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Abstract GPS Single-epoch Real-Time Kinematic 
positioning is immune to cycle slips and can be 
immediately reinitialized after loss-of-lock, provid-
ing high availability. This technique requires relia-
ble ambiguity resolution: incorrect ambiguities can 
cause position errors of several meters, and failed 
ambiguity resolution reduces availability. Howev-
er, a bias or inaccuracy in a single phase observa-
tion can prevent successful resolution of the whole 
set of ambiguities. Partial ambiguity resolution 
allows a subset of ambiguities to be resolved with 
greater probability of success than the full set. A 
new algorithm for resolving a subset of ambiguities 
with validation from previous epochs is described. 
If normal ambiguity resolution fails, all ambiguity 
subsets are generated and ordered with the best 
subsets first. Each subset is then resolved in turn. 
Fixed subsets are validated against values from 
previous epochs; this validation procedure greatly 
reduces the proportion of epochs with incorrect 
ambiguities. An additional algorithm is described 
that uses the fixed ambiguities as precise ranges to 
resolve the remaining unfixed ambiguities. In order 
to test these new algorithms, GPS data were col-
lected from static and ship-based GPS receivers 
around Harwich harbor and processed from refer-
ence stations at distances up to 111 km. In the static 
tests the distance over which a 90% ambiguity 
resolution success rate for dual-frequency data was 
achieved was increased from 15 km to 76 km. 
However, in some cases the processing time was 
too long for this algorithm to be practical without a 
time-based cutoff. There is also a risk of incorrect 
ambiguities being propagated, particularly for sin-
gle-frequency processing. In a ship-based test, the 
distance over which sufficient availability to sup-
port harbor navigation was achieved using single-
epoch dual-frequency RTK was increased from 1 
km to 66 km. 
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Introduction 

The use of Global Navigation Satellite Systems 
(GNSS) for navigation in safety-critical environ-
ments requires robust, reliable positioning with 
high availability. The most precise positioning 
requirements necessitate the use of Real Time Kin-
ematic (RTK) positioning, which uses the phase 
observations as precise ranges to obtain centimetric 
accuracy. A GNSS receiver measures the differ-
ence between the internally-generated and received 
carrier phases, which leaves the observation biased 
by an unknown number of integer cycles, called the 
integer ambiguity. The phase observations alone do 
not contain enough information to resolve this 
ambiguity in a single epoch, so it is necessary ei-
ther to collect phase data over several epochs or to 
use the code observations for a single epoch. The 
single-epoch technique is very useful in safety-
critical applications because it is immune to cycle 
slips and can be immediately re-initialized after 
loss-of-lock, making it more robust than the multi-
epoch approach in difficult environments. This 
results in improved availability of the positioning 
system.  
 
The ambiguities are resolved in a two-step proce-
dure. A real-valued float estimate of the ambigui-
ties is first obtained by either the single- or multi-
epoch technique; this is then fixed to integer values 
using some ambiguity resolution procedure. If the 
fixed values pass a validation test, a positioning 
solution is determined using the ambiguity-fixed 
phase observations as precise range measurements. 
It is not necessary to solve for the receiver position 
until the final step, which leaves two possible pa-
rameterizations in the initial step to find the float 
ambiguities. In the geometry-free technique each 
receiver-satellite range is solved for separately, 
whereas in the geometry-based technique the rang-
es are parameterized in terms of the receiver posi-
tion. The geometry-based technique solves for 
fewer parameters and takes advantage of the addi-
tional satellite geometry and so gives the greatest 
probability of successful ambiguity resolution, as 
well as benefiting from additional satellites. How-
ever, a bias or inaccuracy in a single observation 
can prevent the whole set of ambiguities from be-
ing successfully resolved, and incorrect ambiguity 
resolution affects the whole set of ambiguities, 
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producing position errors of several meters. The 
geometry-free technique is more robust to biased 
observations because a biased observation only 
affects a single ambiguity, but is a less powerful 
approach due to the increased number of parame-
ters and loss of geometric information (Eissfeller et 
al. 2001). The overall geometry-free success rate is 
reduced by additional satellites, as they are effec-
tively solved independently and the extra geometric 
information is ignored. However, the geometry-free 
technique is commonly used for ambiguity resolu-
tion research as it is simpler and easier to analyze. 
 
It is well established that the optimal method of 
ambiguity resolution for the full set of unbiased 
ambiguities is integer least squares (Teunissen 
1999) as automated by the LAMBDA technique 
(Teunissen 1993). However, it is not always neces-
sary to resolve all ambiguities in order to achieve 
the desired precision in the final solution, and when 
using integer bootstrapping (Blewitt 1989) to fix 
the ambiguities, or when using the geometry-free 
parameterization, then attempting to fix all ambigu-
ities reduces the overall success rate (Cao et al. 
2007). This leads to the problem of partial ambigui-
ty resolution, where a subset of ambiguities may be 
fixed with an increased probability of success. 
However, the problem of identifying which subset 
to fix is still an open one when using integer least 
squares (Teunissen and Verhagen 2007).  
 
