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Abstract

The predictive power, for total, vascular, cancer and respiratory mortality, of selected redox-modulatory (vitamin and mineral nutrient)

indices measured at baseline, was studied in the British National Diet and Nutrition Survey (community-living subset) of people aged

65 years and over. Mortality status and its primary and underlying causes were recorded for 1054 (mean age 76·6 (SD 7·4) years and

49·0 % female) participants, from the baseline survey in 1994–5 until September 2008. During this interval, 74 % of the male and 62 %

of the female participants died. Total mortality was significantly predicted by baseline plasma concentrations (per SD) of vitamin C

(hazard ratio (HR) 0·81; 95 % CI 0·74, 0·88), a-carotene (HR 0·90; 95 % CI 0·81, 0·99), Se (HR 0·76; 95 % CI 0·69, 0·84), Zn (HR 0·79;

95 % CI 0·72, 0·87), Cu (HR 1·27; 95 % CI 1·14, 1·42) and Fe (HR 0·81; 95 % CI 0·74, 0·89). Total mortality was also significantly predicted

by baseline dietary intakes (per SD) of food energy (HR 0·86; 95 % CI 0·79, 0·94), vitamin C (HR 0·88; 95 % CI 0·80, 0·94), carotenoids (HR

0·89; 95 % CI 0·83, 0·96), Zn (HR 0·89; 95 % CI 0·82, 0·96) and Cu (HR 0·91; 95 % CI 0·84, 1·00). Prediction patterns and significance for

primary vascular, cancer and respiratory mortality differed in certain respects, but not fundamentally. Model adjustment for known disease

or mortality risk predictors resulted in loss of significance for some of the indices; however, plasma Se and Zn, and food energy remained

significant predictors. We conclude that total and primary vascular, cancer and respiratory mortality in older British people of both sexes is

predicted by several biochemical indices of redox-modulatory nutrients, some of which may reflect the respondents’ acute-phase status

at baseline, whereas others may reflect the healthiness of their lifestyle.

Key words: British National Survey of Older Adults: Mortality prediction: Intakes and biochemical indices: Plasma vitamins C

and E, carotenoids, selenium, zinc, copper and iron

Relationships between biochemical status indices and

later morbidity and mortality experience can help to pre-

dict causal relationships, and thereby to clarify certain

physiological and pathological mechanisms that may be

related to important disease risk factors in ageing

humans. In the present study, we have focused on mor-

tality outcomes of the community-living participants

from the countrywide British National Diet and Nutrition

Survey of people aged 65 years and over, for which the

fieldwork was performed in 1994–5(1). Subsequent mor-

tality outcomes were available from the National Health

Service register of deaths, up to September 2008. The pur-

pose of the present paper is to explore the predictive sig-

nificance of a selection of biochemical indices for

nutrients that are believed to mediate redox-modulatory

(antioxidant or pro-oxidant) functions in living tissues,

all of which were measured as part of the original

population surveillance protocol. Evidence that sub-

sequent all-cause mortality may be predicted by vitamin

C intakes and/or status has been obtained in several

previous studies(2–10), and similarly for carotene(11,12)

and Se(12–14).

In addition to the modulation of redox status, several

nutrient indices are known to be modified by, and hence

to reflect, acute-phase status, and hence, potentially, to

reflect mortality risk (since chronic inflammatory states

frequently underlie those disease processes that lead

ultimately to death(15)). Also, the same vitamins and min-

erals that modulate redox status may, in many cases, also

modulate key immune functions(16–18). As well as the prac-

tical usefulness of status indices as predictors of future

mortality, a key question is whether the observed links

between baseline nutrient status and future mortality are

likely to be driven by (potentially correctable) nutritional
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imbalances, or by the more intractable processes of

inflammatory response to chronic disease?

Subjects and methods

The survey procedures have been described in detail

elsewhere(1); therefore only a brief summary is given

here. At baseline, in 1994–5, two separate population

samples were randomly selected: one from community-

living people aged 65 years and over and the other from

long-stay institutions. Only the community-living sample

has been included in the present study. Participants were

drawn from eighty randomly selected postcode sectors

in mainland Britain and allocated to four sequential

3-month fieldwork ‘waves’ corresponding to the four

seasons, beginning in October 1994. Demographic, socio-

economic and other information was obtained by a trained

interviewer in the participant’s home. A 4 d weighed

dietary record was also obtained by the interviewer, and

anthropometric indices, blood pressure and pulse rate,

and after separate consent, a fasting early morning

venous blood sample were taken by a trained nurse.

The blood sample was subdivided and used for a wide

range of analyses. Of these, the assays that are relevant

to the present study were as follows: (a) fluorometric

assay based on the reaction of dehydroascorbic acid with

ortho-phenylenediamine (checked for validity against

a HPLC assay and against quality assurance standards

with assigned values, provided by the US National Institute

of Standards and Technology) for plasma (total) vitamin C;

(b) liquid chromatographic assay for plasma retinol, a- and

g-tocopherols and carotenoids; (c) colorimetric assays

for plasma Zn, Cu, Fe and Fe% saturation of transferrin;

(d) an antibody-based nephelometric assay for plasma

a1-antichymotrypsin; (e) an inductively coupled plasma

MS assay for plasma Se. In-house quality assessments and

inter-laboratory exchanges were undertaken in order to

monitor the accuracy and stability of the assays. Plasma

a1-antichymotrypsin was selected as a medium-duration

plasma acute-phase indicator, which tends to remain

raised during chronic inflammatory states. Between-run

quality-control sample CV were all # 11 %, and the mean

quality-control CV was 5·7 %.

