
Improving Forwarding Mechanisms For
Mobile Personal Area Networks

Redouane Ali

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Electrical & Electronic Engineering

University College London

Supervisor: Dr. Miguel Rio

January 10, 2011

2

Declaration of Authorship and Originality

I confirm that the work presented in this thesis is my own. Where information has been derived from

other sources, I confirm that this has been indicated in the thesis.

Department of Electronic & Electrical Engineering

University College London

Torrington Place

WC1E 7JE London

UK

Email: rali@ee.ucl.ac.uk

Date: January 10, 2011

Redouane Ali

Abstract

This thesis presents novel methods for improving forwarding mechanisms for personal area networks.

Personal area networks are formed by interconnecting personal devices such as personal digital assis-

tants, portable multimedia devices, digital cameras and laptop computers, in an ad hoc fashion. These

devices are typically characterised by low complexity hardware, low memory and are usually battery-

powered. Protocols and mechanisms developed for general ad hoc networking cannot be directly applied

to personal area networks as they are not optimised to suit their specific constraints.

The work presented herein proposes solutions for improving error control and routing over personal

area networks, which are very important ingredients to the good functioning of the network. The pro-

posed Packet Error Correction (PEC) technique resends only a subset of the transmitted packets, thereby

reducing the overhead, while ensuring improved error rates. PEC adapts the number of re-transmissible

packets to the conditions of the channel so that unnecessary retransmissions are avoided. It is shown by

means of computer simulation that PEC behaves better, in terms of error reduction and overhead, than

traditional error control mechanisms, which means that it is adequate for low-power personal devices.

The proposed C2HR routing protocol, on the other hand, is designed such that the network lifetime

is maximised. This is achieved by forwarding packets through the most energy efficient paths. C2HR

is a hybrid routing protocol in the sense that it employs table-driven (proactive) as well as on-demand

(reactive) components. Proactive routes are the primary routes, i.e., packets are forwarded through those

paths when the network is stable; however, in case of failures, the protocol searches for alternative routes

on-demand, through which data is routed temporarily. The advantage of C2HR is that data can still be

forwarded even when routing is re-converging, thereby increasing the throughput. Simulation results

show that the proposed routing method is more energy efficient than traditional least hops routing, and

results in higher data throughput.

C2HR relies on a network leader for collecting and distributing topology information, which in turn

requires an estimate of the underlying topology. Thus, this thesis also proposes a new cooperative leader

election algorithm and techniques for estimating network characteristics in mobile environments. The

proposed solutions are simulated under various conditions and demonstrate appreciable behaviour.

Acknowledgements

Above all, I would like thank my Supervisors Dr Miguel Rio and Dr John Pollard who have given me

precious support and advice, without which it would never haved been possible to complete this thesis.

I will forever be indebted to my family who have always believed in me and supported me both

morally and financially. To my father Mohamed, my mother Rabia, my sisters Karima, Amel, Dalila and

Yasmine, and my brothers Sofiane and Salim I say that had it not been for your continuous support and

encouragement, I would never have completed the PhD.

My sincere thanks go to Suksant Sae Lor, Dr Richard Clegg, Dr Raul Landa, Rabah Taleb Benouaer,

Mussie Wouldeselasie, Dr Venus Shum and Dr Chibuzor Edurdu who have spent their valuable time and

effort helping me with the thesis.

I will forever be beholden to my friends Riccardo Manzini, Thalis Tsailas, Doria Selmane, Nazim

Boufis, Adel Abad, Nabil Yahiaoui, Viola Matusiak and Kerstin Zibirre who have supported me through-

out the entire length of the PhD.

Last, but certainly not least, I cannot thank my fiancée Sarah Vernon enough for all her love, sup-

port, help and understanding, particularly in the last few months. No words can express my gratitude for

the effort she made in correcting the thesis, and for keeping me motivated all this time. For these and for

many other reasons, I am extremely grateful.

This PhD was funded by a grant from the Algerian Ministry of Higher Education

Contents

List of Figures 10

List of Tables 11

List of Algorithms 12

1 Introduction 13

1.1 Motivations . 13

1.2 Challenges . 16

1.3 Objectives . 17

1.4 Thesis Structure . 18

2 The Bluetooth Technology 20

2.1 Introduction . 20

2.2 Bluetooth Radio Layer . 21

2.3 Bluetooth Baseband Layer . 22

2.3.1 Baseband Channels . 22

2.3.2 Addressing . 22

2.3.3 Baseband Packets . 23

2.3.3.1 SCO Packets . 24

2.3.3.2 ACL Packets . 24

2.3.3.3 Baseband Packet Exchange . 25

2.4 Link Manager Protocol (LMP) . 26

2.5 Establishing Bluetooth Piconets . 27

2.5.1 Inquiry . 27

2.5.2 Paging . 28

2.6 Low Power Modes . 30

2.6.1 HOLD Mode . 30

2.6.2 Park Mode . 30

Contents 6

2.6.3 Sniff Mode . 31

2.7 Link Layer Control and Adaptation Protocol (L2CAP) 31

2.8 Bluetooth Network Encapsulation Protocol (BNEP) . 33

2.8.1 BNEP Data Packets . 33

2.8.2 BNEP Control Packets . 33

2.9 Bluetooth Profiles . 34

2.9.1 Personal Area Networking Profile . 34

2.10 Summary . 35

3 Ad Hoc Personal Area Networking 36

3.1 Introduction . 36

3.2 Bluetooth Personal Area Networking . 36

3.2.1 Network Formation . 37

3.2.2 Transmission Scheduling . 40

3.2.2.1 Intra-piconet Scheduling . 41

3.2.2.2 Inter-piconet Scheduling . 42

3.2.3 Error Control . 45

3.3 Routing in Personal Area Networks . 47

3.3.1 Proactive Routing Protocols . 47

3.3.2 Reactive Routing Protocols . 49

3.3.3 Hybrid Routing Protocols . 52

3.4 Summary . 55

4 Packet Error Correction (PEC) 56

4.1 Introduction . 56

4.2 System Overview . 57

4.3 Channel Monitoring . 58

4.3.1 Link Quality . 59

4.4 Packet Error Correction (PEC) Scheme . 60

4.4.1 Buffer Management . 61

4.4.2 Retransmission Mechanism . 62

4.4.3 Analysis of the PEC Scheme . 64

4.5 Evaluation . 65

4.5.1 Simulation Settings . 66

4.5.2 Metrics . 66

4.5.3 Packet Delivery Rate . 67

Contents 7

4.5.4 Data Overhead . 70

4.5.5 Audio Quality . 72

4.5.6 Delay . 75

4.6 Summary . 76

5 Network Size Estimation 77

5.1 Introduction . 77

5.2 Network Formation . 77

5.3 Random Walk-based Network Size Estimation . 80

5.3.1 Dealing With Mobility . 82

5.3.2 Algorithm Evaluation . 83

5.4 Gossip-based Network Size Estimation . 84

5.4.1 Effect of Node Mobility . 85

5.4.2 Evaluation . 86

5.5 Summary . 88

6 Cooperative Network Leader Election 89

6.1 Introduction . 89

6.2 Cooperative Leader Election . 90

6.2.1 Dealing with Node Mobility . 94

6.2.2 Performance Evaluation . 95

6.3 Summary . 97

7 Routing for Mobile Personal Area Networks 98

7.1 Introduction . 98

7.2 Basic Operations . 98

7.3 C2HR Routing . 100

7.3.1 Proactive Routing . 100

7.3.1.1 Link Costs . 100

7.3.1.2 Topology View Generation . 101

7.3.1.3 Topology Maintenance . 103

7.3.2 Reactive Routing . 103

7.3.2.1 Route Search . 103

7.3.2.2 Route Found . 104

7.4 Support for Multicast Routing . 106

7.5 Evaluation . 106

Contents 8

7.5.1 Assumptions . 106

7.5.2 Topology Discovery . 107

7.5.3 Route Recovery . 108

7.5.4 Excess Cost . 109

7.5.5 Throughput . 111

7.5.6 Routing Overhead . 113

7.5.7 Energy Efficiency . 114

7.6 Summary . 116

8 Conclusions and Future Work 117

8.1 Conclusions . 117

8.2 Contributions . 118

8.2.1 Enhancing Transmission Reliability . 118

8.2.2 Scatternet Formation . 118

8.2.3 Network Size Estimation . 118

8.2.4 Leader Election . 119

8.2.5 Ad Hoc Routing . 119

8.3 Future Work . 119

8.3.1 Improving Transmission Through Network Coding 119

8.3.2 Promoting Cooperation Amongst Nodes . 120

A Acronyms and Abbreviations 123

B Implementation in Matlab 130

B.1 PEC Implementation . 131

B.2 C2HR Implementation . 133

C Publications 136

References 137

List of Figures

1.1 Personal Area Network . 14

2.1 Bluetooth Protocol Stack . 20

2.2 Baseband Packet Format . 24

2.3 Baseband Packet Exchange - Point-to-Point . 25

2.4 Baseband Packet Exchange - Multi-slave . 26

2.5 LMP Packet Structure . 27

2.6 Inquiry Mechanism . 29

2.7 L2CAP Frame . 32

2.8 General BNEP Packet Format . 33

2.9 BNEP Control Packet . 34

3.1 Bluetooth Scatternet . 37

4.1 Packet Error Correction operation . 57

4.2 BER to LQ Mapping . 59

4.3 LMP buffer request Packet Format . 61

4.4 NACK Packet Format . 63

4.5 PEC Simulator . 66

4.6 PEC’s Estimate of Channel BER . 68

4.7 BER Estimator’s Error Performance . 68

4.8 Packet Delivery Rate . 69

4.9 Packet Delivery Rate - Comparison between PEC and Specification-recommended Scheme 70

4.10 Overhead Response . 71

4.11 Overhead Response - Comparison of PEC and Specification-recommended Scheme . . . 72

4.12 Audio Quality . 73

4.13 Audio Quality - Spectrograms . 74

4.14 PEC Delay Response . 75

List of Figures 10

5.1 Scatternet Topologies . 79

5.2 Scatternet Properties . 80

5.3 Network Size Estimations (Random Tour Method) . 83

5.4 Random Tour-based Estimator’s Error Performance . 84

5.5 Gossip-based Aggregation Method - Rounds vs. Precision Comparison 86

5.6 Gossip-based Aggregation Method - Estimation Delays 87

6.1 Independent Network States - Scatternet Scheduling . 91

6.2 Comparing Actual and Upper Bound itr Limit. 94

6.3 Leader Election Convergence Time . 95

6.4 Leader Election Convergence- Response to Mobility 96

7.1 C2HR Basic Operations . 99

7.2 Topology Query Packet Format . 102

7.3 Topology Response Message Format . 102

7.4 Route Search Packet Format . 104

7.5 Route Found Packet Format . 105

7.6 Topology Discovery Overheads . 108

7.7 Proactive Route Recovery Delay . 109

7.8 On-deman Route Repair Delay . 110

7.9 Excess Costs . 111

7.10 C2HR Throughput Response . 112

7.11 Throughput: Comparison between C2HR and Purely Proactive Routing 113

7.12 C2HR Overhead Response . 114

7.13 Energy Efficiency of C2HR . 116

B.1 PEC Simlation Flowchart . 132

B.2 C2HR Simlation Flowchart . 133

List of Tables

5.1 Gossip-based Aggregation Algorithm - List of Notations 85

5.2 Comparison Between Original and Adapted Gossip-based Aggregation Algorithms . . . 87

6.1 Leader Election Algorithm - List of Notations . 92

7.1 Adjacency Information Table . 101

List of Algorithms

1 PEC Adaptive Error Control . 61

2 PEC Retransmission - Receiver . 63

3 Gossip-based Aggregation Network size Estimation Algorithm 85

4 Leader Election Algorithm . 92

Chapter 1

Introduction

1.1 Motivations

The increase in use of consumer electronics and the wide availability of networking-enabled personal

devices have made personal area networking a very attractive way of organising and managing one’s

own network of personal equipment. A personal area network (PAN) is a collection of electronic devices,

such as mobile phones, laptop computers, portable multimedia systems and Personal Digital Assistants

(PDAs), belonging to the same individual or organisation linked together via an enabling wireless access

technology. The concept of personal area networking was introduced by T.G. Zimmerman in his thesis

entitled Personal area networks (PAN): Near-field intra-body communication [180]. In his work, the

author considers a PAN to be composed of a number of personal devices scattered around an individual.

This initial concept came to be known as Body Area Networks (BAN) [147]; however, this idea has

evolved to mean short range ad hoc networks formed by interconnecting various personal devices [48].

Several PANs can also be interconnected in an ad hoc fashion, wherein multi-hop data transfer can

take place, either within the individual networks themselves or to a remote destination via a Network

Access Point (NAP). Moreover, an individual’s devices can be interlinked to one another via a wide area

network such as the Internet or UMTS, thereby constructing distributed personal networks where one is

able to access a particular device remotely at any time and from anywhere [129]. The idea of personal

networking as described in [129] is a natural evolution of personal area networks, wherein physical

proximity is no longer a constraint. Nonetheless, the basic building block in personal networking consists

of personal area networks.

The main difference between general Mobile Ad Hoc Networks (MANET) and PANs is that in the

former, nodes are assumed to be symmetric in terms of capabilities, whereas in the case of PANs, nodes

have different degrees of ability [45]. In addition, PANs are generally characterised by short range com-

munications, whereas in MANETs this constraint is not usually applicable. In terms of processing and

power constraints, PANs are closer to Wireless Sensor Networks (WSN) [7], in that relaying information

1.1. Motivations 14

must take into account the capabilities of nodes and must aim at preserving energy. However, unlike

WSN, which are designed to suit specific applications and form static topologies [11, 5], PANs aim to

be more dynamic.

Just like any generic mobile ad hoc network, PANs do not rely on any underlying fixed infrastruc-

ture and nodes may displace, therefore the topology can change unexpectedly. Moreover, nodes may

join or leave the network without warning. Nevertheless, because of the nature of the devices them-

selves, special attention needs to paid to the short transmission range, reduced buffering and processing

capabilities, connectivity constraints and energy consumption. Consequently, some of the established

mechanisms for general mobile ad hoc networks may not be directly suitable for PANs as they may not

be energy efficient, may require more complex computations than devices can handle, or do not satisfy

transmission characteristics. Similarly, routing protocols for wireless sensor networks, although energy-

efficient, cannot be applied directly to PANs without alteration, as these protocols take advantage of the

stability of the network and periodicity of transmissions, which contradict the pervasiveness of PANs.

For these reasons, a new set of protocols and solutions need to be tailored to suit the specifics of personal

area networks. This thesis confines itself to personal area networks; more precisely, to data forwarding

issues. Figure 1.1 illustrates a typical setup for personal area networks.

Figure 1.1: Personal Area Network

Arranging personal devices in a mobile ad hoc network has numerous advantages, including ease

of access to data, carrying out distributed tasks such as monitoring, or distributing data storage. Uses of

personal area networks are various, and typical usage scenarios include: home automation [29], health

monitoring [94, 80], office networking [58] and disaster management [181]. Health monitoring, in par-

ticular, has had a tremendous impact on the development of PANs owing to the benefits they offer in

1.1. Motivations 15

capturing and relaying information on behalf of patients without their direct participation, i.e., even

when patients are unconscious. In [80] the authors propose an architecture that establishes communica-

tion between ambulance crews and specialist doctors, who are often located in remote hospitals, so that

patients can benefit from adequate treatment at the scene of an accident. The PAN equipment can capture

and transmit patients’ medical conditions to a data transfer unit, possibly located in the ambulance itself

or in a hospital where doctors and specialist teams can assess the situation and advise on the necessary

first aid treatment. In addition, these networks can be used to link patients at home to hospitals and

analysis centres, thereby reducing the cost of post-trauma care.

PANs also play an important role in distributed personal networking. The idea being to enable

access and interconnection of personal devices within close proximity or across a wide area network,

such as a wireless data network [128]. Thus, a person can access his/her devices and transfer data, such

as email or multimedia files, from anywhere and at any time without necessarily being within physical

proximity. For instance, when an individual leaves his office and enters his car, a PAN is established

with the in-car network system, allowing access to a wide area network, so that the individual can access

other devices which remain in the office but are connected to a network access point. It is anticipated

that distributed personal networking will play a major part in future communications systems, hence the

need for networking personal devices into personal area networks.

There are a variety of technologies that could be used as the underlying bearer of this type of

network: Bluetooth [24], Zigbee [153] or IEEE 802.11 [40]1. In [90] the authors provide an overview

of the different technologies that enable wireless personal area networking and identify two low power

candidates: Bluetooth and IEEE 802.15.3. The latter presents higher data rates than the former but

at the expense of covering smaller areas and draining more current. Nevertheless, when it comes to

ubiquitous personal area networking, Bluetooth is one of the technologies of choice, as it is readily

available in a multitude of devices and satisfies the requirements of such networks in terms of power,

cost and availability. Bluetooth was specifically developed for short range communications between

personal devices and is regarded as a universal enabler for personal area networking [78]. Moreover,

as shown in [76], in noisy channel conditions, as the number of devices increases, Bluetooth performs

better than IEEE 802.11 in terms of throughput, energy efficiency and medium access fairness.

Bluetooth2 was initially devised as a cable replacement technology, however, its uses have evolved

to include more sophisticated networking applications, such as multi-player gaming [13], home automa-

tion [150, 154] and social networking [97]. This thesis uses Bluetooth as the underlying technology for

personal area networks. However, the findings and protocols can either be applied to other technologies

1WiFi Alliance announced WiFi Direct for personal area network for future release
2The term Bluetooth derives from the translation into English of the nickname given to King Blåtland of Denmark, who unified

the kingdom under Christian law [112]. The Bluetooth Special Interest Group (SIG) code-named the project after King Bluetooth,
and after its launch, the new wireless technology retained its name, hence Bluetooth was born.

1.2. Challenges 16

that directly meet the requirements, or can be slightly modified to suit other architectures.

Since its launch, Bluetooth has witnessed tremendous popularity, thanks to its low manufacturing

cost and great interest from electronics industry leaders. As of 2005 there were approximately 320 mil-

lion active Bluetooth devices [156], and this number is expected to reach 2 billion by 2012, representing

a sales figure of about $2.7 Billion [123]. Moreover, version 3.0 [23] and the enhanced version 4.0 [24]

(released in April and December 2009 respectively) which offer augmented data rates, improved security

and optimized power consumption, have rendered this technology even more attractive.

Another factor that has helped Bluetooth gain such remarkable market penetration is the new leg-

islation regarding road safety. In the United Kingdom, a law banning the use of mobile phones while

driving came into force on 1st December 2003 [141]. Bluetooth manufacturers seized the opportunity to

introduce hands-free kits that allow drivers to connect their handset to an earpiece via Bluetooth. In ad-

dition, many car makers integrated Bluetooth into their audio and voice over systems, hence reinforcing

Bluetooth’s position as the leader in short range personal communications.

All these factors lead the author of this thesis to believe that personal area networking will have a

considerable impact on future communications, providing convenience and bringing tangible solutions

to existing problems. However, achieving these goals comes with its own set of challenges and issues,

which need to be addressed, specifically those relating to error control and routing. Currently proposed

solutions are either incompatible with the strict constaints of PANs or are not optimised to suit their

purposes.

1.2 Challenges

One particularity of PANs is the fact that they rely on low power, low transmission range devices; there-

fore requiring multi-hop communications. This, in turn, introduces the challenge of routing packets

between source and destination as efficiently as possible in terms of delay and energy consumption,

whilst dealing with mobility. Moreover, PANs operate in the Instrumental Scientific and Medical (ISM)

unlicensed frequency band, hence they are susceptible to high error rates due to fading and mutual in-

terference from coexisting networks. In addition, the choice of underlying technology adds its own

constraints, as protocols and mechanisms need to comply with particular specifications. In the case of

Bluetooth, the constraints imposed relate to very specific topology and transmission arrangements. Blue-

tooth relies on a master-slave concept, where direct slave-to-slave or master-to-master communication is

disallowed. Furthermore, transmissions are based on a time-division schedule wherein a slave can only

communicate with one master at any particular time and can only transmit or receive when instructed to

do so by the master. All these challenges must be approached with care and the constraints taken into

account.

A major concern in designing PANs is ensuring that transmission errors are dealt with effectively,

1.3. Objectives 17

without burdening the devices with computationally demanding data coding or adding impractically

large redundancy overhead. However, relying solely on retransmissions may add unacceptable delays

for time-bound applications. The aim, therefore, is to devise error control solutions that satisfy the low

power and low complexity requirements while maintaining acceptable levels of latency.

Personal area networks operate in an ad hoc fashion where information needs to be relayed from

source to destination via other nodes acting as routers. However, due to the low power and low processing

capacities of personal area network devices, a direct application of existing ad hoc routing protocols may

prove inefficient. Traditionally, ad hoc routing solutions try to minimise the number of hops between

source and destination, hence reducing end-to-end delay [42, 142, 2]. Nevertheless, taking the shortest

routes may translate in longer transmission distances and consequently in higher power consumption.

Therefore, the answer lies in designing a routing protocol that is light enough for nodes in terms of

computations, yet optimised for energy efficiency and delay.

In order for PANs to be widely deployed, it is vital that transmission reliability and routing are

improved and optimised for this particular type of network. Currently, the proposed solutions in the

literature are not tailored for PAN optimality and do not account for their specific topology and trans-

mission characteristics. Moreover, error control and routing are generally considered disjoined; while

in actual fact these two areas are tightly linked to one another, as a channel’s error behaviour should be

an important factor in selecting appropriate routes over which to forward the data. For instance, routing

via a wireless channel exhibiting high error rates, and without appropriate error control, would mean

increasing packet retransmissions, consequently defeating the purpose of power-efficient routing. This

thesis proposes integral solutions that aim at improving data forwarding in a multi-hop fashion, taking

into account particular constraints of PANs.

1.3 Objectives

This thesis tackles forwarding issues in personal area networks. Given the aforementioned observations,

it is evident that there are questions that remain to be answered with regard to transmission reliability

and multi-path routing. There are numerous elements one could focus on in order to improve forwarding

mechanisms for PANs; however, the work presented herein specifically addresses these two aspects, as

they have a direct impact on the performance of such networks.

Firstly, error control is paramount to the sound operations of data forwarding in PANs, as unreliable

transmissions result in increased delay, lower quality of service, increased link costs and complex data

handling mechanisms. It is neither beneficial nor reasonable to try to forward data through paths that

exhibit unreliable channels; therefore improving error control is a fundamental step towards improving

forwarding mechanisms.

Secondly, routing must take into account the requirements of PANs in terms of low complexity,

1.4. Thesis Structure 18

energy efficiency, delay, and constantly varying network topologies. Owing to the fact that devices run

on exhaustible battery power and that the user may not always have the option to recharge them, it

is preferable to send data over paths which exhibit low energy consumption i.e., those that use shorter

distances between devices, and transmit over channels which exhibit lower error rates, even if this results

in an increase in the number of hops. On the other hand, some applications may be bound by very strict

delay constraints, therefore, very long routes may be impractical. Consequently, link costs must be

calculated in such a way that routing yields an optimal solution.

The proposed solutions are evaluated through analytical methods and simulations. A simulator

based on Matlab R© [157] is built to assess the performance of the schemes in numerous scenarios with

varying topology composition and node mobility. The simulator implements the relevant parts of the

Bluetooth protocol stack and uses structures to represent the different network components: nodes, links

and channels. On the other hand, time, data overhead and residual energy are implemented as variable

discrete attributes belonging to the network structures. Simulation enables one to easily vary the different

factors affecting the performance of the network, such as channel conditions and transmission coverage,

thereby allowing the evaluation of a large number of settings.

1.4 Thesis Structure

This chapter has introduced the subject of the research project, its motivations and challenges. It also

outlines the contributions to the field of personal area networking and has provided an overview of the

methodology used for analysing and evaluating the proposed solutions. The remainder of the thesis is

organised as follows:

Chapter 2 details the Bluetooth technology, its components and mechanisms. It examines the way

the different layers of its protocol suite interact to form ad hoc personal area networks. This chapter also

introduces some of the terminology used throughout the thesis.

Chapter 3 highlights pertinent background material related to ad hoc networking in general and per-

sonal area networking in particular. It shows how Bluetooth-based personal area networks are built and

maintained, explaining their operations in some detail. It also outlines the technical challenges faced by

such networks and summarises extant research in this field, including topology construction, scheduling

and error control. It then discusses routing schemes for mobile ad hoc networks and Bluetooth-based

personal area networks. These protocols fall into one of three groups: proactive, reactive and hybrid;

this chapter gives examples of the predominant routing protocols for each of the three groups.

Chapter 4 goes on to present an adaptive error control mechanism for personal area networks. It out-

lines the scheme and provides a numerical analysis. The proposed error control scheme is a supplement

to specification-defined forward error correction, which trades off between latency and effectiveness. In

order to illustrate this trade off, several scenarios are considered and simulation results for each setting

1.4. Thesis Structure 19

are provided for comparison.

Chapter 5 proposes an adaptation of two network size estimation methods, random tour and gossip-

based aggregation, to suit the specific constraints of master/slave personal area networks; showing that it

is feasible to accurately estimate the size of such networks when topology changes due to mobility using

both estimation methods.

Chapter 6 presents a cooperative leader election algorithm, which explores the particular topological

characteristics of PANs in order to optimise efficiency. The algorithm demonstrates an improvement in

terms of time complexity and response to node mobility in comparison to existing tree-based algorithms.

Chapter 7 outlines the proposed Centrally Coordinated Hybrid Routing (C2HR) protocol for PANs.

C2HR belongs to the hybrid family of routing protocols, employing a proactive and reactive component.

The chapter explains the mechanisms of the protocol and looks at its behaviour in various scenarios.

Chapter 8 summarises the findings of the thesis and discusses their applicability to future deploy-

ment. It also outlines suggested future work in the field of personal area networking, highlighting open

research issues that require further exploration.

Chapter 2

The Bluetooth Technology

2.1 Introduction
This chapter provides the reader with an overview of the Bluetooth technology, in order to put the pro-

posed solutions into context. It details the relevant components of the Bluetooth standards, presents the

general Bluetooth operations and familiarises readers with no prior knowledge of the technology. This

chapter also introduces the terminology and assumptions used throughout the thesis.

Bluetooth was initially developed as a means of replacing cables between electronic devices [56];

however, due to its wide availability and its capacity to support both data and voice traffic, its uses

have evolved to include other applications such as multi-player gaming and peer-to-peer file sharing.

The Bluetooth standard specifies its own protocol stack, which is compatible with the Open System

Interconnect (OSI) model, ranging from physical to application layers and defining software/hardware

interfaces between the various layers. In addition, it adopts many of the established networking, transport

and application protocols such as IP, TCP, UDP or PPP, so that it can directly connect and interact with

existing networks without any modifications [121]. The Bluetooth protocol suite is shown in Figure 2.1

Figure 2.1: Bluetooth Protocol Stack

2.2. Bluetooth Radio Layer 21

2.2 Bluetooth Radio Layer
The physical layer is the lower most layer of the protocol stack and defines transmission power, modula-

tion and data encoding. Bluetooth operates in the Instrumental, Scientific and Medical (ISM) frequency

band at 2.4 GHz and uses Frequency Hopping Spread Spectrum (FHSS) modulation technique, hopping

at a rate of 1600 hops per second across 79 1, 1 MHz wide frequency channels [24]. As per FHSS, each

device is allocated a hopping sequence such that two non-communicating adjacent Bluetooth devices do

not use the same sequence, hence ensuring that simultaneous transmissions from non-communicating

nodes occur at different frequencies. However, for two devices to be able to communicate with each

other they must have the same hopping pattern. This is achieved by synchronising the devices using a

pre-determined pseudo-random sequence derived from MAC addresses and clock information.

The tight low power requirements for Bluetooth restrict the maximum transmit power to 20 dBm

(the equivalent of 100 mW). This output power represents class 1. There are two other output power

classes defined by the specifications: Class 2 with a maximum output power of 4 dBm (2.5 mW) and

class 3 which allows a maximum transmit power of 0 dBm (1mW) [112]. Bluetooth devices typically use

power class 3 as it requires inexpensive, low capacity batteries and complies with receivers’ sensitivity

[57]. Moreover, it is not generally recommended to use higher transmit powers in dense environments

as it shadows other devices, thus preventing good network operations [57]. For this reason, it is common

to assume a transmission range of about 10 meters, which corresponds to power class 3.

Besides high output powers, which may cause total signal jamming, Haarsten et. al. [57] have

identified two other sources of interference in Bluetooth radio: One is inter-modulation distortion caused

by the mixing of radio signals, and the other is the proximity of transmission frequencies of adjacent

radios, which causes signal mitigation and therefore introduces errors. The latter can be dealt with by

appropriate filtering and careful frequency hopping pattern selection.

Bluetooth radio allows rates of 1 Ms/s (M Symbols/s) [24], however the gross air data rate may

vary depending on the modulation scheme in use. The first release of the Bluetooth standards (Version

1.0 [18]) specifies a basic data rate of 1 Mbps, by employing Gaussian Frequency Shift Keying (GFSK).

Subsequent releases (Versions 2.0, 2.1) specify two Enhanced Data Rates (EDR) by changing the mod-

ulation from GFSK to Phase Shift Keying (PSK). The first employs π/4 Differential Quadrature PSK

(π/4-DQPSK), resulting in a rate of 2 Mbps and the second uses 8 Differential PSK (8DPSK), thus re-

sulting in a rate of 3 Mbps [22]. The latest versions of Bluetooth (versions 3.0 and 4.0 [23, 24]) attain

gross data rates of up to 24 Mbps. This is achieved through the new Alternate MAC/PHY (AMP) feature

which uses 802.11 radio when needed for increased data rates 2. It is mandatory that each Bluetooth

module supports the basic rate in order to ensure backward compatibility.

1In France, Spain and Japan the number of hopping frequency channels is restricted to 23 [69]
2Initially, Bluetooth SIG opted for Ultra Wide Band (UWB) for the AMP; however, UWB never made it to the market, hence

the adoption of 802.11

2.3. Bluetooth Baseband Layer 22

2.3 Bluetooth Baseband Layer
The Baseband layer defines the way data is managed, divided into packets and sent between devices. It

also deals with error control and basic security operations. Bluetooth relies on a time-division medium

access scheme, where time is divided into slots of 625µs and each device can only send or receive in

its allocated slots using the pre-defined frequency hopping pattern. These functions are managed by the

Baseband and Link Controller, which interfaces between the radio and the baseband layers [120].

Bluetooth relies on a master-slave concept, wherein two slaves can communicate with each other

only via the master node. Devices are arranged into clusters called piconets in which one of the devices

assumes the role of master, which then admits up to 7 active slaves. Within a piconet, the master is

responsible for scheduling transmissions and managing device memberships. A slave node can only

start transmission in an odd time slot if it has received data from the master in the previous even slot.

This particular mode of operation requires efficient scheduling and synchronisation between devices.

2.3.1 Baseband Channels

Bluetooth defines two types of baseband links: Synchronous Connection-Oriented (SCO) links, used

mainly for transmission of circuit-switched audio data, and Asynchronous Connection-Less (ACL) links

for packet-switched data [121]. These two links differ in the way data transmission is scheduled, and

hence in the quality of service guarantees.

On SCO links, data is transmitted symmetrically at regular intervals. These intervals are pre-agreed

between the communicating devices during link establishment through a slot reservation method which

ensures that specific time slots are reserved for SCO transmission, regardless of whether there is data to

be sent or not. In addition, SCO links can only support point-to-point transmission. ACL links on the

other hand, support point-to-multipoint transmissions, wherein a master can send data simultaneously to

more than one slave. Moreover, ACL links offer the option of retransmitting packets in case of failure,

by appending redundancy check trails to packets. Another fundamental difference between SCO and

ACL links, is that in the latter a slave can only transmit if it has received data or has been polled in the

previous time slot; whereas in the case of SCO, a slave can only send in its reserved time slot.

