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Massive flow separation from the surface of a plane bluff obstacle in an incompressible
uniform stream is addressed theoretically for large values of the global Reynolds
number Re. The analysis is motivated by a conclusion drawn from recent theoretical
results which is corroborated by experimental findings but apparently contrasts with
common reasoning: the attached boundary layer extending from the front stagnation
point to the position of separation never attains a fully developed turbulent state,
even for arbitrarily large Re. Consequently, the boundary layer exhibits a certain
level of turbulence intensity that is linked with the separation process, governed by
local viscous–inviscid interaction. Eventually, the latter mechanism is expected to be
associated with rapid change of the separating shear layer towards a fully developed
turbulent one. A self-consistent flow description in the vicinity of separation is derived,
where the present study includes the predominantly turbulent region. We establish a
criterion that acts to select the position of separation. The basic analysis here, which
appears physically feasible and rational, is carried out without needing to resort to a
specific turbulence closure.

Key words: boundary layer separation, boundary layers, turbulent flows

1. Introduction
Incompressible-flow separation past a blunt cylinder with an impervious inflexible

smooth surface is of vital interest from an engineering point of view, where a
reliable method is sought to predict the position of time-mean gross separation of the
turbulent boundary layer. As Sandborn & Liu (1968) stated at the very beginning of
their experimental study, ‘Turbulent boundary-layer separation is normally listed as
one of the most important unsolved problems in fluid mechanics . . . ’, which represents
quite a challenge. Considerable theoretical efforts however have not yet led to a fully
self-consistent picture of the separation process even within the framework of a time-
mean description of the flow. Also, despite the rapid progress made in recent years
in direct numerical simulation (DNS) and semi-direct numerical methods such as
large-eddy and detached-eddy simulations, existing computational techniques do not
master fully this great challenge by producing sufficiently accurate solutions of the
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Figure 1. Sketch of flow situation, including streamlines of inviscid flow (arrows indicate flow
direction, for labelling see text): --------, free-stream region; - - - -, slipstream; (a) global (here
shown for a symmetric body) and (b) local (near the position D of flow detachment).

unsteady Navier–Stokes equations in particular. This is largely because in practical
applications, for instance in aerodynamics, the relevant Reynolds numbers must be
large enough for the boundary and separated shear layer to exhibit rather high levels
of turbulence intensity, and these Reynolds numbers are often too large to be dealt
with adequately by numerical methods currently available.

The present study aims to shed some light on the intricate flow structure near
separation with the goal of fostering future progress in modelling turbulent separating
flows. It is desirable to gain deeper insight into two fundamental aspects which
constitute the core problem: (i) the behaviour of the nominally two-dimensional
steady flow in the vicinity of separation and (ii) how the local theory describing (i)
fits into the global picture of the flow past the obstacle under consideration. In the
following, all flow quantities are non-dimensional with respect to the speed Ũ of the
unperturbed oncoming uniform flow, a typical body dimension L̃ (see figure 1a), and
the (constant) fluid density. Furthermore, the global Reynolds number Re takes on
arbitrarily large values,

Re = Ũ L̃/ν̃ � 1, (1.1)

where the constant ν̃ is the kinematic viscosity of the fluid. Analytical methods such
as matched asymptotic expansions then provide an appropriate means to establish a
rational theory on the basis of the time- or, equivalently, Reynolds-averaged Navier–
Stokes (RANS) equations, i.e. the Reynolds equations.

In laminar flow (however inadequate that presumption may be on physical grounds),
the triple-deck structure provides a rational description of break-away separation
for (1.1), at least locally (see Sychev 1972; Smith 1977). For an overview of the laminar
bluff-body problem, including the controversy concerning the validity and preference
of a particular model of the large-scale separated flow, see Smith (1979, 1985, 1986),
Chernyshenko (1988) and Sychev et al. (1998) for instance; the currently accepted
solution was put forward by Chernyshenko (1988), and an overview of the whole
subject is in Sychev et al. (1998). In turbulent flow, the current state of asymptotic
theory for the fully developed turbulent case is described by Kluwick & Scheichl
(2009). A local description of the separation process was attempted systematically
in interesting original works by Sychev & Sychev (1980), Sychev (1983) and Sychev
(1987), Melnik (1989). For further references and a discussion of these enthralling and
illuminating attempts, see Neish & Smith (1992) and Scheichl & Kluwick (2008a).
In a recent development (Scheichl, Kluwick & Alletto 2008; Scheichl & Kluwick
2008b), a self-consistent flow structure matching the boundary layer region with the
small region of pronounced laminar–turbulent transition near the leading edge of the
obstacle is found to agree with the classical picture of a two-tiered turbulent boundary
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layer. It consists of, first, the fully turbulent outer main region comprising most of the
boundary layer, which exhibits a small defect of the streamwise velocity component
with respect to its value imposed by the external potential flow and has Reynolds
stresses dominating over the viscous shear stress, and, second, the viscous wall layer,
where the turbulent shear stress and its molecular counterpart are of comparable
magnitude. In the present study that classical structure is adjusted in order to also
account for underdeveloped turbulence (following the measurements of Schewe 2001
and suggestions of Scheichl et al. 2008 and Scheichl & Kluwick 2008b below), i.e.
for a boundary layer characterised by a level of turbulence intensity below that of
a fully developed turbulent boundary layer flow. In the present investigation, this
concept is restricted to sufficiently high turbulence intensities, so that the turbulent
boundary layer already exhibits the aforementioned typical two-tiered structure. More
specifically, here the notion of slightly underdeveloped turbulence turns out to be
crucial.

This type of ‘transitional’ boundary layer flow was originally proposed by Neish &
Smith (1992). In its form adopted here, two asymptotically small perturbation
parameters are employed: a measure for the velocity defect, ε, and a further
measure, σ , for the boundary layer thickness, denoted by δ. Hence, the quantity

It = αε2, with α = σ/ε, (1.2)

measures the magnitude of the correlation of the turbulent velocity fluctuations, i.e.
of the Reynolds stresses or the turbulence intensity, in the shear layer. We deal with
slightly underdeveloped turbulent flow if both of the following relationships hold:

ε lnRe = O(1), (1.3a)

α � 1. (1.3b)

This eventually assumes its fully developed form if both σ and ε are O(1/ ln Re), i.e.
then α=O(1). Both the ranges (1.3) control the turbulence intensity levels, where (1.3b)
alone emerges to characterise underdeveloped turbulence. The process of laminar–
turbulent transition provides a source (Scheichl et al. 2008; Scheichl & Kluwick 2008b)
of delaying the boundary layer flow from becoming a fully developed turbulent flow,
so that we speak of a laminar–turbulent boundary layer in the following. Self-
consistency of the slightly underdeveloped-flow scaling is confirmed by considering
the local asymptotic structure of the boundary layer close to separation: free-stream
convection penetrates through the outer layer to the top of the wall layer, which
is exponentially thin compared to the former in the classical (fully developed) case.
Then the pressure feedback exerted by the induced inviscid region that feels the local
displacement of the flow adjacent to the surface is too weak to alter this near-wall flow
to leading order and avoid the formation of a Goldstein singularity (cf. Rothmayer &
Smith 1998; Sychev et al. 1998). Thus, a sound formulation of this locally strong
viscous–inviscid interaction process requires the von Kármán number δ+ (namely
the ratio of the inner- and outer-layer thicknesses) to vary essentially algebraically
with 1/δ rather than exponentially as in the classical case. In other words, δ is found
to depend predominantly algebraically on Re rather than logarithmically, associated
with the classical scaling. Moreover, a detailed analysis of a turbulent boundary
layer evolving from the leading edge towards the location of separation (Scheichl &
Kluwick 2008b) indicates that the first situation leads to a specific (distinguished)
double limit ε → 0, α → 0, such that the associated dependence of α on Re determines
the ultimate value of the turbulence-intensity level It possible.
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Altogether, turbulent separation is found to be associated with a quite complex
interplay of a so-called inner and an outer mechanism of local viscous–inviscid
interaction. In this paper we concentrate on both mechanisms; however, particular
details of the latter and its interplay with the inner interaction will be addressed more
elaborately in a later study. The outer interaction is of paramount importance for
the understanding of the drastic change of the flow in the wall layer as it undergoes
separation, itself governed by the inner interaction process. The inner interaction
process gives rise to a novel internal triple-deck structure which is located at the base
of the boundary layer and which eventually fixes the value of It .

The concept of slightly underdeveloped turbulence adopted in the present analysis
is novel and somewhat unconventional but is supported by the oil-flow measurements
carried out by Schewe (2001), as discussed by Scheichl et al. (2008) and Scheichl &
Kluwick (2008b). Also, Sandberg & Sandham (2008) conclude, albeit with some
reservation, from the results of their DNS study that the turbulent flow close to the
trailing edge of a flat plate aligned in a uniform stream exhibits characteristics which
point to the well-known triple-deck structure as in laminar flow (see Rothmayer &
Smith 1998; Sychev et al. 1998). Although not directly concerned with separation
from a smooth surface, this finding is of particular interest: it is demonstrated below
how the asymptotic representation of the flow near separation in the regime of the
outer interaction is closely related to that occurring in the turbulent flow past the
trailing edge of a flat plate at angle of attack as considered first by Melnik & Chow
(1975). The differences are mainly due to different near-wall boundary conditions
downstream of separation.

This paper is organised as follows. After the problem description on the basis of
the Reynolds equations in § 2, an outline for the external and boundary layer flows is
given in § 3, concluded by the rationale supporting the existence of an underdeveloped
turbulent boundary layer flow and the definition of the slightly underdeveloped case.
The results presented lead to a complete flow picture and a thorough investigation of
the inner and (less elaborately) the outer interaction process as in § 5. The solutions
of the impressed potential flow as well as the boundary layer equations that govern
the outer small-defect portion of the oncoming turbulent flow enter the interactive-
flow description in the form of certain parameters and require both analytical and
numerical treatments: they are discussed separately in § 4. Finally, the implications of
the description of separation here are highlighted in § 6. Also, the assumptions made
in the course of the analysis having the most important repercussions on its progress
are summarised there.

2. Problem formulation
As a starting point, we formulate the basic equations governing the time-mean

flow past the cylindrical body under consideration. Here and in § 3 we tacitly refer to
figure 1 whenever necessary.

Let x, y, u, v, ψ , p denote natural coordinates along and perpendicular to the
upper part of the perfectly smooth body surface, respectively, having the origin in the
point L defining the leading edge of the cylinder, the velocity components in the x-
and y-directions, the streamfunction, and the pressure. Furthermore, φ(x) denotes the
angle of inclination of the surface contour at a distance x measured anticlockwise
from the direction of the oncoming parallel flow. Then, the value of the surface
curvature

�(x) = −dφ/dx (2.1)
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is positive/negative for a convex/concave part of the contour. In turn, the continuity
equation is satisfied identically with u= ∂yψ , hv= − ∂xψ , where h= 1 + �y. Hence,
the Reynolds equations consist of the momentum equations for the x- and y-directions
(see e.g. Schlichting & Gersten 2003, p. 81),

h2Dt∂yψ − �(∂xψ)(∂yψ) = −h∂xp − h∂x〈u′2〉 − ∂y(h
2〈u′v′〉) + νh2∂y∇2ψ, (2.2a)

−hDt (h
−1∂xψ) − �(∂yψ)2 = −h∂yp − ∂y(h〈v′2〉) − ∂x〈u′v′〉 + �〈u′2〉 − ν∂x∇2ψ, (2.2b)

where ν = Re−1 (for the sake of brevity) and the total derivative and the Laplacian
are

Dt = h−1[∂yψ ∂x − ∂xψ ∂y], ∇2 = h−1[∂x(h
−1∂x) + ∂y(h∂y)]. (2.2c)

Also, u′, v′ denote the turbulent fluctuations of the x- and y-velocity components,
respectively. Thus, the components of the Reynolds stress tensor are identified by 〈·〉.
Equations (2.2) are supplemented with the usual no-slip and no-penetration boundary
conditions at the solid cylinder surface and the requirement for a uniform parallel
flow infinitely remote from the body, such that for

y = 0: u = v = u′ = v′ = 0, (2.3)

y → ∞ : [u, v, u′, v′, p] → [cosφ,− sinφ, 0, 0, 0]. (2.4)

Here φ is the slope angle introduced earlier.
Furthermore, in the following we tacitly assume that all components of the Reynolds

stress tensor have the same order of magnitude under the assumption (1.1) (hypothesis
of locally isotropic turbulence; cf. Kolmogorov 1961 and the references therein).

We subsequently aim at investigating the flow in the vicinity of separation in the
regime (1.1) on the basis of (2.2)–(2.4). To this end, we start with considerations
regarding the overall asymptotic picture of the (non-interactive) flow as put forward
by Scheichl et al. (2008) and Scheichl & Kluwick (2008b). This is the subject of § 3.

3. Overall background and preliminary results
The structure of the flow on the scale of body dimensions under the assumption (1.1)

represents a decisive but delicate issue still under debate. Nonetheless, its rather few
salient properties underlying the present analysis seem plausible.

3.1. Does Euler flow provide a feasible asymptotic state for large values of Re?

As will be argued in § 3.4.1, the attached boundary layer emanating from L exhibits
underdeveloped turbulence and thus typically shrinks towards the line y =0 as Re
increases. On the other hand, it is a widely accepted fact that a free turbulent
shear layer is a fully developed and ‘thick’ one insofar as its thickness is essentially
independent of Re and measures the turbulence intensity concentrated in it. However,
from an empirical point of view, such a shear layer can still be regarded as relatively
slender though, as was first put in a formal asymptotic concept successfully by
Schneider (1991); for boundary layers see Melnik (1989) and Scheichl & Kluwick
(2007b). Hence, the existence of separated flow here does not restrain us from
regarding the Reynolds stresses as negligibly small entirely within an extent of a
typical body dimension from the body surface, so that (2.2a) and (2.2b) reduce to the
Euler equations in the present regime. Therefore, the question posed at the beginning
of this section is answered in the affirmative, even if tentatively.

We concede, of course, that the real behaviour of the flow may be different due
to the effect of the free shear layers, but, hopefully, not too different from the model
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proposed here, so that it can be adapted in a self-consistent manner. We are also
aware that the picture of the global flow remains incomplete as long as transition
of the shear layer just separated to a fully developed shear layer is accepted without
being understood in detail. An interesting step in this direction was made recently by
Sychev (2010).

The flow behaviour considered here is then accounted for by the leading-order term
of the expansion

[ψ, u, v, p] ∼ [ψ0, u0, v0, p0](x, y; k) +O(εσ ), y = O(1), (3.1)

which is suggested by the form of the small-defect structure of the boundary layer as
addressed briefly in § 1. The non-negative parameter k shall account for the initially
unknown location x = xD(k) of the point D where the free streamline, on which ψ0 = 0
by definition and here denoted by S, detaches tangentially from the body surface.
A precise definition of k that involves the structure of the flow near D, is given
in the course of its further discussion (see § 3.3). Next, we recapitulate the essential
topological properties of that Euler flow which, in view of (1.1), is formally assumed
in the limit of arbitrarily large values of Re.

