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The development of the turbulent
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(Received 2 November 2005 and in revised form 8 December 2006)

The three-dimensional incompressible turbulent flow through a slender bent pipe of
simple cross-section is analysed, the pipe gradually bending the rapid flow through
a substantial angle. The ratio of the relative radius of curvature to the magnitude
of the turbulent fluctuations is crucial: analysis of the entry region involving exact
solutions of the governing equations shows three different downstream developments,
depending on the magnitude of that ratio. The main velocity components are found
in each case, and one downstream development studied in detail is when turbulence
dominates the flow.

The main novel points and results are as follows. (i) The present physical situation
which arises commonly in industrial settings has been little studied previously by
theory or experiments. (ii) The working applies for any two-tier mixing-length model.
(iii) As a most surprising feature, the fully developed flow far downstream is not
unique, being found to depend instead on the global flow behaviour (thus the
centreline velocity is not determined simply by the pressure drop, in contrast to
the laminar case). (iv) A quite accurate predictive tool based on approximation is
suggested for the downstream flow. (v) Crossflow maxima are found to occur very
close to the walls, as observed in experiments. (vi) Other comparisons are made with
experimental data and prove generally favourable.

1. Introduction
This work on the three-dimensional turbulent flow in a bent pipe arises from

investigations on rapid flow through such pipes in an industrial application. A major
type of food-sorting machine (see Smith & Li 2002) has air guns connected to an
air source pressurized to 2–6 atm, depending on application. Millisecond pulses of
air pass rapidly through an air gun, whose interior geometry may typically include
a long straight section joined without smoothing to a bent section. The bend has a
representative turning angle of 90◦ and is of moderate curvature; the characteristic
ratio ε of the pipe cross-sectional width to the radius of curvature of the pipe
centreline is O(10−1). Typical flow Reynolds numbers are O(105), based on the pipe
cross-sectional width.

The short duration and large Reynolds number point to a nonlinear and inviscid
treatment of the three-dimensional core flow (Smith & Li 2002; Wilson 2003; Wilson &
Smith 2005b), apart from over a short length scale close to the start of the bend as
in Wilson & Smith (2005a). Moreover, the increased likelihood of turbulent effects
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due to unavoidable manufacturing defects for example motivates the present study of
the development of the contained turbulent motion, including entry wall layers (wall
roughness effects and the transition to turbulence are not explicitly studied here).

We study the three-dimensional growth and development of the turbulent flow
in a bent pipe of simple cross-section. The analysis here involves theoretical and
numerical approaches, and comparisons are made with experimental data from the
literature. There appear to be few empirical data for turbulent wall layers in pipes
with the particular level of curvature assumed in this paper. A single example is in
Ellis & Joubert (1974), but the experiment there involved a rectangular pipe with
aspect ratio over 13 (an order of magnitude larger than for the pipe we consider
here) which effectively excludes any secondary flow in the cross-section. Furthermore,
measurements are made only further downstream than we consider. As a result, no
comparisons with the data in that study can be made.

The apparent lack of empirical work for turbulent flows in pipes with the curvature
considered herein may be due to this curvature lying somewhere between strongly
bent, such as an elbow, and weakly bent, several orders of magnitude weaker than the
strong case. Experiments in these two regimes include Schwarz & Bradshaw (1994)
in the first instance, and Hunt & Joubert (1979) in the second. However, the present
theoretical study is aimed less at confirming experimental results or proving the utility
of a particular model than at investigating the physical situation which commonly
arises in industrial settings. In contrast to the measuring of higher-order statistical
quantities, or coherent and transient structures, the present study is largely concerned
with the development of velocity and pressure profiles, and how these influence the
core flow, since it is the bulk behaviour of the whole pipe flow which is of importance
to the motivating industrial problem.

In the entry region at the start of the bend considered in § 2, both turbulent effects
in the boundary-layer (wall-layer) flow and the swirl in the core flow are equally
significant. Importantly, the analysis holds for any two-tier mixing-length model of
the eddy viscosity, although we select the Cebeci–Smith model (see e.g. Cebeci & Smith
1974) in order to obtain quantitative solutions. A crucial balance (ratio) β of the
initially small turbulent and swirl effects enables an exact solution to the entry region
equations to be found in § 3. Indeed, varying β describes three different downstream
developments. In § 4, a similarity solution is found for the main streamwise velocity
term, and a combined similarity and numerical solution found for the main crossflow
velocity term. The crossflow involves an adjustment to the wall conditions over an
unusually short distance.

A turbulence-dominated pipe is one far-downstream evolution which is studied
in § 5 in detail because it is readily realizable in practical terms. In both two and
three dimensions, our analysis shows that the pipe centreline velocity is an important
parameter governing the entire flow solution and yet, unlike in laminar flow, cannot be
derived simply by knowledge of the pressure drop in the pipe. Surprisingly, therefore,
the turbulent fully developed flow solution far downstream is found to depend on the
flow behaviour globally, i.e. on the complete flow development beforehand. Numerical
solutions indicate that both the pipe centreline velocity and the position of the junction
between the two layers of the contained flow initially grow linearly in agreement with
predictions from an asymptotic analysis at small downstream distances. When close
to the pipe centreline, however, the centreline velocity and junction position adjust
smoothly and quickly to new invariant values. We confirm this behaviour with an
analysis based on neglecting the outer part of the turbulent stress model, giving
a useful predictive tool. Comparisons are made with reported experimental work.
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Figure 1. Non-dimensional coordinate configuration. (In a dimensional picture the length
labelled ∼ 1 under the thick arrows would be replaced by hD .) The thin dotted line in
(b) indicates the boundary layer.

Finally, in § 6 we demonstrate that the derived results are consistent with Fanno flow
(see e.g. Knight 1998), in that the wall frictional effects can be modelled rationally by
the mean influences of the growth of the turbulent wall layer, and § 7 presents further
comments.

2. The three-dimensional entry behaviour and the parameter β

Turbulent wall layers have inner and outer tiers whose flows merge via a thin
logarithmic layer. Analytically, the two-tiered structure emerges for large Reynolds
number (Bush & Fendell 1972; Mellor 1972; Sychev 1987; Degani, Smith & Walker
1993). In this paper, we consider two-tier models in which the main balance of forces
in the outer layer is between inertia and turbulence, while that in the inner layer is
between turbulent and laminar viscous stresses. The inner and outer velocities and
eddy viscosity are smoothly joined between the two tiers. We use the Cebeci–Smith
model (Cebeci & Smith 1974) of the eddy viscosity, which is perhaps the simplest of
the various two-tier models, but it is important to remark that our results are valid
for any two-tier mixing-length model. The following sub-sections tackle the governing
equations, inlet flow in a straight or bent pipe, and the swirl–turbulence balance, in
turn.

2.1. Governing equations

The flow is taken to be steady and incompressible, with inertia terms dominating
the core flow. Lengths are non-dimensionalized on the representative pipe width hD ,
velocities on the typical pipe centreline velocity UD∞, pressure and the Reynolds
stresses on ρDU 2

D∞, and the laminar stresses on µDUD∞/hD . The Reynolds number is
Re = (ρDUD∞hD)/(µD).

The pipe lies at rest such that the bulk flow is in a horizontal direction, with two
non-dimensional coordinate directions (x, y) in the wall and one (z) normal to the
wall (figure 1) and corresponding non-dimensional velocities (u, v, w) which represent
components of the mean velocity. On a boundary-layer length scale, z is ‘short’. The
interior surface is regular and away from the corners has small curvature compared
to the wall-layer thickness. The non-dimensional length functions are h1, h2, h3, with
h3 being unity (Mager 1964), and the non-dimensional curvature K1 measures the
rate of change with x of the pipe circumference, while non-dimensional curvature K2

measures the streamwise curvature of the pipe. The non-dimensional continuity and
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Navier–Stokes equations are then

1

h1

∂u

∂x
+

1

h2

∂v

∂y
+

∂w

∂z
− K1u − K2v = 0, (2.1a)

u

h1

∂u

∂x
+

v

h2

∂u

∂y
+ w

∂u

∂z
− K2uv + K1v

2 = − 1

h1

∂p

∂x
+

1

Re

∂2u

∂z2
+

∂

∂z

(
B

∂u

∂z

)
, (2.1b)

u

h1

∂v

∂x
+

v

h2

∂v

∂y
+ w

∂v

∂z
− K1uv + K2u

2 = − 1

h2

∂p

∂y
+

1

Re

∂2v

∂z2
+

∂

∂z

(
B

∂v

∂z

)
, (2.1c)

where we have assumed that the eddy viscosity is isotropic and given by
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, z < zJ ,

a1utδ1, z > zJ ,

(2.2)