The probability of successful ambiguity resolution 
is affected by the presence of biases on the phase 
observations. Unlike biases in the code or ambigui-
ty-fixed phase observations, phase biases cannot be 
detected and excluded a priori in a single-epoch 
because they are directly absorbed into the corre-
sponding float ambiguity parameter. This can cause 
incorrect ambiguity resolution, or prevent the am-
biguity validation test from being passed. Biased 
observations in the geometry-free model only af-
fect the ambiguity from a single satellite by up to 
half a cycle, except when the observations have 
been differenced; a bias in the reference satellite 
affects all the observations. However, in the geom-
etry-based model a biased observation can cause 
incorrect resolution of the whole set of ambiguities, 
leading to position errors of several meters. It is 
therefore desirable to develop a partial ambiguity 
resolution technique that will enable, at a given 
epoch, the exclusion of any biased or inaccurate 
observations that are preventing successful ambigu-
ity resolution. 
 
This paper describes a new single-epoch technique 
to resolve a subset of the ambiguities based upon 
batch least-squares ambiguity fixing and the errors 
in the observations for the given epoch. This algo-
rithm is only applied if the full set of ambiguities is 
not resolved (i.e. fails a validation test). All subsets 

of the full set of ambiguities are generated and 
ordered according to some criterion, and ambiguity 
resolution and validation are then attempted on 
each of these subsets in turn. If the validation test is 
passed for a subset then the fixed ambiguities are 
compared to the “weighted mode” of the values for 
each ambiguity from previous epochs. If all ambi-
guity values match then the subset is accepted; if 
they do not it is rejected and another subset is tried. 
This algorithm results in an increase in the number 
of epochs with successfully fixed ambiguities when 
using the single-epoch approach, but maintains the 
advantage over multi-epoch positioning that it is 
robust against cycle slips and can re-acquire lost 
satellites in a single epoch, even with full loss-of-
lock.  
 

Partial ambiguity resolution techniques 

It is often not necessary to resolve all the ambigui-
ties to achieve the required accuracy for the final 
position, particularly when there are many satellites 
and frequencies available. There have been several 
techniques proposed that will allow a subset of the 
full set of ambiguities to be fixed with an increased 
probability of successful ambiguity resolution.  
 
The most widely-discussed existing partial ambigu-
ity resolution technique, introduced in (Teunissen 
et al. 1999), is based on the geometry-free model 
and the idea that additional satellites reduce the 
ambiguity resolution success rate, as discussed in 
Mowlam and Collier (2004). This idea is illustrated 
through the equation for the bootstrapped success 
rate (Teunissen 1998): 
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It is clear that, because the overall success rate in 
(1) is the product of the success rate for each indi-
vidual ambiguity, fixing more ambiguities reduces 
the overall success rate. The first step in the partial 
ambiguity resolution algorithm is to apply a linear 
transformation to decorrelate the ambiguities: this 
improves the success rate for bootstrapping and the 
search speed for LAMBDA (Verhagen 2005). A 
decorrelating transformation is generated as part of 
the LAMBDA algorithm. The decorrelated ambi-
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guities are ordered by decreasing precision, and a 
minimum required success rate is chosen. The 
ambiguities are then fixed in order until fixing 
another would reduce the total success rate to be-
low the chosen threshold, at which point the algo-
rithm terminates. (1) is a lower bound for the inte-
ger least squares success rate; this bound is sharper 
the more decorrelated the ambiguities are (Verha-
gen 2003).  
 
The decorrelation step complicates the interpreta-
tion of (1). In the geometry-free case the linear 
combinations are formed between different fre-
quencies to the same satellite, and often correspond 
to e.g. fixing the widelane ambiguities to all satel-
lites, then fixing the narrowlane ambiguities. In this 
case, applying the partial ambiguity resolution 
algorithm might be equivalent to e.g. fixing 
widelane only, or fixing widelane for all and nar-
rowlane for some satellites. In the geometry-based 
case the decorrelating combinations are formed 
across all satellites and frequencies, so any un-
fixed decorrelated ambiguities will be linear com-
binations of the original ambiguities across all 
satellites and frequencies.  
 
(1) may appear to suggest that having more visible 
satellites reduces the overall success rate. This is 
indeed the case for geometry-free fixing. However, 
for the geometry-based approach, additional satel-
lites improve the decorrelation, which results in a 
higher success rate for each step in (1) and a higher 
overall success rate for integer bootstrapping; the 
additional observations also in general increase the 
success rate for integer least squares. Therefore 
geometry-based batch-mode fixing will not neces-
sarily benefit from excluding the observations 
suggested by this technique, although it will be 
correct for bootstrapping (because the success rate 
equation is exact) and for geometry-free (because 
the additional observations from new satellites do 
not help to fix the existing ones). More frequencies 
improve the decorrelation for both techniques, and 
therefore increase the success rate.  
 
