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The inviscid compressible flow generated by a rigid body of volume V moving
unsteadily with a velocity U in a rapidly compressed homentropic flow is considered.
The fluid is compressed isentropically at a rate ∇ · v0 uniformly over a scale much
larger than the size of the body and the body moves slowly enough that the Mach
number M is low. The flow is initially irrotational and remains so during compression.
The perturbation to the flow generated by the body moving unsteadily is non-
divergent within an evolving region D of distance

∫ t

0
c1 dt from the body, where c1 is

the speed of sound. Within D, the flow is dominated by a source of strength (∇ · v0)V
and a dipolar contribution which is independent of the rate of compression, while
outside D, compressional waves propagate away from the body. When the body
is much smaller than the characteristic distance ‖(∇v0)|x0

‖/‖(∇∇v0)|x0
‖ and the size

of the region D, the separation of length scales enables the force on the body to
be calculated analytically from the momentum flux far from the body (but within
the region D). The contribution to the total force arising from fluid compression is
ρ(t)(∇ · v0)V(U − v0) · α, where v0 is the velocity field in the absence of the particles
and α is the virtual inertia tensor. Thus a body experiences a drag (thrust) force during
fluid compression (expansion) because the density of the fluid displaced forward by
the body increases (decreases) with time. The analysis indicates that the sum of the
compressional and added-mass force is equal to the rate of decrease of fluid impulse
P = ρ(t)V(U − v0) · α. Thus the concept of fluid impulse naturally extends to the
class of flows where the fluid density changes with time, but is spatially uniform.

These new results are applied to consider the inviscid dynamics of a rigid sphere
and cylinder projected into a uniformly compressed or expanded fluid. When the fluid
rapidly expands, a rigid body ultimately moves with a constant velocity because the
total force, which is proportional to the density of the fluid, tends rapidly to zero.
When the body moves perpendicular to the axis of compression, it slows down and
stops when the density of the fluid is comparable to the density of the body. However,
a body moving parallel to the axis of compression is accelerated by pressure gradients
which are proportional to fluid density and increases in time.

1. Introduction
In many natural and industrial processess, rigid particles are moving in fluids

which are being rapidly compressed or expanded by one or two orders of magnitude.
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Normally the effect of compression on particles has been considered in terms of
compression waves (e.g. shock and acoustic patches) generated by them when they
move fast enough (Chang & Lei 1996). However, there are other processes, such as
droplets moving in internal combustion engines, where compression (or expansion)
takes place rapidly on a scale much larger than the individual particles. At present
there is no theory for these flow problems. The object of this study is to understand
the flow generated by the movement of particles and estimate the forces acting on
them. Our approach is to extend the previous studies which have looked at the effects
of spatial variations of the fluid density (Eames & Hunt 1997; Palierne 1999) to
consider the effect of unsteady, but spatially uniform, density fields.

In this paper, we examine the inviscid flow generated by, and force acting on, a
rigid body moving in an applied external flow. In the absence of the body, the velocity
field v0 may be described locally by a Taylor expansion about a fixed reference point,
x0:

v0(x, t) = v0(x0) + (x − x0) · (∇v0)|x0
+ 1

2
(x − x0)(x − x0) : (∇∇v0)|x0

+ . . . . (1.1)

Within a distance Lv from x0, where Lv = ‖(∇v0)|x0
‖/‖(∇∇v0)|x0

‖ characterizes the
distance over which the velocity field varies, Taylor’s expansion gives to leading order

v0(x, t) = v0(x0) + (x − x0) · A, (1.2)

where A = (∇v0)|x0
. A number of authors (e.g. Taylor 1928a; Auton, Hunt &

Prud’homme 1988) have examined the forces acting on rigid bodies moving with
velocity U in the incompressible inviscid flow (1.2) where ∇ · v0 = 0. Under the
restriction that fluid density ρ is constant and the flow variations over distances
comparable to the body lengthscale, a, are small (i.e. ‖A‖a/|U − v0| � 1), Auton et al.
(1988) showed that a point symmetric body is subject to the force

FI = ρ(1 + CM )V
(

∂v0

∂t
+ (v0 · ∇)v0

)∣∣∣∣
x=xB

− ρCMVdU
dt

− ρCLV(U − v0(xB)) × ω, (1.3)

where the vorticity, ω = ∇ × v0, is uniform (according to (1.2)) and V is the body
volume. The added-mass or virtual inertia coefficient CM characterizes the shape and
orientation of the body to the relative flow (Batchelor 1967, p. 407) and assumes
the value CM = 1/2 for a sphere and CM = 1 for a cylinder. The components of the
inviscid force (1.3) are the added-mass force

ρCMV
(

∂v0

∂t
− dU

dt

)
, (1.4)

caused by the relative acceleration of the body to the fluid, the buoyancy force

ρV∂v0

∂t
, (1.5)

and the gradient of the ambient pressure

ρ(1 + CM )V(v0 · ∇)v0, (1.6)

and lift force caused by the relative motion of the body in a weakly sheared flow

