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Wavefields forced by long obstacles on a
beta-plane
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1Department of Mathematics and Statistics, Monash University, Clayton 3168, Australia
2Department of Mathematics, University College London, Gower Street,

London, WC1E 6BT, UK

(Received 29 April 1997 and in revised form 23 August 1999)

This paper presents analytical and numerical solutions for steady flow past long
obstacles on a β-plane. In the oceanographically-relevant limit of small Rossby and
Ekman numbers nonlinear advection remains important but viscosity appears only
through the influence of Ekman pumping. A reduced boundary-layer-type equation
is derived giving the long-obstacle limit of an equation described in Page & Johnson
(1990). Analytical solutions are presented or described in various asymptotic limits
of this equation and compared with previous results for this or related flows. A
novel technique for the numerical solution of the boundary-layer equation, based on
a downstream–upstream iteration procedure, is described. Some modifications of the
asymptotic layer structure described in Page & Johnson (1991) and Johnson & Page
(1993) for the weakly nonlinear low-friction regime are outlined for the case of a
lenticular obstacle.

1. Introduction
Finite-amplitude coastal topographic Rossby waves, or continental shelf waves, were

first observed along the Australian coast by Hamon (1962, 1963, 1966) and continue
(e.g. Louis, Petrie & Smith 1982; Pickart 1995; Miller, Lermusiaux & Poulain 1996) to
be a typical feature of the low-frequency variability of coastal flows. Observations of
dynamically similar planetary waves are more recent. Emery & Magaard (1976) infer
the presence of Rossby waves from temperature fluctuations but direct observations
have become common only with the availability of accurate altimeter data from the
Geosat (Halliwell, Cornillon & Byrne 1991; Halliwell, Ro & Cornillon 1991; Jacobs,
Emery & Born 1993; Van Woert & Price 1993) and TOPEX/POSEIDON (Schlax &
Chelton 1994; Wang & Koblinsky 1995; Polito & Cornillon 1997) missions. The source
of these waves might be forcing by travelling storms (Lighthill 1967) but many wave-
fields appear to be associated with topographic perturbations in the form of islands
or submarine ridges, with Van Woert & Price (1993) noting that Rossby wave activity
represents a significant mode of mesoscale variability near the Hawaiian Islands.

Open-ocean planetary waves are identified by demonstrating that the phase as-
sociated with disturbances propagates according to predictions from Rossby-wave
dynamics. When, however, an ambient current opposes wave propagation those
waves whose phase speed is equal and opposite to the current stand, causing a
steady perturbation to the flow. The present method of analysing observations is
not designed to identify these standing waves. By considering a homogeneous fluid
on a β-plane (e.g. Pedlosky 1979), Page & Johnson (1990, 1991) and Johnson &
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Page (1993) (denoted PJ90, PJ91 and JP93 here) attempt to show how a large topo-
graphic perturbation could force large-scale perturbations to an eastward flow and
thus suggest that some current paths could be determined by standing Rossby waves.
The analysis identifies three parameters determining the form of flow patterns in the
oceanographically relevant limit of small Rossby and Ekman numbers: α, the ratio of
the β-effect to Ekman pumping destruction of vorticity; λ, the ratio of advection to
Ekman pumping; and L, the ratio of the along-stream length to cross-stream width of
the obstacle. Numerical solutions of the full nonlinear governing equations are given
for obstacles whose aspect ratio L is of order one and interpreted by considering the
first (leading-order) effects of nonlinearity on the almost-inviscid solutions for α� 1,
following Foster (1985).

Many coastal features are, however, long compared to their cross-stream width
(L� 1) and much analytical progress has been made by considering flows past thin
obstacles (Grimshaw 1987; Grimshaw & Yi 1990, 1993; Clarke & Johnson 1997a, b).
It is the purpose of the present paper to show that following these authors and
confining attention to long obstacles reduces the parameter space to two dimensions,
allows further analytical approximation, permits a novel, more efficient numerical
solution technique and leads to an almost complete classification of flow patterns.
The boundary in parameter space between unidirectional and locally-reversing flows
can be completely delineated and steady stable flows with local reversals found.

The two parameters determining the flow are taken to be γ = L/α, measuring
the obstacle length in terms of the Ekman decay scale of the almost-inviscid flow
and b = (λ/α)1/2. The parameter b is a Rossby-wave Froude (RWF) number based
on the obstacle width. It gives the ratio of the oncoming flow speed to the phase
speed of a long Rossby wave (i.e. with along-stream wavenumber near zero) with
cross-stream wavelength of order the obstacle width. As in the low-Froude-number
flows of non-rotating, two-dimensional stratified fluids (Chen, Rottman & Koch 1994;
Baines 1995), low-RWF-number (small b) flows exhibit the analogues of upstream
blocking, severe downslope winds and overturning in the lee of obstacles (see Haynes,
Johnson & Hurst 1993 and Johnson & Clarke 1999 for examples in a particularly
simple geometry). The analysis of Grimshaw & Yi (1990, 1993) corresponds to the
large-RWF-number limit where b � 1 and the ratio of channel to obstacle width is
of order b. They show that provided this ratio is not near a multiple of πb the flow
perturbation is linear but that near these critical values resonance with a standing
Rossby wave in the channel means an obstacle can force perturbations of order the
channel width, much larger than the obstacle width. The mechanism for overturning
in the flows considered here thus differs from the resonance mechanism described by
Grimshaw & Yi for b� 1 and the present study, for b of order unity and smaller, is
complementary to theirs.

Section 2 defines the problem being solved here, outlines the governing equations
for general β-plane flows past an obstacle and then derives the equations in the
steady long-obstacle limit which are used in the main thereafter. Section 3 describes
the typical solutions of the long-obstacle equations for order-one values of b and γ,
based on numerical solutions obtained with a novel bi-directional technique. Sections
4 and 5 consider various asymptotic limits of the flow, shown schematically in figure
1. Section 4 discusses the analysis of the small-b limit and then extends the asymptotic
theory in PJ90 and JP93 to the present flow for the nonlinear b = O(γ) case. Section
5 describes the analysis of the small-γ case, including using a two-variable expansion
to identify the dissipative effect of Ekman suction far from the obstacle. Section 6
outlines some general conclusions.
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Figure 1. The various asymptotic regimes and the sections where they are considered.

2. The governing equations
2.1. The full equations

Consider a homogeneous fluid of density ρ∗ and kinematic viscosity ν∗, contained
between two infinite horizontal planes an average distance d∗ apart.† The entire
configuration is rotating at angular velocity Ω∗ about a vertical axis Oz∗ in terms of
Cartesian coordinates Ox∗y∗z∗ fixed in a frame of reference rotating with the fluid.
The lower plane is inclined at a small angle β from the horizontal so that it slopes
upward in the y∗-direction. A cylindrical obstacle of cross-stream width 2`∗ and
streamwise length 2L∗ occupies the whole fluid depth in the neighbourhood of the
origin, and is aligned with its generators parallel to the axis of rotation. At some time
t∗ = 0 the fluid at large distance is set into uniform motion along lines of constant
depth at a uniform speed U∗ in the x∗-direction.