3.2. Global picture of inviscid flow

The inviscid free-stream flow, characterised by y � yS, is irrotational. The potential
flows past a cylinder that are parametrised by k and leave a (semi-infinitely) open
cavity, i.e. a dead-water zone where p0 ≡ 0 according to the far-field conditions (2.4),
downstream of the body are usually referred to as Helmholtz–Kirchhoff (H-K) flows;
for an extensive treatment, see e.g. the textbook by Gurevich (1979). It is self-evident
that in this case, (2.4) only holds outside the cavity. In contrast to the more general
approach proposed subsequently but according to what is conventionally suggested in
previous related studies, it should be mentioned that Sychev et al. (1998) (also cf. the
references therein) and Schlichting & Gersten (2003) consider this type of a potential
flow as the only physically realistic flow that is representative in the case (1.1), in
agreement with the prerequisites of the original analysis of laminar separation by
Sychev (1972), at least as far as steady flows are concerned.

In the following, we relax the assumption that in the inviscid-flow limit, formally
expressed as Re−1 = 0, the slipstream of the body degenerates into an open cavity:
it is equivalently reasonable from the viewpoint of first principles that the terminal
asymptotic picture of the flow about the cylinder exhibits a closed region that forms
either a dead-water cavity (cf. Eppler 1954; Gurevich 1979) or even an inviscid
recirculating flow with (negative) vorticity, hereafter denoted by ω0, behind the body.
This region then is assumed to have an extent comparable to a characteristic dimension
of the body and thus to lie within a distance y =O(1) from the trailing edge, denoted
by T. Under the assumption of a dead-water region confined by S, the first possibility
applies when D is sufficiently close to T. Then, the uniform k-dependent value of p0,
typical for the (cusp-shaped) dead-water zone, is positive. Note, however, that this
patently contrasts with experimental findings as these support the existence of a
sub-pressure cavity (cf. Zdravkovich 1997), even for Re

.
= 1.782 × 107 for a circular

cylinder and Re formed with its diameter (Jones, Cincotta & Walker 1969). The
second possibility is associated with a rich variety of complex flow pictures and
comprises the first situation by including the trivial case ω0 ≡ 0 (y � 0). Because of
the inherent impact of turbulent unsteadiness on the flow even for arbitrarily large
values of Re, for ω0 �≡ 0 the (two) counter-rotating eddies are not necessarily of the
celebrated Prandtl–Batchelor type, where each eddy is identified by a uniform value
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Figure 2. Sketch of inviscid (here symmetric) bluff-body flows (for labelling see text and
figure 1): S separating (a) a cavity and (b) a vortex flow (here assumed to form a cusp
near C).

of ω0 (Batchelor 1956a ,b): the latter situation only applies if the unsteady terms in
the Navier–Stokes equations tend to zero faster than the viscous terms for increasing
values of Re. In passing, we note that critical overviews on such categories of inviscid
flows, exhibiting different forms of closed wakes, are put forward by Wu (1972),
Zdravkovich (1997) and Sychev et al. (1998). Both scenarios discussed so far are
displayed in figure 2, where C denotes the point confining either the cavity or the
wake flow on the centreline. In the first scenario, the free streamlines S indicated
by I, II and III refer to the cases k < kc (H-K flow), k= kc (C infinitely remote) and
k > kc (C finitely remote), respectively, for some critical value kc depending on the
body geometry.

We now focus briefly on the specific asymptotic structure of the external Euler flow
and the initially attached boundary layer, by both taking up a global point of view
and scrutinising the vicinity of the point of separation D.

3.3. Inviscid free-streamline theory reappraised

The reasoning outlined so far in § 3 implies that the Euler flow around the cylinder
is sought in the class of flows that are irrotational far upstream (and downstream),
exhibit free streamlines and, as a consequence, are essentially parametrised by the
parameter k. A careful investigation of the inviscid flow near D provides a first step
towards the understanding of the separation process.

By introducing a local coordinate

s = x − xD(k), (3.2)

let y = yS(s; k) describe the position of S, so that yS = 0 for s � 0 (upstream of D)
and yS > 0 for s > 0 (downstream of D). That is, S separates the irrotational free-
stream flow (y � yS) from the slipstream (s > 0, 0 � y <yS). Also, we introduce the
speed US(x; k) of the inviscid flow on S. The flow in D is then characterised by
the as yet unknown values u0D =US(xD; k) = u0(xD, 0; k), p0D =p0(xD, 0; k), and the
local surface curvature �D = �(xD) according to (2.1). For s > 0, in the following
the subscripts + and − distinguish the different values of US for y − yS = 0+ and
y − yS = 0−, respectively. In the light of the central investigation, it seems expedient
to demonstrate concisely how one can determine the asymptotic representations of ψ0,
p0 (see (3.1)), US and yS in the vicinity of D term by term iteratively (in principle with
arbitrary accuracy) by prescribing ω0(ψ0; k). As a matter of fact, the specific form
of ω0(ψ0; k) is expected to be known once the self-consistent asymptotic structure of
the large-scale separated flow under the assumption (1.1) is understood satisfactorily
well.

Here we list the results of the local analysis of flow detachment possessing
ramifications for the remaining study, where the details are left to Appendix A.
At first, we obtain

ψ0/US ∼ y − � y2/2 +O(y3), s � 0, y → 0. (3.3)
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By setting pS(x; k) =p0 on S, we have

pS + U 2
S

/
2 = 1/2, ψ0 � 0, (3.4)

and p0D = (1 − u2
0D)/2 for the pressure at separation. Polar coordinates

r =
√
s2 + y2, θ = arctan(y/s) (π � θ � 0) (3.5)

come into operation as they facilitate the resultant expansion of ψ0 in suitable form,

ψ0/u0D ∼ r sin θ + ψ0,3/2(r, θ; k) + ψ02(r, θ; k) +O(r5/2), π � θ > 0, r → 0, (3.6a)

ψ0,3/2 = −4k

3
r3/2 cos(3θ/2), ψ02 = −r2

{
5k2

3
sin(2θ) +

�D

4
[1 − cos(2θ)]

}
. (3.6b)

Finally, we obtain

US ∼ b(k)x +O(x2), b(k)> 0, x → 0+, (3.7a)

US/u0D ∼ 1 + 2k(−s)1/2 + (10k2/3)(−s) +O[(−s)3/2], s → 0−, (3.7b)

and in turn, with the aid of (3.4),

pS/u
2
0D ∼

(
u−2

0D − 1
)
/2 − 2k(−s)1/2 − (16k2/3)(−s) +O[(−s)3/2], s → 0−, (3.8)

and

US+/u0D ∼ 1 −
(
ω0D/u

2
0D

)
(2k/3)s3/2 +O(s5/2), s → 0+, (3.9a)

yS ∼ (4k/3)s3/2 +O(s5/2), s → 0+. (3.9b)

From (3.9b), it immediately follows that indeed k � 0 for geometrical reasons. The
region of non-uniformity along S mentioned at the end of item (i) in Appendix A
emerges for y =O(s3/2) and represents the early-stage separated shear layer in the
inviscid limit. In the above added form (3.7a) of US near L the coefficient b reflects
the local behaviour of the stagnant potential flow. Expansions (3.6)–(3.9) represent
a summary of the results that are essential for the further analysis. We remark that
they are uniformly valid in the regime k � 0.

The vorticity ω0 is found to enter the description of the potential flow only in the
truncated terms in (3.6a), (3.7b) and (3.8), which are not considered here. The singular
behaviour of ψ0 near D accounted for by the second contributions to these expansions
and in (3.9) reflects the well-known Brillouin–Villat (B-V) singularity (cf. Gurevich
1979), which we have retrieved without restricting to the conventional assumption
that the free streamline S confines a dead-water region (ω0 ≡ 0). Accordingly, the
results (3.6), important in the following, have been derived directly rather than from
the global solution of the potential flow, which in the existing literature is usually
obtained in a distinctly more cumbersome manner by means of conformal mapping.
A short survey on this procedure is presented in Appendix B.

The strength of the B-V singularity is measured by the flow parameter k,
which virtually controls the magnitude of the unbounded adverse pressure gradient
immediately upstream of D, given by (3.8) in the form dpS/dx ∼ k(−s)−1/2 +O(1), as
s → 0−. In this study, we deal with k=O(1), which contrasts with the description of
laminar break-away separation where k=O(Re−1/16) (cf. Sychev 1972; Smith 1977;
Sychev et al. 1998). However, it is well-accepted that turbulent boundary layers are
less prone to separate than laminar ones, which substantiates the present approach,
referred to as ‘non-smooth’ separation by Neish & Smith (1992), in allusion to the
singular behaviour of the curvature of S given by (3.9b). That is, we anticipate
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that one cannot determine the actual value of k and, in turn, the position of D
without having gained a considerably deeper insight in the interplay of the boundary
layer and the large-scale separated-flow structure. In case of ω0 ≡ 0 and for a convex
cylinder xD is shifted towards T for increasing values of k, accompanied by decreasing
values of u0D. It should be mentioned that the assumption k � 1 refers to separation
asymptotically close to T where u0D becomes asymptotically small (see figure 2a).
This limiting scenario has been first addressed by Neish & Smith (1992) and critically
reviewed by Scheichl & Kluwick (2008a), at least for the case of a fully developed
turbulent boundary layer immersed in fully attached potential flow, here recovered in
the formal limit k−1 = 0 under the premise (1.1).

3.4. Incident attached boundary layer

The attached portion of the boundary layer forming in the regime (1.1) is ‘trapped’ as
it stretches approximately from L to D over a finite distance, regardless of the actual
value of Re. This characteristic of bluff-body flows is apparently strongly linked to
the effective magnitude of the asymptotic parameters ε, σ and α, introduced in § 1,
and the associated level of turbulence intensity It , defined in (1.2), that prevails in
the entire boundary layer. We start with an outline of the generation of the turbulent
boundary layer close to L. This specific picture of short-scale transition is, in turn,
found to promote remarkably the assumption of underdeveloped turbulence. Finally,
this state of flow is identified by (1.3b), which results from the order-of-magnitude
analysis of ε and σ performed in § 3.4.3.

3.4.1. Onset of turbulence

In the setting of the original formulation of boundary layer turbulence by Neish &
Smith (1992), which also covers underdeveloped turbulence, the Reynolds shear stress
in the boundary layer is written as

−〈u′v′〉 = TRe−1/2Σ̄(x, ȳ; k, T ), ȳ = yRe1/2. (3.10)

Here T and Σ̄ denote, respectively, the non-negative constant so-called turbulence-
intensity gauge factor that serves to quantify the magnitude of the Reynolds shear
stress, and a shape function (that has to be modelled). Owing to this scaling, the
term T ∂ȳΣ̄ adds to the conventional Prandtl-type boundary layer equations (formed
with x, ȳ used as independent variables). Their solutions are then parametrised by T

(aside from k). They describe a purely laminar flow for T = 0, whereas the subsequent
interesting case of highly developed turbulence is indicated by T � 1. It will become
evident from the subsequent investigation that the latter case is preferably described
by virtue of the formalism outlined in § 1, i.e. in terms of the two parameters ε and σ ,
forming It , and their asymptotic dependencies both on T and Re, instead of T and Re.

The analysis by Scheichl et al. (2008) and Scheichl & Kluwick (2008b) suggests that
for arbitrarily large values of Re the boundary layer evolves from the well-understood
stagnant laminar flow (cf. Schlichting & Gersten 2003) taking place in a small vicinity
of L with an extent of Re−1/2 and undergoes rapid laminar–turbulent transition in a
relatively small adjacent region where the flow is still of boundary layer type. The idea
that US provides the only reference velocity of that flow suggests the scaling relation
Σ̄ =O(U 2

S). An inspection of magnitude analysis of (2.2a) in connection with (3.7a)
yields then the estimates x =O(T −1), ȳ =O(1) for this region of transition, which in
turn implies

TRe−1/2 � 1. (3.11)



Turbulent break-away separation for large Reynolds number 269

Furthermore, we recall that in the regime (1.1) the turbulent dynamics is more or
less constricted to a relatively thin boundary layer present for x =O(1). Under this
basic supposition, matching this developed turbulent boundary layer flow with that
early-stage turbulent flow is found to require a small streamwise velocity deficit with
respect to US in the bulk of the former, i.e. 1 − u/US � 1. However, the scalings
of the Reynolds stresses and in turn of the boundary layer thickness δ first remain
unknown. To proceed with the scaling of the flow, the most simple strategy, motivated
by physical reasoning and consistent with the considerations above leading to (3.11),
is to assume that both regions have in common that the turbulent motion is governed
by a single velocity scale: this is initially represented by US, which is superseded by
a turbulent reference velocity ut (x; k,Re), when x =O(1), so that in this flow region

1 − u/US = O(γ ), Σ̄/U 2
S = O(γ 2), with γ = ut/US ∼ ε. (3.12)

The advanced (far-downstream) stage of the transition process characterised by an
intermediate limit of the form T −1 � x � 1 is associated with a correspondingly
pronounced reduction of the streamwise velocity defect in the main region of the
boundary layer. Simultaneously, the value of the turbulence-intensity level It increases
and eventually reaches its maximum for x =O(1). There the velocity defect is O(ε)
finally, which motivates us to stipulate asymptotic proportionality between ε and γ

in (3.12). Specifically, it will become evident below how the definition of ε is traced
back to this relation, without any loss of generality.

The turbulent boundary layer is driven by US, known from the solution for ψ0,
from L towards D. Its behaviour near these critical points is essentially determined
by the local expansions (3.7). We initially reconsider the relevant conclusions inferred
from the first-order description of (underdeveloped) turbulent boundary layer flow.

3.4.2. First-order theory

As brought out by e.g. Schlichting & Gersten (2003), turbulent shear flows are
intrinsically tied to a rather pronounced change from the external almost irrotational
to the fully turbulent flow inside the boundary layer. In a rigorous asymptotic
framework, this is accounted for by the outermost tier of the boundary layer that is
extremely thin relative to its main region. It is formed at the aforementioned final
stage of the transition process and accompanied by an increase of the boundary
layer thickness proportional to x (which reflects the vanishing effect of the viscous
shear stress and thus the lack of a typical boundary layer length scale in the regime
T −1 � x � 1). Since in the present context the specific properties of that overlayer
do not play an important role, it can be approximated with sufficient accuracy by
the sharp line y = δ, with δ=O(σ ). Then, the distinct outer edge of the boundary
layer and its thickness δ are well-defined. Therefore, a patching of the flow quantities
is required at y = δ, specifically for u and the boundary layer approximation −∂yu

of the vorticity, such that u is smooth there. Taking up the more computational
point of view, we accomplish this by employing a mixing-length-based closure of
the Reynolds shear stress, notwithstanding the alternative (rather more conventional)
eddy-viscosity-based approach in favour of claiming a diffusive decay of vorticity.
This is aligned with the usual technique of matching as known from laminar shear
flows and adopted by e.g. Neish & Smith (1988, 1992).

As an even more important finding, (2.2) and (3.3) imply
p ∼ pS + U 2

S�y +O(ε2, α2ε2) throughout the turbulent boundary layer. In the
outer small-defect region, (2.2a) then reduces to the differential form of (3.4),
dpS/dx = − US dUS/dx to leading order, and the defect structure is essentially
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described by the scaling introduced in § 3.4.1. Inspection of (2.2a) and (3.3) then
shows that for any ε � 1, σ � 1, the flow in the small-defect region is governed by
the expansions[

USη − ψ/δ

ut
,

−〈u′v′〉
αu2

t

]
∼ [F,Σ](x, η; k) +O(ε, αε),

δ

σ
∼ ∆(x; k) +O(ε), (3.13a)

0 < x < xD, η = y/δ, 0 < η � 1. (3.13b)

Here higher-order contributions of O(ε) are triggered by the nonlinearities of the
inertia terms in (2.2a), which, however, appear to be inessential in view of the
subsequent investigation.