δ1 =

∫ ze

0

1 − (u2 + v2)1/2

ut

dz, ut = (u2 + v2)1/2|z=ze
. (2.3)

Here (see Nikuradse 1933; Klebanoff 1954; Cebeci & Smith 1974; Neish & Smith
1988) a1 = 0.0168 is an experimental constant, a2 = 0.16, zJ is the unknown junction
between the layers, and δ1 is the displacement thickness, a measure of the distance
by which streamlines are displaced due to the presence of the wall layer. The model
splits each velocity component into a mass-weighted average part (components u, v, w

above) and a fluctuating part. The averaged quantities are the solutions to the
above equations, and the extra terms introduced by the fluctuating components are
responsible for the turbulent transport of momentum and other quantities. This
transport process is similar to the molecular transport of Newtonian viscosity, and
thus the turbulent (Reynolds) stresses are modelled by analogy with the laminar
(Newtonian) stresses as being proportional to a velocity gradient. This introduces the
variable coefficient of turbulent viscosity called the eddy viscosity, B . The boundary
conditions are for no slip at the walls,

u = (u, v, w) ≡ 0 on z = 0, (2.4a)

non-wall stresses to be zero at z = 0, all stresses to be zero at z � ze, (2.4b)

where ze is the location of the edge of the wall layer; and for the boundary-layer flow
to match with the core flow at the layer edge,

(u, v) = (u∞, v∞) at z = ze, (2.4c)

where (u∞, v∞) are the streamwise and crossflow velocities in the core. We also require
continuity of the eddy viscosity B , the velocity components u, v, and the shears ∂u/∂z,
∂v/∂z across z = zJ .

In all the subsequent work we assume a pipe of constant cross-sectional area, such
that K1 is zero. The effects of sudden changes in cross-sectional area are considered in
Nakao (1986). The present task is to solve (2.1a)–(2.4c) for the unknowns u, v, w, p.
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2.2. Inlet flow in a straight pipe

For zero K2, a flow solution is v ≡ 0, p = p(x): in a straight pipe, the turbulent wall
layers are two-dimensional. The wall layers act as if planar because they lie relatively
close to the walls, except possibly near any corners. More formally, a straight, constant
cross-section pipe with inlet flow has K1, K2, v zero, h1, h2, h3 unity, and p known.
Asymptotically (Bush & Fendell 1972; Mellor 1972), the outer tier has thickness
O(ε̂), for ε̂ ≡ (ln(Re))−1 � 1, with a deficit from free-stream velocity also O(ε̂), while
the inner tier is O(Re−1ε̂−1) thick with u now of O(ε̂). The major balance of forces
in the outer tier is between inertia and the Reynolds stresses, and the outer tier
contains the junction position zJ . Following Bush & Fendell (1972), Mellor (1972)
and Neish & Smith (1988), we expand as follows: u ∼ 1 + ε̂u1 + ε̂2(ln(ε̂))u2L + ε̂2u2;
w ∼ ε̂2w1+ ε̂3(ln(ε̂))w2L. The expansion for w comes from the continuity balance, after
setting z = ε̂z̄ where z̄ is O(1). This allows the displacement thickness to be found to
leading order, but for higher-order determination of the flow field and displacement
thickness, zJ should also be expanded asymptotically. These expansions and length
scales suggest that δ1 is O(ε̂2), and we take δ1 ∼ ε̂2δ̂1 + ε̂3(ln(ε̂))δ̂2L + ε̂3δ̂2.

Under inlet conditions, the only change in pressure comes about locally owing to
an external displacement of the potential flow field. Since the slope of the turbulent
wall layer is O(ε̂2), the external induced pressure near the edge must be O(ε̂2), and
this is also the size of the internal flow field pressure. Hence, p ∼ ε̂2p1. The dominant
balance of the x-momentum equation is:

∂u1

∂z̄
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2

∂

∂z̄

(
z̄2

(
∂u1

∂z̄

)2)
for z̄ < z̄J ,

a1δ̂1

∂2u1

∂z̄
for z̄ > z̄J .

(2.5)

Apart from a difference in normalizing, (2.5) is the same as Neish & Smith’s (3.3b),
and thus δ̂1 ∝ x. Therefore, we can suppose that the turbulent wall layer will grow to
fill the pipe by a downstream distance of O(ε̂−2).

Straight pipe inlet flow and the flow over an aligned flat plate correspond because
of the simplicity of the pipe cross-section and its straightness, giving length functions
as all identically unity. The same is not true of a bent pipe. Interaction with the
external flow will happen earlier than for a flat plate, as effectively any edge effects
from core turbulence, or centrifuging, etc. are amplified as the layers thicken towards
the centre of the pipe (see e.g. Schlichting & Gersten 2000; Talbot & Wong 1982).

2.3. Entry behaviour in a bent pipe

The shortest notable entry region of a bent pipe occurs over streamwise length scales
of order unity, as might be expected, and involves a short-range upstream influence
smoothing the incident pressures and velocities across the sudden onset of the bend,
quantitatively as described in Wilson & Smith (2005a). The present longer-range
analysis deliberately omits that upstream influence because our concern is with the
flow properties relatively far downstream (at large x) on the short length scale. A
constant regular cross-section with zero K1 ensures that h2 = h2(y) only. However,
zero v is no longer a solution when K2 is non-zero, as pipe curvature induces
three-dimensional flow in the turbulent wall layers.

The central issues now stem from the matching with the core flow, at large z̄ = ε̂−1z

in the wall layer. The streamwise flow in the core is of the form 1 + εU , where the
correction velocity U is independent of x, whereas the swirl in the y-direction is O(ε2)
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as the present stage is downstream of the smooth shorter-range pressure and velocity
adjustments just mentioned. These core velocities match with the flow over the longer
length scale of Smith & Li (2002) and Wilson (2003).

2.4. The swirl–turbulence balance β

With ε̂ (≡ (ln(Re))−1) and ε (a swirl parameter) taken as having the same order of
magnitude for the sake of comparison of their effects, uniform streamwise flow is
disturbed in the wall layer in the form: u ∼ 1+ ε̂û; v ∼ ε̂2v̂; w ∼ ε̂2ŵ. The small deficit
in u is as usual in a turbulent layer, the O(ε̂2) magnitude of the swirl follows from
that of the external swirl, while the magnitude of w stems from the mass conservation.

Normally at large z̄ we have v → v∞, a core flow velocity contribution which is
O(ε2) as just described, taking the form v∞ ∼ ε2V . Thus,

v̂ → β2V where β = ε̂−1ε. (2.6)

The balancing parameter β in the matching of the wall-layer velocities with the
core flow is vital to the flow development in the bent pipe, leading to quantitatively
different behaviour depending on its magnitude. Respective typical values of ε and ε̂

in the background industrial setting are about 0.1 (as mentioned earlier) and 0.2.
Since K1 is zero, y is a geodesic and the lines of x are the geodesic parallels of

y. Now a theorem of Gauss (see Mager 1964, p. 293) yields h2 unity, as well as h3

and also we have K2 = εK̂2 for consistency with the motivating physical problem,
which suggests that h1 = 1 + εh̄1. In this way K̂2 = −∂h̄1/∂y, and h1 is absent from
the leading-order equations. The main balance of (2.1a) is then

∂û

∂x
+

∂ŵ

∂z̄
= 0. (2.7)

Considering the x-momentum equation (2.1b), we assume that ∂u/∂y � ε̂−1 in keeping
with the nature of the cross-section, and we allow the pressure gradient to be retained.
The eddy viscosity B must be O(ε̂2) to balance the dominant inertia term, and the
main balance of the x-momentum equation is then between inertial, pressure-gradient
and turbulent-stress forces.

All stresses vanish in the core flow, however, giving −∂p/∂x = ∂ûe/∂x, and the
right-hand side here is zero in the entry region because the streamwise core flow is
independent of x, leaving

∂û

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2

∂

∂z̄

(
z̄
∂û

∂z̄

)2

, z̄ < z̄J ,

a1δ̂1

∂2û

∂z̄2
, z̄ > z̄J ,

(2.8)

with the pressure gradient exerting no influence. The y-momentum balance retains
the K2u

2 term to leading order. This complication is overcome by the inclusion of a
suitable pressure term as examination suggests that the pressure gradient in the y-
direction must be O(ε̂2). Since h̄1 = h̄1(y) only, the pressure is p = p̂0 + ε̂p̂1(x) + εh̄1 +
ε̂2p̂2(x, y) + . . . , where the constant p̂0 is known from the straight section upstream,
and dp̂1/dx, ∂ûe/∂x are zero. Furthermore, −∂p̂2/∂y = ∂v̂e/∂x +2βK̂2ûe, and we note
the explicit appearance of β and its implicit influence in both terms involving edge
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values. The y-momentum balance becomes

∂v̂

∂x
+ 2βK̂2û =

(
∂v̂e

∂x
+ 2βK̂2ûe

)
+

⎧⎪⎪⎨
⎪⎪⎩

a2

∂

∂z̄

(
z̄2 ∂û

∂z̄

∂v̂

∂z̄

)
, z̄ < z̄J ,

a1δ̂1

∂2v̂

∂z̄2
, z̄ > z̄J .