The problem with this technique is that it relies on 
the theoretical precision of the ambiguities to de-
cide which ones to try and fix, and this does not 
necessarily correspond to which ambiguities can be 
fixed at the current epoch because it only gives a 
general precision rather than the specific errors at a 
given epoch. This technique also only considers the 
optimum subset to fix based on sequential fixing 
(bootstrapping) rather than the superior batch-
fixing (least squares) approach.  
 
Dai et al. (2007) discuss two partial ambiguity 
resolution techniques that are applied only if the 
ambiguity validation test for a given epoch has 
been failed. The first technique involves trying to 

fix all sets of ambiguities from 5 or more satellites; 
ambiguity resolution is only failed for a given 
epoch if all these sets have been tried. However, 
this technique is only briefly mentioned and is not 
implemented, and would produce a large propor-
tion of epochs with incorrect ambiguities, as shown 
in the results section of this paper. In the second 
technique it is attempted to fix the wide- and nar-
row-lane ambiguities using LAMBDA. If the vali-
dation test is failed then the subset of ambiguities 
that are the same in the most-likely and second-
most-likely sets of ambiguities, as obtained from 
the LAMBDA search technique, are fixed. In Dai 
et al. (2007), this technique is combined with sev-
eral other new algorithms, so the results of the 
partial ambiguity resolution are not clear. However, 
there are a relatively high proportion of epochs 
with incorrect ambiguities, so this technique may 
not be suitable for a safety-critical environment. 
This may be a problem with the algorithm in that 
the ambiguities that are the same in the best and 
second-best sets of ambiguities may not necessarily 
be the correct ones, since both these sets are based 
on the same set of float ambiguities, which may 
contain biases.  
 
Henkel et al. (2009) propose a modification of the 
LAMBDA technique for multi-epoch satellite-
satellite single difference Galileo partial ambiguity 
resolution in the presence of biased observations. 
Like the partial ambiguity resolution technique 
based on the bootstrapping success rate, this tech-
nique relies on the theoretical precision of the ob-
servations to determine which subset of ambigui-
ties to fix.  
 

New subset ambiguity resolution technique 

A new subset ambiguity resolution technique has 
been developed that uses batch analysis of real 
observations in a single epoch to resolve a subset of 
the ambiguities. This method uses the real observa-
tions rather than their formal precision, so can take 
account of the specific biases on each observation 
at the current epoch rather than relying on the for-
mal precision of the observations. The ambiguities 
are analyzed in batch mode, which is how they are 
resolved when using integer least squares, rather 
than through the sequential bootstrapping success 
rate. The algorithm is designed to have a low prob-
ability of incorrectly-fixed epochs. An overview of 
the algorithm is shown in Figure 1. 
 
The subset ambiguity resolution algorithm is only 
used if normal ambiguity resolution, usually 
LAMBDA followed by the ratio test, fails, i.e. the 
validation test rejects the best set of ambiguities as 
not being sufficiently distinguishable from the 
second-best to be confident that they are correct. 
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All subsets of the full set of ambiguities are gener-
ated and ordered according to some criterion. Each 
subset is then analyzed in turn: the corresponding 
float ambiguity values and covariance matrix are 
extracted and used to attempt to fix the ambiguities 
using LAMBDA. The point of the ordering is that 
the subsets that are most likely to be fixed correctly 
are tried first, in order to reduce both the probabil-
ity of an incorrect fix and the processing time. The 
two ordering methods that have been analyzed are 
Ambiguity Dilution of Precision (ADOP), a com-
puted measure, and mean Signal to Noise Ratio 
(SNR), an observed measure. 
 
ADOP (Teunissen et al. 2000) quantifies the a 
priori precision and geometry of the ambiguities 
and is defined as: 

 

n
aQADOP
1

ˆdet=  (3) 

 
where aQˆ  is the covariance matrix of the ambigui-
ties and n  is the number of ambiguities. Ambigui-
ty sets with low ADOP are more likely to be cor-
rectly resolved if all observations are unbiased, so 
it is attempted to fix these first. Although ADOP 
does not contain any information about the pres-
ence of biases, ambiguity sets with more precise 
observations and better geometry are more robust, 
so it is better to try to fix these first in a difficult 
environment. 
 
SNR shows the strength of the signal, an observed 
rather than theoretical measure. The idea behind 
using SNR as an ordering metric is that, as an ob-
served quantity, SNR could contain information 
about the presence of biases in an observation: 
signals with a low SNR are more likely to be con-
taminated by multipath and other errors. Subsets 
with the lowest mean SNR are tried first. This 

favors smaller sets of ambiguities that exclude 
noisy observations, but in general larger sets are 
more likely to be fixed correctly using the geome-
try-based technique, as discussed in the introduc-
tion. Therefore the subsets are first ordered by size 
and then by SNR. A potential problem with order-
ing by SNR is that it may disproportionately favor 
high-elevation satellites (with high SNR), to the 
detriment of the geometry of the system 
 
It is possible to devise other ordering schemes, for 
example some combination of SNR and ADOP in 
order to take account of the measured signal 
strength, theoretical precision and overall system 
geometry, but it is not expected that this will have a 
significant effect on the results due to the similarity 
of the SNR and ADOP ordering schemes as shown 
in the results section. 
 
