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One-to-few and one-to-many branching
tube flows

By F. T. S M I T H AND M. A. J O N E S
Department of Mathematics, University College London, Gower St., London, WC1E 6BT, UK

(Received 21 May 1999 and in revised form 13 March 2000)

Branching tube flows are examined, for one mother to two, three or more daughter
tubes. The case of many daughters (abrupt multi-branching) models blood flow
through an arteriovenous malformation in the brain, while that of very few daughters
(gradual branching) applies elsewhere in physiology and surgical grafting, as well as
other applications including industrial ones. Theory and computation are presented
for two- and three-dimensional motions, under the viscous and inviscid effects of
small changes in mass flux between the daughter tubes, area expansion and turning
of the flow. Specific configurations for which flow solutions are obtained are (a) with
two large daughters, (b) with one small daughter/side branch, and (c) with multiple
small daughters.

The numerous physical mechanisms acting concern overall upstream influence and
through-flow, and flow separation and criteria for its avoidance, as well as criteria
for the amount of turning and area expansion possible without energy loss and other
factors associated with separation, and the role of the branching geometry versus that
of the mass-flux distribution in the daughters. In particular, configuration (a) allows
substantial separation-free turning and expansion only with certain shaping of the
outer wall and an area expansion ratio typically less than 1.2, whereas more daughters
involve a balance between geometry and mass flux. In (b), an abrupt pressure jump
is induced at the mouth of the small daughter, near which mass-flux effects tend
to dominate over geometrical shaping effects. In (c), as the number of daughters
increases, the amount of separation-free turning and expansion is found to increase
substantially, and the distributed mass-flux influence readily overrides the geometrical
influence throughout the branching; there is also an integrated upstream effect of the
multi-branching on the incident mother flow even though each daughter flow acts as
if independent. Tentative designs based on wall shaping, flux distributions and divider
placement are considered for flow improvement/surgery.

1. Introduction
This investigation concentrates on certain basic internal branching flows, the

branchings being from one mother tube to few or many daughter tubes down-
stream. The fluid is assumed incompressible, and both inviscid and viscous effects are
taken into account in the theory and computations.

The motivation for the work is primarily from physiological flows where branches
are extremely common, throughout the human body for example, and involve various
complex geometrical configurations and flow conditions associated with different
ranges of Reynolds numbers, pulsatility, wall flexibility and so on. Many previous
studies (for example Roach, Scott & Ferguson 1972; Motomiya & Karino 1984;
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Fisher & Fieman 1990) address typical/modelled aortic or carotid branchings for
instance with one mother flow bifurcating into only two or three daughters at most;
see Lighthill’s (1972) comments on early generation branches in the cardiovascular
system and in the lungs. Our particular interest was also aroused by the clinical work
of Mr N. D. Kitchen, at the Institute of Neurology, on arteriovenous malformations
(AVMs) in the brain. An AVM constitutes a sudden division of a feeding artery
into numerous thin vessels, as if for an abrupt multiple branching. These vessels
overall appear to enlarge the flow area locally, serving as direct shunts for blood flow
between the high-pressure arterial system and the low-pressure venous system. AVMs
are associated with a large pressure gradient but small vascular resistance (Handa et
al. 1993; Miyasaka et al. 1993; Young et al. 1994; Hademenos & Massoud 1997 and
references therein), yielding relatively rapid blood flow through the multi-branched
system. AVMs represent a major life threat (stroke), particularly to people aged under
50. Several surgical procedures exist, such as clipping or glue casting, to attempt to
reduce, and/or alter favourably the distribution of, the mass flux through the AVM
and hence through the feeding artery upstream: Neil Kitchen, private communications,
1997–1999. These procedures suggest (as indeed did Neil Kitchen) a study on the
effects of varying the mass-flux distributions across the daughter tubes in an abrupt
multi-branching system and on the crucial impact of upstream influence, from the
daughters to the mother tube flow. The same aspects hold for other branchings but
they seem particularly significant in the multi-branching context. Again, models have
been proposed for the intracranial blood vessel network (e.g. Hademenos, Massoud &
Viñuela 1996; Gao et al. 1997), incorporating an AVM model, and these also require
improved understanding of the substantial influence from an AVM-like local multiple
branching on the total contained flow. Most of the branched flows of interest here
are predominantly laminar, with Reynolds numbers varying from a few hundred to a
few thousand, and can be taken to be quasi-steady because of the short length scales
near the branching and hence short typical time scales compared with the long-scale
oncoming flow.

More appreciation of branched flows, in particular a prediction for the critical
turning angle at which flow reversal/separation is encountered, should also point to
improved designs for other surgical procedures, as in grafting (e.g. Lei, Kleinstreuer
& Archie 1997), and in such non-physiological applications as plumbing, engine and
machinery dynamics, for example in fluid ejectors and distributors. The consideration
of efficient designs for the latter is close to that of the highly efficient flow through
an AVM branching. Indeed another prime new feature of concern is that of multi-
branching, with say three or more daughter tubes, and the need for increased physical
understanding of the overall fluid dynamical response and how it varies with the
number of branches present (as well as with shaping and with mass-flux distribution).

Among the simplest two-dimensional and three-dimensional branched flow models,
in theory, are those for one-to-two branchings posed and studied by Smith (1976a,
1977a), Bates (1978) and Brotherton-Ratcliffe (1987), for either fully developed inci-
dent motions or undeveloped entry motions in the mother tube. These are specifically
for straight plane-channel or circular-pipe branches, with (thus) negligible turning of
the outer walls and negligible area expansion of the contained flows, and with a single,
essentially flat, divider wall between the two daughter tubes. Subsequent studies in
the three-dimensional setting are by Bennett (1987) and by Walton & Smith (1997)
who find pronounced longitudinal-vortex behaviour close to the intersection between
the divider and the outer wall.

The papers mentioned just above point to the critical angles or relative thicknesses
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of the branching geometry being of the order of the inverse Reynolds number to the
one-third power if, as here, the focus is on distances (measured from the branching)
not much greater or less than the characteristic cross-sectional dimension (aD) of the
tube and the Reynolds number (R) is large. The tube is, for example, either a channel
with width 2aD or a pipe of radius aD, while the typical R values of practical interest
are about 300–3000, giving critical R−1/3 values, about 0.1, which are suitably small
for the theory. The latter values are close to the value, about 0.2, noted by Lighthill
(1972) for early generations of branching in which he considers the area expansion
ratio β (of the combined area of the daughters to the area of the mother tube) at a
branch and quotes 1.2 as the typical maximum value for avoidance of flow separation.

Likewise, approximations for large R are found to work well at practical finite R
values in internal flows according to comparisons in Dennis & Smith (1980), Smith
(1977b, 1980) and Sobey (1980), for example, and serve as a reasonable model for
providing physical insight. Direct numerical simulations have also been performed
for branchings, see for instance Hademenos & Massoud (1997), shedding some light
on one-to-two branching flows, although much less appears to have been done on the
more difficult case of one-to-many branches.

The present investigation starts with two-dimensional channel flow, and tackles
certain basic issues of this branching first. Many of these then apply immediately
in the three-dimensional setting addressed later. In a similar vein, quasi-steadiness is
assumed (see also earlier comments) although we may expect fully unsteady motions
to respond similarly over the wide range in which they do not disrupt the flow scales
involved in the branchings. The mother tube and its fluid flow are supposed to be
straight upstream although the local theory can accommodate non-straight input
instead, just as it accommodates non-straight daughter tubes and flows downstream.
The fluid is taken as Newtonian, and the walls are taken to be fixed (see also Luo
& Pedley 1996, 1998). The main questions arising, which need to be answered first
for basic cases as considered here, include that of whether flow separation can be
avoided at a branching, whether the cross-sectional area can expand without inducing
separation, how much upstream influence is provoked by a one-to-few or a one-
to-many branching, and what is the role of mass-flux variations in the daughters,
especially in multi-branchings?

Several physical mechanisms are found to be present, some well known, some
not, in these branching motions. In particular there is in the present setting a
fairly clear distinction between, on the one hand, the flow properties in mid-flow
branchings corresponding to large daughter tubes, where the branched geometry
plays an important role, and, on the other, those in near-wall branchings of a small
daughter or side branch and in multiple branchings with many small daughters,
where the role of the daughters’ mass flux usually overwhelms that of the branching
geometry. Further, as the number of daughter branches increases, increased turning
and area expansion are found possible with separation-free flow (a good design
property for grafting, in principle, although subject to increased viscous resistance for
thinner tubes or longer streamwise scales), while the mother flow ahead of the branch
is affected mostly by the daughter mass-flux distribution.