The flow can be described by five non-dimensional parameters

Ro = U∗/Ω∗`∗, E = ν∗/Ω∗d∗2, tan β, d = d∗/`∗, L = L∗/`∗, (2.1)

the Rossby number, Ekman number, bottom slope, scaled depth and scaled obstacle
length. For slow almost-inviscid flow, in which E, Ro and β are small, the motion is
two-dimensional to leading order, with horizontal velocity components given by the
geostrophic relations

u = −ψy, v = ψx, (2.2)

where 2ρ∗U∗Ω∗`∗ψ is the deviation of the pressure from its equilibrium value.
The evolution of the flow is governed by the equation for the vertical component

of relative vorticity, ζ = vx − uy = ∇2ψ,

τζt + λ(uζx + vζy) + αv + ζ = 0, (2.3)

as noted in PJ90. Here t is time scaled on 1/Ω∗, with all lengths scaled on `∗ and
velocities on U∗. The parameter τ = 1

2
E−1/2 is the scaled Ekman spin-up time and

α =
tan β

dE1/2
, λ =

Ro

2E1/2
. (2.4)

† All dimensional quantities here are identified with asterisks and quantities without asterisks
are non-dimensional.



224 M. A. Page and E. R. Johnson

Equation (2.3) follows from the full Navier–Stokes equations in the limit β → 0,
Ro → 0 and E → 0 with α, λ, d and L fixed. In this limit the Reynolds number
based on the obstacle width, Re = U∗`∗/ν∗ = Ro/d2E, is infinite and the flow is
effectively inviscid. The only viscous effect is through the destruction of vorticity
by Ekman pumping, represented by the final term on the left-hand side of (2.3).
Horizontal viscous effects are absent from the bulk of the fluid and the flow satisfies
the usual inviscid impermeability conditions on solid boundaries. Vertical boundary
layers within which the horizontal viscous terms are important form against solid
boundaries. These layers and their possible separation from the obstacle are discussed
in greater detail in both PJ90 and PJ91.

At leading order the sloping-bottom configuration is equivalent to the β-plane
approximation in geophysical flows where the depth is constant and the flow is taken
to be rotating at the dimensional rate 1

2
(f∗ + β∗y∗). The sole changes in moving to

the β-plane are to replace tan β by β∗d∗/f∗ and Ω∗ by 1
2
f∗. The Oy-direction is then

northward and Ox eastward.
Attention will be restricted to obstacles symmetric about the plane y = 0, although

this is not crucial to all of the subsequent analysis. Further, the steady solutions
will also be taken to be symmetric about y = 0. Asymmetric steady leading-order
solutions might possibly exist, as found by Cessi & Ierley (1995) in basin flow, but
seem unlikely as the boundary here is an interior boundary of finite length and the
‘Island Rule’ (Pedlosky et al. 1997) requires the circulation around the obstacle to
vanish. It is thus sufficient to consider flow only in y > 0 subject to the inviscid
boundary condition

ψ = 0 on y = h(x/L), (2.5)

where h has maximum value of unity and vanishes as x→ ±∞. For uniform flow far
from the obstacle, the far-field condition is

∇ψ → (0,−1) as x2 + y2 →∞. (2.6)

2.2. The long-obstacle equations

This paper concentrates on steady solutions of (2.3) for long obstacles (L� 1) in the
limit of weak Ekman pumping (α � 1). A reduced boundary-layer-type equation in
this limit follows from (2.3) by introducing the long x scale X = x/L and considering
the weak pumping limit, α→∞, with

b2 = λ/α and γ = L/α, (2.7)

fixed. Then (2.3) shows that the steady flow ψ(X, y) satisfies

b2 ∂(ψ, ψyy)

∂(X, y)
+ ψX + γψyy = 0 (2.8)

for y > h(X). This equation appears both in PJ90, where solutions for finite-width
flow domains were noted and in PJ91, when describing ‘southern boundary layers’ in
rapid flow.

In regions of the flow where (u, v) ≈ (1, 0) the unsteady form of equation (2.8) can
be linearized and has solutions of the form ψ ∝ exp [i(kX + ly − ωt)], with

ωτ̄ = b2k − k/l2 − iγ, where τ̄ = τγ. (2.9)

For γ small, waves far from the obstacle have phase velocity cp = (b2− 1/l2)(1, k/l)/τ̄,
and so stationary waves have ‘vertical’ wavenumber l = 1/b. As the group velocity
cg = (b2 − 1/l2, 2k/l3)/τ̄ is ‘vertical’ in that case, it is reasonable to expect that the
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greater part of the steady disturbance in the weakly damped case will be ‘above’ (i.e.
abreast of) the obstacle (in |X| 6 1, ỹ > 0). The flow close to the obstacle is not
precisely uniform and so there is some slight propagation of waves both up- and
downstream. Transient parts of the disturbance (which have other wavenumbers) can
also affect the eventual steady-flow pattern away from the obstacle.

The parameter b measures the wavelength of a typical standing Rossby wave
relative to the obstacle width. In dimensional variables the wavelength of a long
Rossby wave that stands in an oncoming flow is given by (U∗/β∗)1/2 on a β-plane or
(U∗d∗/2Ω∗ tan β)1/2 here. Non-dimensionalized on the obstacle width this gives

b = (U∗d∗/2Ω∗ tan β)1/2/`∗,

the dimensional expression of (2.7). Similarly, in dimensional variables

γ = L∗d∗E1/2/[`∗2 tan β].

It is shown in Foster (1985) and PJ90 that in slow flow the influence of an obstacle
of width `∗ extends a distance α`∗ upstream. Thus γ gives the ratio of the streamwise
extent of the obstacle to the upstream-influence decay scale. Increasing γ with b con-
stant corresponds to decreasing viscosity with other dimensional quantities fixed while
increasing b with γ constant corresponds to increasing speed with other quantities
fixed.

The boundary condition on (2.8) for finite-amplitude topography can be conve-
niently transferred to a coordinate line by introducing the Prandtl transformation
ỹ = y − h(X). In terms of (X, ỹ) equation (2.8) becomes

b2 ∂(ψ, ψỹỹ)

∂(X, ỹ)
+ ψX − h′(X)ψỹ + γψỹỹ = 0, (2.10)

with boundary conditions

ψ(X, 0) = 0 and ψ(X, ỹ) ∼ −ỹ − h(X) as ỹ →∞. (2.11)

It is important to note that ṽ = ψX is the ‘vertical’ velocity component relative to
lines of constant ỹ, while v = ψX − h′(X)ψỹ is the same component relative to lines
of constant y. For obstacles with discontinuous gradient at X = ±1 this means that
ṽ will be discontinuous at these points, with the streamlines of ψ(X, ỹ) undergoing a
sudden change in slope, whereas v is continuous everywhere and the streamlines are
smooth when plotted against (X, y).

3. General b and γ
3.1. Numerical technique

The longwave-equation (2.10) can be solved straightforwardly by a novel upstream–
downstream iteration procedure. Consider first the case b = 0 in (2.10), which yields
a parabolic partial differential equation for ψ(X, ỹ). This equation can be integrated
upstream, in the negative-X direction, from the uniform-flow condition at large X,
subject to the boundary conditions (2.11), and for b = 0 this gives the complete
solution to the problem.

For b > 0 downstream advective effects are also important and the relative vorticity
ζ = ψỹỹ satisfies the equation

b2 ∂(ψ, ζ)

∂(X, ỹ)
+ ψX − h′(X)ψỹ + γζ = 0. (3.1)
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For a given streamfunction field ψ, this is a first-order hyperbolic equation for ζ and
in principle can be integrated downstream along each streamline to yield ζ everywhere,
once a suitable upstream boundary value for ζ has been specified.

The bi-directional nature of the equation, depending on whether (3.1) is solved for
ζ given the ψ field everywhere, or the equivalent equation

∂(ψ,Π)

∂(X, ỹ)
+ γψỹỹ = 0 (3.2)

is solved for ψ given the potential vorticity field Π = b2ζ + ỹ + h(X) everywhere,
reflects the mixed parabolic–hyperbolic character of the steady equation and suggests
an iterative approach to solving the steady wave problem for b > 0.