An investigation of the boundary layer approximation of (2.2a) involving the first-
order quantities F , Σ , ∆ reveals that these can only be matched with the flow
quantities in the aforementioned region of rapid transition if Σ assumes a finite limit
at the base of the defect layer (Scheichl et al. 2008; Scheichl & Kluwick 2008b, 2009;
Kluwick & Scheichl 2009). This is accounted for by choosing ut such that Σ → 1
as η → 0. Also, as a start, it proves sufficient to only discard the (meaningless) case
α � 1, so that US − u predominantly accounts for the velocity defect characteristic
of the turbulent boundary layer rather than for absorbing the effect of the surface
curvature on the potential flow, as seen from (3.3) and the truncated terms in (3.13a).
Furthermore, the inertia terms are seen to be negligibly small in the viscous wall
layer. This allows a direct match of the latter with the defect layer, which is crucial
for the particular two-layer structure of the boundary layer. By adopting the basic
idea behind the classical theory of (fully developed) wall-bounded turbulent flow, we
have in consequence that ut also serves as a suitable reference velocity for both u and
the Reynolds stresses in the viscous sublayer. Accordingly, It measures the magnitude
of the Reynolds stresses in both tiers.

As a result of these considerations, the scalings[
u

ut
,

−〈u′v′〉
αu2

t

]
= [u+, τ+

t ](x, y+; k,Re), y+ =
y

δν
, δν =

1

αutRe
∼ 1

σReUS
(3.14)

are appropriate in the comparatively thin wall layer; note (3.12) and (3.13a). The
expression for the wall layer thickness δν in (3.14) is underpinned by the form of
momentum equation (2.2a) for y+ =O(1) when integrated with respect to y subject
to (2.3),

τ+ ∼ 1 + p+y++ i+
{∫ y+

0

∂x[ut u
+(x, t; k,Re)2]

ut
dt − u+

∫ y+

0

∂xu
+(x, t; k,Re) dt

}

+O(δν), τ+ = τ+
t + ∂y+u+, i+ = δν/α, p+ =

(
i+/u2

t

)
dpS(x; k)/dx.

(3.15)

Here, the dominant contribution to the remainder term is due to the Reynolds normal
stress. Most importantly, it is indicated by (3.15) that one conveniently identifies the
wall shear stress, given by τw = Re−1∂u/∂y for y = 0, with αu2

t ; that is,

τw/U
2

S = αγ 2. (3.16)

To leading order, (3.15) reduces to the expected balance of the sum of the viscous
and the Reynolds shear stresses, with the wall shear stress as the pressure gradient
contributes to higher-order effects. This situation is enforced by the match with the
fully turbulent small-defect flow in the bulk of the boundary layer. Then, both the
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quantities p+ and i+ provide asymptotically small gauge functions that control the
effects of the pressure gradient and inertia, respectively, in the resulting (formal)
expansions,

p+ ∼ −π+U−2
S dUS/dx + · · · , π+ = (εσ 2Re)−1 � 1, (3.17a)

[u+, τ+] ∼ [u+
0 (y+), 1] + p+[u+

p (y+), y+]

+ i+{[u+
i , τ

+
i ](x, y+; k) + · · · + π+[u+

ip, τ
+
ip](x, y

+; k) + · · ·}. (3.17b)

For the derivation of (3.17a), we refer to (3.15), (3.12) and (3.4). In (3.17b), the
common key assumption made is that the wall layer flow is in equilibrium: the wall
functions u+

0 (y+) and u+
p (y+) are taken as ‘universal’, i.e. they do not exhibit any

dependence on streamwise variations of the flow.
Strictly speaking, u+

0 (y+) and u+
p (y+) have to be determined experimentally or

via DNS. The only information available in an asymptotic flow description using
turbulence-closure-free RANS is the broadly believed behaviour

−〈u′v′〉 = O(y+3), y+ � 1, (3.18)

which is supported by evaluating the continuity equation for the fluctuating motion
for y = 0 in combination with (2.3) (cf. Monin & Yaglom 1971, pp. 270–272), and
the conditions of matching with the small-defect flow on top of the viscous sublayer.
These basic considerations yield the limiting representations

y+ → 0: [u+
0 , u

+
p ] ∼ [y+, y+2/2] +O(y+4), (3.19a)

y+ → ∞ : u+
0 ∼ κ−1 ln y+ + C+, κ

.
= 0.384, C+ .

= 4.173 . (3.19b)

The relationship (3.19b) represents the celebrated logarithmic law of the wall. The
(currently accepted) empirical values for the von Kármán constant κ and the
intercept C+ have been reported by Nagib, Chauhan & Monkewitz (2007). Although
found for the canonical zero-pressure-gradient boundary layer, they seem admissible
in the present context in view of the asymptotic equilibrium expressed through (3.17b).

The above considerations complete the description of the flow in the outer tier.
Integrated once with respect to η, the leading-order boundary layer equation then
reads

U−1
S ∂x(US∆)η∂ηF − U−3

S ∂x
(
U 3

S∆F
)

= Σ − 1. (3.20)

Equation (3.20) is subject to the conditions of matching and patching with the flow
representations in the wall region and the irrotational external flow, respectively, for

η → 0: F → 0 (Σ → 1), ∂ηF ∼ −κ−1 ln η + C(x; k), (3.21a)

η = 1: ∂ηF = ∂2
ηF = Σ = 0. (3.21b)

With respect to the further analysis, it is interesting to note that the scaling velocity ut
prevents higher-order terms in the expansion of F provided by (3.13a) from exhibiting
a logarithmic singularity similar to that given in (3.21a). The function C(x; k) depends
on the actual turbulence closure adopted to model Σ . The condition for ∂2

ηF imposed
at the boundary layer edge is due to vanishing vorticity. Also, (3.20) is supplemented
with universal initial conditions, as predicted by (3.20) and (3.7a) and revealed from
the limiting form for

x → 0+ : [F,Σ](x, η; k) ∼ [F0,Σ0](η) +O(x), [∆/x,C](x; k) ∼ [∆0, C0] +O(x).
(3.22)



272 B. Scheichl, A. Kluwick and F. T. Smith

Here the subscript 0 indicates the stagnant-flow solution that describes the terminal
stage of the laminar–turbulent transition process as treated in § 3.4.1, and in more
length and breadth by Scheichl et al. (2008). The values of the quantities F0, Σ0, and
the (positive) constants ∆0, C0 are the solutions of the boundary value problem

2∆0(ηF
′
0 − 2F0) = Σ0 − 1, (3.23a)

η → 0: F0 → 0, F ′
0 ∼ −κ−1 ln η + C0, η = 1: F ′

0 = F ′′
0 = Σ0 = 0, (3.23b)

representing the limiting forms of (3.20) and (3.21) as x → 0+; here and in the
following, primes on F denote ordinary derivatives with respect to the independent
variable.

Finally, matching the small-defect and the wall layer according to (3.19b), (3.21a)
and and (3.12) yields

γ /ε ∼ 1 − ε[κ−1 ln(US∆) + C + C+] +O(ε2), ε = κ/ ln(σ 2Re) � 1, (3.24)

which determines ut (in agreement with the asymptotic errors anticipated in (3.13a)),
provides a first relationship between ε, σ and Re, and, in view of (3.16), represents
the skin-friction law. It is noted that (3.24) confirms that the pressure gradient affects
the wall layer equilibrium only in second order, as anticipated in (3.15) and (3.17).

3.4.3. Boundary layer scaling: T - versus (ε, σ )-formalism

In the first instance, (3.24) asserts that δ is much larger than Re−1/2, measuring
the thickness of a strictly laminar or a laminar–turbulent boundary layer (a notion
introduced in § 3) having T =O(1). Let us reconsider the match of Σ̄ for x =O(T −1),
defined by (3.10), and for x =O(1), where it has the form given by (3.12). Without loss
of generality, we assume Σ̄/u2

t ∼ Σ0 =O(1) in the intermediate regime T −1 � x � 1
according to (3.13a) and (3.22) and thereby readily reveal by using (3.11) the existence
of an underdeveloped turbulent boundary layer flow as

α = TRe−1/2 � 1. (3.25a)

This relationship, backed by the proposed specific picture of short-scale transition
path to turbulence, underlies (1.3b). From (1.2) and (3.24) then follows

ε ∼ εT = κ/(2 ln T ), σ ∼ αεT , It ∼ αε2
T , (3.25b)

which completes the scaling of the boundary layer in terms of T and Re, as proposed
originally by Neish & Smith (1992). Hence, for T � 1, the boundary layer thickness
is augmented in magnitude by the factor εT T whereas that of the emerging wall layer
is reduced by the same factor when compared to the thickness of a laminar–turbulent
boundary layer mentioned above.

Also, first conclusions that prove useful for the subsequently preferred description
of the interactive boundary layer flow in terms of the asymptotic parameters ε and σ

are drawn from (3.24): when the value of It is increased for Re kept fixed, then σ

(i.e. δ) increases and ε, the wall layer thickness δν given by (3.14) and in turn the
von Kármán number,

δ+ = δν/δ ∼ 1/(σ 2ReUS∆), (3.26)

decrease as d[σ, ε]/dIt ∼ [1/ε,−2ε/(κσ )]. A possibly appealing aspect of these
findings is noted, namely that they allow ‘stimulation’ of the variations of It and ε

by passing through all possible dependences of σ on Re as σ is increased. If σ 2Re
is sufficiently large to vary predominantly algebraically with Re, so that δ+ varies
accordingly with some negative power of Re, see (3.14), we already arrive at the
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Figure 3. Asymptotic substructures of incident boundary layer and overlap
behaviour (3.19b) (not to scale, for labelling see text).

traditional asymptotic scaling of the velocity defect as ε=O(1/ lnRe). Then, we are
concerned with the precise definition of slightly underdeveloped turbulent boundary
layer flow, so that (1.3) supplemented with (3.24) now is expressed in the more
accurate form

σ = χ(Re)Reµ−1/2, ε ∼ κ/(2µ lnRe), with lnχ = o(lnRe), 0 < µ < 1/2.
(3.27)

Here the slowly varying gauge function χ(Re) and the exact value of the constant µ
are determined by the inner mechanism of viscous–inviscid interaction and eventually
provide an accurate estimate of the value of It in the regime (1.1) as it fixes the
dependences of ε and α on Re.

We revert to this issue in § 5.1 in more depth. Here we only note that the
relationships (3.27) conform to the internal scaling of the associated triple-deck
structure, as anticipated in § 1: any further increase of σ (or, equivalently, of It )
that is accompanied by a weaker, i.e. not basically algebraic, rate of decay of σ for
increasing values of Re is precluded, as it implies super-algebraic growth of Re in the
dependence on 1/σ and, in turn, a correspondingly strong unacceptable decay of δ+

in the dependence on σ , according to (3.26). Eventually, the hypothetical upper and
lower limits of σ (i.e. of It ) and ε, respectively, which refer to the classical (i.e. fully
developed) turbulent boundary layer, are attained when µ assumes its least upper
bound given by 1/2 and for σ =χ chosen proportional to ε, i.e. for α=O(1). This
entails ε ∼ κ/ lnRe, a situation exactly unmasking the scaling of the classical (i.e. fully
developed) turbulent boundary layer. Then ut serves as the single reference quantity for
scaling both the velocity defect and the Reynolds stresses, see (3.13a). In that case, δ+

varies with exp(−κ/ε)/ε2 or, equivalently, with (lnRe)2/Re, in agreement with (3.14),
which expresses the well-established property that the wall layer is transcendentally
thin when compared with the outer defect layer.

Figure 3 depicts the resulting two-tiered structure of the attached turbulent
boundary layer. Next, we study its asymptotic subdivision when the boundary layer
flow approaches the point D of inviscid flow detachment, i.e. when exposed to a
free-stream speed US that locally has the form (3.7b).

4. Non-interactive boundary layer near separation
The flow behaviour in the outer main (small-defect) part of the boundary layer as

x → xD is important for the local separation process. Below, particular emphasis is
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placed on a further sublayer that emerges as the main part splits, before we address
the viscous wall layer.

4.1. Small-defect layer

It has been pointed out by Scheichl & Kluwick (2008a ,b) that the velocity defect,
scaled Reynolds stresses and the boundary layer thickness take on finite limits with

{[F,Σ],∆} ∼ {[FD,ΣD](η; k),∆D(k)} + (−s)1/2{[F1/2,Σ1/2](η; k),∆1/2(k)}
+ (−s){[F1,Σ1](η; k),∆1(k)} +O[(−s)(3/2)] as s → 0−, (4.1)

where s is defined by (3.2) and the quantities with subscripts are O(1), from (3.20)
and (3.21). The quantities with subscript 1/2 are unaffected explicitly by the Reynolds
shear stress. For the equations determining the quantities with subscript 1/2 and 1,
one infers from the requirement F ′′

1/2(1; k) =F ′′
1 (1; k) = 0 (by disregarding the rather

unlikely case F ′′′
D (1; k) = 0), see (3.21b), the solvability conditions (cf. Scheichl &

Kluwick 2008a ,b)

∆1/2 = −2k∆D, ∆1 = ∆D(2k2/3 − β), β = Σ ′′
D(1; k)/[F ′′′

D (1; k)∆D] (> 0). (4.2)

Consequently, one obtains

F1/2 = −4kFD, F1 = −βηF ′
D + (60k2/3 + β)FD +ΣD/∆D. (4.3)

The results (4.2) and (4.3) involve terms already found for the contributions of
O[(−s)1/2]. Also, they give values of Σ1/2, Σ1 according to the chosen Reynolds stress
model and the corresponding linearisation of the shear rate F ′′ about F ′′

D. Higher-
order terms in (4.1) can be determined by proceeding in this manner. Eventually, we
find from (3.13a), together with (3.7b) and (1.3b), that the velocity defect locally has
the form

(US − u)/u0D ∼ εF ′
D[1 − 2k(−s)1/2 +O(−s)] +O(ε2). (4.4)

Since FD is subject to (3.21a) for x = xD, each member of the sequence F1/2, F1, . . . ,

exhibits a similar logarithmic singularity (as indicated by (4.3)), which violates the
original boundary conditions (3.21a) for F . This inconsistency shows that the initial-
boundary-value problem posed by (3.20)–(3.23) is singularly perturbed as s → 0−.
Thus, a small so-called adjustment region arises where η=O(−s), so that the balance
of linearised convection with the Reynolds stress gradient expressed by (3.20) is
retained to leading order. We accordingly define

[F/(−s),Σ] = [F̂ , Σ̂](s, η̂; k), η̂ = η/(−s) = O(1), s → 0−, (4.5)

and end up with the appropriate expansions

FD ∼ F̂D(η; k) = [CD + κ−1(1 − ln η)]η, CD = C(xD; k), η → 0, (4.6a)

[F̂ , Σ̂] ∼ [−κ−1η̂ ln(−s) + F̂D(η̂; k), 1]

+ (−s)1/2[4kκ−1η̂ ln(−s) + F̂1(η̂; k), Σ̂1(η̂; k)] + · · · , s → 0−. (4.6b)

The quantities F̂1, Σ̂1 describe the dominant deviations from the behaviour determined
by (3.21a) that governs F̂ , Σ̂ , and they satisfy the correspondingly reduced form
of (3.20),

−η̂F̂ ′
1 + (3/2)F̂1 = Σ̂1 + 2kη̂[κ−1(ln η̂ − 3) − CD]. (4.7a)

The matching with the quantities in the main region where η is O(1) and the conditions
to resolve the mismatch with the wall layer flow give

η̂ → ∞ : F̂1 ∼ â(k)[(2/3)η̂3/2 + · · ·] − 4kF̂D(η̂; k) + · · · , (4.7b)
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η̂ → 0: F̂1 = Σ̂1 = 0, F̂1η̂ = O(1). (4.7c)

The terms proportional to the unknown function â(k) are due to the homogeneous
part of (4.7a). The second contribution to (4.7b) arises from the particular solution
of (4.7a) and provides consistency with (4.6a). The variation of the streamwise
velocity component with the square root of wall distance on top of the logarithmic
region here is similar to that in the immediate vicinity of comparatively ‘mild’, i.e.
marginal, turbulent separation (Scheichl & Kluwick 2007a ,b), even though the local
flow description in these studies closely resembles that of a turbulent boundary layer
in quasi-equilibrium, showing global internal separation, i.e. globally reversed flow
(cf. Schlichting & Gersten 2003).