ACL links are better suited to bursty data which is not time-bounded and in which strict packet

ordering is not paramount, such as file sharing. Nevertheless, ACL links have proven adequate for audio

transmission between Bluetooth devices [85, 8, 108] in terms of latency and data reliability. In [8] and

[108], ACL links are used to convey voice over IP (VoIP) data as a substitute for the circuit switched

SCO links, and show that ACL links are suitable, as far as audio quality is concerned.

2.3.2 Addressing

In Bluetooth, devices are identified by a number of addresses, depending on transmission characteristics

and the state of the devices. There are four main addresses as defined by the specifications [24]: Blue-

2.3. Bluetooth Baseband Layer 23

tooth Device Address, Active Member Address, Parked Member Address and Access Request Address

[120]. These are detailed below.

Bluetooth Device Address (BD ADDR): This is a 48-bit long address that uniquely identifies every

single manufactured Bluetooth device. It is hard coded into each module [120]. The BD ADDR is di-

vided into 3 parts: a 24-bit Lower Address Part (LAP), an 8-bit Upper Address Part (UAP) and a 16-bit

Nonsignificant Address Part (NAP).

Active Member Address (AM ADDR): Since a single master can only admit up to 7 active slaves at

any one time, Bluetooth standards define a 3-bit long Active Member Address for master-slave commu-

nication within a single piconet. Each of the active slaves is assigned a unique intra-piconet identifier

from the address range: 001 - 111. The address 000 is reserved for broadcast by the master [24].

Parked Member Address (PM ADDR): Bluetooth allows additional devices to be registered and syn-

chronised with the master without actively taking part in piconet communication [112]. These slaves

are called parked slaves, which only listen to the master’s broadcasts for synchronisation periodically.

When a slave is in the park mode, the master assigns a unique 8-bit address to it, which is in turn used to

call upon this slave for participation in the piconet (unpark procedure).

Reserved Addresses: In Bluetooth, there is a set of addresses that are reserved for discovering and/or

inviting devices to establish a connection. When a master searches for devices in its vicinity it uses

the universally known General Inquiry Address 0x9E8B33 [24]. However, if the master only tar-

gets a particular type of device, it uses a Dedicated Inquiry Address, drawn from the address space

0x9E8B00 - 0x9E8B3F [24] (excluding 0x9E8B33). Moreover, if the master needs to discover a spe-

cific device for a limited period of time, it uses a special dedicated inquiry address, referred to as the

Limited Inquiry Address, which has a value of 0x9E8B00 [112].

2.3.3 Baseband Packets

At the baseband layer, packets are sent as Baseband Packet Data Units (BB PDU) which contain actual

user data and corresponding encapsulation and redundancy bits. There are two main baseband packet

types: voice packets and data packets. The former are used on SCO links to carry voice information,

whereas the latter are used for general data on ACL links [25]. Given that SCO links are used primarily

for carrying voice data, ACL links are more common in Bluetooth personal area networks. Hereinafter,

voice packets as referred to as SCO packets and data packets as ACL packets. Baseband packets normally

include an access code, a packet header and the payload as shown in Figure 2.2; However, they may be

comprised of 1) the access code on its own, 2) the access code and the payload header, or 3) the access

code, the payload header and the user data [120].

The access code’s main function is to provide synchronisation and piconet identification [103],

and is derived from the LAP part of the BD ADDR. There are five different access codes defined by

2.3. Bluetooth Baseband Layer 24

Figure 2.2: Baseband Packet Format

the specifications: the Channel Access Code (CAC) used with general user data, the Device Access

Code (DAC) used in paging procedures, the General Inquiry Access Code (GIAC) used for inquiry,

the Dedicated Inquiry Access Code (DIAC) for dedicated inquiries and the Limited Inquiry Access

Code (LIAC) used in limited inquiry procedures3. The packet header identifies the type of data being

carried as well as providing the device’s local address. Because of the importance of the packet header,

it is 1/3 PEC encoded, bringing its total length to 54 bits.

2.3.3.1 SCO Packets

In the literature, SCO packets are referred to as HV (High-quality Voice) packets. These are one slot-long

containing 240 bits of payload, no payload header and no Cyclic Redundancy Check (CRC) trailer. The

absence of a CRC means that no Automatic Repeat reQuest (ARQ) scheme is utilised, and hence SCO

packets cannot be retransmitted in the event of failure, thereby reducing latency but at the risk of incurring

higher data loss [120]. Three main SCO packets can be distinguished according to the Forward Error

Correction (FEC) protection in use: HV1, HV2 and HV3. The last digit in these identifiers indicates the

type of protection used in the payload [112]. HV1 packets use a (3,1) binary repetition forward error

correction code, HV2 use a (15,10) shortened Hamming code, and HV3 are not FEC encoded. In other

words, in HV1 packets 1 in 3 payload bits actually represent user data, in HV2 packets 2/3 of the payload

is user data, and all the bits in HV3 packets are digitised voice data.

2.3.3.2 ACL Packets

These packets are destined for use with asynchronous data and are divided into two main subgroups:

Data High-speed (DH) and Data Medium-speed (DM). DH packets use no FEC while a (15,10) shortened

Hamming code is used for DM packets. A digit (1,3 or 5) following the DH or DM notation indicates

the number of time slots that the packet spans. Therefore 6 different ACL packets can be distinguished:

DH1, DM1, DH3, DM3, DH5 and DM5.

An obvious difference between DH and DM packets is that the latter offer more reliability because

of their ability to recover from some errors, but at the expense of resulting in lower data rates. In

3Refer to Section 2.5 for details on Inquiry and Paging mechanisms

2.3. Bluetooth Baseband Layer 25

ideal error-free channels, packets that span more time slots exhibit higher data rates; however, due to

the error-prone characteristics of the ISM band, packets that are not received correctly, i.e., when FEC

fails, are retransmitted, which means that there is a cut-off level of channel Bit Error Rates (BER)

beyond which larger packets would not yield higher throughput because of the delay introduced by

packet retransmissions.

There is another very important baseband packet type called the Frequency Hopping Sequence

(FHS) packet, which is used to convey frequency hopping, addressing, synchronisation and class of

service information during link establishment. FHS packets span a single time slot and, just like ACL

packets, are FEC and CRC protected.

2.3.3.3 Baseband Packet Exchange

In Bluetooth operations, only the master is allowed to broadcast and can either communicate with a single

slave or with multiple slaves simultaneously. A master sends data in even time slots and a slave replies

in odd time slots, with each transmission occurring at a particular frequency of the hopping sequence.

However, a slave can only transmit if it has received data or a POLL message in the previous even slot.

This means that the minimum time taken for a master-slave exchange is 1.25ms (625µs in each direction

in the case of single slot packets). In reality, the time it takes to transmit all of the packet’s data is 366µs

with the remaining 259µs reserved for frequency hopping operations [120]. Figure 2.3 illustrates the

point-to-point, i.e, master-slave, data exchange mechanism in Bluetooth.

Figure 2.3: Baseband Packet Exchange - Point-to-Point

If more than one slave is present in the piconet, the master communicates with individual slaves

either one at a time or via broadcast. However, if the communication requires the master to target

individual slaves one at a time, it divides the time amongst all the slaves in the piconet via a time sharing

technique. Naturally, in multi-slave operations, the throughput will also be split amongst the various

devices. When a slave receives a packet, it decodes the access code and the packet header to check if

2.4. Link Manager Protocol (LMP) 26

the packet is destined for itself and obtains the packet type and its time span. If the packet is intended

for that particular slave, it leaves its transceiver on, otherwise, it switches it off until the next master-

slave transmission. This mechanism ensures that devices do not leave their transceivers on unnecessarily

and also reduces the possibility of packet collision. Although, at first glance, it appears that relying on

time-division medium access yields low data rates, the unlikelihood of packet collisions within a piconet

considerably reduces the number of retransmitted packets. Therefore, in dense environments Bluetooth

may perform better, in terms of data throughput, than IEEE 802.11, as demonstrated by [76], while

maintaining power consumption at comparatively low levels. Figure 2.4 shows a graphical representation

of the multi-slave baseband packet exchange mechanism.

Figure 2.4: Baseband Packet Exchange - Multi-slave

As can be seen from Figures 2.3 and 2.4, each transmission uses a particular frequency of the fre-

quency hopping sequence, which must remain the same for the entire duration of the packet transmission.

Furthermore, regardless of the type and time span of the baseband packet, extra time (259µs) is allocated

for frequency hopping operations so that the device is ready for the next reception.

2.4 Link Manager Protocol (LMP)

The Link Manager Protocol (LMP) is responsible for setting up, maintaining and terminating connec-

tions between communicating Bluetooth devices. When two devices need to establish a connection, the

Link Manager (LM) modules on each device exchange special BB PDUs (hereinafter called LMP pack-

ets) in a command/response process. During this procedure, link parameters, such as the type of link

(i.e., SCO or ACL), QoS parameters (e.g., number of retransmissions allowed), or security settings (e.g.,

authentication and encryption keys) are negotiated. LMP packets are transmitted as DM1 packets, have

higher priority than user data and are not retransmissible [121]. The specifications define 55 different

LMP packet types, each identifying a particular command [121]. These commands are identified by a

2.5. Establishing Bluetooth Piconets 27

7-bit OpCode included in the LMP packet’s payload, immediately followed by the command parameters,

if they exist, as shown in Figure 2.5.

Figure 2.5: LMP Packet Structure

The TID bit indicates the originator of the LMP procedure. It is set to 0 if the link management

procedure originates at the master, and it has a value of 1 if it originates at the slave [120]. When a

device requires a particular link management feature, it sends a request to the other device’s LM in an

LMP packet. The receiver can then either accept the request by sending an LMP accepted command

or decline it by replying with an LMP not accepted message. If the request is declined the originator

may then change the parameters and send another request as part of the negotiation process, until an

agreement is reached.

Another very important function of the link manager protocol, as will be seen in section 2.6 is

piconet management. In Bluetooth there are special states that allow devices to exist or enter a piconet

temporarily, which are negotiated using LMP packets. These states are called low power modes and

constitute a very useful feature of Bluetooth PANs.

2.5 Establishing Bluetooth Piconets

Before two Bluetooth devices can exchange data, they need to have knowledge of each other’s presence

and roles then establish a connection. This is achieved via the inquiry and page procedures. Inquiry is

performed in order to discover new devices, and in the page phase, devices are invited to join a piconet.

Nodes that initiate the inquiry or page process become masters, and the devices that respond to these

invitations become slaves. Before the establishment of a piconet, the device that will assume the role

of master is referred to as a prospective master (p-master) and the devices that are to become slaves

are called prospective slaves (p-slaves) [120]. Each of the aforementioned procedures occur in pairs:

inquiry/inquiry scan and page/page scan.

2.5.1 Inquiry

A p-master starts the discovery process by sending inquiry messages to potential respondents (p-slaves).

A p-master has neither a priori knowledge of the addresses of the surrounding devices nor their hopping

2.5. Establishing Bluetooth Piconets 28

frequency patterns. Thus, during inquiry, a p-master sends inquiry messages, containing only the GIAC,

DIAC, or LIAC.

The p-master generates a sequence of 32 inquiry hopping frequencies, from the IAC4, together with

its native clock (CLKN) and corresponding hopping phase. It hops at double the nominal rate (i.e.,

3200 hops per second), so that the frequency changes every 312.5µs as opposed to the nominal 625µs

[24, 120, 112]. A p-master sends two consecutive 68-bit IACs in an even time slot on two different

hopping frequencies, 312.5µs apart, then switches to the two corresponding response frequencies to

listen to the response from the p-slaves during the subsequent odd time slot. When a p-slave receives

the IAC, it responds by sending an FHS packet in the corresponding reply frequency, from which the

p-master can deduce the p-slave’s BD ADDR and CLKN for use in the page phase. However, for a p-

slave to hear and to respond to an inquiry, it must be in the inquiry scan state at the same time a p-master

is in the inquiry state. Bluetooth has a mechanism which deals with this timing issue; the idea being to

have the inquirer (p-master) hop more frequently than the p-slaves so that both devices lock to the same

inquiry frequency. The p-master divides its 32 hopping frequency sequence into two sets of 16, called A-

Train and B-Train. Each train lasts for 10ms (16×625µs) and must be repeated at least 256 times before

switching to the other. The total duration that a p-master remains in the inquiry state is called Tw inquiry

[82]. In order for the p-master’s transmit frequency to match the p-slave’s, the latter must remain in the

inquiry scan state for a duration equal to or greater than 10ms; this duration is called Tw inquiry scan

[120]. Furthermore, a p-slave must be able to enter the inquiry scan mode regularly in order to check for

inquiry messages from the p-master; this interval is referred to as Tinquiry scan. The permissible ranges

for Tinquiry scan and Tw inquiry scan, according to Bluetooth specifications, are [10.625ms− 2560ms]

and [11.25ms − 2560ms]. Because a p-master has no a priori knowledge of p-slaves, it assumes that

Tinquiry scan is set to the maximum, i.e., 2.56s, thus it repeats each train at least 256 times, as each train

takes 10ms to complete.

When a p-slave receives the IAC, it backs off for a random number of time slots before sending its

FHS to the p-master. This is done in order to avoid possible collisions with replies from other p-slaves

which respond to the inquiry simultaneously. This random number is drawn uniformly from the range

[0,127] if the inquiry scan interval is less than 1.28ms, and from the range [0,1023] if larger than 1.28ms

[82]. Figure 2.6 illustrates the Bluetooth inquiry mechanism.

2.5.2 Paging

The page procedure is used to invite a p-slave to join a piconet when a p-master has knowledge of the

p-slave’s BD ADDR, which is either obtained through inquiry or is input manually by the user.

A p-master sends two page packets per time slot then switches to the corresponding response fre-

4For disambiguity, inquiry messages are referred to in this section as IAC for Inquiry Access Code

2.5. Establishing Bluetooth Piconets 29

Figure 2.6: Inquiry Mechanism

quencies in the next odd time slot to hear the p-slave’s reply if the latter happens to be in the page scan

state. A nuance with the page mechanism, however, is that the p-master targets individual devices. It

therefore sends a Device Access Code (DAC), to which only the targeted p-slave can respond [24]. The

key however, is to coordinate the page and the page scan states so that when the p-master sends the page

packet, the p-slave is ready to receive it.

Similar to inquiry, the p-master divides its hopping frequencies into two sets of 16, also called A-

train and B-train and sends DACs at a much higher rate than the p-slave’s hopping rate. Moreover, a

p-master can estimate the hopping phase used by the p-slave by calculating an estimate of the p-slave’s

current CLKN. This is done by adding an offset to the p-slave’s previous CLKN obtained during inquiry,

with the aid of the FHS packet’s time stamp. This new estimated clock (CLKE) is used to estimate the

hopping frequency that the p-slave will be listening on when it enters the page scan mode. A p-slave

enters the page scan mode every Tpage scan and spends Tw page scan in it. A p-slave has a choice of

three Tpage scan intervals: continuous, 1.28s or 2.56s. Whichever interval is selected, the p-master will

have knowledge of this choice as the p-slave would have communicated this information to the p-master

in the scan repetition (SR) field in the FHS packet during the inquiry stage. From this information, the

p-master can select the number of times a train is repeated before switching to the other train, so that if

CLKE is accurate, then the p-slave’s scanning frequency would coincide with one of the 16 frequencies

that the p-master has selected.

Upon reception of the DAC, a p-slave responds to the p-master by sending the same packet back on

the response frequency 625µs later. When the p-master hears this reply it sends an FHS packet to the

p-slave, so that both devices can synchronise. Following this, the p-slave sends its DAC to the p-master

as an acknowledgement. Upon successful reception of this last DAC, the p-master becomes master and

the p-slave becomes slave. Both devices then switch to the channel hop frequency and the link is tested

by exchanging a Poll/Null pair of packets.

2.6. Low Power Modes 30

2.6 Low Power Modes
The Bluetooth standards specify three different low power modes which allow devices to momentarily

limit their transceivers’ activity when not needed. These modes are HOLD, PARK and SNIFF [120]. The

authors of [91] compare the three low power modes and show that the PARK mode has the lowest energy

consumption, whereas SNIFF offers the best response time. Although low power modes were originally

introduced as a way to control energy consumption within a piconet, they also have a fundamental use

in scatternet operations.

2.6.1 HOLD Mode

When a slave does not need to participate in the current piconet, it enters the HOLD mode for a predefined

duration, after which it resumes normal piconet activities. Before a slave enters the HOLD state, the

master and the slave agree on the HOLD Timeout (holdTO), which is the time interval during which the

slave becomes unavailable. During this interval it may sleep, carry out inquiry/paging or attend another

piconet; however, it cannot resume its active membership until the timeout has elapsed [30]. HOLD is a

one off procedure, meaning that each time a slave needs to exit the piconet, a new holdTO is negotiated.

During HOLD, a slave keeps its AM ADDR, so that it can rejoin the piconet almost instantaneously

[91]. This mode can also be used for the master to exit the piconet temporarily. This is done by placing

all active slaves in HOLD, which allows the master to carry out other duties or attend another piconet

from the time the last slave enters the HOLD mode until the first slave exits HOLD.

In scatternet operations, this low power mode can be advantageous as holdTO can be adapted to suit

changing piconet load so that a device can share its membership between the various piconets efficiently.

Examples of inter-piconet scheduling which use HOLD are proposed in [61] and [66]. One obvious

drawback of using HOLD, however, is that a master cannot admit an extra member to participate in the

piconet because the AM ADDR is still occupied.

2.6.2 Park Mode

A slave in the PARK mode halts all its piconet activities and only wakes up at regular intervals to

synchronise with the master [83]. It substitutes its AM ADDR with two addresses: PM ADDR and

AR ADDR so that it can be unparked [120]. The PM ADDR distinguishes parked members and is used

by the master when it needs to call upon the parked slave to join the piconet as an active member. The

AR ADDR, on the other hand, is used when the slave itself initiates the unpark procedure [24].

A master requests a slave to enter the PARK state by sending an LMP park req command to the

slave. If the PARK request is accepted the master then sends an LMP park command containing beacon

controls [121]. These controls include the interval between beacon instants (TB), beacon duration (∆B)

and number of beacon messages during each ∆B . The beacon messages, themselves, can be either ACL,

SCO or NULL packets and are used for re-synchronisation, general broadcasting, altering beacon control

2.7. Link Layer Control and Adaptation Protocol (L2CAP) 31

parameters and unparking a parked slave [120].

When a master needs to unpark a particular slave, it sends an LMP unpark PM addr req in a

beacon. One particularly powerful feature of the PARK mode is the ability of slaves to initiate their own

unpark procedure. This is done by allowing a parked slave to send an unparked request to the master

during an Access Window following the beacon. Access window controls are also sent in the LMP park

message and contain the access window start instant,Daccess, the duration of the access window, Taccess,

and the number of access windows allowed after each beacon, Maccess. A slave-initiated unpark is only

allowed after a broadcast beacon, since active slaves do not reply to broadcasts, thus minimising chances

of collision. When a slave wishes to rejoin the piconet, it sends the master’s DAC at the appropriate time

slot, as an unpark request. Another advantage of PARK, is that a master can invite other devices into the

piconet since the AM ADDR is released by the parked slave. Nevertheless, when compared to HOLD,

PARK mode is more complex in terms of data and time overhead due to the unpark procedure.

2.6.3 Sniff Mode

When a slave is in the SNIFF mode, it only activates its transceiver at regular intervals called SNIFF

Time Intervals (Tsniff) [120]. Unlike normal piconet operations, SNIFF allows a device to wake much

more infrequently. This mode allows devices to exit a piconet for up to 40.96s, during which a slave can

either sleep or join another piconet.

A master invites a slave to enter the SNIFF mode by specifying the SNIFF parameters [112].

The parameters needed, in addition to Tsniff , are Nsniff attempts, Nsniff timeout and Dsniff .

Nsniff attempts indicates the number of time slots a slave needs to keep its receiver on each time it

turns it on. If any data is received during this interval, the slave leaves its receiver on for a further

Nsniff timeout. Dsniff indicates the number of time slots until the first SNIFF.

A slave in SNIFF mode keeps its AM ADDR, therefore the device can reintegrate the piconet

immediately. Furthermore, the regularity of the SNIFF time intervals is ideal for cyclic scheduling.

However, it can also be used for adaptive scheduling as suggested by [12]. One drawback of SNIFF,

nonetheless, is that it limits the number of possible participants in a piconet to 7.

2.7 Link Layer Control and Adaptation Protocol (L2CAP)

Data is often larger than can be supported by ACL packets. L2CAP provides a functionality for segment-

ing large streams of data and reassembling the packets at the receiving end. L2CAP introduces its own

encapsulation overheads that identify one L2CAP stream from another, provide information about the

size of the data, and specify QoS parameters. L2CAP can be thought of as a data conduit (channel) for

ACL packets, such that baseband restrictions are seamlessly shadowed for higher layer protocols. The

main functions of L2CAP are [25]:

2.7. Link Layer Control and Adaptation Protocol (L2CAP) 32

1. Protocol multiplexing: One of L2CAP’s functions is to multiplex various protocols transparently

to the lower layers. Protocol multiplexing is achieved via virtual channels, wherein a channel is a

conduit that links the higher protocols of the communicating devices via baseband communication.

2. Segmentation and reassembly: L2CAP segments long data frames into smaller blocks to fit into

ACL packets. At the receiving end, L2CAP reassembles the data to re-form the longer frame.

3. Group management: L2CAP is capable of managing a group of devices within the piconet by

mapping a particular protocol to a group of addresses (devices); for example managing a VoIP

conference call.

4. Quality of Service: Part of the L2CAP channel set-up procedure is the negotiation of quality of

service parameters. L2CAP also monitors these parameters for the duration of the channel.

Each L2CAP virtual channel is identified by a pair of 16-bit Channel Identifiers (CID): the Destina-

tion Channel identifier (DCID), which represents the receiver, and the Source Channel Identifier (SCID),

used by the source to distinguish between the various outgoing virtual channels. SCIDs are used inter-

nally by devices to manage the numerous simultaneous virtual channels, whereas DCIDs are appended

to the L2CAP frame as part of the L2CAP header to identify the conduit. Moreover, when a master-slave

pair establishes an ACL link, an L2CAP signalling channel between these devices is also created. Figure

2.7 shows the format of an L2CAP frame.

Figure 2.7: L2CAP Frame

As can be seen from Figure 2.7, segments of L2CAP data are carried over ACL baseband pack-

ets. Since L2CAP does not provide any mechanism that deals with channel reliability, it relies on the

baseband for such functions [112]. It is important to note that L2CAP does not offer the possibility to

interleave different frames, i.e., a device can only begin a new frame once all the segments of the current

frame have been transmitted.

2.8. Bluetooth Network Encapsulation Protocol (BNEP) 33

2.8 Bluetooth Network Encapsulation Protocol (BNEP)
The Bluetooth Network Encapsulation Protocol (BNEP) [20] provides Ethernet functionality to Blue-

tooth PANs. It defines its own addressing scheme that is compatible with IEEE802.3 addressing [1].

The aim of BNEP is to provide networking capabilities to Bluetooth PANs, so that existing network

protocols, such as the Internet Protocol (IP), can be seamlessly incorporated without any modification.

BNEP is used to transport both data and control packets directly over L2CAP. Data packets are used

to carry user information, whereas control packets carry control messages that are essential for setting

up Ethernet-like links between Bluetooth devices [20]. The format of the BNEP header depends on its

type; however, every header contains a Type field that indicates the type of data being transported and an

Extension flag.

2.8.1 BNEP Data Packets

These packets carry user data between Bluetooth devices in an Ethernet-compatible fashion, i.e.,

using similar addressing scheme and protocol types as defined by the Ethernet specifications

[1]. There are four different types of BNEP data packets depending on what addressing in-

formation is included; these are BNEP GENERAL ETHERNET, BNEP COMPRESSED ETHERNET,

BNEP COMPRESSED ETHERNET SOURCE ONLY and BNEP COMPRESSED ETHERNET DEST ONLY.

The format of the general BNEP packet is shown in figure 2.8

Figure 2.8: General BNEP Packet Format

BNEP Type: Identifies the type of BNEP header contained in the packet.

E: This flag indicates if an extension header follows the BNEP header.

Source Address: 48-bit Ethernet address of the source device.

Destination Address: 48-bit Ethernet address of the target device.

Networking Protocol Type: Identifies the networking protocol contained in the payload.

2.8.2 BNEP Control Packets

The main function of control packets is to manage BNEP connections between communicating devices.

Setting up a BNEP connection involves the exchange of Request/Response commands that are contained

entirely within the header, meaning that control packets do not carry any payload [20]. The generic

2.9. Bluetooth Profiles 34

format of BNEP control packets are as shown in Figure 2.9

Figure 2.9: BNEP Control Packet

The BNEP Type field shall be set to 0x01 to indicate that it is a control packet. The 8-bit BNEP

Control Type field indicates the type of command included in the header. The specifications define seven

distinct commands, which leaves room for additional control commands to be specified. This feature is of

relevance to this project as it allows the definition of new commands for routing management purposes.

2.9 Bluetooth Profiles
Bluetooth SIG has identified a number of usage scenarios for Bluetooth and grouped these models into

profiles [121]. A profile encompasses several protocols and building blocks from the Bluetooth stack to

enable devices to support certain applications such as telephony, fax, audio streaming and so on. Some

of the defined profiles include File Transfer Profile (FTP), Hands-Free Profile (HFP) and Personal Area

Networking Profile (PANP)5. The latter is highly relevant to the work presented in this thesis, as it defines

the way devices discover each other, connect to one another and exchange data in an ad hoc fashion.

2.9.1 Personal Area Networking Profile

The Personal Area Networking Profile (PANP) resides within the Generic Access Profile (GAP). It de-

scribes a set of protocols and mechanisms for Bluetooth-enabled devices to search for other devices,

establish connections and exchange Ethernet traffic using BNEP [127]. Because the PANP profile is

part of the GAP profile, it inherits some of its characteristics. Therefore a PANP User (PANU) has the

capability to set its discoverability, connectibility, pairability and security modes as required. The PANP

profile defines two usage scenarios: Group Ad Hoc Networking (GN) and Network Access Points (NAP).

In the former, devices have the ability to form a peer-to-peer ad hoc network, wherein each device acts

both as a peer and as a relay; whereas in the latter, a network access point links a Bluetooth local area

network with an external network such as the Internet, ISDN or UMTS. A Bluetooth NAP implements

the bridging functions as set out by the 802.1D standards [68]. Of the the two scenarios, the GN is most

relevant to this project as it deals with ad hoc personal area networking. The steps involved in such a

process are described below [127]:

1. The initiating device sends inquiry and service dicovery messages to search for nearby devices

that support the GN functionality.

5The Personal Area Profile is referred to in the literature using the acronym ”PAN”; however, in order to avoid confusion with
the acronym used for Personal Area Network in this thesis, the author refers to the Profile as PANP

2.10. Summary 35

2. Once the target devices are found, the initiator requests the establishment of L2CAP channels. The

Maximum Transmission Unit (MTU) of BNEP packets is negotiated at this stage.

3. A BNEP connection is then created through the exchange of BNEP control packets so that Ethernet

traffic can flow between the communicating devices.

When a connection is no longer required or if the service requirements are no longer met, a device can

request an L2CAP disconnection, which would disconnect the BNEP link. Furthermore, a connection is

automatically dropped if the devices are no longer within communication range or if BNEP fails.

In a PAN, a device may join or leave the network arbitrarily. When a node joins the PAN, it is either

accepted automatically or may first require authorisation. The profile defines three authorisation modes,

which are described below:

Open PAN: In this mode a node may join the network without any authentication or authorisation from

other PANUs.

Authentication Required: Before the new node is registered as a member of the ad hoc network, it

needs to authenticate itself by responding to an LMP authentication request. The new entrant may also

be required to provide authentication at the Ethernet or IP layer if necessary.

Authorisation and Authentication Required: In this mode of operation, a channel is not created until

the new device authenticates itself and is authorised to join the network. Authorisation is performed

either locally or via a server entity by consulting a device database of authorised users.

If either authentication or authorisation fail, the L2CAP channel set-up is terminated, thus no BNEP

connection is established. In addition to authentication and authorisation, the PANP profile also specifies

two modes of encryption that shall be enforced on all BNEP communications; these are:

Clear Mode:No encryption is used for data exchange.

Encrypted Mode: All communication within the PAN is encrypted. The encryption keys and other

encryption parameters are negotiated through the exchange of LMP messages.

2.10 Summary
This chapter introduced the Bluetooth architecture, covering the major aspects of its protocol suite. It

explained how Bluetooth devices connect and exchange data and presented the mechanisms governing

medium access and link management. It also highlighted the elements relevant to this project and ex-

plained how specific components are used. In particular, it focused on how personal area networking

over Bluetooth can be achieved. Although the material presented in this chapter does not cover every

aspect of the Bluetooth technology, it is believed that it constitutes a good introduction for the novice

and provides a general overview of the Bluetooth standards. For further detail on the material covered in

this chapter, the reader is referred to the references provided herein.

Chapter 3

Ad Hoc Personal Area Networking

3.1 Introduction

This chapter provides the reader with the background necessary material to understand the proposed

solutions and strengthens the motivations behind the research project. The material presented herein is

based on a collection of previous published works on various aspects of ad hoc networking in general and

on Bluetooth personal area networking in particular. The chapter begins by describing the particularities

of Bluetooth personal area networks, covering topology construction, membership management, trans-

mission scheduling and error control. It then discusses routing in wireless ad hoc networks and presents

some of the predominant routing protocols, highlighting their characteristics, strengths and weaknesses.

3.2 Bluetooth Personal Area Networking

A Bluetooth personal area network (PAN) is a collection of Bluetooth devices arranged in an ad hoc

peer-to-peer fashion without relying on any fixed infrastructure. As outlined in the previous chapter,

Bluetooth devices are arranged in pico-cells, referred to as Piconets, which must contain a master and

up to 7 active slaves. Several piconets may be interconnected to form larger networks called Scatternets,

via bridge nodes referred to as Participants in Multiple Piconets (PMP). PMP nodes may either be slaves

in all the piconets they participate in, or can be slaves in some piconets and master in their own piconet.

A PMP, nonetheless, can only participate in one piconet at a time, hence it must share its membership

among the various piconets in a time-division manner. In Bluetooth, a device has the ability to enter

one of the specified low power modes that allow it to momentarily exit its piconet to participate in

another piconet’s activities, hence providing support for scatternet operations. Other influencing factors

on the performance of personal area networks include network composition, scheduling and error control

mechanisms. Figure 3.1 shows an interconnected Bluetooth scatternet.

3.2. Bluetooth Personal Area Networking 37

Figure 3.1: Bluetooth Scatternet

3.2.1 Network Formation

Scatternet formation and self organisation of Bluetooth devices are fundamental to the performance of

PANs, as they dictate the way nodes communicate with one another, how efficiently data is relayed across

various interconnected piconets and have a direct effect on routing performance [9, 15, 167, 87]. Miklós

et. al. [111] have studied the correlation between the number of links and PMP degrees in Bluetooth

scatternets. They found that there is an optimal point, given a certain number of nodes, at which traffic

is maximised. The basic idea is that increasing the number of links would increase traffic but at the same

time it increases the degree of PMP nodes, which in turn affects network throughput. Therefore, there

is a tradeoff between throughput, latency and bridging overheads in Bluetooth scatternets as analysed

in [84, 115]. Furthermore, the authors in [107] state that it is possible to find optimal Bluetooth scat-

ternet topologies that maximise throughput while minimising energy consumption through centralised

optimisation. Nonetheless, Chiasserini et. al. [36], compare centralised and decentralised scatternet

formation approaches and argue that, although distributed algorithms result in sub-optimal performance

when compared to centralised schemes, they are still preferable as they are more flexible and scale better

with network size. There has been much work done in this direction and many algorithms have been

proposed to build scatternets which are as efficient as possible, with each one presenting strengths and

weaknesses. This section gives an overview of scatternet formation and describes some of the predomi-

nant algorithms.

An initial attempt to solve the network formation problem for Bluetooth PANs is presented in [145].