(2.9)

The governing equations thus become quasi-two-dimensional; (2.8) gives û, then
(2.9) gives v̂ with known û, consistent with the crossflow being an order of magnitude
smaller than the main flow, and finally the continuity equation (2.7) gives ŵ. However,
the appearance of β in the equations, its hidden influence through the pressure
gradients, and (2.6), point to the existence of at least three regimes of interest: β � 1;
β ∼ 1; and β 	 1. Exact solutions below, cover all three different regimes in the entry
region.

3. Turbulent versus swirl effects
This section considers the so-called β-split concerned with the above two effects,

then the mechanics and analysis involved, and finally the influence on downstream
behaviour.

3.1. The two effects

The β-split describes the following which we will show is the only (and exact) solution
of (2.8), (2.9),

û = βũ + 1 × ˜̃u, v̂ = β2ṽ + β ˜̃v. (3.1a, b)

Here, the tilded quantities are independent of β . The successive terms on the right-
hand side in (3.1a) correspond to two influences, swirl and turbulence, respectively,
and the working below simply amounts to taking the two effects together. Then,
˜̃u, ˜̃v → 0 as z̄ → ∞ such that the upper boundary conditions on û, v̂ are satisfied by
ũ, ṽ. That is, ûe = βũ|z̄ → ∞, and similarly for v̂e. However, ûe = βUwall such that the
edge value of ũ identifies naturally with Uwall , and similarly for ṽ and V . Furthermore,
˜̃u, ˜̃v accommodate the lower boundary conditions, as discussed below.

The β-split emerges naturally from the matching of û, v̂ with the core flow. At the
edge, û ∼ β and is a function of y only there, by the nature of the core flow; but û

must also have an O(1) component to account for the lower boundary condition on
u of no slip. Similarly, (2.9) indicates that v̂ is driven by an O(β2) term and an O(β)
term, prompting the form of (3.1b). The following simplification for (3.1a, b) is seen
to work,

ũ ≡ ũe, ṽ ≡ ṽe, (3.2a, b)

and is justified shortly. Thus the swirl effects ũ, ṽ are independent of z̄, and there
remain only the variables ˜̃u, ˜̃v to solve for.

3.2. The mechanics of (3.2a, b)

Appendix A establishes that throughout the outer layer, ũ, ṽ simply retain their edge
values – where they identify exactly with the values of the core flow at the wall –
and we only have to solve for ˜̃u, ˜̃v. The main factor β disappears from the equations,
as do the pressure terms; the matching with the core is accommodated; the lower
boundary conditions are considered shortly; and the presence of a contribution in K̂2

makes ˜̃v non-zero. The β-split is also confirmed by the work in § 4.
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3.3. Further analysis

We turn now to the lower boundary conditions. As z̄ → 0, the inertia and pressure
terms are small in comparison with the turbulent stress terms, giving the near-wall
asymptote û ∼ c3 ln(z̄) + k1(x, y), where c3 is unity so that as the inner tier is entered
the main identically unity part of the velocity expansion is cancelled, while the
unknown deficit function k1 of O(1) is determined in the inner tier. Next, in (2.9)
the centrifuging term also remains, yielding v̂ ∼ 2K̂2a

−1
2 ((z̄ + c4) ln(z̄) + (d1 − 2)z̄ + d2),

involving the unknown constants c4, d1, d2. Then the asymptote for ˜̃u is

˜̃u ∼ ln(z̄) + k1(x, y) − βUwall (y), (3.3)

and similarly for ˜̃v is

˜̃v ∼ 2K̂2

a2

z̄ ln(z̄) + k2(x, y) − β2Vwall . (3.4)

The interpretation is that the O(1) deficit functions ki are influenced by the edge
values, and then in turn influence the inner tier when it is examined on a smaller
normal scale. This suggests that there will be some edge effects, y-dependence, and
some cancelling of the edge values much closer to the wall. The inner tier has been
shown elsewhere to be more sensitive to external influences (see e.g. Huffman &
Bradshaw 1972).

The spatial growth rate of the layer is measured by δ̂1:

δ̂1 =

∫ ∞

0

(−˜̃u) dz̄ ∼ a2x, (3.5)

using (3.3).

3.4. How β influences the downstream development

The full solutions given by the β-split (3.1a, b) depend on the size of β , yielding three
interpretations in the entry region, and three distinct regimes far downstream.

(i) If β � 1, the solutions of (A 1) and (A 4) dominate, and the edge effects are
weak since the curvature-induced swirl is weak in comparison to the magnitude of
the turbulent fluctuations. The scalings in (3.1a, b) ensure that the curvature drives
only a relatively small cross-flow. The result (3.5) suggests that a new stage develops
at a distance ε̂−1 (� ε−1) at which the turbulent wall layer grows to fill the pipe. This
merged or merging case is the subject of the investigation in § 5.

(ii) If β ∼ 1, both curvature and turbulence are important and the flow behaviour
in the entry region depends on the full solution (3.1) and on the z̄-independent
core terms carried down from the edges. There is a new stage for ε̂−1 ∼ ε−1 where
interaction of the boundary layer and the core occurs. At this stage, an amendment
to the Cebeci–Smith model must be considered in order to account for the interaction
and the influence of the curvature on the new length scale.

(iii) If β 	 1, the core flow dominates the turbulent flow solutions, which is
consistent with the interpretation that then the turbulence is weak. There is a new
stage at a distance ε−1 (� ε̂−1) at which the core becomes fully developed but the
wall layer remains thin. In this case, there is no real impact on the core flow results
of Smith & Li (2002) since the boundary layer is thin throughout the bend.

Swirl effects become more substantial downstream, rendering the core nonlinear
when x becomes O(ε−1), whereas turbulent effects alter the whole downstream flow
by filling the pipe at a distance O(ε̂−1). Swirl dominance thus happens if ε 	 ε̂,
i.e. if β is large, which in essence is the case of Smith & Li (2002), Wilson (2003)
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and Wilson & Smith (2005b). Turbulent dominance where β is small is a practically
realizable regime, however, and forms our focus, after the following section.

4. Similarity solutions
In the far field downstream, beyond any entry effects near the start of the bend,

similarity solutions hold for ˜̃u, ˜̃v. The subsections below describe the respective
solutions, which are further confirmation of the β-split introduced in the previous
section, and are followed by numerical results.

4.1. Solution for ˜̃u

With η = z̄/x and ˜̃u = f̄ (y)f (η), (A 1) together with (3.5) gives

−ηf ′ =

{
2a2ηf̄ f ′(f ′ + ηf ′′), η < ηJ ,

bf ′′, η > ηJ ,
(4.1)

where ′ denotes differentiation with respect to η, b = a2a1, and ηJ = z̄J /x. In the
inner part, f̄ (y) = K for some non-zero constant K , leading to ηf ′ = 0 or f ′ + ηf ′′ +
(2a2K)−1 = 0. The first of these implies that the logarithmic merging with the inner
tier is not possible and so the second option applies, which with h = ηf ′ yields the
solution h = −η/2a2K + c5/K for a constant c5. Therefore

f = − 1

2a2K
η +

c5

K
ln(η) +

d3

K
, (4.2)

for a constant d3. The lower boundary condition requires c5 to be unity, leaving
˜̃u = −η/2a2 + ln(η) + d3 in the inner layer.

In the outer part we have∫ ∞

η

f ′ dη̄ =
c6

K

∫ ∞

η

exp
((

η2
J − η̄2

)
/2b

)
dη̄, (4.3)

where c6 is an unknown constant scaled on exp(η2
J /2b). (Scaling on the integrating

factor ensures that numerical work concerning ˜̃u involves finite values.) Using the
upper boundary condition ˜̃u → 0 as z̄ → ∞ yields the solution:

˜̃u = c6

∫ η

∞
exp

((
η2

J − η̄2
)
/2b

)
dη̄. (4.4)

As discussed above, the downstream streamwise behaviour is very similar to that for
flow over a flat plate at zero incidence.