Here we assume usually that small changes in the mass fluxes are prescribed, rather
than pressures in the daughter tubes as well as in the mother, and the distribution
of the pressure head loss can then be predicted for given total mass flux and hence
Reynolds number. These fluxes are set by control of the far downstream pressures in
each branch relative to the upstream pressure in many contexts, but the main pressure
control is not usually on the streamwise length scale aD of current interest. Instead it
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is on the larger viscous scale of order aDR, mostly beyond the daughter mouths, and
this larger-scale flow helps to fix the mass flux for each daughter of the branching.
Such viewing of the imposed pressure drops over a relatively long streamwise scale
is familiar for most flows through slender tubes and, in the present branching flows,
it leaves the pressure drops as not necessarily known over shorter streamwise scales
near the branching itself. Further, in other contexts such as the surgical procedures
for AVMs the flow control is based not on direct pressure adjustments anyway but
more on adjusting the geometry or flux, or both, e.g. as in the glueing or clipping of
daughter tubes. So although a formulation with prescribed pressure drops could be
applied in all such cases a formulation with prescribed fluxes is just as relevant, if
not more so, over the current short length scale. Further properties are described in
recent work by Smith (2000a). An exception arises for many small daughters, where
the viscous length scale shortens and so the two formulations come together, in which
case both should be considered.

Since in these branched flows the incident motion must adjust itself significantly
upstream of the branching, in order to provide the correct mass flux for each
daughter, we consider streamwise distances comparable with aD , prior to any larger-
scale fully viscous development further downstream. This is as anticipated above.
Upstream influence is indeed a key feature throughout and is associated mostly with
distances comparable with aD . The influences of wall shapes and the daughters’ mass
fluxes are also examined below with a view, however remote, to possible designs for
reconstructive surgery for example.

Clearly the aim in this work is to develop a simple model first. Some of its important
limitations have been mentioned already, in the last but three paragraph. In addition
viscous effects are insignificant on the current length scales except near the outer wall,
and the whole assumed geometry is idealized. The applicability of this simple model
remains to be seen. Although direct application to the practical settings described
earlier is unlikely, the comparisons at finite R, also noted earlier, are encouraging
and the theory is expected to establish guidelines, scales and the relevant physical
mechanisms, as well as indicating future studies, for the branching flows in question.

Section 2 describes the branching flow structure, which is the same essentially
for two- or three-dimensional cases, with a linear inviscid core supplemented by a
nonlinear viscous outer wall layer. The core motion is unaffected by the outer wall
geometry in the present setting. Attention is then paid first to symmetric planar
branched motions, leaving aside the special extra features of non-symmetric planar
motions in Smith (1977b), Smith & Duck (1980), Borgas & Pedley (1990) and
others. Three main configurations are studied in §§ 3–5 for planar motions. Thus § 3
considers one-to-two branching with two large daughters, corresponding to a central
divider downstream. The effects of various incident velocity profiles are examined,
including those of plug flow, uniform shear flow and fully developed flow, here and
in subsequent sections. In § 4 a small daughter is considered, giving a side branch.
This can produce, near the mouth of the daughter tubes, a rapid acceleration or
deceleration and an abrupt pressure jump; an inkling of the latter is given in some of
the flow computations by Luo & Pedley mentioned above for flexible walls, while other
flows inducing related pressure jumps are discussed by Jones & Smith (2000), Jones
(2000), Bowles & Smith (2000) and Smith (2000b). Section 5 describes one-to-many
branching flows, where again there is an abrupt pressure jump. Such multi-branching
motions force the mass-flux or pressure requirement of the multiple daughter system
to apply immediately at the branching section, in controlling all the mother flow
upstream, whereas all the daughter flows act independently beyond the daughter
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mouths. Three-dimensional branchings are then addressed in § 6, concentrating on
one-to-two and (more especially) one-to-many branches of a mother pipe of circular
cross-section. The same properties hold as for the planar cases except for the addition
of corner vortices as in Walton & Smith (1997). Section 7 provides further comments.

2. The general flow structure in two dimensions
The Cartesian coordinates x, y, z, corresponding velocity components u, v, w and

the pressure variation p used here are non-dimensionalized with respect to a typical
cross-sectional width (aD) and incident velocity uD, so that in the planar cases of
§§ 2–5 the channel half-width is unity and the incident velocity profile u = u0(y) in
the streamwise direction x is of order 1. The Reynolds number R ≡ uDaD/νD is large,
νD being the kinematic viscosity of the incompressible fluid. For a straight mother
channel the profile upstream u0(y) is taken to be positive except at the undisturbed
channel walls y = 0, 2 where it is zero, with an order 1 derivative, u0(y) is symmetric
about the centreline y = 1, and flow symmetry about y = 1 is assumed throughout.
The stream function is ψ for the planar case, with ψ zero at the wall y = 0, the three-
dimensional case being addressed later in § 6. Branching starts at the station x = 0
say, from the single mother to an order-one number N of daughters downstream.

A small expansion of the characteristic cross-sectional area enclosed and small
directional changes are examined first below, followed subsequently (see § 3.3) by
consideration of larger turnings due to the tube branching. The streamwise length
scale |x| of interest is of order unity.

For large R, if the typical gap width α of a daughter tube is O(1), then its typical
wall (divider) thickness is taken to be of size O(R−1/3). The size follows from the
order of magnitude |y| of the viscous layer thickness at the outer wall and its inertial–
viscous balance u∂/∂x ∼ R−1∂2/∂y2 giving |y|/1 ∼ R−1/|y|2 and so |y| ∼ R−1/3 there
(as anticipated in § 1). This outer-wall thickness is strictly much greater than the
O(R−1/2) thickness of each viscous Blasius boundary layer that is produced on each
inner divider, and hence the outer wall layer is exceptional as it is the most sensitive to
changes taking place in the inviscid core flow during the tube branching. See figure 1.
The particular scale R−1/3 of divider thickness makes these changes affect the motion
in the outer wall layer in a nonlinear manner, thus raising the possibility of flow
separation occurring there.

2.1. The core

The divider shape has y = yn + R−1/3f±n (x) say, on the typical nth divider wall for
x > 0, with |fn| ∼ 1, fn(0) = 0 if the divider’s leading edge is not too blunt, and n
runs from 1 to N. So the streamwise velocity u in the core where 0 < y < 1 has the
form u0(y) +R−1/3ũ(x, y) and similarly for ψ, p, and the Navier–Stokes equations then
reduce to the inviscid small-perturbation system

u0∇2ψ̃ = u′′0ψ̃ (2.1a)

for ψ̃(x, y) where ũ = ∂ψ̃/∂y and ∇2 denotes (∂2/∂x2 + ∂2/∂y2). The boundary
conditions are

ψ̃ = −u0(yn)f
±
n (x) + cn at y = yn±, (2.1b)

ψ̃ → 0 far upstream, (2.1c)

ψ̃ = 0 at y = 0 (all x), y = 1 (for x < 0), (2.1d)
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Figure 1. Sketch of the multi-branching flow structure, showing the inviscid core in the mother
and daughter tubes, the R−1/3 viscous outer wall layer and the R−1/2 viscous layers on the dividers
between daughter tubes, in non-dimensional quantities. The scaled mass-flux values are c0 to cN
with N = 6 in this case.

along with regularity of ψ̃ within the core motion. Here (2.1b) is for tangential flow
on each divider, sited at y = yn + R−1/3f±n with the characteristic yn+1 − yn gap being
α, of order 1, and n = 1, 2, . . . , N, with yN = 1. The given constants cn are associated
with the small changes cn+1 − cn in mass flux prescribed for each daughter channel
as in figure 1, along with c0 = cN = 0 for overall mass conservation, in line with the
comments on flow control in § 1.

The constraint (2.1c) is to satisfy the incident conditions, whereas (2.1d) is to yield
tangential motion at the outer wall and symmetry along the centreline. We notice that
there is no influence yet from the outer-wall shape y = R−1/3fW (x). The coefficient
multiplying f±n (x) in (2.1b) confirms the exceptional nature of the outer-wall flow
since there u0 is zero, while on the dividers the fact that the Blasius boundary-layer
thickness is proportional to R−1/2[u0(yn)]

−1/2 and so increases as u0 decreases also
anticipates the outer wall-layer thickness being larger than the thicknesses of the
divider boundary layers, so that all of the latter can be neglected, at least in the
current setting.