The proposed Bluetooth Topology Construction Protocol (BTCP) consists of three phases: 1) Coordina-

tor Election, 2) Role Determination, 3) Connection Establishment. In the first phase, a network leader

is elected, which gathers the number, identities and synchronisation information of all the nodes in the

network. The leader is elected through iterative duels, wherein nodes compare each other’s VOTES vari-

able, which counts the number of duels won so far. The winning node is the one that holds the larger

3.2. Bluetooth Personal Area Networking 38

value of VOTES in the one-to-one confrontation, stores the information of the loser and increments its

VOTES variable. Eventually, there will be a single leader that holds information about every other node

in the network. The information gathered during the election phase, is used by the coordinator (leader)

to assign roles to the different nodes. The coordinator starts by calculating the number of masters, P ,

necessary to fully connect N nodes into a scatternet as P = d 17−
√

289−8N
2 e, provided N ≤ 36, and

assigns the role of master to both them and itself. The leader then calculates the number of PMP nodes

needed as P (P−1)
2 and assigns the role to the corresponding nodes such that connectivity requirements

are met. The remaining nodes are assigned the role of pure slaves. In the final phase the coordinator

instructs the nodes to enter page and page scan accordingly in order to form the scatternet.

Bluetrees [177] is a self routing scatternet formation algorithm that builds a spanning tree rooted

at the blueroot. The root node (blueroot) is assigned the role of master and pages its surrounding nodes

to become its child slaves. These slaves then are assigned the role of masters to form their own subtree

(piconet) and, in turn, page unassigned nodes to become their slaves. This process is repeated until

the leaves are attained. Running the Bluetrees algorithm results in a connected spanning tree rooted

at the blueroot with each intermediate child taking up the role of a master/slave bridge. A distributed

form of the Bluetrees algorithm, Distributed Bluetrees, is also proposed in [177], which eliminates the

issue of conflicts in simultaneous spanning tree expansions but admits an additional type of bridge node:

M/S/S. Distributed Bluetrees works in two phases; phase I identifies a set of init nodes that take the

role of master root of their own tree. The protocol for building these trees is similar to the Bluetrees

algorithm except that a node may join a particular tree only if it is not part of another tree. At the end

of phase I, the network will be composed of a number of distinctly disjointed trees, each rooted at its

own init node. In the second phase these disconnected trees are joined together to form a connected

scatternet, by considering each of the disconnected trees as a virtual vertex and running the Bluetrees

algorithm, ensuring that connectivity requirements are not violated. An advantage of Bluetrees is that

it guarantees connectivity of the network, however, it does not cope well with partitioning and node

mobility as demonstrated in [9], and can only admit master/slave bridge nodes, which can be problematic

in inter-piconet scheduling.

The algorithm proposed in [98] also results in tree scatternets. In this scheme, the network is

initially composed of disjointed components, with a leader; these components are then merged to form

the larger scatternet. A component may be a piconet, a scatternet or an isolated node and the leader

of each component must be a master node. Each leader performs the procedure SEEK to inquire and

page new devices while other devices perform the procedure SCAN, which are in essence the same as

the inquiry scan and page scan procedures. When two components merge, they first try to form a single

piconet if transmission range and connectivity restrictions allow. In this case, one of the leaders becomes

the master of the new piconet and the other retires to become a piconet member; this is achieved by the

3.2. Bluetooth Personal Area Networking 39

procedure MERGE. When components cannot merge into a single piconet, an unshared node becomes

a bridge node linking the two segments and one of the two leaders becomes the leader of the merged

component; the other leader retires and seeks connection to other devices to complete the tree; this is

done through the procedures MOVE and MIGRATE. A strength of this algorithm is that it forms connected

scatternets relatively quickly and with low time complexity. However, it requires nodes to be within

communication range of one another, which is an significant handicap. Moreover, the scatternet formed

is a tree and, like Bluetrees, creates bottlenecks in the network and does not cope well with mobility.

To alleviate the problem of network bottleneck, some authors propose mesh topologies. Petrioli

et. al [137] introduce the Bluestars algorithm which constructs a mesh network of interlinked bluetooth

nodes. The algorithm works in three phases: in phase I, adjacent nodes learn about each other’s identities

and weights. Using this information nodes are then arranged into piconets in phase II. In the final phase

the individual piconets are interconnected to form the scatternet. The weight of a node dictates its ability

to become the master of its piconet. A node becomes a master if it has the greatest weight amongst its

neighbours, or if it learns that all its larger-weighted neighbours have become slaves in other piconets.

Once the set of masters has been selected, they can invite slaves to join their piconet via paging. A slave

chooses to connect to the master that has the greater weight amongst its neighbours. After completing

phase II, the network would be composed of disconnected star-shaped piconets, thus the name Bluestar.

These piconets are connected to one another to form a BlueConstellation (scatternet). This is done by

selecting a set of intermediate nodes, which ensure that the entire network is connected. The advantage

of Bluestars is that it guarantees network connection in a mesh; nevertheless, piconets might admit more

than 7 slaves which means that some need to be parked and unparked regularly, which degrades the

performance of the network [167].

The drawbacks of Bluestars are rectified in [138], by restricting the maximum number of slaves per

piconet to 7. The proposed scheme, Bluemesh, is similar to the Bluestars algorithm in the sense that it

is divided into phases: A neighbour discovery phase and a network connection phase. In fact, phase II

of the Bluemesh algorithm (network connection) is sub-divided into a role selection element, in which

nodes are arranged into piconets, and a gateway selection element, in which the piconets are connected

to form the scatternet. This phase is, in essence, phases II and III of the Bluestars algorithm combined

into a single phase. The neighbour discovery phase is, in turn, divided into two steps: in the first, a

node discovers the identities and weights of its one-hop neighbours and in the second each node informs

its adjacent neighbour of its own one-hop neighbour. Consequently, each node would have knowledge

of the identities and weights of its two-hop neighbours. Once the selection phase is completed, the

set of init nodes is determined. Init nodes are master nodes that have the largest weight among their

neighbours. Each master from the init set, enters the page state and starts inviting (paging) slaves from

its immediate neighbourhood to join the piconet, allowing a maximum of 7 slaves per piconet. This is

3.2. Bluetooth Personal Area Networking 40

achieved through an iterative process, in which an init node repeats the paging process until either all

of its immediate nodes join its piconet or it discovers that the neighbours have already been invited by

two-hop away nodes. This method allows the construction of piconets of no more than 7 slaves, while

ensuring that no unattached node is left disconnected. The weakness of Bluemesh lies in the fact that it

needs a two-step discovery phase, which might be impractical for highly dynamic networks.

BlueNet [166] is another distributed algorithm that builds a mesh scatternet. This scheme is divided

into three phases: 1) Initial piconet formation, 2) connecting unattached nodes, 3) interconnecting indi-

vidual piconets. In the first phase, nodes build a local visibility graph by learning the identities of their

neighbours through inquiry, then enter the page state randomly to form initial piconets, making sure that

a piconet does not exceed a maximum number of slaves Nmax. In order to avoid overlapping piconets,

a slave does not respond to pages once it becomes connected to a master, unless instructed to do so.

Moreover, in order to avoid constructing piconets within piconets, master nodes broadcast the identities

of the slaves within their respective piconets. Upon completion of phase I the network will be composed

of separate piconets, with some nodes remaining unattached. In phase II, the unattached nodes enter

page and invite up to Nmax of their neighbours to join their piconet. When a previously attached slave

connects to the new piconet it becomes a PMP node. The various disconnected components are joined

together to form the final mesh scatternet in phase III. In this phase, a master instructs some of its slaves

to enter page scan to respond to pages and others to enter page to form their own piconets, thus linking

isolated components. The number of slaves instructed to enter page or page scan modes in phase III may

be either random or set in such a way as to satisfy some connectivity requirement. Some of the advan-

tages of Bluenet include flexibility and simplicity when compared to other network formation protocols.

In addition, it guarantees mesh connections, which is a desirable feature of Bluetooth scatternets as it

allows resilient routing and alleviates the problem of network bottlenecks. The topology construction

algorithm employed in the project presented in this thesis is a variation of the Bluenet algorithm; how-

ever, it differs in that the proposed scheme only admits slave/slave PMPs, as this facilitates interpiconet

scheduling when compared to master/slave bridge nodes.

3.2.2 Transmission Scheduling

As previously mentioned, Bluetooth relies on a time-division polling scheme, wherein communication

opportunities are divided into time slots and a slave can only communicate with one master at a time

if it has been contacted in the previous time slot. This means that masters need an efficient way to

schedule transmissions in order to maximise throughput while remaining fair. There are two types of

scheduling: intra-piconet scheduling and inter-piconet scheduling, however, the two are closely related

to one another. For example, a PMP that is polled for transmission in a given time slot in a particular

piconet is unavailable for participation in another piconet, thus affecting inter-piconet scheduling. Sim-

3.2. Bluetooth Personal Area Networking 41

ilarly, a device that is busy relaying data from a different piconet cannot participate in the intra-piconet

communication of another piconet.

3.2.2.1 Intra-piconet Scheduling

Polling refers to the action of a master node calling a particular slave for transmission. A slave can only

transmit if it has received data in the previous even-numbered time slot or if it has received a POLL

packet, which is a baseband packet that contains no user data. The slave sends its data in the following

odd-numbered time slot or simply sends a NULL packet (another baseband packet with no data) if it has

no data to send. When the piconet contains more than one slave, the master needs an efficient way to

poll its slaves one by one.

The simplest intra-piconet scheduling scheme is one where a master polls each slave in a cyclic

fashion, allocating a fair share of the available slots, i.e. following a Pure Round Robin (PRR) schedule.

In PRR, a master allows each slave to transmit a single slot packet in turn. The advantage of this

scheme is that it ensures fairness when data transmission is symmetric, however, in most applications,

transmissions occur asymmetrically, which renders PRR inefficient and unfair as a master would poll a

slave regardless of its queue occupancy [41, 182].

There have been variants of PRR proposed to overcome its shortcomings; these include Exhaustive

Round Robin (ERR), Exhaustive Pseudo-cyclic Master Queue Length (EPM), [31], k-limited Round

Robin [168] and Deficit Round Robin (DRR) [161]. K-limited scheduling is a modification of PRR, in

which a master allocates a varying number of time slots to each slave. In fact, PRR can be regarded as a

special case of k-limited Round Robin when k = 1.

ERR introduces a degree of fairness to the cyclic scheme by moving to the next master-slave pair

only when both the current master and the slave queues are empty. EPM is a more dynamic Round

Robin-based schedule; it defines an order of visits at the beginning of each cycle based on a decreasing

queue length and visits each slave only once in each cycle. Deficit Round Robin (DRR) is another RR

variant, similar to PRR, but instead of serving each queue cyclically, it takes packet length into account.

The scheme was developed for general queue management, however its applications to Bluetooth intra-

piconet scheduling are evident. In DRR-based polling, each slave is assigned a time quantum, which

represents the time allocated by the master for the slave to send a packet. If the packet is larger than

the quantum then the queue is not served and the remainder of the quantum is added to the next poll.

This means that deficits accumulated by slaves are compensated for in future rounds. Maalaoui et. al.

[105] show that by incorporating QoS criteria, in addition to packet length, DRR can yield near optimum

performance.

The main advantage of Round Robin scheduling is its simplicity, which satisfies Bluetooth’s re-

quirements, however, it still lacks adaptivity to varying traffic conditions. The work described in [41]

3.2. Bluetooth Personal Area Networking 42

takes note of this fact and proposes three adaptive schemes that deal with varying traffic flows, namely

Adaptive Flow-based Polling (AFP), Sticky, and Sticky Adaptive Flow-based Polling (StickyAFP). These

algorithms rely on the traffic measure flow to adjust the polling interval for each slave. In AFP, a slave

with flow = 1 is served more frequently than a slave with flow = 0, and if the slave fails to send data

after being polled, the polling interval is doubled. In Sticky, a master serves a slave for num sticky

packets if flow = 1 and behaves like PRR if flow = 0. StickyAFP is similar to AFP except that if

flow = 1 a slave is served for num sticky packets.

Limited and Weighted Round Robin (LWRR) is another adaptive cyclic scheduler that takes into

account previous queue occupancy. In this scheme, each slave is assigned a value Max Priority (MP)

which is incremented each time a slave has data to send when polled, and decremented otherwise. The

frequency of visits, which has a minimum value of 1, is thus adapted to the MP value of each slave. The

authors extend the idea of LWRR to a more dynamic Round Robin-based scheduling scheme. In [101],

they propose the Pseudo-Random Cyclic Limited and Slot-Weighted Round Robin (PLsWRR) scheme,

which polls slaves in a pseudo-random order and takes into account the traffic history of slaves. This

scheme outperforms LWRR in terms of fairness and throughput.

In addition, [117] describes a scheduling scheme that uses traffic load and QoS parameters as polling

criteria. In the Adaptive Cyclic-limited Scheduling (ACLS), slaves with high load are served with a

larger portion of the cycle time than slaves with low load. Furthermore, ACLS also tries to maintain

QoS guarantees by serving slaves that require strict polling intervals accordingly. In ACLS, slaves are

served depending on their traffic load in the previous cycle, where a cycle is a round in which every

slave is polled. The authors show that ACLS performs better than ERR in terms of throughput and delay,

however, the algorithm does not have a mechanism to predict future loads, thus it lacks optimisation.

Cordiero et. al. [38] take a different approach to tackling the intra-piconet scheduling problem in

personal area networks. The authors describe a method for assigning slots and partitioning the network

dynamically in such a way as to provide QoS guarantees. In the proposed Dynamic Slot Assignment

(DSA), a master/slave pair negotiate the establishment of a new connection that guarantees the desired

QoS parameters, including slot and duration. If the QoS parameters cannot be satisfied via direct links

then piconet partitioning takes place. This is achieved via The Enhanced DSA (EDSA), wherein two or

more piconets are created to transmit data from source to destination via bridge nodes. Although DSA

and EDSA are adaptive to quality of service, the creation of new links, and in particular the creation of

new piconets, incur impractically large delays.

3.2.2.2 Inter-piconet Scheduling

In scatternet settings, a node may need to exchange data with another node that lies outside its piconet

via PMP nodes. However, since a PMP can only participate in one piconet at a time either as a master or

3.2. Bluetooth Personal Area Networking 43

as a slave, there must be a mechanism to schedule memberships among the various piconets as efficiently

as possible. The measures for efficiency vary from one scenario to another; nevertheless, data throughput

and bridging overhead are common criteria for measuring the behaviour of an inter-piconet scheduling

algorithm [116]. Moreover, it has been found that slave/slave PMPs perform better than master/slave

PMPs in terms of throughput but at the cost of slightly longer routing delays [116]. Inter-piconet opera-

tions are possible owing to the previously discussed Bluetooth low power modes (sniff, hold and park),

where a node not participating in a particular piconet enters one of the three low power modes while join-

ing another piconet as an active member. Consequently, PMP nodes become network bottlenecks, and

their ability to switch from one piconet to another dictates the behaviour of routing and data forwarding

in scatternets [149, 16].

The work presented in [77] introduces the concept of Rendezvous Scheduling, where a master/PMP

pair schedule a meeting at a specific Rendezvous Point (RP) and stay connected for a period deter-

mined by the Rendezvous Window (RW). The authors propose the Maximum Distance Rendezvous Point

(MDRP) algorithm, in which RPs and RWs are established in advance. MDRP uses the concept of a

common superframe, which represents the RP for each PMP associated with a particular master and the

pair’s corresponding RWs. MDRP uses sniff timers to divide the superframe into regular meeting points

(RP); the idea being to maximise the distance between RPs so that PMP nodes are served fairly. This

scheme is quite simple and does not require complex management, however, it comes at the cost of not

being able to adapt to traffic changes.

Another algorithm that uses sniff to schedule RPs is presented in [16]. The authors describe a solu-

tion for building connected scatternets and devising scheduling policies that are optimised depending on

the resulting network formation. The proposed SS-Blue technique builds scatternets with as few bridges

(PMPs) as possible then applies the inter-piconet scheduling algorithm. The scheduling algorithm, itself,

is credit-based, meaning that bridge nodes connect to the master with whom they have the largest credit.

Credits are accumulated by redistributing unused credits of a particular piconet to all PMP nodes and are

spent on exchanging data. In SS-Blue, a master, and a corresponding bridge node, negotiate Presence

Points (similar to Rendezvous Points) by setting sniff intervals in the superframe, and the decision re-

garding whether to switch to the other master or not at the Presence Point depends on the credit the PMP

node holds with its corresponding piconets, i.e., if the credit the bridge node holds with the new master

is greater than the one it holds with its present master, it switches piconets, otherwise, it stays with in

its current piconet. The authors show that the proposed algorithm ensures fairness and is more adaptive

than MDRP, however, it is optimised for a particular network formation, therefore its performance cannot

be guaranteed for arbitrary networks. This drawback is more apparent in situations where the topology

changes due to node mobility.

The algorithm presented in [60] and [61] describes the Load Adaptive Algorithm (LAA), which is a

3.2. Bluetooth Personal Area Networking 44

simple but efficient inter-piconet scheduling mechanism based on the hold mode. Hold is more flexible

than sniff, in that the hold timeout can be set as required, whereas in sniff the intervals are fixed. As per

LAA operations, a bridge node calculates the time required to connect to a different piconet according

to the other master’s queue size and traffic, setting the Time Commitment (TC), which is simply the

hold timeout. However, because queues can be very large, LAA specifies the maximum queue size to be

served (MQS) so that a PMP can exit the piconet before the queue is exhausted. Furthermore, because the

nature of traffic can vary, a predictability factor, β is used to estimate the average packet size to be served

in the queue so that TC can be adapted. In addition, a bridge cannot remain indefinitely connected to a

particular master, therefore LAA defines Max Time Share (MTS) as being the maximum time a bridge

node can participate in a particular piconet. These factors are used to compute the hold timeout, which is

adapted to traffic patterns and queue size so that PMP nodes participate in their corresponding piconets

fairly. The disadvantage of LAA is that it is limited to networks of two piconets, therefore, it is only

effective in small-scale networks.

An improvement to LAA, Predictive Inter-Piconet Scheduling (PIPS) [67] is also based on the hold

mode for scheduling PMP presence in multiple piconets; however, unlike LAA, it is designed to work

on larger networks. PIPS estimates future traffic by gathering statistics on k previous cycles and adjusts

the presence point and length of stay of a bridge node in a particular piconet accordingly. At each cycle,

and for each piconet i that a PMP is a member of, it calculates a priority weight Wi based on traffic

estimation and queue size so that it can schedule an order of membership from the highest to the lowest

weight. Also, similar to LAA, PIPS defines a maximum time for a bridge node to remain connected

to a particular piconet so that it can exit hold before the queue is exhausted, thus providing a degree of

fairness. The authors show that, when compared to MDRP, PIPS performs better in terms of delay and

throughput as traffic increases and scales better with network size (i.e., number of piconets). A variant

of the LAA and PIPS algorithms is presented in [125]. The QoS aware Inter-Piconet Scheduling (QIPS)

scheme builds on the same principles as the previous two methods but adapts to quality of service rather

than load. QIPS defines seven QoS classes, so that the priority weight, on which the switching decision

is based, is calculated according to the type of service required.

Another similar approach to LAA and PIPS, which is based on the hold mode for inter-piconet

scheduling is given in [144]. The Efficient and Fair Scheduling algorithm (EFSA) computes the prob-

ability, Pdatai, of a master’s queue being non-empty, coupled with the number of time slots that have

elapsed since the last visit, Ni to schedule presence point with a particular master i. The parameters

Pdatai and Ni represent measures for efficiency and fairness respectively, as an accurate estimate of the

queue indicates adaptability to varying load, and adjusting the frequency of visits according to transmis-

sion opportunities means that the bridge gives every piconet a fair share of the slots available.

The authors in [75] exploit the concept of rendezvous scheduling to devise a new low power mode,

3.2. Bluetooth Personal Area Networking 45

called Jump that enables inter-piconet scheduling. A node in the Jump mode (a jumping node) arranges

its time into superframes and divides these frames into rendezvous windows of pseudo-random length.

A jumping node can then disconnect from its current piconet until the next rendezvous window. The

choice of pseudo random window length stems from the fact that fixed intervals require very strict co-

ordination among the PMP nodes, which could become problematic if conflicts were to occur; whereas

with pseudo random windows this problem tends to resolve itself. However, a jumping node must signal

its rendezvous points to its respective piconets, so that it can participate in intra-piconet scheduling if

required. There are two cases to consider: slave/slave PMP and master/slave PMP. In the former, the

bridge node signals its presence by responding to a poll from the master of the particular piconet at the

predetermined rendezvous point. This is achieved by informing all the corresponding masters of the

superframe structure. In the case of a master/slave PMP, the master is not required to enter Jump mode

in its own piconet since it is responsible for transmission scheduling and hence for polling slaves. How-

ever, it should respond to a poll from the piconet’s master within the agreed rendezvous window. Jump

is a flexible low power mode as it delegates piconet switching decisions to the PMP nodes themselves,

hence adding adaptability to varying traffic and QoS conditions; however, it requires a modification to

the Bluetooth standards.

3.2.3 Error Control

As explained in the previous chapter, baseband packets may include redundancy checks to verify the

integrity of the data received, so that packets can be retransmitted if necessary. Although some packets

are FEC-protected, corruptions may still occur from which the error protection cannot recover. While

some applications, like real-time voice, can live with few packet losses, others may need very reliable

channels, hence the need to re-send corrupted or lost packets. Retransmissions do indeed improve reli-

ability, however, they introduce delays that may become impractically large. Evidently, there is a trade

off between reliability and delay to be taken into account when designing retransmission schemes.

One way of improving the reliability of wireless links is to adapt packet sizes to channel conditions

as proposed in [104] and [119]. Under high bit error rates (BER), it is sensible to reduce the size of

packets and vice versa. If errors occur, only small packets need to be retransmitted, whereas if the

packets are large, re-sending the data results in performance degradation. A study of the effect of packet

sizes on throughput for Bluetooth links under varying channel conditions is given in [160] and [176]; it is

shown that beyond a certain BER threshold, sending large packets results in lower throughput, essentially

due to retransmissions of erroneous packets.

Another error control technique over wireless links is to adapt the number of Automatic Repeat

reQuest (ARQ) transmissions to channel conditions [114, 113]. The aim being to find an optimal number

of re-tries that satisfies applications’ requirements given certain channel error rates. In ARQ-based

3.2. Bluetooth Personal Area Networking 46

schemes, a packet is retransmitted until it is either received correctly or the maximum number of re-tries

is reached, at which point the packet is dropped. However, the number of retransmissions allowed varies

from one application to another and may not remain static at all times. Thus using an adaptive ARQ is a

sensible approach.

Bluetooth uses a stop and wait ARQ error control mechanism, which re-transmits every packet until

received correctly or the maximum number of allowed retransmissions is reached. The work presented in

[34] describes an adaptive ARQ scheme that varies the number of retransmissions, i.e., Retransmission

Time-Out (RTO), to suit channel conditions. In the proposed scheme, a node monitors the Round Trip

Time (RTT) of the previous transmission and calculates a new RTO for the next packet. The idea is to

increase the RTO when the previous packet experiences a delay and to decrease it otherwise, following a

multiplicative increase/decrease method, meaning increasing RTO as RTT decreases and vice versa. The

reasoning behind the protocol is that if a channel had experiences short RTTs, there would be space to

increase the RTO for subsequent packets, thereby increasing channel reliability. The authors show that

for real time audio applications, the adaptive scheme behaves well. Nevertheless, it requires a node to

calculate RTOs quite frequently which might be power consuming. Moreover, it requires an application-

aware link layer, which makes the scheme only applicable in certain scenarios.

Another application-specific error control mechanism is described in [140]. The Fuzzy Logic Con-

trol (FLC) ARQ scheme for video transmission over Bluetooth links adapts the ARQ timeout according

to buffer fullness and head of line packet delay. The authors argue that buffer fullness is a more appro-

priate measure as opposed to packet loss, as it is directly available to the application via HCI and also

reflects channel conditions. In the FLC ARQ scheme, a source node evaluates its buffer fullness and de-

lay against the predefined membership functions and outputs an ARQ timeout function, which dictates

the number of retransmissions allowed. The authors compare their adaptive FLC-based error control

technique with the default infinite timeout on video transmission and show that the proposed scheme

improves the video quality by up to 4dB. Moreover, fuzzy mapping is quite lightweight when compared

to predictive computations, therefore, it is suitable for low power devices.

The work presented in [44] proposes a cooperative ARQ scheme for wireless networks, wherein,

nodes cooperate in acknowledging/retransmitting packets. Nodes are arranged in Cooperation Groups,

in which they are able to hear and monitor each other’s transmissions. Each node within the cooperation

group receives, decodes and stores the latest packet, and if it is erroneous it sends a Negative ACKnowl-

edgement (NACK) back to the sender so that the packet can be retransmitted. This means that if the

receiver fails to hear the packet or if its NACK is lost, the receiver will still obtain an acknowledge-

ment of transmission failure from one of the cooperative nodes. Similarly, when a cooperative node

hears a NACK from the receiver, it re-sends the packet which it had previously stored. When the re-

ceiver acknowledges the correct receipt of the packet, all cooperative nodes delete their stored copies of

3.3. Routing in Personal Area Networks 47

the packet. Although this method improves transmission reliability, it does require the participation of

all the nodes within the cooperation group, which is not power efficient, and therefore not suitable for

personal area networks.

3.3 Routing in Personal Area Networks

When a node has data to send to another device, with which it does not have a direct wireless connection,

it needs to rely on other nodes to convey the data in a multi-hop fashion until the destination is reached.

Routing is, therefore, a mechanism by which intermediate nodes are selected as relays along the path

between a source and a destination taking into account various factors specific to personal area networks,

such as channel reliability, node mobility, energy restrictions and connectivity constraints. Routing over

PANs can be categorised into three main groups: proactive, reactive and hybrid Routing. In the proactive

routing, routes are known a priori and are maintained locally. In reactive routing, a route is set up

and maintained only when required, i.e., on demand; whereas hybrid routing combines elements of the

previous two. This section only gives an overview of some of the predominant candidates in each goup,

as a vast amount of work has been conducted in this direction (for a more complete examination of the

extant literature, the reader is referred to [3, 63, 143, 178]).

3.3.1 Proactive Routing Protocols

In proactive routing, every node keeps routing information for all or part of the network. These routes

are stored in the form of look-up tables, which are set up a priori and maintained periodically. The

advantage of proactive routing is that paths are readily available when required. Nonetheless, they come

at the cost of regular updates, which use a sizeable portion of the available resources. The various

proactive routing protocols proposed in the literature differ in the way routing information is stored,

the type of information needed and how routes are maintained [3]. Some of the predominant protocols

include Destination-Sequenced Distance Vector (DSDV), Optimised Link State Routing (OLSR), Global

State Routing (GSR), Fisheye State Routing (FSR), Source Tree Adaptive Routing (STAR) and Topology

Dissemination Based on Reverse Path Forwarding (TBRPF), each of which is briefly described below.

DSDV [135] is a table-driven routing protocol, in which nodes store and maintain a single path to

every destination in the network. The updates are sent at regular intervals through full dump and incre-

mental packets. A full dump packet carries full topology information and is distributed to every node,

whereas incremental packets carry the changes that have occurred since the last full dump packet. Full

dump packets normally occupy several data units, as they carry full routing information, while incremen-

tal packets are carried in a single data unit. The use of incremental packets to signal a topological change

reduces the overhead associated with route updates. However, in highly dynamic networks, DSDV may

fail as full dump packets would need to be sent more frequently.

3.3. Routing in Personal Area Networks 48

OLSR [70] is based on traditional link state routing, in that each node builds and maintains a

topological view of the network, from which the shortest routes to each node are obtained and stored

in a routing table. The novelty of OLSR is that it minimises the overhead associated with topology

updates by allowing only a subset of the nodes to rebroadcast this information. These nodes are referred

to as Multi-Point Relays (MPR), which are selected according to their degree centrality; meaning that

the number of MRP nodes should be the minimum possible whilst also ensuring that topology updates

reach every node in the network. Naturally, selecting MRPs requires regular exchanges of neighbour

information amongst adjacent nodes. This is achieved through HELLO messages which, in addition to

carrying neighbour information, are also used to check for node presence and link failures.

Global State Routing (GSR) [35] is another link state routing protocol that relies on a topological

view of the network. However, in GSR, topology updates only occur locally, i.e., amongst adjacent

nodes, thus reducing the overhead significantly. The disadvantage of this protocol is that the update

messages are relatively large, which makes it unscalable with network size. Furthermore, given the

time-division nature of PANs, sending large packets would impair the performance of the network.

The issues introduced by GSR are rectified in the Fisheye State Routing (FSR) protocol proposed in

[133]. Here, each node defines fisheye zones (in terms of number of hops), in which link state updates are

exchanged at different frequencies, with nodes closest to the focal point benefiting from the most frequent

updates. Contrary to common link state routing protocols, which flood topology updates whenever a

change occurs, FSR relies on periodic notifications with varying frequencies. Moreover, in FSR, updates

are exchanged locally amongst adjacent nodes, and each update is identified by a sequence number so

that nodes keep up-to-date information. This means, however, that FSR trades lower message complexity

for lower accuracy, as the update frequency may not match the frequency of topological changes, and

consequently routes to remote nodes may become less accurate. Thus in highly dynamic environments,

FSR might fail to provide reliable routes.

TBRPF [131] is another link state routing protocol that aims at reducing the amount of overhead

associated with link state updates. TBRPF is based on the principle of Reverse Path Forwarding (RPF)

to guarantee loop-free paths. Here each node builds and maintains a tree to every reachable node in

the network based on topological information collected locally from neighbouring nodes. The approach

of obtaining and maintaining network topology locally, without relying on flooding, decreases routing

overhead significantly. The overhead is further reduced by only reporting the changes in neighbouring

nodes’ states rather than reporting on the entire topological view. However, the fact that TBRPF relies

on periodic updates, means that transient and sudden changes in network topology might go unnoticed.

The STAR protocol described in [50] is a hierarchical link state routing protocol that relies on a

partial view of the network to construct source trees from every source to every reachable destination.

A major advantage of this protocol is that update overhead is reduced considerably. This is achieved

3.3. Routing in Personal Area Networks 49

by only sending updates if certain conditions are met, for example all possible paths to the destination

fail. STAR, therefore, trades optimality of routes for lower overhead. The authors argue that although

routes may not be optimal, the protocol achieves lower levels of routing overhead when compared with

on-demand approaches, while having the benefit of table-driven protocols, i.e., routes are available when

needed.

3.3.2 Reactive Routing Protocols

In reactive routing approaches, routes are set up on-demand when a node needs to exchange data with

another node. The main advantage of this type of routing protocol is the reduced overhead associated

with route maintenance. However, it comes at the expense of longer route set-up time, since a source

node needs to search for a suitable path by sending route search requests and must wait for a reply before

data exchange can take place. Moreover, on-demand routing protocols do not always guarantee optimal

routes [50]. Reactive routing protocols are divided, in turn, into two subcategories: source routing and

hop-by-hop routing [3]. In the first category, each packet header carries the addresses of all the nodes that

the packet traverses along the path, whereas in hop-by-hop protocols, routes to destinations are stored as

next hop entries at each intermediate node along the path. The most popular reactive routing protocols

for PANs are Route Vector Method (RVM), Location Aware Routing Protocol (LARP), Relay Reduction

and Route Construction Protocol (LORP) and Route Maintenance Algorithm (ROMA). Moreover, other

reactive routing protocols, which were developed for general ad hoc networks, have also been deployed

on PANs; these include Dynamic Source Routing (DSR), Ad-hoc On-demand Distance Vector (AODV),

Temporally Ordered Routing Algorithm (TORA) and Location-Aided Routing (LAR).

RVM [17] is a routing solution that takes into account the specific topology characteristics of Blue-

tooth. In this method, a node wanting to establish a route to another node, sends out a route search

packet, which is flooded throughout the network until the target is found. The destination or a node that

has a route to the destination replies with a route reply packet indicating which route to follow. RVM

belongs to the family of source routing protocols, i.e., the entire path is included in the header of each

packet. However, because Bluetooth device addresses are 48-bit long, RVM uses a mechanism to substi-

tute BD ADDR with a sequence <AM ADDR, LoCID>, where the latter locally identifies a particular

piconet. A packet sent from source, s to destination, d would include the ordered list of the addressing

sequence such that the packet is forwarded to the correct PMP and, in turn the PMP forwards the packet

to the correct piconet and so forth until the destination is reached. The pair <AM ADDR, LoCID> is

only 6-bit long and therefore introduces far less overhead than using the full BD ADDR would. The

issue with RVM, however, is that routes are not optimal in terms of number of hops, which may result in

transmission delays and increased error probability.