The remaining unknown constants c6, d3, ηJ are determined by the three junction
conditions of continuity of f, f ′, and the stress η2f ′ = a1 across ηJ , giving
(ηJ , c6, d3) = (0.3022, 0.184, 2.14). Hence

˜̃u =

⎧⎪⎪⎨
⎪⎪⎩

− 1

2a2

η + ln(η) + 2.14, η < 0.3022,

0.184

∫ η

∞
exp((0.30222 − η̄2)/2b) dη̄, η > 0.3022.

(4.5)

Matching near the wall also yields k1 =βUwall (y) + 2.14 − ln(x). The effects of the
core flow carried down through the layer by the z̄-independent term βUwall are felt by
the inner tier through the deficit function k1. In a similar fashion, β2Vwall contributes
to the O(1) deficit function k2, and y-dependence emerges in the inner layer.
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4.2. Solution for ˜̃v

The similarity form is ˜̃v = xΛḡ(y)g(η), where Λ is zero in the straight section and
unity in the bent section. Substitution into (A 4) gives:

xΛ−1ḡ(Λg − ηg′) + 2K̂2(Λ)f =

{
a2x

Λ−1ḡ(η2f ′g′)′, η < ηJ ,

bxΛ−1ḡg′′, η > ηJ ,
(4.6)

where we recall that f is known.
The general bent case, where Λ ≡ 1 and K̂2 is non-zero, has the following for g in

the inner part,

ḡg − a2ḡg′ − a2ηḡg′′
(

1 − 1

2a2

η

)
+ K̂2

(
− 1

a2

η + 2 ln(η) + 4.28

)
= 0. (4.7)

Separation of variables shows that ḡ(y) ∝ K̂2. Without loss of generality we take
the magnitude of the constant of proportionality to be 2. In the limit as η → 0+,
(4.7) is satisfied only if the separation constant is positive: ˜̃v = 2K̂2xg(η). Although
an analytical solution, based on the hypergeometric equation, to the inner part can
be written down, we will concentrate instead on a more useful numerical solution
described in § 4.3.

In the outer part, (4.6) leads to the solution

g = 0.184
Ā

b
exp

(
y2

J /2b
) ∫ y

∞
Idȳ−0.184 exp

(
y2

J /2b
)
I where I =

∫ y

∞
exp(−ȳ2/2b) dȳ,

(4.8)
with Ā unknown.

The y-dependence in the velocity components is thus as follows. For both ũ, ṽ,
the y-dependence arises from the matching with the core flow’s y-dependence carried
down across the whole layer. By contrast, for ˜̃u we defined ˜̃u= f̄ (y)f (η), but showed
that f̄ is in fact a constant: there is no y-dependence. Finally, we defined ˜̃v = xḡ(y)g(η)
and showed that ḡ = 2K̂2 after a similar scaling-out, with K̂2 giving the y-dependence.

4.3. Numerical solutions

The inner part, (4.7), is solved numerically. This ODE has a singularity at
η = 2a2 = 0.32 outside but neighbouring the computational range η <ηJ = 0.3022.
There are three junction conditions to satisfy: continuity of g, g′ and stress. The last
is satisfied automatically here once the first two hold, owing to the isotropic eddy
viscosity. We start the computations at η = ∆ � 1 to avoid the singularity in the
driving term ln(η) at the wall. Although the lower boundary condition on g is known
because g = 0 there to satisfy the no-slip condition, g′(∆) is not known, since the deficit
function for g has not been determined. Our computation of g is direct, treating the
initial-value problem as a boundary-value problem, with a ‘known’ junction value for
g of zero, since it is certainly close to zero there and decays monotonically thereafter.

The distance offset from the wall ∆ is fixed by comparing the computed results with
the wall asymptote. Care must be taken because while the controlling behaviour of the
asymptote seems to be η ln(η)/a2, this comes from the driving term f , the particular
integral of the solution of the ODE; but by supposing that g ∼ ληm for some m � 0
and λ �= 0 as η → 0+, the complementary function is found to be A + B ln(η), for
constants A and B , and hence

g ∼ A + B ln(η) + Cη ln(η) + Dη + O(η2 ln(η)) as η → 0+. (4.9)
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Figure 2. (a) The appearance of a numerical boundary layer. Seventeen datasets are shown
with ∆ ranging from 0.01 to 0.0000001. In each uniform grid, the distance between two grid
points was at least an order of magnitude less than ∆. (b) Curves generated by successive
refinements of the grid between ∆ = 0.001 and the second point of the standard grid of
100 000 points. Increasing the refinement increases monotonically the maximum value of g.
The lowermost curve has no refinement, whilst the uppermost features an additional 1 000 000
points. (c) The solution parallel to the quoted near-wall asymptote, and the asymptote itself
(dotted line) with A = 1.21.

As the inner tier is entered, η → ε̂−2Re−1η̃ such that ln(η) becomes −2 ln(ε̂) −
ln(Re) + ln(η̃). B is zero in general to satisfy the no-slip condition at the wall, and
substituting (4.9) into the full equation gives g ∼ A + η ln(η)/a2 + (A + 0.14)η/a2 as
η → 0+, where the constant A is arbitrary. This necessitates transforming the equation,
because setting g = 0 at the wall is false, and yet a non-zero value corresponding to
A cannot be set there since it is not fixed by the equations. Furthermore, on this
length scale, the solution should asymptote to a constant at the wall with the η ln(η)-
behaviour occurring extremely close to the wall, the constant term being cancelled by
a corresponding term in the inner tier expansion.

After applying the transform S = g/ ln(η) in the governing equation, the boundary
condition at η = ∆ becomes S(∆) = 0, with the form of S suggesting that the
adjustment to this boundary condition should happen over a length scale so short
as to be practically invisible, and thus the asymptote to a constant value at the wall
would be apparent.

At first, only a numerical boundary layer appears as ∆ decreases, with the solutions
tending to a universal curve, as shown in figure 2(a). Although this is persuasive, the
large η-range over which g adjusts is puzzling. To feed more information into the
system over the crucial adjustment region, we used grid refinement between the first
two computational-grid points of a standard grid with a constant spacing of grid
points. The grid spacing δ was one order of magnitude less than ∆; refinement beyond
this did not improve the results. Increasing the refinement with ∆ fixed, generates an
adjustment over a short distance and gives a variety of curves, as shown in figure 2(b).
The level of refinement was chosen to generate a curve parallel to the asymptote
A + η ln(η)/a2 near the wall, and then A was fixed such that the curve of the solution
and the curve of the asymptote coincide there. This solution and the asymptote are
shown in figure 2(c).

This result is not an artefact of the grid nor an artifice of the user because the
result is grid-independent in the following way. With ∆ =0.001, the solution shown in
figure 2(c) has a standard grid of 100 000 points between ∆ and ηJ with a 3000-point
refinement near the wall. If the grid refinement density is defined as (Nr + Ns)N

−1
s
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Figure 3. The solid line in (a) is in fact two lines; the solutions from both grids coincide at
this scale. The dotted line is the near-wall asymptote. In the magnified view in (b), a small
difference can be seen between the two solutions. (c) A comparison of the transform method
results of figure 2 (dotted line) with those of a direct computation of g after setting g(∆) = 1.21.

where Nr is the number of refinement points between two standard points and Ns is
the number of standard points, then this grid has a grid refinement density of 103%.
A second computation with the same refinement density between points 1 and 2 of
the standard grid was performed with a 500 000-point standard grid, and the two
sets of results are compared in figures 3(a) and 3(b), together with the asymptote.
The results compare very favourably indeed. A final assurance comes from a direct
computation of g (without the transform) over a 100 000-point standard grid (with
no refinement), and forcing g(∆ = 0.001) = 1.21. The result is very close to that for
the transform method with grid refinement, as shown in figure 3(c).

Flows in which, as in our results, the crossflow involves a maximum velocity very
close to the surface have been observed experimentally in Zhang & Lakshminarayana
(1990), a study of turbulent boundary layers over curved turbomachinery blades.
Although for an external flow with wall curvature, the data for the crossflow over
such a blade shows the maximum of the crossflow velocity very close indeed to the
blade surface.

5. The merging turbulent wall layers
When β is small, the turbulent wall layers grow to merge and fill the pipe at

a distance O(ε̂−1) downstream, and so we now consider the merged (or merging)
wall layers in quasi-straight two-dimensional ducts (§ § 5.1, 5.2) and three-dimensional
pipes (§ 5.4) over that distance, along with experimental comparisons in § § 5.3, 5.5.
Between the entry and merged regions the dominant velocity perturbations in the
core are due to the blocking effect of the growing layers. In § 6, wall frictional effects
caused by the turbulent wall layer are compared with Fanno flow.