The core flow response above can also be expressed in terms of a pressure equation
for example, with ψ̃ replaced by p̃ and u′′0 by 2u′0 in (2.1a), but we shall keep mostly
to the mass-flux formulation. The inviscid core problem (2.1a–d) is a closed one,
determining among other properties a slip-velocity effect uW (x) ≡ ũ(x, 0) at the outer
wall.

2.2. The wall-layer flow

The outer wall layer has y = R−1/3(Y + fW (x)), with Y ∼ 1 incorporating a Prandtl
shift, and the flow is driven partly by the slip effect uW (x). Thus now u, ψ, p are
respectively R−1/3U,R−2/3Ψ,R−2/3P (x) to leading order, giving the boundary-layer
equations

U =
∂Ψ

∂Y
, U

∂U

∂x
− ∂Ψ

∂x

∂U

∂Y
= −P ′(x) +

∂2U

∂Y 2
(2.2a)

with ∂P/∂Y zero from the y-momentum balance, and with the boundary conditions
of no slip at the outer wall, of matching with the core flow solution and of matching
upstream, so that

U = Ψ = 0 at Y = 0, (2.2b)
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u0(y) 1+R–1/3f –
1

O(R–1/3)

( y=1)

( y=0)

MW=1

DW

O(1) R–1/3fW

Figure 2. Two large daughter tubes, with symmetry about y = 1: § 3. Here N = 1, the mother
half-width and daughter width are MW,DW respectively, and the wall shapes (divider, outer, in
turn) are given by f−1 (x), fW (x) with x of order unity.

U ∼ λ[Y + B(x)] as Y →∞, B ≡ λ−1uW (x) + fW (x), (2.2c)

(U,Ψ, P )→ (λY , 1
2
λY 2, 0) as x→ −∞, (2.2d)

in turn. Here λ, denoting u′0(0), is of order 1. A normalization of U,P , Y , B with
λm, m = 2/3, 4/3,−1/3,−1/3 in turn, and rescaling, allows λ to be replaced by unity
in effect above; it is also found below that uW tends to scale with λ anyway.

The influence of the outer-wall shape is now present explicitly in (2.2c), while that
of the inner dividers and mass fluxes is felt via the slip velocity uW (x). This slip
now acts as part of the effective displacement B(x) because, with the incident linear
profile U being proportional to Y , an alteration in U due to slip transforms directly
into a displacement in Y . The conversion from slip to displacement is from Smith
(1978) and related papers and it is important because it leaves the wall pressure
unknown and thereby renders any flow reversal (separation) within the wall layer a
regular process, despite the classical attached nature of the core flow. The influence
of the inner dividers on the motion near the outer wall is therefore due to a pressure-
feedback mechanism through the core, the ellipticity of which provokes the major
upstream influence, in particular within the outer wall layer even though the latter
of course contains no dividers itself. In general uW is non-zero in x < 0 despite the
branching being confined to x > 0. For the present context the effective displacement
driving the viscous outer wall layer is dominated, ahead of the outer-wall turning,
by the influences of the inner divider shapes and mass fluxes, and thereafter by a
combination of those influences and the outer turning.

The branching flow properties hinge on solving the core problem (2.1a–d), to find
uW (x) among other quantities, and then the wall-layer problem (2.2a–d), to find
for instance the unknown scaled wall pressure P (x) and the induced wall shear
τ(x) [≡ ∂u/∂Y (Y = 0)]. The core problem is tractable for general N in principle, for
example by use of a Wiener–Hopf technique, but three specific cases are more helpful.
These are studied in §§ 3–5, followed by three-dimensionality in § 6.

3. With two large daughters
In this fundamental branching the gap width α = 1, corresponding to the case

N = 1 (figure 2). The flow solution shows explicitly the effects of the single, central,
divider wall and of the outer-wall shape. We continue first with slight turnings present,
addressing substantial turnings afterwards.
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Figure 3. Slip-velocity results for two large daughter tubes calculated from the inviscid core, for
the three incident profiles of plane Poiseuille flow, uniform shear and uniform velocity yielding (3.2),
(3.3), (3.4) in turn, with a wedged divider shape.

3.1. The core

In the core the only cn values now are c0, cN, both zero, and (2.1b) becomes ψ̃ =
−u0(1)f−1 (x) at y = 1.

For plane Poiseuille flow upstream, u0 ≡ y − y2/2, so that λ = 1, u0(1) = 1/2, and
the solution of (2.1a–d) can be obtained in series form (Tillett 1968)

ψ̃ =


∞∑
1

σne
βnxsn(y) for x < 0, (3.1a)

hxu0(y) +

∞∑
1

σ̃ne
−βnxsn(y) for x > 0. (3.1b)

Here the example chosen is that of a linearly increasing divider f−1 (x) ≡ −hx with
h a positive constant, x > 0, giving a wedge shape. The positive increasing eigen-
values βn and eigenfunctions sn(y), normalized such that s′n(0) = 1, are as in Tillett’s
analysis in effect (although the An values quoted in his table 2 and page 282 are
incorrect); we find numerically the first five eigenvalues β1 to β5 to be respectively
2.58915, 5.97050, 9.19787, 12.38573, 15.55684, with the corresponding coefficients σ1

to σ5 being h times 0.31459, −0.10032, 0.060612, −0.043617, 0.034122, respectively.
These coefficients are found by equating ψ̃, ∂ψ̃/∂x at x = 0± from (3.1a, b), which
requires σ̃n = σn and Σ βn σn sn = hu0/2, and then applying orthogonality. From this
we deduce

uW (x) =

∞∑
1

σne
βnx (x < 0), λhx+

∞∑
1

σne
−βnx (x > 0) (3.2)

for the slip velocity (figure 3).
Alternatively, for an input profile which is uniform in the middle, u0 = 1 for
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δ 6 y 6 1, and linear next to that, u0 = y/δ for 0 6 y 6 δ, with δ constant, the core
flow is governed by Laplace’s equation from (2.1a), with suitable continuity conditions
across y = δ. The solution when δ is near unity, corresponding to constant incident
shear u0 = y almost everywhere, stems directly from applying the constraints (2.1b–d)
and gives

uW (x) = π

∞∑
m=1

m(−1)m−1f∗(−imπ) exp (mπx) (for x < 0), (3.3a)

uW (x) = π

∞∑
n=1

n(−1)n−1f∗(inπ) exp (−nπx) + EC (for x > 0) (3.3b)

(figure 3), where f∗ denotes the Fourier transform in x of −f−1 (x). The extra con-
tribution EC is a pole or branch-cut contribution from f∗ itself, and depends more
on the specific divider shape, given that the transform of uW is equal to ωf∗/ sinhω.
An example is given shortly below. When δ is small, on the other hand, the main
middle portion must satisfy ∂ψ̃/∂y → 0 as y → 0+ instead of (2.1d). This is because
the side portion has ỹ = y/δ of O(1), yielding ũ0∂

2ψ̃/∂ỹ2 = ψ̃d2ũ0/dỹ
2 to leading

order from (2.1a) (generalizing to u0 ≈ ũ0(y/δ) here), so that ψ̃ = ãũ0(1 + O(δ2)) to
satisfy (2.1d) (which gives uW ∼ δ−1ãdũ0/dỹ (ỹ = 0)) with ã(x) to be determined, and
hence ψ̃ → ã, ∂ψ̃/∂ỹ → 0 at large ỹ, indicating the above requirement for the middle
portion. It follows then that the middle section yields formally (see figure 3)

uW (x)

λ
=

∞∑
m=1

(−1)m−1f∗
[−i

(
m− 1

2

)
π
]

exp
{(
m− 1

2

)
πx
}

(x < 0), (3.4a)

uW (x)

λ
=

∞∑
n=1

(−1)n−1f∗
[
i
(
n− 1

2

)
π
]

exp
{− (n− 1

2

)
πx
}

+ EC (x > 0). (3.4b)

The wall-shear factor λ = δ−1dũ0/dỹ (ỹ = 0) is of course large here, and we notice
that the wall slip velocity scales with λ, this representing a general trend. In the case
f−1 (x) = −hx exp (−εx) for x > 0, with h, ε being positive constants, EC in (3.4b) is
h exp (−εx) (x − tan ε) sec ε (and similarly in (3.3b)). This becomes hx in the limit as
ε tends to zero, corresponding to a wedge-shaped divider, as in (3.1a, b), and then
uW ∼ λhx increases linearly far downstream. The latter result generalizes, for a shape
f−1 (x) ∼ −h(γ0 + γ1x) at large positive x, with γ0, γ1 constants, to give accelerating
near-wall flow with

uW ∼ λh(γ0 + γ1x) as x→∞ (3.5)

for a general u0(y) profile, in agreement with (3.2) in particular.
For all the incident flows above, the induced slip velocity is exponential, and

positive, in x sufficiently upstream of the branching. That seems a general property,
in addition to (3.5) downstream. Moreover, the closeness of the uW/(λh) variations
with x for the three cases (3.2)–(3.4) is striking, in figure 3, for three such different
incident flows.