The drawbacks of RVM are rectified in ROMA [175] by devising a protocol that removes unnec-

3.3. Routing in Personal Area Networks 50

essary relays in the scatternet. The idea behind ROMA is that relays are bottlenecks in the network and

contribute to long route discovery paths. Therefore, by removing the unnecessary bridge nodes, route

set-up time and overhead can be reduced. To do this, each node maintains a Connection Table (CT)

which lists the relays that its corresponding masters connect to. This information is provided by the mas-

ters to each relay upon request. After the PMPs construct their CT, they will have a connectivity view

of the network and if they discover that connectivity is maintained through another relay, they change

their role to pure slaves so that route search packets are not forwarded through them. The routing pro-

tocol itself is based on a route search/reply mechanism, in which a node wishing to establish a route to

a remote destination floods the network with a route search packet and upon receipt of this packet by

the destination, it replies with a route reply message via the reverse path. Each node transmitting the

route reply packet includes its address and clock offset and enters page scan mode. When the destination

receives the reply, it pages the nodes present in the reply path in the reverse order in order to establish

a piconet with them, and hence reduce the number of hops. The authors provide simulation results that

indicate good performance in terms of packet delay and packet loss, however, the delay associated with

setting up new piconets and routing overhead are not factored.

DSR [79] is a simple reactive routing protocol, which consists of two phases: Route Discovery and

Route Maintenance. In the first phase, a source node broadcasts a Route Request packet that is flooded

throughout the network until it reaches the destination or a node that has a route to the destination. At this

point a Route Reply message is sent back indicating the list of addresses of intermediate nodes through

which packets should be routed. This means that in DSR, each packet carries the ordered list of addresses

of nodes along the path, so that when an intermediate node receives the packets it knows which node to

forward it to next. In order to reduce the overhead associated with route search, DSR employs a caching

mechanism where each node stores the previously acquired routes in the form of address sequences. The

route maintenance phase is concerned with detecting and repairing route failures. If a link present in the

initial route breaks, the source is notified via a Route Error message and a new route search is initiated

if no alternative is available in its cache. The advantage of DSR is that it does not require up-to-date

route maintenance [178], as full routing information is contained within each packet. However, as the

size of the network grows so does routing overhead, thus DSR does not scale well with network size.

Nonetheless, in small to medium size PANs, DSR can be advantageous as it satisfies the low complexity

requirements of this type of network.

The Temporally Ordered Routing Algorithm (TORA) [132], is based on the concept of route rever-

sal over a Direct Acyclic Graph (DAG), the direction of which points to the destination in a decreasing

manner. TORA is an on-demand protocol, in that, routes are set up and maintained on the request of

source nodes when required. When a node needs to find a route to a remote destination, it broadcasts a

query message (QRY), which is flooded throughout the network until the destination or a node that has a

3.3. Routing in Personal Area Networks 51

route to the destination is reached. At this point, an update packet (UPD) is sent back to the initiator, fol-

lowing the reverse path and assigning directions to the traversed links, which essentially creates a DAG

that points to the desired destination. To assign these directions, each node, i, is referenced by its height

Hi = (τi, oidi, ri, δi, i) so that the route from source to destination follows a lexicographically decreas-

ing height path. The first three elements of the height are called the reference level and the remaining

two are referred to as the delta. The reference level uniquely identifies a query, with δi representing a

time tag, oidi being the originator’s ID and ri being a flag that distinguishes between a particular height

and its reflection. The delta indicates the height of a node with respect to a reference level, where δi

is an integer and i represents the unique id of the node. During the route update phase, a node sets its

height to be higher than its predecessor’s and forwards the UPD packet, so that the DAG points to the

destination in a lexicographically decreasing manner. Routes are maintained in a similar fashion, i.e., by

adjusting heights so that each next hop is a local minima. When a route is no longer needed, the source

sends a clear (CLE) message to all the nodes along the path, which then reset their heights. Although

TORA ensures loop free routing and is highly adaptive to topological changes, its applicability to low

power personal area networks might be limited by the fact that it relies on flooding to search for routes

and that adjusting and maintaining heights requires rather expensive computations.

AODV [134] belongs to the hop-by-hop category of on-demand routing protocols. When a source

node needs to set up a path to a destination with which it does not have a route, it sends a Route Request

(RREQ) packet to all its neighbours, which in turn forward it to their neighbours, until the destina-

tion is found. In order to reduce route set-up overhead, each RREQ is uniquely identified by the pair

<source id, broadcast id>, so that a node which has previously received a RREQ with the

same broadcast id generated from the same source drops the packet and does not rebroadcast it. The

RREQ packet also contains a source seq num that indicates the freshness of the route search so that

if an intermediate node receives a route request packet containing a smaller source seq num, it sim-

ply discards it. When the desired target node or a node with a route to the destination receives the RREQ

packet, it send a Route Reply (RREP) packet back along the reverse path. The reverse path is established

during the path search phase, by setting up a pointer to the predecessor from which a node had received

the first RREQ. Similarly, during the traversal of the RREP packet, each intermediate node points to

its predecessor so that the forward path for data transmission can be established. However, in order to

ensure that the path is the shortest possible and to ensure route freshness, the RREP packet contains a

destination seq num field that indicates the freshness of the route found and a hop count that in-

dicates that number of hops traversed by the RREP so far, so that an intermediate node only rebroadcasts

the RREP if it contains a greater destination seq num or the same destination seq num

with a smaller hop count. After a path is established, the source node retains the route to the destina-

tion in a routing table for a period determined by route caching timeout beyond which the route

3.3. Routing in Personal Area Networks 52

is considered invalid. The advantage of AODV is that topology changes not affecting an active path

do not trigger route updates, which reduces route maintenance overhead when compared with common

proactive protocols such as DSDV. However, if links fail, a Route Error (RERR) message is propagated

back to the source so that it can initiate a new route search procedure. AODV has been tested over Blue-

tooth PANs [6, 62] and it was been shown that due to the limited processing capabilities and the nature

topological constraints in these networks, this protocol exhibits limited efficiency.

The Location Aided Routing protocol (LAR) [93] uses node location information to direct route

searches and replies. This information can be obtained through the use of GPS. When a node needs to

establish a route to a particular destination, if it has information about the destination’s previous location

at time t0 and speed, v, it can calculate at time t1 a circular expected zone of radius v(t1 − t0), in which

the the destination is expected to be located. It also calculates a request zone that includes intermediate

nodes that the route search must go through in order to reach the destination. LAR defines two methods

of calculating the request zone. The first method generates a rectangular region; if the source is outside

the expected zone then the request zone is the smallest rectangle that includes the expected zone with the

source node being in one of the rectangle’s corners. If, on the other hand, both source and destination

nodes fall within the expected zone, then the request zone is the smallest square containing the expected

zone. In the second method, the request zone is explicitly included in the route request packet in the

form of distance to the target such that a node forwards the packet only if it brings it closer to the

destination. If the source node has no information about the location of the destination, the request

zone would span the entire network and the route request would be achieved via flooding. Once the

destination node is reached, it replies with a route reply packet following the reverse path. The main

advantage of LAR is that it shortens the time and overhead of the route discovery phase; however, this

comes at the expense of relying on location systems, which might not always be available, particularly

in personal devices. The work presented in [32] proposes the Location Aware Routing Protocol (LARP)

that uses location information but is specifically adapted to Bluetooth PANs. In the proposed solution,

nodes obtain their location information via a Bluetooth Location Network (BLN) [54] and re-arrange

their piconet membership so as to minimise the distance between source and destination during the route

search phase. This protocol suffers from similar drawbacks to LAR, in that it requires a location network,

which may not always be possible.

3.3.3 Hybrid Routing Protocols

Hybrid routing protocols combine both proactive and reactive elements in order to optimise routing

overhead and delay. Most of the proposed hybrid routing solutions are either zone-based or tree-based

[3]. Zone-based schemes define zones in which routes are set up and maintained proactively, while routes

to nodes outside the zones are set up on-demand. The difference between the various zone-based routing

3.3. Routing in Personal Area Networks 53

protocols is the way in which zones are created and maintained. Tree-based protocols, on the other hand,

arrange nodes in a number of sub-trees in which proactive routing takes place. Routing between sub-

trees, however, uses a reactive approach. Representatives of zone-based routing protocols for general

ad hoc networks are the Zone Routing Protocol (ZRP), Zone-based Hierarchical Link State (ZHLS) and

Scalable Location Update-based Routing Protocol (SLURP). Examples of Tree-based hybrid protocols

include the Distributed Spanning Tree (DST) routing protocol and the Distributed Dynamic Routing

(DDR) protocol. Each of these is explained briefly in this section.

In ZRP [59], every source node defines a zone inside which routes are maintained proactively and

any route to a node outside the zone is established reactively. Each zone has a diameter, ρ, expressed in

terms of the number of hops, which is chosen in such a way as to optimise the trade off between overhead

and route set-up latency. The nodes which lie strictly inside the zone are referred to as interior nodes,

whereas, nodes that are exactly ρ hops away from the source are called peripheral nodes. ZRP does not

specify which proactive and reactive protocols to use, but rather devises mechanisms to construct and

maintain the zones. When a source node wishes to send data to a particular destination, it first checks if

the route exists in its routing table, i.e., if the route can be determined proactively using the IntrA-zone

Routing Protocol (IARP). If the route is not found, it means that the destination lies outside the zone,

thus the source instructs peripheral nodes to initiate a route search in accordance with the IntEr-zone

Routing Protocol (IERP); this is referred to as Bordercasting. The advantage of ZRP is that it finds a

trade-off between route discovery latency and routing overhead.

A routing protocol that builds on the idea of ZRP is proposed for PANs in [86]. The authors describe

a scheme where each node maintains a proactive zone of diameter MAXHOPS, beyond which AODV is

used to set up routes on-demand. This protocol is compatible with Bluetooth and does not require any

modification to the specifications. The proactive part of the protocol stores routing information as linked

lists. Each master maintains a table that lists the slaves and gateways it connects to. The gateway entries,

in turn, contain lists of masters that the gateway themselves connect to. Similarly, each gateway itself,

maintains a list of masters that it connects to, which, in turn, lists the gateways that the masters connect

to and so forth. This structure allows nodes to know which nodes are included in the proactive zone.

The size of the proactive zone’s diameter is an important performance parameter for ZRP as too small a

zone would render the protocol almost purely reactive and a large zone would make the protocol behave

almost as a purely proactive protocol.

ZHLS [74] is another zone-based hybrid routing protocol, however, unlike ZRP, it is based on

hierarchical routing, wherein nodes are arranged into non-overlapping zones, using nodes’ knowledge

about their location via GPS. Each zone is identified by a Zone ID and each node holds a node ID,

such that a <Node ID, Zone ID> pair identifies a unique node within a particular location. If both the

source and destination lie within the same zone then routing is done proactively. This means that each

3.3. Routing in Personal Area Networks 54

node knows the members of its own zone. If the target node is outside the zone, the source initiates a

location search to find the zone ID of the destination. This means that nodes must also have a high level

knowledge of the topology zone map. ZHLS does not rely on any cluster head for inter-zone routing,

instead it relies on a peer-to-peer approach to route packets between the different zones. The advantage of

this protocol is that it reduces the amount of overhead associated with route search since it only requires

nodes to find the zone to which the destination belongs rather than flooding the entire network looking

for a specific address. The drawback, however, is that it requires GPS to obtain location information in

order to map the location to a particular zone. Furthermore, the zone map must be preloaded into every

node, which could be problematic in highly dynamic networks.

Woo et. al. [170] propose the Scalable Location Update-based Routing Protocol (SLURP), which,

like ZHLS, maps nodes into non-overlapping regions. Regions are generated from device addresses using

the mapping f(NodeID) → RegionID. Routing within a region is performed proactively, whereas

inter-region routing is done reactively. The novelty of SLURP is that it eliminates global route discovery.

This is achieved by defining a home region for each node, which is obtained from the aforementioned

mapping. If a node moves it updates the nodes within its region with its new location. When a node needs

to establish a route to another node that lies outside its zone, it calculates the destination’s home region

from the destination address and then sends a query to that home region to obtain its location. Once the

location is found, packets can be forwarded using the Most Forward with fixed Radius (MFR) routing

protocol, which selects next hops according to their proximity to the target node. The disadvantage of

SLURP is that it relies on location systems (GPS) as well as pre-programmed zone maps. In addition, in

highly dynamic environments, location updates may generate large overhead.

DST [139] is a tree-based hybrid routing protocol that arranges nodes into trees, which are joined

together via bridge nodes. The idea behind DST is that connectivity cannot be guaranteed to be stable

at all times, therefore the authors propose two routing methods: Hybrid Tree Flooding (HTF) and Dis-

tributed Spanning Tree Shuttling (DST). In HTF, a source node sends the packet along all tree edges

using flooding, and each node receiving the packet stores it for a certain period called the Holding Time.

The reason behind the Holding Time is to allow nodes to send the packet to the destination if the con-

nectivity increases, without having to regenerate the packet at the source. In the second approach, i.e.,

DST, a packet is sent along a tree branch then when it reaches a leaf node it is sent back up the tree until

it reaches a height referred to as the Shuttling Level, from which the packet follows a different branch.

Naturally, Shuttling introduces far less overhead than flooding, however, it incurs more delays in deter-

mining routes. When a source node needs to send data to another node to which it does not have a route,

it first tries to route via HTF; if it fails after the Holding Time expires, packets are sent via Shuttling.

The advantage of this protocol is that it is highly adaptable to topological changes, however, maintaining

trees introduces large overhead.

3.4. Summary 55

Distributed Dynamic Routing (DDR) [130] is another tree-based hybrid routing protocol, which

is compatible with the topological characteristics of PANs. DDR arranges nodes in non-overlapping

zones, each of which is a tree. Trees are constructed in a distributed fashion and a collection of trees

forms a forest. Trees are interconnected via gateway nodes, i.e., nodes that are within transmission

range of each other but belong to different zones. Each tree is identified by its zone ID (ZID) which is

obtained from applying a function to the tree members’ identities. This means that DDR does not rely

on location information of nodes, however, it does require a view of the topology, which is obtained

by exchanging beacon messages among neighbours and storing the information in tables. In addition

to these tables, each node maintains an inter-zone table that lists the gateway nodes linking a particular

tree together with a zone stability factor (Z Stability) that indicates the Euclidean distance between the

IDs of adjacent zones. If the source/destination pair belong to the same zone, then DDR uses the tables

built during the tree construction phase. However, if the destination is in another zone, DDR employs a

reactive routing protocol to find the route.

3.4 Summary
This chapter explained the issues linked to personal area networking, covering network formation, error

control and transmission scheduling. It also covered some of the predominant routing protocols for

PANs. The reviewed literature helped to identify areas that need improvement and rectification in order

to comply with the strict requirements of personal area networks. Moreover, some routing protocols

presented herein are either computationally complex or not optimised to suit the constraints of PANs.

The aim of this project is to design PAN-compliant protocols which improve the performance of PANs

while remaining simple and energy-efficient.

Chapter 4

Packet Error Correction (PEC)

4.1 Introduction
This chapter presents a novel adaptive error control scheme that improves on data delivery while intro-

ducing low overhead. The idea of the proposed Packet Error Correction (PEC) technique is to arrange

packets into bins, where bins are buffer spaces, in which packets are stored for a predetermined period of

time, and to retransmit only a subset of these packets if necessary. Naturally, in channels characterised

by high Bit Error Rates (BER), not every packet maybe retransmitted; therefore PEC is best suited for

multimedia applications, wherein the loss of few packets are not of major concern (as far as user percep-

tion is concerned). Nonetheless, PEC also offers the possibility to adjust the number of re-transmissible

packets per buffer (bin), so that more transmission opportunities are allowed if required by a particular

application.

Error control over wireless links is necessary because these channels are characterised by high

BER. These errors are introduced due to various factors including interference and signal fading. In

Bluetooth-based PANs in particular, noise results from mutual interference between adjacent piconets

[65] and interference caused by frequency hopping dependencies [136, 124]. Channels’ BER has a

direct relationship to the Packet Error Rate, which is the ratio of packets received in error to the total

number of transmitted packets within a given time period. The authors of [171] show that the relationship

between PER and Signal to Noise Ratio (SNR) follows an exponentially decaying curve; meaning that

a slight increase in noise greatly influences the PER. The difference between BER and PER is that the

former is a measure of the channel’s error characteristics whereas the latter gives an indication of the

performance of a particular system on packet delivery rate. The two, however, are tightly linked to one

another, in that an increase in BER results in an increase in PER and vice-versa. In this chapter a clear

distinction between the two measures is made, and selecting the appropriate number of re-transmissible

packets relies solely on BER estimation.

This chapter is only concerned with ACL packets, as SCO packets cannot usually be retransmitted1.
1Later versions of Bluetooth define eSCO, which can be retransmitted under special conditions [22]

4.2. System Overview 57

Each ACL packet carries a CRC trail that is used to check for the presence of errors, thereby allowing

a node to request the retransmission of individual packets if the receiver is not able to recover from the

errors incurred during transmission.

The proposed PEC scheme is assessed by simulations and mathematical analysis. Although it was

simulated on Bluetooth, PEC can be applied to any wireless system that is able to request individual

packets to be resent. Moreover, a general formula is derived, which can be applied to any other system

by simply altering the parameters.

PEC requires nodes to have an estimate of channels’ BER, which are then mapped to a link quality

measure; this is outlined in section 4.3. Details of the PEC algorithm and the analysis of its operations

are covered in section 4.4. The scheme is then evaluated by simulation in section 4.5, and section 4.6

summarises the findings.

4.2 System Overview

Bluetooth MAC normally relies on ARQ techniques to retransmit every corrupted packet until a timeout,

TO, is reached, which by default is set to infinity, i.e., a packet is never dropped [34]. This method,

introduces large delays especially in very noisy channels where the probability of error is high. In the

solution proposed herein, a receiver buffers σ packets in its memory and asks the sender to retransmit ρ

packets such that ρ < σ. This scenario is shown in Figure 4.1.

Figure 4.1: Packet Error Correction operation

In PEC, the number of re-transmissible packets, ρ, is adjusted according to channel conditions, i.e.,

ρ is decreased as channel conditions improve and increased otherwise. However, ρ is always strictly

lower than σ. The scheme relies on negative acknowledgement automatic repeat request (NACK-ARQ),

so that the receiver can request individual packets to be retransmitted if necessary.

A fundamental difference between PEC and other error control schemes proposed in the literature

[34, 113, 114], is that instead of adapting the retransmission timeout (TO) to channel conditions for

every packet2, PEC varies the number of allowed retransmissions in a given set, such that a packet may

be resent between 0 and ρ times, depending on the number of packets in error in the set σ. If the number

2TO can either be a time window dedicated solely for retransmissions following the transmission of each packet, or can
represent a limit in time beyond which a packet is dropped

4.3. Channel Monitoring 58

of packets in error is lower than the number of allowed retransmissions, then each erroneous packet is

given at least one retransmission opportunity. If the number of erroneous packets in a buffer is higher

than the number of allowed retransmissions, then the packets to be given retransmission opportunities

are chosen randomly, such that no packet can be resent more than once (for further details regarding the

retransmission mechanism refer to Section 4.4.2)

4.3 Channel Monitoring

For the PEC scheme to work, the sender and the receiver must have an estimate of the wireless link

quality. Devices, by default, can compute the Received Signal Strength Indicator (RSSI), which gives

some indication of the quality of the link [64]. Relying on this measure, however, has proven to be

insufficient [164]. Therefore, a more reliable way of obtaining link quality is to use Bit Error Rate

(BER). In order to comply with the low complexity requirements, personal devices estimate link quality

(in terms of BER) by simply monitoring the received bits over a period of τ and estimating the BER as

BERτ =
rcv err

rcv total
(4.1)

where rcv err represents the number of bits in error and rcv total is the total count of received bits over

the period τ . This estimate is only possible if the receiver employs forward error correction on blocks of

data, or checks the received stream against a known training sequence. The latter is a simpler method,

traditionally performed off-line, i.e., in the absence of any data transmission. However, for accurate

estimates, the sequence may be impractically long. In order to overcome this drawback, the channel

access code can be used as the training sequence. The advantage of using the access code is that it is

known to every node in the piconet and is included with every packet, thus a receiver can estimate the

BER on-line.

The choice of the lag τ is application-dependent; nonetheless, considering that typical BER values

in the ISM band are around 10−3, and that for most applications a BER beyond 10−5 is insignificant

[121], a node is required to monitor 100kb of access code data. Thus, τ corresponds to 14, 286 time slots.

However, because of Bluetooth scheduling mechanisms, wherein nodes may not receive the required

amount of data, the PEC algorithm sets a timeout, Tout, after which it generates a BER as an average

over p previous readings to be the current estimate until the next τ has elapsed, as given by Equation 4.2.

BERτ =
1

p

i=t+p∑
i=t

BERi (4.2)

Where t is the time instant of the estimate. BERτ represents the expected value of the channel’s BER

for the time lag τ , and is only generated if a node fails to receive enough data, before Tout has elapsed, to

4.3. Channel Monitoring 59

be able to estimate the BER. In PEC Tout is assigned a value of 30 seconds. This choice stems from the

fact that the time taken to receive sufficient access code data is close to 20 seconds (14,286 time slots),

to which an extra 50% margin is added, thus resulting in a value of 30 seconds.

4.3.1 Link Quality

When a node obtains the link’s BER, it generates a Link Quality (LQ) metric. LQ is an 8-bit mapping of

the BER and is chipset-specific [64]. This means that two communicating devices may compute different

LQs and hence interpret the BER differently. In this project, another LQ mapping is imposed on every

module for the purpose of error control and requires only 3 bits.

As stated above, in most applications, bit error rates lower than 10−5 are negligible, especially if

forward error correction is used. Furthermore, Bluetooth specifications consider a link with BER above

10−1 to be unworkable, i.e., the link is considered non-existent. Therefore, there is a region, r, such that

10−5 < r < 10−1, over which fluctuations in BER are more significant. This means that lower and

upper BER values should correspond to coarser LQ mapping, which in turn means that the function f ,

such that LQ = f(BER), is non linear. A non linear mapping that satisfies such a relationship is an

s-curve as given by equation 4.3.

LQ =
8

1 + e−100(2×ber−0.02)
− 1 (4.3)

Equation 4.3 indicates that the maximum output of the mapping function is 7, which means that

a 3-bit quantisation on integer outputs suffices to represent 8 different LQ levels. Figure 4.2 shows the

output of the quantiser 3 for BER ∈ (10−4 − 2× 10−1].

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

5

6

7

BER

LQ

Continuous LQ

Discrete LQ

Figure 4.2: BER to LQ Mapping

3The quantiser is software-based, therefore does not require any additional circuitry

4.4. Packet Error Correction (PEC) Scheme 60

4.4 Packet Error Correction (PEC) Scheme

The aim of the adaptive retransmission scheme is to retransmit only a subset of the buffered data when

individual packets are acknowledged to have been received incorrectly. The number of allowed retrans-

missions is governed by the LQ value, which translates the quality of the link in terms of BER into 8

distinct levels, where a low LQ value means low BER and vice versa. The number of allowed retrans-

missions, ρ, per buffer size, σ, increases linearly with LQ, which means that as BER conditions improve,

there is a need for fewer retransmissions. Before calculating the required ρ, a node first computes l̂q, as

given by equation 4.4, which is the reverse of LQ.

l̂q = |LQ− LQmax| (4.4)

In equation 4.4, LQmax is the highest LQ level, which in this case is 7. The number of allowed retrans-

missions is then obtained as given by equation 4.5

ρ = b(σ − β) (l̂q + 1)−1c (4.5)

Where β ∈ N+ is the number of additional packets that are non-re-transmissible to ensure that the con-

dition ρ < σ is met. β is selected by each node independently, although, it is tightly linked to the node’s

error reduction target. The reason for taking the floor of the product term in equation 4.5 is to ensure

that the number of retransmissions allowed is always a whole number, while ensuring that the number

of unnecessary retransmissions is reduced. Equation 4.5 indicates that the number of retransmissions

allowed is a fraction of the buffer size and depends on the measure LQ, which in turn reflects the chan-

nel’s estimated BER. Higher BERs are mapped into higher LQ values, which result in lower l̂q (since

l̂q is the reverse of LQ), thus increasing the number of re-transmissible packets. Similarly, lower BERs

correspond to lower LQ, and consequently higher l̂q, thus resulting in fewer possible retransmissions.

Algorithm 1 describes the operations of the adaptive retransmission scheme.

This algorithm applies to every master/slave pair, wherein, a node (either the master or the slave),

generates an estimate of the channel’s BER by monitoring the received access codes over a period τ . A

node first reads the packet (pkt) from its receiver queue and obtains its length (`) in terms of time slots.

It also extracts the access code (access code) from the packet and stores it in the rcv total variable.

From the extracted access code, the node records the number of errors by running the ExtractErr()

method, and increments the count, err total, if errors are found. Here error refers to a packet being in

error, i.e., if the packet is corrupted. After τ time slots have elapsed, the node computes an estimate of

the BER (ber) and maps it to a link quality measure (lq), from which the number of retransmissions, ρ

is calculated through method Set(), according to equations 4.4 and 4.5. If, however, a node does not

4.4. Packet Error Correction (PEC) Scheme 61

Algorithm 1 PEC Adaptive Error Control
τ ← 14, 286
while τ > 0 and Tout < 30s do
pkt← GetPacket(input queue)
`← GetLength(pkt)
access code← Extract(pkt)
rcv total← rcv total + access code
err ← ExtractErr(access code)
err total := err total + err
τ := τ − `
Tout + +

end while
ber ← Estimate(rcv total, err)
lq ←Map(BER)
ρ← Set(LQ)

receive enough data to compute the BER after Tout, the BER is estimated according to equation 4.2.

4.4.1 Buffer Management

The adaptive retransmission scheme described above, suggests that both the sender and the receiver must

agree on the buffer size, σ and the duration for which it is valid, Tσ . On expiration of Tσ , the receiver

sends an LMP buff request to the sender’s link manager, requesting the size of the buffer that it

wishes to use and the time duration for which the requested buffer size is required. If the request is

accepted, the sender replies with an LMP accepted PDU. If the request is not granted, due to capacity

limitations at the sender, the sender reduces the size of the requested buffer by a factor of φ and resubmits

the request. This process continues following LMP protocol operations, until either a buffer size is agreed

upon, or, if not, both sender and receiver use the default values for σ and Tσ , which are set to DH5 and

5 time-slots respectively. Naturally, there is a correlation between the size of a buffer and its duration,

since ACL packets are defined by their time span. Therefore each LMP buff request must satisfy

the condition Tσ ≥ σ. LMP buff request uses one of the reserved LMP OpCodes defined in the

Bluetooth specifications [23]. In this project it is given the value 0x6F and its format is illustrated in

Figure 4.3.

Figure 4.3: LMP buffer request Packet Format

The LMP buff request PDU is of variable size depending on whether the time required for the

new buffer size has changed or not. It follows the general LMP format, i.e., the OpCode identifying

the LMP type, followed by its Parameters. In Figure 4.3, the shaded area represents the message’s

parameters; these are described briefly below.

Buffer Length: This field indicates the requested buffer length in time-slots. A node can request a buffer

4.4. Packet Error Correction (PEC) Scheme 62

size of up to 127 time-slots, which can hold up to 25 5-slot packets.

ETR: The Extension Time Request flag indicates whether a new Tσ is required for the new buffer size.

If ETR is set to 0 it indicates that Tσ should remain the same as the previous one.

RSRV Duration: Indicates the requested duration (in time-slots) to be reserved for the buffer, so that

the sender allocates memory space for the requested duration.

The time lag Tσ and buffer size, σ, depend on nodes’ buffer space capacity, jitter conditions and

application. For instance, in real time applications, nodes may need to buffer up a few more packets

before processing in order to compensate for the jitter incurred during transmission. In this case the

receiver selects a new value of Tσ and a new buffer size and sends an LMP buff request to the

sender. Furthermore, nodes also store the previous buffer, in addition to the current one, in order to

cater for out-of-sync data reception, so that a node can request the retransmission of a particular packet

from the previous buffer if necessary. This means that after expiration of Tσ , the current buffer is stored

for a further Tb seconds. The value of Tb may be negotiated through LMP or may be specified by the

application.

4.4.2 Retransmission Mechanism

As illustrated in Figure 4.1, a receiver running the PEC scheme, buffers σ packets and sends a NACK to

the sender requesting a particular packet to be retransmitted if it is corrupted. The number of possible

retransmissions, ρ, is spread uniformly amongst all σ packets; this means that each erroneous packet is

given, when possible, an equal retransmission opportunity. Evidently, if the number of packets in error,

e, exceeds the number of allowed retransmissions, then the packets to be resent are chosen randomly.

Similarly, if ρ cannot be divided equally among the packets in error (e.g. e = 3 and ρ = 5), then the

packets to be given extra retransmission opportunities are also selected randomly from amongst the set

of erroneous packets. PEC’s retransmission operations are summarised in Algorithm 2

A receiver reads each packet (pkt) from its buffer (InBuffer) and checks if it is in error through

the method CheckPacket(). If it is, the packet is marked via the method MarkPkt() and stored in the

array ErrSet which holds a list of erroneous packets. The algorithm distinguishes between two cases:

• Case 1 - There are fewer packets in error in the set than the number of possible retransmissions:

In this case, the receiver requests each packet to be retransmitted by sending a NACK back to the

sender (Request() in Algorithm 2).

• Case 2 - The number of erroneous packets is greater than the number of allowed retransmissions:

In this case, the receiver selects a subset of ErrSet randomly and stores it in RetrSet via the

method Select() such that the number of packets in RetrSet is exactly ρ. The receiver then

requests each packet in this subset to be resent.

4.4. Packet Error Correction (PEC) Scheme 63

Algorithm 2 PEC Retransmission - Receiver
while ρ > 0 || e 6= 0 do
e← Reset(e)
j ← Reset(j)
for all pkt ∈ InBuffer do
e← CheckPacket(pkt)
if e is TRUE then
ErrSet[j]←MarkPkt(pkt)
j := j + 1
e := e+ 1

end if
end for
if e < ρ then

for all pkt′ ∈ ErrSet do
pkt′ ← Request(pkt′)
ρ := ρ− 1

end for
else
RetrSet← Select(ErrSet)
for all pkt ∈ RetrSet do
pkt← Request(pkt)
ρ := ρ− 1

end for
end if

end while

This process is repeated until either ρ is exhausted, or there are no more errors present in the buffer after

retransmissions. Because of the particular setting of the PEC scheme, NACKs can be sent simultaneously

in a single LMP packet, specifying the buffer and sequence numbers of the packets to be resent. The

OpCode used for the NACK packet bears the value 0x43 since it is unused in the specifications. This

method reduces the overhead even further as individual NACKs are avoided. The format of the NACK

packet is shown in Figure 4.4.

Figure 4.4: NACK Packet Format

The structure of the NACK indicates that it can be sent in a single-slot packet; more precisely as

a DM1 packet, where the 20 Bytes of payload are 2/3 FEC encoded to make up the required 30 Byte

length. The format of the NACK is described below:

CB: The Current Buffer (CB) flag indicates the targeted buffer. A value of 1 indicates the current buffer,

whereas a 0 means the previous one.

Packet SeqNum: This field holds a sequence of 1s and 0s, wherein a 1 indicates a retransmission request

for the packet whose sequence number corresponds to its position in the Packet SeqNum sequence. If

Packet SeqNum is empty, it indicates that every packet was received correctly.