−ρCLV(U − v0) × ω, (1.7)

(see Magnaudet & Eames 2000). Auton (1987) calculated analytically the lift force
on a sphere moving in a weak shear by evaluating the far-field momentum flux
and showed that the corresponding lift coefficient is CL =1/2, and confirmed this
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result numerically. The added-mass, buoyancy and force due to gradients of ambient
pressure may be generalized to arbitrarily shaped bodies, however, (1.7) strictly applies
only to bodies axisymmetric about (U − v0). Under this condition, the lift coefficient
associated with the shear-induced lift force is CM . Particularly relevant to the future
discussion in this paper about the effect of compression, is the added-mass force
associated with an arbitrarily shaped body, which may be expressed more generally
as the rate of change of fluid impulse, P = ρV(U − v0) · α, through

−dP
dt

, (1.8)

where the fluid density ρ is constant. Equation (1.8) applies when the volume and
shape of the body are functions of time. For point symmetric bodies, α =CM I, where
I is the identity matrix and (1.8) reduces to (1.4).

In this paper, we examine the flow generated by a rigid body moving in a fluid
undergoing uniform compression or expansion. This problem is rendered tractable
by considering a uniformly compressed irrotational flow and by calculating the
perturbations to this flow resulting from a body moving unsteadily. A crucial step
in the following analysis will be to demonstrate that the perturbation flow is non-
divergent in an evolving large region D enclosing the body within which the flow
is determined from Laplace’s equation. The problem is stated in its general form in
§ 2. The flow far from the body (but within the region D) is calculated in § 4 and
shown to be dominated by a source term which is proportional to the divergence of
the ambient flow and the body volume. The force acting on the body is calculated
in § 5, by application of the momentum integral theorem to calculate the far-field
momentum flux. The principal result of this paper is that the expression for the
added-mass force (1.8) is still applicable when the fluid density changes uniformly
with time. These results are described in a general context in § 6.

2. Problem definition
We proceed to examine the compressible inviscid flow v(x, t) around a rigid body

moving with a velocity U =(U1, U2, U3). We restrict our analysis to flows where,
far from the body, there is uniform compression at a constant rate, and when the
principal axes of compression coincide with the Cartesian coordinate axes x̂, ŷ, ẑ so
that A is a diagonal matrix independent of time,

A =


l1 0 0

0 l2 0

0 0 l3


 . (2.1)

To calculate the effect of compression on the leading-order flow field and on the force
acting on the body, we consider a body which moves impulsively from rest in an
irrotational flow field, in order that the irrotationality condition is preserved. A body
moving from rest generates compressional waves which propagate away from the body
with the speed of sound, c. In the absence of an external compressional flow, the flow
is incompressible within an evolving region of distance O(ct) from the body, beyond
which is it necessary to account for the compressional waves (see the discussion by
Lighthill 1978). When the body moves unsteadily in an irrotational flow characterized
by a low Mach number, the radiated compressional waves have a negligible effect on
the force acting on the body, which is determined by the acceleration of the body
and the local acceleration of the flow. In this paper, we calculate the perturbation
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flow within an evolving region D enclosing a body moving unsteadily in a uniformly
compressed flow where the perturbation flow is non-divergent, and beyond which
compressional waves propagate.

The density and velocity fields satisfy the conservation of mass,

Dρ

Dt
= −ρ(∇ · v), (2.2)

and conservation of linear momentum,

ρ
Dv

Dt
= −∇p. (2.3)

We assume the fluid to be homentropic and the compression adiabatic so that the
entropy of the gas is homogeneous and does not change during compression. The
equation of state describing adiabatic compression or expansion is

p

p0

=

(
ρ

ρ0

)γ

, (2.4)

where the subscript 0 refers to an initial state.
The flow satisfies the kinematic condition

v · n̂ = U · n̂, (2.5)

on the body surface SB where n̂ is the unit vector normal to the surface of the body.
In the far field, the flow tends to the imposed external flow,

v → v0 = v0(xB) + (x − xB) · A. (2.6)

The centre of volume of the body moves from xB(0) to xB(t) = xB(0) +
∫ t

0
Udt , in

time t . We introduce the coordinate x ′ relative to the body, x = x ′ + xB(t), so that
x ′ = 0 corresponds to the body’s centre of volume, i.e.∫

V
x ′ dV = 0. (2.7)

According to (2.4) the fluid is barotropic so that no baroclinic torque acts on the
flow and vorticity is generated either by stretching and tilting of fluid elements, or by
the compression or expansion of the flow. For the particular case that the external
flow is initially irrotational (ω(x, 0) = 0), the flow everywhere remains irrotational.
As a consequence of irrotationality, the flow in the fluid frame of reference may be
expressed in terms of a perturbation velocity ∇φ and the undisturbed velocity in this
frame, v0 = x · A,

v = x · A + ∇φ. (2.8)