Ekman dissipation causes ζ to vanish sufficiently far upstream (in practice, over
distances larger than O(1/γ)). Thus starting with an initial approximation ζ0 = 0 for
the upstream vorticity at Xmin, say, and using ψ = −ỹ and Π = ỹ+ h(X) as an initial
approximation downstream to Xmax, say, (3.2) can then be solved numerically for ψ
over the finite sub-domain Xmin 6 X 6 Xmax and 0 6 ỹ 6 ỹmax by integrating in the
upstream direction. The resulting values of ψ at X = Xmin are then used to calculate
updated values of ζ at that boundary and then (3.1) can be solved along streamlines
to obtain improved values for ζ everywhere. This process is repeated until both the ψ
and ζ fields converge, in which case both (3.1) and (3.2) will be satisfied everywhere
and ζ will equal ψỹỹ over the domain.

For the figures shown here, the numerical method for solving the parabolic equation
(3.2) for ψ during the upstream sweeps was based on the Crank–Nicolson method.
For the downstream sweeps, the hyperbolic equation (3.1) was solved for ζ using a
semi-Lagrangian technique based on quadratic interpolation for the value of ζ on the
same streamline at the previous X grid value. For streamlines entering at ỹ = ỹmax
the ‘undisturbed’ boundary value ζ = 0 was specified. All calculations shown in this
paper were obtained using a non-uniform spatial X grid, similar to that used in PJ90,
typically with 256 gridpoints over −10 6 X 6 10. In the ỹ-direction a stretched grid
similar to that in PJ90 was used for b� 1 with a uniform grid used for larger values
of b, and typically 64 gridpoints were used in ỹ with ỹmax equal to at least 40b, and
often even larger for small values of γ. For small values of b an initial guess with
ψ = −ỹ was used and for larger b one of the approximate solutions in § 5 led to
rapid convergence. The criterion used for termination of the upstream–downstream
iterative process was that changes in ψ be less than 0.1% everywhere.

3.2. Streamline overturning

Clearly, the method described above for the downstream integrations can fail when
there are overturned streamlines anywhere in the flow, even if this occurs only
temporarily during the upstream and downstream iterations, and therefore u = −ψỹ
should be positive everywhere for reliable results. Similarly, the ‘upstream’ integrations
for ψ require that Πỹ should be positive everywhere, to ensure that (3.2) is integrated
in the ‘stable’ direction. Typically, these requirements are true everywhere for all flows
except those over limited ranges of values of b, and for larger values of γ they are
true for all values of b.

An ‘inviscid’ flow, with γ = 0, is a special case as (3.2) implies that the two
requirements above coincide; if u = 0 at any isolated point in the flow for a certain
value of b then Πỹ must also be zero at that point. The largest value of b for which
u = 0 anywhere in the flow for γ = 0 is referred to as bc in this paper.

In the numerical computations for γ > 0, u and Πỹ usually changed sign at roughly
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Figure 2. (a) Curves showing the global minima of both u and Πy as a function of γ for
b = 0.1, 0.5, 1.0. Note that in each case the u curves (dotted) remain positive where the Πy curves
(unbroken) cross zero, but that the two curves become closer as b increases. (b) A plot of the
parameter space (γ, b) showing the approximate region where Πy < 0 somewhere in the flow, based
on the numerical calculations obtained using the method described in § 3. The dots on the figure
give the parameter values used for figures 3, 4, 6, 7, 8(b) and 9(a).

the same, but not necessarily identical, parameter values. For example, if γ was
decreased at any fixed value of b < bc (where bc ≈ 1.29 for a parabolic obstacle) then
the global minima of u and Πỹ both decreased but Πỹ often appeared to be the first
to actually reach zero. To see why this occurs, consider the marginal case where u = 0
at an isolated point in the flow and positive elsewhere, so that the streamline passing
through this point is vertical. Decreasing ỹ through this point, u falls from being
positive to being exactly zero, and then becomes positive again. It then follows that
ζ = −uỹ = ψỹỹ is also zero at the point, and hence from (3.2) that Πỹ must also be
zero. As a result, the ‘critical value’ of γ for min {Πỹ} = 0 at that value of b can be no
smaller than the ‘critical value’ for min {u} = 0, but for γ > 0 there does not appear
to be any theoretical reason why these two critical values need coincide. Indeed, the
numerical calculations based on the method described above, shown in figure 2(a),
support this claim. At larger values of b, but still less than bc, the curves for u and Πỹ

become closer, consistent with the two quantities being equal everywhere when γ = 0
(see § 5).

A plot of the approximate region of (γ, b) parameter space for which Πỹ remains
positive everywhere is shown on figure 2(b), also based on the numerical solutions of
(2.10) from this study. The boundary of this region cannot be found very precisely
using the method described above, as the iteration for the numerical solution can
diverge if the conditions are even violated temporarily during the calculations, so
that in some cases it was necessary to extrapolate for the ‘critical value’ of γ at each
fixed b. This was particularly true for the larger values of b, where γ is small near the
critical value.

Two of the most important features of this plot are that the boundary of the
Πỹ > 0 region for b� 1 is a line of roughly constant slope. As will be seen in § 4, this
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Figure 3. Numerical solutions of the long-obstacle equations (2.8) for flow past the parabolic
obstacle (4.2) showing contours of the streamfunction ψ, vorticity ζ and velocity components (u, v)
when γ = 1 and b = 1. The solution is plotted over the range 0 6 y 6 20 and the contour intervals
used are ∆ψ = 0.25, ∆ζ = 0.05 and ∆u = ∆v = 0.05.

slope is determined by a critical value of B = b/γ for flow overturning to occur in
that regime. The maximum value of b for which any overturning of the Π contours
occurs when γ = 0, is the critical value bc for those solutions. The solutions for γ = 0
are described further in § 5. Analysis near the point γ = 0, b = bc also suggests that
the curve for the critical values is a straight line in the vicinity of this point, rather
than approaching the axis tangentially.

Similar plots to figure 2(b) for obstacles with other shapes have been considered
by the authors, including one with h(X) = cos2 πX for which the obstacle has no
discontinuity in gradient at X = ±1, and these all show the same features in figure 2(b).

3.3. General properties of the flow

Most of the key flow features for general values of b and γ are apparent in the
numerical solutions for flow past a parabolic-shaped obstacle when b = 1 and γ = 1,
shown in figure 3. These include the dominant vertically propagating wavefield, of
wavelength 2πb, which is present in the flows for all but the smallest values of b (with
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b� γ). This wavefield is strongest abreast of the obstacle, although it is also present
in both the upstream and downstream flow through the effect of standing Rossby
waves.

The presence of Ekman dissipation leads to a decay in amplitude of the wavefield
in both the streamwise and vertical directions. In the former case, the strength of the
wavefield decays exponentially over a downstream scale of size O(b2/γ), so that

b2ζX + γζ ≈ 0

once the flow has almost returned to the uniform velocity u = 1. In the vertical
direction it will be demonstrated in § 5.2 that the wavefield is damped out over a
length scale of O(b3/γ), or O(b2/γ) relative to the dominant vertical wavelength. In
both cases the length scale of these effects decreases as γ is increased.

The vertically-propagating wavefield from the γ = 0 flow is not only modulated in
amplitude by the effect of Ekman damping for small γ, but the phase of the waves
also changes in y. This displaces the extrema of both u and ζ downstream with
increasing y so the wavefield appears to propagate outwards in a slightly ‘off-vertical’
direction. This ‘off-vertical’ propagation can be seen in figure 3, and also in figure 12
of PJ90.