The study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all

procedures involving human subjects were approved by

the Local Research Ethics Committees representing each

of the eighty postcode sectors used. The protocol was

also approved by the Ethical Committee of the MRC

Dunn Nutrition Unit (of which the Micronutrient Status

Laboratory is now part of MRC Human Nutrition Research),

in Cambridge. Written informed consent was obtained

from all the subjects.

The present study included 1054 participants, compris-

ing 538 men and 516 women, with partial or complete

data available for the analyses of interest here, all of

whom agreed to be flagged on the National Register

of Births and Deaths, and whose status (i.e. as still alive

or registered as having died) was known in September

2008. No exclusions, other than those resulting from

willingness to participate or the availability of blood

samples, were imposed, and there was no evidence for

sampling bias. Because of missing values (principally due

to incomplete consent availability for the blood sampling),

the analyses of the blood biomarker variables are typically

based on a subset of approximately 800 participants.

Statistical analysis

Cox proportional hazards models were used, with years

of survival as the time scale, to estimate the risk of

mortality (all-cause and vascular disease) according to

each biochemical and nutritional index. The data were

censored to September 2008 in those participants who

had survived. The proportional hazards assumption was

examined by comparing the cumulative hazard plots,

grouped as exposure, wherein no appreciable violations

were observed. We used standardised values (z-scores)

for each of the explanatory variables examined, which

have the advantage of expressing the hazard ratios per

standard deviation, rather than per measurement unit,

thereby achieving an enhanced conformity between the

disparate indices. Vascular disease mortality was defined

according to International Classification of Diseases –

versions 9 (ICD-9: 390-459) and 10 (ICD-10: I01-I99).

Cancer mortality was defined according to ICD-9: 140-239

and ICD-10: C00-D48. Respiratory disease mortality

was defined according to ICD-9: 460-519 and ICD-10:

J00-J99, and all of the above were limited to the primary

cause of death.

In the multivariate models, adjustment was made

for potential confounders, including age and sex in all

models. Since we were only interested in relationships

between indices, rather than estimates of prevalence, we

did not apply the weighting factors that were used in the

data analyses for the Survey Report(1). All tests of statistical

significance were based on two-sided probability, and

P,0·05 was deemed significant throughout.

Results

Of the community-living survey participants who gave

consent for follow-up flagging of the National Health

Service Register of deaths, and who had provided at least

one index value reported in this follow-up study, 94·5 %

could be accounted for by known deaths and known

survivors. As noted previously in the Subjects and methods

section, the blood biomarker analyses are confined to the

subset of the participants who provided a blood sample,

comprising approximately 800 participants.

Table 1 provides mean and median baseline values,

subdivided by sex, for the indices explored in this report.
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The original Survey Report(1) provided baseline index

values for all of the original survey participants, together

with further details about the aims of the selection

procedures and the methodologies used.

Table 2 shows the age- and sex-adjusted hazard ratios

for all-cause and primary vascular disease-cause mortality.

Significant predictors of all-cause mortality were as follows:

plasma vitamin C, a-carotene, lutein þ zeaxanthin, Se, Zn,

Cu, Fe (and the % saturation of its carrier, Fe-binding

protein or transferrin); plasma a1-antichymotrypsin, and

dietary intakes of energy, vitamin C, carotenoids, Zn

and Cu. With the exception of plasma Cu and a1-antichy-

motrypsin, all of the significant mortality predictors

had hazard ratios below 1·0, which signifies reduced risk.

a1-Antichymotrypsin concentrations are known to increase

during inflammatory states, and hence the association of

increased concentrations with increased risk, i.e. hazard

ratios greater than 1·0. The major Cu-containing plasma

protein, caeruloplasmin, like a1-antichymotrypsin, also

increases during inflammatory states, which probably

explains the observed association of increased concen-

trations with increased risk. Serum ferritin (not shown)

was not a significant predictor of mortality, either for all-

cause or for the three subcategories of mortality risk

considered here. Likewise, neither a-tocopherol nor

g-tocopherol became significant predictors, for all-cause,

vascular disease or cancer mortality, even when adjusted

for plasma (total) cholesterol (not shown). Intakes of

food energy, vitamin C, total carotenoids, Zn and Cu

were significant predictors of mortality, with increased

intakes being associated with longer survival for each

of these nutrients (Table 2). If food energy was

included in the model (not shown), then vitamin C and

carotenoid intakes still retained their prediction signifi-

cance (P¼0·003 and 0·046, respectively), whereas the

other nutrient intakes shown in Table 2 lost their signifi-

cance (P.0·05).

When subdivided by sex (not shown), the predictive

power of the biochemical status indices was similar for

both men and women, with the exception of plasma Cu,

which was significant only for men (hazard ratio 1·60

(95 % CI 1·35, 1·90) (P#0·001)) compared with women

(hazard ratio 1·06 (95 % CI 0·93, 1·22) (P¼0·4)). The predic-

tive power of nutrient intakes was significant (P,0·05)

Table 1. Summary of selected status indices and nutrient intakes in the survey respondents who are included in the present study (n 1054)

(Mean values and standard deviations; median and range values)

Male Female

n* Mean SD Median Range n* Mean SD Median Range

Age (years) 538 75·8 6·9 75·0 65–96 516 77·3 7·9 76·0 65–99
Body wt (kg) 532 75·2 12·2 74·6 38·7–121 509 64·0 12·7 63·3 32·5–112·9
Ht (m) 528 1·69 0·07 1·69 1·49–1·98 503 1·55 0·07 1·55 1·20–1·75
BMI (kg/m2) 527 26·3 3·7 26·1 16·3–43·2 502 26·6 4·8 26·2 14·4–44·6