Uniform compression can, in principle, be generated mechanically by squashing fluid
between two plane rigid walls. Wang & Kassoy (1990) considered the flow generated
by a piston accelerating from rest and observed the generation of compressional waves
on the piston surface which travelled rapidly backwards and forwards in the bounded
domain. However, the generation of a uniformly compressed flow in the problem we
consider would require energy absorbing boundaries to damp compressional waves
moving backwards and forwards in a confined space.
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3. Density and pressure field
Using the equation of state (2.4), Euler’s equation (2.3) in the fluid frame of reference

is

− p0γ

ρ0(γ − 1)
∇

(
ρ

ρ0

)γ −1

=
Dv

Dt
≡ ∂v

∂t
+ 1

2
∇v2 − v × ω, (3.1)

where v = |v|. The flow is irrotational so that the vortex force on the fluid elements
is zero and integrating (3.1) gives

− p0γ

ρ0(γ − 1)

(
ρ

ρ0

)γ −1

= B(t) +

(
∂φ

∂t
+ 1

2
v2

)
, (3.2)

where B(t) is an arbitrary constant of integration which we express in terms of a
reference density ρ1(t) as B(t) = −p0γ (ρ1/ρ0)

γ −1/ρ0(γ − 1). The speed of sound c is
defined as c2 ≡ dp/dρ = γp/ρ. From (3.2), the density field is

ρ = ρ1(t)

[
1 − γ − 1

c2
1

(
∂φ

∂t
+ 1

2
v2

)]1/(γ −1)

, (3.3)

where the speed of sound corresponding to fluid of density ρ1 is c1 =

√
γp0ρ

γ −1
1 /ρ

γ

0 .
The flow is calculated by expressing conservation of mass as

∂

∂t

(
ρ

ρ0

)γ −1

+ v · ∇
(

ρ

ρ0

)γ −1

= −(γ − 1)

(
ρ

ρ0

)γ −1

∇ · v, (3.4)

and substituting (3.3) into (3.4):

(γ − 1)(1 − C)

[
1

ρ1

∂ρ1

∂t
+ (∇ · v0)

]
=

DC
Dt

− (1 − (γ − 1)C)∇2φ, (3.5)

where C = (φt + v2/2)/c2
1.

The Mach number M is defined as the ratio of the characteristic velocity scale to
the speed of sound, M = v/c1. According to the flow field (2.8), the velocity increases
away from the origin, so that M = max{|x‖∇ · v0|/c1, |U |/c1}. We restrict the analysis
to the case of low Mach number, M � 1, necessarily requiring that the flow domain
is smaller than c1/|∇ · v0|, and that |φt/c

2
1| ∼ |U̇ |a/c2

1 � 1, so that |C| � 1. Under
these assumptions, (3.3) may be expanded:

ρ = ρ1(t)

[
1 − 1

c2
1

(
∂φ

∂t
+ 1

2
v2

)
+ O(M4)

]
. (3.6)

According to (3.6), the density field is to leading order uniform and takes the value
ρ1(t), with an O(M2ρ1) variation due to pressure gradients generated locally by the
body. In this paper we consider a body moving unsteadily in a uniformly compressed
fluid. The left-hand side of (3.5) describes the changes in the bulk density of the fluid
caused by the uniform compression. When M � 1 and |U̇ |a/c2

1 � 1, the conservation
of mass reduces to a simpler form which may be integrated

∂ρ1

∂t
+ ρ1(∇ · v0) = 0 ⇒ ρ1 = ρ0 exp (−∇ · v0t) , (3.7)

where the fluid density changes everywhere at the same rate, a quite different type
of compressible flow from one with a shock wave and large variations in the rate of
compression of fluid elements (Chang & Lei 1996).
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Consistent with (3.6), the pressure field is

p = p0

(
ρ

ρ0

)γ

= p1(t) − ρ1(t)

(
∂φ

∂t
+ 1

2
v2

)
+ O(ρ1(t)v

2M2), (3.8)

(e.g. see Milne-Thompson 1968, p. 16). The static pressure, p1 = p0(ρ1/ρ0)
γ , increases

everywhere with time because the fluid is being compressed and the dynamic pressure
varies spatially due to inertial forces.