It is widely believed that on top of the viscous wall layer, the mixing-length model
of Prandtl holds,

−〈u′v′〉 ∼ (κy)2∂yu|∂yu|, (4.8)

where it predicts the logarithmic velocity distribution as a result of the approximately
constant shear stress (cf. Schlichting & Gersten 2003). If (4.8) is chosen as a specific
shear stress closure for the adjustment region, we then arrive at Σ̂ = (κη̂ ∂2

η̂ F̂ )2 and,
by linearisation in view of (4.6),

Σ̂1 = 2κη̂ ∂2
η̂ F̂1. (4.9)

In turn, one recognises that only (4.7c) represents a true boundary condition
for (4.7a), and (4.7b) is satisfied identically. In fact, for any value of â in (4.7b),
the two homogeneous solutions of (4.7a) and (4.9) are represented by the dominant
algebraic behaviour proportional to â, so that the dots in square brackets in (4.7b)
stand for −η̂1/2 +O(η̂−1/2) and terms that vary basically with exp[−η̂/(2κ)]. In
consequence, (4.7b) is supplemented with Σ̂ ∼ âη̂1/2 + 8k +O(η̂−1/2), as η̂ → ∞, which
matches ΣD and Σ1/2 in (4.1), and we obtain a two-term expansion at the base of the
defect region close to separation,

FD ∼ F̂D+(2/3)â(k)η3/2+· · · , ΣD ∼ (κηF ′′
D)2 ∼ 1+â(k)κη1/2+· · · , η → 0. (4.10)

Therefore, â(k) is determined by the overall solution of the boundary layer problem
upstream of x = xD. Moreover, we deduce from (4.9) the near-wall behaviour

F̂1 ∼ b̂η̂−k/(2κ2) η̂2 ln η̂+[b̂/(8κ)+k(9+2κCD)/(4κ2)]η̂2+O(η̂3 ln η̂), η̂ → 0, (4.11)

where b̂= F̂1(0; k) depends linearly on â. The absence of a logarithmic behaviour
in F̂1η̂ for η̂ → 0 a posteriori justifies the introduction of the sublayer. Furthermore,
from (4.6) the velocity defect at the base of the small-defect region is increased by an
amount of O[(−s)1/2 ln(−s)] as

C ∼ CD + (−s)1/2[4kκ−1 ln(−s) + b̂] +O[(−s) ln(−s)], s → 0−. (4.12)

Finally, problem (4.7) supplemented with (4.9) can be solved in closed form for a
given â(k). To this end, we conveniently decompose F̂1(η̂; k) = F̂1h + F̂1p , where

F̂1h(η̂; k) = e−η̌η̌
{
â(k)

√
κ3π/2

[
(4η̌ + 3)I0(η̌) + (4η̌ + 1)I1(η̌)

]
+ (4k/3)

[
(4η̌ + 3)K0(η̌) − (4η̌ + 1)K1(η̌)

]}
, η̌ = η̂/(4κ), (4.13a)

represents a homogeneous solution of (4.7a) expressed in terms of the modified Bessel
functions I0, I1 and K0, K1 of the first and second kinds, respectively, and

F̂1p(η̂; k) = 16k/3 − 4kF̂D(η̂; k) (4.13b)

a particular one.



276 B. Scheichl, A. Kluwick and F. T. Smith

4.2. Numerical results

We now demonstrate that the results of § 4.1 are in fair agreement with numerical
solutions of the boundary layer problem posed by (3.20)–(3.23). Here we consider
the canonical H-K flow around a circular cylinder of radius L̃, equal to 1 in non-
dimensional form. In particular, we focus on the behaviour of the key quantities
US(x; k) and ∆(x; k). The specific form of FD(Y ; k) is part of the solutions,
parametrised by the potential flow parameter k.

Solving this problem represents the only stage in the present analysis where the
Reynolds shear stress has to be modelled explicitly in the entire bulk of the boundary
layer, but without affecting any of the results of the analysis qualitatively. We close
these equations by adopting the traditional formalism based on the mixing length �,
which is defined for 0 � y � δ by setting −〈u′v′〉 = �2∂yu|∂yu|, with �= 0 for y =0,
�> 0 for y > 0, and � being finite for y = δ. This approach is then consistent with
the conditions (3.21b) of smooth patching with the external flow, and the matching
conditions (3.21a) are accounted for when we assume that (4.8) holds in the overlap
of the defect and the viscous wall layer, viz. � ∼ κy. The algebraic closure by Michel,
Quémard & Durant (1969), utilised quite frequently in the literature on turbulent
boundary layers, provides a most simple but sufficiently complex example for such an
asymptotically correct modelling. Specifically, here we employ a slight modification
of the model in the form

Σ =
[
(�/δ) ∂2

ηF
]2
, �/δ = c�I

1/2
K tanh(ηκ/c�), IK = 1/(1 + 5.5 η6), c� = 0.085,

(4.14)

where the inclusion of the intermittency factor IK (η) proposed by Klebanoff (1955)
is expected to cope with the usually observed overestimate of ∆ and Σ near the
boundary layer edge (when compared with results obtained with eddy-viscosity-based
models). We use the value of κ noted in (3.19b).

In order to obtain a highly accurate solution of (3.20)–(3.23), supplemented with
(4.14), we adopted an advanced numerical scheme with a Keller–Box discretisation,
combined with the method of lines with respect to the streamwise direction, and
an automatic adaptive remeshing strategy. Downstream integration is performed by
using a higher-order backward-differentiation-formula technique or alternatively a
Theta method, where the tolerance em of the (locally estimated) absolute error is
given by m1/2, with m denoting the relative machine precision (m≈ 10−16 in our case).
It is initiated by solving (3.23) with the local absolute error bounded by em. This
is accompanied by the automated generation of a non-uniform initial mesh for the
variable η, having typically 550 nodes optimally distributed in the interval η0 � η� 1,
where η0 = 10−5 (lower values of η0 result in severe numerical difficulties due to the
logarithmic singularity in (3.21)). Therefore, the associated methodical error matches
the numerical error expected to be encountered in the calculation of the H-K flow, as
explained in § B.3 (Appendix B): both US(x; k) and dUS/dx are imposed by evaluation
of two cubic B-splines that interpolate US and x between values of these quantities
computed for uniformly spaced values of the auxiliary variable �. Consequently, the
spacing between consecutive x-values is properly condensed near the B-V singularity,
according to (B 6). A typical number of 450 spline knots for 0 � x � xD (−π/2 � �� 0)
renders the additional error due to the spline interpolation sufficiently small. We note
that the boundary layer problem is singular not only for x = xD but also for x = 0, as is
the convective operator in (3.20) due to the disappearance of both US and ∆; see (3.7a)
and (3.22). Accordingly, the interval of downstream integration is given by em � x � x∗,
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xD − x∗ =�x > 0, with �x having the magnitude of em, which proves satisfactorily
accurate. It should be noted that the value x = x∗ of termination of the solution is
largely affected by the internal stopping criteria implemented in the integrator used
(which apparently impedes a higher resolution of the results close to x = xD).

We discuss the results for k= 0.45 as an example, which yields
xD(0.45)

.
= 1.9849

.
= 113◦ 43′ 28′′ and represents a physically reliable choice in view

of the semi-empirical knowledge of bluff-body separation in the regime (1.1) (cf.
Zdravkovich 1997). It is found that C0

.
= 1.3212, ∆0

.
= 0.07166, and (by extrapolation

to x = xD) CD
.
= 8.1760, ∆D

.
= 0.4464.

Figure 4 (a, b) shows the solutions for ∂ηF and Σ: the defect profiles become more
and more pronounced (i.e. they deviate from the logarithmic law in the overlap
as C increases, see (3.21a)) the more the boundary layer approaches separation.
Simultaneously, the position where the Reynolds shear stress assumes its maximum
moves from the overlap region outwards into the defect layer. Such shear stress profiles
are typically observed in any type of separating turbulent boundary layer. Also, the
smooth patching with the external flow as [F ′,Σ] =O[(1 − η)2] is clearly visible, and
we note that Σ − 1 =O(η ln η) as η → 0 (deduced from (3.20) and (3.21a)). Note that
here xD is identified with x∗. In figure 4(c), the values of the key quantities US and ∆,
including their asymptotes (see (3.22), (4.1) and (4.2)) and the coefficient cpS of the
surface pressure, cpS = 1 − U 2

S, are plotted.
Finally, the log–log plots in figure 5 display a comparison of the numerical with

the asymptotic results holding at the onset of separation. This exploits the two-
term expansion (4.1) with [g1, g2] = [2k(−s)1/2, (−s)] and [�1,�2] = [∆g1/(1 − g1),
∆D(1 − g1) −∆] serving as gauge functions and reference quantities (here the upright
Delta symbols indicate ‘difference’) respectively. The behaviours �1 ∼ ∆Dg1 +O(g2

1),

�2 ∼ −∆1g2 +O(g3/2
2 ) are easily verified. Here the asymptote of the first relationship

is reproduced excellently, whereas that of the second suffers a more distinct deviation
from the numerical data due to the relatively larger effect of higher-order terms. The
closure-dependent (negative) value of the coefficient ∆1 is confirmed by evaluation
of (4.2).

4.3. Wall layer

To complete the description of the non-interactive flow, the behaviour of the wall
layer flow approaching D has to be investigated next. One infers from (3.15), (3.17)
and (3.24) that

τ+
i =

U ′
S

US

∫ y+

0

u+2
0 (t) dt, U ′

S =
dUS(x; k)

dx
, (4.15a)

τ+
ip =

d

dx

[
U ′

S
U 2

S

]
u+

0

∫ y+

0

u+
p (t) dt − 1

US

d

dx

[
U ′

S
US

] ∫ y+

0

u+
0 (t) u+

p (t) dt. (4.15b)

Expanding p+, τ+
i , τ+

ip for s → 0− according to (3.7b) gives rise to corresponding
subexpansions in (3.17b).

4.3.1. First breakdown

The wall layer has a thickness O[1/(σRe)], according to (3.14), and is thus expected
to merge with the adjustment region discussed in § 4.1, when δν � − s =O[1/(σ 2Re)]
by (3.14). Hence, the flow in this region of the first breakdown of the original wall
layer structure is again of boundary layer type. It is characterised by perturbations
of the original leading-order stress balance that introduce corresponding variations
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of the wall shear stress. At present, the detailed structure of this collapse is not
completely understood but does not affect the essential characteristics of the second
breakdown further downstream.

4.3.2. Second breakdown

To the order of accuracy considered here, the wall layer analysis which neglects
the interplay with the small-defect flow, resulting in the first breakdown, agrees with
that performed by Scheichl & Kluwick (2008b) in the different context of (3.10) for
T � 1. Thus, it is not repeated here but it suffices to recast the central findings in
terms of the perturbation parameters ε, σ by using the relationships (3.12) and (3.25)
as follows.

The original asymptotic hierarchy reflecting the shear stress balance and the effects
of pressure gradient and inertia on the oncoming wall layer flow breaks down when
the last two terms become of the same order of magnitude. As seen from (3.17b)
and (4.15), this structural change of the near-wall flow occurs when i+τ+

ip , which grows

like (−s)−3/2, is O[(−s)−1/2], i.e. when s̄ = s/δ̄=O(1), with

i+ ∼ δ̄ = ε/(u0Dσ
2Re) � δν, s̄ → 0−, (4.16)

here we refer to (3.15), (3.14) and (1.3b). That is, this second breakdown of the wall
layer takes place in a region of boundary layer type on a streamwise scale O(ε)
smaller than that characterises the first breakdown.

Let the new perturbation parameter

π̄+ = π+k/(δ̄1/2u0D) = k/
(
u

1/2
0D ε

3/2σRe1/2
)

� 1, (4.17)

as suggested by (3.15) and (3.17a), account for the pressure rise as
p+ ∼ π̄+(−s̄)−1/2 + · · · for 0< − s̄ =O(1). Substitution of the appropriate expansion
[u+, τ+

t ] ∼ [u+
0 (y+), 1]+π̄+[ū+, τ̄+](s̄, y+)+O(ε2π̄+) into (3.15) finally yields to second

order the linear boundary layer problem

u+
0

∂ū+

∂s̄
− du+

0

dy+

∫ y+

0

∂ū+

∂s̄
(s̄, t) dt = − 1√

−s̄
+
∂τ̄+

∂y+
, τ̄+ = τ̄+

t +
∂ū+

∂y+
, (4.18a)

y+ = 0: ū+ = τ̄+
t = 0, y+ → ∞ : ū+ ∼ 2κ

√
−s̄

ln y+
,

∂τ̄+
t

∂y+
→ 0, (4.18b)

y+ = O(1), s̄ → −∞ :
√

−s̄ [ū+, τ̄+] → [u+
p (y+), y+]. (4.18c)
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Here, the conditions for y+ large in (4.18b) are enforced by a balance of the pressure
gradient with the inertia terms in (4.18a) on the basis of (3.19b), in order to allow
for matching u in the wall layer and the small-defect region. This behaviour is
apparently incompatible with the balance of the pressure and shear stress gradients
of the oncoming flow, as expressed by (4.18c). In order to resolve this inconsistency,
one then has to consider in addition a limit where both y+ and −s̄ are large and all
terms in (4.18a) are of comparable order of magnitude. In this context, we mention
that u+

p ∼ y+/(2κ) as y+ → ∞, by exploitation of (4.8), and taking into account that

τ+
p = y+. Then, this limit is characterised by y+ = (−s̄)1/2/ ln(−s̄) as −s̄ → ∞ and

its investigation is expected to shed light on the first breakdown and higher-order
contributions to the upstream conditions (4.18c).

The problem (4.18) can be solved for ū+ in the range −∞< s̄ < 0, by means of
downstream integration provided τ̄+

t is modelled properly. However, the behaviour
of [ū+, τ̄+] for s̄ → 0−, discussed extensively by Scheichl & Kluwick (2008b), is crucial
for the subsequent analysis rather than is the full solution. One finds that the flow is
then essentially governed by inertia terms. Specifically, we obtain

s̄ → 0− : [ū+, τ̄+] ∼ [ū+
0 , τ̄

+
0 ](y+) + (−s̄)1/6

[
a−

dū+

dy+
, τ̄+

1 (y+)
]

+O[(−s̄)1/2], (4.19a)

y+ → 0: ū+
0 ∼ −b̄y+ 3/2 + · · · , (4.19b)

a− = 481/3 �( 2
3
)
.
= 4.9212, b̄ = (4/3)�( 1

6
)/�( 2

3
)
.
= 5.4809. (4.19c)

Here ū+
0 (y+), τ̄+

0 (y+) depend on the particular form of u+
p (y+) in the upstream

conditions (4.18c) (apart from the modelling of τ̄+
t ). We also note that ū+

0 = o(1/ ln y+),
as y+ → ∞ due to (4.18b). Specifically, (4.19) follows from the investigation of a
new adjustment region where y+/(−s̄)1/3 =O(1) and the viscous stress term plays a
dominant role: there the flow is laminar-like as u+

0 ∼ y+2/2, fitting to (3.19a), and the
solution of (4.18) is predominantly unaffected by τ̄+

t , according to (4.18b), and hence
of universal self-similar character.