Biochemical indices
Plasma vitamin C (mmol/l) 442 38·2 22·6 38·6 ,3–101·5 410 45·8 26·1 48·2 ,3–116·5
Plasma vitamin A (mmol/l) 409 2·21 0·58 2·15 0·85–5·55 390 2·18 0·66 2·09 0·42–6·8
Plasma a-tocopherol (mmol/l) 409 35·0 9·9 34·2 0·45–7·49 390 39·1 12·4 37·5 10·3–128·0
Plasma g-tocopherol (mmol/l) 407 2·24 1·06 2·07 0·45–7·49 385 2·53 1·20 2·31 0·57–8·65
Plasma a-carotene (nmol/l) 403 64·0 64·0 51·0 5·0–84·8 385 79·5 84·4 55·0 4·0–88·8
Plasma b-carotene (nmol/l) 408 323 225 273 8–1674 390 405 261 349 37–1960
Plasma b-cryptoxanthin (nmol/l) 399 117 121 77 3–866 389 151 165 98 4–1265
Plasma lutein þ zeaxanthin (nmol/l) 409 378 179 340 99–1583 390 389 212 352 66–2189
Plasma lycopene (nmol/l) 408 268 184 238 12–1015 389 274 209 225 8–1262
Plasma Se (mmol/l) 428 95 218 962 375–2376 398 924 211 925 461–1786
Blood glutathione peroxidase

(nmol NADPH/mg Hb per min)
412 140 34 133 59–359 369 145 37 13 85–353

Plasma Zn (mmol/l) 377 14·2 2·1 14·1 7·2–20·5 364 14·2 2·4 14·0 8·2–24·2
Plasma Cu (mmol/l) 376 17·4 3·0 17·0 10·4–31·5 362 19·5 3·9 19·3 8·4–38·0
Plasma Fe (mmol/l) 438 13·7 4·9 13·0 2·8–37·4 412 12·0 4·4 11·9 2·2–32·3
Plasma Fe % saturation (%) 437 28·1 11·1 26·7 4·1–91·2 412 24·2 10·3 23·5 4·0–82·7
Plasma a1-antichymotrypsin (g/l) 430 0·38 0·094 0·365 0·16–1·14 408 0·39 0·089 0·385 0·22–1·01

Estimated average daily dietary intakes
Energy (MJ) 538 7·95 1·94 7·95 3·44–17·3 516 5·95 1·42 5·88 1·91–9·77
Vitamin C (mg) 538 71·1 70·5 59·0 4·9–1023 516 65·4 57·1 49·0 1·0–601
Vitamin A (retinol) (mg) 538 0·94 1·76 0·45 ,0·01–20·4 516 0·85 1·56 0·39 0·06–18·8
Vitamin E (mg) 538 9·51 8·18 7·80 0·8–114 516 10·69 39·4 6·09 0·06–18·8
Total carotenoids (mg) 538 1·97 1·55 1·62 0·10–12·0 516 1·62 1·40 1·12 0·06–9·97
Zn (mg) 538 8·81 2·86 8·50 1·86–27·1 516 6·96 2·56 6·52 1·65–23·3
Cu (mg) 538 1·10 0·68 0·97 0·29–6·72 516 0·88 0·55 0·77 0·19–5·87
Non-haem Fe (mg) 538 11·4 10·3 10·0 1·7–174·2 516 10·9 18·4 7·9 2·3–201·5
Haem Fe (mg) 538 0·72 0·57 0·59 0·00–4·83 516 0·53 0·45 0·42 0·00–4·80

* The values for n in Table 1 and the maximum values for n in Tables 2 and 3 are limited to the numbers definitely known to have died or to have been still alive at the time of
the follow-up analysis, i.e. they excluded those (approximately 5 % of the original participants) who were lost to follow-up. Where individual index values of n are lower in
Tables 2 and 3, it was because of missing values, since not all of the respondents provided blood (or sufficient blood) for every one of the assays or calculations(1).
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for men for food energy, vitamins C and E, carotenoids,

Zn and Cu, but was NS for women, for any of these nutri-

ent intakes. After adjustment for food energy, intakes of

vitamin C and carotenoids remained significant for men

(P¼0·03 for both).

For primary vascular disease mortality, comprising

approximately 26 % of all mortality, the significant predic-

tors were similar to those for all-cause mortality; however,

plasma a-carotene, lutein þ zeaxanthin and dietary

energy, and intakes of carotenoids and Cu failed to achieve

significance at the 5 % probability level here.

For primary cancer mortality, comprising approximately

20 % of all mortality, the significant biochemical index

predictors were similar to those for all-cause mortality, with

the exceptions that plasma lutein þ zeaxanthin, Cu and a1-

antichymotrypsin were NS. Here, the only dietary intakes

that were significant were those of vitamins C and E.

For primary respiratory disease mortality, comprising

approximately 16 % of all mortality, the significant bio-

chemical index predictors were similar to those for all-

cause mortality, with the exception that plasma a-carotene,

Cu, Fe and a1-antichymotrypsin were NS, but lycopene

became marginally significant. The only dietary intake to

achieve significance here was that of total carotenoids.