For uniform compression, (3.5) reduces to the wave equation,

∂

∂t

(
1

c2
1(t)

∂φ

∂t

)
− ∇2φ = −v · ∇C − (γ − 1)C∇2φ − ∂

∂t

(
v2

2c2
1

)
, (3.9)

where the nonlinear terms on the right-hand side may be interpreted as a forcing of
the flow (see Howe 2003). When M � 1 and |U̇ |a/c2

1 � 1, the terms on the right-hand
side are negligible compared to those on the left-hand side of (3.9) because |C| � 1,
and the velocity potential is described by the linear wave equation

∂

∂t

(
1

c2
1(t)

∂φ

∂t

)
− ∇2φ = 0. (3.10)

The effect of compression is implicitly included here through the speed of sound which
changes with time. Note that the derivation of the above wave equation requires both
the Mach number to be small and the acceleration of the body to be smaller than
c2
1/a – the second constraint is generally ignored (e.g. see Lamb 1932).
When the fluid is not compressed (∇ · v0 = 0), the wave speed c1 is constant and

1

c2
1

∂2φ

∂t2
− ∇2φ = 0. (3.11)

Lamb (1932, p. 523) discusses the calculation of the velocity potential for a sphere
(of radius a) moving impulsively from rest with a constant speed U and showed
that compressional waves are generated which propagate away from the sphere. In
the evolving region D, where |x ′| � t/c, moving with the sphere, the flow is steady,
incompressible and characterized by a dipole moment Ua3/2. In this region, the
component of the velocity potential associated with the compressional wave tends
exponentially to zero over a time scale of a/c. The divergence of the flow (∇2φ) is
associated with the compressional waves emitted as the sphere accelerates from rest
and is only important outside D.

In the problem we consider, the fluid is compressed uniformly. Decomposing the
velocity potential in terms of the non-divergent component φ0 and the residual
component, φ1, where

φ = φ0 + φ1, (3.12)

the components of the velocity potential satisfy

∇2φ0 = 0,
∂

∂t

(
1

c2
1

∂φ1

∂t

)
− ∇2φ1 =

∂

∂t

(
1

c2
1

∂φ0

∂t

)
. (3.13)

When the body starts impulsively from rest, compressional waves are generated
locally and propagate away from the body. Following the passage of the initial
compressional waves, we see from (3.13) that within an evolving region D (having
a distance much less than Lc =

∫ t

0
c1dt from the body), the compressional waves

(described by φ1) are generated (or forced) by the local (unsteady) acceleration field
of the translating body (corresponding to the right-hand side of (3.13)), so that
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φ1 scales as a2V|Ü |/c2
1. When |Ü | � |U − v(xB)|c2

1/a
2, the component of the flow

associated with the compressional waves is negligible compared to the non-divergent
component. Implicit in our discussion is that the waves are generated locally by the
body and propagate away from the body – the influence of waves generated in the far
field and moving towards the sphere is neglected in this discussion. Thus in the limit
M � 1, a|U̇ |/c2

1 � 1 and |Ü | � |U − v(xB)|c2
1/a

2, the resulting irrotational flow is
non-divergent in the evolving domain D. Although the perturbation flow satisfies
Laplace’s equation within D, we proceed to consider the limiting case when ∇2φ = 0
is satisfied everywhere.

The divergence of the velocity field v is generated by the imposed external flow, so
that ∇ · v = ∇ · v0. The system of equations we solve can now be stated as:

v = v0(xB) + x ′ · A + ∇φ, (3.14)

v · n̂ = U · n̂ on SB; v → v0(xB) + x ′ · A as |x ′|/a → ∞, (3.15)

∇2φ = 0, (3.16)

p = p1(t) − ρ

(
∂φ

∂t
+ 1

2
v2

)
, (3.17)

ρ = ρ0 exp(−∇ · v0t). (3.18)

4. Flow around a body moving in a uniformly compressed fluid
We can deduce some general properties of the velocity potential, φ, that result

from the kinematic condition (3.15). Since the body is impermeable, the volume flux
through the body surface SB is identically zero:

0 =

∫
SB

v · n̂ dS =

∫
SB

∇φ · n̂ dS +

∫
SB

(x ′ + xB) · A · n̂ dS =

∫
SB

∂φ

∂n
dS + Trace(A)V.

(4.1)
Thus the strength of the source term, Q, required to satisfy the boundary condition
on the body surface is

Q =

∫
SB

∂φ

∂n
dS = −(∇ · v0)V, (4.2)

where ∇ · v0 = Trace(A); (4.2) is independent of the shape of the body, but is
proportional to its volume. Moreover, since there are no sources or sinks in the
external flow, the volume flux out of any surface enclosing the body (but within D)
is equal to Q.

The kinematic condition (3.15) becomes

∇φ · n̂ = −(x ′ · A) · n̂ + (U − v0(xB)) · n̂. (4.3)

The dipole strength, µ, characterzing the far-field potential flow (Taylor 1928b;
Batchelor 1967, p. 403) corresponds to that given in the absence of compression

Ωµ = (U − v0(xB))V · (α + I) , (4.4)

since it is only determined by the translational velocity of the body. Here Ω takes
the value 2π and 4π in two- and three-dimensions respectively, and I is the identity
matrix. The integral of φ over the surface of the body, IB , is defined by

IB =

∫
SB

φn̂ dS,
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where n̂ is unit vector normal to the body surface and directed into the body (Saffman
1992, p. 74). When the fluid density is constant and takes the value of unity, IB is
identified as the fluid impulse (Batchelor 1967, p. 408), and is given by