4.4. Packet Error Correction (PEC) Scheme 64

Because channels are characterised by high bit error rates, a NACK might be corrupted or lost

during transmission and therefore the sender would not know which packets to retransmit. If the sender

does not receive the NACK when it is supposed to, i.e., after sending the last packet in the buffer, it

continues sending subsequent data. The receiver realises that the NACK has not been received and

sends another one requesting the missing packets. The advantage of the adaptive PEC scheme over

incremental ARQ windowing, such as the method proposed in [34], is that it adapts to sudden changes

in channel conditions. Moreover, the proposed method retransmits only a portion of the packets sent,

thereby reducing error control overhead and delay. Although PEC may seem counter-intuitive, since

fewer packets are allowed to be resent, in reality, it presents better correction characteristics than adaptive

ARQ schemes (see section 4.5).

4.4.3 Analysis of the PEC Scheme

PEC relies on retransmitting packets that get corrupted when passing through a channel with a particular

BER (or probability of error, p). It is assumed that errors are Poisson distributed in time, therefore the

probability of error is given by:

Pe =
e−λτ (λτ)k

k!
(4.6)

For a finite set of size σ, the probability of having e errors, given a channel error probability, p, is defined

by the binomial expression instead, as given by Equation 4.7

Eσ[e] =

(
σ

e

)
pe(1− p)σ−e (4.7)

Where Eσ[e] denotes the probability of e errors being present in a set of size σ and
(
σ
e

)
= σ!

e!(σ−e) . Here

the probability of error is expressed as Packet Error Rate (PER), hence an error, e, means a packet being

in error.

Proposition 4.4.1. The probability of e errors remaining in a set of size σ after ρ retries is expressed as:

Pσ[e][ρ] =


eEσ[e]pρ−e+1, if ρ ≥ e

Eσ[e](ρ.p+ e− ρ), if ρ < e

(4.8)

Proof. Case 1: ρ ≥ e

After retransmitting e packets once, the probability of remaining errors in the set σ is:

Eσ[e]×

(
p.

n∑
1

en

)
(4.9)

Where en ∈ e (the set of erroneous packets); thus
∑n

1 en = e, and therefore the probability of packets

4.5. Evaluation 65

remaining in error is e.Eσ[e].p

Also, since ρ ≥ e, after e retries, the remaining number of retransmissions is ρ − e, which means

that the probability of remaining errors is reduced by a further factor of pρ−e, so:

Pσ[e][ρ] = e.Eσ[e].p.pρ−e ⇔ Pσ[e][ρ] = e.Eσ[e].pρ−e+1 (4.10)

Case 2: ρ < e

The probability of the retransmitted packets to remain in error after ρ retries are exhausted is:

P̄σ[e][ρ] = Eσ[e].p.ρ (4.11)

However, since the number of errors exceeds the number of retries, e−ρ packets will not be retransmitted.

This means that the error probability of these packets after retransmission is the same as the initial

probability, i.e.:

Pσ̂ = (e− ρ)Eσ[e] (4.12)

The total error probability when ρ < e is thus the sum of the probability that errors remain in the set σ

after ρ retries, and the probability that the non-transmissible packets are initially in error such that:

Pσ[e][ρ] = P̄σ[e][ρ] + Pσ̂ ⇔ Pσ[e][ρ] = Eσ[e](ρ.p+ e− ρ) (4.13)

The formula given in 4.8 allows an analytical comparison between a channel’s initial error prob-

ability and the resulting probability of errors after retransmission, for various buffer sizes and number

of retries, thus providing a performance evaluation of the error control scheme prior to implementation.

PEC presents interesting probabilistic characteristics, in that the possibility of having more than e errors

in a set of size σ is unlikely even at high BER; therefore after ρ retries, the probability of remaining

errors is very slim. Moreover, adapting the number of retries per set to channel quality, ensures that

the overhead and delay associated with error correction are reduced, while ensuring that PEC’s error

reduction properties are maintained. An evaluation, via simulation, of the proposed scheme is given in

the next section.

4.5 Evaluation

The proposed PEC scheme is simulated under various parameters and channel conditions in order to

assess its performance. PEC is also compared to the specification-recommended retransmission scheme.

The simulator is written in Matlab, wherein nodes are objects, with associated attributes and methods,

4.5. Evaluation 66

and channels are filters with additive error terms.

4.5.1 Simulation Settings

PEC is evaluated on audio over ACL applications [8, 85], wherein, unlike SCO, packets which are not

received correctly may be retransmitted. The audio data source can either be real time recording or a

stored file. For the purpose of the simulation, the source is a WAV file, which is PCM-encoded to make

up the raw audio data. The transmitter applies the necessary encapsulation and the data is sent in single

slot packets (DM1). The packets go through a channel that introduces errors, such that error patterns

are Poisson distributed. Upon receiving a packet, the receiver checks for errors, records the packet’s

sequence number, copies the access code for BER estimation and stores the packet in the buffer. Every

σ packets, the receiver sends a NACK to the sender requesting the retransmission of erroneous packets

as set out by ρ. The data is then de-encapsulated, decoded and processed for output. The operations of

the simulator are summarised in the block diagram of Figure 4.5

Figure 4.5: PEC Simulator

In the simulator, errors are obtained by generating an array of natural numbers of length L (where

L = channel error probability× total number of bits)using the Poisson formula as given by Equation 4.6.

Each entry in this array represents the distance between error-free bits. These L numbers are used as

pointers to indicate the position at which an error is forced, thus emulating the effect of noisy channels.

In the simulation, the sender and receiver queues are assumed to be infinite, therefore the simulator does

not handle buffer overflows. One assumes that this functionality is carried out by upper layer network

protocols such as TCP.

4.5.2 Metrics

The assessment of the proposed error correction scheme is based on the following performance metrics:

• Packet Delivery Rate: This metric indicates the resulting data error rate after retransmission of

erroneous packets, in accordance with σ and ρ; that is the ratio of the number of packets that

remain in error to the total number of packets sent, after applying the retransmission mechanism.

4.5. Evaluation 67

it indicates the extent to which the proposed scheme improves on data loss rates, thus improving

transmission reliability. Furthermore, the performance of PEC, in terms of packet delivery rates, is

closely linked to the ability of a node to accurately estimate channel conditions, as the number of

allowed retransmissions depends on the channel’s BER. Therefore, an evaluation of the estimator’s

behaviour is also given under this heading.

• Data Overhead: The overhead indicates the extra amount of data introduced by the retransmission

scheme. This includes the actual resent packets as well as the associated control data, i.e., NACKs.

The overhead is defined as the ratio of the extra data to the overall data size such that Ω = Ψ
data size ,

where Ψ indicates the redundancy introduced by the retransmission mechanism and data size is

the size of the transferred data. Note that Ψ does not include FEC and CRC redundancies, as

the aim of the measure Ω is to provide an indication of the “extra” overhead introduced by the

proposed retransmission method.

• Audio Quality: Although PEC is not restricted solely to audio, the quality of the received audio

data gives an indication of the scheme’s performance. The difficulty with using audio quality as

a performance metric, nonetheless, is that quality is subjective to human perception, therefore it

is unclear what would be deemed as “acceptable”. However, it is possible to show deviations

from error-free quality before and after retransmissions, which provide a visual means of the

performance of PEC.

• Delay: Buffering and retransmitting packets introduce delays in processing the data. This is more

of an issue in real-time applications, where ordered and time-tight processing is required. In some

instances, large delays are unacceptable even if it means that the data can be recovered. Assessing

the delay introduced by PEC is therefore essential in evaluating the performance of the scheme, as

it indicates it suitability for given applications.

4.5.3 Packet Delivery Rate

PEC is simulated for various buffer sizes and BER values while varying the number of non-re-

transmissible packets per buffer, in order to assess the impact of these parameters on the performance of

the scheme. PEC adapts the number of retransmissions per buffer to the quality of the link (in terms of

BER), therefore an accurate estimate of error rate is essential. Figures 4.6(a) and 4.6(b) show the esti-

mate of the BER obtained from the access code, compared with actual BER enforced by the simulator

for an estimation window of 10, 000 and 100, 000 bits respectively.

Figure 4.6 suggests that an estimate of the channel BER is possible online, using the access code,

without the need for a training sequence. The drawback of this method, nonetheless, is that access

codes are small in size (72 bits); therefore, before a node can compute an estimate of the BER, it first

4.5. Evaluation 68

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

Simulation Runs

B
E

R

BER Estimate − Window Size = 10,000

Actual BER
Estimated BER

(a) BER Estimate - Window Size = 10,000

0 5 10 15 20 25
10

−3

10
−2

10
−1

Simulation Runs

B
E

R

BER Estimate − Window Size = 100,000

Actual BER
Estimated BER

(b) BER Estimate - Window Size = 100,000

Figure 4.6: PEC’s Estimate of Channel BER

needs to gather sufficient data, which may incur delays. This issue is rectified by considering the current

estimate to be the average of the previous readings in case a node fails to receive sufficient data within

a predefined timeout. Another way of assessing the performance of the estimator is to look at error

performance metrics. The measures used in this chapter are the Percentage Error (PE) and the Absolute

Percentage Error (APE). The former represents the deviation (as a percentage) of the estimate from the

actual BER, whereas the latter takes the absolute value of this deviation, such that pe = 100 × ε
ber and

ape = |pe|, where ε = estimated ber − actual ber. The error graphs corresponding to the estimates

given in Figure 4.6 are shown in Figure 4.7.

0 5 10 15 20 25
−100

−80

−60

−40

−20

0

20

40

60

80

100

Simulation Runs

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Estimation Window = 10,000
Estimation Window = 100,000

(a) Percentage Error

0 5 10 15 20 25
−100

−80

−60

−40

−20

0

20

40

60

80

100

Simulation Runs

A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r

Estimation Window = 10,000
Estimation Window = 100,000

(b) Absolute Percentage Error

Figure 4.7: BER Estimator’s Error Performance

It can be seen from Figure 4.7 that the accuracy of the BER estimate increases with estimation

window size. This means that for very precise estimates a large window size is required. A larger

4.5. Evaluation 69

window size, however, introduces the issue of estimation delays, thus changes in channel conditions

between consecutive estimate instants could be missed. Therefore, it is important for the estimator to be

application-aware, so that the estimation window is adjusted accordingly.

The results given in Figure 4.8 show the performance of the PEC scheme in terms of error rate

response for various buffer sizes, σ, and number of non-re-transmissible packets per buffer, β.

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

PER Before

P
E

R
 A

fte
r

PER Response − beta = buffer_size/2

Buffer Size 8

Buffer Size 16

Buffer Size 32

(a) β = σ
2

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PER Before

P
E

R
 A

fte
r

PER Response − beta = buffer_size/4

Buffer Size 8

Buffer Size 16

Buffer Size 32

(b) β = σ
4

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PER Before

P
E

R
 A

fte
r

PER Response − beta = buffer_size/8

Buffer Size 8

Buffer Size 16

Buffer Size 32

(c) β = σ
8

Figure 4.8: Packet Delivery Rate

The graphs shown in Figure 4.8 indicate that applying the PEC retransmission method improves the

delivery rates by several orders of magnitude, which proves the adequacy of the scheme. Moreover, it

can be seen, by comparing Figures 4.8(a), 4.8(b) and 4.8(c) that the response is improved by reducing β.

Lower values of β translate into more packets being retransmitted within the set, thereby improving the

performance. Furthermore, the relationship between the data error rate before and after retransmission

is non-linear, owing to the non-linear mapping of the BER to the number of retransmissions.

Another observation is that the resulting error rate after retransmission is inversely proportional to

buffer size. This is due to the fact that the number of retransmissions is also proportional to the size of

the buffer; thus increasing σ would increase ρ, thereby more packets can be retransmitted, which results

4.5. Evaluation 70

in a better response. Increasing the size of the buffer, however, comes at the cost of increased delays (as

outlined in 4.14), which in some applications can be intolerably long. This last observation is true for

any retransmission scheme, wherein increasing the number of retransmissions increases delay. The ad-

vantage of PEC over other error control schemes, such as the one defined in the Bluetooth specifications

[24], however, is that even when restricting the number of retransmissions to a subset of the packets,

the resulting error rates are satisfactorily low. Bluetooth recommends retransmitting every packet that

is in error, which can be thought of as PEC where σ = 1 and ρ = 1. Figure 4.9 shows a performance

comparison between PEC and the retransmission scheme defined by the specifications.

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PER Before

P
E

R
 A

ft
e

r

BT Spec: Size =1, r = 1 − PEC: Size = 16, beta = buffer_size/4

Specifications

PEC

Figure 4.9: Packet Delivery Rate - Comparison between PEC and Specification-recommended Scheme

By looking at Figure 4.9, it is clear that PEC outperforms the retransmission method recommended

by the specifications, while incurring far less overhead. For instance, for an initial error rate of 10−1,

PEC reduces this rate to about 3× 10−3 with just 75% of packets retransmitted. For a similar result, the

specification-recommended method requires an initial error rate of about 2 × 10−2 with 100% retrans-

mission rate.

4.5.4 Data Overhead

The overhead incurred by the retransmission scheme includes both NACK packets and the actual re-

transmitted data. This measure also gives an indication of the data throughput degradation introduced by

PEC. Figure 4.10 below shows the overhead introduced by PEC as a percentage of the total data sent.

The first notable point when examining Figure 4.10 is that overhead decreases as error rates de-

crease. This is because at low error rates, the number of packets in error is low, resulting in fewer

retransmissions and thus lower overhead. Furthermore, because a NACK is sent every σ packets, the

4.5. Evaluation 71

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

PER

O
ve

rh
ea

d
(%

)

Overhead − beta = buffer_size/2

Buffer Size 8
Buffer Size 16
Buffer Size 32

(a) β = σ
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

PER

O
ve

rh
ea

d
(%

)

Overhead − beta = buffer_size/4

Buffer Size 8
Buffer Size 16
Buffer Size 32

(b) β = σ
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

PER

O
ve

rh
ea

d
(%

)

Overhead − beta = buffer_size/8

Buffer Size 8
Buffer Size 16
Buffer Size 32

(c) β = σ
8

Figure 4.10: Overhead Response

overhead decreases as the buffer size increases. By comparing Figures 4.10(a), 4.10(b) and 4.10(c) it is

also evident that the overhead is inversely proportional to β, which is due to the fact that lower values

of β translate into more packets being retransmitted, therefore resulting in more overhead. On the other

hand, a lower value of β means higher correction probability. Similarly, increasing buffer size decreases

overhead but increases delay. Therefore, there is a clear trade off between overhead, error rate response

and delay.

PEC’s overhead response is also compared to the retransmission scheme specified by the Bluetooth

standard in order to demonstrate its advantages. The simulation results are shown in Figure 4.11 below.

These are obtained by applying PEC, with σ = 16 and β = σ
4 , and compared with the specification-

recommended retransmission method, in which σ = 1 and ρ = 1, i.e., the receiver requests the retrans-

mission of every packet that is received in error.

Figure 4.11 shows that the overhead incurred by PEC is much lower than the one resulting from

the specification-recommended scheme. Such a large gap is explained by the fact that the latter needs

to acknowledge every packet so that the receiver can request an erroneous packet to be retransmitted,

4.5. Evaluation 72

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

PER

O
ve

rh
e

a
d

 (
%

)

BT Spec: Size =1, r = 1 − PEC: Size = 16, beta = buffer_size/4

Specifications

PEC

Figure 4.11: Overhead Response - Comparison of PEC and Specification-recommended Scheme

whereas PEC only sends a NACK every σ packets. In addition, PEC presents better PER response, which

means that the number of retransmitted packets is lower for PEC than it is for the scheme defined in the

standards, thus PEC results in lower overhead. As error rates decrease, and consequently the number

of retransmissions decreases, the overhead would mainly be the result of acknowledgements, which

explains the quasi-constant tendencies towards low error rates. The disadvantage of PEC, however, is

that it incurs larger delays as explained in 4.14.

4.5.5 Audio Quality

The quality measures of the audio data used in the simulation indicate, to some extent, the performance

of PEC in terms of error reduction. One way of measuring audio quality is to show the deviation from a

reference point, which in this case is the error-free audio file. This is achieved by dividing the resulting

data, after applying the PEC retransmission, into bins representing 10ms each and plotting the deviation

(as a percentage) from the original error-free audio data. The results obtained for three different buffer

sizes, namely 8, 16 and 32, with PER = 20% and β = σ
8 , are illustrated in Figure 4.12. In this figure a

100% mark suggests no errors, whereas a difference of percentage of ∆ indicates a reduction of quality

by ∆%. Each plot is compared to the quality obtained from sending the data through the channel with

no retransmission in order to illustrate the improvement attained by PEC.

For ease of illustration, Figure 4.12 only shows 1000ms of the audio under test. Looking at Figure

4.12, the first observation one can make is that applying PEC does indeed improve the quality signif-

icantly, from a barely audible level to a level exhibiting only a few errors. The term error here means

the number of erroneous packets present in each bin, which in turn represent 10ms of audio data. It is

4.5. Evaluation 73

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

Time

O
ut

pu
t/I

np
ut

 (
%

)

Audio Quality − After Retransmission

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

Time

O
ut

pu
t/I

np
ut

 (
%

)

Audio Quality − Before Retransmission

(a) σ = 8

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

Time

O
ut

pu
t/I

np
ut

 (
%

)

Audio Quality − After Retransmission

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

Time

O
ut

pu
t/I

np
ut

 (
%

)

Audio Quality − Before Retransmission

(b) σ = 16

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

Time

O
ut

pu
t/I

np
ut

 (
%

)

Audio Quality − After Retransmission

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

Time

O
ut

pu
t/I

np
ut

 (
%

)

Audio Quality − Before Retransmission

(c) σ = 32

Figure 4.12: Audio Quality

also easy to see that as the size of the buffer, σ, increases, so does the quality. This confirms the findings

illustrated by Figure 4.8, which suggest a better error rate response for increased buffer size.

As previously mentioned, quality is a subjective measure, thus illustrating it visually is not straight

forward. However, in the case of audio, it is possible to compare spectrograms, which provide a visual

means of assessing the quality of the data [47]. A Spectrogram is the square of the magnitude of a

signal’s Short-Term Fourier Transform (STFT) such that

spectrogram(s(t)) =

∣∣∣∣∫ ∞
−∞

s(t)w(t− τ)e−j2πfstdt

∣∣∣∣2 (4.14)

Where w(t − τ) is a window function and s(t) is the actual audio signal. Figure 4.13 shows the spec-

trograms generated from sending audio data through a noisy channel with PER=20% and with β = σ
8 .

These results are obtained using the RTGram tool [159], where the horizontal axis is time and the vertical

axis represents frequency.

In phonetic and acoustic sciences, a spectrogram provides a way of representing particular sounds

4.5. Evaluation 74

(a) Error-free (b) σ = 8

(c) σ = 16 (d) σ = 32

Figure 4.13: Audio Quality - Spectrograms

through their frequency “formants” and “bands”. A formant identifies a particular frequency concen-

tration, meaning a combination of harmonics, which in turn identifies a particular sound. These are

represented by the dark areas in Figure 4.13, whereas the band points to the frequency tone, i.e., the

intensity of the sound, which is indicated by the corresponding frequency on the vertical axis. Packet

errors introduce undesired sounds, and consequently, a shift in the signal’s frequency components, which

naturally alters how these change over time. A spectrogram can therefore be used to assess the quality of

the received audio data in the presence of errors. A detailed analysis of the spectrograms given in Figure

4.13 is beyond the purpose of the this evaluation (for further reading on acoustic science and spectrogra-

phy refer to [102, 81]); it can be seen, however, that all four of the figures above show close similarities,

in terms of formants and bands, which proves PEC’s ability to recover from errors even at high error

rates. Furthermore, the figure providing the closest alignment with the error-free data is 4.13(d), which

confirms that larger values of σ result in better error recovery.

4.5. Evaluation 75

4.5.6 Delay

The meaning of delay in this evaluation is the time taken by the receiver to process the data. This includes

buffering time and delay introduced by the retransmission of erroneous packets. Data propagation delays

and processing delays due to circuitry are not taken into account, as the aim of this section is only to

show the impact of the retransmission scheme. Therefore the term “delay” here means the extra time

introduced by the PEC scheme. Simulations are conducted on the audio data for various packet error

rates, buffer sizes and values of β, wherein the delay is measured as an average per buffer. The results

are shown in figure 4.14 below.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

BER

D
el

ay
 (

m
s)

Delay − beta = buffer_size/2

Buffer Size 8

Buffer Size 16

Buffer Size 32

(a) β = σ
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

BER

D
el

ay
 (

m
s)

Delay − beta = buffer_size/4

Buffer Size 8

Buffer Size 16

Buffer Size 32

(b) β = σ
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

BER

D
el

ay
 (

m
s)

Delay − beta = buffer_size/8

Buffer Size 8

Buffer Size 16

Buffer Size 32

(c) β = σ
8

Figure 4.14: PEC Delay Response

As shown in Figure 4.14, the larger the buffer size the longer the delay, which is expected, as buffer-

ing more packets introduces more delay. The slow decaying trend that the curves follow is due to the

delay added by retransmitting erroneous packets. At high error rates, the rate of change of the curves is

higher, due to the fact that the number of erroneous packets is larger, hence incurring more retransmis-

sions. Moreover, the number of re-transmissible packets, ρ, increases as BER increases, therefore more

delay is introduced at higher error rates. As BER decreases, and consequently the number of packets in

error decreases, delays tend towards a constant level, which is, essentially, buffering delay.

4.6. Summary 76

When comparing Figures 4.14(a), 4.14(b) and 4.14(c), it appears that varying the number of non re-

transmissible packet, i.e., β, has no major effect on the delay. This is because the significant component

making up delay values is buffer size. As far as real-time audio is concerned, buffer sizes of 32 packets

are not an adequate choice, as they introduce large delays that would degrade user experience [89].

Furthermore, these values are for single hop communications; in a multi-hop environment these delays

would be larger due to queue overflows and other effects such as congestion control introduced by higher

protocols. It is therefore essential when deploying PEC to consider what an “acceptable” delay is (given

a particular application) so that user experience is not degraded.

4.6 Summary
This chapter detailed a simple and efficient adaptive error correction scheme, PEC, that complies with

the low complexity requirements of personal devices. It was shown that PEC behaves better than the

retransmission scheme defined in the specifications in terms of error reduction and overhead response.

Improving error response, however, comes at the cost of increased delays. There is, therefore, a trade

off between latency, error rate response and overhead, which must be adjusted to suit the applications’

requirements. This can be achieved analytically, through the proposed expressions, which allow the se-

lection of the required parameters prior to implementation. Moreover, these parameters can be passed

online through HCI commands or by defining new LMPs so that PEC is altered to satisfy the require-

ments. This allows seamless implementation without modifications to the protocol stack or hardware.

Chapter 5

Network Size Estimation

5.1 Introduction
This chapter proposes techniques for estimating the size and other topological properties of the un-

derlying graphs, specifically adapted to suit the particular constraints of personal area networks, i.e.,

master/slave settings. Since it is not practically feasible to maintain an accurate view of the underlying

network at all times due to the unpredictable and constant changes in topology, some applications rely

on the knowledge of its approximate size instead.

Network size estimation is a well studied area in large peer-to-peer (P2P) networks; two main

techniques can be distinguished: random walk-based methods [109, 51] and gossip-based aggregation

methods [148, 73]. In the latter approach, nodes average a value each time they communicate with

each other, so that if the process is repeated sufficiently, nodes would obtain an average, from which

the size of the network can be inferred. It was shown in [99] that for network sizes of up to 1, 000, 000

nodes, gossip-based aggregation methods obtain an accurate estimate of the network size after just 40

rounds. Here a round is a repetition of the aggregation after a certain time (called an epoch) has elapsed.

Random walk methods, on the other hand, trade accuracy for lower cover time. These techniques rely

on passing a token around, gathering network measurements and estimating the size of the network upon

return of the token to the initiator. This chapter investigates the applicability of these two techniques in

mobile personal area networks and proposes adaptations to suit their particular topological and mobility

constraints.

This chapter begins by introducing the network formation algorithm used throughout the thesis in

section 5.2, it then describes and evaluates the random walk and the gossip-based network size estimation

algorithms in sections 5.3 and 5.4 respectively. Finally it summarises the findings in section 5.5.

5.2 Network Formation
As mentioned in chapter 3, network topology is a fundamental factor of the performance of PANs. On the

one hand, data forwarding is facilitated if nodes are well connected, but on the other hand, large degrees

5.2. Network Formation 78

increase bridging overhead and latencies. Therefore, there is an optimal topology, for a given scatter

of nodes, for which throughput is maximised [111]. Achieving an optimal topology, however, requires

extra overhead, which in turn, deteriorates the performance of the network. Consequently, in this project,

each node selects its degree randomly, which according to the No Free Lunch (NFL) optimisation theory

[169] results in a quasi-optimal topology.

In the work presented in this thesis, the network is composed of master nodes, slave nodes and PMP

nodes. However, PMP nodes can only be slave/slave nodes as this configuration facilitates inter-piconet

scheduling [116]. The network formation employed herein is similar to the BlueNet algorithm [166],

except that it only admits slave/slave bridge nodes and connections are established randomly. Similar

to BlueNet, the proposed topology construction algorithm is divided into three phases. In phase I, some

nodes (saym nodes) enter the page mode (p-masters) and start inviting other nodes to join their piconets,

after having obtained the identities of their neighbours through the inquiry procedure. Each p-master, i,

sets a maximum number of p-slaves, simax, that it admits to its piconet in phase I, drawn randomly from

the integer set S = {1, 2, ..., 6}, so that it only accepts the first simax page replies (DACs). In this phase,

a p-slave that has already accepted a page from a previous p-master, ignores all other invitations, and in

the end there would be m isolated piconets and some unconnected nodes. After phase I is completed,

the masters instruct their respective slaves to enter page scan mode, in order to listen to other pages and

start paging again. A slave, j, only replies to a page if it originated from a different master than the

one it initially connected to, and if its degree is less than mj
max. The latter represents the maximum

number of piconets a slave node can be connected to in phase II, and is also selected randomly from the

set S. In phase III, the unattached nodes enter the page mode while the connected slaves enter page scan

for a pre-defined timeout, to, during which the isolated nodes invite the connected slaves to join their

piconets as PMPs. When a previously isolated node manages to connect to an existing slave, it pages its

neighbours for a further to, in order to connect nodes that were unable to find a slave in their vicinity. If

an isolated node cannot join the network, it enters page scan mode so that it can be invited by a recently

connected master. If the last step fails, the isolated node signals to its neighbouring masters to page it so

it can join the network. These procedures result in fully connected, quasi-optimal topologies that only

admit slave/slave PMP nodes. Some of the randomly generated topologies are given in Figure 5.1. This

attachment algorithm is used throughout this project.

The topologies given in Figure 5.1 are shown in two dimensional planes for ease of illustration.

However, the evaluation is performed on nodes scattered across three dimensional spaces to reflect a

realistic set up of PANs. In the figure, the star-shaped nodes represent pure slave nodes, the black

squares are master nodes and the circular nodes are PMPs. It should also be noted that only slave nodes

interconnect multiple piconets. The results given in Figure 5.2 illustrate some of the properties of the

generated scatternets.

5.2. Network Formation 79

0 5 10 15 20 25
8

10

12

14

16

18

20

22

24

1

2

3

4
5

6

7

8

9

10

Length (meters)

W
id

th
 (

m
et

er
s)

(a) n=10 nodes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

Length (meters)

W
id

th
 (

m
et

er
s)

(b) n=20 nodes

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

1
2

3

4

5
6

7

8

9 10

11

12

13

14

15

16

17

18

19
20

21

22
23

24 25

26
27 28

29

30

Length (meters)

W
id

th
 (

m
et

er
s)

(c) n=30 nodes

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35

36 37

38

39

40

Length (meters)

W
id

th
 (

m
et

er
s)

(d) n=40 nodes

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Length (meters)

W
id

th
 (

m
et

er
s)

(e) n=50 nodes

Figure 5.1: Scatternet Topologies

Figure 5.2 indicates that the number of masters, and hence piconets, increases linearly with the

number of nodes in the network. The number of PMP and pure slave nodes also increases linearly;

however, PMPs represent the largest portion of the nodes, which indicates good inter-piconet connection.

Figure 5.2(c) shows no evident correlation between the number of nodes and average node degree, which

is the result of the random attachment method used in this work.

5.3. Random Walk-based Network Size Estimation 80

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Network Size

N
um

be
r

of
 P

ic
on

et
s

(a) Number of Piconets

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

Network Size

N
um

be
r

of
 N

od
es

Masters

PMPs

Pure Slaves

(b) Distribution of Roles

10 20 30 40 50 60 70 80
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Network Size

A
ve

rg
ae

 N
od

e
D

eg
re

e

(c) Average Degree

Figure 5.2: Scatternet Properties

5.3 Random Walk-based Network Size Estimation

The random walk estimation scheme used in this work is based on the random tour method proposed in

[109], which proposes a random tour technique for estimating the size of large peer-to-peer networks.

In this method, an originator node, i, gathers information along the walk and estimates the size of the

network upon return of the walk to this originator.

The originator, i, initialises a counter X to 1
di

, where di is the degree of node i, and forwards the

message to one of its randomly selected neighbours. Upon receipt of the message, a node j, (j 6= i),

increments the counter by 1
dj

, dj being the degree of node j, and forwards it to one of its immediate

neighbours, again chosen randomly. When the message returns to the originator, this node estimates the

size of the network as: Φ = diX

Random walk methods also allow nodes to gather other network statistics [39] such as node degrees

and roles, which are key ingredients in the proposed algorithm. The Random Tour method [109] can,

therefore, be adapted to suit the specific attributes of master/slave settings in order to yield more accurate

estimates of the size of the network.

5.3. Random Walk-based Network Size Estimation 81

A master/slave PAN forms a bipartite graph with vertices of colours m and s for masters and slaves

respectively. LetG(V,E) define a master/slave PAN, in which the set of vertices V (G) = M(G)∪S(G),

where M(G) and S(G) are the set of master nodes and slave nodes respectively. S(G) is comprised of

two subroups, namely PS(G) and P (G) such that S(G) = PS(G) ∪ P (G) where PS(G) is the set of

all s-coloured vertices whose degree is exactly one, i.e., pure slaves, and P (G) is the set of all s-coloured

vertices whose degree is greater than one, i.e., PMPs.

Let N = |V (G)|, M = |M(G)|, S = |S(G)|, P = |P (G)| and PS = |PS(G)|. Consequently

N = M + S and S = P + PS. The values dm =
∑
v∈M(G) d(v)

M and ds =
∑
k∈S(G) d(k)

S are defined

as the average node degrees of m-coloured and s-coloured nodes in V (G) respectively. Similarly, the

average degree of vertices in subgroup P (G) is defined as dp =
∑
n∈P (G) d(n)

P

Proposition 5.3.1. The total number of nodes (N) in a connected component within the network is:

N = M · (dm + 1)− P · (dp − 1)

Proof. Because the graph is bipartite, every edge in E(G) is incident in M(G) and in S(G); therefore:

e(G) =
∑
v∈M(G) d(v) =

∑
k∈S(G) d(k)

where e(G) = ‖E(G)‖ is the number of edges in G.

Bearing the previous definitions in mind, the following holds true:

S = M · dm − S · (ds − 1) (5.1)

∑
k∈S(G)

d(k) =
∑

n∈P (G)

d(n) +
∑

i∈PS(G)

d(i) (5.2)

ds = 1⇒
∑

i∈PS(G)

d(i) = PS (5.3)

it follows from (5.1), (5.2) and (5.3)

S · (ds − 1) = P · (dp − 1)⇒ S = M · dm − P · (dp − 1)

and finally

N = M · (dm + 1)− P · (dp − 1)

The function of this estimator is to obtain an accurate size of the network (the exact value of which

is N) as well as topology characteristics. The network size estimation process is performed by each

master node, which upon completion, broadcasts the estimate to its neighbours so that every node in the

network has knowledge of the estimate.