5.1. When planar turbulent effects dominate

Lengths are non-dimensionalized on the duct half-width here rather than the duct
width, to avoid factors of 1/2 in flow development between the wall and the centreline.
Now x = ε̂−1X, where X is O(1), and the wall-normal coordinate z is O(1) (see figure 4).
The slender-layer approximation clearly also holds at this stage. The full velocities
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Figure 4. Coordinate configuration when planar turbulent effects dominate.

are now denoted by U, W , and mass conservation gives∫ 1

0

Ux dz = 0, (5.1)

since there is no normal flow at the wall or across the centreline; hence, U has a
uniform leading term such that

U ∼ 1 + ε̂Û (X, z), W ∼ ε̂2Ŵ (X, z). (5.2)

The continuity balance is related to the streamfunction component ψ1 via ψ1z = Û ,
ψ1X = −Ŵ , where ψ1 is zero on both z = 0, 1 since there is a non-dimensional mass
flux of 1 in each half of the duct, and∫ 1

0

Û (X, z) dz = 0 for all X. (5.3)

The turbulent slender-layer x-momentum equation applies without curvature,

UUx + WUz = −px +
1

Re
∇2U + (BUz)z, (5.4)

with Re 	 1 and the Cebeci–Smith model

B =

⎧⎪⎨
⎪⎩

a2z
2

[
1 − exp

(
− Re1/2

26
z(|(Uz)wall |)1/2

)]2

|Uz|, z < zJ ,

a1UCL
δ1, 1 > z > zJ .

(5.5)

Here, the effective displacement is δ1 =
∫ 1

0
(1 − U/UCL

) dz, where UCL
is the streamwise

centreline velocity. In fact, δ1 ∼ ε̂δ̂1 with δ̂1 = ÛCL
−

∫ 1

0
Û dz = ÛCL

, by (5.3), i.e. δ1 ∼ ε̂ÛCL
.

Since ÛCL
appears in the outer part of (5.5), it is clear that ÛCL

is an important
parameter in the present merged two-dimensional quasi-straight regime. The pressure
is p ∼ 1 + ε̂p1(X) + ε̂2p2(X, z) and the streamwise-momentum equation becomes

ÛX = −p1X +

{
a2

(
z2Û 2

z

)
z
, z < zJ ,

ā1Ûzz, zJ < z < 1,
(5.6)

where ā1 = a1ÛCL
. The lower boundary condition on Û remains Û ∼ 1 × ln(z) as

z → 0+.
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By integrating (5.6) across the half-width of the duct we obtain

p1X = −a2 for all X, (5.7)

and as a consequence we have:

ÛX = a2 +

{
a2

(
z2Û 2

z

)
z
, z < zJ ,

ā1Ûzz, zJ < z < 1.
(5.8)

Equation (5.8) and the corresponding boundary conditions are central to the rest of
this section. We also note immediately that the result that p1X = −a2 = −0.16 depends
only on the assumption of the mixing-length hypothesis and not on the choice of
model. This can be seen by tracing the development of the Cebeci–Smith model from
Prandtl’s mixing-length model.

5.2. Numerical study

Differentiation of the inner part of (5.8) gives an equation for τ = Ûz. We then
set T = (zτ )2, so that the inner part of (5.8) becomes T −1/2TX =2a2zTzz, which is a
nonlinear diffusion equation. By defining the junction-fitted inner coordinate η = z/f ,
this equation becomes

TX =
η

f

(
f ′Tη + 2a2T

1/2Tηη

)
. (5.9)

The wall condition Û ∼ 1 × ln(z) and the junction condition of continuity of stress
impose

T (η = 0) = 1, T (η = 1) =

(
ā1

a2f

)2

. (5.10)

The main equations here are therefore (5.9) and (5.10).
For the outer part of (5.8), differentiating implies a linear diffusion equation for τ .

We define the junction-fitted outer coordinate η̂ = (z − 1)/(f − 1) such that η̂ = 0 at
the centreline and η̂ = 1 at the junction, so that

τX =
1

(f − 1)2
((f − 1)f ′η̂τη̂ + ā1τη̂η̂). (5.11)

Symmetry across the centreline, and continuity of Ûz across the junction yield the
requirements

τ (η̂ = 0) = 0, τ (η̂ = 1) =
ā1

a2f 2
. (5.12)

Thus the main equations in the outer part are (5.11) and (5.12).
The above systems were solved numerically as follows. The governing equations

are parabolic in X and we assumed that there is no reverse flow in order to use
a forward-marching approach. We discretized with nominally first-order accurate
backward differencing formulae for the X derivatives, and with second-order accurate
central-space difference formulae for the η and η̂ derivatives. The computational grids
were fitted to the unknown curve zJ = f (X) by the use of η, η̂; then f (X) was linearly
optimized at each X-station. A higher-order scheme was not applied simply because
the higher-order behaviour of Û near the wall is unknown here, and furthermore Ûzz

can be shown to be discontinuous at z = zJ . Given the junction position, the inner
equation (5.9) and the outer equation (5.11) together with their associated boundary
and junction conditions form two closed boundary-value problems. Each is tackled
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independently before comparing values across η = 1 = η̂ to determine the junction
position, as follows.

With an initial guess for f we solve (5.9) for T and (5.11) for τ , with the current
guess for f diffusing through the computational domain of each boundary-value
problem via the computational boundaries. The important parameter ÛCL

is updated
by

(ÛCL
)X = a2 +

ā1τη̂

f − 1

∣∣∣∣
η̂=1

. (5.13)

The nonlinearity of (5.9) and (5.11) requires lagging of some of the variables and so
iteration is used. Continuity of Û across the junction defines an error

E =

∣∣∣∣ ā1τη̂

f − 1

∣∣∣∣
η̂=1

− a2Tη

f

∣∣∣∣
η=1

τ

∣∣∣∣, (5.14)

which we minimize to optimize f . The computation is then repeated with this
optimized value of f before advancing to the next X-station. This solution method
had higher-order accuracy than a computed predictor–corrector approach, and we
will present only the high-order accurate results. If required, Û can be determined
by integrating the computed values of τ and T between 1 and z since we know ÛCL

.
Continuing, ψ can be found by integration either from 1 to z or from 0 to z.

The starting conditions are determined by considering (5.9), (5.11) where X is small,
with an inner region f ∼ d1X, T ∼ T0(η), with the constant d1 and the function T0 to
be determined. Then (5.9) has solution

2
(
T

1/2
0 − d2ln

(
T

1/2
0 + d2

))
= −d1

a2

η + d3, (5.15)

where d2 is an unknown constant and d3 = 2(1−d2ln(1+d2)) by (5.10). After rescaling
ā1 by ā1 = ã1f , the junction condition (5.10) yields T0(1) = (ã1/a2)

2. Substituting this
into (5.15) yields

2ã1

a2

+
d1

a2

− 2 = d2ln

(
ã1

a2

+ d2

)
− 2d2ln(1 + d2) (5.16)

at the junction, which will later help to determine the unknown constants. Next, the
junction matching condition suggests that τ ∼ X−1τ̂ (η̂) where, after some working

with η̂ = 1 − X ˆ̂η,

τ̂ = d5exp

(
−( ˆ̂η + d1)

2

2ã1d1

)
. (5.17)

The junction condition occurs where ˆ̂η = 0, which yields

d5 =
ã1

a2d1

exp

(
d1

2ã1

)
. (5.18)

Next, the optimizing condition (5.14) for an exact match of UX across the junction is

−d2
1d5exp

(
−d1

2ã1

)
= −d1

a2

(ã1 + d2a2). (5.19)

With d5 known from (5.18) we have d2 zero, and hence d3 = 2. Finally, (5.16) now gives
d1 = 2(a2 − ã1). All the constants are therefore determined, and f ∼ d1X, ÛCL

∼ a2X

are the local asymptotes.
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Figure 6. (a) f , ÛCL
, and their small-X asymptotes. (b) Close-up of the sudden bending of f ,

showing results over three grids with step dX = 0.01, 0.001, 0.0001 and suitable refinements of
the η and η̂ step sizes.

The numerical scheme was run over a variety of grids, and grid-convergence of the
results was demonstrated. A typical grid had 101 points in both the η-layer and the
η̂-layer, an X-step size of 0.01, and was tested to an accuracy of 10−10. We determined
for each grid a small value of X from which to start the computation and for which
the results were stable over small modifications to this value. In the case of the above
grid, the computation was started from X = 0.1. The results of this computation are
shown in figure 5.