The plot of the v (not ṽ) field in figure 3 shows three sets of vertically-propagating
standing waves (of wavelength 2πb). The main set, which is also clear in the vorticity
plot, is forced by fluid rising over the bulk of the obstacle, but there are also two
other sets of waves, narrower in the X-direction, which appear to be generated by
the sudden change in slope of the obstacle at X = ±1.

As was seen in PJ90, and will also be demonstrated in § 4.1, the flow upstream
from the obstacle for small values of b is dominated by a blocked region, which lies
principally below y = h(0) and decays towards uniform flow over a length scale of
O(1/γ). A similar feature is also present for larger b but for small γ the flow pattern is
periodic in y and so blocked regions appear above y = h(0) also. This is the signature
of standing Rossby waves of wavenumber k = (0, 1/b) which travel upstream from
the obstacle in an unsteady flow.

For large values of γ the flow is dominated by the damping effect of Ekman suction
and the streamlines follow the shape of the obstacle at every value of y, with u = 1
and ζ � 1 everywhere, and ψ ≈ −ỹ = h(X)− y. In this case, the disturbance extends
out to y = ∞ despite the very high damping.

3.4. Solutions of the full equations

For parameters where no streamlines overturn the upstream–downstream iteration
process described in § 3.1 gives the steady solutions efficiently. However steady solu-
tions of the full equations can still exist at parameter values at which the flow has
overturned streamlines. To illustrate this, numerical solutions of full equations (2.3)
(retaining terms of the form ψxx in ζ), subject to the boundary conditions (2.5) and
(2.6), were also calculated for this study. These were obtained using an approach
similar to that described in PJ90 but for flow past the lenticular obstacle

h(x/L) =
√

1
4
(L2 + 1)2 − x2 − 1

2
(L2 − 1) (3.3)

for |x| < L with h(x/L) = 0 for |x| > L. This obstacle shape was chosen because it
can be mapped conformally to a rectangular domain but it also reduces to (4.2) in
the limit L� 1 used in this paper.

Broadly, solutions are obtained by introducing an outer sidewall at y ∼ W � 1,
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mapping the resulting variable-width channel to a constant-width channel and treating
this simpler rectangular domain in Cartesian coordinates (x′, y′). For the lenticular
obstacle (3.3) the transformation used is

z′ =
2L

n

(z + L)2/n + (z − L)2/n

(z + L)2/n − (z − L)2/n
(3.4)

where z = x + iy, z′ = x′ + iy′ and n = 4 tan−1(L)/π for L > 1. The vorticity
equation (2.3) is integrated forward in time using a modified ADI method and at
each timestep the resulting Poisson equation for the streamfunction is solved by cyclic
reduction. A radiation boundary condition is applied far upstream to allow the most
slowly-decaying mode to propagate out of the domain and far downstream the flow
is taken to decay exponentially towards uniform flow. Further details of the method
and discussion of the radiation condition and decay rates are given in PJ90.

Numerical solutions of the full equations obtained using this approach are illus-
trated in figure 6 and described in more detail in § 4.2.

4. Blocked flow, b� 1

For small b the obstacle is high compared to the wavelength of a standing Rossby
wave and the flow is effectively blocked directly upstream of the topography. The
most extreme case of this behaviour occurs for b = 0, where equation (2.8) reduces to
the heat equation and (2.10), for the flow at a position ỹ above the obstacle, reduces
to

ψX − h′(X)ψỹ + γψỹỹ = 0, (4.1)

with error of order b2. For a well-posed solution, this equation should be integrated in
the upstream direction and for an obstacle of finite length, such as (4.2), this implies
that the flow will be uniform for X > 1. The integration direction is opposite to the
flow direction as the group velocity of steady disturbances to uniform flow is negative
for b = 0 so only flow upstream of X = 1 is affected by the obstacle. As noted in
PJ90, this can be interpreted as an extreme case of upstream influence.

For piecewise-linear obstacles solutions of (4.1) follow easily for arbitrary γ and
can be used to deduce general properties of the flow for b = 0. The Appendix gives
details of the solution for a triangular obstacle, with h(X) = 1− |X| for |X| < 1 and
zero elsewhere. Both ψ and ζ are continuous everywhere within the flow even though
the obstacle slope is discontinuous at Xs = −1, 0, 1. The vorticity (and v) on the
surface y = h is however discontinuous at these points. Singular regions, of the usual
ỹ/(Xs − X)1/2 form for the heat equation, extend upstream from each discontinuity,
requiring careful resolution in numerical computations.

Figure 4 shows numerical solutions for the parabolic obstacle

h(X) =

{
1−X2 for |X| 6 1
0 for |X| > 1.

(4.2)

In figure 4(a) b = 0 and γ = 1 and the streamlines for this flow show similar features
to those for the triangular obstacle. The frictional effect of the Ekman layers limits
the upstream range over which the disturbance due to the obstacle is felt but, perhaps
surprisingly, the extent to which it affects the flow over distances perpendicular to the
flow direction is not as great. An extreme case of this occurs for b = 0 and γ � 1, for
which ψ = −y − h(X) is the leading-order solution and the streamlines are deflected
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Figure 4. Numerical solutions of the long-obstacle equations (2.8) for flow past the parabolic
obstacle (4.2) showing contours of the streamfunction ψ (top) and vorticity ζ (bottom) when γ = 1
and (a) b = 0, (b) b = 0.5. The contour intervals used are ∆ψ = ∆ζ = 0.1.

even for very large values of y, despite the relatively large frictional dissipation in
this case, but there is no upstream or downstream effect.

For γ of order one the flow is perturbed only near the obstacle and upstream
from X = 1. In the region where v(X, y) < 0, which is mainly beyond the peak of
the obstacle but also extends in a ‘tongue’ upstream from the peak, the vorticity
ζ = −∂u/∂y is positive, so that for u to tend to one for large y the velocity must be
larger than the free stream in this region. In contrast, on the upstream approach to
the peak, negative vorticity is generated as the fluid rises over the obstacle, so that a
matching ‘tongue’ of negative vorticity is present, which tends to slow down the fluid
upstream of the obstacle and ‘block’ the flow. As γ decreases, these regions extend
further upstream, increasing the blocking effect.

The same features can also be expected for small non-zero values of b when γ
is O(1), since (4.1) remains valid in that case, although some advective effects over
distances O(b2) downstream from X = 1 can be anticipated due to localized nonlinear
effects. An example of the numerical solutions for this case are shown in figure 4(b)
for b = 0.5 and γ = 1.

4.1. Linear flow, b� γ � 1

If the upstream viscous decay scale is large compared to obstacle length then the flow
takes the general form described for the case λ = 0 and α� 1 in both Foster (1985)
and PJ90. In terms of the parameters b and γ here, the flow is uniform over most
of the domain but with a shear layer of thickness O(γ1/2) extending upstream from
the peak of the obstacle, bounding a stagnant ‘blocked’ region immediately ahead
of the obstacle. The shear layer increases in width as the distance from the obstacle
increases and eventually the velocity approaches a uniform flow far upstream over an
X length scale of O(1/γ).