The problem with this technique of partial fixing is 
that any ambiguity validation procedure, such as 
the ratio test, has a probability of accepting the 
incorrect set of ambiguities due to the statistical 
nature of the test; the true ambiguity values are not 
known. Therefore with each subset attempted there 
is some probability of accepting an incorrect set of 
ambiguities, which may result in position errors of 
several meters. If many subsets are tried then there 
is a high probability that eventually one will be 
fixed but, as shown in the results section, not nec-
essarily to the correct subset. This means that the 
technique described above results in a very high 
fail rate, making it unsuitable for use; an extra step 
must be added in order to reduce the probability of 
incorrect ambiguity resolution.  
 
The additional validation step uses information 
from previous epochs where the ambiguities were 
fixed normally in order to validate the fixed ambi-
guity subset for the current epoch. For a given 
satellite and frequency, the “weighted mode” of the 
fixed ambiguity value is taken over the previous 
epochs, with more weighting given to more recent 

Figure 1: Subset ambiguity resolution algorithm 
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values, in order to determine the predicted value of 
each ambiguity. Different weighting schemes affect 
how many epochs must have their ambiguities 
resolved to the same values before these values are 
accepted for use in the algorithm; this is a trade-off 
between availability and reliability.  
 
The weight applied to the value at each epoch for 
the processing is ( ) NNw Δ=Δ 1 , where NΔ  is the 

time offset in epochs. For a given ambiguity, the 
sum of the weights for each different value in the 
previous 20 epochs is computed, and the value with 
the highest sum is taken as the expected one for 
that ambiguity for the current epoch. This means 
that if the three most recently fixed full sets of 
ambiguities agree on the value of an ambiguity, 
then the subset ambiguity resolution algorithm will 
accept this value. If the receiver loses track of a 
satellite, the previously stored ambiguity values are 
deleted, as the true ambiguity may be different 
when the satellite is re-acquired. For the analysis in 
the results section, the partial ambiguity resolution 
algorithm is applied if there is at least one stored 
set of previous values; requiring more previous 
values would decrease availability but improve 
reliability. 
 
Only values where the whole set was fixed normal-
ly (i.e. not using this algorithm) are used to com-
pute the weighted mode in order to prevent the 
situation where incorrect values are propagated 
indefinitely. When a subset is fixed in the current 
epoch then the values of all ambiguities are com-
pared to the expected values from the previous 
epochs; if any ambiguities do not match then the 
fixed subset is discarded.  
 
The effect of this algorithm is as follows: if the true 
ambiguity values are the same as expected from the 
previous epochs and the subset is fixed to these 
values, then it is correctly kept; if it is incorrectly 
fixed then it is rejected. If the true ambiguity values 
have changed from the previous epochs and the 
ambiguities are fixed correctly, then they will in-
correctly be rejected; however, this situation will 

only last until the whole set has been correctly 
fixed for a few epochs, and unless all ambiguities 
have changed (complete loss-of-lock) then it will 
still be possible to fix subsets that do not contain 
changed ambiguities. The only dangerous situa-
tions are when the ambiguities change but a subset 
accidentally incorrectly fixes upon the old values, 
or when the ambiguities have been fixed to the 
same incorrect value over several previous epochs, 
so the algorithm treats these incorrect values as true 
and propagates the error. The latter of these seems 
the more likely, but could be controlled by a good 
validation algorithm with appropriate critical value. 
It may be beneficial to use a stricter validation 
algorithm when using this technique, as epochs 
where the validation test fails can still have a subset 
resolved, but full sets of ambiguities that have been 
incorrectly resolved can cause problems for the 
subset ambiguity resolution algorithm in subse-
quent epochs. 
 
After a subset of ambiguities has been fixed, these 
ambiguity-fixed observations can act as precise 
ranges and allow the fixing of further ambiguities, 
with the aim of improving the precision of the final 
position. This is done through a least squares ad-
justment in a similar manner to the single-epoch 
positioning where the code provides the position, 
except that ambiguity-fixed observations are used 
in place of the code observations. The ambiguity-
fixed phase observations are much more accurate 
than the code, and so provide better estimates of 
the remaining unfixed ambiguities and therefore 
increase the likelihood of successful ambiguity 
resolution. If fewer than half of the ambiguities 
have been fixed then it may be necessary to also 
include the code observations in this adjustment, 
although this was not necessary for the data ana-
lyzed here. These additional ambiguities can be 
fixed with the subset ambiguity resolution algo-
rithm, and the whole procedure iterated until it is 
not possible to resolve any more ambiguities, as 
shown in Figure 2. This completes the subset am-
biguity resolution algorithm for the current epoch.  
 