IB = (U − v0(xB)) · α. (4.5)

It can be easily shown from (4.4), that the impulse is unchanged by compression since
it is only determined by the dipolar component of the far-field. Far from the body
but within the region D, the flow is to leading order determined by the source and
dipolar contributions to the velocity potential. In two-dimensions, the far-field flow
in the frame moving with the body tends to

v → v0(xB) + x ′ · A + ∇
(

Q

2π
log r − µ · x ′

r2

)
, (4.6)

and in three-dimensions to

v → v0(xB) + x ′ · A + ∇
(

− Q

4πr
− µ · x ′

r3

)
. (4.7)

The dipole moment and source strength, µ† and Q, are given by (4.4) and (4.2),
respectively. For the case of a cylinder moving parallel to the x-axis with speed U ,
the velocity potential may be calculated explicitly:

φ(r, θ) = − (l1 + l2)
a2

2
log r︸ ︷︷ ︸

source

− U (1 − l1xB/U )
a2 cos θ

r︸ ︷︷ ︸
dipole

+
(l1 − l2)a

3

4r2
cos 2θ︸ ︷︷ ︸

quadrupole

, (4.8)

where x ′ = r cos θ and y ′ = r sin θ . The velocity potential corresponding to flow past
a sphere moving parallel to the x-axis in an external flow uniformly compressed along
the x ′ and y ′ axis is

φ(r, θ, ϕ) = (l1 + l2)
a3

3r︸ ︷︷ ︸
source

− U (1 − l1xB/U )
a3 cos θ

2r2︸ ︷︷ ︸
dipole

+
l2a

4

18r3
P 2

2 (cos θ) cos 2ϕ − (l1 + l2)a
4

9r3
P 0

2 (cos θ)︸ ︷︷ ︸
quadrupole

, (4.9)

where the coordinate axes are x ′ = r cos θ , y ′ = r sin θ cosϕ, and z′ = r sin θ sinϕ. The
Legendre polynomials are defined as P 2

2 (cos θ) = 3 sin2 θ , P 0
2 (cos θ) = (3 cos2 θ − 1)/2

(Arfken 1985).

5. Force on a body moving in a uniformly compressed fluid
The force, F, acting on the body moving in an inviscid fluid is caused by the

pressure variation over the body surface and is thus expressed as

F =

∫
SB

pn̂ dS, (5.1)

† A subtle point is that Batchelor (1967, p. 400) defines the doublet strength for two-dimensional
flows to have an opposite sign, or sense, to three-dimensional flows. The notation employed here is
more consistent, with the sign or sense being the same.
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L
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S

A

Body
surface SB

Control
surface S∞

Figure 1. Schematic of the control volume used in the calculation of the force
acting on the body.

where n̂ is the unit normal directed into the body. For the case of a cylinder or
sphere moving in a uniformly compressed flow, the force acting on the body may
be calculated using expressions for the flow, (4.8), (4.9), to evaluate the pressure
distribution over the cylinder or sphere surface. Calculation of the pressure field
in inhomogenous flows is generally non-trivial. In such cases, the force may be
calculated either from the virtual work done in displacing the body (as described by
Taylor 1928a) or by calculating the flux of momentum away from the body. Howe
(1995) demonstrated how the force on bubbles and bodies moving in inviscid and
viscous fluids may be calculated from the momentum flux out of a control volume
V∞ surrounding the body. The choice of the control volume V∞ is arbitrary, but
to simplify the evaluation of the far-field momentum flux, we prescribe V∞ to be a
rectangle (in two dimensions) or a cylinder (in three dimensions), centred on the origin
(x = 0), whose width (or radius) W and length L are taken to be much larger than
the size of the body, and the control volume to be slender (L � W ) (see figure 1).
The size of the control volume is restricted by the condition a � L � Lc(t), so
that the compressional waves generated by the body moving from rest have left the
control volume. The bounding surface of the control volume consists of the ends of
cylinder/rectangle, A, and the curved cylinder surface/rectangles sides, S. The force
on the body may be evaluated in terms of surface and volume integrals over a control
volume:

F = −
∫

A∪S

pn̂ dS −
∫

V∞−V
ρ(t)

Dv

Dt
dV. (5.2)

The force on a body moving unsteadily in an inviscid flow with a uniform density
field may be calculated by applying Gauss’s theorem to (5.2):

F = −
∫

A∪S

(
p + 1

2
ρ(t)v2

)
n̂ dS −

∫
V∞−V

ρ(t)
∂v

∂t
dV −

∫
SB

ρ(t)(v · n̂)v dS

︸ ︷︷ ︸
(i)

−
∫

A∪S

ρ(t)
[
(v · n̂)v − 1

2
v2n̂

]
dS︸ ︷︷ ︸

(ii)

+

∫
V∞−V

ρ(t)v(∇ · v) dV

︸ ︷︷ ︸
(iii)

. (5.3)
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We have made use of the fact that the density is uniform, so that ∇ρ = 0. The effect
of fluid compression is to introduce term iii into the integral form of the momentum
equation and this contribution has not been included in previous force descriptions.
Term iii (in (5.3)) results from the increase in momentum within the control volume
caused by the rate of increase of fluid density. This is why a body moving in a
compressed flow experiences a drag force.