The developments of f, ÛCL
are virtually linear until around X = 3.5, where a sudden

bending occurs over a short distance and a far-downstream asymptote appears to
be reached relatively quickly. Figure 6(a) shows that the linear growths which occur
for O(1) values of X are very close to the small-X asymptotes of f, ÛCL

, and we
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investigate the sudden bending away from the small-X asymptotes in Appendix B.
Figure 6(b) shows that the location of the bending is stable over a variety of grids.
What is more, the values of f (X =10) were stable to three decimal places over all
grids which showed convergence, and the values of ÛCL

(X = 10) agreed to two decimal
places. These far-downstream asymptotes are

f (10) = 0.995, ÛCL
(10) = 0.65. (5.20)

The apparent attainment of constant values of f and ÛCL
– fully developed flow –

for large values of X suggests examining (5.8) there. Its inner part becomes Tzz = 0 if
X-derivatives are negligible far downstream and so

T =

((
ā1

f a2

)2

− 1

)
z

f
+ 1 as X → ∞. (5.21)

The outer part similarly becomes τzz = 0 and (5.12) then yields

τ =
ā1(z − 1)

a2f 2(f − 1)
. (5.22)

Continuity of UX across the junction z = f requires ā1τz = a2Tz at z = f , giving

a2
2(f

3 − f 2) + ā2
1 = 0. (5.23)

Since ā1 = a1ÛCL
, (5.23) gives a value for f far downstream only when ÛCL

is already

known there. Thus, not only is ÛCL
an important parameter in the flow development

here, but it is also an important net effect, since it influences the downstream
asymptote. It would seem that in order to determine ÛCL

at a far-downstream position,
a full computation in the development region leading up to the fully developed region
must be done (as for example in our results). This is certainly different from the
laminar case where a knowledge of the pressure difference alone between the start
and the fully developed region provides the centreline velocity. On the other hand, the
linear growth in line with the small-X asymptote, coupled with the sudden bending
and attainment of the large-X asymptote described above, indicate a useful predictive
tool for ÛCL

, f which we describe in Appendix B, wherein we also demonstrate
analytically that the sudden bending of f is smoothed on a short length scale.

Finally here, if we substitute the computed large-X values of ÛCL
(10) given in (5.20)

into (5.23) we obtain three values for f : 0.995, 0.071, −0.066. Only the first of these
is physically realistic, and is equal to the computed large-X value of f given in (5.20),
demonstrating a consistency between the current analysis and the numerical results.

5.3. Comparisons with experiments

In figure 7, we compare the pressure prediction (5.7) (which leads to the governing
equation whose numerical solution is shown in figure 5) with the experimental data
of Laufer (1949) for the two Reynolds numbers considered in that paper. It is clear
that the prediction gives values which agree closely with the empirical data.

Figure 8 compares the total centreline velocity uCL
derived from the numerical

results with three data sets: Nakao (1986) with measured Re= 1.7 × 105; Chinni,
Sahai & Munukutla (1996) with measured Re= 9 × 104; Melling & Whitelaw (1976)
with measured Re= 2.07 × 104. The numerical results capture the nature (or much of
it) and location (to varying degrees of agreement up to around 95%) of the bending,
but the value of uCL

is correct only to within around 85%. However, since only the
first term in the expansion of u is considered, we expect higher-order terms to correct
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(1996) and (c) Melling & Whitelaw (1976). (Half-widths are as in figure 7.)

the value, analagously to Neish & Smith (1988, pp. 32–33). Note that in this context,
the pressure predictions are very close indeed to the experimental data. Indeed the
experimental data of Barbin & Jones (1963) for turbulent inlet flow in a smooth
pipe showed that the pressure gradient was established within 15 pipe diameters
downstream, whereas the centreline velocity was not yet established after 40.

5.4. When turbulent effects dominate in three dimensions

The configuration is shown in figure 9. Here, û2 remains zero in this quasi-straight
case, secondary-flow-generating sharp corners are absent in an axisymmetric pipe,
and we need only solve for U in the X-direction and W in the wall-normal (radial)
direction.

We base our study on the full dimensional general axisymmetric equations given in
Cebeci & Smith (1974, p. 259), our non-dimensionalizations being those of § 5.1, with
the slender-layer approximation still applying far downstream in the merged region.
We again use the Cebeci–Smith model, with the analysis holding for any two-tiered
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z

r
φ

r0

X = ε̂x

Figure 9. Coordinate configuration for the three-dimensional axisymmetric pipe. The
boundary layer is not shown. The pipe is considerably longer than indicated here.

algebraic mixing-length model. The non-dimensional governing equations are thus:

((1 − z)U )x + ((1 − z)W )z = 0, (5.24a)

UUx + WUz = −px − BUz

(1 − z)
+ (BUz)z, (5.24b)

where, for large Re, the non-dimensional eddy viscosity is:

B =

⎧⎪⎨
⎪⎩

a2(1 − z)ln2(1 − z)Uz, z < zJ ,

a1

∫ 1

0

(
1 − U

UCL

)
(1 − z) dz, zJ < z < 1.

(5.25)

The curvilinear coordinate system introduces an extra factor (1 − z) in the continuity
equation and there are now two terms in the eddy viscosity B in the x-momentum
equation, while the form of B in the inner region now contains a log term.

Here, U ∼ 1 + ε̂Û ; W ∼ ε̂2Ŵ ; p ∼ 1 + ε̂p1(X) + ε̂2p2(X, z) and the quasi-displace-
ment becomes

δ1 ∼ ε̂δ̂1 = ε̂

∫ 1

0

(ÛCL
− Û )(1 − z) dz. (5.26)

Consequently, examining (5.24a, b), (5.25) gives:

((1 − z)Û )X + ((1 − z)Ŵ )z = 0, (5.27a)

ÛX = −p1X +
1

(1 − z)
((1 − z)B̂Ûz)z, (5.27b)

where

B̂ =

{
a2(1 − z)ln2(1 − z)Ûz, z < zJ ,

a1δ̂1, zJ < z < 1.
(5.27c)

The boundary conditions as z → 0+ are:

Û ∼ 1 × ln(z), Ŵ = 0. (5.28)

Equations (5.27a, b) can be solved independently for Û , Ŵ .
In Appendix C, we use the smallness of a1 to show that the centreline velocity

increases linearly with X over an O(1) section in the X-direction, and that far
downstream the junction position zJ = f (X) is constant and lies very near the pipe
centreline.
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Figure 10. Comparison between (5.31) (line) and Laufer (1952) (a) at Re= 25 000 and (b) at
Re= 250 000. �p is the pressure difference from the exit of the pipe. (Half-widths are as in
figures 7 and 8, measured from zero at the exit and increasing upstream.)

5.5. Further comparisons with experiments

Integration of (5.27a) gives: ∫ 1

0

Û (1 − z) dz ≡ 0 (5.29)

for all X (since Û is zero at X → 0+). Thus

δ̂1 = 1
2
ÛCL

. (5.30)

This prediction is 1/4 that in the two-dimensional duct, indicating a considerable
difference between the two-dimensional and three-dimensional axisymmetric cases.

Integrating (5.27b) over the cross-section, using (5.29), symmetry at the centreline,
and the wall boundary condition (5.28) on Û gives

p1X = −2a2, (5.31)

which predicts a pressure gradient twice as great as in the two-dimensional case.
The prediction (5.31) can be compared with the experimental data of Laufer (1952)

for Re =2.5 × 104 and Re= 2.5 × 105 as we have defined Re, in a plot against
distance in half-widths measured from zero at the exit and increasing upstream, as
shown in figure 10. The prediction (5.31) compares very well with the experimental
values particularly near the exit of the pipe where perhaps the flow is more fully
developed.

6. Fanno flow effects
These concern mean values near the start of the quasi-straight pipe where the wall

layer is not fully merged, (5.27b, c) apply, but (5.29) no longer holds. With the mean
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value for the variable Û (X, z) being

Ū (X) =

∫ 2π

0

∫ 1

0

Û (1 − z) dz dφ∫ 2π

0

∫ 1

0

1 × (1 − z) dz dφ

=

∫ 2π

0

∫ 1

0

Û (1 − z) dz dφ

π
, (6.1)

(5.27b, c), (5.28) yield

(Ū + p1)X = 2a2

[
− (1 − z)2ln2(1 − z)Û 2

z

]
|z→0+ = −2a2. (6.2)

On the other hand, the Fanno flow model in a circular pipe (see e.g. Knight 1998)
has ρDuDuDxD

+ pDxD
= −2FDu2

D/DD , where the subscript D represents dimensional
quantities, FD is the wall friction factor, and DD is the diameter of the circular pipe. In
the present incompressible case, we take FD = ρDF and thus Fanno flow is governed
by uux + px = −(2Fu2)/D, which in the merged case becomes to leading order

ÛX + p1X = − 2F

ε̂2π
. (6.3)

A typical mean friction factor is F = 0.005 (Knight 1998; Ockendon, Ockendon &
Falle 2001). For (6.2), (6.3) to agree here thus requires F = 0.16π(ln(Re))−2,
corresponding to a Reynolds number of approximately Re ≈ 2.26 × 104, which is
certainly within the range of Re considered in this paper. This therefore shows that
the wall frictional effects in a pipe can be modelled in a partial manner by the
mean influences of the growth of the turbulent wall layer described by (any) two-tier
mixing-length model.