As a further finding of the analysis in that adjustment region, we have

y+ = 0, s̄ → 0− :
∂u+

∂y+
∼ 1 − c̄π̄+

(−s̄)1/6
+ · · · , c̄ =

�
(

1
6

)
�

(
1
3

)
31/3π1/2�

(
2
3

) .
= 4.3078. (4.20)

The behaviour (4.20) indicates that the wall shear stress is reduced significantly and no
longer determined by (3.16) and (3.24) for s̄ =O(π̄+6). Even more importantly, a third
(nonlinear) breakdown of the wall layer flow takes then place in the aforementioned
adjustment region as u+ and π̄+ū+ become of the same order of magnitude. It is shown
below that this scenario has to be considered from the viewpoint of viscous–inviscid
interaction.

5. The interaction process
In the small-defect region of the boundary layer the wall-normal pressure

gradient ∂yp becomes of the order of magnitude of the streamwise one, ∂xp, when −s

decreases to O(δ). The conventional boundary layer approximation then ceases to be
valid in the region of outer viscous–inviscid interaction in the vicinity of D. However,
a thorough investigation of this interaction mechanism has to account also for the
flow at distances y � δ and thus requires knowledge of the near-wall flow and the
associated scaling of the boundary layer. Therefore, its properties, associated with
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Figure 6. Asymptotic substructures of interactive boundary layer near D (not to scale, for
caption see text): outer defect layer (ODL), viscous wall layer (VWL), adjustment region (AR)
of § 4.1 (the broken line indicates its virtual continuation towards D), positions of first (I),
second (II) and third (III) wall layer breakdowns, outer interaction region (OIR), separated
shear layer (SSL), triple-deck (shaded), lower deck (LD), main deck (MD), buffer deck (BD),
upper deck (UD).

the inner interaction process, are discussed next, while the outer interaction is topic
of § 5.2.

The therewith completed local subdivision of the interactive boundary layer flow
is anticipated by the sketch in figure 6. Here the actual point of separation coincides
with D for the sake of clarity.

5.1. Inner interaction: internal triple-deck structure

We begin by outlining the strategy adopted here to work out the triple-deck structure.

5.1.1. Basic considerations

One faces two key points in the analysis of the wall layer flow approaching D:
first, the merging with the adjustment region, as addressed briefly in § 4.3.1 (first
breakdown), and second the terminal structure of the non-interactive wall layer flow
as s̄ → 0, presented at the end of § 4.3.2 (second breakdown).

The first breakdown of the wall layer applies only on condition that δ � Re−1/3 or
δ=O(Re−1/3); if δ � Re−1/3, it is displaced by the occurrence of the outer interaction.
In that case, the adjustment region is continued as a so-called blending or Reynolds
stress sublayer located at the base of the interaction region and having a thickness
measured by δ2, where the momentum equation (2.2a) still reduces to a balance
between linearised convective terms and the turbulent effect −∂y〈u′v′〉 to leading
order. This situation is described by Melnik & Chow (1975) in their study of the
small-defect flow past the trailing edge of an inclined flat plate in a uniform stream.
(Unfortunately, from the present point of view, their assumption of an incident
fully developed turbulent boundary layer renders a self-consistent description of the
wall layer flow passing the trailing edge an intractable task.) More generally, such
a flow region is also found in other types of interacting fully developed turbulent
boundary layers (see e.g. Melnik & Chow 1975; Sykes 1980; Agrawal & Messiter
1984). Therefore, determining the order of magnitude of δ in terms of Re not only
completes the scaling of the boundary layer but also answers the question of the
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existence of that blending layer, and in turn the asymptotic structure of the flow
near D.

This task is intrinsically tied to the second issue, which implies the formation of
a further sublayer where the nonlinear inertia terms in (2.2a) are fully retained (cf.
Scheichl & Kluwick 2008b). As found from (3.15), the rescaled coordinates

X̄ = s̄/π̄+6, Ȳ = y+/π̄+2 (5.1a)

are quantities of O(1). However, strong viscous–inviscid interaction of a boundary-
layer-type flow in a small region encompassing both D and the actual point of
separation, and thus dominated by the full nonlinear convective terms, is the
sole possibility to regularise the B-V singularity within the limits of the Reynolds
equations (2.2). This sublayer must serve as the active or lower deck in the expected
triple-deck structure (cf. Neish & Smith 1992; Rothmayer & Smith 1998; Sychev et al.
1998). There the pressure gradient ∂xp is self-induced such that it both surmounts the
B-V singularity and avoids the formation of a Goldstein singularity. Henceforth, let

δTD = δ̄π̄+6, δLD = δνπ
+2 (5.1b)

define the triple-deck length scale and the thickness of the lower deck, respectively.
Consequently, for X̄=O(1), the core of the wall layer acts as the main deck, where

the flow must also be of boundary layer type, i.e. the ratio of its thickness to the
length of the sublayer in the x-direction is small. From (4.16), (4.17), (1.2), and the wall
layer scaling given by (3.14) and (1.2), this ratio is found to be measured by ε8σ 7Re3

for k=O(1), which yields the estimate Re−1/2 � σ � Re−3/7(ln Re)8/7, in agreement
with (3.24). Then δ � Re−1/3, which, as a first remarkable result here, precludes the
existence of a blending layer.

5.1.2. Lower deck and near-wall flow reversal

Inspection of (3.14), (3.15) and (5.1) indicates that appropriate lower-deck
expansions read

αReψ ∼ π̄+4 Ψ̄ (X̄, Ȳ ) + · · · , p − p0D ∼ δ̄1/2π̄+3u2
0DkP (X̄) + · · · , π̄+ � 1. (5.2)

Furthermore, the velocity gradient ∂y+u+ =O(1) but τ+
t =O(π̄+6), according to (3.18).

Thus, (2.2a) and (2.3) give rise to the lower-deck problem for quasi-laminar separation
in canonical form,

∂Ȳ Ψ̄ ∂ȲX̄Ψ̄ − ∂X̄Ψ̄ ∂2
Ȳ
Ψ̄ = −dP/dX̄ + ∂3

Ȳ
Ψ̄ , (5.3a)

Ȳ = 0: Ψ̄ = ∂Ȳ Ψ̄ = 0, Ȳ → ∞ : Ψ̄ /Z̄2 → 1/2, Z̄ = Ȳ + A(X̄), (5.3b)

X̄ → −∞ : Ψ̄ → Ȳ 2/2, P/(−X̄)1/2 → −2, X̄ → ∞ : P → 0. (5.3c)

Once these equations are closed by the interaction law between the pressure
and displacement functions P (X̄) and −A(X̄) (see § 5.1.4), they constitute the
core problem governing the separation process. (The corresponding non-interactive
problem considered by Scheichl & Kluwick 2008b is obtained formally by setting
P = − 2(−X̄)1/2.)

The behaviour of Ψ̄ for Ȳ → ∞ is again triggered by the predominance of the inertia
terms in (5.3a), in combination with the upstream conditions in (5.3c). A thorough
examination of the non-interactive flow region far upstream where Ȳ /(−X̄)1/3 =O(1)
or, equivalently, y+/(−s̄)1/3 =O(1) recovers the universal laminar-type near-wall part
of the terminal structure of the non-interactive wall layer flow and the associated
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nonlinear breakdown, as outlined in § 4.3.2. We finally obtain

X̄ → −∞ : A ∼ a−(−X̄)1/6 + · · · ,
(
∂2
Ȳ
Ψ̄

)
(X̄, 0) ∼ 1 − c̄(−X̄)−1/6 + · · · , (5.4a)

Z̄ → ∞ : Ψ̄ ∼ Z̄2/2 − b̄Z̄3/2 + P (X̄) +O(Z̄−3/2), (5.4b)

in agreement with (4.19) and (4.20). In the following, we demonstrate that the
form of Ψ̄ far downstream is fully determined by (5.3) when supplemented with an
interaction law, provided gross separation takes place for some X̄= X̄S (where the
rescaled wall shear stress (∂2

Ȳ
Ψ̄ )(X̄, 0) changes sign). The expansion (5.4b) reflects the

predominantly inviscid flow on top of the lower deck.
For X̄� 1, the expansion (5.4b) apparently breaks down in the region of a

mixing layer which encompasses the location of the separating streamline defined
by Ȳ = ȲS(X̄), with Ψ̄ (X̄, ȲS) = 0. This shear layer has an extent in the wall-normal
direction of, say, B(X̄) with B =O(1) or larger, and −B/A� 1 as −A� 1, X̄� 1,
so that Ψ̄ ∼ B(X̄)2F̄ (η̄), η̄= Z̄/B =O(1). Inserting these last expressions into (5.3a)
shows that the pressure gradient dP/dX̄ is negligibly small there, and balancing
inertia and viscous terms yields B ∼ X̄1/3 and the mixing-layer problem as in the
laminar counterpart of the separation problem, F̄ ′2/3 − (2/3)F̄ F̄ ′′ = F̄ ′′′, together with
the two conditions governed by the convective terms and compatible with the ambient
flow, F̄ ∼ η̄2/2 as η̄ → ∞ and F̄ ′(−∞) = 0, and F̄ (η̄S) = 0. Here, η̄= η̄S defines the yet
unknown position of the separating streamline which itself is regarded as part of the
full solution of (5.3): ȲS ∼ −A(X̄) + η̄SB(X̄). Therefore, η̄S is arbitrary for the time
being, as it is determined by a higher-order analysis. However, the solution F̄ is unique
when written in the form F̄ (η̄ − η̄S), with F̄ (−∞) = − ā

.
= − 1.2539 (Neiland 1971;

Stewartson & Williams 1973; Diesperov 1984). Accordingly, for Ȳ =O(A), we expect
backflow that is governed by the inviscid form of (5.3a). Eliminating the pressure gives
∂2
Ȳ
Ψ̄ ∼ −ω̄(Ψ̄ ), where ω̄ denotes the vorticity. By matching Ψ̄ with its representation

holding in the mixing layer, we conclude that ∂2
Ȳ
Ψ̄ =O(B2/A2); hence, ω̄ is treated

as negligibly small. In turn, the slow irrotational reversed flow in the bulk of the
lower deck is found to be described by Ψ̄ ∼ āX̄2/3Ȳ /A(X̄)< 0, P ∼ −ā2X̄4/3/(2A2),
X̄� 1, where A varies basically algebraically with X̄. Finally, a sublayer emerges for
Ȳ =O[X̄1/6(−A)1/2] where all terms in (5.3a) are retained to leading order, governing
viscous self-preserving reversed flow.

Therefore, even without knowing in advance the behaviour of A(X̄) for X̄ → ∞
in detail, we end up with a three-tiered structure of the downstream flow as in
the laminar case, where A=O(X̄3/2), as discussed elaborately by Sychev (1972) and
Sychev et al. (1998), in particular.

5.1.3. Main deck

The expansion (5.4b) allows a match with the flow in the bulk of the wall layer for X̄
of O(1). There the leading-order stress balance stays intact and the corresponding
expansions (taken directly from the non-interactive analysis; see Scheichl & Kluwick
2008b) are

αReψ ∼
∫ y+

0

[u+
0 (t) + π̄+ū+

0 (t)] dt + π̄+2A(X̄)u+
0 (y+) +O(π̄+3), (5.5a)

p − p0D ∼ δ̄1/2π̄+3u2
0DkP (X̄) + · · · , (5.5b)

supplemented by −〈u′v′〉 ∼ αε2u2
0Dτ

+
0 (y+) + · · ·. The expansion (5.5a) in combination

with (5.4a) matches (4.19a). We remark that the logarithmic law of the wall is still
present, according to (3.19b).
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The separating streamline, originating in the lower deck, penetrates into the core
of the wall layer far downstream, where Ȳ ∼ A=O(1/π̄+2). There the forms of the
wall functions u+

0 (y+), τ+
0 (y+) are finally modified substantially.

5.1.4. Upper deck and boundary layer scaling

In an ad hoc analysis assuming non-interactive flow (i.e. for P = − 2(−X̄)1/2 and
A(X̄) known from the solution of (5.3)), the expansions (5.5a, b) provide a match with
the flow in the small-defect region (cf. Scheichl & Kluwick 2008b). In striking contrast,
here the flow structure on top of the wall layer is crucial for the determination of
the interaction law. Since the flow is there predominantly governed by the equations
for inviscid flow, we have to deal specifically with a square region having an extent
measured by O(δTD ), so that here Ŷ = y/δTD =O(1).

The B-V singularity can only be avoided by the flow in the upper deck if the first
X̄-dependent term in the expansion of ψ in that flow region accounts for the leading-
order variations of both the pressure and the displacement, exerted by the lower
deck and transferred unchanged through the main deck. We thus conclude that this
expansion starts with terms ‘frozen’ at x = xD, known from the non-interactive flow
analysis of the small-defect region (rewritten in terms of Ŷ and accordingly expanded),
and is followed by the X̄-dependent contribution arising from the displacement of
the lower deck and accounting for the mechanism of inner interaction. We, therefore,
by inspection of (3.19b), (3.14) and (5.2) write

ψ − δTDu0DŶ + · · · ∼ (αRe)−1π̄+2 ln(σRe/δTD )κ−1ΨTD (X̄, Ŷ ) + · · · , (5.6a)

p − p0D ∼ δ̄1/2π̄+3u2
0DkPTD (X̄, Ŷ ) + · · · . (5.6b)

Herein, ΨTD and PTD are governed by the linearised Euler equations that the equations
of motion (2.2) reduce to in the approximation considered. This requires the ratio of
the coefficients of ΨTD and PTD in (5.6) to be proportional to δTD/(Γ u0D), with Γ

denoting a similarity parameter assumed to be O(1). Since the terms on the left-hand
side of (5.10a) due to the incident flow ‘frozen’ at x = xD are independent of X̄, (2.2)
then reduces to

[∂Ŷ ,−∂X̄]∂X̄ΨTD = −Γ [∂X̄, ∂Ŷ ]PTD . (5.7)

We furthermore obtain with the aid of (1.2), (4.16), (4.17), (5.1b) and (3.24) in the
regime (1.1) the relationships

χ̄ ∼ K̄

(
κRe

ε10 ln χ̄

)1/9

, χ̄ = σRe5/9 � 1, K̄ =

(
k8

9Γ u4
0D

)1/9

= O(1). (5.8)

From (5.8), the desired scaling of the interactive boundary layer is found in terms
of

ε ∼ 9κ/ lnRe, σ = K̄Re−4/9/ε, (5.9a)

δν = O(εRe−5/9), δTD = O(Re−4/9), δLD = O(Re−6/9), (5.9b)

δ̄ = O(ε3Re−1/9). (5.9c)

The relationships (5.9a) describe slightly underdeveloped turbulent flow according to
(3.27), where we end up with χ = K̄/ε and µ= 1/18. Also, we find that It = K̄Re−4/9

and α= K̄(9κ)−2(lnRe)2Re−4/9 by (1.2), which gives T =O[(ln Re)2Re1/18] by (3.25a)
and finally confirms (3.25b). The length scales quoted in (5.9b) follow accordingly from
(3.14) and (5.1b), with the help of (4.17), and basically agree with those suggested by
Neish & Smith (1992). We note, however, that according to the more detailed analysis
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carried out here, the upper-deck scale δTD is smaller than the boundary layer scale δ by
a factor ε. This has two remarkable consequences: first, it means that the triple-deck
scale is slightly smaller than in laminar case, where it is O(Re−3/8) (cf. Rothmayer &
Smith 1998; Sychev et al. 1998), and second the triple-deck structure is ‘squashed’
in the square region with an extent measured by δ, which renders the notions of
inner and outer interaction sensible. We finally note that δ+ defined by (3.26) varies
with ε2Re−1/9, and (5.9c) is a consequence of (4.16). Thus, the second breakdown of
the wall layer flow occurs upstream of the onset of the outer interaction.