When subdivided both by sex and by primary cause of

mortality (not shown), the most striking sex differences

again arose with respect to plasma Cu, which was a

significant predictor of primary vascular disease or cancer

or respiratory disease mortality, for males only, but not

for females. Dietary intake of vitamin E was a significant

predictor of cancer and respiratory disease mortality in

males but not in females, and dietary intake of carotenoids

was a significant predictor of respiratory disease mortality

in males but not in females. However, in contrast to pre-

vious studies which have described significant mortality

prediction by low serum or plasma vitamin C concen-

trations in men but not in women(2,6–8), the present

study found similar strengths of mortality prediction by

plasma vitamin C in both men and women.

About 19 % of the study respondents were regularly

taking dietary supplements that contained vitamin and/or

mineral components, at baseline. However, subsequent

mortality was not significantly predicted by the supplemen-

tal intakes of any of the above-mentioned vitamins or

minerals, and the mortality prediction patterns were similar

in the (81 %) non-supplement users, to those of the entire

cohort (not shown).

Exclusion of those respondents (approximately 7 %)

who died in less than 2 years after the baseline field-

work made little difference to any of the index predictions

of mortality (not shown); therefore the observed

patterns of mortality prediction appear not to have been

Table 2. Age- and sex-adjusted risk for the biochemical and nutritional indices, for all-cause and primary vascular disease mortality*

(Hazard ratios and 95 % confidence intervals)

All-cause mortality: died n 717, alive n 337 Vascular disease mortality: died n 189, alive n 337*

Age- and sex-adjusted
hazard ratios 95 % CI P

Age- and sex-adjusted
hazard ratios 95 % CI P

Biochemical indices (per SD)
Plasma vitamin C (mmol/l) 0·81 0·74, 0·88 ,0·001 0·83 0·71, 0·98 0·02
Plasma vitamin A (mmol/l) 0·96 0·87, 1·06 0·4 1·01 0·84, 1·21 0·9
Plasma a-tocopherol (mmol/l) 0·96 0·87, 1·06 0·4 1·07 0·90, 1·29 0·4
Plasma g-tocopherol (mmol/l) 0·96 0·87, 1·05 0·3 0·91 0·75, 1·11 0·4
Plasma a-carotene (nmol/l) 0·90 0·81, 0·99 0·04 1·01 0·85, 1·20 0·9
Plasma b-carotene (nmol/l) 0·92 0·84, 1·01 0·08 0·96 0·81, 1·15 0·7
Plasma b-cryptoxanthin (nmol/l) 0·91 0·83, 1·01 0·07 1·04 0·86, 1·26 0·7
Plasma lutein þ zeaxanthin (nmol/l) 0·91 0·83, 1·00 0·04 0·90 0·75, 1·08 0·3
Plasma lycopene (nmol/l) 0·92 0·84, 1·01 0·09 0·86 0·71, 1·05 0·15
Plasma Se (mmol/l) 0·76 0·69, 0·84 ,0·001 0·73 0·61, 0·87 0·001
Blood glutathione peroxidase

(nmol NADPH/mg Hb per min)
0·94 0·85, 1·03 0·2 1·00 0·84, 1·20 1·0

Plasma Zn (mmol/l) 0·79 0·72, 0·87 ,0·001 0·73 0·61, 0·88 0·001
Plasma Cu (mmol/l) 1·27 1·14, 1·42 ,0·001 1·35 1·12, 1·63 0·002
Plasma Fe (mmol/l) 0·81 0·74, 0·89 ,0·001 0·79 0·67, 0·94 0·008
Plasma Fe % saturation (%) 0·84 0·76, 0·92 ,0·001 0·79 0·67, 0·94 0·009
Plasma a1-antichymotrypsin (g/l) 1·22 1·14, 1·32 ,0·001 1·12 1·05, 1·35 0·005

Daily dietary intakes (per SD)
Energy (MJ) 0·86 0·79, 0·94 0·001 0·83 0·70, 1·00 0·05
Vitamin C (mg) 0·88 0·80, 0·97 0·008 0·93 0·81, 1·08 0·4
Vitamin A (mg) 1·00 0·93, 1·07 1·0 0·95 0·82, 1·10 0·5
Vitamin E (mg) 1·00 0·93, 1·08 0·9 1·06 0·90, 1·23 0·5
Total carotenoids (mg) 0·89 0·82, 0·96 0·003 0·95 0·83, 1·10 0·5
Zn (mg) 0·89 0·82, 0·96 0·003 0·84 0·71, 0·99 0·04
Cu (mg) 0·91 0·84, 1·00 0·04 0·92 0·78, 1·10 0·4
Non-haem Fe (mg) 1·03 0·94, 1·13 0·5 1·06 0·94, 1·20 0·4
Haem Fe (mg) 1·03 0·97, 1·10 0·3 0·93 0·82, 1·07 0·3

* As explained in the legend to Table 1, these were the study maximum values for n; the actual values for each index were the same as shown in Table 1.
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disproportionately affected by early deaths, and hence by

the effects of serious illness on appetite or status indices

at baseline.