 

Figure 2: Additional ambiguity resolution algorithm 
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The subset ambiguity resolution algorithm in this 
form is a hybrid of the single- and multi-epoch 
approaches. The ambiguity resolution is based on 
the observations from the current epoch only, so it 
is not necessary to worry about cycle slips or re-
initialization after loss-of-lock. In particular, cycle 
slips will only result in the rejection for a few 
epochs of subsets that include the slipped ambigui-
ties (assuming that normal single-epoch ambiguity 
resolution does not fix the ambiguities), but subsets 
that do not include the cycle-slipped ambiguities 
will still be resolved. In contrast, an un-detected 
cycle slip in multi-epoch ambiguity resolution will 
prevent successful resolution. The benefit of the 
subset ambiguity resolution algorithm over normal 
single-epoch ambiguity resolution is that there is a 
possibility to resolve more ambiguities after the 
normal algorithm has failed, resulting in increased 
positioning availability and continuity.  
 
Another advantage of this algorithm over some 
other partial ambiguity resolution techniques is that 
the subset of ambiguities that are fixed are “real” 
ambiguities, corresponding to real measurements. 
In partial ambiguity resolution algorithms where 
the ambiguities are decorrelated before deciding 
which to fix, the fixed ambiguities are linear com-
binations of the true ambiguities. For geometry-free 
fixing then they are a linear combination of ambi-
guities from a single satellite (e.g. widelane), and 
for geometry-based fixing they are a linear combi-
nation of ambiguities from all satellites and fre-
quencies. The effect of this is that the partially-
fixed observations are less precise: only fixing 
widelane ambiguities results in an imprecise ambi-
guity-fixed position. However, the subset ambigui-
ty resolution technique only degrades the position 
accuracy through fewer observations, which will 
have less of an effect, particularly when using mul-
tiple GNSSs with many satellites visible. 
 
The main disadvantage of this algorithm is the 
computation time, which is significantly increased 
due to the necessity of running the LAMBDA algo-
rithm for each subset attempted. This will be ana-
lyzed further in the results section. 
 

Performance with real data 

A data collection exercise was performed in Har-
wich harbor, as described in (Parkins 2008, Parkins 
2009). A reference station was set up on a roof near 
the harbor (BASE) and another in a field 15 km 
away (WIX), and a receiver positioned onboard the 
ship THV Alert (SHIP) as it performed maneuvers 
in the harbor. Data from nearby Ordnance Survey 
(OS) stations were also used, as shown in Figure 3, 
and the ship was tracked by two total stations to 
provide a truth model. The data were processed 

using software written in C++ and co-developed by 
the author at UCL; this software is described in 
greater detail in Parkins (2009).  
 
90 minutes of 1 Hz dual-frequency data were pro-
cessed using a single-epoch geometry-based dou-
ble-difference RTK technique. The Klobuchar 
model was used to model the ionosphere, and the 
troposphere was modeled by the ESA model with 
the Global Mapping Function (GMF). The data 
were processed over all baseline lengths with a 
variety of different processing techniques, and the 
ambiguity resolution success and fail rates deter-
mined as the proportion of epochs with correct or 
incorrect ambiguities respectively. The ratio test 
with a critical value of 2.5 was used for ambiguity 
validation: if this failed then the ambiguity was 
either left unfixed (LAMBDA only) or some vari-
ant of the subset ambiguity resolution algorithm 
applied. The ambiguity-fixed positions are com-
pared to the known positions to determine whether 
the ambiguities have been fixed correctly, as the 
true ambiguity values are unknown. Although this 
technique is not completely reliable it will suffice 
for comparing the different ambiguity resolution 
procedures, as the same criterion is applied to both. 
Future analyses could use a batch-processing tech-
nique to more rigorously determine the success 
rates. 
 
Two different analyses are presented here. The first 
uses BASE as the rover in order to demonstrate the 
development of the subset ambiguity resolution 
algorithm; BASE is static and therefore it is much 
easier to determine if the ambiguities are correct, 
and to examine the accuracy achieved. The second 
analysis uses SHIP as the rover in order to demon-
strate the effect of the algorithm in a safety-critical 
environment; the total station observations are used 
to validate the results. 

Figure 3: Map of reference stations  
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Static experiment 
This experiment uses the temporary reference sta-
tion set up near Harwich harbor (BASE) as a rover 
in order to illustrate the development of the partial 
ambiguity resolution technique. The “true” position 
of BASE, required to compute the accuracy of the 
different techniques, was determined by averaging 
the single-epoch ambiguity-fixed positions over all 
baselines and epochs. Five different processing 
techniques were used; the results are shown in 
Figure 4 and Table 1. 
 
The first processing technique is the conventional 
procedure, using LAMBDA and the ratio test with 
a critical value of 2.5. It can be seen that the suc-
cess rate is significantly lower than for the other 
techniques, all of which employ some form of 
additional ambiguity fixing in the case that the ratio 
test fails using LAMBDA alone. However, the fail 
rate is also low, with incorrect ambiguities from the 
111 km baseline only. The success rate decreases 
with reference station distance due to the reduced 
cancellation of spatially-correlated errors. 
 