On the downstream side a thin western boundary layer (WBL) of thickness O(γ)
forms against the obstacle for X > 0, with a uniform flow elsewhere. In terms of the
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Shoulder region
O(L1/3) × O(L2/3)

Western boundary layer
O(1) × O(L)

Upstream shear layer
O(1) × O(L1/2)

Stagnant O(1/L) × O(1)

(a) Outer potential flow (uniform)

Trailing edge (see figure 2b for B > Bc)

(b) Outer potential flow (uniform)

Inertial boundary layer
O(L1/2) × O(L3/4) Extension to return shear layer

O(L1/2) × O(L1/2)

Return shear layer (RSL)
O(1) × O(L)

Southern boundary layer (SBL)
O(1) × O(L)

Western boundary layer (WBL)

O(1) × O(L)

Figure 5. A schematic diagram showing the layer structure for ‘blocked’ flow when b � 1 and
γ � 1: (a) the overall structure when b = 0; (b) the detailed structure near the end of the obstacle
when B = b/γ > Bc.

boundary-layer coordinate η = ỹ/γ in that layer, equation (4.1) becomes

−h′(X)ψη + ψηη = 0, (4.3)

with error of order γ. Integrating using the boundary conditions

ψ(X, 0) = 0 and ψ(X, η)→ −h(X) as η →∞, (4.4)

gives the streamfunction

ψ(X, η) = −h(X)[1− exp (h′(X)η)] (4.5)

for the flow in the WBL. For the parabolic obstacle (4.2), this layer is thinnest near
the downstream end of the obstacle and it expels fluid along its length appropriately
for the streamfunction to match onto the outer uniform flow. This leads to the overall
flow structure shown in figure 5(a), which is broadly similar to that in figure 2 of
PJ90. In fact, the only difference between the WBL analysis here and that for the
short obstacle in § 4 of PJ90 is that a coordinate ȳ′ normal to the obstacle was used
in PJ90 while here η is aligned with the y-direction (which is parallel to the normal
provided h′(X) � L) and an additional spatial scaling by L has been performed in
both x and y.

4.2. Weakly nonlinear flow, b ∼ γ � 1

With increasing flow speed, nonlinear effects appear first in the WBL region, when
b is of order γ. In terms of B = b/γ and the boundary-layer coordinate η above,
equation (2.10) becomes, on integrating once across the layer and applying the
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far-field condition,

B2 ∂(ψ, ψη)

∂(X, η)
− h′(X)ψ + ψη = h′(X)h(X), (4.6)

subject to the boundary conditions (4.4).
For small B the solution remains qualitatively similar to (4.5) and the flow direction

is from left to right everywhere within the WBL, so that ψη < 0. As B increases,
however, the layer thickness tends to increase slowly (see JP93 for details) until B
reaches a critical value Bc (say) at which a streamline becomes vertical and u falls to
zero just before the downstream end of the WBL. The value of Bc in any configuration
depends on the minimum obstacle slope h′(X), which is negative on the downstream
side, and for the parabolic obstacle (4.2) this minimum occurs at X = 1 and gives

Bc =
−1

2 min {h′(X)} =
1

4
, (4.7)

using the expression λ̄ = 1/(4 sin2 γ0) in PJ90. (A similar value for Bc can also be
obtained by determining when oscillatory streamlines first appear at the outer edge
of the WBL.)

For B > Bc the WBL retains fluid at the end of the obstacle and the flow is similar
to that described in PJ91 and JP93, with streamlines oscillating towards the outer
edge of the WBL close to X = 1. As described in PJ91 for the case when L is O(1),
this leads to the appearance of a ‘southern boundary layer’ (SBL) along y = 0 in the
wake of the obstacle, in which the flow is governed by the equation

B2 ∂(ψ, ψηη)

∂(X, η)
+ ψηη = 0 (4.8)

to leading order, and from which the remaining fluid is expelled into a ‘return shear
layer’ (RSL) to be carried back towards the obstacle. The thickness of the SBL is of
O(γ), like the WBL, and its length is proportional to B − Bc just beyond the critical
value, and is of order B in X for large B. The RSL has the same length as the SBL,
as it is fed directly by that layer, and for B of order one and γ � 1 its thickness is of
order γ1/2 times the square root of the length of the SBL, with the flow satisfying the
linear heat equation

ψX + γψyy = 0, (4.9)

in this region.
Up to this point the structure of the flow regions near the trailing edge is similar

to that described in detail in JP93 for the flow near a rear stagnation point, and to
the case of a smooth trailing edge (where h′(1−) = 0) discussed in PJ90. However, as
the fluid in the RSL approaches the end of the obstacle some differences arise from
the structure outlined in JP93 because for the parabolic obstacle the flow does not
need to turn by 90◦ to rejoin the end of the WBL. Instead, for X < 1 we introduce
the revised structure shown in figure 5(b), where the flow in the RSL continues past
X = 1 in an extension to that layer which has size of order γ1/2× γ1/2 when B is O(1).
In this region the streamlines simply continue parallel to the y-axis to leading order,
with the flow is governed by

ψX − h′(1−)ψỹ ≈ 0 (4.10)

in terms of (X, ỹ) in (2.10). Streamlines meet the outer edge of the WBL over a
distance of O(γ1/2) upstream from the end of the obstacle. For the flow from this
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(a) (b)

(c) (d)

Figure 6. Numerical solutions of the full equations (2.3) (retaining terms of the form ψxx in
ζ) for flow past the lenticular obstacle (3.3) when α = 64 and L = 8 showing contours of the
streamfunction ψ (left) and vorticity ζ (right) in the region of 1

2
6 X 6 3

2
and 0 6 y 6 2. These

plots correspond to γ = 0.125 when (a) B = b/γ = 0.125, (b) B = 0.25, (c) B = 0.5, (d) B = 1.0. The
contour intervals used are ∆ψ = 0.025 and ∆ζ = 1.

region to merge smoothly with the WBL it is necessary, like in JP93, for there to be
an ‘inertial boundary current’ at the outer edge of the WBL, but here this has length
O(γ1/2) in X and a thickness of O(γ3/4) in ỹ. As in JP93, the flow in this inertial layer
is governed by the leading-order conservation of the potential vorticity, Π but here
the dominant term in Π is b2ψỹỹ + h′(1−)(X − 1).

Thus fluid that is not expelled from the WBL by X = 1 moves through a sequence
of layers near the trailing edge and then rejoins the end of the WBL over a small
region within a distance O(γ1/2) of X = 1. This leads to flow within the WBL similar
to that shown in figure 9 in JP93, but rotated anticlockwise by 90◦. One interpretation
of this is that there is a form of upstream influence extending over the later part of
the obstacle, although not able to extend beyond its peak.

Figure 6 shows plots of numerical solutions of the full equations for γ = 0.125 at
various values of B, when α = 64. These solutions were obtained using the numerical
model described in PJ90, which works well in this parameter regime due to the
relatively localized nature of the disturbance. The solutions show the broad features
outlined above, in particular the general layer structure downstream of the obstacle
when B > 1

4
. Figure 7 also shows the solution of the full long-obstacle equations

(2.10), obtained using the method to be described in § 3.4, at approximately the same
value of γ as for the solutions of the full equations in figure 6(b), and it is clear that
the essential features of the flow are captured in the reduced equations, including the
‘wavy’ streamlines at the outer edge of the WBL and the steepening of the streamlines
near B = Bc. Note that the numerical method used to obtain the solution in figure
7 requires that both the velocity component u = −ψy and cross-stream potential
vorticity gradient Πy = b2ψyyy + 1 remain positive everywhere in the flow. Both of
these constraints remain valid for B < Bc, but once B exceeds this critical value both
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Figure 7. Numerical solutions of the long-obstacle equations (2.8) for flow near the trailing end of
the parabolic obstacle (4.2) when γ = 0.125 and b = 0.03, so that B = 0.24. This is largest value of
b for which Πy remains positive everywhere at this value of γ and it corresponds approximately to
the solution of the full equations in figure 6(b). The contour intervals are as for figure 6.

quantities change sign towards the outer edge of the WBL on the approach to the
end of the obstacle, so no solutions of (2.10) are given for that case.