Tables 4–7 show which of the nutrient indices survive

into multivariate models: part (a) in each table contains

just age, sex, and each single status and dietary indices

that were found to be significant as shown in Tables 2

and 3; part (b) contains all of the significantly predictive

nutrient variables plus age and sex, followed by removal

of those which then became non-significant in the multi-

variate model; part (c) contains these same indices, plus

five further ‘risk’ indices that were measured at baseline,

namely: a1-antichymotrypsin (acute-phase status indi-

cator), plasma creatinine (renal status indicator), plasma

total and HDL-cholesterol concentrations (traditional

vascular disease risk indicators), plasma albumin concen-

tration (frailty indicator); and finally part (d) also contains

BMI, systolic blood pressure, current smoking index,

number of prescribed drugs being taken, self-reported

health score, physical activity score and receipt (or not)

of certain state benefits (a potential index of relative pov-

erty). For all-cause mortality (Table 4), only the mineral

status indices (for Se, Zn, Cu and Fe) plus dietary energy

remained significant in the partly adjusted multivariate

model (b), with only plasma Se, Zn and dietary energy

surviving to the fully adjusted model (d). In Tables 5

and 6, somewhat similar patterns were observed for

primary vascular and primary cancer mortality; however,

for the latter (alone), haem Fe was a significant predictor,

and indeed, became progressively more significant in the

more fully adjusted multivariate models. Dietary vitamin

E (but not dietary energy) was significant for cancer mor-

tality. From Table 7, it can be observed that only plasma

a-tocopherol and dietary carotenoids were significant

predictors for respiratory disease mortality. It can be

observed from Tables 4–7 that for some of the nutritional

variables and mortality types, there was a steady pro-

gression towards decreasing significance of mortality

prediction in the more fully adjusted models, whereas for

other nutritional variables and mortality types, the predic-

tion significance either stayed essentially the same or

even increased in the more fully adjusted models.

Discussion

Because the predictive value of conventional risk factors

for disease and mortality appears to diminish with advan-

cing age(19), recent attention has focused on the discrimina-

tive ability of novel risk markers in elderly cohorts(20). The

purpose of the present paper is to explore the predictive

significance of a subset of the biochemical status indices

and nutrient intakes that were measured at baseline as

Table 3. Age- and sex-adjusted risk for the biochemical and nutritional indices for primary cancer and primary respiratory disease mortality*

(Hazard ratios and 95 % confidence intervals)

Cancer mortality: died n 140, alive n 337 Respiratory disease mortality: died n 112, alive n 337*

Age- and sex-adjusted
hazard ratios 95 % CI P

Age- and sex-adjusted
hazard ratios 95 % CI P

Biochemical indices (per SD)
Plasma vitamin C (mmol/l) 0·81 0·66, 0·99 0·035 0·78 0·63, 0·96 0·02
Plasma vitamin A (mmol/l) 0·90 0·73, 1·12 0·4 0·88 0·70, 1·11 0·3
Plasma a-tocopherol (mmol/l) 0·96 0·87, 1·06 0·4 0·76 0·60, 0·96 0·02
Plasma g-tocopherol (mmol/l) 0·89 0·71, 1·13 0·3 0·84 0·65, 1·08 0·2
Plasma a-carotene (nmol/l) 0·67 0·47, 0·96 0·03 0·94 0·75, 1·18 0·6
Plasma b-carotene (nmol/l) 0·87 0·69, 1·10 0·25 0·84 0·67, 1·05 0·13
Plasma b-cryptoxanthin (nmol/l) 0·86 0·66, 1·13 0·3 0·80 0·58, 1·09 0·16
Plasma luteinþzeaxanthin (nmol/l) 1·06 0·87, 1·30 0·5 0·77 0·60, 0·99 0·04
Plasma lycopene (nmol/l) 1·06 0·87, 1·30 0·5 0·77 0·59, 1·00 0·05
Plasma Se (mmol/l) 0·72 0·58, 0·89 0·002 0·65 0·51, 0·82 ,0·001
Blood glutathione peroxidase

(nmol NADPH/mg Hb per min)
1·00 0·81, 1·23 1·0 0·83 0·65, 1·05 0·12

Plasma Zn (mmol/l) 0·69 0·55, 0·86 0·001 0·79 0·62, 0·99 0·04
Plasma Cu (mmol/l) 1·18 0·92, 1·49 0·2 1·12 0·89, 1·41 0·3
Plasma Fe (mmol/l) 0·73 0·59, 0·89 0·002 0·83 0·66, 1·04 0·11
Plasma Fe % saturation (%) 0·72 0·58, 0·89 0·002 0·93 0·74, 1·16 0·5
Plasma a1-antichymotrypsin (g/l) 1·08 0·91, 1·27 0·4 1·15 0·98, 1·36 0·09

Daily dietary intakes (per SD)
Energy (kJ) 0·82 0·67, 1·01 0·06 0·85 0·66, 1·08 0·2
Vitamin C (mg) 0·73 0·57, 0·94 0·015 0·81 0·62, 1·05 0·11
Vitamin A (mg) 1·03 0·88, 1·019 0·7 0·87 0·70, 1·09 0·2
Vitamin E (mg) 0·13 0·04, 0·42 0·001 0·32 0·10, 1·08 0·07
Total carotenoids (mg) 0·92 0·77, 1·10 0·3 0·74 0·59, 0·93 0·01
Zn (mg) 0·86 0·71, 1·04 0·11 0·88 0·70, 1·09 0·2
Cu (mg) 0·87 0·71, 1·04 0·2 0·96 0·78, 1·18 0·7
Non-haem Fe (mg) 1·05 0·93, 1·18 0·4 0·97 0·79, 1·27 1·0
Haem Fe (mg) 1·18 1·03, 1·35 0·014 0·96 0·80, 1·15 0·7

* As explained in the legend to Table 1, these were the study maximum values for n; the actual values for each index were the same as shown in Table 1.
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part of the original population surveillance protocol of

the National Diet and Nutrition Survey of People Aged

65 Years and Over, with a specific focus on those nutrients

that are known to modulate redox status in living tissues.