5.3. Random Walk-based Network Size Estimation 82

At any non-initial state s, a node j, (j 6= i) selects one of its outgoing links at random with prob-

ability pj = 1
dj

and forwards the estimate message to the corresponding node. The estimate message

is the tuple {(Nm,Dm),(Np,Dp)}, where Nm is a counter for the number of master nodes discovered

so far and Np is a counter for the number of PMP nodes. Dm and Dp represent the respective cumula-

tive counts of the degrees of masters and PMP nodes encountered so far during the walk. The estimate

message is initialised at the originating master i to {(1,di),(0,0)} to indicate that, thus far, there has been

only one master node discovered with degree di and no PMP nodes. Upon receipt of the message, a

receiving node increments the counter Nm by 1 and adds its degree to the counter Dm if it is a master

node, or updates Np and Dp in the case of a PMP; the message remains unchanged if the node is a pure

slave. When the message is returned to the initiating node, i.e., when the tour is completed, that same

node computes the average master and PMP nodes’ degrees as dm = Dm
Nm

and dp =
Np
Dp

respectively,

then estimates the size of the network according to proposition 5.3.1. The operation of the network size

estimation is similar for both static and dynamic cases in the absence of node crashes; meaning that node

movement may change the topology but the network remains connected.

5.3.1 Dealing With Mobility

In [46] the authors argue that a change in topology could be viewed as a change in the probability of

choosing the next node to forward the message to. They prove that the walk completes in O(n log n)

for a complete graph. However, in the case of a personal area network, the graph is not complete and

the topology is governed by strict connectivity rules, therefore the assumption that the algorithm would

eventually converge does not necessarily hold true in such scenarios. Furthermore, neither [109] nor

[46] consider the case when it is impossible to forward the message (token) if, for instance, the node

that currently holds the token crashes before forwarding it or moves out of range of the next node to

receive the message. To account for these facts, the following modification to the random tour method is

proposed:

When a non-initial node, i, receives the token, it is marked as having been visited and forwards the

message to one of its immediate neighbours, node j for example, selected randomly with probability 1
di

.

Node j then forwards the message to node q, again selected randomly, and sends an acknowledgement

back to node i indicating that is has forwarded the message. If node i fails to hear the acknowledgement

from node j, within a predefined timeout, it selects another node to forward the message to. When node

i does not find any unmarked neighbouring node, it assumes that the walk cannot travel any further, in

which case it returns the token to the initiator by flooding the network. This mechanism ensures that

tokens are not lost or do not remain in infinite loops1 without ever returning to the originator.

1The term loop refers to the repeated process of passing the token from one node to another. Infinite loops occur when the
selected next hop node never coincides with the originator

5.3. Random Walk-based Network Size Estimation 83

5.3.2 Algorithm Evaluation

Figure 5.3 shows simulation results of network size estimations obtained through the random tour tech-

nique described herein, compared with the method proposed in [109], and the actual sizes of various

randomly generated networks with different assumptions of node mobility. To simulate arbitrary move-

ment in the network, a mobile node, changes its location coordinates at random and connects to its

neighbours, according to the attachment mechanism described in Section 5.2. For simulation purposes,

however, it is assumed that the random movement of nodes does not partition the network.

0 10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

100

110

Simulation Runs

N
e

tw
o

rk
 S

iz
e

Size estimate (adapted method)

Size estimate (original method)

Actual Size

Figure 5.3: Network Size Estimations (Random Tour Method)

It can be seen from Figure 5.3 that the proposed adaptation yields better estimates than the original

random tour method proposed in [109], which proves the adequacy of this technique. Moreover, the

accuracy of the network size estimate also reflects the accuracy of network characteristic estimates,

which are essential to the leader election algorithm (see chapter 6). Both methods, however, show an

estimation bias; this is caused by the attachment characteristics of the graphs, which connect nodes that

are within close proximity; as opposed to a fully connected graph, such as the ones considered in [109].

However, the proposed random tour method exhibits less bias than the original algorithm. This fact

can also be verified by looking at the error graphs shown in Figure 5.4, which illustrates the Percentage

Error and Root Mean Square Error (RMSE) performances, for both estimators, for network sizes varying

between 20 and 100 nodes.

Figure 5.4(a) clearly shows an estimation bias, albeit with relatively low error terms. Moreover,

it can be seen that the proposed adapted method presents less deviation from the actual network size

than the original method (about 10% for the proposed technique contracted with 15% for the algorithm

described in [109]). Figure 5.4(b) indicates the deviation from the mean; again, it is shown that the

5.4. Gossip-based Network Size Estimation 84

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

Simulation Runs

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Original Method

Adapted Method

(a) Percentage Error

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

Simulation Runs

R
M

S
E

Original Method
Adapted Method

(b) Root Mean Square Error

Figure 5.4: Random Tour-based Estimator’s Error Performance

estimates tend towards a positive bias, although both are near zero, with the adapted method presenting

less deviation. This indicates that the proposed method is better suited for master/slave personal area

networks.

5.4 Gossip-based Network Size Estimation

In gossip-based aggregation algorithms, an initiating node sets a variable, avg, to 1 with all other nodes

having this variable set to 0. The initiator, i, chooses one of its outgoing links randomly with probability

1
di

, where di is the outdegree of node i, and exchanges information with the corresponding next hop

neighbour, pnext. Both nodes then average their avg variable as avgi+avgPnext
2 and store the resulting

value locally. Every time two nodes communicate, they average their values. It is evident that if this

process were to be repeated infinitely then every node in the network would have its avg variable set to

exactly 1
N , where N is the number of nodes in the network.

In PANs, however, one can take advantage of the particular master/slave topological characteristics

of such networks. Nodes are arranged in pico-networks, each of which is coordinated by a master node,

which in turn, serves only the slave nodes with which it scheduled a rendezvous point. In the proposed

protocol, the master collects the averages from all currently connected slaves, performs the averaging,

then broadcasts the results to every slave node currently synchronised with the piconet. If this process is

repeated for a sufficiently large number of rounds then every node in the connected component will be

able to accurately derive the size of the network (N). Here a round is defined as the process of collecting,

averaging and re-distributing the information. The operations of the proposed gossip-based aggregation

technique are given in Algorithm 3, which shows the process run by each piconet.

5.4. Gossip-based Network Size Estimation 85

Table 5.1: Gossip-based Aggregation Algorithm - List of Notations
M master node.

SM set of next hop slave nodes to master M .

Sc(M) slaves currently participating in M ’s piconet.

S slave node.

avg(i) aggregate average held by node i.

POLL(M,SM) polls slaves from set SM for communication with

master M during reserved time-slots.

Algorithm 3 Gossip-based Aggregation Network size Estimation Algorithm
while 1 do
Sc(M)← POLL(M,SM)
for all S ∈ Sc(M) do
avg(M)← avg(M) + avg(S)

end for
avg(M)← avg(M)

(||Sc(M)||+||M ||)
for all S ∈ Sc(M) do
avg(S)← avg(M)

end for
end while

Every master node, M , polls the set of slaves, SM , with which it scheduled a rendezvous point, one

at a time, via the function POLL. The master then collects the avg variable stored at each slave and

increments the aggregate average. The piconet average is then obtained by dividing the aggregated aver-

ages stored at the master by the number of nodes in the piconet (master plus slaves). Finally the average

is distributed to all the nodes in the piconet via broadcast. This process is repeated either indefinitely or

until a predefined number of rounds is reached.

5.4.1 Effect of Node Mobility

An obvious advantage of this technique is that node mobility does not deteriorate the precision of the

estimate, as regardless of the location of the nodes in the network, the sum of all the averages will always

converge to unity, that is: ∑
i∈V (G)

avgi = 1 (5.4)

from which it can be deduced that:

∀i ∈ V (G) : lim
k→∞

(
1

avgi(k)

)
= ||V (G)|| (5.5)

where V (G) is the set of nodes in the connected component, avgi is the average at node i, and k is the

number of aggregation rounds. Because the number of rounds needed to find the exact network size can,

in theory, be infinite, in practice algorithms are considered converged if the estimate reaches a certain

precision level [148]. Since the protocol is applied to ad hoc networks, with much fewer nodes than

5.4. Gossip-based Network Size Estimation 86

large peer-to-peer networks, the algorithm does converge towards the exact network size in a finite time

regardless of the mobility pattern.

5.4.2 Evaluation

The gossip-based aggregation method is simulated on a number of random networks generated using

the algorithm described in 5.2. Figure 5.5 shows simulation results for the number of rounds taken to

find the network size estimate for different estimation precisions and under various assumptions of node

mobility conditions. Here, nodes do not follow a particular mobility model, instead they move randomly

and with varying speeds. Node mobility may partition or merge network components and nodes may

change their roles to suit the connectivity characteristics of the proposed attachment scheme.

Figure 5.5: Gossip-based Aggregation Method - Rounds vs. Precision Comparison

The fist observation that can be made by looking at Figure 5.5 is that the quality of the estimate

does not follow a linear trend with the number of rounds. This indicates that for very accurate estimates,

the algorithm needs to run for a large number of rounds. Another observation is that curves exhibit

fluctuations, which are due to the randomness of the underlying topologies. In well connected networks,

the number of rounds taken to reach a given precision level is less than that of a dispersed network.

This means that a major factor governing the convergence time (in terms of number of rounds) of the

gossip-based network size estimation algorithm is the degree centrality of nodes. However, the technique

proposed in this thesis requires far fewer rounds than the gossip-based aggregation method, proposed in

[73] does. Table 5.2 shows a comparison between the original and the adapted algorithm for 100%

precision level for different network sizes.

The significant difference shown in the table above, stems from the fact that in each round, the

adapted method produces the average of all participating nodes in the piconet, whereas in the original

5.4. Gossip-based Network Size Estimation 87

Network Size 20 60 100
Number of rounds (original algorithm) 2544 5035 7521

Number of rounds (proposed algorithm) 123 232 277

Table 5.2: Comparison Between Original and Adapted Gossip-based Aggregation Algorithms

approach the aggregation concerns only a single master-slave pair. However, because of the TDD trans-

mission characteristics of PANs, a round in the adapted method is expected to be longer than that in

the original method. This is because, in the adapted method, a master sequentially collects the average

from each slave currently participating in the piconet then broadcasts the value; whereas in the original

algorithm a round only represents a poll/response cycle. It would therefore be fairer to compare the time

taken to reach a given precision level in both algorithms rather than comparing the number of rounds.

This is given in Figure 5.6

10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

Network Size

T
im

e
 (

se
co

n
d

s)

Proposed Algorithm

Original Algorithm

(a) 50% Precision

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Network Size

T
im

e
 (

se
co

n
d

s)

Proposed Algorithm

Original Algorithm

(b) 90% Precision

10 20 30 40 50 60
0

1

2

3

4

5

6

Network Size

T
im

e
 (

se
co

n
d

s)

Proposed Algorithm

Original Algorithm

(c) 100% Precision

Figure 5.6: Gossip-based Aggregation Method - Estimation Delays

In the simulations, nodes are static; however, mobility would have no effect on the behaviour of the

algorithms since the aggregation process occurs between any communicating nodes, thus it is indepen-

5.5. Summary 88

dent of the location of the nodes. Figure 5.6 shows that the original gossip-based estimation method takes

longer to reach the desired precision level than the proposed adaptation. This diffence stems from the

fact that the original method proposed in [73] requires a master-slave-master exchange in each round,

i.e., a poll-response cycle, whreas in the case of the method proposed herein, the exchange relies on

broadcast which does not necessitate polling each slave at a time in order to send the aggregate averages,

thereby resulting in quicker convergence time. The time complexity given herein shows the same trend

as the number of rounds given in Figure 5.5, where an increase in precision level does not follow a linear

increase in time, which again confirms that for precise estimates, gossip-based aggregation algorithms

require large runtimes.

5.5 Summary
This chapter has adapted two network size estimation methods to suit the master/slave architecture of

personal area networks and has shown that both methods can accurately estimate the size of the network.

The gossip-based aggregation method exhibits better accuracy than the random tour method but at the

expense of longer convergence time. In the work presented in this thesis, the random walk estimation

method is preferred as it allows the collection of other network statistics such as the number of masters,

the number of PMPs and the average node degree, which are all essential to the leader election algorithm

described in the next chapter. However, that being said, both methods cope with random topology

changes, which makes them suitable for mobile personal area networks.

Chapter 6

Cooperative Network Leader Election

6.1 Introduction
In distributed computing, a network leader is a node responsible for carrying out a particular task such as

membership management, data collection, payment management or routing control. The leader election

problem has been studied extensively, particularly in the field of distributed computing [151], and many

algorithms have been devised to elect a unique coordinator in the network. The complexity of leader

election in ad hoc networks, however, is augmented by the dynamic and unpredictable nature of the

environment and can therefore, yield large convergence times, large overheads, and in some cases im-

possibility of consensus. There are many approaches to the leader election problem in ad hoc networks;

three of the predominant ones are tree-based [163, 100], routing-based [106, 43] and probabilistic al-

gorithms [55, 4]. Regardless of which approach is taken, or the role of the leader, the leader election

problem must satisfy two fundamental conditions:

1. There is only one leader in a connected component.

2. Every node in the connected component has knowledge of the identity of the leader.

The proposed leader election algorithm satisfies these two fundamental conditions. It falls within

the category of gossip algorithms, in that a gossip (the identity of the leader) will be disseminated to

the entire network through local exchange of information. Each master gathers information from its

currently connected neighbours, compares this information with its own, and re-distributes the best found

value via broadcast. A fundamental question that must be answered, however, is: “How many times must

a master repeat the process of collecting, comparing and redistributing the information before a unique

leader is known to every node?” The answer to this question is strictly linked to the underlying topology

characteristics of the mobile network. For the algorithm to converge, nodes require knowledge of the

connectivity characteristics of the underlying topology, namely the estimated number of PMP nodes in

the network and their corresponding average degree. This is achieved via the random tour network size

estimation method described in Chapter 5.

6.2. Cooperative Leader Election 90

6.2 Cooperative Leader Election

In the proposed cooperative leader election algorithm, any node in the network is a candidate, i.e., it is

a potential leader, and the node to become the leader is elected on its ability to carry out the required

tasks. Each node computes a value that identifies its capacity to become a leader. In the case of routing

management tasks, which are themselves dependent on various criteria, the value of a node i is the

maxima of the utility, µi such that

vi = max(µi) = max{f(δi, εi, ηi)} (6.1)

Where δi is the degree centrality of node i, εi is its residual energy and ηi is a measure of stability,

i.e., how immobile the node is, on average, over time. The degree centrality indicates the node’s ability

to reach other nodes in the network so that dissemination is optimised, the residual energy is a measure

of the life time of the node, and the stability indicates that routes to the potential leader change less

frequently.

The proposed leader election algorithm relies on cooperation amongst nodes, in that the identity and

value of the leader is spread by exchanging and updating local information until there is only a unique

leader left in the network.

In Bluetooth scatternets, a time-based scheduler ensures that a slave PMP maintains only one active

connection with one of its neighbouring masters at any one time [174]. As a result, at any given time, the

network would be composed of independent and disconnected clusters, which, in a static setting would

cycle back to the original state as shown in Figure 6.1.

Bluetooth relies on a TDD polling scheme, where a slave node can only communicate with its

master if it has received a message in the previous time-slot. There are various scheduling mechanisms

that could be employed for this purpose (see section 3.2.2 in Chapter 3); however, in order to keep

operations simple and to ensure fairness, a PRR scheduler is employed. This scheduler polls each slave

in turn in a cyclic manner to exchange information within a dedicated time-slot. In some applications,

PRR is not the most efficient scheme, as nodes might be polled without having anything to send [172],

[118]. In the proposed leader election algorithm, however, PRR is perfectly adequate, as the algorithm

generates low traffic and requires continuous updates from all slaves [174]. In scatternets, the scheduling

becomes more complex and the mechanism must ensure that no transmission loops occur [12], [88]. The

inter-piconet scheduling employed in this work is based on a leasing mechanism, in which a master node

reserves a time-slot for communication with a particular slave in the piconet. Consequently, this slave

becomes unavailable to any other master during that time-slot and is only released upon completion of

the update.

The proposed leader election algorithm makes use of this transmission mechanism in order to spread

6.2. Cooperative Leader Election 91

Figure 6.1: Independent Network States - Scatternet Scheduling

the identity of the unique leader in the connected component. The algorithm works as follows:

A leader election process is triggered when nodes are notified of the failure of the current leader,

either due to its departure or its value dropping below a predefined threshold. Every node in the network

keeps a variable tuple, (Lid, Lval), that indicates the id and value of the leader known so far, and initiates

itself as a candidate. At the start of the algorithm, every node sets the leader id and value to its own. At

each iteration, when a slave within a piconet is polled, it transmits the id and value of the leader it holds

to its master; the master then compares the information it receives from the slave with the local one. If it

learns of a better-valued leader, it updates its leader information (Lid and Lval) or discards it otherwise.

After the completion of the Round-Robin tour, the master node broadcasts the information to the entire

piconet.

A PMP that was previously connected to a particular master would join another piconet at the

subsequent iteration. If this PMP holds a better leader value, it will update the master, and corresponding

slaves participating in that piconet, with the new leader information, otherwise, it will update its own

leader information. After going through this process several times, the unique identity of the leader will

eventually be known to every node in the network. The process run by each master is illustrated in

Algorithm 4.

6.2. Cooperative Leader Election 92

Table 6.1: Leader Election Algorithm - List of Notations
M master node.

SM set of next hop slave nodes to master M .

Sc(M) slaves currently participating in M ’s piconet.

itr number of iterations remaining.

S slave node.

Lid(M) id of the leader currently held by master M .

Lval(M) value of the leader currently held by master M .

Lid(S) id of the leader currently held by slave S.

Lval(S) value of the leader currently held by slave S.

POLL(M,SM) polls slaves from set SM for communication with

master M during reserved time-slots.

Algorithm 4 Leader Election Algorithm
Sc(M)← POLL(M,SM)
while itr > 0 do

for all S ∈ Sc(M) do
if Lval(S) > Lval(M) and Lid(S) > Lid(M) then
Lid(M)← Lid(S)
Lval(M)← Lval(S)

end if
end for
for all S ∈ Sc(M) do
Lid(S)← Lid(M)
Lval(S)← Lval(M)

end for
itr ← itr − 1

end while

Proposition 6.2.1. The number of rounds needed for the gossip to be spread to the entire network has

an upper bound determined by:

itrmax ≤ 2×

 ∑
i∈P (G)

d(i)− P

+ 1 (6.2)

Where P (G) is the set of PMP nodes in the network G, P is the number of PMP nodes and d(i)

is the degree of PMP i. itrmax represents the maximum number of iterations that a master repeats the

process of collecting and re-distributing leader information to satisfy the two fundamental conditions of

the leader election problem.

Proof. Consider a star network with a single PMP node, p1, and up to seven masters {m1,m2, ...m7}.

The maximum number of iterations it takes for the PMP node to communicate with a particular master,

assuming a PRR schedule is employed, is dp1 , where dp1 is the degree of the PMP node. The maximum

number of rounds it takes for two master nodes to exchange information is dp1 + dp1 − 1 = 2× dp1 − 1.

6.2. Cooperative Leader Election 93

If there is now another star network, with single PMP node p2 of degree dp2 linked to the first

network via a bridge master node, then the maximum number of rounds it takes to convey information

from one end to the other is:

(2× dp1 − 1) + {(2× dp2 − 1)− 1} (6.3)

If n subnetworks are cascaded in a similar arrangement, then the upper bound is given by:

itrmax = (2× dp1 − 1) + {(2× dp2 − 1)− 1}+ · · ·

+ {(2× dpn − 1)− 1} (6.4)

Equation 6.4 becomes

itrmax = 2×

 ∑
i∈P (G)

d(i)− P

+ 1 (6.5)

Equation 6.5 defines an upper bound for the number of rounds a master needs to exchange informa-

tion with its neighbours, which can be approximated to:

2× P̂ (dp − 1) + 1 (6.6)

where P̂ is the number of estimated PMP nodes and dp is the average degree of the estimated PMPs,

both of which are obtained from the network size estimation method described in Chapter 5.

This upper bound is reached in two particular cases: when nodes are arranged in a star topology as

described above and in a line arrangement, wherein the gossip needs to traverse the entire network, from

one end to the other. This is due to the fact that conveying a single piece of information from one node

to another, in both settings, could, in the worst case, involve every node in the network. In realistic net-

works, however, this limit is rarely reached, because of the connectivity properties of nodes. Figure 6.2

shows a comparison between the actual number of rounds it takes to elect a leader and the corresponding

upper bound limit as expressed by equation 6.5, for randomly generated scatternets networks.

It can be seen from Figure 6.2 that the number of iterations it takes to elect a leader, in realistic

networks, rarely reaches the theoretical limit. This is certainly true for medium and large size networks.

However, for smaller networks, in which nodes are more likely to be arranged in star or line topologies,

the upper limit has higher chances to be attained, although these cases still remain relatively infrequent

(as shown in Figure 6.2(a)). This proves that line or star topologies (or a combination of both) present

6.2. Cooperative Leader Election 94

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Simulation Runs

N
u

m
b

e
r

o
f

It
e

ra
tio

n
s

10 Nodes

Upper Bound
Actual

(a) 10 nodes

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Simulation Runs

N
u

m
b

e
r

o
f

It
e

ra
tio

n
s

15 Nodes

Upper Bound

Actual

(b) 15 nodes

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Simulation Runs

N
u

m
b

e
r

o
f

It
e

ra
tio

n
s

20 Nodes

Upper Bound

Actual

(c) 20 nodes

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

Simulation Runs

N
u

m
b

e
r

o
f

It
e

ra
tio

n
s

50 Nodes

Upper Bound

Actual

(d) 50 nodes

Figure 6.2: Comparing Actual and Upper Bound itr Limit.

worst case arrangements in terms of the number of rounds. Another observation is that the as the size of

the network increases, so does the difference between the actual and the worst-case limits. The network

size estimation methods described in Chapter 5 can be used to adjust the number of iterations according

to the estimated size of the network.

6.2.1 Dealing with Node Mobility

Unlike other leader election schemes, the cooperative leader election algorithm does not require signifi-

cant longer election time when there is node mobility. If the moving node holds the information on the

best leader, it propagates this information to other nodes in the new area. Similarly, if a node does not

possess the knowledge of the unique leader and moves within proximity of nodes that do have knowledge

of the leader, it will be updated. Therefore, as the number of moving nodes and the velocity increase,

one would not expect to see a degradation of performance of the algorithm in terms of the election time.

Under cooperative leader election, node arrivals are handled slightly differently. When a node joins

a network, it would have its leader information set to its own id and value. There are two cases to

6.2. Cooperative Leader Election 95

consider:

Case 1) The network already has a leader: if the joining node has a lower value than the leader

of the network, it simply adopts that leader as its own. However, if its own value is greater than that of

the current leader, it informs its neighbours, which subsequently inform their own in a flooding process

so that the leader information is propagated to the entire network. Updating through flooding is a more

sensible approach in this case, as initiating a new leader election process would be wasteful since there

is only one candidate.

Case 2) The network has yet to establish its leader: when a node, n, joins the network during the

election process, it learns the current iteration counter from its neighbours and updates it according to its

connection information. If it is a master node then it increments the counter by 1 or if it joins as a PMP

node, it adds 2× (dn − 1) to the counter (where dn is its degree), and updates its neighbouring masters

with the new counter.

6.2.2 Performance Evaluation

The criteria used to evaluate the performance of the leader election algorithm are the time it takes to find

the leader, its scalability and its response to dynamic changes in a network topology. The algorithm is

simulated on various randomly generated networks and under different assumptions of node mobility

conditions.

The algorithm is first simulated in a static environment, where nodes do not move and no new node

joins or leaves the network. Figure 6.3 shows the election convergence time of the cooperative leader

algorithm as a function of the size of the network, and compares its performance with tree-based election

algorithms.

10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of nodes

e
le

ct
io

n
 t

im
e

 in
 s

e
co

n
d

s

Cooperative Election Algorithm

Tree−based Election Algorithm

Figure 6.3: Leader Election Convergence Time

Figure 6.3 shows that a key difference between tree-based algorithms and the proposed cooperative

6.2. Cooperative Leader Election 96

approach is that the former increases linearly with the size of the network, whereas the latter tends

towards saturation. The gap between the two becomes more apparent as network size increases. This is

explained by the fact that expending and shrinking a tree increases linearly with network size, whereas

in the case of the cooperative leader election algorithm, the convergence time is governed by degree

centralities and node roles as indicated by Equartion 6.2. The tendency for the convergence time to

plateau in cooperative election can also be verified by Figure 6.2, which shows that the increase in

network size does not follow a linear increase in the number of rounds. This is a noteworthy result,

which proves that the cooperative election algorithm scales well with network size.

The algorithm is also simulated in a mobile setting, varying the velocity of nodes and the number

of moving nodes. In order to evaluate the impact that frequent and unpredictable changes in network

topology have on the performance of the algorithm, the simulation is performed for the exact time it

takes to elect a leader when nodes move freely. Figure 6.4(a) illustrates a comparative performance result

of the cooperative leader election algorithm as a function of network size under different assumptions of

node mobility: static setting, mobile setting with a single node moving at a time, and mobile setting with

5 simultaneous node movements in the network. Nodes are assumed to move arbitrarily with various

speeds and in any given direction. The same scenarios are repeated for the tree-based election algorithm

and the results are given in Figure 6.4(b) for comparison purposes. The delays introduced by node

mobility and link establishment are not taken into account as the aim is to show the impact of mobility

on the performance of the algorithms.

10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2

0.25

Number of Nodes

E
le

ct
io

n
 T

im
e

 (
se

co
n

d
s)

Static

Mobile (1 node)

Mobile (5 nodes)

(a) Cooperative Method

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Nodes

E
le

ct
io

n
 T

im
e

 (
se

co
n

d
s)

Static

Mobile (1 node)

Mobile (5 nodes)

(b) Tree-based Method

Figure 6.4: Leader Election Convergence- Response to Mobility

As can be seen from Figure 6.4, node mobility does not deteriorate the performance of the coop-

erative leader election algorithm, in the sense that an increase in mobility does not yield longer election

time, whereas the impact of mobility on tree-based election is noticeable. In the cooperative case, when

a particular node that holds the identity and value of the true network leader moves to within an area

6.3. Summary 97

where nodes have yet to acquire knowledge of the leader, it updates those nodes. Similarly, if a node

that has not yet been updated with the leader information moves to within proximity of nodes whose

leader information corresponds to that of the actual leader, it will be updated. On the other hand, in the

tree-based case, when a node moves, the tree needs to be updated, which introduces extra delays. This

suggests that the cooperative election method is more suitable for dynamic environments than tree-based

approaches.

6.3 Summary
This chapter presented a novel leader election algorithm for master/slave personal area networks and

showed that it scales well with network size and node mobility. The algorithm exploits knowledge of the

underlying topology, which is obtained through a random tour technique, in order to estimate the number

of rounds a master needs to repeat the election procedure before a leader is elected. When compared to

tree-based algorithms, it was shown that the cooperative approach performs better in terms of response to

node mobility and convergence time. This makes the cooperative leader election approach more suitable

for ad hoc settings that exhibit spontaneous changes in topology. Furthermore, the cooperative election

algorithm can be applied to other types of ad hoc network without major modifications.

Chapter 7

Routing for Mobile Personal Area Networks

7.1 Introduction
This chapter describes a novel hybrid routing protocol for mobile personal area networks: the Centrally

Coordinated Hybrid Routing (C2HR) protocol. Unlike other proposed hybrid routing protocols, which

are either zone-based or tree-based, the proposed protocol uses table-driven routing in steady states, and

reactive routing when links fail. This means that when a route fails, C2HR searches for an alternative

path through which to route packets. When the routing re-converges, i.e., after the new lookup tables

are computed, routing resumes using the proactive component. Another feature of C2HR is that it is an

energy-efficient protocol which aims at prolonging the network lifetime. It achieves this by selecting the

most energy-efficient paths as viewed by the collective of nodes rather than just the source-destination

pair. Given that PANs are usually charaterised by small to medium size networks (less than 100 nodes),

the overhead incurred due to topology maintenance is not subtantial enough to impair the performance

of the protocol. Moreover, the reactive element of C2HR allows the transmission of data which would

not otherwise be possible in purely proactive protocols in the case of link failures.

In C2HR, a network leader (coordinator) is responsible for collecting, building and distributing

topology information, so that each node has a global view of the network, from which the routing tables

are generated. The network leader is also responsible for carrying out route maintenance functions.

Relying on a central node is a sensible choice for PANs [122] as it complies with the low complexity

requirements and scarce resources in this type of network, wherein heavy computations are delegated to

a more capable node.

7.2 Basic Operations
C2HR is a hybrid routing protocol in the sense that it uses both proactive and reactive routing com-

ponents. When a source node, s, wishes to route a packet to a remote destination, d, it uses its local

look-up table to forward the packet to the corresponding next hop. Each intermediate node that receives

the packet, forwards it through to the appropriate next hop until the destination is reached. When a link

7.2. Basic Operations 99

along the path fails, the detecting node notifies the source so that the latter initiates a route search, by

sending a Route Search packet to look for an alternative path to the destination. Once the path to

the destination is found, a Route Found message is sent in the reverse direction. After the routing re-

converges, i.e., when the lookup tables are re-computed, routing resumes using the proactive component.

To illustrate this idea, consider the scenario shown in Figure 7.1, where solid black nodes are masters,

white nodes are pure slaves and the shaded nodes are PMPs.

(a) proactive routing (b) topology change (c) route search

(d) route found (e) reactive routing (f) re-convergence - proactive routing

Figure 7.1: C2HR Basic Operations

When node I (source node) needs to send a packet to node F (destination node), it uses the lookup

table stored locally to find the next hop node that corresponds to that particular destination, which in

this case is node A. Similarly, upon receiving the packet, node A forwards it to its next hop along the

path, i.e., node C, and so forth. The full path between I and F is thus: I → A → C → K → D → F.

This is depicted in Figure 7.1(a). If node K suddenly becomes unavailable due to its departure or battery

drainage, the route from I to F fails (Figure 7.1(b)). At this point, nodes I and L (the network leader) are

notified of the failure so that I initiates a route search and L readjusts the topology matrix (Figure 7.1(c)).

As illustrated in Figure 7.1(d), once the Route Search packet reaches the target node, i.e., node F, the

latter sends a Route Found message back to the source, so that packets can follow the reactive path: I→

A → C → F, while waiting for the routing to re-converge (Figure 7.1(e)). After recalculating the new

lookup tables, routing resumes on the proactive path, which in this case is I→ L→ C→ F, as depicted

in Figure 7.1(f).

7.3. C2HR Routing 100

7.3 C2HR Routing
The proposed routing protocol is made of two components: proactive routing and reactive routing. In

the proactive part, routes are established beforehand in the form of routing table entries; whereas in

the reactive routing, routes are established on-demand when the proactive paths fail. The advantage

of C2HR is that when a node suspects a route failure, it can immediately look for an alternative route

without having to wait for the failure to propagate to the entire network and new routes to be recalculated.

This is particularly advantageous when route failures are transient or when failure detection/notification

is suppressed for long periods. In wireless networks, using fast re-route algorithms via alternate paths

[95, 96, 126] is not an option, as nodes move frequently and therefore back up paths may not always

be readily available. Moreover, in pure link state protocols, routing can only resume after the network

recovers from the failure. This shortfall is overcome in C2HR by introducing on-demand routing when

the link-state protocol fails.

7.3.1 Proactive Routing

The proactive routing component of C2HR, is similar to OLSR [70], in that each node builds a routing

table based on a topological view of the network. Each node maintains a next hop entry to each desti-

nation as well as the associated total cost of the path, generated using Dijkstra’s shortest path algorithm

[52]. Since the algorithm is designed to suit low power personal devices, links are selected in a way

that minimises energy consumption while also minimising the number of hops. In wireless communi-

cations, however, sending data through a least-hop path, implies an increase in the transmission range,

which in turn, means an increase in power consumption [53]. On the other hand, relying on longer paths

may deteriorate the quality of service. There is, therefore, a trade-off between energy conservation and

acceptable path lengths that a packet should follow. The length of a path considered to be “acceptable”

differs from one QoS class to another; this information can be extracted from the application and used

to set a threshold for the maximum number of hops that a packet is allowed to traverse from source to

destination. The idea being to use suboptimal routes in order to save energy and prolong the lifetime of

the network, while ensuring the delay introduced by multi-hop routing remains at a tolerable level.