7. Further comments
An immediate point is that the parameter ÛCL

(the centreline velocity contribution)
has ‘memory’, in that it is coupled with the total flow development and cannot simply
be predicted, even in fully developed motion, from a knowledge of the pressure
gradient in the pipe. At first sight, the strong dependence of the flow on ÛCL

coupled

with the memory of ÛCL
suggests that, in most flow situations, a substantial calculation

must be performed in order to determine the far-downstream fully developed form. On
the other hand, a potentially powerful predictive tool is suggested by the development
of f (junction position) and ÛCL

, as supported by the Appendices, in which in

outline f ,ÛCL
first grow linearly, exactly in line with their entry-region asymptotes,

and then both curves bend suddenly (where the junction position closely approaches
the centreline) and attain their far-downstream uniform values within a very short
streamwise distance. This behaviour is apparent from the numerical results and is
consistent with asymptotic study.

More generally, this paper has been concerned with the growth and development
of the turbulent flow in a slender bent pipe of simple cross-section. The work holds
for any two-tier mixing-length model of the eddy viscosity. The velocities split into
a core-flow influence and a fully turbulent part which in the streamwise direction
behaves as in turbulent flow over a flat plate. There is in general a non-zero cross-
flow. We derived solutions for both the fully turbulent streamwise and the cross-flow
velocities, the former having no dependence on the coordinate which runs around
the pipe, whereas the cross-flow velocity does. The latter asymptotes to a constant
value on approach to the wall before reaching a maximum just outside the laminar
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sublayer (in line with experiments) and tending to zero at the wall. The three distinct
downstream regimes in the bent pipe depend on the relative magnitudes of the swirl
in the core flow and the turbulent fluctuations: the quasi-straight merged turbulent
flow; the interaction regime; and the regime in which the turbulent wall layer stays
thin.

The quasi-straight situation has been studied here in some detail. In the two-
dimensional case, the displacement is equal to the leading-order variation in the
streamwise centreline velocity and the pressure grows in proportion to the distance
downstream. Computational work shows linear growth in both the junction position
and the centreline velocity, followed by a sudden bending to the far-downstream
asymptotes. Analysis (Appendix B) suggests that the sudden bending is smoothed
over a short length scale and possibly connects with a pseudowake flow downstream.
Next, the quasi-straight three-dimensional axisymmetric case was considered with
predictions for the linear growth of the quasi-displacement and pressure. Analysis
again suggests that the junction position increases linearly until close to the centreline
before suddenly becoming constant. Predictions and numerical results were compared
with experiments and empirical data, providing generally favourable agreement.
Further, the effects of the turbulent wall layer described by a two-tier mixing-length
model agree with Fanno flow effects in the pipe.

Extensions of the work include finding the location and cause of transition to
turbulence, a study of the behaviour of the inner layer, and influence of sharp
corners in the cross-section. An investigation of the behaviour of the higher-order
variations of the wall-layer velocities is expected to make the pressure and centreline
velocity predictions correspond more closely with empirical data. It would also be
useful to perform a complete study of the downstream core–turbulent boundary-layer
interaction region if the turbulent fluctuations and the core swirl are comparable
in size. Moreover, a study of the proposed (Appendix B) pseudowake structure far
downstream of the bending region of the two-dimensional merged case would be of
interest, as would a numerical scheme to solve the three-dimensional axisymmetric
merged or merging case and the extension to general cross-sections. Results could
again be tested against empirical data and help to validate the predictions of the
small-a1 analysis.

This work resulted from close contacts with Sortex Ltd of London. We thank
Dr Sarah Bee, Dr Mark Honeywood, and Mr Adric Marsh of Sortex Ltd for many
related discussions and EPSRC and Sortex Ltd for support (P.L.W.). We also thank
the referees for their helpful comments.

Appendix A. The detailed mechanics of (3.2a, b)
The O(1) balance of (2.8) governing the fully turbulent term ˜̃u is:

∂ ˜̃u

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2

∂

∂z̄

((
z̄
∂ ˜̃u

∂z̄

)2)
, z̄ < z̄J ,

a1δ̂1

∂2˜̃u

∂z̄2
, z̄ > z̄J .

(A 1)

Equation (A 1) also implies that ˜̃u is slowed by the stress at the wall. In reality, the
stress will vary owing to curvature.
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To establish (3.2a), we let ũ= ũe + ũb, where clearly ∂ũe/∂z̄ ≡ 0 by definition,
∂ũe/∂x ≡ 0 by the matching with the core flow, and ũb → 0 as z̄ → ∞. This form is
consistent with the claim that ũ is part of an exact solution for û. With this, the O(β)
balance of (2.8) is:

∂ũb

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2

∂

∂z̄

(
2z̄2 ∂ũb

∂z̄

∂ ˜̃u

∂z̄

)
, z̄ < z̄J ,

a1δ̂1

∂2ũb

∂z̄2
, z̄ > z̄J ,

(A 2)

while the O(β2) balance is:

0 =

⎧⎪⎨
⎪⎩

a2

∂

∂z̄

((
z̄
∂ũb

∂z̄

)2)
, z̄ < z̄J ,

0, z̄ > z̄J .

(A 3)

Note that β still does not appear explicitly in the equations.
The inner part of (A 3) has the solution ũb = c1ln(z̄) for some function c1(x, y), for

all z̄ in the inner layer. As z̄ → 0+, we enter the lower tier when z̄ → Re−1ε̂−2z̃ (see
e.g. Neish & Smith 1988, p. 23), and the above solution suggests ũb ∼ − c1ln(Re) −
2c1ln(ε̂)+ c1ln(z̃). This means that u ∼ 1+ εũe − c1β − 2c1εln(ε̂)+ εc1ln(z̃) as we enter
the inner tier. For the solutions (3.2a, b) to work for all orders of β as z → 0+, we
must take c1 ≡ 0, giving ũb ≡ 0 in the inner layer. This satisfies trivially the outer part
of (A 2), and also all the boundary conditions, including matching across the junction
with the zero form in the inner part. This establishes (3.2a, b). In § 3.3, we show that
˜̃u ∼ ln(z̄) − βUwall (x, y) as z̄ → 0+, where Uwall is the streamwise core flow at the wall.
This, together with (3.2a, b), gives u ∼ 1 − ε̂ln(Re) − 2ε̂ln(ε̂) + ε̂ln(z̃) − εUwall + εUwall ,
with the first two and the last two terms cancelling, as required to satisfy the no-slip
condition.

Turning to the y-momentum equations, (2.9), we make the substitutions (3.1a, b),
and then the O(β) balance involves the fully turbulent ˜̃v:

∂ ˜̃v

∂x
+ 2K̂2

˜̃u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2

∂

∂z̄

(
z̄2 ∂ ˜̃u

∂z̄

∂ ˜̃v

∂z̄

)
, z̄ < z̄J ,

a1δ̂1

∂2˜̃v

∂z̄2
, z̄ > z̄J .

(A 4)

To establish (3.2b), we assume that ṽ = ṽe + ṽb, where ∂ṽe/∂z̄ ≡ 0 by definition, and
ṽb → 0 as z̄ → ∞. The assumption supposes that ṽb is not a constant, which we now
show leads to a contradiction. The O(β2) balance of (2.9) is

∂ṽb

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2

∂

∂z̄

(
z̄2 ∂ ˜̃u

∂z̄

∂ṽb

∂z̄

)
, z̄ < z̄J ,

a1δ̂1

∂2ṽb

∂z̄2
, z̄ > z̄J .

(A 5)

Importantly, β no longer appears explicitly in (A 4), (A 5). Both equations are satisfied
at the edge of the layer where all stresses are zero.

Equation (A 5) suggests that ṽb ∼ c2ln(z̄) as z̄ → 0+, for non-zero c2. This leading-
order behaviour near the wall implies that v ∼ ε2ṽe + ε2c2ln(z̄) + εε̂˜̃v, but then
v → ε2c2ln(z̄) as z̄ → 0+, contradicting the no-slip condition v ≡ 0 on z̄ = 0. Therefore,
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Figure 11. Length scales and regions of the small-ā1 analysis.