The force acting on a body moving unsteadily in a uniformly compressed flow is
shown in the Appendix to be

F = ρ(t)(∇ · v0)IB − ρ(t)
dIB

dt
+ ρ(t)VU · A − ρ(t)Ωµ · A. (5.4)

The first term in the expression corresponds to the new contribution due to uniform
compression of the flow and is zero in the absence of compression. The second term
corresponds to the added-mass term owing to the acceleration of the local flow (see
(1.4)). The third term corresponds to the buoyancy force

ρ(t)V∂v0(xB)

∂t
= ρ(t)U · AV,

(see (1.5)) and arises because the fluid velocity seen by the body is changing with
time. The fourth term on the right-hand side corresponds to the force acting on the
body as it moves through a pressure gradient in the ambient flow (see (1.6)). These
calculations demonstrate that compression gives rise to an additional force which is
not currently included in multiphase flow models. The compressional force gives rise
to an additional drag force when the fluid is compressed and a thrust when the fluid
is expanded. The additional drag force experienced arises because the body displaces
forward fluid of increasing density during compression. The compressional force may
equivalently be interpreted in terms of the change in the pressure distribution over
the surface of the body caused by compressional flow. Figure 2 shows how the
compressional flow tends to retard the flow near the front of the body but speeds up
the fluid at the rear, generating a pressure drop between the front and rear of the
body so that the body experiences a drag force. The direction of the force is reversed
when the fluid expands uniformly.

The total force may be written in a form combining both the added-mass and
compressional force component to give

F = − dP
dt

+ ρ(t)VU · A − ρ(t)Ωµ · A, (5.5)

where P = ρ(t)IB . The analysis developed is valid when the relative motion between
the body and the fluid is unsteady; however, when the rate of acceleration of the body
is too large, compressional waves are significant near the body and the calculation is
invalid.

The force on a rigid cylinder or sphere, characterized by α = CM I, moving unsteadily
in a uniformly compressed fluid is

F = − d

dt
[ρ(t)CMV(U − v0(xB))] + ρ(t)VU · A − ρ(t)(1 + CM )V(U − v0(xB)) · A

= ρ(t)(1 + CM )Vv0(xB) · A − ρ(t)CMV dU
dt

− CMV(U − v0(xB))
dρ

dt
. (5.6)

In the absence of compression, (5.6) reduces to the force expression obtained by
substituting (2.1) into (1.3). The new effect of fluid compression is described by the
last term on the right-hand side of (5.6).
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Full curves denote
flow induced by
translation

External
compressed flow

Dashed curves
represent flow perturbation
caused by  the applied
compressional flow

U

Figure 2. Schematic illustrating how a compressional flow leads to a decrease in pressure at
the rear of the body and an increase at the front of the body. The consequence is a drag force
acting on the body.

Equation (5.6) is now applied to study the effect of compression on the trajectory of
a rigid cylinder or sphere projected from the origin with initial velocity (Ux(0), Uy(0))
in a flow v0(x, y) = (l1x, l2y). According to (3.7), the density of the fluid is ρ =
ρ0 exp(−(l1 + l2)t). From (5.6), the dynamics of a point symmetric body moving with
velocity U = (Ux, Uy) are described by:

(ρp + CMρ(t))
dUx

dt
= ρ(t)[CM (l1 + l2)Ux + xl1[l1 − CMl2]], (5.7)

(ρp + CMρ(t))
dUy

dt
= ρ(t)[CM (l1 + l2)Uy + yl2[l2 − CMl1]]. (5.8)

The above equations are uncoupled, linear and independent of the volume of the
body. Therefore it is only necessary to consider motion parallel to the x-axis to
understand the effect a compressional flow on the dynamics of the body. A body
moving in an incompressible fluid (l1 + l2 = 0) accelerates away from the origin
towards the region of low pressure and moves a distance x from the origin in time
t where l1x/Ux(0) = ((ρp + CMρ)/ρ(1 + CM ))1/2 sinh((ρ(1 + CM )/(ρp + CMρ))1/2l1t).
When the fluid is compressed along the y-axis (l1 = 0), the body moves a distance x

from the origin in time t , where

− l2x

Ux(0)
=

(
1 +

CMρ0

ρp

)
log

(
exp(−l2t)(1 + CMρ0/ρp)

1 + (CMρ0/ρp) exp(−l2t)

)
. (5.9)
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Figure 3. Trajectories of a rigid cylinder (Cm = 1) of radius a projected into a compressed
fluid. The cylinder is projected (a) perpendicular and (b) parallel to the axis of compression.
The ratio of density of the cylinder to the initial density of the fluid is ρp/ρ0 = 10.