The second technique used is basic subset fixing, 
where the subsets are ordered according to ADOP 
and each is attempted to be fixed in turn, using 
LAMBDA and the ratio test; no further verification 
tests are applied. Although this technique results in 
the highest success rate for many baseline lengths, 
it also has a high fail rate, which increases with 
baseline length to over 25%. This is because each 
time the ratio test is used to validate the fixing for a 
subset, there is a small probability that an incorrect 
set of integer values is accepted. With no additional 
validation and a large number of subsets to try, it is 
likely that the ambiguities will be fixed incorrectly 
eventually if they are not fixed correctly first. This 
means that very few epochs have unfixed ambigui-
ties, because this only occurs when all subsets have 
been attempted.  
 
The last two techniques employ the full algorithm, 
with verification of the chosen subset by computing 
the expected values from previous epochs; the 
difference between these two is whether the ambi-
guity subsets are ordered according to ADOP or 
SNR. These two ordering schemes produce slightly 
different results, but it is not clear which one is 
superior. Compared to basic subset fixing, the 

Reference 
station 

Baseline 
length (km) LAMBDA only Basic subset 

fixing 
Full algorithm 

SNR 
Full algorithm 

ADOP 
WIX 15 92 (0) 100 (0) 100 (0) 100 (0) 

ALDB 31 84 (0) 100 (0) 100 (0) 100 (0) 
SHOE 60 56 (0) 95 (0.53) 93 (0) 93 (0) 
ATTL 66 39 (0) 89 (5.94) 87 (0) 87 (0) 
GORE 76 35 (0) 94 (4.02) 85 (0) 92 (0) 
MAID 92 20 (0) 79 (6.50) 65 (0) 65 (0) 
STRA 100 2 (0) 50 (26.34) 38 (0) 40 (0) 
STEV 102 5 (0.06) 58 (24.85) 51 (2.16) 45 (2.16) 
NEOT 111 10 (0) 59 (25.09) 51 (0) 57 (0) 

Table 1: Static experiment success rate percentage (fail rate percentage in brackets) 

Figure 4: Static experiment results 
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success rate is slightly lower, but the fail rate over 
all baselines except 100 km (STRA) has been re-
duced to zero. The fail rate for both techniques is 
still higher than for the full ambiguity resolution to 
STRA, which is a cause for concern for safety-
critical applications. This is due to the propagation 
of incorrect ambiguities from LAMBDA and ratio 
test. This could be reduced by either increasing the 
ratio test critical value over longer baselines to 
guard against incorrect ambiguity resolution, or by 
changing the subset acceptance weighting scheme 
so that more previous epochs are required to be 
fixed to a value before it is accepted. However, this 
will result in a longer period of time where this 
algorithm cannot be used after loss-of-lock.  
 
All techniques show a substantial improvement in 
ambiguity resolution success rates. However, it is 
not feasible to attempt to fix subsets without some 
additional validation, due to the high fail rate. The 
verification test chosen, comparing the fixed ambi-
guities for a given subset with those from previous 
epochs, greatly reduces the fail rate, although over 
one baseline it is still higher than for the full set 
due to propagation of incorrect ambiguities.  
 
Table 2 shows the effect the additional ambiguity 
fixing algorithm on the accuracy of the final posi-
tion. Out of 9 reference stations, the precision was 
improved in 6 and degraded in 3, although the 
accuracy is very poor for one of these latter stations 
due to incorrect ambiguity resolution. The preci-
sion can only be affected in epochs where the sub-
set ambiguity resolution algorithm is used, so the 
difference is less for the shorter baselines where 
there is a high success rate with the full ambiguity 
set. The results show that this technique can im-
prove the precision of the final solution, but this is 
not guaranteed. This may be because the least pre-

cise observations are excluded by the partial ambi-
guity resolution algorithm, so subsequently fixing 
them can introduce poor-quality observations into 
the solution. However, overall, this data set sup-
ports the use of this algorithm to improve the preci-
sion of the final ambiguity-fixed solution. The 
accuracy for both subset ambiguity resolution tech-
niques is worse than for LAMBDA alone, as the 
additional epochs use fewer ambiguity-fixed obser-
vations to obtain the final position. The main bene-
fit of partial ambiguity resolution is in improved 
success rate and therefore availability, rather than 
final positioning accuracy. 
 
Figure 5 shows the ambiguity resolution processing 
time from GORE (66 km baseline) with a 1.8 GHz 
processor for those epochs where the subset ambi-
guity resolution algorithm was used. It can be seen 
that in the majority of epochs the ambiguity subset 
was resolved within 1 s, and over half of the benefit 
of the algorithm was obtained within 0.5 s. Many 
of the epochs that took a long time to process re-
sulted in failed ambiguity resolution, so it may be 
beneficial to implement a time-based search cutoff; 
this would be necessary for real-time applications.  
 