3.2. The wall-layer properties

Computations for the resulting viscous wall-layer flows were performed with an
implicit box method, e.g. see Rothmayer & Smith (1998), and results are presented
in figure 4 under various conditions, in Poiseuille flow. Figure 4(a) has two cases
(denoted 1, 2), each with a straight divider (dvdr) and wall shape (gsh) that produce
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Figure 4. (a–c) Viscous wall-layer results computed in seven cases 1–7 (in each the divider shape
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comparison.
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flow turning downstream together with a uniform increase in the gap width, as
reflected in the corresponding displacement effects B shown. One case (2) has a larger
angle of turning, however, and this alters B sufficiently that wall-layer separation
(negative τ) is provoked downstream of the start of the turning, accompanied by a
relatively rapid rise in the induced wall pressure. The downstream separation occurs
despite the increased flow attachment upstream represented by increased τ values and
a strengthened pressure drop. Figure 4(b) in contrast shows the effects of keeping the
divider shape and the flow turning angle fixed but varying the wall shape such that the
downstream gap width is varied. The increase in the latter width from case 3 to case 4
just produces flow separation again with an enhanced adverse wall-pressure gradient,
mainly because the imposed distortion of the wall shape (giving area expansion) is
larger everywhere upstream and so |B| is also larger. Figure 4(c) also has the divider
shape kept fixed and straight but the three cases shown (5, 6, 7) all have outer wall
shaping that yields a contraction of the area, either with overall flow turning (cases 5,
6) or without (case 7). Each of the three yields a monotonically increasing response
in B and hence enhanced shear and monotonically falling pressure at the outer wall
throughout the branching, and the increases in these effects from case 5 to 6 to 7 are
exactly in line with the associated increases in area contraction.

The results establish that for flow reversal to be avoided or confined the key function
B in (2.2c–e) must be kept at O(1) typically. Even though the central divider shape
f1(x) generally provokes upstream acceleration (uW positive), suggesting a favourable
wall-pressure gradient and increasing wall shear in the wall layer for x < 0, this can
readily be followed by deceleration and then flow reversal after the branch in x > 0.
The latter occurs if there is too large or too abrupt a flow expansion (with fW < 0),
the more so as the thicknesses |f−1 | and |fW | are increased. To counter the trend
towards flow reversal the wall deviation fW must usually be allowed to start ahead
of x = 0, as the figures above show, but with suitable shaping in order to keep the
combined displacement effect B sufficiently smooth and bounded. Similar reasoning
applies downstream, where with overall flow turning present f−1 leads to the slip (3.5),
while fW ∼ −h(γ̃0 + γ̃1x) say, with γ̃0, γ̃1 constants, and so from (2.2c)

B ∼ h(γ1 − γ̃1)x+ h(γ0 − γ̃0) as x→∞. (3.6)

Only the increase in gap width (fW−f−1 ) matters here, as might be expected physically.
In particular, if the daughter width tends to a constant DW downstream, with

DW = 1 + R−1/3β̂ then the geometry requires γ1 = γ̃1, h(γ̃0 − γ0) = β̂. That yields an

effective area expansion if β̂ > O(γ̃0 > γ0). This expansion can also preserve attached
flow, or confined reversal of flow, provided B which is negative in (3.6) remains O(1)

then, from the results in figure 4, i.e. provided β̂ remains O(1). Thus, in principle, a
good (attached-flow) design for the branch keeps the area expansion fixed at O(R−1/3),
even while allowing further increased turning by means of increased fW , f

−
1 .

3.3. Substantial flow turning

Substantial turning of the flow, e.g. by 45◦, can likewise be achieved without substantial
flow separation, in principle at least. The O(1) wall-shape deviation produced then
has to extend upstream again, to counteract the increased slip velocity provoked by
the O(1) central divider thickness and maintain |B| at O(1). The extension upstream
in fact must continue for a distance which is logarithmically large in R, from Smith
(1978, 1979) and from the behaviour of uW as x → −∞. In addition, concerning
the downstream response in the branched motion, the width DW must remain as
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R–1/3fW

1
u0(y)

Core

c1

Core

Wall layer y

Core

x

α

Figure 5. Branching for an increasingly small daughter tube, of width α, as studied in § 4: the flow
structure.

before, 1 + R−1/3β̂ with β̂ order unity, if both area expansion overall and suppressed
separation are desired. If the wall shape does not deviate (expand) so much upstream,
then the viscous wall-layer motion becomes strongly attached far ahead of the divider,
because of the enhanced upstream influence. This strong attachment or contraction
in effect may be gained at the expense of the wall layer flow being unable to negotiate
smoothly the remainder of the branching, with its eventual area expansion required
overall downstream. Conversely, if the wall shape produces too much area expansion
upstream of the divider then the viscous wall layer separates far in advance, as
in Smith (1978, 1979), an equally undesirable design property. So, while the above
confirms that within the limitations of the current theory separation-free expansion
of area can be achieved/designed even with substantial turnings by the one-to-two
branch, the shape design is a rather delicate one.

4. With a small daughter (near-wall branch)
Here N = 2 and the daughter gap widths are α, 1 − α, with 0 < α < 1. There

are really three daughters across the whole channel, by symmetry, but we still need
consider only half the channel, as sketched in figure 5. There is also special concern
for small α values; two new mechanisms then become apparent as the near-wall
behaviour proves dominant. Again the mass flux increments are specified: c1 in the
near-wall daughter and −c1 in the middle one, and the relative effects of these and
the divider shapes are to be examined.

4.1. For gap widths of order unity

If α is of order unity then the core-flow problem (2.1a–d) is still difficult for an
arbitrary curved profile u0(y) when N = 2, owing to the mixed boundary conditions,
but significant progress can be made for the profiles u0 = y or 1. Then (2.1a) reduces
to Laplace’s equation and a conformal mapping procedure can be applied, giving the
flow solution exactly, for the simplistic case u0 ≡ y (see § 3.1),

ψ̃ =
c1

π
(θ1 − θ2), tan θ1,2 ≡ ȳ/(x̄∓ 1), (4.1a, b)

πζ = −α ln

(
ζ̄ + 1

α

)
− (1− α) ln

(
ζ̄ − 1

1− α
)

+ ln 2 + i π, (4.1c)
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Figure 6. Computed slip velocity for various α values from the inviscid core.

where ζ, ζ̄ denote x+i y, x̄+i ȳ in turn. Here (4.1c) serves to define x̄, ȳ. The resulting
slip velocity,

uW = −2c1 (x̄+ 1− 2α)−1 , (4.2)

is plotted against x in figure 6 for various α values. Clearly it is positive (negative)
if c1 is positive (negative). The above is for straight divider shapes, general thickness
effects being incorporated near the end of this section, whereas comparisons with
results for other N values are presented in the following section.

The solution in (4.1a)–(4.2) takes an interesting two-regional form as α is decreased
toward zero (for a near-wall branching), namely

ψ̃ = c1(1− y)− c1

π
tan−1

[
sin (πy)

exp (πx)− cos (πy)

]
, (4.3a)

ψ̃ = c1 − c1

π
tan−1(Ȳ /X̄), (4.3b)
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Figure 7. The slip velocity from the inviscid solution for small α leading up to the near-wall branch.
The subsequent response through the mouth of this branch is described in the text near (4.5a, b).

to leading orders, with x̄+ 1 = αX̄, ȳ = αȲ . Here (4.3a) applies everywhere except in
an O(α) region close to the near-wall entrance x = 0, where (4.3b) holds with

πζ =
[− ln(X̄ + i Ȳ ) + (X̄ + i Ȳ )/2 + ln 2− 1 + i π

]
α (4.3c)

being of order α (say ζ = α(X̂+i Ŷ ) where x = αX̂, y = αŶ ). The induced slip accord-
ingly develops two length scales |x|, one of O(1) in which uW ∼ c1/(exp (−πx)− 1)
upstream for x < 0, showing exponential decay far upstream followed by alge-
braic growth as x → 0−, and the other near the entrance where |x| is O(α) and

uW = α−1c1/(2 + X̄) is notably large (here πX̂ = ln |X̄|+ X̄/2 + ln 2− 1, X̄ ∼ 1). The
latter uW form decays to match the former as X̂(≈ X̄/2π)→ −∞, upstream, whereas

downstream as X̂ → ∞ (X̄ → −1) the slip uW tends to the comparatively large value
α−1c1 at the end of the O(α) entrance region. This larger slip downstream is consistent
with the mass flux increment c1 in the small daughter branch. See also figure 6.