Thus, when the fluid expands (l2 > 0), the density of the ambient fluid decreases rapidly
and the body ultimately moves with a constant speed (1 + CMρ0/ρp)Ux(0). However,
when the fluid is compressed (l2 < 0), the fluid density increases and the body slows
down owing to the compressional force and ultimately stops a distance −(Ux(0)/l2)(1+
CMρ0/ρp) log(1 + ρp/CMρ0) from the origin over a time scale O(− log(ρp/CMρ0)/l2).
Thus, the body ultimately stops when the density of the fluid is comparable to the
density of the body. Figure 3(a) shows how the trajectory of a rigid cylinder depends
on the ratio of the advective to compressional timescale, l2a/Ux(0), where a is the
radius of the cylinder. A rigid sphere projected with the same initial speed as a cylinder
slows down over a longer time scale owing to the smaller added-mass coefficient and
stops a further distance from the origin.

When the body moves parallel to the compressional axis (l2 = 0), the dynamics are
more complex because there is a combination of acceleration by gradients of fluid
pressure and the compressional force. When the fluid expands (l1 > 0), the force acting
on the body tends exponentially to zero because the density of the fluid decreases,
and the body ultimately moves with a constant speed as indicated in figure 3(b).
When the fluid is compressed, the force generated by gradients of the ambient fluid
pressure ultimately dominates the compressional force and the body accelerates away
from the origin. In the more general case when the fluid is compressed or expanded
about the x- and y-axis, the body ultimately accelerates (or decelerates) away from
the origin when l1(l1 − CMl2) is positive (or negative).

6. Discussion
In this paper, we have examined the flow generated by a rigid body moving

unsteadily in a rapidly compressed flow. To render the analysis tractable, we
considered a body starting impulsively from rest in an initially irrotational flow
and calculated the flow generated within an evolving region D (which is much
larger than the size of the body) where the flow perturbation is non-divergent. The
compression was assumed to be uniform and constant, and the Mach number of the
flow is sufficiently low that flow adjustment occurs over a time much shorter than
the advective time scale by the generation of compressional waves. The separation of
length scales between the size of the body, the characteristic distance over which the
external flow field varies (Lv) and the size of the region (Lc), enabled the force acting
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on the body to be calculated from the momentum flux far from the body, but within
the region D. The force is dominated by the monopolar flow field generated by the
kinematic condition imposed by the surface of the body, and the dipolar component
generated by translation. The impact of compressional waves, generated by the initial
rapid acceleration of the body from rest, on the force acting on a moving body are
complex. These waves must be considered when calculating the unsteady flow outside
D; however, they have a negligible effect on the flow within D and on the total force
acting on the body.

We have shown that bodies moving in rapidly compressed flows experience a drag
force as a consequence of displacing forward fluid of increasing density, and this
force is not captured by current multiphase models. We have demonstrate that the
compressional and added-mass forces may be combined and expressed more generally
in terms of the rate of decrease of fluid impulse, P = ρ(t)IB . Although discussed by
Saffman (1972), who suggested that the concept of fluid impulse can be applied even
when the gradient of fluid density is weak, here we have shown that the fluid impulse
concept extends naturally to uniformly compressed fluids, where the density gradient
is zero, but the density field changes with time. The additional compressional force
may also be deduced by a straightforward application of a Hamiltonian description
of the forces on bodies moving in a potential flow (e.g. Palierne 1999) because the
kinetic energy of the fluid is contained in the irrotational component of the flow,
and the potential energy of the fluid due to compression does not affect the force. A
limitation of a Hamiltonian description of this problem is that it provides no insight
into the flow.

The calculations presented in this paper relate to bodies moving in initially
irrotational compressed flows described by (2.1). The effect of a rotational component
to the flow was not considered in this paper. However, when the flow initially has a
rotational component, compression tends to increase the strength of the vorticity field
because the circulation associated with a closed material circuit is conserved while its
area decreases. When the flow is two-dimensional and the vorticity field ω is initially
uniform, the vorticity changes uniformly during compression and expansion because
ω/ρ is materially conserved. Thus, the flow generated by a cylinder moving in a
uniformly compressed fluid corresponds to that calculated by Batchelor (1967, p. 542)
and the lift coefficient is unchanged. However, when the flow is three-dimensional, the
vorticity field is affected both by advection and stretching by the applied compressional
flow and the flow past the body. Auton’s expression for lift applies in the limiting
case where changes in vorticity due to compression in a time a/|U −v0(xB)| are small,
that is, |∇ · v0|a/|U − v0(xB)| � 1. When this condition is not satisfied, the effect of
vorticity generation through compression and advection by the compressional flow
must also be considered.