Reference 
station 

Baseline 
length 
(km) 

LAMBDA 
only 

Subset 
ambiguity 
resolution 

Fixing 
additional 

ambiguities 
WIX 15 9.1 10.2 10.0 

ALDB 31 12.4 13.2 12.4 

SHOE 60 14.8 22.2 17.3 

ATTL 66 21.7 21.4 25.0 

GORE 76 19.8 30.1 21.9 

MAID 92 14.0 26.9 19.0 

STRA 100 18.0 138.1 29.6 

STEV 102 31.4 496.7 526.5 

NEOT 111 64.8 40.2 43.9 

Table 2: Static test plan accuracy (2σ, mm) 

Figure 5: Subset ambiguity resolution algorithm processing time from GORE 
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Kinematic experiment 

This experiment uses the receiver onboard the ship 
(SHIP) as the rover, in order to investigate the 
performance of the subset ambiguity resolution 
technique in a real safety-critical environment. The 
ambiguities are validated by the positions derived 
from total stations tracking a prism underneath the 
antenna. Due to the poor accuracy of the total sta-
tion truth model, it is not possible to assess the 
accuracy of the GNSS positions in the same way as 
for BASE. However, the total stations were suffi-
ciently accurate to validate the ambiguities, as 
described in Parkins (2009). The ship was very 
close to the reference station at BASE and moved 
less than 1 km, so the baseline lengths are similar 
to those for the static experiment. 
 
Figure 6 and Table 3 show the ambiguity success 
and fail rates over all baselines to SHIP. It is neces-
sary to have a success rate near 100% in order to 
achieve the positioning requirements for this safe-
ty-critical application, as discussed in Parkins 
(2009). This is only achieved with normal ambigui-

ty resolution over the 1 km baseline using dual-
frequency positioning; the ambiguity resolution 
success rate drops off rapidly with baseline length 
due to increasingly decorrelated atmospheric and 
orbit errors at the two receivers. Although this 
effect is still evident with the subset ambiguity 
resolution algorithm, the ambiguity resolution 
success rate is maintained at a sufficiently high 
level to support safety-critical positioning at base-
line lengths up to 66 km. The single-frequency 
ambiguity resolution success rate is very low for 
both techniques, but is also improved by the subset 
ambiguity resolution algorithm, although the fail 
rate is also increased. 
 
With dual-frequency ambiguity resolution, the 
ambiguities are only resolved incorrectly over the 
102 km baseline (STEV) when using either tech-
nique. However, over this baseline, the few epochs 
of incorrect ambiguity resolution with the full set 
are propagated with the subset ambiguity resolution 
algorithm, and the proportion of epochs where the 
ambiguities are resolved incorrectly is increased 
from 0.4% to 2.5%. This shows a vulnerability of 

Reference 
station 

Baseline 
length 
(km) 

Dual-frequency 
LAMBDA 

Dual-frequency 
subset 

Single-frequency 
LAMBDA 

Single-frequency 
subset 

BASE 1 99.6 (0) 100 (0) 40 (0.3) 55 (0.6) 
WIX 15 92 (0) 100 (0) 21 (2.1) 46 (3.2) 

ALDB 31 93 (0) 99.9 (0) 6 (1.2) 19 (1.7) 
SHOE 60 68 (0) 98 (0) 5 (1.1) 9 (1.1) 
ATTL 66 41 (0) 95 (0) 10 (1.0) 22 (1.0) 
GORE 76 50 (0) 92 (0) 1 (2.5) 4 (3.4) 
MAID 92 33 (0) 81 (0) 5 (3.4) 12 (5.5) 
STRA 100 5 (0) 33 (0) 1 (3.2) 4 (4.3) 
STEV 102 10 (0.4) 41 (2.5) 2 (2.0) 4 (2.4) 
NEOT 111 11 (0) 53 (0) 3 (1.3) 6 (0) 

Table 3: Kinematic experiment success rate percentage (fail rate percentage in brackets) 

Figure 6: Kinematic experiment results 
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the algorithm: if the ambiguities from several pre-
vious epochs are fixed to the same incorrect values, 
then the algorithm will treat these as correct and 
search for subsets that can be fixed to these incor-
rect values. This effect could be reduced by making 
sure that the validation test for the initial ambiguity 
resolution is relatively conservative; in this scenar-
io it may be that a ratio test critical value of 2.5 is 
appropriate for the shorter baselines, but a higher 
value is more appropriate for the longer baselines. 
The same error propagation effect can be seen with 
the single-frequency data over most baselines, but 
there is already a high fail rate with L1 only, which 
shows that the ratio test critical value is too low. 
However, the L1 success rate is already very low, 
and reducing the critical value will result in very 
few epochs with fixed ambiguities; this shows the 
advantage of two frequencies for ambiguity resolu-
tion. 

Performance with simulated data 

In order to analyze the effectiveness of the algo-
rithm in a controlled environment, dual-frequency 
GPS data were simulated for sites BASE and 
GORE for the whole day of the trial. The data in-
terval was 1 s, which resulted in 86400 epochs of 
data being processed. The error sources simulated 
include the ionosphere from IONEX files, solid 
earth tide and ocean tide loading. The orbit posi-
tions were generated from the IGS final SP3 files, 
which are relatively close to truth compared to the 
broadcast orbits used in the processing. The phase 
noise standard deviation was 0.3 m, and the code 
noise standard deviation was 0.003 m.  
 