7.3.1.1 Link Costs

The cost of the link between node i and node j (denoted as Cij) indicates the energy required to send

the data via that link. This metric depends on a number of parameters, namely transmission energy

(Etxi), residual energy (Eri) and channel bit error rate (berij). Etxi denotes the energy required by

node i to transmit a single data unit, which is a function of the distance between i and j; Eri indicates

the battery power remaining at i, and berij gives an indication of the number of times a packet needs to

be retransmitted in order to ensure it is successfully received. Sending the same packet r times requires

a transmission energy of r.Etxi , therefore berij is an important parameter when computing the energy

7.3. C2HR Routing 101

required to forward data on the link ij.

As noted in [33], the energy metric varies with time and as nodes become more involved in network

activities, their residual energy decreases. When all nodes have a high level of residual energy, it is

preferable to route via the paths which incur the least transmission energy. However, when the battery

power of some nodes falls below a critical level, it is advisable not to include them in the routing path.

This achieved by increasing the link cost associated with sending data through those nodes. A link cost

function that satisfies this paradigm is expressed as:

Cij = a.Eαtxib.E
θ
ri + φ.ber (7.1)

where α and θ are binary factors, and a, b and φ are normalising factors. If α is 0 and the channel’s bit

error rate is negligible, the deciding factor would be the residual energy. Similarly, if θ is 0, then routes

are chosen so that transmission energy is minimised.

All of the required parameters for computing the link cost are readily available to devices from

local measurements. Etx is extracted from the transmit power level set through LMP, Er is obtained by

monitoring battery level, and the bit error rates can be measured as described in Chapter 4

7.3.1.2 Topology View Generation

When nodes have no knowledge of the network topology, the leader builds a tree rooted at itself by send-

ing a topology query message, to each node in the connected component, which is relayed from parent to

child until it reaches the leaves in a tree expansion process. If a node receives a duplicate query message

from another parent, it signals that it is already connected to a parent so that it is removed from the list of

children, thus ensuring a node only has a single parent. When the message reaches a leaf node, the latter

generates a query reply packet containing, in addition to its address and residual energy, its adjacency

information table, which includes the node’s one-hop neighbours, together with their associated transmit

powers and bit error rates. Table 7.1 gives an example of the adjacency information table stored at node

4 in Figure 5.1(a).

Neighbour Count Address Etx ber

3
8 E4,8

tx ber4,8

9 E4,9
tx ber4,9

10 E4,10
tx ber4,10

Table 7.1: Adjacency Information Table

Each non leaf node receiving the topology reply message forwards it up the tree, after appending its

information, until the message returns to the leader. In order to ensure that the topology query message

reaches every node in the connected component, a node does not send the topology reply packet unless

it is either a leaf node or it receives a reply from all of its children within a pre-defined timeout. The

7.3. C2HR Routing 102

format of the topology query and topology reply packets are shown in Figure 7.2 and 7.3 respectively.

Figure 7.2: Topology Query Packet Format

The different fields making up the topology query message are described below:

• T: This field identifies the type of topology view generation message. In the case of topology

query, it is set to 0.

• Leader Address: This is the 48-bit BD ADDR of the leader.

• Sequence Number: The sequence number is a monotonically increasing variable that is incre-

mented by 1 each time the leader initiates a topology query message.

The pair<Leader Address, Sequence Number> uniquely identifies a topology query message, such

that if the leader’s identity changes, the new leader can initiate its own topology view tree if required.

Figure 7.3: Topology Response Message Format

Figure 7.3 indicates that the topology reply message carries the entire topology information of

the network, which is relayed from child to parent until it reaches the root, i.e., the leader. As the

number of nodes increases, so does the size of the reply packet, which means that for large networks,

the topology reply message needs to be transported in several baseband packets. This method incurs the

same overhead as relying on individual replies; however, nodes do not need to continuously relay the

7.3. C2HR Routing 103

information, therefore nodes can enter one of the power saving modes while waiting for the message to

reach them, thereby saving energy.

Once the leader gathers the necessary information from all the nodes, it builds an N ×N connec-

tivity matrix, where N is the number of nodes, whose (i, j) entry represents the link cost between i and

j as described by Equation 7.1, then distributes this matrix along the tree so that nodes can generate their

routing tables using Dijkstra’s shortest path algorithm.

7.3.1.3 Topology Maintenance

In an ad hoc network, energy and channel conditions vary with time, meaning that link costs also vary

with time. Nodes need, therefore, to update the leader with these variations so that all routes are up-to-

date. For this purpose, the leader generates a topology query message every Tu time slots and repeats the

tree expansion/shrinking process as described above. Furthermore, in order to maintain a proximity view,

each node exchanges hello beacons with its immediate neighbours at regular intervals. In addition to

signalling their presence, nodes use the hello messages to convey other information such as a change

in residual energy or the estimated channel error rates. These packets are transported as DM1 packets

and include the address of the originator as well as parameter updates. In Bluetooth PANs, the beacons

are exchanged when the master polls its slaves or the updates can be obtained directly from the low

power mode beaconing mechanism, both of which can be easily implemented in LMP. When a node

fails to hear the beacon from one of its adjacent nodes after a predefined timeout, it assumes that the link

is lost and informs the leader so that the connectivity matrix can be updated and the updates redistributed.

If topological changes occur while data is being routed, the detecting node informs the leader and the

source node, so that the latter can look for an alternative route by initiating a route search procedure.

7.3.2 Reactive Routing

The reactive component of C2HR is used when proactive routes fail, so that routing can resume on-

demand while the routing re-converges. As illustrated in Figure 7.1, when a node detects a link failure,

it informs the sender and the leader by sending a Link Error message, in order to enable the source

to look for an alternative route. Once the route to the destination is found, packets are sent along the new

path unless explicitly instructed otherwise. Nodes need to know whether a packet should be routed via

the primary proactive path or via the alternate on-demand one. For this purpose, packets are marked with

a single bit to indicate which route an intermediate node must forward the packet to. Bluetooth headers

do not provide room for packet marking, therefore, this marking must be included in the IP header.

7.3.2.1 Route Search

As soon as a source node is notified of a link failure after receiving a Link Errormessage, it generates

a Route Search packet including the address of the target node and broadcasts the information to its

neighbours. This packet is flooded throughout the network until it reaches the destination. When a node

7.3. C2HR Routing 104

receives a duplicate of the packet, it simply discards it. Route search is carried in a BNEP control packet

as illustrated in Figure 7.4

Figure 7.4: Route Search Packet Format

The field BNEP Type carries the value 0x01 to indicate that it is a control packet, and the value

used for the BNEP Control Type field is 0x07, as it is unallocated by the specifications [20].

• Hop Count: This counter is incremented each time a node forwards the Route Search packet.

• Destination Address: This field indicates the address of the target node.

• Source Address This is the address of the source node, i.e., the node that initiated the route search.

• Relay Address: This is the address of the current node relaying the Route Search packet. It is

used to set up the reverse path in the Route Found phase.

• Sequence Number: This is a monotonically increasing number, which together with the source

address, uniquely identifies a Route Search packet.

Each node receiving the Route Search packet, checks the destination address, and if it does not

match its own, it rebroadcasts the packet, provided it has not previously received the same packet. This is

achieved by comparing the pair<Source Address, Sequence Number> stored in the cache with

that of of the received packet. Before re-broadcasting the packet, a node stores the Relay Address of

the packet which presents the least number of hops to point to its predecessor and replaces that field with

its own address to indicate to the next node that it is, itself, a possible predecessor. In Bluetooth, however,

slave nodes do not have broadcast capabilities, therefore a master collects the Route Search packet from

the first slave that received it and rebroadcasts it within the piconet. The message propagates when a

PMP node connects to another piconet, repeating the same broadcast procedure until it reaches the target

destination.

7.3.2.2 Route Found

When the destination node receives the Route Search packet, it replies by sending a Route Found

packet following the reverse path as set by the predecessor pointers (i.e., Relay Addresses) during

7.3. C2HR Routing 105

the route search phase. Because reactive routing is only used temporarily, i.e., when the proactive com-

ponent fails, nodes do not cache previous routes, thus a Route Found packet is only sent once the

search reaches the destination. Moreover, the proactive routing table shall not be used to complete the

route to the destination, as this creates routing inconsistencies; therefore a node shall not send back a

Route Found message unless it is the target node. Another reason for not caching previous routes, is

to avoid reply storms when various nodes which have routes to the destination send back a reply message.

Route Found is also sent as a BNEP control packet and its format is given in Figure 7.5.

Figure 7.5: Route Found Packet Format

As mentioned above, Route Found messages are carried over BNEP control packets, therefore

the BNEP Type field holds the value 0x01. BNEP Control Type indicates the purpose of the

control packet and carries the value 0x08, as it is unused in the specifications. The other fields making

up the Route Found packet are as described below:

• Hop Count: This field carries the number of hops left to traverse until the packet reaches the

initiator of the route search. It is decremented each time it is forwarded on the reverse route.

• Target Address: This is the address of the initiator, i.e., the source node in the reactive routing.

• Next Hop: This the address of the node relaying the Route Found packet.

• Predecessor: This field represents the address of the predecessor along the reverse path, i.e., the

address of the next node to receive the reply packet.

• Sequence Number: The Sequence Number is increased each time the target node generates a

new Route Foundmessage. The pair<Target Address,Sequence Number> uniquely

identifies a Route Found packet.

The destination might receive a number of Route Search packets from different adjacent nodes;

in this case it selects the route that presents the least number of hops and forwards the reply packet to

its predecessor. Each intermediate node receiving the Route Found packet, stores its predecessor as

the next hop address by replacing the address stored in Predecessor with its cached predecessor’s

7.4. Support for Multicast Routing 106

address, then forwards the packet. If the reactive route fails before the proactive route is repaired, the

detecting node sends a Link Error message to the source node so that the latter initiates a new route

search procedure.

7.4 Support for Multicast Routing
In many instances, a node may need to send the same information to a number of nodes belonging to a

certain group (multicast group). One solution is to have the source node send the same packet to each

node individually using either the proactive or the reactive routing component of C2HR. Obviously, this

approach is wasteful as a node that is part of the multicast group may receive the packet numerous times

if it is part of the route. Attractive alternatives are to use trees to send the data to the target recipients or

to use a mechanism that can piggyback the data over network-wide control messages. In addition, for

a node to join a multicast group, it requires prior permission from a network authority through a group

management protocol such as the Internet Group Management Protocol (IGMP) [162].

C2HR exhibits desirable characteristics for supporting multicast routing, without the need for any

modification to the routing protocol. The network leader can act as a group management authority, as

it has a global view of the network and is universally known by every node in the network. Therefore,

when a node wishes to join a group, it sends a request to the leader, which then assigns a multicast

address if the subscription conditions are met. Moreover, as part of its routing functions, the network

leader maintains an up-to-date tree to all nodes within the network, hence, sending the same information

to a group of nodes becomes a simple task, as it merely requires forwarding along the tree. If the tree

fails due to topological changes, the multicast information can be carried along the Route Search

packets so that members of the multicast group can receive it. The latter method is less efficient, however,

as reactive routing is a transient state, it is not of major concern. Although the use of shared trees for

multicast communications over wireless networks has been criticised [49], in the case of PANs, relying

on trees can be advantageous owing to the simplicity they offer [173], thus maintaining energy-efficiency.

7.5 Evaluation
C2HR is simulated on Bluetooth scatternets, generated using the network formation algorithm described

in Chapter 5, for various performance metrics and under a number of assumptions of node mobility and

network sizes. Nodes are uniformly scattered around an indoor space of dimensions L×W ×H , where

L = W and varies between 25 meters and 45 meters; H is taken to be 2.4 meters (standard ceiling

height).

7.5.1 Assumptions

Before embarking on a detailed evaluation of C2HR, certain assumptions should be taken into consider-

ation:

7.5. Evaluation 107

• Each node is identified by a unique identifier: BD ADDR or a local IP address.

• Devices are assumed to know the identities of their neighbouring nodes, which are obtained during

link set-up.

• Nodes can move arbitrarily in any direction and with varying speeds.

• Nodes may join or leave the network at any given time, hence causing network partitioning and

mergers.

• Delays and overheads introduced by link establishment are not taken into account.

• A node may change its role to satisfy the network formation constraints, either because it moved

or because it acquired new links.

7.5.2 Topology Discovery

When a network is initially powered on and a new leader is elected, it builds a tree routed at itself and

sends out topology query messages to which the nodes respond by sending back their topology informa-

tion. Naturally, this process incurs overhead and delay; however, this phase is only required when nodes

do not have any knowledge of the network, as any subsequent changes (either topological or the election

of a new leader), only result in updates to the connectivity matrix available to the nodes. It is therefore

safe to assume that topology discovery would not impair the performance of the routing protocol. Figure

7.6 shows the average simulation results, over 100 runs, for the time and data overhead incurred during

the topology discovery phase. In the simulation, nodes are immobile and the intra-piconet scheduling

employed is exhaustive round robin, wherein a master polls the next slave, in sequence, only after the

current one has sent all of its topology information. Furthermore, the baseband packet types used to

transport the information are DHi, where i is chosen such that sending x amount of data requires the

minimum number of time slots.

In Figure 7.6, data overhead refers the extra data sent during the topology discovery phase, including

dissemination of the connectivity matrix, and excluding any other user information. The delay is the time

interval from when the leader initiates the discovery process until every node receives the topology view

from the leader, i.e., expanding and shrinking the tree, and distributing the connectivity matrix. By

looking at Figures 7.6(a) and 7.6(b), it is apparent that delay and data overhead follow an exponential

relationship with network size, which is expected, as the size of teh connectivity matrix is the square of

the number of nodes. In addition, there is a strong correlation between the data overhead and completion

time. This is due to the fact that Bluetooth relies on time-division transmission schemes; therefore the

delay increases as the amount of data increases.

7.5. Evaluation 108

10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Network Size

T
o

p
o

lo
g

y
D

is
co

ve
ry

 T
im

e
 (

se
co

n
d

s)

(a) Completion Time

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Network Size

O
ve

rh
e

a
d

 (
K

b
)

(b) Data Overhead

Figure 7.6: Topology Discovery Overheads

7.5.3 Route Recovery

In mobile environments, it is common for multiple topological changes to occur concurrently as nodes

move, thus several links are lost and others are established. Therefore, the protocol requires a mechanism

to propagate simultaneous changes throughout the network. When a node detects a topological change,

either the removal or addition of a link, it reports it to the leader, so that the latter can redistribute the

updates. In order to cater for multiple changes, nodes that receive various notification messages, combine

the information and forward it on. After the leader receives the notifications and updates all the nodes

with the changes observed, each node can re-compute its routing table according to the new connectivity

matrix. The time it takes to propagate topological changes to the entire network and to re-compute the

routing tables is given in Figure 7.7, which plots the proactive route recovery delay as a function of the

number of changes.

In this instance, only link failures are considered; however, the creation of new links has exactly

the same effect. The simulation is performed on randomly generated networks comprised of 50 nodes,

using the attachment mechanism described in chapter 5. The delay is measured from the instant a node

detects a topology change until the time the last node re-computes its routing table, i.e., until the routing

re-converges. It is assumed that multiple nodes detect the changes simultaneously, and immediately start

the notification process. If a node receives notification of multiple failures, it combines the information

and forwards it on. When the leader receives notification of a link failure, it sets the cost of that link to

infinity and sends out an update in the form of connectivity matrix coordinates. If the change consists of

the addition of links, the leader sends out the coordinates with the associated newly computed link costs.

It can be seen from Figure 7.7 that the time it takes for the routing to re-converge increases linearly with

the number of simultaneous failures. This linear relationship is the result of the overhead associated with

updating the connectivity matrix, as an increase in data overhead translates into longer delays.

7.5. Evaluation 109

0 5 10 15 20

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Failed Links

R
ou

tin
g

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

Figure 7.7: Proactive Route Recovery Delay

In the simulation, propagation and buffering delays are not taken into account, therefore the time it

takes for the routing to re-converge after the detection of a topological change would be greater than the

that given in Figure 7.7. In addition, it is assumed that failures are instantaneously and simultaneously

detected, which in reality is not the case. A way of reducing route convergence time is to broadcast route

updates frequently; however, this method is wasteful in terms of bandwidth and energy [158], hence the

need for an on-demand mechanism, which provides a level of resilience while the routing re-converges.

Figure 7.8 illustrates the route repair time of the on-demand component of C2HR, wherein the time

represents the delay from the instant the source node receives a failure notification until the moment the

source node receives the Route Found packet. In this scenario, several links may fail simultaneously

as a result of node mobility, and the plot only concerns a single source-destination pair.

It can be seen from Figure 7.8 that the delay for a source node to find an alternative route reactively

is well below the time it takes for the routing to re-converge after links fail, even for a small number of

simultaneous failures. This shows the benefit of C2HR over traditional pure link state routing protocols,

wherein, packets sent during routing re-convergence are lost, whereas in C2HR this gap is tolerable.

C2HR’s reactive component may not be optimal in terms of energy efficiency; however, because it is

only temporary, the performance of the protocol is not impaired. On the contrary, it offers alternative

routing paths for a period, during which, routing is not possible otherwise.

7.5.4 Excess Cost

The reactive routing component of C2HR does not guarantee the most energy-efficient path, as the aim

is to quickly find an alternative path, while the primary proactive paths are re-computed. It is important,

however, to analyse the deviation from the optimal (least cost) paths, which the proactive component

7.5. Evaluation 110

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Simulation Runs

R
ou

te
 D

is
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Figure 7.8: On-deman Route Repair Delay

guarantees. This measure is referred to as the Excess Cost and is measured as the ratio of the total cost

of the reactive path to the total cost of the proactive path after re-convergence. If, for a given source-

destination pair, the cost of routing through the on-demand path is Crs, and the total proactive path cost

after re-convergence is Crt then the excess cost, Cex, is given as:

Cex =
Crs
Crt

(7.2)

It should be noted that Crs ≥ Crt, therefore Cex ≥ 1. Figure 7.9 shows the excess costs for various

assumptions of node mobility and network sizes.

Figure 7.9 represents the cumulative occurrence of excess costs for various network sizes and under

different assumptions of node mobility. It can be seen that as the size of the network increases, the

number of suboptimal alternative routes also increases. This is an expected result; the larger the network,

the greater the number of links, which in turn results in an increase in the probability of selecting a

suboptimal reactive path. Similarly, the increase in the number of simultaneous mobile nodes translates

into an increase in the number of link removals/additions, which in turn results in fewer optimal alternate

paths, as observed in Figure 7.9. A notable observation is that for small network sizes and low mobility,

the portion of optimal alternate paths is high (over 80%), which suggests that for PANs the on-demand

component of C2HR does not significantly affect the energy conservation characteristic of the routing

protocol.

7.5. Evaluation 111

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Excess Cost

C
D

F

Network Size = 10

Network Size = 20

Network Size = 30

Network Size = 40

Network Size = 50

(a) Number of Mobile Nodes = 1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Excess Cost

C
D

F

Network Size = 10

Network Size = 20

Network Size = 30

Network Size = 40

Network Size = 50

(b) Number of Mobile Nodes = 2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Excess Cost

C
D

F

Network Size = 10

Network Size = 20

Network Size = 30

Network Size = 40

Network Size = 50

(c) Number of Mobile Nodes = 3

Figure 7.9: Excess Costs

7.5.5 Throughput

The basic aim of every routing protocol for mobile ad hoc networks is to successfully deliver data from

a particular source to a particular destination while dealing with topological changes. However, the

longer the paths, the less the throughput as the data need to traverse a number of hops, which introduces

transmission and buffering delays, thus resulting in lower throughput. Moreover, when a path from

the source to the destination is not available, no data can be transmitted until the route is repaired,

which, in turn introduces extra delays. It is, therefore, crucial to assess C2HR’s behaviour in terms of

throughput as it indicates its ability to successfully deliver data and recover from failures, i.e., it indicates

its employability as a routing protocol.

Figure 7.10 shows the throughput response of C2HR exhibited by different baseband packet types

for a single source-destination pair, selected at random amongst a network of 40 nodes.

In addition to the assumptions set out in section 7.5.1, the simulation herein assumes that the fol-

lowing also holds true:

7.5. Evaluation 112

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

350

Topology Change Frequency

T
hr

ou
gh

pu
t (

K
bp

s)

C2HR

DM1
DH1
DM3
DH3
DM5
DH5

Figure 7.10: C2HR Throughput Response

• Links are uncongested and error-free.

• Only a single node moves at a time, resulting in multiple simultaneous link failures.

• Masters poll their slaves according to the Exhaustive Round Robin scheduling scheme.

When the network is static, the throughput is only affected by the path length, wherein each hop

introduces master-slave or slave-master transmission delay, with DH5 packets presenting the highest

throughput. However, as the frequency of topological changes increases, the throughput decreases. This

is the result of the delay introduced by the failure detection/notification and the route search/reply phases.

Here, the frequency of topological changes is the inverse of the mobility pause time, which indicates

the frequency at which an arbitrary node changes location in the network. As can be seen from the

figure above, the throughput may be higher at higher mobility frequencies. This is due to the fact that

mobility may bring the destination closer to the source (in terms of number of hops), thus resulting in less

transmission delay. A general trend, nonetheless, is that the higher the mobility the lower the throughput,

however, as demonstrated earlier, the time it takes for the proactive routing to re-converge after a failure

is higher than the delay introduced by the reactive component of C2HR. Therefore, it is expected that

the throughput resulting from employing C2HR will be higher than a purely proactive routing protocol.

This is demonstrated in Figure 7.11, which compares the throughput resulting from employing the two

routing methods for an arbitrary source-destination pair when DM3 packets are used.

Figure 7.11 indicates that the difference in throughput between C2HR and the purely proactive

routing protocol increases as the number of nodes in the network rises. This difference is the result of

the increased computational complexity when re-computing the routing tables, i.e., applying Dijkstra’s

algorithm, which is known to have a complexity ofO(|E|log|V |) [14], where |E| is the number of edges

and |V | is the number of vertices in the network. Generally, however, C2HR presents better throughput

7.5. Evaluation 113

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
100

120

140

160

180

200

220

240

260

Topology Change Frequency

T
h
ro

u
g
h
p
u
t
(K

b
p
s)

10 Nodes

C2HR
Purely Proactive Routing

(a) Network Size = 20 Nodes

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
20

40

60

80

100

120

140

160

180

200

Topology Change Frequency

T
h
ro

u
g
h
p
u
t
(K

b
p
s)

30 Nodes

C2HR
Purely Proactive Routing

(b) Network Size = 40 Nodes

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
20

40

60

80

100

120

140

160

180

200

Topology Change Frequency

T
h
ro

u
g
h
p
u
t
(K

b
p
s)

50 Nodes

C2HR
Purely Proactive Routing

(c) Network Size = 50 Nodes

Figure 7.11: Throughput: Comparison between C2HR and Purely Proactive Routing

response; this is because C2HR allows data to be transferred when the proactive routing tables are not

available.

7.5.6 Routing Overhead

Routing overhead is the “extra” information introduced by the routing mechanism, including signalling

and retransmission of lost data due to route failures. Proactive routing has been criticised for incurring

large overheads caused by regular topology updates. However, for small to medium size networks, which

is the case for PANs, the routing overhead does not impair the performance of the protocol. Figure 7.12

shows the overhead incurred by C2HR as a function of topology change frequency. The overhead is

taken to be the ratio of the extra data to the total data sent.

As can be seen from Figure 7.12, the overhead increases linearly with failure frequency. Moreover,

as the size of the network increases so does the overhead. This is because an increase in network size

results in longer paths, consequently incurring larger transmission overhead. Furthermore, the overhead

is augmented by a greater number of hello messages associated with an increase in the number of nodes.

The simulations are performed for very frequent failures in order to illustrate the relationship between the

overhead and failure frequency. In reality, however, failures occur at much lower rates, which means that

the overhead would be much lower than that given in Figure 7.12. The overhead presented by C2HR is

7.5. Evaluation 114

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Number of Failures per Second

O
v
e
rh

e
a
d
 (

%
)

Simultaneous Failures: 1 Link

Simultaneous Failures: 2 Links

Simultaneous Failures: 3 Links

(a) Network Size = 10 Nodes

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

Number of Failures per Second

O
v
e
rh

e
a
d
 (

%
)

Simultaneous Failures: 1 Link

Simultaneous Failures: 2 Links

Simultaneous Failures: 3 Links

(b) Network Size = 20 Nodes

0 1 2 3 4 5
0

50

100

150

200

250

300

350

Number of Failures per Second

O
v
e
rh

e
a
d
 (

%
)

Simultaneous Failures: 1 Link

Simultaneous Failures: 2 Links

Simultaneous Failures: 3 Links

(c) Network Size = 40 Nodes

0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

Number of Failures per Second

O
v
e
rh

e
a
d
 (

%
)

Simultaneous Failures: 1 Link

Simultaneous Failures: 2 Links

Simultaneous Failures: 3 Links

(d) Network Size = 50 Nodes

Figure 7.12: C2HR Overhead Response

higher than that of a purely reactive or purely proactive protocol, as it combines both; however, because

PANs are characterised by a small to medium number of nodes, this difference is not significant as far

as the overall performance is concerned, given that the proposed routing protocol has the advantage of

improving throughput and network longevity.

7.5.7 Energy Efficiency

The aim of C2HR is to preserve the residual energy of devices, and thus to prolong the path lifetime.

The lifetime is taken to be the duration from initial path set-up until the route from the source node to

the destination is no longer available. At bootstrap, each node i is assigned a value of residual energy,

Eri , which is decreased as the node is involved in data forwarding activities. It is assumed that a node

can be in one of three states: ACTIVE, INACTIVE and IDLE. In the ACTIVE state a node has either

its transmitter or receiver switched on. A node in the INACTIVE state is switched off, and in the IDLE

state, a node only switches on its transceiver for periodic exchanges of control information. The energy

7.5. Evaluation 115

required to send a packet from node i to node j is denoted as Eitx and is defined as:

Eitx = sp × (η.Eb.d
α
ij + Ea) (7.3)

Where sp is the size of the packet, η is a scaling factor, Eb is the energy required to send 1 bit (due to

circuitry), which assumed to be constant and unique for every node, d is the transmission distance, α is

the loss factor (α = 2 in free-space loss model) andEa is the internal energy consumed by a node during

the ACTIVE state.

The energy required for node j to receive a packet, p, from node i is denoted as Ejrx and is defined

as:

Ejrx = sp × (Elna + Ea) (7.4)

Where Elna is the energy required by the low noise amplifier at the receiver to process 1 bit, which is

assumed to be constant and the same for all nodes. The energy required to send a packet from source to

destination via path ℘ is thus given by:

Ep℘ =
∑
i∈℘

(Eitx + Eirx) (7.5)

Similarly, the residual energy E℘res, of a path, ℘ is defined as the sum of the residual energies of all

the nodes along ℘. If the initial residual energy at node i is Eri , then the path’s residual energy is given

as:

E℘res =

∑
i∈℘

Eri

−N × Ep℘ (7.6)

Where N is the number of packets.

Assuming that a source node sends a stream of information at a constant bit rate (DM1 packets)

and that nodes are static, the residual path energy (expressed as a percentage) for an arbitrary source-

destination pair is given in Figure 7.13.

The results given in Figure 7.13 compare the residual energy response of C2HR with that of least

hop routing for an arbitrary path. In the latter, routes are chosen such that the number of hops between

source and destination is minimal, whereas the former selects paths such that the residual path energy is

maximised. As can be seen, the difference in energy increases as the size of the network increases. This

is due to the fact that larger networks present longer paths, thus increasing energy consumption. In all

cases, nonetheless, the path lifetime is larger for C2HR than it is for least hops routing, which suggest

its suitability for power-constrained personal devices.

7.6. Summary 116

0 200 400 600 800 1000 1200 1400

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
e

s
id

u
a

l
P

a
th

 E
n

e
rg

y

Least−hop Routing
C2HR

(a) Network Size = 20 Nodes

0 200 400 600 800 1000 1200 1400 1600
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
e

s
id

u
a

l
P

a
th

 E
n

e
rg

y

Least−hop Routing
C2HR

(b) Network Size = 30 Nodes

0 200 400 600 800 1000 1200 1400 1600 1800

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
e

s
id

u
a

l
P

a
th

 E
n

e
rg

y

Least−hop Routing
C2HR

(c) Network Size = 50 Nodes

0 200 400 600 800 1000 1200
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
e

s
id

u
a

l
P

a
th

 E
n

e
rg

y

Least−hop Routing
C2HR

(d) Network Size = 80 Nodes

Figure 7.13: Energy Efficiency of C2HR

7.6 Summary
This chapter presented a novel hybrid routing protocol for personal area networks that aims at maximiz-

ing the network lifetime, by preserving the residual energy at each node along the routing path. The

proposed Centrally Coordinated Hybrid Routing (C2HR) protocol uses proactive routing when the net-

work is stable i.e., in the absence of failures, and when a route fails it searches for an alternative route

reactively. It was shown by simulation that C2HR is suitable for low power personal devices, as it helps

nodes to preserve their energy, while resulting in higher throughput and incurring acceptable overhead.

Chapter 8

Conclusions and Future Work

This chapter concludes the thesis by highlighting the contributions and findings of the work presented

herein, as well as suggesting future work to be carried out in order to improve on the proposed solutions.

8.1 Conclusions

The aim of the present work is to improve forwarding mechanisms for PANs, taking into account the

low complexity and low power requirements of personal devices. This thesis considers Bluetooth as

the enabling technology for personal area networking, as it is readily available in most personal devices

such as mobile phones, laptop computers and portable multimedia systems. However, the proposed

solutions can be adapted to other technologies that are capable of internetworking devices in an ad hoc

fashion without major modifications. The thesis focuses on two main areas, namely error control and

routing, which are highly influential in the performance of PANs. An efficient error control scheme

which alleviates the burden of heavy data coding is particularly important in personal area networking,

as relying solely on forward error correction translates into increased complexity and reduced efficiency.

The proposed Packet Error Correction (PEC) scheme satisfies the low complexity requirements of PANs

while achieving good response in terms of error reduction and overhead; thereby improving point-to-

point transmission. Furthermore, the proposed C2HR routing protocol aims at preserving the overall

energy of the network by forwarding data along the most energy-efficient paths whilst improving on

throughput by allowing reactive routing in the event of failures.

It was demonstrated via simulation that the proposed techniques and algorithms do indeed improve

forwarding mechanisms for PANs. The evaluation of PEC shows a better response than the scheme

recommended by the specifications and incurs far less overhead. Improving the per-hop transmission

enhances the multi-hop forwarding operations of the overall network. Furthermore, C2HR provides

a network-level improvement to the forwarding operations in PANs. The simulations show a better

response in terms of throughput and energy efficiency than found in other routing protocols, while in-

curring satisfactorily low data overhead. It is therefore safe to say that the proposed solutions help to

8.2. Contributions 118

improve forwarding mechanisms in personal area networks, taking their particular constraints into ac-

count. In addition, the simplicity of the proposed solutions, makes them suitable for personal devices,

which are characterised by low complexity hardware, low memory and power-constraints.

8.2 Contributions
The work presented in this thesis includes a number of contributions to the field of ad hoc networking in

general, and personal area networking in particular. These are categorised below.

8.2.1 Enhancing Transmission Reliability

The adaptive retransmission scheme proposed herein allows nodes to increase transmission reliability,

without having to increase their transmission power or employ sophisticated coding schemes. By sim-

ply retransmitting a subset of the packets, PEC is able to reduce error rates considerably, thus saving

overhead, buffer space and power. The proposed PEC scheme can be applied to any ad hoc network

that is able to estimate channel error rates. There are many channel estimation techniques found in the

literature; however, when nodes share common access codes or channel sequences, two communicating

devices can estimate the error rate by simply monitoring this access code as demonstrated herein. This

method allows an accurate estimate of the error rates that the channel exhibits in real time and on-line,

without the need for training sequences or employing sophisticated predictors. Having an estimate of the

channel’s error conditions can also be useful in other applications such as adjusting transmission rates or

selecting appropriate packet lengths.