4.2. Small gap, general input profile

The small-α core response for a general u0(y) profile then follows. Thus, away from
the near-wall mouth, (2.1a, c) still hold in most of the core (region I) but (2.1b, d) are
replaced by

ψ̃ = 0 at y = 1 (all x), (4.4a)

ψ̃ =

{
0 at y = 0 (x < 0) (4.4b)
c1 at y = 0 (x > 0). (4.4c)

The mass-flux requirement (c1) is felt in this outer motion, whereas other details of the
near-wall mouth are unseen. The solution of (2.1a, c), (4.4) can be obtained in series
similarly to that in § 3, for plane Poiseuille input for instance, and shows exponential
behaviour far upstream but algebraic blow-up in uW as x→ 0−, as demonstrated in
figure 7 for the slip velocity obtained from solving in the Poiseuille case.

Close to the mouth, on the other hand, the incident profile is linear to a first
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approximation and so (2.1a) becomes Laplace’s equation in the coordinates X̂, Ŷ (the
mouth region II of order α by α) subject to

ψ̃ = 0 along Ŷ = 0 for all X̂, (4.5a)

ψ̃ = c1 along Ŷ = 1± for X̂ > 0, (4.5b)

from (2.1b, d), and to matching with the outer solution above. Now the (simple)
geometry of the mouth is seen of course. The near-mouth solution, satisfying (4.5), is
therefore exactly as in (4.3b, c), for any input profile u0(y). In particular uW becomes
typically large, of order α−1, in the mouth region II where |x| is O(α) and inside the
small daughter branch.

4.3. Divider thickness effects

The addition of thickness effects along the branch at y = α allows arbitrary daughter
shapes to be accommodated also. Core solutions for a wide range of different
thicknesses f±1 (x) at y = α, with zero thickness f2 at the centreline, were obtained by
extending the conformal mapping approach of (4.1) in the case of incident uniform
shear and are presented in figure 8, for two values of α. The value of c1 is kept at
unity. For each α value figure 8 shows the effects on the induced slip velocity of
increasing the divider thickness. The indication is that as the gap width α becomes
smaller the influence of the daughter mass-flux parameter c1 tends to swamp the
thickness effects, within bounds, and certainly so near the mouth region.

With such thicknesses present the core-flow structure becomes three-regioned (I–III)
as α tends to zero, for the general incident profile u0(y). Region I is as before, in
(4.4), as a rule, since the outside shape f+

1 of the daughter channel cannot enter play
because of the factor u0(yn)(≈ λα) multiplying it in (2.1b); an exception occurs if
|f+

1 | is itself of order α−1 (or larger), although this does not alter the flow response
near the mouth. Region II, the order α by α mouth region, is likewise as before, in
(4.5), leading to the enhanced slip velocity uW ∼ α−1c1 downstream at large positive
X̂ just inside the small branch. Region III consists of the slender remainder of the
small-branch flow, where x is of order unity but y is small, 0 < y < α. So there the
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governing equation reduces to ∂2ψ̃/∂y2 = 0 in effect, yielding ψ̃ = (c1−M(x))y/α and
hence, to leading order,

uW (x) = α−1(c1 −M(x)), (4.6)

with M(x) denoting λαf−1 (x) from (2.1b) and usually being considered small. The
thin-gap result (4.6) matches with the region II solution at x = 0+ and with the
far downstream asymptote α−1c1 − λf−1 (∞) of uW when, say, the inner thickness is
constant there. A fourth region also suggests itself, along the outside of the small
daughter with y of order α for x > 0 and similarly for x < 0, but this is passive. Close
agreement with the three-regioned behaviour is evident in the results of figure 8.

4.4. The wall layer

The ensuing viscous wall-layer properties are shown in figure 9. Figure 9(a) has
increasingly positive values (1, 8, 40) of c1 prescribed, which yield increasingly positive
displacements B and hence increased shear and pressure drops along the outer wall.
Figure 9(b), which is for increasingly negative c1 values (−2,−4), shows B becoming
more negative and so inducing greater falls in the shear accompanied by rising
pressure, with the c1 value of −4 leading to a separation near the mouth of the
branch.

The viscous flow properties are therefore analogous with those in the previous
section except that here the major variation in the slip uW and hence in the key
displacement B, especially for small α, is usually close to the daughter mouth on
the O(α) streamwise length scale, and is dominated by the c1 mass-flux contribution
to uW . Aside from extreme conditions, the shapes of the small daughter walls are
insignificant locally then, although they can reassert control further downstream, and
the characteristic length of upstream influence is lessened compared with that in the
previous section. Close to the mouth, positive c1 values corresponding to an increase
in flux through the near-wall daughter lead to an acceleration of the viscous sublayer,
a favourable wall pressure-gradient response and hence increasing wall shear. As uW
approaches its nominal local maximum α−1c1 just beyond the mouth, the induced
wall pressure P tends to − 1

2
α−2c2

1 (Smith 1978) (or more generally − 1
2
B2), the wall

shear τ decaying like the inverse square root of distance as the wall layer motion
becomes very attached typically. This is unless c1 is reduced to O(α): beyond that, the
pressure and shear variation is more gradual and wall-shape effects f−1 , fW may enter
the reckoning, as in (4.6). Negative c1 values, in contrast, associated with decreased
daughter-channel flux, provoke rapid wall-layer deceleration and flow reversal, usually
of a breakaway separation form as α reduces, inducing adverse pressure gradients.

So reduction of separation would point to c1 having to be positive. Then, in
addition, an improvement of overall flow turning and area expansion seems possible;
f±1 , fW all being negative produce both turning and expansion even in the absence
of f−2 and the motion then remains separation-free provided that the daughter-gap
increment proportional to (f−1 − fW ) (cf. the previous section) does not increase too
rapidly in x downstream.

4.5. Comments

Two mechanisms are important in most of the above flow features. One concerns
the mass-flux effect c1 through the daughter, which is crucial near the outside wall,
including in the viscous wall layer, and is generally far stronger than the wall-shape
effect. The other is due to the branching being near the wall (α small), which reduces
the typical distance of the major upstream influence, overwhelming the effects of
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Figure 10. Branching with many small daughters: § 5. For general incident profile u0, the flow
structure with large N, small α, including the main three streamwise length scales of the mother,
mouth and daughter flows and the two lateral length scales.

increased thickness or mass flux unless the latter are extreme, and is allied with
the parabolic thin-gap property (as in (4.6)) describing the flow inside the thin
daughter channel thereafter. This reduction in upstream influence is tantamount to a
discontinuity being present in the flow solution (when viewed on the |x| ∼ 1 length
scale with y of order α for example) between the upstream and downstream solutions,
as in the abrupt leading-edge adjustments described by Jones & Smith (2000), Jones
(2000), Bowles & Smith (2000), Smith (2000b) for airfoil–ground, car–ground and
blade–wake interactions in external flows.

We note moreover, concerning the theoretical limitations again, that if α is reduced
further to O(R−1/3) the thin-gap flow on the O(1) scale in x becomes viscous–inviscid
provided that the mass flux c1 is also reduced by the same factor O(R−1/3), whereas
if c1 is maintained at order one, say, as α is reduced then the near-wall flow soon
becomes much more multi-structured, including the abrupt adjustment close to the
mouth as indicated above. That abrupt adjustment is in general forced to be nonlinear

when α is decreased to the order R−1/6c
1/2
1 ; the inviscid nonlinear solution then is still

given by (4.3b, c) however, locally, as described by Jones & Smith (2000).
The significance of the mass-flux and small-gap properties here leads on to the

study of a multiple branch in the following section.

5. With many small daughters (multiple branching)
In a multiple branching α is small withN large, such that αN remains O(1); see figure

10. The number of branches N is also assumed to be less than O(R1/3), which is about
10 say, because of the restrictions of the theory. The inviscid core is considered first.