Important strengths of the present study are that, as

far as possible, the population sample was chosen as

being statistically representative of the community-living

people of mainland Britain in 1994–5. A wide range of

nutrition-related factors was measured at baseline, includ-

ing questionnaire-derived socio-demographic information,

a 4 d weighed diet estimate, anthropometric measure-

ments, haematology, blood and urine biochemistry

(including a large number of nutritional indices), dental

assessment, etc., and the follow-up period for mortality

outcomes was substantial, i.e. 13–14 years. One inevitable

weakness, invariably associated with any cross-sectional

national survey, was the fact that the baseline measures

were sampled at a single time-point only. It was thus, in

principle, unable to address the issues of long-term

causal pathways, or of intervening events occurring after

the baseline measures. Another weakness was that cost

considerations and database limitations precluded the

inclusion of some potentially desirable indices: for

instance, Se intakes could not be calculated at baseline

because British food Se contents were not sufficiently

well established. Nevertheless, the National Diet and

Nutrition Survey series has probably included more rel-

evant biochemical and nutrient intake indices than most

population surveys except the National Health and Nutri-

tion Examination Surveys (NHANES) of North America.

In the present study, both the status indices and

the nutrient intakes which significantly predicted early

mortality appeared to be driven by basic dietary nutrient

concentrations rather than by dietary supplements. Our

conclusions from Tables 2–5, that plasma concentrations

of vitamin C, certain carotenoids and Se can be significant

Table 4. Multivariate hazard ratios for nutritional indices and intakes for all-cause mortality

(Hazard ratios and 95 % confidence intervals)

Hazard ratios (per SD) 95 % CI P Hazard ratios (per SD) 95 % CI P

Model (a): died n 717, alive n 357* Model (b): died n 482, alive n 242

Plasma Se (mmol/l) 0·76 0·69, 0·84 ,0·001 0·82 0·73, 0·91 ,0·001
Plasma Zn (mmol/l) 0·79 0·72, 0·87 ,0·001 0·84 0·76, 0·93 0·001
Plasma Cu (mmol/l) 1·27 1·14, 1·42 ,0·001 1·20 1·07, 1·34 0·002
Plasma Fe (mmol/l) 0·81 0·74, 0·89 ,0·001 0·87 0·78, 0·96 0·005
Dietary energy (MJ/d) 0·86 0·79, 0·94 0·001 0·86 0·77, 0·96 0·007

Model (c): died n 472, alive n 241 Model (d): died n 403, alive n 226
Plasma Se (mmol/l) 0·82 0·74, 0·92 0·001 0·83 0·73, 0·94 0·004
Plasma Zn (mmol/l) 0·88 0·79, 0·98 0·017 0·86 0·76, 0·97 0·017
Plasma Cu (mmol/l) 1·08 0·94, 1·22 0·3 1·02 0·88, 1·18 0·8
Plasma Fe (mmol/l) 0·87 0·78, 0·96 0·005 0·94 0·84, 1·05 0·3
Dietary energy (MJ/d) 0·87 0·77, 0·98 0·027 0·87 0·77, 0·98 0·03

* As explained in the legend to Table 1, these were the study maximum values for n (i.e. those for the dietary variables); the values for the biochemical indi-
ces were lower, see Table 1. These models, for all-cause mortality, follow on from the left-hand data column in Table 2. For the calculations in part (a),
each single (nutrient) variable was entered into the Cox proportional hazards model, together with age and sex (as in Tables 2 and 3). For those in part
(b), all of the significant (P,0·05) vitamin or mineral predictor variables from Table 3, plus age and sex, were initially included together in the model;
then those which fell below the assigned P,0·05 significance cut-off were successively removed, yielding just the significantly predictive nutrient vari-
ables in this multivariate model. For the calculations for the models in part (c), the significantly predictive vitamin or mineral indices or intakes from
model (b) were further adjusted by the inclusion of a1-antichymotrypsin (an acute-phase indicator), plasma creatinine (a renal status indicator), plasma
total and HDL-cholesterol concentrations and plasma albumin concentration. For the calculations in model (d), BMI, systolic blood pressure, current
smoking index, number of prescribed drugs being taken, self-reported health score, physical activity score and receipt (or not) of certain state benefits
(as an index of poverty) were further added to the variables in model (c).

Table 5. Multivariate hazard ratios for nutritional indices and intakes for vascular mortality*

(Hazard ratios and 95 % confidence intervals)

Hazard ratios (per SD) 95 % CI P Hazard ratios (per SD) 95 % CI P

Model (a): died n 189, alive n 337 Model (b): died n 129, alive n 242

Plasma Se (mmol/l) 0·73 0·61, 0·87 0·001 0·77 0·64, 0·94 0·01
Plasma Zn (mmol/l) 0·73 0·61, 0·88 0·001 0·77 0·63, 0·93 0·008
Plasma Cu (mmol/l) 1·35 1·12, 1·63 0·002 1·33 1·10, 1·60 0·002
Dietary energy (MJ/d) 0·83 0·70, 1·00 0·05 0·79 0·64, 0·98 0·03

Model (c): died n 125, alive n 241 Model (d): died n 105, alive n 226
Plasma Se (mmol/l) 0·81 0·66, 0·99 0·04 0·84 0·67, 1·06 0·14
Plasma Zn (mmol/l) 0·81 0·66, 1·00 0·05 0·83 0·65, 1·07 0·15
Plasma Cu (mmol/l) 1·19 0·96, 1·47 0·12 1·02 0·80, 1·30 0·9
Dietary energy (MJ/d) 0·75 0·60, 0·94 0·014 0·83 0·64, 1·07 0·16