As noted above, the flow upstream of the obstacle remains blocked in this regime,
with a ‘stagnant’ region extending over a distance of O(1/γ), and bounded near
y = h(0) by an ‘upstream shear layer’ of scale thickness (Xγ)1/2 which extends over
distances of O(X) upstream. The dynamics of this layer are linear and governed by
the same equation (4.9) as the RSL. Near the peak of the obstacle at X = 0 and
y = h(0), there is a ‘shoulder region’, of the same character as that described by Foster
(1985) and size of order γ1/3 × γ2/3 in terms of γ. This region provides a transition
from the upstream shear layer into the stagnation-point-like character at the start of
the WBL.

4.3. Nonlinear flow, γ � b� 1

As b/γ becomes large the nonlinear regions described above become increasingly
dominated by inertial effects, with the sizes of most of the regions governed by the
magnitude of b rather than γ. For example, the WBL has thickness of O(b) once
b � γ and its dynamics are governed by the conservation of leading-order potential
vorticity Π = b2ψỹỹ + h(X) along streamlines, with velocities along the layer being
of O(1/b). Over the range of b for which the structure of the layers remains broadly
the same as described above, there remains an O(1) flux of fluid into the SBL, which
continues to be governed by (4.8), so that its length is of order B = b/γ when b� γ.
The dynamics of the flow in the RSL also remains similar to that for b ∼ O(γ), so
that its thickness is O(b1/2) at the rear of the obstacle. As a result, the final layer
structure near X = 1 for b� γ is similar to that shown in figure 5(b) but with every
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occurrence of γ replaced by b and the O(1) lengths replaced by O(b/γ). Despite the
fact that the RSL only directly affects the boundary conditions of the WBL over
a distance of O(b1/2) from X = 1, there is a significant upstream influence which
extends along much of the length of the WBL through the motion of the fluid in the
outer part of that layer which has u < 0 and originates from the RSL. An analysis of
the group velocity in the layer reveals that any transient unsteady disturbances travel
in the y-direction relative to the fluid motion.

There are, however, significant changes to other parts of the flow, in particular in the
upstream shear region which bounds the blocked stagnant region. Within distances
of O(1) from the peak of the obstacle, the dynamics of this layer is influenced by
inertial effects once b is of O(γ3/4), changing from being governed by the linear heat
equation (4.9) to the full equation (2.8). For larger values of b the same equation
remains valid but the thickness of the layer grows from O(γ1/2) in the linear case to
become of O(b2/3), with the upstream extent of the layer in the X-direction becoming
O(b4/3/γ). Within an O(1) distance of the obstacle, on the approach to the shoulder
region, the layer is governed by the conservation of potential vorticity and it matches
directly onto the shoulder region which has size of O(b1/3) × O(b2/3) for b � γ. For
distance X of order 1/γ upstream, where the layers near y = ±h(0) merge together,
the flow remains governed by the linear heat equation. As a result, the effective length
of the ‘stagnant’ blocked region ahead of the obstacle is not significantly affected by
the size of b when b � γ, although the dynamics of the layer separating it from the
uniform flow do change from the linear case.

Further changes to the structure can be expected once b is of order γ1/2, based
on the results in the following section. This regime provides a transition between
the structure described above and the form of the flow for b � 1 and γ = 0, to be
outlined in § 5. It can be anticipated that the sizes of the layers which persist for
b � γ1/2 will be independent of γ so that it is unlikely that the SBL/RSL will exist
in this regime, and consequently that the WBL will shed all of its fluid before the
end of the obstacle. Similarly, the merging of the upstream layers near y = ±h(0)
will be achieved through the conservation of potential vorticity in this regime, rather
than through Ekman suction effects over the O(1/γ) lengthscale. The most striking
feature, however, will be that the flow will approach a periodic state in y, so that the
disturbance is no longer confined to the immediate vicinity of the obstacle.

5. Almost inviscid flow, γ � max (1, b2)

5.1. Inviscid flow, γ = 0

For small values of γ when b is O(1) Ekman pumping is weak and the leading-order
flow for X = O(1) is effectively inviscid. Neglecting the γψyy term from the governing
equation (2.8) in the limit as γ → 0 leads to a conservation relation for the potential
vorticity

Π = b2ψyy + y (5.1)

and, assuming that the flow far upstream remains uniform, implies that (see PJ91, for
example)

b2ψyy + ψ = −y (5.2)

everywhere on streamlines originating upstream. This is the long-obstacle case of the
so-called ‘Long’s model’ (Long 1955; see, for example, § 6 of PJ90). The appropriate
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(a) (b)

Figure 8. Plots of the streamfunction ψ (top) and vorticity ζ (bottom) based on the numerical
solution of (5.4) for flow past the parabolic obstacle (4.2) when γ = 0 and (a) b = 2, (b) b = 1. The
solution is plotted over the range 0 6 y 6 10 and the contour intervals used are ∆ψ = 0.25 and
∆ζ = 0.05/b2.

boundary conditions on solutions of (5.2) are that

ψ(X, h(X)) = 0 and ψ(X, y) ∼ −y as y →∞. (5.3)

Lilly & Klemp (1979) discuss precisely this system in the context of two-dimensional
linearly-stratified non-rotating hydrostatic flow over long ridges. They note that
solutions satisfying (5.2) and (5.3) can be written as

ψ(X, y) = −y + h(X) cos {[y − h(X)]/b}+ f(X) sin {[y − h(X)]/b}, (5.4)

where f(X) is determined by requiring that energy only radiates upwards at large y.
The radiation condition for the β-plane problem here is equivalent to that used for
the stratified flow and so f(X) is determined by the same integral equation as derived
by Lilly & Klemp, namely

f(X) =
1

π

∫ ∞
−∞

h(X ′) cos {[h(X ′)− h(X)]/b} − f(X ′) sin {[h(X ′)− h(X)]/b}
X ′ −X dX ′.

They solve this equation numerically using an iterative procedure based on an initial
guess for f(X). Durran (1992) introduced an alternative, and simpler, method of
obtaining a numerical approximation to f(X) using fast Fourier transforms and his
method forms the basis for that used here.

Solution (5.4) and figure 8 show the flow pattern when γ = 0 to be periodic in
y with period 2πb, and to decay over an O(1) distance from both the upstream
and downstream ends of the obstacle. In the absence of dissipation the standing
waves generated as the flow moves over the obstacle have constant amplitude as y
increases and the ‘shape’ of the obstacle is reflected in the paths of the streamlines at
integral multiples of ∆ψ = 2πb. For large b the velocity component u remains positive
everywhere as in figure 5(a) where γ = 0 and b = 2. As b decreases a critical value,
bc (say), is reached where u first vanishes somewhere in the flow. This corresponds to
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a streamline becoming ‘vertical’ and periodicity in y means that vertical streamlines
occur for this value of x at y values 2πb apart. As in the computations of Rottman,
Broutman & Grimshaw (1996) for the analogous stratified flow in a finite-width
domain, the vertical streamlines occur above the rear of the obstacle. For smaller b
streamlines overturn and it appears that as b passes through a second critical value,
b2 (say), the first closed streamlines appear. Figure 5(b) with γ = 0 and b = 1 shows
an overturning flow with bc > b > b2. Miles & Huppert (1968) point out that in the
analogous stratified problem it is as b decreases through bc that static stability is first
violated. No stability results are available for the present flow. In particular, Arnol’d’s
finite-amplitude stability theorems (Arnol’d 1966; McIntyre & Shepherd 1987) give
no information. From (5.2),

∂Π

∂ψ
= −1, (5.5)

and Arnol’d’s second theorem would apply. This however requires a positive lower
bound on the eigenvalues of the negative Laplacian on the flow domain. Since the
domain here is unbounded in both x and y the lower bound is zero. When the flow
is slightly dissipative stable steady solutions exist with overturning when b < bc as
shown by the solution of the full unsteady equations in figure 6(d).