5.1. Arbitrary number of daughters

We start by generalizing the mapping technique (Schwarz–Christoffel) from (4.1) to
an arbitrary number N of equi-spaced daughters with gap width α (here αN = 1) and
thin walls, for the input profile u0 = y. As in the previous two sections this u0 profile
is rather simplistic but it does lead on to subsequent generalization. A suitable map
from the branched channel to the upper half-ζ̄ plane is

ζ = C1 + κπi − κ
N∑
j=1

hj ln(ζ̄ − x̄j), (5.1a)
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where the constant C1 is real, for later convenience we use κπ = 1 which is the
channel half-width, x̄ = x̄j are the N mapped downstream ends of the daughters
and, for equal spacings, hj = N−1(= α). With x̄ = x̄∗k denoting the (N − 1) mapped
leading-edge points, the constraints

N∏
k=1,k 6=j

(x̄j − x̄k) = N

N−1∏
k=1

(x̄j − x̄∗k) (5.1b)

then apply for j = 1 to N as the branches are identical. Hence the x̄∗k values for k = 1
to (N − 1) are the roots of the polynomial

N∑
j=1

N∏
k=1,k 6=j

(x̄− x̄k) (5.2a)

in x̄. Further, since all the leading edges ζ = ζ∗k (k = 1 to N = 1) in the channel must
have the same real part, to line up, the x̄j values for j = 2 to (N − 1) are the roots of
the polynomial

N−1∑
k=1

(−1)N−k

(x̄∗2k − 1)

N−1∏
j=1,j 6=k

(x̄− x̄∗k)
(x̄∗j − x̄∗k) (5.2b)

in x̄, with x̄N, x̄1 set at ±1 respectively. So an iterative scheme can be used, finding x̄∗k
from the roots of (5.2a) for given x̄j values, then new x̄j from the roots of (5.2b) for
given (latest) x̄∗k values, and so on. Finally, the constant C1 is chosen so that the real
part of ζ∗k , which at iterative convergence is constant over k, is identically zero.

The flow solution now follows as

φ̃+ i ψ̃ = πκi − κ
N∑
j=1

(cj − cj−1) ln(ζ̄ − x̄j), (5.2c)

with velocity potential φ̃. The above map can be extended to unequal spacings of the
daughters and to arbitrary starting points (leading-edge positions), for instance as
in branchings through successive generations, and the flow solution can be extended
to include wall thicknesses, in principle. Numerical results are presented in figure 11
for N = 2, 4, 8 equal daughters with, across the tube, small alterations ±ε to the
successive mass-flux distributions in each daughter. The figure shows in each case
not only the disturbance field ψ̃ but also the complete streamline pattern ψ0(y) + εψ̃
for the two values ε = ±0.2 (when u0 = y), to illustrate the distinct effects of the
mass-flux distributions.

5.2. Many daughters, general input profile

When the gap width α becomes small, the flow develops an interesting sub-
structure. For increasingly large N, the x̄j values approach the distribution x̄j =
− cos[(j−1)π/(N−1)], in line with the computational solutions. From the substitution
(j − 1) = (N − 1)θ, the derivative of the map obtained from (5.1a) then tends to the
integral form

dζ

dζ̄
= −κ

∫ 1

0

dθ

(ζ̄ + cos πθ)
, (5.3)

formally, at almost all positions ζ outside the daughter channels. The integral here
is (ζ̄2 − 1)−1/2 and so the limit map is

ζ = C2 − κ cosh−1(ζ̄) (5.4)
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Figure 11. Inviscid core results for increasing N, decreasing α,
with incident uniform velocity or uniform shear.

for large N, with C2 a generally complex constant of integration but to be taken as
zero here, along with ȳ > 0, so that ζ̄ = − cosh (πζ). This map is simply that for the
mother channel alone, 0 < y < 1, x < 0, being transformed to the upper half-ζ̄ plane.
See figure 12, which shows the core flow disturbance, the slip velocity and the map
for a wide range of values of N (from use of (5.1)–(5.2)) and in which the closeness
of the results for values of N above approximately 3 to those for asymptotically large
N (obtained from (5.4)) stands out.

The implication is that, in most of the mother flow, the properties on order-unity
global scales matter more than the tiny daughter ones, and indeed the above shows the
flow structure there to be governed by the total/integrated flux entering the daughter
at each point y at the branching station x = 0. Thus ψ̃ is given by a single Cauchy
integral in x̄, ȳ (> 0), consistent with the limit of (5.2c), and uW (x) follows as a single
Cauchy principal-value integral multiplied by the mapping factor −π sinh(πx) (for
x < 0) almost everywhere in the mother. The flow properties are distinct in or beyond
the mouth of any given tiny daughter channel, however, whether near the outer wall
or not, as can be seen in the reasoning from (5.1) to (5.3). Whereas the multitude of
daughters act to impose a mass-flux distribution spanning the whole channel width,
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thus controlling the mother flow almost everywhere, in contrast each individual
daughter flow develops (once beyond the mouth) as if on its own, independently of
the rest of the flow field and subject only to its own mass-flux conservation. These
features of mother and daughter apply also to unequally spaced small daughters.

The same new features of global-mother and local-daughter flow apply for a general
incident profile u0(y) and arbitrary daughter spacings when α is small and N large.
Most of the mother flow now is governed by (2.1a, c, d) still, restricted to negative x,
subject to the mass-flux requirement

ψ̃ = C(y) at x = 0− . (5.5)

Here C(y) denotes the limiting mass-flux value at each y, defined if necessary by an
average (cn+cn+1)/2 at the daughter mouth y = (yn+yn+1)/2. Following the comments
in the introduction concerning flow control, the flux function C(y) is taken as specified
first, an example being presented in figure 13(a). This particular flux function is also
smooth in y, given that individual discontinuities at individual daughters do not affect
the global solution. For the case of plane Poiseuille flow u0 = y− y2/2 the solution of
(2.1a, c, d) with (5.5) is obtainable similarly to that in § 3 and is shown in figure 13(a),
in terms of the induced slip velocity at the outer wall upstream of the multiple branch.
Second, and again following the comments on flow control, figure 13(b, c) shows the
upstream flow solution for the alternative of specified entry pressures p̃(y) at x = 0,
from solving the pressure equation just below (2.1d) for all negative x, along with
zero p̃ upstream and at the walls. The induced velocity ũ(y) at x = 0 is also included
in the figure, and here we refer forward to §§ 6 and 7 on three-dimensionality and on
pressure conditions. The similarity between the upstream results for flux control and
pressure control in figure 13 is notable. Downstream almost every small daughter
flow in positive x is governed by small-gap balances, with a uniform entry profile in
effect as each yn+1 − yn gap is small, of order α. Consequently there

ψ̃ =
[
(y − yn)(cn+1 − u0f

−
n+1)− (y − yn+1)(cn − u0f

+
n )
]
/(yn+1 − yn) (5.6)

for general daughter wall shapes f−n+1(x), f+
n (x), with yn < y < yn+1 and u0 nominally

evaluated at yn.

5.3. Upstream influence and the wall layer

Some significant upstream influence, due to the overall branching into multiple small
daughters, thus occurs on an O(1) length scale in x < 0, and this contrasts with the
case of a single small daughter in the previous section. The present upstream influence
also forces the viscous wall layer motion to be nonlinear, via the slip uW (x), at O(1)
distances ahead of the branching. On the other hand, within small O(α) distances of
the branching, properties of the local individual branches must affect the core near
the outer wall, where those branches appear as a semi-infinite stack of dividers in
the presence of an incident linear (near-wall) velocity profile. The local core solution,
in the O(α) by O(α) mouth region, is therefore exactly as in (5.1) and (5.2) with
N → ∞ but α replaced by unity, to a leading approximation (and with κ large), for
the example of equi-spaced daughters with thin walls: see figure 12.

The outer mouth region yields a local change in the slip uW (x) in particular, near
the branching. The main question then, especially for the viscous sublayer, is whether
or not there is a change in the order of magnitude or character of uW . The answer
depends first on the local form of the flux function C(y) in (5.5). A broad case has C
tending to a non-zero constant C̃0 as y → 0+, corresponding to significant flux passing
into the near-wall daughters, and then ψ̃ near the origin is 2C̃0(π − tan−1(y/x))π−1,
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Figure 13. (a) For general input profile u0 and large N, the mother-flow solution for uW in x < 0
is shown for the specified mass-flux distribution C(y) = sin πy at the branching station. (b, c) As (a)
but with a specified pressure distribution (as shown) at the branching station.

from (2.1a, d), (5.5), leaving uW (x) ≈ 2C̃0/(π|x|) at small negative x. Hence there is
indeed a substantial change in the order of magnitude of uW in this case, to the
size O(α−1) as the O(α) mouth region is entered, analogous with the behaviour of
uW in § 4. (If C tends to zero like y, yielding less near-wall flux, as in the example
of figure 13(a), then uW is logarithmic at small negative x, yielding a lesser change.)
Accordingly, the viscous wall-layer response is also analogous to that in § 4, being
dominated by its development within the short O(α) mouth scale where X̂ ∼ 1. The
precise uW (X̂) variation there depends on all the nearby cn fluxes (see figure 12).
Downstream, as X̂ increases uW approaches the constant value α−1