* Please see the legend to Table 4 for an explanation of the four models, which follow on from the data, for primary vascular disease mortality, in the
right-hand data column in Table 2.
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predictors of subsequent all-cause or cardiovascular or

cancer mortality in older adults, are in agreement with

several other studies in Western countries during the past

two decades(2–14,21–24). Both plasma vitamin C and Se

also predicted mortality from primary vascular, cancer

and respiratory mortality; however, the predictive power

of individual plasma carotenoids was more variable,

between these subcategories of mortality risk. Se predic-

tion (but not that of vitamin C) persisted into six of the

eight multivariate models as shown in Tables 4 and 5,

thus appearing to be, perhaps surprisingly, robust. (The

fact that blood glutathione peroxidase, another putative

index of Se status, failed to predict mortality in any of

the models tested may be due to the fact that this

enzyme only reflects Se status in situations of relative

Se deficiency(25), and indeed, the correlation between

plasma Se and blood glutathione peroxidase was compara-

tively weak in the population studied(26).) Recent research

on Se in human nutrition has suggested a wide range of

possible interactions with disease processes, including

some important protective effects(16,27). A study based on

the Third National Health and Nutrition Examination

Survey in the USA(28) found a non-linear association

between serum Se concentration and all-cause or cancer

mortality. The range of plasma Se concentrations found

in the British National Diet and Nutrition Survey was

generally lower than that of the US study, and included

only very few (approximately 1 %) that fell into the

region of high Se concentrations that predicted shorter

survival in the US study; therefore our conclusion that

higher baseline Se concentrations are predictive of longer

survival in Britain is entirely consistent with the obser-

vations of the US study.

Plasma a-tocopherol, which was not a significant

predictor for all-cause mortality, became significant for

respiratory mortality as shown in Tables 3 and 5, and

somewhat surprisingly, vitamin E intake became significant

(only) for cancer mortality as shown in these same two

tables; carotenoid intake becoming significant (only) for

respiratory disease mortality as shown in these two

tables. The observation that plasma vitamin E differed

fundamentally from the estimated vitamin E intake in its

mortality prediction capacity seems unsurprising in view

of the relative weakness of the inter-index correlation

between these two indices (only approximately 1·6 % of

the variance of plasma a-tocopherol was explained by

the variation in vitamin E intake, based on Pearson’s corre-

lation). All of the vitamins studied plus Se (with regard

to its role at the active catalytic centre of the glutathione

peroxidase enzymes) are considered to be primarily anti-

oxidant (and hence protective) in vivo, although several

of them can also exhibit pro-oxidant (i.e. possibly deleter-

ious) properties(29–32). Dietary supplements of some

carotenoids, in particular, have been associated with an

increased risk of some degenerative diseases(33,34), and a

recent meta-analysis(35) has found consistent evidence

Table 6. Multivariate hazard ratios for nutritional indices and intakes for cancer mortality*

(Hazard ratios and 95 % confidence intervals)

Hazard ratios (per SD) 95 % CI P Hazard ratios (per SD) 95 % CI P

Model (a): died n 140, alive n 337 Model (b): died n 92, alive n 243

Plasma Se (mmol/l) 0·72 0·58, 0·89 0·002 0·79 0·63, 0·99 0·04
Plasma Zn (mmol/l) 0·69 0·55, 0·86 0·001 0·70 0·56, 0·88 0·002
Dietary vitamin E (mg/d) 0·13 0·04, 0·42 0·001 0·23 0·06, 0·84 0·026

Model (c): died n 90, alive n 242 Model (d): died n 87, alive n 227
Plasma Se (mmol/l) 0·76 0·60, 0·96 0·024 0·78 0·60, 1·01 0·06
Plasma Zn (mmol/l) 0·74 0·58, 0·95 0·019 0·74 0·57, 0·96 0·03
Dietary vitamin E (mg/d) 0·16 0·04, 0·65 0·011 0·19 0·04, 0·81 0·025

* If haem Fe is added to these models of cancer mortality, it is a significant predictor, higher values being associated with greater cancer mortality, as
follows: Model 1, 1·18 (1·03, 1·35) (0·014); Model 2, 1·15 (0·99, 1·34) (0·06); Model 3: 1·27 (1·08, 1·49) (0·003); Model 4: 1·26 (1·06, 1·50) (0·008).
Please see the legend to Table 4 for an explanation of the four models, which follow on from the data, for primary cancer mortality, in the left-hand
data column in Table 3.

Table 7. Multivariate hazard ratios for nutritional indices and intakes for respiratory disease mortality*

(Hazard ratios and 95 % confidence intervals)

Hazard ratios (per SD) 95 % CI P Hazard ratios (per SD) 95 % CI P

Model (a): died n 482, alive n 242 Model (b): died n 129, alive n 242

Plasma a-tocopherol (mmol/l) 0·76 0·60, 0·96 0·02 0·77 0·60, 0·98 0·03
Carotenoids intake (mg/d) 0·74 0·59, 0·96 0·01 0·72 0·56, 0·91 0·008

Model (c): died n 407, alive n 227 Model (d): died n 123, alive n 259
Plasma a-tocopherol (mmol/l) 0·80 0·63, 1·01 0·06 0·87 0·67, 1·14 0·3
Carotenoids intake (mg/d) 0·77 0·57, 1·04 0·09 0·86 0·62, 1·19 0·4

* Please see the legend to Table 4 for an explanation of the four models, which follow on from the data, for primary respiratory disease mortality, in the right-
hand data column in Table 3.
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for deleterious effects, on all-cause mortality, for dietary

supplements containing vitamins A, E and/or b-carotene.