5.2. Weakly damped flow, γ � 1

With even a small amount of damping present, proportional to γ � 1 in (2.8), it can
be expected that the flow for large values of y will be irrotational and hence uniform.
To account for this limit, a scaled variable Y = δy is introduced here, where δ � 1 is
an undetermined parameter (determined below) which identifies the length scale over
which frictional effects act. The introduction of the second vertical variable Y here
follows the usual practice for ‘two-variable expansions’ of functions which vary on
two widely different length or time scales (see, for example, Kevorkian & Cole 1981).

The leading-order solution for γ � 1 is identical in form to the γ = 0 solution (5.4),
so that

ψ = −y + Re
{
A(X,Y )eiy/b

}
+ . . . , (5.6)

but it includes an additional ‘slow’ Y dependence of the complex-valued amplitude

A(X,Y ) = [H(X,Y )− iF(X,Y )]e−ih(X)/b, (5.7)

where H(X,Y ) and F(X,Y ) are real-valued functions with H(X, 0) = h(X) and
F(X, 0) = f(X), so that the leading term in (5.6) reduces to (5.4) as Y → 0 for fixed
values of y. To obtain a higher-order correction for ψ, (5.6) can be substituted into

∂(ψ,Π)

∂(X, y)
+ γψyy = 0,

which effectively introduces the higher-order forcing term

γψyy = − γ

b2
Re
{
Aeiy/b

}
+ O(δγ/b)

into the linearized equation for the higher-order correction to Π . It follows that there
will be a ‘resonant’ inhomogeneous term in that equation, proportional to eiy/b, unless
this forcing is balanced by the additional term

2δbRe
{

iAXY eiy/b
}

which arises from the largest Y -derivative contribution to ∂(ψ,Π)/∂(X, y). These two
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terms have the same magnitude provided that δ = γ/b3 and they balance exactly
when A satisfies the differential equation

2iAXY − A = 0.

There will, of course, be further O(δb) corrections to both Π and ψ, but they will
remain of that order for large values of y.

Using a Fourier transform solution for A(X,Y ) over k > 0,

A(X,Y ) =
1

2π

∫ ∞
0

Â(k, Y )eikXdk, (5.8)

as is appropriate for waves which radiate energy upwards (Durran 1992), it follows
that Â(k, Y ) satisfies 2kÂY + Â = 0 and hence that Â(k, Y ) = Â(k, 0) exp (−Y /2k) for
k > 0, so that

A(X,Y ) =
1

2π

∫ ∞
0

Â(k, 0)e−Y /2k+ikXdk. (5.9)

The solution for A(X, 0), and hence for A(X,Y ) through (5.9), is determined by the
requirements that it both be consistent with the form

A(X, 0) = [h(X)− if(X)]e−ih(X)/b, (5.10)

for a given function h(X), and that it also has Â(k, 0) = 0 for k < 0, as in (5.8).
The basis for the iterative method used in this paper is to guess the form of f(X)

everywhere, evaluate A(X, 0) using (5.10), determine the corresponding approximation
to Â(k, 0) using

Â(k, 0) =

∫ ∞
−∞
A(X, 0)e−ikXdX, (5.11)

then invert the transform (discarding the k < 0 components) using (5.8) to yield a new
approximation to A(X, 0). The corresponding function f(X) is then obtained from

f(X) = F(X, 0) = −Im
{
A(X, 0)eih(X)/b

}
,

based on (5.10) and the process is repeated until it converges. This iteration has
been performed numerically remaining in the complex plane and giving a method
with some advantages over that used by Durran (1992), in particular convergence at
smaller b. Once the iteration converges the function A(X, 0) satisfies both requirements
noted above, thereby ensuring that it satisfies the boundary condition on y = 0 and
that the solution contains no waves which radiate downwards from y = ∞.

Although (5.9) has been derived here under the assumptions that γ is small and b
is O(1), the solution above is valid at any values of γ and b for which δb = γ/b2 is
small, including both the case of rapid flow, where γ is of order one and b� 1, and
the case of blocked flow when γ � b � 1. Streamfunction and vorticity plots based
on the solutions (5.9) are shown in figure 9 for γ = 0.5 and b = 1, and γ = 1 and
b = 2 for the parabolic obstacle in (4.2). In both cases it is clear that the disturbance
is damped at large y so that the steepest streamlines are those nearest the obstacle, in
marked contrast to the periodic behaviour of the γ = 0 solutions in figure 8. Figure
9(a) has the same value of b as in figure 8(b) but the streamlines do not overturn
over such a large area above the obstacle. (In fact, these parameters are very close to
the critical values for overturning to occur.) Figure 9(b) shows the damped solution
at a larger value of b, the same as in figure 8(b), but the damping effect is less at
these parameters due to the smaller value of δ = γ/b3. Both vorticity plots in figure 9
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(a) (b)

Figure 9. Plots of the streamfunction ψ (left) and vorticity ζ (right) based on the asymptotic
solution (5.9) for flow past the parabolic obstacle (4.2) when (a) γ = 0.5 and b = 1, (b) γ = 1 and
b = 2. The solution is plotted over the range 0 6 y 6 20 and the contour intervals used are the
same as in figure 8.

have a similar character to the corresponding plots for γ = 0, apart from the gradual
damping in y, although it is interesting to note that the extrema of both the vorticity
and the velocity occur closer to X = 1 as y increases.

5.3. Long-wavelength flow, b� 1

In the particular instance of b � 1, a further simplification of (5.9) is possible
because the e−ih(X)/b term in (5.10) can be neglected to leading order and hence

A(X, 0) = h(X) − if(X) in that limit. Using properties of the transforms ĥ(k) and

f̂(k), as defined in (5.11), it follows that Â(k, 0) = 2ĥ(k) for k > 0 and therefore (5.9)
reduces to

A(X,Y ) =
1

π

∫ ∞
0

ĥ(k)e−Y /2k+ikXdk, (5.12)

provided that γ � b2. As for the γ � 1 case above, the neglected terms in the resulting
expressions for Π and ψ are of order δb relative to the leading-order solution.

One potential difficulty with solution (5.9), both in the general case and for b� 1
in (5.12), is in resolving its behaviour near the essential singularity in the transform
Â(k, Y ) at k = 0 due to the exp (−Y /2k) term. The effects of this singularity can
be investigated further by examining the solution (5.12) for the special case when

ĥ0(k) = π exp (−|k|), which corresponds to the obstacle

h0(X) =
1

1 +X2
, (5.13)

because an exact solution for A(X,Y ) is available in this case (see, for example,
Gradshteyn & Rhyzik 1965, equation 3.324.1), given by

A0(X,Y ) =

(
2Y

1− iX

)1/2

K1([2Y (1− iX)]1/2) (5.14)

where K1 is the modified Bessel function of the second kind of order one. Asymptot-
ically, this solution has the form

A0(X,Y ) ∼ π1/2Y 1/4

21/4(1− iX)3/4
e−[2Y (1−iX)]1/2

for |Y (1− iX)| � 1,

illustrating the exponential behaviour of the solution for large Y , while for Y � 1 it
reverts to the algebraic behaviour A0(X,Y ) ∼ 1/(1− iX), which is the exact solution
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Figure 10. Plots of the streamfunction ψ (left) and vorticity ζ (right) based on the exact solution
(5.14) for b � 1 flow past a ‘Witch of Agnesi’ obstacle when γ = 1 and b = 2, illustrating the
damping effect present for γ > 0. The solution is plotted over the range 0 6 y 6 20 and the contour
intervals used are the same as in figure 8.

for frictionless flow in that case. The solution (5.14) is plotted in figure 10 for b = 2
which, although it is not large, illustrates the damping effect that the Ekman pumping
has on the stationary wavefield over the obstacle, with an exponential decay of the
vorticity in both the X- and y-directions. No streamlines overturn in this limit (even
for γ = 0 when b � 1) but there is an O(1) reduction in the maximum of u (caused
by fluid rising over the obstacle) for the entire parameter range over which (5.14)
remains valid, including when γ is very large (provided it is less than O(b2)). Note
also that the smoothness of the obstacle shape in this case avoids the problems with
discontinuities in ṽ, for example, but it does not affect any other major features of
the flow.