The new inviscid analysis presented in this paper has provided insight into the effect
of changes of the ambient fluid density on the dynamics of a rigid body and could
be useful for calculating forces on particles in practical problems where it is usual to
add empirically derived drag forces to obtain estimates of the total force (e.g. Hunt,
Perkins & Fung 1994; Magnaudet & Eames 2000).
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Appendix

Term iii

The rate of compression, ∇ · v0 = Trace(A), is constant. Term iii is

ρ(t)Trace(A)

∫
V∞−V

(x · A + ∇φ) dV = ρ(t)Trace(A)

[∫
V∞−V

x · A dV

+

∫
A∪S

φn̂ dS +

∫
SB

φn̂ dS

]
= ρ(t)Trace(A)

[
−xB · AV +

∫
A∪S

φn̂ dS + IB

]
.

Here, we have made use of the fact that the control volume V∞ is symmetric about
the origin (x = 0).

Term ii

Using v = x · A + ∇φ, and expanding the terms in the integrand, we have

−
∫

A∪S

(
(v · n̂)v − 1

2
v2n̂

)
dS

= −
∫

A∪S

[(x · A) · n̂]∇φ dS −
∫

A∪S

(∇φ · n̂)(x · A) dS +

∫
A∪S

[(x · A) · ∇φ]n̂ dS. (A 1)

The other contributions are zero, owing to symmetry of the control volume, or because
they decay sufficiently rapidly in the far field. Writing x = x ′ + xB , we find that (A 1)
is

−
∫

A∪S

[(x ′ · A) · n̂∇φ] dS −
∫

A∪S

(∇φ · n̂)(x ′ · A) dS +

∫
A∪S

[(x ′ · A) · ∇φ]n̂ dS.

−
∫

A∪S

[(xB · A) · n̂∇φ] dS −
∫

A∪S

(∇φ · n̂)(xB · A) dS +

∫
A∪S

[(xB · A) · ∇φ]n̂ dS. (A 2)

Now, [∫
A∪S

(∇φ · n̂)x ′ dS

]
· A =

[∫
A∪S

[x ′(∇φ · n̂) − φn̂] dS +

∫
A∪S

φn̂ dS

]
· A

=

[
Ωµ +

∫
A∪S

φn̂ dS

]
· A,

(from Batchelor 1967, equation (6.4.32), p. 399, and the last equation on p. 400). The
third and fourth terms in (A 2) may be evaluated in three dimensions by writing
the velocity potential, φ = −Q/4πr − µ · x ′/r3, as a sum of source and dipolar
contributions and integrating over the control surface A ∪ S. Evaluating the fourth
and last term in (A 2) shows that their contribution is negligible compared to the
other terms. The fifth term in (A 2) is −(

∫
A∪S

∇φ · n̂ dS)(xB · A) = VTrace(A)(xB · A).
Term ii is

−ρ(t)Ωµ · A − ρ(t)

(∫
A∪S

φn̂ dS

)
· A − ρ(t)

∫
A∪S

[((x ′ · A) · n̂)∇φ

− (x ′ · A) · ∇φn̂] dS + ρ(t)VTrace(A)(xB · A).
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The third term in the above expression is evaluated explicitly to give

ρ(t)


 0

2πµ2(l1 + l3)

2πµ3(l1 + l2)


 .

Term ii reduces to

−ρ(t)Ωµ · A − ρ(t)

(∫
A∪S

φn̂ dS

)
· A + ρ(t)


 0

2πµ2(l1 + l3)

2πµ3(l1 + l2)


 + ρ(t)VTrace(A)(xB · A).

Term i

−ρ(t)

∫
SB

∂φ

∂t
n̂ dS − ρ(t)

∫
SB

(U · n̂)∇φ dS − ρ(t)

∫
SB

(U · n̂)(x · A) dS

since v · n̂ = U · n̂ on SB . In addition,∫
SB

(U · n̂)(x · A) dS =

∫
SB

(U · n̂)[(xB + x ′) · A] dS = −U · AV.

Thus, term i is equal to

−ρ(t)
dIB

dt
+ ρ(t)U · AV,

since dIB/dt =
∫

SB
∂φ/∂t n̂ dS +

∫
SB

(U · n̂)∇φ dS.

Total force
The total force is calculated by adding together terms i, ii and iii:

F = −ρ(t)
dIB

dt
+ ρ(t)U · AV − ρ(t)Ωµ · A + ρ(t)Trace(A)IB

+ ρ(t)

(∫
A∪S

φn̂ dS

)
· (Trace(A)I − A) + ρ(t)


 0

2πµ2(l1 + l3)

2πµ3(l1 + l2)


 .

For the cylindrical control volume used,

∫
A∪S

φn̂ dS =


 0

−2πµ2

−2πµ3


 .

The total force is therefore

F = ρ(t)(∇ · v0)IB − ρ(t)
dIB

dt
+ ρ(t)U · AV − ρ(t)Ωµ · A.

These calculations are confirmed for two-dimensional flows by repeating the above
calculations.
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