As a result of the ‘frozen’ state of the boundary layer expressed by (4.1) and (3.21a),
one finds the vorticity in the upper deck to vary as −εu0Dκ

−1/(δTD Ŷ ) + · · ·, which
is O(1/σ ). Also, the flow in the upper deck is still of small-defect form and hence
matches that in the region of the outer interaction identically. In order to clarify
this situation further in view of the scalings (5.9a) with K̄ given by (5.8), we now
re-establish the upper-deck expansions (5.6) by using (5.1b) and (4.17) as

ψ/u0D − δTD Ŷ + · · · ∼ δ
3/2
TD k[ΨTD (X̄, Ŷ )/Γ +O(ε)] + · · · , (5.10a)

(p − p0D)/u2
0D ∼ δ

1/2
TD k[PTD (X̄, Ŷ ) +O(ε)] + · · · . (5.10b)

Here, the terms O(ε) in square brackets arise from (5.5a) subject to the logarithmic
behaviour (3.19b).

It is noted that matching of the gradients with respect to y requires the introduction
of a so-called buffer deck, located between the main and upper decks, as a consequence
of (5.5a) and (3.19b). Comparison of the latter expansion with (5.10a) shows that
ln Re Ŷ ∂ŶΨTD is of the same order of magnitude as y+du+

0 /dy
+ in this flow region. By

taking notice of (5.11b), one immediately infers that this additional layer is located
at ŷ = Ŷ /ε=O(1). This indicates that the ratio of its thickness to that of the upper
deck is again given by ε. However, this buffer deck behaves fully passively as the
expansions of the flow quantities holding there are essentially found by re-expanding
their counterparts in the adjacent layers when rewritten in terms of ŷ. We therefore
refrain from considering this region in more detail.

Elimination of the pressure PTD in (5.7) yields Laplace’s equation in Cartesian
coordinates,

∇̄2
c ΨTD = 0, ∇̄2

c = δ2
TD∇2

p = ∂2
X̄

+ ∂2
Ŷ
, (5.11a)

in agreement with (3.5), (A 7) and (2.2c), as a possible X̄-independent ‘constant’ of
integration is conveniently absorbed in the ‘frozen’-flow contribution to (5.10a). By
matching (5.10) and (5.5), we find that

ΨTD (X̄, 0) = A(X̄), ∂ŶΨTD (X̄, 0) = −Γ P (X̄), P (X̄) = PTD (X̄, 0), (5.11b)

and deduce that ΨTD ∼ A(X̄) − Γ P (X̄)Ŷ for |X̄| → ∞, Ŷ =O(1). A standard
investigation of the Laplacian subject to the conditions for P , A in (5.3c), (5.4a)
and the form of the downstream decay of P elucidated at the end of § 5.1.2 then
suggests

R̄ =
r

δTD

=

√
X̄2 + Ŷ 2 → ∞ : ΨTD ∼ Γ

k
ψ0,3/2(R̄, θ) +ΛR̄1/2 cos(θ/2)

+
(
2a−/

√
3
)
R̄1/6 cos(θ/6) +O(ln R̄). (5.11c)

Here r , θ , and ψ0,3/2 are defined by (3.5) and (3.6b), respectively. The expansion
(5.11) was earlier established by Brown & Stewartson (1970) and Melnik & Chow
(1975) in their study of laminar non-symmetric flow past a sharp trailing edge, where
the external flow exhibits a B-V-like singularity and thus an upper deck having
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alike properties. They demonstrated that the dominant eigensolution of Laplace’s
equation proportional to the constant Λ, unknown at this stage, indeed varies strictly
algebraically with R̄1/2, in order to match the upstream behaviour of the lower-deck
solution governed by (5.3) and (5.4). The expansion (5.11c) closes the upper-deck
problem (5.11), based on potential flow theory and being fully equivalent to that in
the laminar case (cf. Sychev et al. 1998).

The higher-order contributions in the far-field behaviour (5.11c) allow
corresponding estimates of A(X̄) and P (X̄), more accurate than those given in (5.3c)
and (5.4a) as necessary for later considerations. We obtain

X̄ → −∞ : A ∼ a−(−X̄)1/6 +O(ln(−X̄)), (5.12a)

P ∼ −2(−X̄)1/2 − Λ

2Γ
(−X̄)−1/2 − a−

6
√

3Γ
(−X̄)−5/6 + · · · , (5.12b)

X̄ → ∞ : A ∼ −a+X̄
3/2 +ΛX̄1/2 +

2a−√
3
X̄1/6 +O(ln X̄), a+ =

4Γ

3
, (5.12c)

P ∼ −p+X̄
−5/3 + · · · , p+ = (ā/a+)2/2. (5.12d)

The relationship (5.12d) attests to a structure of the early-stage reversed flow, having
its origin in the lower deck as outlined in § 5.1.2, known from the laminar counterpart.
In the case considered here, the free streamline penetrates into the bulk of the viscous
wall layer for δ � s =O(ε2/3Re−10/27), as commented in § 5.1.3, (5.12c), (5.1a) and
(4.17). Therefore, the wall function u+

0 (y+) and the leading-order stress balance in
the wall layer, reading τ+

0 = 1, remain unaltered even for s =O(δ), the length scale
characteristic of the outer interaction.

Equation (5.7) states that ΓPTD , −∂X̄ΨTD represent a harmonic conjugate pair. An
analogous conclusion holds for the derivatives of the function ΨTD − (Γ/k)ψ0,3/2,

harmonic in the upper half-plane Ŷ � 0 and subject to (5.11b). Then,

P̄ = Γ P + 2ΓH (−X̄)(−X̄)1/2, −Ā′ = −dA/dX̄ − 2ΓH (X̄)X̄1/2, (5.13a)

with H denoting the Heaviside unit step function, form a Hilbert pair,

[P̄ ,−Ā′](X̄) =
1

π

∫ ∞

−∞
− [Ā′, P̄ ](S)

X̄ − S
dS. (5.13b)

As an important aspect, (5.13) guarantees the downstream decay of P originally
required by (5.3c). Finally, these relationships, together with the dominant behaviour
of P far upstream, determine that of A far downstream, see (5.12c), and thus the
structure of the post-separated flow according to the analysis of § 5.1.2. The resulting
interaction law (5.13) closes the lower-deck problem (5.3), then forming a triple-deck
problem, parametrised by Γ , which is formally identical with that found in the theory
of laminar separation, as suggested for the turbulent case by Neish & Smith (1992).
Smith (1977) demonstrated by a numerical investigation that a (unique) solution to
this triple-deck problem only exists for a specific (positive) eigenvalue of Γ ; refined
solutions were obtained by Korolev (1980) and van Dommelen & Shen (1984). This
problem can be cast into standard form (cf. Sychev et al. 1998) by means of the affine
transformation X̄ �→ X̄/Γ̄ 6, Ŷ �→ Ŷ /Γ̄ 2, Ψ̄ �→ Ψ̄ /Γ̄ 4 (i.e. A �→ A/Γ̄ 2), P �→ P/Γ̄ 4, with

2Γ 1/8 = 2Γ̄
.
= 0.415 ± 0.005 (5.14)

as the currently most accurate figure of this eigenvalue given by van Dommelen &
Shen (1984). This situation renders the scalings (5.9) and, notably, the value of Λ



Turbulent break-away separation for large Reynolds number 287

uniquely determined for a given value of the external-flow parameter k. The far-field
eigensolution of Laplace’s equation, proportional to Λ as seen from (5.11c), (5.12b)
and (5.12c), reflects the invariance of the triple-deck solution with respect to an
arbitrary shift of the origin X̄= 0 for |X̄| large. In contrast to the laminar case,
here Λ proves crucial in connection with matching the ‘inner’ and ‘outer’ interacting
flows as shown next.

5.2. Outer interaction and separation criterion

We introduce appropriately stretched variables [R,X, Y, Ψ ] = [r, s, y, ψ/u0D]/δD,
which are assumed to be O(1) in the square region of the outer interaction, forming
the continuation of the main tier of the boundary layer and continued as a separated
shear layer further downstream. Here R= (X2 + Y 2)1/2 and δD denotes the value of
the boundary layer thickness for s = 0, expanded as δD ∼ σ [∆D +O(ε)] according to
(3.13a) and (4.1). It is convenient to write

δTD/δD ∼ (ε/K)[1 +O(ε)], K = k2∆D(k)/(9Γ ) = O(1), (5.15)

which follows after some manipulations from (5.1b), (4.17), (5.8) and (5.9a).
In the asymptotic limit currently under focus, separation is seen to take place at

the origin R= 0, which then forms a singular point in the flow description. Moreover,
in the viscous wall layer, expansions of the type (5.5a) hold,

αReψ ∼
∫ y+

0

u+
0 (t) dt + · · · + π̄+2u+

0 (y+)

{
a−(−KX/ε)1/6 + · · · , X < 0,

−a+(KX/ε)3/2 + · · · , X > 0,
(5.16a)

p − p0D ∼ −δ
1/2
D u2

0Dk

{
2(−X)1/2 + · · · , X < 0,

p+(ε/K)13/6X−5/3 + · · · , X > 0,
(5.16b)

in agreement with (5.12). In turn, matching the streamfunction with its representations
in the wall layer for X �= 0, the upper deck for R → 0 in the form (5.11c), the external
flow as given by (3.1) and (3.6), and, eventually, the oncoming boundary layer as
expressed by (3.13), (4.1) and (3.7b), and taking note of the dominance of inertia
terms in (2.2) in the region of the outer interaction suggests the expansions

Ψ ∼ Y + δ
1/2
D ΨOP (X, Y ; k) +O(δD) − ε[FD(Y ; k)

−δ
1/2
D ΨOI (X, Y ; k) +O(δD)] +O(ε2), (5.17)

δ/δD ∼ 1 + δ
1/2
D [D1/2(X; k) +O(ε)] +O(δD). (5.18)

That is, effects of surface curvature are insignificant for the outer interaction process,
and the small-defect structure is preserved as FD(Y ; k) represents the locally ‘frozen’
state of the oncoming boundary layer: convective terms in (2.2) are linearised about
the unperturbed velocity expressed by [u, v] = [u0D, 0], and the leading-order boundary
layer velocity profile given by F ′

D is transferred unchanged into the separated shear
layer, forming for large values of X. We remark that the Reynolds shear and normal
stress gradients first enter the equations that govern contributions of O(εδD) in (5.18),
in the form of inhomogeneities.

The equations governing ΨOP and ΨOI are derived from (2.2) by elimination of the
pressure in straightforward manner as in § 5.1.4. One then finds in leading order the
potential flow problem

∇2
c ΨOP = 0, ∇2

c = δ2
D∇2

p = ∂2
X + ∂2

Y , (5.19a)

X < 0: ΨOP (X, 0; k) = 0, X > 0: ∂YΨOP (X, 0; k) = 0, (5.19b)
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R → 0: |ΨOP |/R3/2 < ∞, R → ∞ : ΨOP ∼ ψ0,3/2(R, θ; k), (5.19c)

where we refer to (3.5), (A 7) and (3.6b). The condition for R → 0 in (5.19c)
asserts that a singularity at the separation point R= 0 stronger than the original
B-V singularity is unacceptable in a self-consistent interactive-flow description. By
exploiting the extremal properties of solutions of Laplace’s equation or applying the
Mellin transform, one can show that

ΨOP ≡ ψ0,3/2(R, θ; k) =
(
2
√

2k/3
)
Ψ̆ , Ψ̆ (X, Y ) = (R − 2X)

√
R +X, (5.20)

is the only conceivable solution of (5.19). This not only confirms (5.16) and agrees
with (5.11c) by matching but also a posteriori justifies the strategy followed in § 5.1,
namely, that the B-V singularity is effectively avoided by means of the inner interaction
mechanism.

As a crucial result, the contribution O(εδ1/2
D ) to the expansion (5.18) describes an

induced vortex flow that accounts for the interaction of the boundary layer flow
with the irrotational leading-order disturbance O(δ1/2

D ). Here, the vorticity transport
equation reduces to Poisson’s equation,

∇2
c ΨOI = −F ′′′

D (Y ; k)ΨOP (X, Y ; k). (5.21a)

Now, primes denote derivatives with respect to Y . The right-hand side of (5.21a)
represents the negative X-dependent leading-order contribution of the vorticity
generated in the boundary layer upstream and convected with the irrotational flow.
Here a further X-independent adding term that results from integration in the
derivation of (5.21a) has been set to zero as it would imply perturbations O(σ 1/2) in
(3.13a) and, thus, unacceptably alter the original structure of the incident (attached)
boundary layer flow. Also, we have

X < 0: ΨOI (X, 0; k) = 0, X > 0, Y → 0: ∂YΨOI + F ′′
DΨOP → 0, (5.21b)

X → −∞ : ΨOI ∼ 2k
√

−XGD(Y ; k), GD = 2FD − YF ′
D, (5.21c)

Y = 1: ∂YΨOI = 0. (5.21d)

The conditions (5.21b) arise from matching the streamfunction and the pressure in
the outer and the wall layer, according to (5.16). The requirements of matching
with the oncoming boundary layer (see (4.1), (4.2) and (4.4)) lead to (5.21c), as
y ∼ η[1−2k(−s)1/2] as s → 0 , where the near-wall form of FD(Y ; k) is given by (4.6a)
and (4.10). Here, we add that ΨOI is obviously subject to subexponential growth for
X → ∞. Furthermore, (5.21d) is due to patching the solution with the disturbance
O(εδ) in the ambient external flow, as given by (3.1) for X=O(1), y =O(1). Finally,
an investigation of (5.21a) subject to (5.21b) gives

π > θ > 0, R → 0: ΨOI ∼ E(k)R1/2 cos(θ/2) + · · · , E = 9Λ/[k∆D(k)], (5.22)

where the specific form of the coefficient E is required by matching the outer and
inner interacting flows by using (5.10a), (5.11c) and (5.17), with the aid of (5.15).

