBILITY WITH LEICA 

SATELLITE AVAILABILITY PROGRAM 
 

 
A.1 TABLE SHOWING LEICA SATELLITE AVAILABILITY OBSTRUCTION 
INPUTS 
 
 

Obstruction
Azimuth (°) 30° Cutting 50° Cutting 70° Cutting

0 0.0 0.0 0.0
10 5.7 11.7 25.5
20 11.2 22.2 43.2
30 16.1 30.8 53.9
40 20.4 37.5 60.5
50 23.9 42.4 64.6
60 26.6 45.9 67.2
70 28.5 48.2 68.8
80 29.6 49.6 69.7
90 30.0 50.0 70.0

100 29.6 49.6 69.7
110 28.5 48.2 68.8
120 26.6 45.9 67.2
130 23.9 42.4 64.6
140 20.4 37.5 60.5
150 16.1 30.8 53.9
160 11.2 22.2 43.2
170 5.7 11.7 25.5
180 0.0 0.0 0.0
190 5.7 11.7 25.5
200 11.2 22.2 43.2
210 16.1 30.8 53.9
220 20.4 37.5 60.5
230 23.9 42.4 64.6
240 26.6 45.9 67.2
250 28.5 48.2 68.8
260 29.6 49.6 69.7
270 30.0 50.0 70.0
280 29.6 49.6 69.7
290 28.5 48.2 68.8
300 26.6 45.9 67.2
310 23.9 42.4 64.6
320 20.4 37.5 60.5
330 16.1 30.8 53.9
340 11.2 22.2 43.2
350 5.7 11.7 25.5
360 0.0 0.0 0.0

Obstruction Elevation Angle (°)
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A.2 TABLE OF RESULTS 
 

Epoch Leica Spreadsheet Leica Spreadsheet Leica Spreadsheet Leica Spreadsheet
00:00 9 9 7 6 3 3 1 2
00:30 9 8 7 7 2 2 2 2
01:00 7 7 5 5 3 3 2 2
01:30 7 8 5 5 3 3 1 1
02:00 8 8 4 4 3 3 1 1
02:30 7 7 5 5 3 3 0 0
03:00 8 8 5 5 4 4 1 1
03:30 8 7 5 5 3 3 1 1
04:00 7 7 4 4 3 3 1 2
04:30 8 7 4 4 3 3 2 2
05:00 8 8 6 6 4 3 2 2
05:30 8 8 7 7 3 3 2 2
06:00 9 9 6 6 5 5 2 2
06:30 10 9 6 6 5 5 2 2
07:00 8 7 6 5 4 3 3 2
07:30 8 8 4 4 3 2 1 1
08:00 8 8 4 5 2 2 1 1
08:30 8 9 6 6 2 2 1 1
09:00 8 9 6 7 2 2 1 1
09:30 8 9 5 6 2 3 1 1
10:00 8 9 7 8 2 2 1 1
10:30 8 9 6 7 3 4 2 2
11:00 8 9 6 7 4 4 2 2
11:30 9 10 7 8 3 4 3 3
12:00 9 10 7 8 4 4 2 2
12:30 8 8 5 6 5 5 2 3
13:00 7 7 5 5 4 4 3 3
13:30 7 7 7 6 5 5 2 2
14:00 8 8 6 6 5 5 2 2
14:30 9 9 7 7 5 6 2 3
15:00 8 8 6 6 4 5 1 2
15:30 7 7 6 6 4 4 1 1
16:00 7 6 6 5 3 3 1 1
16:30 8 8 4 5 3 3 2 2
17:00 9 7 5 5 2 2 2 2
17:30 7 7 6 6 3 3 1 1
18:00 7 7 5 5 5 5 2 2
18:30 7 9 5 5 4 4 2 2
19:00 9 10 5 5 4 4 3 3
19:30 8 9 5 5 2 2 2 2
20:00 8 9 5 5 2 3 1 1
20:30 8 9 7 8 3 3 1 1
21:00 8 8 5 8 3 3 1 1
21:30 9 10 4 4 3 3 1 1
22:00 8 7 5 6 2 2 2 2
22:30 8 8 4 4 2 2 1 1
23:00 8 8 5 5 3 3 1 1
23:30 9 9 6 6 3 3 0 0

Number of Visible Satellites
10° Cutting 30° Cutting 50° Cutting 70° Cutting

 
 
 
 



 43 

 
A.3 CUTTING ANGLE 10° 
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A.4 CUTTING ANGLE 30° 
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A.5 CUTTING ANGLE 50° 
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A.6 CUTTING ANGLE 70° 
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APPENDIX B  
 
 