The exact integral (5.14) can also be used to help obtain the numerical solution for
other functions h(X) because, by subtracting the appropriate multiple of 1/(1 − iX)
from A(X, 0) to ensure that the transform of the remainder is zero at k = 0, it is
possible to evaluate (5.9) numerically without encountering some of the difficulties in
resolution near k = 0 which would otherwise result from the exp (−Y /2k) term in the
transform. As (5.14) is exact, this is not only possible for b � 1 but can be used in
any case for which (5.9) is appropriate.

6. Conclusion
This paper has considered the steady flow patterns forced on a β-plane by obstacles

long in the zonal direction. The restriction to long obstacles reduces the number of
parameters in the oceanographic limit of vanishingly small Ekman and Rossby
numbers to two: γ, giving the length of the obstacle in terms of the Ekman decay
scale, and b, a Rossby-wave Froude number.

A novel numerical technique has allowed the (γ, b)-space to be explored econom-
ically and the bounded region of parameter space where flows overturn has been
identified for a parabolic obstacle. Asymptotic solutions have been given for blocked
flow (b � 1), including linear flow (b � γ � 1), weakly nonlinear flow (b ∼ γ � 1)
and nonlinear flow (γ � b � 1), identifying the various thin boundary layers that
appear. Solutions have also been given for almost-inviscid flow, γ � max (1, b2) where
the disturbance is weakly damped and decays away abreast of an obstacle over a
length scale of order b3/γ.

The numerical method outlined extends to unsteady flows for the long-obstacle
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equations, where it has the advantage that the propagation of information upstream by
Rossby waves, through the integration for ψ along lines of constantΠ , is accomplished
within each timestep. This is essential for the accurate modelling of these flows because
the long Rossby waves, which have k and l small in (2.9), travel rapidly upstream.

The leading-order viscous effect in the flows considered here is the destruction of
vorticity throughout the flow field by Ekman pumping. In the present limit horizontal
viscous effects are confined to layers of thickness E1/4, thinner that the mass-carrying
WBL and its extensions provided tan β � E1/4. If the E1/4 layers remain attached
they do not affect the flow. If the boundary layers become sufficiently nonlinear the
E1/4 layers can separate from bluff bodies. This is discussed in greater detail in JP93
and PJ90 where it is noted that separation bubbles in eastward flow are small and
appear likely to have little effect on flow past obstacles with tapering leeward profiles.

The region of parameter space least explored is the interior of the overturning
regime. The asymptotic analysis of §§ 4.2, 4.3 remains valid just inside this region
and gives a description of the boundary-layer structure and return flows possible.
Numerical solutions of the full equations without the long-wave approximation show,
as in figure 6(d), that stable steady solutions are possible. However it seems likely
that steady solutions may not exist or may be unstable for many points within the
overturning region. From computations for the analogous stratified two-dimensional
non-rotating flow Rottman et al. (1996) conclude that internal waves trapped in
the neighbourhood of an obstacle can lead to an inherently unsteady flow and an
almost-periodic oscillation in the drag on the obstacle. This would imply here that
Rossby waves trapped near the obstacle prevent the flow from settling to a steady
state. There are however differences between the present flow and those of Rottman
et al. (1996) and Grimshaw & Yi (1990, 1993). Their flows are effectively inviscid,
lacking an equivalent of vorticity destruction by Ekman pumping. Further, their flows
have Froude numbers of order the channel width and so are strongly affected by
horizontal upper boundaries reflecting vertically-propagating long waves back into
the flow domain. The exploration of the overturning region remains a challenging
problem that will be addressed elsewhere.

It was noted in § 5 that for even stronger forcing of the lee waves over the obstacle
it is possible for closed streamlines to form in the Long’s model solution for the short-
obstacle flow (see, for example, Miles & Huppert 1968) and that they also appear to
form for the long-obstacle γ = 0 flow below a small enough value of b, b2. They may
also be expected to form for small values of γ. The numerical method described here
is however no longer suitable as u vanishes at many points in such flows. The iterative
method described in § 5 for calculating the γ = 0 solution also fails at values of b
below about 0.5 for the parabolic obstacle. Whether closed streamlines are possible in
stable steady flow solutions to the full equations for b moderately small but B = b/γ
large has not been determined yet. The comments in PJ90 relating to the resonant
case shown in figure 15 there further support the argument that although such closed-
streamline solutions can exist, they may not be stable and that a stable flow could
also exist at the same values of b and γ but with different upstream conditions.

Appendix. Blocked flow past a triangular obstacle
Consider equation (2.8) with b = 0 for the triangular obstacle

h(X) =

{
1− |X| for |X| 6 1
0 for |X| > 1,

(A 1)
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subject to the boundary conditions (2.5) and (2.6). The governing equation is the heat
equation with information propagating to negative X. Downstream of the obstacle
the flow is undisturbed with simply

ψ = −y (1 6 X). (A 2)

Above the obstacle downslope (0 6 X 6 1) the problem is that of the heat equation
with a boundary advancing at constant speed into the solution domain. Thus introduce
X1 = (1−X)/4γ and Y1 = (y − 1 +X)/2γ. The flow field can then be written

ψ = −y +
2

π
e−Y1

∫ ∞
0

P1(X1, l) sin lY1 dl (0 6 X 6 1) (A 3)

P1(X, l) = 4γ1/2l(1 + l2)−2{(1 + l2)X − 1 + exp [−(1 + l2)X]}. (A 4)

The value of ψ on X = 0 from (A 3), (A 4) gives the initial value for the heat equation
in the upslope region (−1 6 X 6 0). Here the problem is the heat equation with a
uniformly receding boundary. Thus introduce X2 = −X/4γ and Y2 = (y− 1−X)/2γ.
The flow field can then be written

ψ = −y +
2

π
eY2

∫ ∞
0

P2(X2, l) sin lY2 dl (−1 6 X 6 0) (A 5)

P2(X, l) = −P1(X, l) + γ−1/2l(1 + l2)−1{1− exp [−(1 + l2)X]}
+

2

π

∫ ∞
0

{
exp [(y − 1)/2γ]

∫ ∞
0

P1(1/4γ, l
′) sin [l′(y − 1)/2γ] dl′

}
sin [l(y − 1)/2γ] dl.

(A 6)

Now the value of ψ on X = −1 from (A 5), (A 6) gives the initial value for the heat
equation in the upstream region (X 6 −1). Here the problem returns to being simply
the heat equation in a fixed domain. The flow field is thus

ψ = −y +
2

π

∫ ∞
0

P2(1/4γ, l) exp [l2(X + 1)] sin lγ−1/2y dl (X 6 −1). (A 7)

The forms (A 3)–(A 7) have the advantage that they can be easily and accurately
evaluated using fast Fourier sine transforms.
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