Less well studied, however, is the relationship of the

mineral nutrient indices plasma Zn and Fe, as potential

predictors of future mortality. Tables 2–5 suggest that, in

the present study, these were all comparatively robust

predictors, not only of all-cause-mortality but also of two

of the three subcategories of primary mortality from vascu-

lar diseases and cancer, while plasma Zn also predicted

mortality from primary respiratory disease. Whereas Zn

is generally considered to be ‘antioxidant’ and therefore

protective in vivo (36,37), which may, in turn, be linked

to its well-established immunoprotective functions(17,38),

in redox-modulatory terms, the opposite is true for Fe,

which often exerts pro-oxidant potential. However, Fe is,

of course, an essential nutrient, and Fe deficiency is one

of the commonest recognised mineral deficiency disease

in human populations. Since in the present study, both

Zn and Fe were associated with reduced mortality risk, it

appears unlikely that their redox-modulatory properties

are dominant here. Deficiency effects (on mortality) seem

likewise unlikely, although possible. More probable,

however, is their relationship with debility and risk of mor-

tality through their relationship with chronic inflammation

and the acute-phase reaction. Both plasma Zn and plasma

Fe (or the Fe % saturation of Fe-binding transferrin)

are negative acute-phase reactants and were associated

with reduced mortality risk here. Plasma Cu, like plasma

a1-antichymotrypsin, is a positive acute-phase reactant,

and both of these indices were associated with increased

risk of all-cause and primary vascular disease mortality

(Table 2). Neither index, however, significantly predicted

primary cancer or respiratory disease mortality (Table 3),

suggesting that these two status indices may tend to

change in parallel with each other. In this context, vascular

disease is usually considered to be a long-term chronic

condition, possibly characterised by an inflammatory

state at baseline, whereas death from respiratory disease

may more often arise from acute infections near the end

of life (e.g. bronchitis, pleurisy, etc.), which might be

one of the reasons why plasma a1-antichymotrypsin and

Cu were significant predictors of vascular disease mortality

but not of respiratory disease (or cancer) mortality here.

As observed from Table 4, when a1-antichymotrypsin

was introduced as part of a suite of adjuster indices (i.e.

Table 4 part (b) v. part (a)), plasma Cu lost its significance

for the prediction for all-cause and vascular disease mor-

tality; however, this was not necessarily true for plasma

Zn or Se (Tables 4 and 5).

The pattern of significant nutrient intake predictors in

the present study seems, in some respects, to be predict-

able, but in others it is somewhat surprising. The fact

that (increased) energy intake predicted (reduced) mor-

tality in three of the models as shown in Tables 2 and 4

may simply reflect the fact that a robust appetite reflects

relatively sound health at baseline. Prediction by intakes

of vitamins C and E and carotenoids as shown in

Tables 2, 3 and 5 may reflect ‘healthy lifestyles’, including

‘healthy’ food choices, and factors such as healthy dental

status and ability to chew fruit and other rich sources of

these and related nutrients, including vitamin E and certain

minerals(39). The observed relationship between higher

haem Fe intakes and higher risk of mortality attributed to

cancer (in Table 3) seems consistent with the prevalent

view that certain categories of meat intake may represent

a risk factor for incidence of some cancers, especially

bowel cancer.

The fact that only dietary energy survived as a significant

predictor in the fully adjusted models as shown in Tables 4

and 5 may reflect the fact that many nutrient intakes

are strongly correlated with energy intakes; however, the

survival of dietary vitamin E (cancer mortality) and caroten-

oids (respiratory disease) in the absence of significance

for dietary energy may imply a special significance for

these nutrients in these diseases, and thus deserves future

investigation. It is well known that variable misreporting

of dietary intakes is a major unresolved problem for the

interpretation of all surveys that include the estimation

of nutrient intakes. Our survey sought to minimise this

problem by the use of robust 4 d diet estimates based on

weighed food intakes; furthermore, any measurement

error present would result in attenuation of the observed

relationships rather than the strengthening of relationships.

However, we acknowledge that some uncertainty remains

in this respect. In the present study, energy intake was

found to be a significant predictor of mortality when

standardised values were used, but it failed to reach

conventional significance when its values were not stan-

dardised. In contrast, the key biochemical (status) indices

all remained significant predictors of mortality, whether

or not they were standardised.

From Tables 4–7, it is clear that whereas the prediction

significance of some of the nutritional indices was progress-

ively attenuated after additional variables were included in

the multivariate models, in other instances there was a

little change, or even an increase in significance. Such vari-

ations may help to assess the relative robustness of mortality

prediction, by the different (e.g. nutrient) variables, and for

the different mortality categories.

In conclusion, a number of baseline nutrient status indi-

ces with ‘redox-modulatory’ connotations appear to predict

all-cause, primary vascular disease, cancer or respiratory

disease mortality in older British adults. Of these, plasma

Se, Zn and Fe appeared to be especially robust, with

plasma vitamins C, E and carotenoids being predictive in

some, but not all, of the models examined. Some of the

status indices (especially plasma Cu) appeared to reflect

acute-phase status; others (including dietary intakes of

certain nutrients) may have reflected the robustness of

appetites and dentition, and ‘healthiness’ of lifestyles (see

Khaw et al.(40)). Future studies should attempt to deter-

mine, first, which nutrients are the most frequent predictors
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of all-cause and specific-cause mortality in different popu-

lations, and second, whether these predictions can imply

causal relationships, such that dietary or other interven-

tions might promote disease-free longevity.
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