ANALYSIS OF THE EFFECT OF CUTTING AZIMUTH 
 
 
B.1 TABLE SHOWING HOW COMPUTED STATISTICS VARY WITH CUTTING 
AZIMUTH 
 

Cutting Mean
Azimuth (°) Satellites Track Unknown Track Known (m) % (m) % Value %

0 4.5 34.4 64.6 0.484 16.8 19.462 44.5 30.2 87.9
10 4.4 31.3 64.6 0.565 18.3 24.223 51.7 33.3 106.7
20 4.8 41.7 76.0 0.405 13.8 28.228 51.6 34.4 82.5
30 5.1 50.0 80.2 0.452 15.4 21.028 42.1 30.2 60.4
40 5.3 59.4 86.5 1.048 36.7 31.621 67.0 27.1 45.6
50 5.4 59.4 94.8 1.174 41.3 27.935 61.1 35.4 59.6
60 5.6 71.9 97.9 1.165 41.7 28.687 62.6 26.0 36.2
70 5.6 71.9 97.9 0.949 39.1 28.136 63.1 26.0 36.2
80 5.6 72.9 99.0 0.530 27.3 24.235 63.7 26.0 35.7
90 5.7 72.9 96.9 0.296 17.7 18.784 62.5 24.0 32.9

100 5.6 75.0 96.9 0.251 14.8 11.022 43.9 21.9 29.2
110 5.6 76.0 96.9 0.235 13.1 16.928 49.0 20.8 27.4
120 5.6 74.0 92.7 0.414 19.7 16.477 45.5 18.8 25.4
130 5.5 72.9 89.6 0.535 22.7 23.300 55.5 16.7 22.9
140 5.4 62.5 89.6 0.668 25.6 22.146 54.7 27.1 43.3
150 5.2 57.3 89.6 0.769 28.1 22.734 49.4 32.3 56.4
160 5.0 52.1 83.3 0.684 25.5 22.111 45.5 31.3 60.0
170 4.5 41.7 67.7 0.661 21.9 21.018 43.9 26.0 62.5

% Epochs Error Detection
Mean Improvement

σAlong Max δAlong % Epochs Error Detection

 
 
 
 
 
B.2 GRAPH OF SATELLITE VISIBILITY VARIATION WITH CUTTING AZIMUTH 
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B.3 GRAPH OF IMPROVEMENT IN PROPORTION OF EPOCHS WITH ERROR 
DETECTION VARIATION WITH CUTTING AZIMUTH 
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B.4 GRAPH OF IMPROVEMENT IN Alongσ VARIATION WITH CUTTING 

AZIMUTH 
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B.5 GRAPH OF IMPROVEMENT IN MAX Alongδ  VARIATION WITH CUTTING 

AZIMUTH 
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APPENDIX C 
 

ANALYSIS OF THE EFFECT OF LOCATION 
 
 
C.1 TABLE SHOWING HOW COMPUTED STATISTICS VARY WITH LOCATION 
FOR 0° CUTTING SLOPE 
 

Location Satellites σPosition (m) Max δPosition (m)
SW - Penzance 8.1 2.233 21.931
NE - Aberdeen 8.5 2.322 24.315

Mean Over 24h

 
 
 
 
 
C.2 TABLE SHOWING HOW COMPUTED STATISTICS VARY WITH LOCATION 
FOR 45° CUTTING SLOPE AVERAGED OVER AZIMUTH 
 
 

Mean 
Location Satellites Track Unknown Track Unknown (m) % (m) % Value %

SW 4.7 44.9 75.3 0.686 24.8 25.603 53.4 30.5 67.9
NE 4.6 39.9 72.1 0.840 27.5 25.412 51.6 32.2 80.7

Mean Improvement
σAlong Max δAlong % Epochs Error Detection% Epochs Error Detection

 
 
 
 
 
C.3 GRAPH OF SATELLITE VISIBILITY VARIATION WITH LOCATION FOR 0° 
CUTTING SLOPE 
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C.4 GRAPH OF Positionσ VARIATION WITH LOCATION FOR 0° CUTTING SLOPE 
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C.5 GRAPH OF MAX Positionδ VARIATION WITH LOCATION 
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APPENDIX D 
 

 
ANALYSIS OF THE EFFECT OF TRACK PRECISION 

 
 
D.1 TABLE SHOWING HOW COMPUTED STATISTICS VARY WITH TRACK 
PRECISION 
 

Track 
Precision σ (m) T r a c k  U n k n o w n T r a c k  K n o w n ( m ) % ( m ) % V a l u e %