The results are shown in Table 4. The ambiguity 
resolution success rate is increased from 58.4% to 
80.5% with the subset ambiguity resolution algo-
rithm, while the fail rate remains the same. This 
clearly shows the benefits of the subset ambiguity 
resolution algorithm in improving the availability 
of single epoch RTK positions. The 2σ accuracy is 
poor for both techniques due to the effect of the 
incorrect ambiguities; when these are disregarded 

the position accuracies are at the 3 cm level for 
both techniques. 
 

Conclusion 
This paper describes a technique for partial ambi-
guity resolution in the presence of biased observa-
tions, based upon a batch-mode analysis of the 
observations at the specific epoch rather than their 
theoretical precisions. All subsets of the full set of 
ambiguities are generated, ordered according to 
some criterion (SNR or ADOP), and fixed in turn. 
If a subset is successfully fixed then it is compared 
to the “weighted mode” of the values from previ-
ous epochs where the full set was fixed: if the val-
ues are the same then the subset is kept; if not then 
it is discarded. This has the effect of validating the 
subset against previous epochs, and greatly reduces 
the probability of the algorithm fixing the ambigui-
ties incorrectly, while still achieving the benefits of 
the single-epoch approach in that it is not necessary 
to worry about cycle slips and an instantaneous 
position can be achieved.  
 
Results from real data show that the algorithm 
improves the ambiguity resolution success rate 
over baseline lengths from 1 km to 111 km to both 
a static station and to a rover onboard a ship in a 
safety-critical environment. In the static tests, an 
ambiguity resolution success rate greater than 90% 
was achieved with baselines up to 76 km using 
subset ambiguity resolution, compared to 15 km 
using full ambiguity resolution. When the receiver 
was mounted on a ship, high-availability safety-
critical positioning was achieved up to a 66 km 
baseline using subset ambiguity resolution, com-
pared to 1 km baseline for the normal technique. 
This shows that the algorithm would be useful for 
positioning scenarios where high availability must 
be achieved. Over one long baseline, incorrectly-
resolved ambiguities were propagated by the subset 
ambiguity resolution technique, resulting in a high-
er fail rate than with the normal processing tech-
nique. This is a risk that is present when the normal 
fail rate is high, and should be guarded against by 
choosing a sufficiently conservative validation test 
for the full set of ambiguities. The single-frequency 
success rate was still low and the fail rate was in-
creased, which demonstrates the necessity of two 
frequencies for reliable RTK positioning.  
 
The most significant disadvantage to this technique 
is the increased processing time, as it is necessary 
to run the LAMBDA algorithm for each subset, 
until a subset is fixed. The processing was per-
formed with non-optimized code on a 1.8 GHz 
processor. In the majority of epochs where the 
subset ambiguity resolution algorithm was applied, 
ambiguities were resolved within 1 s, and over half 

 LAMBDA 
only 

Subset ambiguity 
resolution 

Ambiguity 
resolution suc-
cess rate (%) 

58.4 80.5 

Ambiguity 
resolution fail 

rate (%) 
0.2 0.2 

95% accuracy 
all fixed (m) 0.427 0.368 

95% accuracy 
correctly fixed 0.029 0.031 

Table 4: Results from simulated data 
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of the benefit of the algorithm was obtained within 
0.5 s. However, the lengthy processing time would 
be a problem for real-time applications where only 
limited computing resources were available.  
 
A second algorithm was described where the subset 
of phase observations with fixed ambiguities was 
used to provide precise ranges in order to fix addi-
tional ambiguities. It was shown that this technique 
can increase the accuracy of the final ambiguity-
fixed position, although the improvement is not 
large and there is the possibility of decreasing the 
final precision by incorporating less accurate ob-
servations. 
 
Future work 
Future work should concentrate on the problem of 
processing time. In particular, it would be useful to 
introduce a time-based cutoff, where ambiguity 
resolution for a given epoch is aborted if the pro-
cessing takes too long; in this case it may be better 
to ignore the previous epoch and process the next 
one. In addition, there may be further techniques 
available to improve the processing efficiency. The 
decorrelation matrix Z computed as part of the 
LAMBDA algorithm depends on the geometry of 
the satellites, which changes slowly. Therefore this 
matrix could be computed for each subset and 
stored between epochs for some period of time, 
being used whenever that particular subset is pro-
cessed. Efficiency could instead be increased by 
using bootstrapping rather than LAMBDA to re-
solve the ambiguities, as this algorithm is computa-
tionally cheaper. This would result in a lower suc-
cess rate for each subset attempted, but it would be 
possible to attempt more subsets in a given period 
of time. 
 
With the addition of a time-based cutoff, the order-
ing of the subsets might become more important, as 
only the top few would be tried. It would be useful 
to perform a more comprehensive analysis on the 
effect of the metric chosen on the ordering of the 
subsets: as shown in the results section, ordering by 
ADOP or SNR gives similar results with regards to 
ambiguity resolution success rate, but this might 
not be the case if not all subsets are processed. 
Some combination of SNR and ADOP, or another 
metric, could be tried. In addition, different decay 
functions for the weighted mean could be investi-
gated: these affect how many previous epochs need 
to be fixed to the same value before it is accepted 
as correct. 
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