Apart from the matching conditions (5.21b) for X> 0 and (5.22), the description
of the outer interaction closely resembles that in a fully developed turbulent trailing-
edge flow as put forward by Melnik & Chow (1975, pp. 224–225, with (5.21a) having
the wrong sign on its right-hand side). However, the presence of a wall further
downstream, as in the problem considered here, leads to a change in detail and makes
the treatment more involved. This becomes evident by evaluation of (5.21a) subject
to (5.21b) and supplemented with (5.20), which reveals a contribution adding to the
logarithmic portion of the initial velocity profile F ′

D(Y ; k) upstream of separation,
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Figure 7. Boundary layer thickness near separation in normalised form (for labelling see text).

superseded by a stronger singular behaviour immediately downstream as for

Y → 0 : ΨOI ∼ − 2k

3κ

{
3(−X)1/2Y lnY +O(Y ), X < 0,

2X3/2 lnY +O(1), X > 0.
(5.23)

The analysis of the interaction process described so far is unaffected by any
turbulence closure. This enables us to also express the local variation of the boundary
layer edge represented by D1/2 in (5.18) in closed form. It is found by patching the
vorticity expressed as −∇2ψ ∼ −(u0D/δD)∇2

c Ψ for y = δ. There it must vanish up to
and including the orders quoted explicitly in (5.17), which yields D1/2 = − ΨOP (X, 1; k)
by (5.21a) (since F ′′′

D (1; k)> 0). This result matches the variation of δ in the oncoming
flow as expressed by (3.13a), (4.1) and (4.2), as D1/2 ∼ −2k(−X)1/2 + · · ·, X→ − ∞,
and gives D1/2 ∼ (4k/3)X3/2 + · · ·, X → ∞. The latter expression confirms that the
region of outer interaction recovers as a separated shear layer which coincides with
the region of breakdown along S for s → 0+, addressed briefly in connection with
(3.9b). We remark that this local variation of the boundary layer thickness is already
indicated in figure 6. Its canonical representation D̆(X) = − Ψ̆ (X, 1) inferred from
(5.20) is displayed in figure 7, together with the asymptotes for |X| being large as
noted above.

A particular solution of the elliptic problem posed by (5.21) can be constructed
through exploitation of standard methods. Hence, we differentiate (5.21a) triply with
respect to X, in order to cope with the growth of the inhomogeneity for |X| → ∞
resulting from (5.20), which gives in the limit

ε =
Y

X
→ 0 : ΨOP ∼ 2k|X|1/2

{
Y [1 + ε2/24 +O(ε4)], X → −∞,

(2X/3)[−1 + 3ε2/8 +O(ε4)], X → ∞.
(5.24)

By writing ΨOI (X, Y ; k) =ΨOIh + ΨOIp , we then find

ΨOIp(X, Y ; k) =

∫ X

−∞

[∫ S1

−∞

∫ S2

−∞
Φ(S3, Y ; k) dS3 dS2 + k

H (−S1)√
−S1

GD(Y ; k)

]
dS1

+ 2kH (−X)
√

−XGD(Y ; k), (5.25a)

Φ(X, Y ; k) = − 1

2π

∫ 1

−1

− sgn(Z)F ′′′
D (|Z|; k)

∫ ∞

−∞
Π(S, |Z|; k) lnR� dS dZ, (5.25b)
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Π(X, Y; k) = ∂3
XΨOP = −3ΨOP/(8R

3), R� =
√

(X − S)2 + (Y − Z)2, (5.25c)

for a particular solution of (5.21a), which satisfies (5.21b) and (5.21c) rather than
(5.21d) and (5.22). The determination of a complementary non-trivial homogeneous
solution ΨOIh(X, Y ; k) which supplements (5.25) to yield a (unique) composite solution
of (5.21) is critical for an advanced flow description, and efforts to solve (5.21) are
under way.

Eventually, the procedure of fixing the value of the external-flow parameter k, i.e.
the position x = xD(k) of inviscid flow detachment, on the basis of a rationally derived
separation criterion for turbulent flow is delineated by the following four steps:

(a) extract the (non-vanishing) value of the coefficient Λ in the second-order term
of (5.12c) from the unique eigensolution of the triple-deck problem;

(b) seek a formal solution of the well-posed problem (5.21) in dependence of k;
(c) compute the quantity E in (5.22), either (semi-)analytically or numerically;
(d ) evaluate the resulting solvability condition for (5.21),

9Λ = k Fx=xD
x=0 {US(x; k)}, F = ∆DE, (5.26)

representing the desired separation criterion.
It is insinuated in (5.26) that F represents a functional of the surface speed US
that drives the boundary layer from stagnation towards separation. Here we point
to the dependences of the flow variables ΨOP , ΨOI on k and the ‘frozen’ state of the
boundary layer entering the right-hand side of (5.21a). Thus, (5.26) accounts for the
global external flow as well as the upstream history of the boundary layer, as one
would expect from a separation criterion that deals with the case k=O(1), though
deduced from a local asymptotic analysis. It is intriguing how this is achieved by
matching due to the universal structure of the triple-deck solution.

The separation criterion (5.26) completes the description of the entire process of
turbulent separation to the leading approximation.

6. Conclusions and further outlook
The comprehensive description of the time-mean bluff-body separation presented

here appears to be self-consistent and physically relevant when the global Reynolds
number, Re, is so large that the potential-flow parameter k is independent of Re. In this
situation, separation is provoked at a distance from the leading edge of the body that
is comparable to its typical dimension L̃. It is significant that the asymptotic picture of
the initially attached boundary layer is founded on a minimum of assumptions merely
regarding the scaling of the turbulent motion. These consequently determine the flow
structure in a region centred around the point of separation with an extent comparable
to the boundary layer thickness δ. It is interesting that the scaling properties of the
boundary layer cannot be determined entirely unless the process of viscous–inviscid
interaction that governs separation is taken into account. We further emphasize that
the major results of the analysis are qualitatively unaffected by a specific turbulent
shear stress closure provided that it satisfies restrictions which reflect the asymptotic
properties of the overlap of the predominantly turbulent region of the boundary layer
and the viscous wall layer. Effectively, classical mixing-length-based arguments suffice
to disclose all the essential features of the separating flow. Altogether, the theory is
essentially based upon the following premises.

(i) The body has a perfectly impermeable rigid smooth surface.
(ii) The flow is nominally two-dimensional.
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(iii) The flow on the body scale in the high-Reynolds-number limit is described
by the Euler equations.

(iv) Free-stream turbulence is of no importance.
(v) All components of the Reynolds stress tensor are of comparable magnitude.
(vi) Each subregion of the turbulent boundary layer is characterised by a single

velocity scale.
(vii) The wall layer is in equilibrium (initially firmly attached turbulent boundary

layer).
We find that a rational description of separation starting with the classical picture of

an initially attached fully developed two-tiered turbulent boundary layer is affected by
two key aspects, depending on whether the adverse pressure gradient near separation
exerted by the external flow is bounded or not. In the first case, flow reversal
in the predominantly inviscid small-defect region that reaches close to the wall
requires a pressure rise O(1) acting on a relatively short streamwise distance, which
contradicts the original assumption; in the second case, the transcendentally thin
viscous sublayer prevents the formation of viscous–inviscid boundary layer interaction
that is sufficiently strong to ensure a smooth continuation of the incident boundary
layer into a separated shear layer (cf. Sykes 1980). In order to overcome this dilemma,
two disparate routes to separation can be established: in the first situation, the
assumption of a large velocity defect leads to a multi-layered flow structure that
distinctly differs from that outlined here and in turn to the theory of turbulent
marginal separation (Scheichl & Kluwick 2007a ,b). The massively separating flow
considered here pertains to the second case. Then, the structure of the stagnant-flow
near the leading edge of a bluff body provides the remedy as the turbulence-intensity
level in the boundary layer further downstream seems inevitably associated with so-
called slightly underdeveloped turbulence: the von Kármán number varies essentially
algebraically with δ, but the velocity defect is O(1/ ln Re), as in the classical theory.
In contrast to what is known from a marginally separating turbulent boundary
layer, here the logarithmic law of the wall is not eradicated as the vast bulk of the
small-defect layer is transferred unchanged into a separated shear layer – a probably
surprising observation.

As an intriguing interpretation of the present flow description, the boundary layer
undergoing separation is always influenced by its laminar origins near the leading
edge, irrespective of how large Re is. Above all, this conclusion is interestingly
supported by experimental findings (Schewe 2001), although yet not conclusively.
The rapid evolution towards a free fully developed turbulent shear layer of finite
width is likely to take place at a rather short distance downstream of separation (cf.
Sychev 2010). The related mechanism is still to be ascertained, and much more effort
both experimentally and in DNS is required in order to fully corroborate this flow
picture.

It is noteworthy that the scenario of an underdeveloped turbulent boundary layer
allows a self-consistent time-averaged picture of a quite rapid laminar–turbulent
transition, and thus a complete description of the boundary layer from transition
towards separation. Therefore, it is promising to complete the theory of the turbulent
flow past a sharp trailing edge at angle of attack (cf. Melnik & Chow 1975), associated
with a Brillouin–Villat-type singularity in the potential flow. Beyond that, it might be
useful for future self-consistent descriptions of, for example, turbulent boundary layer
flows over wall-mounted obstacles (cf. Sykes 1980) or turbulent boundary layer/shock
wave interaction (cf. Agrawal & Messiter 1984 and references therein) that include
separation.
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Apart from the description of the separated shear layer, open points mainly relate to
the precise position x = xD of inviscid flow detachment or, equivalently, the value of k.
In lieu of attempting to settle this question first, here we have drawn attention to the
local structure of the separating flow by having in mind a particular value of k. The
latter is predicted for a prescribed body geometry by the separation criterion derived
rationally from the interplay of the inner with the outer interaction mechanism, which
is encouraging. The exploration of this criterion, based on a thorough investigation
of the underlying vortex-flow problem, will prove crucial for further progress. The
forecast of xD is linked to the correct choice of the inviscid-flow model and in
turn to solving the long-standing problem of the asymptotic structure of the large-
scale turbulent separated flow. This consists of the free shear layer along the free
streamline S having a thickness that grows linearly with the arclength along S, the
adjacent near wake that exhibits (two) reversed-flow eddies, and the wake further
downstream that results from the merging of the two former flow regions. In view of
present knowledge, the chances of establishing a complete description of self-induced
massive separation are viewed as high. When it comes to the investigation of viscous
effects on the separated inviscid flow, we might expect an interesting comparison
between the asymptotic eddy models of laminar steady flow (finally resolved in all
essentials by Chernyshenko 1988, cf. Smith 1986; Sychev et al. 1998) and the turbulent
case, partly due to the small-defect structure of the separating turbulent boundary
layer (cf. Sychev 2010). This, among other things, is a topic of current and future
exciting research.

Fruitful discussions with Professor Sergei I. Chernyshenko are gratefully
acknowledged. The authors also thank the referees for helpful comments.

Appendix A. The Brillouin–Villat singularity
We adopt the well-known vorticity transport theorem, deduced from (2.2), and cast

the problem governing the inviscid flow into the form

∇2ψ0 = −ω0(ψ0; k), y � yS(s; k) : ω0 = 0, (A 1a)

ψ0(x, 0; k) = ψ0(x, yS(s; k); k) = 0. (A 1b)

The kinematic boundary condition (A 1b) reflects (2.3) for s � 0. The quantity ω0 may
exhibit a discontinuity at y = yS for s > 0. We have

US =

√
u2

0 + v2
0 for y = yS, (A 2)

so that US = u0 for s � 0, according to (A 2) and (A 1b). This gives (3.3), which is in
line with (A 1a) and (2.2c). Then, the requirement for smooth flow detachment reads
as

s → 0− : US → u0D(k) > 0, s → 0+ : US+ → u0D(k), US− → 0. (A 3)

Moreover, our concern is the separation on the upper part of the cylinder, so that
ψ0 � 0 for y � yS, whereas the stagnant-flow or backflow region under consideration
is characterised by ψ0 =ω0 = 0 or both ψ � 0 and ω0 < 0 for 0 � y <yS, respectively.

The pressure p0 is required to be continuous on S since the asymptotically
slender separated viscous shear layer along S emerging in the case (1.1) exhibits
a correspondingly weak variation of p in the direction transverse to S (which mostly
compensates for centripetal forces proportional to U 2

S times the curvature of S).
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Employing Bernoulli’s theorem together with (2.4) then states that

p0 +
u2

0 + v2
0

2
= B0(ψ0; k) =

⎧⎨
⎩

1/2, ψ0 � 0,

p0D(k) −
∫ ψ0

0

ω0(t; k) dt, ψ0 < 0,
(A 4)

which yields (3.4) along with the relationship

pS + U 2
S−/2 = (1 − u2

0D)/2, ψ0 < 0, (A 5)

calculated from (A 3). Finally, (A 1) is supplemented with the resulting dynamic jump
condition

U 2
S+ − U 2

S− = u2
0D, (A 6)

according to the jump of B0 across S, given by 1/2 − p0D.
We now derive the final expansions (3.6)–(3.9) in a stepwise fashion by

invoking (A 1) and (A 6).
(a) We advantageously introduce polar coordinates, see (3.5), and investigate (A 1)

for y � yS near D. To this end, we express ∇2 in terms of r , θ by inspection of (2.2c)
and (3.5). Since ψ0 ∼ u0Dy + · · ·, y = r sin θ , as r → 0, according to (3.3) and (A 3), in
this limit one can write

∇2ψ0 ∼
[
∇2
p + �D ∂y + · · ·

]
[1 +O(r)]ψ0, (A 7a)

∇2
p = r−1∂r (r∂r ) + r−2∂2

θ , ∂y = sin θ ∂r + r−1 cos θ ∂θ , (A 7b)

with ∇2
p being the Laplacian in the case of a planar surface (� ≡ 0). In the present

context, ψ0 = 0 for θ = π. The analysis of the eigensolutions of Laplace’s equation
∇2ψ0 = 0 then yields the asymptotic expansion

ψ0/u0D ∼ r sin θ + ψ0λ(r, θ; k) + · · · + ψ02(r, θ; k) + · · · , π � θ > 0, r → 0, (A 8a)

ψ0λ = aλ(k) r
λ sin[λ(π − θ)], ψ02 = r2{a2(k) sin(2θ) − (�D/4)[1 − cos(2θ)]}, (A 8b)

matching (3.3) as θ → π, with ∇2
p[ψ0λ, ψ02] = [0,−�D] and both the constant λ> 1

and the dependences of the parameters aλ �= 0 and a2 on k unknown at this stage.
Specifically, we seek the smallest value of λ by utilising the kinematic and dynamic
boundary conditions (A 1b) and (A 6), respectively, that hold on S. (We notice
the passive nature of the inherent breakdown of the expansion (A 8) in the limit
y − yS → 0+. Hence, first we can ignore the region of non-uniformity, and the
expansion of ψ0 is restated solely by rearranging the terms that result from expanding
each term in (A 8a) in this limit.)