1 c1, to preserve the
mass flux c1 in the daughter channel nearest the wall. This indicates acceleration of
the viscous sublayer taking place throughout the X̂ mouth scale if both C̃0 and c1 are
positive, the trend of the wall-layer behaviour being similar to that in § 4. Exceptional
cases might occur, however, involving both rapid acceleration and rapid deceleration
in the mouth region, although none have been encountered as yet.
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5.4. Comments

Much more turning and area expansion can be achieved, without flow reversal, in
this multi-branching configuration compared with the previous ones, at least on
the present streamwise length scales and provided the mass flux into the near-wall
daughters is sufficiently positive overall (to avoid the acceleration–deceleration noted
above). This is because, while the expansion of area closest to the wall must still
be limited to prevent downstream separation in the viscous wall layer as before, the
majority of the many daughters across the channel can each expand (and turn) at
will, without producing flow reversal. Blasius-like attached boundary layers persist on
each such daughter wall and these boundary layers are stronger on the branches near
the middle since u0 is larger there. The slip velocities from ∂ψ̃/∂y remain higher-order
effects in each daughter away from the outer wall, and, as remarked earlier, each of
these multiple daughter flows acts independently after a small entry distance of order
α. This inference is confined to within the current theoretical scales of course, and

other local multi-branching features can arise if α is reduced to the size R−1/6C̃
1/2
0

generally (cf. § 4).

6. Three-dimensional branching, with two or many daughters
Mechanisms similar to those in §§ 2–5 also act in a multiple three-dimensional

branch, starting at x = 0 say. A representative configuration is drawn in figure 14.
As the lower parts of the figure indicate, the present work applies in principle for
any cross-sectional shapes of daughters, subject as before to the gaps having more
cross-sectional area than the dividers (the Smith 2000a study removes this restriction).
There is however at least one important possible distinction from the planar case.

6.1. The core flow and wall layer

The core flow, as a perturbation of an incident motion u = u0(y, z), is considered for
convenience (Smith 1976a, 1977a) in terms of its pressure equation,

∇2p̃ = 2(u0yp̃y + u0zp̃z)/u0 (6.1a)

with ∇2 now signifying (∂2
x + ∂2

y + ∂2
z ). This is subject to the conditions of tangential

flow along the separation-free dividers (y = yn(x, z)±), zero pressure disturbance
upstream, and pressure matching at the outer wall defined by g0(x, y, z) = 0 say, so
that

p̃t = −u2
0∂

2
xf
±
n at y = yn±, (6.1b)

p̃→ 0 far upstream, (6.1c)

p̃→ 0 at the outer wall (g0 = 0). (6.1d)

The coordinates are as in figure 14, and in particular t denotes the inward normal
distance from a wall. The dividers are specified with yn(z) and thicknesses fn(x, z)
in (6.1b), analogous with the planar case of §§ 2–5, so that here they have y − yn
small and proportional to fn, although this can be generalized if y = yn is multi-
valued. Mass-flux and/or pressure conditions in each daughter tube are assumed
as previously. Similarly the tangential-flow constraint represented by (6.1d), which
is analogous with the condition (2.1d) in planar flows, implies that p̃ is O(t3) and
the scaled radial velocity ṽ is O(t) near the outer wall, at which u0 tends linearly
to zero. The solution of (6.1) is to give the slip velocity uW (x, z) driving the viscous
sublayer at the outer wall, whereas the boundary layers on each internal divider again
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Figure 14. Three-dimensional branching, as considered in § 6. Sketch of the flow structure.

remain attached and Blasius-like, as in Smith (1976a, 1977a). The slip velocity uW
is determined by 2λ∂2uW/∂x

2 = (∂3p̃/∂t3) (at g0 = 0) where λ(z) is now the given,
positive, scaled wall shear of the incident profile u0(y, z).

The distinction from the two-dimensional case is that here a significant and deli-
cate flow response can occur near the intersection between a divider and the outer
wall, similar to a wing–body junction, if geometrical effects rather than mass-flux or
pressure effects dominate. The local flow behaviour then depends on the divider and
wall shapes near the junction y = y0(x), z = z0(x) generally, but we suppose primarily
that the intersection is normal in the cross-plane. Then the governing equation (6.1a)
locally has ∂xx suppressed, to a first approximation, subject to (6.1b, d) but with u0 re-
placed by λt. If the coordinates are rotated such that the divider occupies y = a, z > b
locally (with a, b dependent on x), then p̃ nearby satisfies (∂2

y + ∂2
z )p̃ = 2p̃z/(z − b)

along with the conditions p̃ = 0 at z = b and p̃y = −λ̃2(z−b)2f̃′′(x), where λ̃, f̃ denote
λ, fn evaluated at z = b. The outer wall is given by z = b, y > a, above the junction,
and t is identified with z − b. With those conditions the local solution must involve
a logarithmic term (Walton & Smith), such that p̃ ∼ r̃3 ln r̃ where r̃ is the distance
[(y − a)2 + (z − b)2]1/2, and hence the slip velocity locally grows as

uW ∼ ln(y − a) as y → a+ (6.2)

along the outer wall. The largest effect is thus at the junction. This same conclusion
is reached, albeit with algebraic rather than logarithmic growth, if the thickness fn
becomes large, rather than of order unity locally. Again, if the intersection angle is
β rather than π/2, then uW is found to be O(1) and proportional to 1/ cos β, instead
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of (6.2), but here we shall keep to the normal intersection. In view of the logarithmic
response above, all the divider wall thicknesses and mass fluxes or pressure increments
are taken to be smaller than in the planar case, by a logarithmic factor, so that they
are of order R−1/3/ lnR. Then both the core flow and most of the viscous wall layer
are linear, while nonlinear behaviour is focused in the viscous corner motion. This
focusing mechanism, which is special to the three-dimensional case, is equivalent to
that in Walton & Smith (1997); the corresponding corner vortex-flow problem is still
unsolved. Below we assume a linear viscous wall layer as it represents most of the
induced near-wall flow.

6.2. One-to-two branchings

The branchings of most interest currently are those of one-to-two branching (large
daughters) and one-to-many (small daughters). For the former, N = 1, the effects of
a thin divider placed symmetrically in a straight circular pipe are studied by Smith
(1977a), Bennett (1987, wherein he notes an error in the 1977a paper which was
pointed out to him by his supervisor F. T. S. and which leads to the present flow
structure) and recently by Blyth & Mestel (1999). By contrast, the present work
considers a thicker divider, with f±1 non-zero but equal, splitting a circular mother
pipe, r = 1 in cylindrical polar coordinates, into two equal semi-circular daughters
which are not necessarily straight. The core exhibits some upstream influence for such
a configuration: see figure 15 below, including secondary flow. In the viscous wall
layer therefore the linearized three-dimensional boundary-layer equations hold,

Ux + VY +Wz = 0, (6.3a)

λY Ux + λV = −Px(x, z) +UYY , (6.3b)

λYWx = −Pz(x, z) +WYY , (6.3c)

where λ is constant in this case and u = R−1/3(λY + U/ lnR). The presence of the
logarithmic term may be an extra restriction on the practical usefulness of the theory,
of course, added to the limitations discussed in the introduction. Equation (6.3a–c)
forms the three-dimensional counterpart of (2.2a) but linearized as expected. The
boundary conditions require no slip at the outer wall, given by Y = fW (x, z)/(lnR),
and matching with the core solution, so that

U = V = W = 0 at Y = 0, (6.3d)

U → λB(x, z) as Y →∞, B ≡ λ−1uW (x, z) + fW (x, z), (6.3e)

W → 0 as Y →∞, (6.3f)

together with the vanishing of (U,V ,W , P ) upstream as x → −∞, and periodicity
around the outer wall. The viscous problem (6.3) is virtually identical in essence to
Smith’s (1976b), the only difference being in the details of the forcing B in (6.3e).
Hence there is extra upstream influence associated with the three-dimensional case,
via the viscous–inviscid mechanism described in the last-named paper.