ṽb ≡ 0, as although any constant satisfies (A 5), only ṽb ≡ 0 satisfies also the boundary
condition as z̄ → ∞. Hence, ṽ ≡ ṽe exactly. We show in § 3.3 that ˜̃v ∼ 2a−1

2 K̂2z̄ln(z̄)−βṽ

as z̄ → 0+, such that v ∼ ε2ṽ + εε̂2a−1
2 K̂2z̄ln(z̄) − ε2ṽ, with the first and last terms

cancelling in order that v satisfies the no-slip condition.

Appendix B. Small-ā1 analysis when planar turbulent effects dominate
To confirm that the sudden bending of f close to the centreline is smooth on a

short length scale, we neglect the outer part of the turbulent model based on the
small size of a1 = 0.0168. This approximation corresponds to a rational analysis for
ā1 = a1ÛCL

tending to zero (Neish & Smith 1988). The major feature when ā1 is small
is that the two linear sections of f – the first when f increases in line with its small-X
asymptote and the second when f is apparently constant – describe the majority of
the solution.

Here, X ∼ X0 + χX̃, f ∼ 1 − ∆f̃ (X̃), where X0 is constant, and ā1 = δÛCL
for δ � 1,

where ÛCL
is considered an O(1) constant since ÛCL

= a2X0 + O(χ). In region I of
(5.8) (figure 11), τ I denotes τ while τ II denotes τ in region II. Since z ∼ 1 in region II,
τ II ∼ χ−1, and (5.12) gives τ I ∼ δ. Additionally, z =1 − ∆z̃ in region I and so χδ ∼ ∆2.
Finally, df/dX ∼ 1 in the bending region in order to match with the incoming O(1)
slope since f = 2a2X0 + O(δ) there because the small-X asymptote is f ∼ 2(a2 − ã1)X
from § 5.2. Thus, δ ∼ ∆ ∼ χ , which fixes the local scalings.

With τ I ∼ δτ (1), the diffusion equation

τ
(1)

X̃
= ÛCL

τ
(1)
z̃z̃ (B 1)

is subject to the conditions

τ (1) = 0 at z̃ = 0, τ (1) =
ÛCL

a2

at z̃ = f̃ (X̃), (B 2)

requiring the junction contribution f̃ (X̃), as discussed later. To match τ across the
junction and with the incoming flow, we take

τ II = τ0(z) + δτ (X̃, z) + · · · , (B 3)

with the profile τ0(z) known, giving

τ1X̃ = a2

(
z2τ 2

0

)
zz

(B 4)



Turbulent flow in a bent pipe 491

when z ∼ 1, subject to the conditions

τ0(z) = 0 at z = f, τ =
ÛCL

a2

at z = f, (B 5)

consistent with neglecting the outer part of the model. Integrating (B 4) yields

τ = a2X̃((zτ0)
2)zz +

ÛCL

a2

. (B 6)

Close to the junction, where z = 1−∆z̃, τ II ∼ δτ (2) with the inner part of (5.8) becoming

τ
(2)

X̃
= a2

(
τ (2)2

)
z̃z̃
, (B 7)

a nonlinear diffusion problem for τ (2) discussed later. The local-bending problem (B 7)
has not been solved, but it allows matching upstream at large negative X̃ with the
incident straight-f form which holds ahead of the bending region, and its downstream
properties are now described.

Anticipating an X̃-invariant f∞ downstream yields

τ (1) = λ1z̃ + λ2 as X̃ → ∞ (B 8)

from (B 1), with λ2 = 0 from (B 2) and λ1 = ÛCL
/(a2f̃ ∞) from (B 2). Supposing for now

that relatively far downstream there is no streamwise flow development to influence
the junction, (B 7) in the limit X̃ → ∞ suggests

τ (2) = (µ1z̃ + µ2)
1/2, (B 9)

with µ1, µ2 unknown constants. Continuity of τ therefore requires(
ÛCL

a2

)2

= µ1f̃ ∞ + µ2, (B 10)

while continuity of ÛX requires ÛCL
τ

(1)
z̃ = a2(τ

(2)2)z̃ at z̃ = f̃ ∞. Furthermore, (B 8), (B 2),

(B 9) give µ1 = Û 2
CL

/(a2
2 f̃ ∞) and therefore µ2 = 0. In summary:

τ (1) ∼ ÛCL

a2f̃ ∞
z̃, τ (2) ∼ ÛCL

a2f̃
1/2
∞

z̃1/2, (B 11a, b)

as X̃ → ∞. Since the predictions (B 11a, b) were obtained by considering only the
leading-order correction term, the simplifying assumption of this Appendix leads to
a useful indicative tool with ÛCL

constant.
Briefly returning to (B 7), the condition on τ (2) as z̃ → ∞ required to match with τ

in (B 3)–(B 6) raises some questions. If τ (2) ∼ cz̃ as z̃ → ∞ for non-zero constant c, then
(B 3) requires τ II ∼ f1(z)+δf2(X̃, z) such that f1(z) ∼ δcz̃ as z approaches the junction.
This suggests setting f1(z) = c(1− z) such that τ II ∼ c(1− z)+ δf2(X̃, z), where the first
term on the right-hand side matches with τ0 and the second with τ . However, the
incoming flow has τ = −(2a2)

−1 + z−1 from (4.5), which suggests that T = (1− z/2a2)
2.

With the scale change, T0 ∼ (1 − z)2 near the junction seems to imply that c = 0 in the
above, indicating a term in z̃1/2 becoming important, making the downstream region
very much like the wake flow in Neish & Smith (1988). The schematic configuration
of the regions is represented in figure 12. The pseudowake flow for large X̃ feels
the inflow determined by solving the nonlinear problem for τ (2) and a continued
development of the interface between regions I and III may invalidate the results for
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Figure 12. Regions of the flow field.

large X̃ obtained above. As the thickness of the pseudowake region increases as X̃,
the region gradually feels the influence of the lower wall.

Finally, continuity of ÛX across z = f yields:

ÛCL
τ

(1)
z̃

∣∣
z̃=f̃

= 2a2τ
(2)τ

(2)
z̃

∣∣
z̃=f̃

. (B 12)

Once the nonlinear (B 7) has been solved for τ (2), (B 12) gives f̃ precisely and hence
the linear problem for τ (1), (B 8), can be solved.

Appendix C. Small-a1 analysis when turbulent effects dominate in three
dimensions

As in Appendix B, we use the smallness of a1 to neglect the outer part of the model,
giving

ÛX = a2

(
2 +

1

(1 − z)

(
(1 − z)2ln2(1 − z)Û 2

z

)
z

)
(C 1)

for z < zJ , from (5.27b, c) and (5.31). The boundary condition as z → 0+ is (5.28)
while Ûz = 0 at the unknown z = zJ . For compactness, we let F (X, z) = (Û/2a2) − X

and σ (X, z) = (1 − z)ln(1 − z)Ûz, and introduce the junction-fitted coordinate η = z/f

so that

FX =
1

f

(
f ′ηFη +

σση

1 − ηf

)
(C 2)

(where ′ denotes differentiation with respect to X), subject to

Fη = 0 at η = 1, Fη ∼ 1

2a2η
as η → 0+. (C 3)

The first of these conditions requires σ =0 at η =1 such that FX = 0 at η = 1 and
thus Û (z = f ) = 2a2X+ c1. Since neglecting the outer part of model ensures that there
is no significant variation in Û between z = f and the centreline z = 1, this gives the
centreline velocity as ÛCL

= 2a2X + c1 for X of order unity. This linear growth rate is
twice that of the corresponding result for the two-dimensional case.

The far-downstream position f∞ of the junction is determined from the limit X → ∞
in (C 2). Expecting FX = −1 as X → ∞, we consider σ = f 1/2

∞ (η2f∞ − 2η + d1)
1/2 for

constant d1. Since σ → −1 as η → 0+ from (C 3), d1 = f −1
∞ and σ = (η2f 2

∞−2ηf∞+1)1/2.
Finally, σ = 0 at η = 1 from (C 3) implies (f∞ − 1)2 = 0, giving f∞ = 1.

The small-a1 analysis thus shows that, after linear growth in the centreline velocity
for X of order unity, a downstream state emerges where the centreline velocity
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X

f

z

ÛCL

Figure 13. Predicted flow development from the small-a1 analysis if ÛX = 0 downstream.
This is a two-dimensional representation of the three-dimensional axisymmetric flow.

is constant and the junction position is constant and lies very near the centre-
line. This is an approximation to its true position. We conclude that the three-
dimensional axisymmetric case is in this way similar to the two-dimensional case; the
flow development predicted here is shown in figure 13.
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