0 . 0 0 1 4 4 . 0 7 3 . 4 0 . 7 4 8 2 5 . 9 2 6 . 0 0 9 5 3 . 2 2 9 . 4 6 6 . 9

0 . 0 1 4 4 . 0 7 3 . 3 0 . 7 4 8 2 5 . 9 2 5 . 9 7 1 5 3 . 2 2 9 . 3 6 6 . 5

0 . 1 4 4 . 0 7 3 . 3 0 . 7 4 7 2 5 . 9 2 5 . 9 6 8 5 3 . 2 2 9 . 3 6 6 . 5

1 4 4 . 0 7 3 . 2 0 . 7 2 2 2 5 . 1 2 5 . 7 0 3 5 2 . 6 2 9 . 2 6 6 . 3

5 4 4 . 0 7 1 . 5 0 . 4 6 3 1 6 . 4 2 1 . 7 0 9 4 4 . 7 2 7 . 5 6 2 . 5

1 0 4 4 . 0 6 7 . 9 0 . 2 6 1 9 . 4 1 6 . 8 1 9 3 4 . 8 2 3 . 9 5 4 . 2

1 0 0 4 4 . 0 4 5 . 7 0 . 0 1 1 0 . 4 2 . 4 5 2 5 . 1 1 . 7 3 . 9

% Epochs Error Detection σAlong Max δAlong
Mean Improvement

% Epochs Error Detection

 
 
 
 
 
 
D.2 GRAPH OF IMPROVEMENT IN PROPORTION OF EPOCHS WITH ERROR 
DETECTION VARIATION WITH TRACK PRECISION  
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D.3 GRAPH OF IMPROVEMENT IN Alongσ VARIATION WITH TRACK PRECISION  
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D.4 GRAPH OF IMPROVEMENT IN MAX Alongδ VARIATION WITH TRACK 

PRECISION  
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APPENDIX E 
 

 
ANALYSIS OF THE EFFECT OF CUTTING SIDE ANGLE 

 
 
E.1 TABLE SHOWING HOW COMPUTED STATISTICS VARY WITH CUTTING 
SIDE ANGLE 
 

Cutting Side
 Angle (°) Track Unknown Track Known (m) % (m) % Value %

10 100.0 100.0 0.219 13.3 5.928 35.9 0.0 0.0
20 98.8 99.9 0.256 14.5 9.367 42.4 1.1 1.1
30 86.5 97.6 0.413 19.6 16.452 50.9 11.1 12.9
40 58.3 85.6 0.621 23.9 22.988 53.2 27.3 46.7
50 27.4 57.8 0.860 26.9 32.866 54.1 30.4 110.8
60 7.6 29.4 1.410 35.5 53.701 69.7 21.8 285.2
70 0.5 7.7 2.013 43.1 39.423 58.7 7.2 1383.3
80 0.0 0.4 3.836 59.4 Sat. Sat. 0.4 Sat.

% Epochs Error Detection
Mean Improvement

σAlong Max δAlong% Epochs Error Detection

 
 
 
 
 
 
E.2 GRAPH OF SATELLITE VISIBILITY VARIATION WITH CUTTING SIDE 
ANGLE 
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E.3 GRAPH OF IMPROVEMENT IN PROPORTION OF EPOCHS WITH ERROR 
DETECTION VARIATION WITH CUTTING SIDE ANGLE 
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E.4 GRAPH OF MEAN IMPROVEMENT IN Alongσ VARIATION WITH CUTTING 

SIDE ANGLE 
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E.5 GRAPH OF MEAN IMPROVEMENT IN MAX Alongδ VARIATION WITH 

CUTTING SIDE ANGLE 
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APPENDIX F 
 
 

ANALYSIS OF THE EFFECTIVENESS OF THE TRACK KNOWN SOLUTION 
 

 
F.1 TABLE SHOWING HOW PROPORTION OF EPOCHS WITH ERROR 
DETECTION VARIES WITH CUTTING SIDE ANGLE FOR 1M TRACK PRECISION 
 

Cutting Side
 Angle (°) Track Unknown Track Known Value %

10 100.0 100.0 0.0 0.0
20 98.8 99.9 1.1 1.1
30 86.5 97.6 11.1 12.9
40 58.3 85.6 27.3 46.7
50 27.4 57.8 30.4 110.8
60 7.6 29.4 21.8 285.2
70 0.5 7.7 7.2 1383.3
80 0.0 0.4 0.4 Sat.

% Epochs Error Detection
Mean Improvement

% Epochs Error Detection

 
 
 
 
 
F.2 GRAPH OF PROPORTION OF EPOCHS WHERE A POSITION IS POSSIBLE 
WITH 1M TRACK PRECISION VARIATION WITH CUTTING SIDE ANGLE 
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