The main features of the symmetric one-to-two branching flow are thus well known.
The theory can cope only with linear effects, because of the nominally small 1/ lnR
factor above, which in turn is due to a geometrical effect, and so separation cannot
be accommodated; the only major questions arise in the nonlinear corner vortices.
This applies even far downstream where (6.1a–d) yield an analogue of the planar
flow result (3.6), but the corner vortices control the restrictions on bending and area
expansion for separation-free motion. Again, the arguments above crucially assume
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Figure 15. (a) For one-to-many branchings: computed results for (on the left) the induced velocity
at the branching station and (on the right) the slip velocity upstream, given a single-mode (sin θ)
pressure distribution as shown at the multi-branching station. (b) As (a) but giving the computed
slip velocity uW for modes sin(nθ) imposed at the multiple branching. (c) As (a) but computed
slip velocity uW for an imposed pressure which is distributed over one quarter of the circular
cross-section and zero elsewhere at the branching station.

equal mass flux and pressure distributions in the two daughter tubes, for symmetry,
whereas an example of unequal distributions is given below, leading to non-symmetry.
The one-to-many case, in contrast, is controlled almost invariably by the daughter
pressures or fluxes, and we address this next.

6.3. One-to-many branchings

For one-to-many branching with numerous small daughters, N � 1, the broad
argument of § 5 still holds in the sense that the mother flow is controlled by (6.1a, c, d),
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but now

p̃ = π̃(y, z) at x = 0. (6.4)

The right-hand side is the daughter-inlet function defined pointwise by the pressure
entering each individual daughter, analogously to § 5. It determines the mother flow
throughout x < 0, and it applies for a general incident profile u0(y, z).

Solutions obtained from mode decomposition are presented in figure 15(a–c), for
representative π̃ distributions which are smooth and zero at the outer wall; the
solutions are for fully developed incident flow u0 = 1 − r2 and in one case include
the induced ũ distribution at the branching station. The individual daughter flows
act separately again, controlled by thin-tube equations, except in the O(α) scaled
mouth region(s). There the strongest change in upstream influence is generated, as
far as the slip velocity and hence the viscous wall-layer displacement and resulting
flow are concerned. This is analogous to the planar case in § 5. Indeed, reasoning
exactly as in the planar case points to much increased turning and area expansion,
free of separation, because of the incident flow strength for all the many middle
daughters, allied with suppression of the geometrical effects relative to the overall
pressure distribution. Nonlinear wall layer flow could actually be incorporated here.

The examples from (6.4) shown in figure 15(a, b) confirm the existence of non-
symmetric flow for symmetrical geometry occurring due to non-symmetry in the
downstream flow conditions. Also, with the surgical procedures of § 1 in mind, we
show (through double summation) the influence of altering the daughter pressures
within a patch of the multiple branching cross-section, in figure 15(c). The case in

figure 15(a) has π̃ =
≈
π(r) sin θ in (6.4), with the function

≈
π being as shown in the

figure, corresponding to increased pressure throughout the upper half of the multiple
daughters and decreased pressure in the lower half. The solution of (6.1a, c, d), (6.4), is
then a summation of modes, each with p̃_ exp (β1mx) sin θ multiplied by a function
of r. The positive eigenvalues β1m are determined similarly to those in §§ 3–5 and the
constants of proportionality are found by applying (6.4). The mother flow solution
shows deceleration in most of the upper half of the tube upstream as might be
expected, with fluid being drawn (pressurized) broadly into the lower half. Close to
the outer wall however a compensation takes place, yielding acceleration (deceleration)
in the upper (lower) half of the mother tube. The induced velocity profile across the

daughter mouths ties in with those trends. In figure 15(b) π̃ is taken as
≈
π(r) sin nθ,

with n varying from zero to 5, and the mother flow solution is derived as for the
case n = 1 above. The decay of the extent of upstream influence with increasing

n is clear. Figure 15(c) on the other hand has π̃ equal to
≈
π(r) cos 2θ for the patch

|θ| < π/4 and zero otherwise. In this case a Fourier series in θ combined with mode
summations of the form used in figures 15(a, b) gives the upstream flow solution. The
trends suggested by the previous cases are partly present for the patch of figure 15(c)
but now the zero-n axisymmetric component dominates upstream, as the induced slip
velocities demonstrate at various values of θ for example.

7. Further comments
7.1. Roles of geometry and mass fluxes

This research has considered the roles of both the geometrical (divider and outer wall)
shapes and the mass fluxes of the daughter tube flows at a one-to-few or one-to-many
branching, especially for (a) two large daughters, (b) one small daughter/side branch
and (c) multiple small daughters.



Branching tube flows 29

Concerning geometry first, in the present context the inviscid core flow is affected
mostly by the middle divider shapes and little by the outer wall shape, whereas
the viscous wall-layer motion is influenced equally by both, directly or indirectly
through the effective displacement B. If the geometry alone is important then the
middle branches tend to produce an attached trend in the motion at the outer wall,
especially upstream in order for the flow to negotiate the branching downstream,
whereas those wall shapes that correspond to an overall turning or expansion of the
typical cross-sectional tube area tend to produce a separated trend. The balance of
these two opposing trends determines the critical expansion ratio β.

Concerning mass fluxes second, the theory shows that these can actually be more
crucial, provoking substantial differences not only between the properties in different
daughters but also in the entire mother-tube flow upstream. The increased significance
of the daughters’ mass fluxes is particularly strong for one-to-many or for side
branches. (The role of pressure drops is considered further in § 7.3 below.)

7.2. Separation-free flow

The overall flow turning and expansion at a branch themselves give rise to some
distinct features, in the multi-branching flows. These seem best considered in terms
of the three main configurations (a)–(c) of the study.

The work in § 3 confirms the approximate maximum value of 1.2 for the area
expansion ratio β, to avoid separation in a one-to-two branching (a), in terms of
the Reynolds numbers of interest. The solution trends agree with those shown by
Hademenos & Massoud for example. On the other hand, the work indicates that
with suitably designed careful shaping of the wall the turning can be enlarged to
include typical angles of order unity, rather than the small angles associated with
most prescribed wall shapes.

Section 4 shows that, for a side branch (b), the major upstream adjustment occurs
instead near the mouth of the small daughter, accompanied by a corresponding
downstream adjustment locally but with a major downstream response also taking
place on a longer length scale well within the daughter.

The one-to-many branching (c), in § 5, exhibits a similar tendency except that
there is, in addition, an upstream adjustment of the entire mother flow and it is
controlled totally by the effective mass-flux or pressure distribution of the multiple
small daughter system across the tube. The findings hold for arbitrary shapes of
these small-daughter flows, as well as arbitrary mass fluxes and arbitrary incident
mother-flow profiles u0, and moreover the reasoning extends to three-dimensional
branches as in § 6. The one-to-many case also suggests that the expansion ratio β can
be made much greater than 1.2 in the presence of multi-branching, without inducing
flow separation and without the careful wall-shape designing needed in the one-to-two
case above.

7.3. On further research

Design of improved surgical strategies for treating arteriovenous malformations and
of improved surgical grafts, among other practical considerations, may be aided only
indirectly by features such as those above, involving the many physical mechanisms
that operate in branchings, as already indicated briefly in this section and in more
detail in §§ 3–6. Further research is certainly required for directly useful applications,
for example basic research on nonlinear core flows, for stronger mass-flux variations
in the daughter tubes, and on increased turnings for the cases (b), (c). The numerous
limitations on the present theory highlighted in the introduction need to be made
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fewer, although the extra limitation on the multiple-daughter case (c), that N should
remain small relative to R1/3 in order for the core response to remain inviscid, is not
necessarily severe in practice since the N-large results work well for N above about
3 (see figure 12), while R1/3 is 10 typically. Nevertheless viscous effects are likely to
become accentuated almost everywhere in the daughters if there are more than about
6–8 daughters at the branching.

The relation between prescribed-pressure and prescribed-flux daughter flow solu-
tions is quite straightforward for most of the thin daughters in (c), from application of
mass and momentum conservation on the present shorter length scale, in keeping with
the argument in the introduction on pressure and flux control over longer scales. An
exception concerns the prescribing of end-pressure constraints in the outer daughters
where the input velocity u0 is zero and there is possible interaction between, and
upstream influence from, the viscous pressure drop of approximately − 1

2
B2 and the

end pressure. Longer viscous scales for the (nonlinear) daughter flows clearly need
much study, in two and three dimensions, partly for calculations on pressure control,
partly in view of the AVM application above and partly in view of the relatively
abrupt pressure or mass-flux adjustment imposed on the O(1) length scale by the
longer scale solution, as inferred from Jones & Smith’s (2000) work and described
earlier. Study is required likewise for thinner side- or multi-branching daughters;
other three-dimensional features, for small side branches for example; and unsteady
and/or flexible-wall motions. The interaction between any side-graft flow, branching
at one station but re-joining the main core flow downstream, and the core flow itself,
is also of interest in terms of the long-scale upstream influence from the end-pressure
equality required at the downstream junction (Jones & Smith 2000).
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