(b) Inserting (A 1b) into (A 8a) provides the one-term estimate
θ ∼ cλr

λ−1 + · · · and, by using (3.5), θ ∼ cλs
λ−1 + · · · for yS ∼ cλs

λ + · · ·,
cλ = − aλ sin(λπ)> 0, as s → 0+. Consequently, we infer from (A 2) and (A 7)
that U 2

S+ ∼ [(∂rψ0)
2 + r−2(∂θψ0)

2][1 +O(�Dr
λ)] for y = yS in this limit. After some

algebra, we derive from the aforementioned one-term approximation and the
three-term expansion (A 8) the expression

(US+/u0D)2 ∼ 1 − 2λaλs
λ−1 cos(λπ) + [λ + 2(λ − 1) sin(λπ)2]λa2

λs
2λ−2

+ 4a2s +O(sλ, s2), s → 0+. (A 9)

(c) Next, we envisage the flow in the slipstream zone close to D, near which
it is of a cusp-type shape, according to the estimate for yS given in item (ii). In
turn, for ω0 < 0, we have |v0| � |u0| =O(US−) in that flow region. One then finds
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that ψ0 assumes the self-similar form ψ0/(ySUS−) ∼ f (ξ ) + · · ·, ξ = y/yS, as s → 0+.
Substituting this expression into (A 1) results in the least-degenerate form of this
problem,

US−f
′′ − 2λc2

λs
2λ−1U ′

S−(ξf ′ − f ) + c2
λs

2λU ′′
S−f ∼ −cλs

λω0, s → 0+, (A 10a)

f (0) = f (1) = 0, f ′(1) = 1, (A 10b)

where primes on US− denote derivatives with respect to s. The relationships (A 10)
give rise to a boundary-value problem fixing both f (ξ ) and US− near D. The first
term in (A 10a) contains the highest derivative with respect to ξ and must, therefore,
be retained to leading order. Since US− → 0+, according to (A 6), the second and
thus the third term in (A 10a) are negligibly small. Hence, (A 10a) is seen to reduce
to a balance of the first term and that on the right-hand side, where we impose the
apparent restriction that ω0 is bounded as ψ0 → 0− and define ω0D =ω0(0−; k) � 0.
By using (A 10b), we arrive at the reverse-flow representation f (ξ ) = (ξ 2 − ξ )/2, as
the possibly slowest decay of US− reads as

US− ∼ −ω0D cλs
λ + · · · , s → 0+. (A 11)

(d) We now evaluate (A 6) by inserting (A 9) and (A 11), in order to fix λ, aλ,
a2. One then finds that US+ = o(sλ−1). From (A 9), we infer that λ is a member
of the sequence of eigenvalues λ=3/2, 5/2, 7/2, . . ., as ψ0λ is seen to represent a
homogeneous eigenfunction of the Laplacian with ∂θψ02 = 0 for θ =0 and ψ02 = 0
for θ = π and coefficients aλ that cannot be determined by the local analysis. Next,
we conclude that integer powers of s have to be eliminated in (A 9), which demands
a2 = − 15a2

λ/16 for λ= 3/2 and a2 = 0 for λ> 3/2. Also, higher-order terms indicated
by dots are seen to be O(rλ+1) in (A 8a) and O(rλ), O(sλ) and O(sλ+1), respectively,
in the three relationships expressing the shape of S as s → 0+ in item (ii) above.
However, only the terms stated explicitly will turn out to significantly affect the
further description of separation and are thus under focus here.

(e) Let λ take on its minimum value 3/2, corresponding to the most general
application. We then define a3/2 = aλ = cλ, ψ0,3/2 =ψ0λ, where it proves convenient
to introduce the constant k by setting a3/2 = 4k/3. Eventually, we restate (A 8) in
the form (3.6) and obtain the expressions (3.7b) and (3.9a) from (A 6) and (A 11),
respectively, where (3.5) and (A 7) are employed. We note that (3.6)–(3.9) capture the
general case λ� 3/2 as λ= 3/2 for k > 0 and the case λ=5/2 in the degenerate limit
k= 0.

Appendix B. Computation of potential flow
The classical way to solve the problem of potential flow around a finite two-

dimensional body that exhibits (two) detaching streamlines confining a dead-water
cavity, as formulated by (A 1) with ω0 ≡ 0, is provided by the Levi–Cività method
(with certain additions, cf. Gurevich 1979).

B.1. Preliminaries

The associated conformal transformation maps the region of flow in the physical
plane (see figure 1), with complex variable z, onto a closed contour lying in the plane
of a complex variable ζ and its interior (see figure 8). This contour consists of the
upper half-unit circle H′, the points ζ = ∓ 1, and the portion R′ of the real axis
between these points, which are, respectively, the images of the wetted fraction of the
body surface (not adjoining the fluid at rest), the points of flow detachments and the
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Im ζ

0− 1 1Reζ

1

D′

H′

L′

R′

S′

Figure 8. Flow situation in the complex ζ -plane (for labelling see § B.1).

detached parts of the free streamlines. Here, the bijective function ζ (z) is regarded
as analytic in the whole z-plane except for z= ∞, having the image ζ = 0, where it
has a pole. For a symmetric problem as considered here, let D′ at z= − 1 and L′ at
ζ = i be the images of the detachment and stagnation points D and L, respectively.
Accordingly, the upper detaching streamline S is mapped onto the curve S′, which
consists of the right halves of H′ and R′.

Also, we introduce the complex potential w0(z; k) =ϕ0 + iψ0 and the function
Ω(ζ ; k) = i ln[(dw0/dz)/u0D] =ϑ0 + i ln(V/u0D). We stress that w0 and Ω are analytic
inside and on the contour comprising H′ and R′ apart from, respectively, ζ =0
(where w0 has a pole) and ζ = i as

Ω ∼ i ln(ζ − i) +O(1), ζ − i → 0 (B 1)

(since dw0/dz vanishes in a regular manner at the point L). Thus, V and ϑ0 denote
the (positive) flow speed and the flow angle, respectively. On H′, we have ψ0 = 0 and
ϑ0 =φ, with φ satisfying (2.1). The image of S is then parametrised in terms of a real
parameter � that increases in the flow direction (as indicated by the arrows on S′

and R′ in figure 8) by setting, respectively,

ζ = exp[i(π + �)], −π/2 � � � 0: ψ0 = 0, V = US, ϑ0 = φ, (B 2a)

ζ = −1 + �, 0 < � < 1: ψ0 = 0, V = US+ ≡ u0D (> 0). (B 2b)

The last identity follows by equating pS and US− (A 5) with the constant cavity
pressure (1 − u2

0D)/2p0 and 0, respectively, according to (A 3), and upon substitution
in (A 6). Finally, the corresponding relationships

s � 0, y = 0: dϕ0/dl = US(x; k), l = s, x = xD + s, (B 3a)

s > 0, y = yS(s; k) : dϕ0/dl = u0D (B 3b)

between the real flow potential ϕ0 and V holding on S are imposed, so that l

denotes the arclength along S measured from D. Also, ϕ0 > 0 and dϕ0/d�> 0 for
−π/2 � �< 1.

B.2. Flow along S close to detachment

The results (3.7b) and (3.9b) evince the behaviour of the potential flow near the
B-V singularity with sufficient accuracy. We first demonstrate in a nutshell how these
are recovered readily by exploiting the real parts of the Taylor series about D′ derived
from (B 2),

w0 ∼ ϕD +W2[(ζ + 1)2 + (ζ + 1)3] +O[(ζ + 1)4], (B 4a)

Ω ∼ φD +Ω1(ζ + 1) +Ω2(ζ + 1)2 +O[(ζ + 1)3], (B 4b)
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with some real coefficients ϕD (> 0), W2 (> 0), φD, Ω1, Ω2. By substituting (B 2a)
into (B 4), the image of the flow on S near D for s → 0− is then represented as

ϕ0 ∼ ϕD − W2�
2 +O(�4), (B 5a)

US/u0D ∼ exp[Ω1� +O(�3)] ∼ 1 +Ω1(� + �2/2) +O(�3), (B 5b)

φ ∼ φD + (Ω1/2 − Ω2)�
2 +O(�4), (B 5c)

as � → 0−. By rewriting (B 3a) as (dϕ0/d�)(d�/ds) =US, we now extract from (B 5a)
the relationship d(�2)/ds ∼ −(u0D/W2)[1 +Ω1� +O(�2)], as s → 0−. One then easily
obtains

Ω1� ∼ 2k(−s)1/2[1 + 2k(−s)1/2/3 +O(−s)], s → 0−, (B 6)

k = Ω1ς
1/2/2, ς = u0D/W2 (> 0). (B 7)

Here we have reintroduced the potential flow parameter k. Inserting (B 6) into (B 5b)
finally yields the three-term expansion (3.7b). Furthermore, we infer from (B 5c) that

ς(Ω1/2 − Ω2) = �D. (B 8)

For the flow along the detached portion of S governed by (B 2b) and (B 3b), the
relations (B 4) then give � ∼ (ςl)1/2 − (ςl)/2 +O(l3/2) and, in turn,

ϑ0 ∼ φD + 2kl1/2 − �Dl +O(l3/2), l → 0+. (B 9)

This last result accounts for the curvature −dϑ0/dl of S (with the sign conforming to
the definition (2.1) of �) immediately downstream of D, in agreement with (3.9b) since
l ∼ s + · · ·, dϑ0/dl ∼ d2yS/ds

2 + · · ·, as s → 0+. In this context, the B-V singularity
is commonly described by (3.8) and (B 9), see e.g. Sychev et al. (1998, p. 10).

We have shown that the representation of the flow in the ζ -plane, together with the
choice of the auxiliary parameter � as the independent variable, allows a convenient
regularisation of the B-V singularity. Nonetheless, calculating the local form (3.6)
of ψ0 by means of the method described in § B.2 is definitely less gratifying when
compared to the procedure outlined in § 3.3. On the other hand, the Levi–Cività
method provides a powerful tool for constructing a numerical solution of the overall
potential flow problem (A 1).

B.3. Global flow: numerical treatment

Here, we restrict the application of the Levi–Cività method to the case of an open
cavity, i.e. by anticipating u0D =1 in (B 2b) by (A 4) and (2.4). The main focus lies on
the determination of the surface flow speed US(x; k) for a prescribed (non-negative)
value of k.

We consider a specific conformal mapping ζ (z) that achieves

w0 = [$ (k)(ζ + 1/ζ )/2]2, (B 10)

with the yet unknown function $ (k) being real. The relation (B 10) has all the
desired properties of the potential w0 discussed in § B.1, also see (B 2). In addition,
it reflects the symmetry of the problem as φ0 and ψ0 are respectively symmetric and
antisymmetric with respect to both the imaginary and the real axes of the ζ -plane.
Corresponding requirements then have to be met by Ω =ϑ0 + i lnV : in the upper
half-plane, ϑ0 (V ) are antisymmetric (symmetric) with respect to the imaginary axis,
and the converse conditions hold in the lower half-plane; note (B 2b) with V = 1 and
ϑ0 = 0 for z= ∞ or ζ =0). Moreover, (B 1) gives evidence that

Ξ (ζ ; k) = Ω(ζ ; k) − π − i ln[(ζ − i)/(ζ + i)] (B 11)
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is analytic inside and on the boundary of the unit circle and exhibits symmetry
properties identical with those of Ω . That is, Ξ can be expanded in the Taylor series
Ξ ∼

∑∞
n=1 Ξ2n−1ζ

2n−1, |ζ | � 1, with ImΞn = 0.
The aforementioned symmetry properties are revealed by expansions of the

form φ ∼ π/2 +O(υ), US/US0(k) ∼ υ + U1(k)υ
3 +O(υ5), as υ = π/2 + � → 0+,

with US0(k) being a positive quantity. They confirm the stagnating-flow behaviour (see
figures 1a and 8). By noticing (B 2a), we then end up with the Fourier representation
of Ξ [ei(π+�); k],

� = −π

2
: φ =

π

2
, Υ = ln(2US0) = −

∑∞

n=1
(−1)nΞ2n−1, (B 12a)

0 � � > −π

2
: φ − π

2
+ i ln

US(1 − sin �)

cos �
= −

∑∞

n=1
Ξ2n−1 exp[i(2n − 1)�]. (B 12b)

In turn, the antisymmetry of US with respect to υ =0 is confirmed by the limiting
form ImΞ [ei(π/2+υ); k] ∼ Υ + υ2(U1 − 1/12) +O(υ4), as υ → 0+. Also, the evaluation
of (B 2a), (B 11) and (B 12b) for �= 0 gives

φD = Ω0 = π/2 −
∑∞

n=1
Ξ2n−1. (B 13)

A collocation method can be set up for a prescribed inclination angle (flow
angle) φ(x), 0 � x � xD, of the body surface to approximately compute $ and Ξn, with
n= 1, 2, . . . , N for some index N . First, we notice that (B 10) yields ϕ0 = ($ cos �)2

on |ζ | =1 and find $ =W
1/2
2 by using (B 5a). Then, we rewrite (B 3a) with the help

of (2.1),

−π/2 � � < 0: �$ 2 sin(2�) = US dφ/d�, (B 14a)

� = 0: 2�D $ 2 = d2φ/d�2; (B 14b)

applying de l’Hôpital’s rule to (B 14a) gives (B 14b), in agreement with (B 5c), (B 7)
and (B 8). In turn, the elimination of Ω1 from (B 7) with the aid of (B 5b) reveals the
effect of the control parameter k in terms of a compatibility condition

� = 0: 2k$ = dUS/d�. (B 15)

We now treat the surface curvature � as a function of φ and have the right-hand
sides of (B 14) and (B 15) expressed through (B 12), where we terminate the sum
at some index n=N , N being sufficiently large. Then, the evaluation of (B 14a)
at N − 1 different locations �= ρn, −π/2<�n < 0, n= 1, 2, . . . , N − 1, supplemented
with (B 14b) and (B 15), establishes a set of N + 1 nonlinear transcendental equations
for N unknown coefficients Ξ2n−1, n= 1, 2, . . . , N , and $ (> 0). Their roots can be
found efficiently by using standard numerical methods. Finally, (B 13) gives the flow
angle φ=φD(k) at the detachment point D. As the simplest but most important
example, we consider the canonical problem of the flow around the unit cylinder,
where � ≡ 1, x = π − φ, xD(k) = π − φD(k) (see figure 1a). Here we choose equidistantly
spaced values of �n = (π/2)(n/N − 1), n= 1, 2, . . . , N , and N =350. It is demonstrated
in the theory of Fourier analysis that ΞN =O(N−2) or smaller for N � 1. However,
here even ΞN = o(Nq) for any q < 0 due to analyticity of Ξ , which, in turn, suggests
the absolute numerical error then to be reduced to the order of 10−5 or smaller.

The physically admissible solutions have been discussed extensively by Scheichl et al.
(2008) and Scheichl & Kluwick (2008b) for the particular range 0 � k � kc

.
= 0.4911

(referring to monotonically increasing values of the separation angle xD). Specifically,
the limiting values attract most interest. First, xD(0)

.
= 55◦ 2′ 30′′ denotes the so-called



298 B. Scheichl, A. Kluwick and F. T. Smith

B-V angle that points to laminar separation (Sychev 1972; Sychev et al. 1998; Smith
1977). A simplified version of the procedure presented here, successfully applied to
this case much earlier, must be attributed to several authors appreciated by Gurevich
(1979). Second, let us refer to figure 2(a) discussed in § 3.2: then xD(kc)

.
= 124◦ 12′ 11′′

represents the critical downstream limit of xD in the sense of case II. Note that values
of k larger than kc imply a contradiction to the original assumption of a semi-infinite
cavity as they predict a non-smooth intersection of S with the real (symmetry)
axis of the z-plane at a finitely remote point. A simple criterion for the occurrence
of this situation is indicated by the Taylor expansion of (B 11) about ζ = 0. This
gives ϑ0 ∼ π − (2 − Ξ1)ζ + (2/3 +Ξ2)ζ

3 +O(ζ 5) and thus describes the shape of S
far downstream when ζ → 0−. It asymptotes to the well-known Kirchhoff parabola
(case I, 0 � k < kc) for Ξ1 < 2, which degenerates to a cusp (case II, k= kc) for
Ξ1 =Ξ1c = 2.

Early numerical computations of H-K flows around the circular cylinder were
carried out by Woods (1955). The integral method exploited by him, however, is
considerably more complicated and less straightforward to apply compared with that
proposed here, based on the Levi–Cività method.
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