8.2.2 Scatternet Formation

The proposed attachment method allows nodes to connect to a random number of neighbours, such that

no node connects to more than seven neighbours. Moreover, the network can only admit slave/slave

PMPs, as this simplifies the inter-piconet scheduling. The advantage of the proposed network forma-

tion algorithm is that it achieves quasi-optimal configuration, without having to rely on sophisticated

computations. In addition, random attachment models have proved to be particularly suitable for small

networks [152], thus their applicability to scatternet formation.

8.2.3 Network Size Estimation

It is shown in this thesis that it is possible to accurately estimate the size of mobile ad hoc networks

through random tour or gossip-based aggregation techniques. In the former, a token is passed from node

to node, collecting network information until it reaches the originator. Once the token is received by

the initiator, it computes an estimate of the size and other characteristics of the underlying topology. In

gossip-based aggregation, on the other hand, the size is estimated from an aggregate average, which is

refined each time nodes communicate. In ad hoc networks, having an approximate size of the network

can be highly beneficial, as it is not always feasible to maintain an accurate view of the topology, due to

8.3. Future Work 119

the dynamic nature of such networks. Instead, some applications rely on an estimate of the number of

nodes to devise appropriate mechanisms. In the peer-to-peer world, it is important for nodes to know an

approximate size of the overlay in order to set query time outs or to approximate the available download

bandwidth; this is also true for mobile peer-to-peer networks, wherein nodes may use their knowledge of

the size of the network or an approximate count of nodes with desirable characteristics in order to take

the appropriate course of action.

8.2.4 Leader Election

A simple but efficient cooperative leader election algorithm is proposed. The algorithm collects and

distributes information locally until a unique leader in the network is elected. The advantage of the

cooperative leader election algorithm, as opposed to tree-based schemes, is that the former incurs lower

overhead and scales well with network size. In this work, leader election is essential for the routing

protocol; however, there are many other instances in which leader election can be of use. A network

leader could, for example, be used as a data sink, be a coordinator that assigns tasks to other nodes in the

network, or carry out security management functions. The ability to elect a leader quickly, even when

the topology changes frequently is therefore a particularly desirable feature.

8.2.5 Ad Hoc Routing

The proposed C2HR routing scheme belongs to the family of hybrid routing protocols, in the sense that

it combines proactive and reactive routing. C2HR aims at preserving the overall network lifetime by

routing through the most energy efficient routes. The novelty of C2HR is that routes can be repaired

quickly by searching for an alternative path in the event that the primary proactive route fails. To the

best of the author’s knowledge, this is the first hybrid protocol that combines proactive and reactive

components in this fashion. Although C2HR was designed for personal area networks, it can be used

in any scenario in which network survivability and resilience is of concern. Examples of which include

battlefield ad hoc networks and sensor networks.

8.3 Future Work
This thesis has contributed to the enhancement of forwarding mechanisms for personal area networks;

however, there are certain areas in which further work could be conducted. The following sections

highlight the areas that could be investigated.

8.3.1 Improving Transmission Through Network Coding

This thesis demonstrates that transmission can be improved via more efficient error control mechanisms;

however, in wireless networks data throughput can be further enhanced by using network coding tech-

niques introduced by the authors of [92]. The advantage of network coding can be illustrated with an

example: consider two slaves that are exchanging data within a piconet via the master node. Tradi-

8.3. Future Work 120

tionally, slave 1 sends its data to the master in an odd-numbered time slot if contacted in the previous

even-numbered slot; the master then relays the information to slave 2. Similarly, slave 2 sends its packet

to the master, which then forwards it to slave 1. Relying on this scheme means that the transmission

takes 4 time slots. Alternatively, if network coding is used, slave 1 and slave 2 send their respective

packets to the master, which then broadcasts a linear combination of the data, from which each slave can

obtain the required data, thus resulting in 3 transmission slots.

In Bluetooth, however, broadcasts are not acknowledged, which means that in the event of high error

rates, the master would send the same information several times in order to ensure successful delivery.

In this case, using network coding would deteriorate throughput rather than improve it. In addition, if the

data is arranged into single-slot packets, which correspond to the length of poll packets, then network

coding does not improve the transmission rate, as data can be transmitted in the poll slot. On the other

hand, using multi-slot packets may cause a significant drop in throughput due to retransmissions of lost

or corrupted packets. It is, therefore, important to investigate the impact of using network coding on the

transmission performance of PANs and to establish the situations in which network coding is beneficial.

8.3.2 Promoting Cooperation Amongst Nodes

It was assumed throughout the thesis that nodes cooperate in forwarding each other’s traffic; nonethe-

less, this cannot always be guaranteed, even in personal area networks, because of the scarce resources

available to nodes. An area of improvement is to design incentive mechanisms to promote cooperation

amongst the nodes, taking into account the specific constraints of such networks.

There have been many proposals in this direction, which can be classified as either reputation-

based or credit-based [71]. In the former, nodes are assigned reputation scores based on observed past

behaviour and are served accordingly. Examples of reputation-based incentive mechanisms include Co-

operation Of Nodes: Fairness In Dynamic Ad hoc NeTworks (CONFIDANT) [26], COllaborative REpu-

tation (CORE) [110] and Distributed and Adaptive Reputation mechanism for WIreless ad hoc Networks

(DARWIN) [72]. Credit-based mechanisms, on the other hand, reward cooperative nodes with micro-

payments, which can then be used to pay for their own data transfers. Buttyán et. al. introduced the

concept of Nuglets [27, 28], which are virtual currency units used to reward nodes for being cooperative.

Other proposed credit-based incentive schemes include: The Simple cheat-Proof cRedIT-based systEm

(Sprite) [179], routing based on Vickery-Clarke-Groves (VCG) auctioning [10] and the Hierarchical

Routing in Resource Rationed (HR3) protocol proposed in [165]

Reputation-based schemes have been criticised for having to rely on broadcasts and eavesdropping

which cannot always be achieved, especially if radio signal transmissions are directional. This issue

is further accentuated in Bluetooth-based PANs, wherein slaves cannot hear each others transmissions

because of the time-division polling approach. On the other hand, in credit-based schemes nodes need to

8.3. Future Work 121

present some type of proof in the form of a receipt showing that they have accomplished the required task.

However, in order to prevent false claims, credit-based mechanisms rely on cryptographic techniques and

may require tamper-proof hardware, which maybe impractical in personal area networks.

Incentive mechanisms for personal area networks must account for the specific constraints of such

networks, while providing a stimulus for nodes to cooperate. A possible solution is to use reputation

credits, which nodes may use to bid for transmission opportunities (time-slots).

Each master in the scatternet is assumed to be a trusted entity and keeps credit accounts of the slaves

that have registered with it. Let Cmi denote the credit of slave i held at master m. A slave gains credit by

cooperating in forwarding packets, such that for each forwarded packet the account is incremented by

γ × lp where lp is the length of the packet in time-slots. This account is decremented each time a master

learns of a node’s uncooperative behaviour, by the amount β × lp such that γ < β. Similarly, when a

node is given the opportunity to transmit, its credit is also decremented. Slave i is said to have a better

reputation than slave j as perceived by master m if Cmi > Cmj .

For a slave node to obtain reputation credit from its home master the latter would need to have an

acknowledgement that it has forwarded the packet. These acknowledgement messages are sent via op-

portunistic delay-tolerant routing. The home master appends its address to the packet so that a recipient

master knows where to send the acknowledgement. If the confirmation does not reach the home master

within a predefined timeout, it is assumed that the slave did not forward the message and therefore its

reputation account will be decremented as mentioned above. Opportunistic routing relies on the proba-

bility of a node meeting another node that will bring the acknowledgement closer to the home master.

In this setting, a recipient node chooses a node from a set of candidates with the highest probability of

meeting the next node along the reverse path. This means that the reverse path is not necessarily the

same as the forward path but rather follows a probabilistic route.

When a slave node moves from one piconet to another, it will be entrusted with its reputation

account that it then forwards to the new master. In order to provide security, the account information

is encrypted by the current master, which is subsequently read by the foreign master. If slaves fail to

provide this information during the registration process, their account will be reset and they can only

receive best-effort service until they build a sufficient reputation. In Bluetooth, registration of a new

slave in a piconet is done via the inquiry and paging process; then upon completion, the master and slave

exchange a packet to test the connection. This slot can, therefore, be used for the slave to provide its

account information to the master or send a NULL packet if it is a newly arrived node in the network.

Before a node is entrusted with its reputation account, the master needs to detect that a slave is moving.

This can easily be achieved by reading the RSSI index and estimating the point at which the slave moves

away from its current piconet.

The first step in the realisation of the scheme is to formulate the behaviour of nodes through a game

8.3. Future Work 122

theoretic analysis of the system and to establish whether the proposed scheme leads to equilibrium, i.e.,

if nodes would be better off cooperating. The probabilistic delay-tolerant acknowledgement scheme then

needs to be developed and analysed. Finally, the entire system must be evaluated through simulation or

via a implementation.

In conclusion, this piece of work aimed to improve error control, and thus hop-by-hop transmission,

and to design a new routing protocol which conserves energy therefore improving the network’s lifetime.

The combination of these proposed solutions goes some way to enhancing forwarding mechanisms for

personal area networks and thus satisfies the objectives set out herein. The Packet Error Correction

(PEC) technique and the Centrally Coordinated Hybrid Routing (C2HR) protocol answer the challenges

identified at the outset of the project and make a significant contribution to research in the field of

personal area networking.

Appendix A

Acronyms and Abbreviations

ACL Asynchronous Connection-Less

ACLS Adaptive Cyclic-limited Scheduling

AFP Adaptive Flow-based Polling

AM ADDR Active Member Address

AMP Alternate Mac/Phy

AODV Ad-hoc On-demand Distance Vector

APE Absolute Percentage Error

ARQ Automatic Repeat reQuest

BAN Body Area Network

BB PDU Baseband Protocol Data Unit

BD ADDR Bluetooth Device Address

BER Bit Error Rate

BNEP Bluetooth Network Encapsulation Protocol

BLN Bluetooth Location Network

BTCP Bluetooth Topology Construction Protocol

C2HR Centrally Coordinated Hybrid Routing

CAC Channel Access Code

CB Current Buffer

124

CID Channel Identifier

CL Connection Less

CLKN Native Clock

CO Connection Oriented

CONFIDANT Cooperation Of Nodes: Fairness In Dynamic Ad hoc NeTworks

CORE Collaborative Reputation

CRC Cyclic Redundancy Check

CT Connection Table

DAC Device Access Code

DAG Direct Acyclic Graph

DARWIN Distributed and Adaptive Reputation mechanism for WIreless ad hoc Networks

DCID Destination Channel Identifier

DDR Distributed Dynamic Routing

DH Data High-speed

DIAC Dedicated Inquiry Access Code

DLCI Data Link Connection Identifier

DM Data Medium-speed

DPSK Differential Phase Shift Keying

DQPSK Differential Quadrature Phase Shift Keying

DRR Deficit Round Robin

DSA Dynamic Slot Assignment

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

DST Distributed Spanning Tree

DV Data/Voice

125

EDR Enhanced Data Rates

EDSA Enhanced Dynamic Slot Assignment

EFSA Efficient and Fair Scheduling Algorithm

EPM Exhaustive Pseudo-cyclic Master Queue Length

ERR Exhaustive Round Robin

eSCO enhanced Synchronous Connection-Oriented

FEC Forward Error Correction

FHS Frequency Hopping Sequence

FHSS Frequency Hopping Spread Spectrum

FLC Fuzzy Logic Control

FSR Fisheye State Routing

FTP File Transfer Protocol

GAP Generic Access Profile

GFSK Gaussian Frequency Shift Keying

GIAC General Inquiry Access Code

GN Group ad hoc Network

GPS Global Positioning System

GSR Global State Routing

HCI Host Control Interface

HEC Header Error Check

HFP Hands Free Profile

HR3 Hierarchical Routing in Resource Rationed

HTF Hybrid Tree Flooding

HV High quality Voice

IAC Inquiry Access Code

126

IARP IntrA-zone Routing Protocol

IERP IntEr-zone Routing Protocol

IP Internet Protocol

ISM Instrumental Scientific & Medical

Kb Kilo Bits

Kbps Kilo Bits per Second

L2CAP Link Layer Control and Adaptation Protocol

LAA Load Adaptive Algorithm

LAP Lower Address Part

LARP Location Aware Routing Protocol

LIAC Limited Inquiry Access Code

LM Link Manager

LMP Link Manager Protocol

LORP Relay Reduction and Route Construction Protocol

LOS Line Of Sight

LQ Link Quality

LWRR Limited and Weighted Round Robin

Mb Mega Bits

Mbps Mega Bits per Second

MDRP Maximum Distance Rendezvous Point

MFR Most Forward with fixed Radius

MP Max Priority

MQS Maximum Queue Size

MRP Multi Point Relay

ms Millisecond

127

MTS Max Time Share

MTU Maximum Transmission Unit

NACK Negative ACKnowledgement

NAP Network Access Point

NAP Non-significant Address Part

OLSR Optimised Link State Routing

OUI Organisationally Unique Identifier

OSI Open System Interconnect

PAN Personal Area Network

PANU PAN User

PDA Personal Digital Assistant

PDU Protocol Data Unit

PE Percentage Error

PEC Packet Error Correction

PER Packet Error Rate

PLsWRR Pseudo-Random Cyclic Limited and Slot-Weighted Round Robin

PM ADDR Parked Member Address

PMP Participant in Multiple Piconets

PRR Pure Round Robin

PSK Phase Shift Keying

QoS Quality of Service

QIPS Qos-aware Inter-Piconet Scheduling

RERR Route Error

RFCOMM Radio Freuency Communications

ROMA Route Maintenance Algorithm

128

RP Rendezvous Point

RREP Route Reply

RREQ Route Request

RSSI Received Signal Strength Indicator

RT Retransmission Timeout

RTT Round Trip Time

RVM Route Vector Method

RW Rendezvous Window

SCID Source Channel Identifier

SCO Synchronous Connection-Oriented

SDP Service Discovery Protocol

SIG Special Interest Group

SLURP Scalable Location Update-based Routing Protocol

SNR Signal to Noise Ratio

SPRITE Simple cheat-Proof CredIT-based systEm

STAR Source Tree Adaptive Routing

STFT Short-Term Fourier Transform

TCP Transport Control Protocol

TC Time Commitment

TBRPF TopologyvBroadcast Reverse Path Forwarding

TORA Temporally Ordered Routing Algorithm

TDD Time Division Duplex

UAP Upper Address Part

UTF Unicode Transformation Format

UUID Universally Unique Identifier

129

UWB Ultra Wide Band

VoIP Voice over Internet Protocol

VDP Video Distribution Profile

VCG Vickery-Clarke-Groves

ZID Zone ID

ZHLS Zone-base Hierarchical Link State

ZRP Zone Routing Protocol

Appendix B

Implementation in Matlab

The proposed solutions are evaluated by means of simulation, which emulate the behaviour of personal

area networks. This section provides details of the simulator and the way in which its various components

interact.

A node is represented by a structure called blue node, in which its corresponding attributes are

stored. Each node is indexed by its ID, which is a natural number from 1 to N, where N is the number of

nodes in the network. For an arbitrary node, i, blue node(i) holds the following attributes:

blue node(i).id: The ID of node i

blue node(i).location: The cartesian coordinates of node i.

blue node(i).role: The role of node i in the network. This can be either master, slave or PMP.

blue node(i).pico id: The ID of the piconet(s) that node i belongs to.

blue node(i).mode: This shows whether node i is in the connected or inquiry mode.

blue node(i).neighbours: Lists the IDs of nodes within transmission range of i.

blue node(i).current neighbours: Neighbours that i is scheduled to be connected to.

blue node(i).next hop: Lists the neighbours that node i had established a wireless link with.

blue node(i).current time: The actual current time. Not to be confused with simulation time.

blue node(i).value: The value used for leader election purposes.

blue node(i).residual energy: The energy level remaining in i’s battery.

blue node(i).adjacency info: Adjacency information table.

blue node(i).parent: The parent of node i in the tree routed at the leader.

blue node(i).children: List of node i’s children.

blue node(i).current leader: The ID and value of node i’s current leader.

blue node(i).out buffer: The output buffer of i’s transceiver.

blue node(i).in buffer: The input buffer of i’s transceiver.

blue node(i).adjacency matrix: The adjacency matrix distributed by the leader.

In addition to the above attributes, blue node also stores temporary variables such as flags and

B.1. PEC Implementation 131

counters.

In the simulation, when data is transferred from node i to node j, channels are represented by a

free-space loss model as well as forcing errors dictated by the channel bit error rate or the channel packet

error rate.

B.1 PEC Implementation
The simulation flowchart for PEC is shown in Figure B.1

The main simulation is run in pec.m. The simulation starts by setting the environment variables:

number of nodes, blue node.role, environment dimensions and distance, as well

as the estimation window, which represents the amount of access code data a node is required to gather

before estimating the channel error rate, and the error rate counter, which counts the number of sent

packets before a new error rate is enforced. By default the channel error rate is set to 10−2.

The simulator reads an audio data file using the Matlab function wavread, encodes it as an 8-

bit unsigned stream then stores it in blue node(source).data. The corresponding Link Quality

(LQ) is then obtained by mapping the error rate through the function mapping.m, from which the

buffer size is computed. The source node loads its out buffer then transmits one packet at time

after adding the necessary encapsulation. The transmission is modelled by introducing errors into the

stream of data under consideration. This is achieved by generating an array of natural numbers of length

L, where L = error rate × data size; each entry in this array represent the Poisson distance be-

tween error-free packets. With this in mind, errors are forced into the data. After each transmission,

the packet is removed from the source’s out buffer and the error rate counter is incremented. If the

sent packet happens to be in error, the source retransmits the same packet with the same error proba-

bility and increments the retransmission counter. If the packet is received correctly, the source selects

the next packet in the buffer to be transmitted until the buffer is exhausted. When the number of sent

packets equals the error rate counter, a new channel error rate is selected randomly. The simulation

continues until the source has sent all its packets. The delay and overhead are computed by increment-

ing blue node(source).current time and blue node(source).overhead respectively.

Each time a packet is sent, the time is incremented by the required amount as dictated by the packet length

(number of time slots) plus poll delays. blue node(source).overhead is incremented by the

amount of redundant data sent, and the resulting overhead is calculated as blue node(source).overhead
data size .

After all the data has been sent, the simulator compares the PER before and after applying the PEC

scheme.

B.1. PEC Implementation 132

Figure B.1: PEC Simlation Flowchart

B.2. C2HR Implementation 133

B.2 C2HR Implementation

The simulation flowchart for C2HR is shown in Figure B.2

Figure B.2: C2HR Simlation Flowchart

B.2. C2HR Implementation 134

As with the PEC technique, the simulation begins by setting the required variables: number of nodes

and network dimensions. Nodes are randomly scattered in the 3 dimensional space by generating

a location matrix that holds the x, y and z coordinates of all the nodes in the network; each node,

i then stores its location information in the variable blue node(i).location. The function

topology.m selects a random number of p-masters, which starts the inquiry and paging processes,

to which the remaining p-slaves respond so that every node in the network adopts a role (stored in

blue node(i).role. topology.m also sets some of the attributes of blue node mentioned

earlier.

After the topology has been laid out, nodes connect to one another according the algorithm

described in 5.2 via the function connectivity.m. Initially the network does not have a

leader, thus, a leader is elected by calling the function leader election mob.m. In turn,

leader election mob.m calls the function net size, through which nodes obtain the estimate

of the network size, necessary for the leader election process.

Once the leader has been elected, the latter, builds a tree rooted at itself and sends out topology

enquiry messages, to which nodes respond via the function shrink tree.m, the leader then builds

the adjacency matrix and calls the function distibute adjacency.m to distribute the matrix to

every node in the connected tree.

Nodes run Dijkstra’s algorithm on the adjacency matrix so that the routing table can be generated

and used to route proactively. Similar to PEC, a random source node reads an audio file and stores

the data into blue node(source).data then forwards it to a randomly selected destination. The

simulator keeps a counter of the number of packets sent, and when it reaches the value mob count,

number of moving nodes nodes change location, thereby resulting in several possible failed links.

If a link fails, the detecting node propagates the failure notification, which triggers the distribution of

the adjacency matrix updates. At the same time the source node looks for an alternative route by calling

the function reactive update.m. Once the alternative route is found, the routing resumes on the

reactive path, until the nodes finish computing the new routing tables. If the route fails while routing

reactively, nodes are notified and another route search/route reply process is run. The simulation exits

once the destination node receives the last packet.

Remarks:

• In all actions that require information exchange, the function sched.m is called so that nodes

alter their memberships according to the inter and intra piconet scheduling.

• Link weights are adjusted after failures only.

• The variable blue node(i).current time is incremented each time node i sends out a

packet. The actual time is then taken as being max(blue node.current time).

B.2. C2HR Implementation 135

• The overhead is taken to be the ratio of the sum of redundant data generated by all nodes to the

actual data generated in the network.

Appendix C

Publications

The research contribution provided in this thesis led to the following publications:

• S. Sae Lor, R. Ali, R. Landa and M. Rio, Recursive Loop-free Alternates for Full Protection

Against Transient Link Failures, In Proceedings of the IEEE 16th Symposium on Computers and

Communications (ISCC), 2010.

• S. Sae Lor, R. Landa, R. Ali and M. Rio, Handling Transient Link Failures Using Alternate Next

Hop Counters, In Proceedings of the 9th International Conference on Networking (IFIP Network-

ing 2010), 2010.

• R. Ali, S. Sae Lor and M. Rio, Two Algorithms for Network Size Estimation for Master/Slave

Mobile Ad-hoc Networks, In Proceedings of the IEEE 3rd International Symposium on Advanced

Networking and Telecommunications Systems (ANTS), 2009

• R. Ali, S. Sae Lor and M. Rio, Cooperative Leader Election Algorithm for Master/Slave Mobile

Ad-hoc Networks, In Proceedings of the IEEE/IFIP 2nd Wireless Days Conference, 2009

• R. Ali and J. Pollard, Error Control in Voice over IP over Bluetooth, In Proceedings of the ECMS

13th International Conference on Analytical and Stochastic Modelling Techniques and Applica-

tions (ASMTA), 2006

• R. Ali and J. Pollard, Real-Time Voice Over IP over Bluetooth, In Proceedings of the IEEE

3rd International Workshop on Intelligent Data Acquisition and Advanced Computing Systems

(IDAACS), 2005

References

[1] Ether Types. http://www.iana.org/assignments/ethernet-numbers, 2009.

[2] M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A review of routing protocols for mobile ad hoc

networks. Ad Hoc Networks, 2(1):1–22, 2004.

[3] M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A Review of Routing Protocols for Mobile Ad

Hoc Networks. Ad Hoc Networks, 2(1):1–22, 2004.

[4] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing omega with weak

reliability and synchrony assumptions. In Proceedings of the twenty-second annual symposium

on Principles of distributed computing, pages 306–314, 2003.

[5] I. Akyildiz, T. Melodia, and K. Chowdury. Wireless multimedia sensor networks: A survey.

Wireless Communications, IEEE, 14(6):32–39, 2007.

[6] O. Al-Jarrah and O. Megdadi. Enhanced AODV routing protocol for Bluetooth scatternet. Com-

puters and Electrical Engineering, 35(1):197–208, 2009.

[7] H. Alemdar and C. Ersoy. Wireless sensor networks for healthcare: A survey. Computer Networks,

2010.

[8] R. Ali and J. Pollard. Real-time Voice Over IP Over Bluetooth. IEEE Intelligent Data Acquisition

and Advanced Computing Systems: Technology and Applications, 2005. IDAACS 2005, pages

580–583, 2005.

[9] M. Amin, F. Bhuyan, and M. Rahman. Bluetooth Scatternet Formation Protocol: A Comparative

Performance Analysis. In Asia-Pacific Conference on Communications, APCC’06, pages 1–5,

2006.

[10] L. Anderegg and S. Eidenbenz. Ad hoc-VCG: a truthful and cost-efficient routing protocol for

mobile ad hoc networks with selfish agents. In Proceedings of the 9th annual international con-

ference on Mobile computing & networking (MOBICOM), pages 245–259, 2003.

http://www.iana.org/assignments/ethernet-numbers

References 138

[11] T. Arampatzis, J. Lygeros, and S. Manesis. A survey of applications of wireless sensors and wire-

less sensor networks. In Intelligent Control, 2005. Proceedings of the 2005 IEEE International

Symposium on, Mediterrean Conference on Control and Automation, pages 719–724. IEEE, 2006.

[12] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz. Bluetooth scatternets: An enhanced

adaptive scheduling scheme. In IEEE INFOCOM, volume 2, pages 782–790, 2002.

[13] C. Baber and O. Westmancott. Social networks and mobile games: The use of bluetooth for a

multiplayer card game. Lecture Notes in Computer Science, pages 98–107, 2004.

[14] M. Barbehenn. A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices.

IEEE Transactions on Computers, 47(2):263, 1998.

[15] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli. Comparative Performance Evaluation of

Scatternet Formation Protocols for Networks of Bluetooth Devices. Wreless Networks, 10(2):197–

213, 2004.

[16] S. Basagni, M. Nanni, and C. Petrioli. Bluetooth scatternet formation and scheduling: An inte-

grated solution. In Proceedings of IEEE MILCOM 2006, pages 23–25, 2006.

[17] P. Bhagwat and A. Segall. A routing vector method (RVM) for routing in Bluetooth scatternets.

In 6th IEEE International Workshop on Mobile Multimedia Communications (MOMUC), pages

375–379, 1999.

[18] Bluetooth SIG. Bluetooth Specifications Version 1.0. Available: http://www.bluetooth.com, 1999.

[19] Bluetooth, SIG. RFCOMM with TS 07.10. Bluetooth Specification Version 1, Part F, 1, 2001.

[20] Bluetooth SIG. Bluetooth network encapsulation protocol (BNEP) specification. Specification of

the Bluetooth System, Version 1.0, 2003.

[21] Bluetooth SIG. Bluetooth Specifications Version 1.2. Available: http://www.bluetooth.com, 2003.

[22] Bluetooth SIG. Bluetooth Specifications Version 2.1 + EDR. Available:

http://www.bluetooth.com, 2007.

[23] Bluetooth SIG. Bluetooth Specifications Version 3.0 + HS. Available: http://www.bluetooth.com,

2009.

[24] Bluetooth SIG. Bluetooth Specifications Version 4.0. Available: http://www.bluetooth.com, 2009.

[25] R. Bruno, M. Conti, and E. Gregori. Bluetooth: architecture, protocols and scheduling algorithms.

Cluster Computing, 5(2):117–131, 2002.

References 139

[26] S. Buchegger and J. Le Boudec. Performance analysis of the CONFIDANT protocol. In Pro-

ceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing

(MOBIHOC), pages 226–236, 2002.

[27] L. Buttyán and J. Hubaux. Enforcing service availability in mobile ad-hoc WANs. In Proceedings

of the 1st ACM international symposium on Mobile ad hoc networking & computing (MOBIHOC),

pages 87–96, 2000.

[28] L. Buttyán and J. Hubaux. Stimulating cooperation in self-organizing mobile ad hoc networks.

Mobile Networks and Applications, 8(5):579–592, 2003.

[29] E. Callaway, P. Gorday, L. Hester, J. Gutierrez, M. Naeve, B. Heile, and V. Bahl. Home networking

with IEEE 802. 15. 4: a developing standard for low-rate wireless personal area networks. IEEE

Communications Magazine, 40(8):70–77, 2002.

[30] J. Cano, J. Cano, E. González, C. Calafate, and P. Manzoni. Evaluation of the energetic impact

of bluetooth low-power modes for ubiquitous computing applications. In Proceedings of the 3rd

ACM international workshop on Performance evaluation of wireless ad hoc, sensor and ubiqui-

tous networks, pages 1–8, 2006.

[31] A. Capone, M. Gerla, and R. Kapoor. Efficient polling schemes for Bluetooth picocells. In Proc.

IEEE ICC, pages 1990–1994, 2001.

[32] C. Chang, P. Sahoo, and S. Lee. Location-Aware Routing Protocol for the Bluetooth Scatternet.

Wireless Personal Communications, 40(1):117–135, 2007.

[33] J. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc networks. In Proceedings

of IEEE INFOCOM, pages 22–31, 2000.

[34] L. Chen, R. Kapoor, K. Lee, Y. Sanadidi, and M. Gerla. Audio Streaming over Bluetooth: An

Adaptive ARQ Timeout Approach. In Proceedings of IEEE 24th International Conference on

Distributed Computing Systems Workshops (ICDCSW), pages 196–201, 2004.

[35] T. Chen and M. Gerla. Global State Routing: A New Routing Scheme for Ad-Hoc Wireless

Networks. In Proceedings of IEEE International Conference Communications (ICC), pages 171–

175, 1998.

[36] C. F. Chiasserini, M. A. Marsan, E. Baralis, and P. Garza. Towards Feasible Topology Formation

Algorithms for Bluetooth-based WPANs. In Proceedings of the IEEE 36th Hawaii International

Conference on System Sciences (HICSS ’03), pages 313–322, 2003.

References 140

[37] Y. Choi, H. Lee, S. Park, B. Hong, S. Lee, and K. Tchah. A unified GFSK, π/4-shifted DQPSK,

and 8-DPSK baseband controller for enhanced data rate Bluetooth SoC. Current Applied Physics,

6(5):862–872, 2006.

[38] C. Cordeiro, S. Abhyankar, and D. Agrawal. Design and implementation of QoS-driven dynamic

slot assignment and piconet partitioning algorithms over bluetooth WPANS. In IEEE INFOCOM,

volume 2, pages 1252–1263, 2004.

[39] L. Costa and G. Travieso. Exploring complex networks through random walks. Physical Review

E, 75(1), 2007.

[40] B. Crow, I. Widjaja, L. Kim, and P. Sakai. IEEE 802.11 wireless local area networks. IEEE

Communications magazine, 35(9):116–126, 1997.

[41] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey. Enhancing performance of asynchronous

data traffic over the Bluetooth wireless ad hoc network. In IEEE INFOCOM, volume 1, pages

591–600, 2001.

[42] S. Das, C. Perkins, E. Royer, and M. Marina. Performance comparison of two on-demand routing

protocols for ad hoc networks. In IEEE INFOCOM, pages 3–12, 2000.

[43] A. Derhab and N. Badache. A Self-Stabilizing Leader Election Algorithm in Highly Dynamic Ad

Hoc Mobile Networks. IEEE Transactions on Parallel and Distributed Systems, 19(7):926–939,

2008.

[44] M. Dianati, X. Ling, K. Naik, and X. Shen. A node-cooperative ARQ scheme for wireless ad hoc

networks. IEEE Transactions on Vehicular Technology, 55(3):1032–1044, 2006.

[45] T. Do, P. Engelstad, and T. Jønvik. Establishing IP Network Support for a PAN-Based Virtual De-

vice. In Proceedings of 9th International Conference on Intelligence in service delivery Networks

(ICIN 2004), Bordeaux, France, 2004.

[46] S. Dolev, E. Schiller, and J. Welch. Random walk for self-stabilizing group communication in ad

hoc networks. IEEE Transactions on Mobile Computing, 5(7):893–905, 2006.

[47] J. Foote. Visualizing music and audio using self-similarity. In Proceedings of the seventh ACM

international conference on Multimedia (Multimedia ’99) - Part 1, pages 77–80, 1999.

[48] M. Frodigh, P. Johansson, and P. Larsson. Wireless ad hoc networking-The art of networking

without a network. Ericsson Review, 4:248–263, 2000.

[49] J. Garcia-Luna-Aceves and E. Madruga. A multicast routing protocol for ad-hoc networks. In

Proceeding of IEEE INFOCOM, pages 784–792, 1999.

References 141

[50] J. Garcia-Luna-Aceves and M. Spohn. Source-tree routing in wireless networks. pages 273–282,

1999.

[51] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks in Peer-to-Peer Networks. In Proceedings

of IEEE INFOCOM, pages 0–0, 2004.

[52] B. Golden. Shortest-path algorithms: A comparison. Operations Research, pages 1164–1168,

1976.

[53] J. Gomez and A. Campbell. A Case for Variable-range Transmission Power Control in Wireless

Multihop Networks. In Proceedings of IEEE INFOCOM, pages 1425–1436, 2004.

[54] F. Gonzalez-Castano and J. Garcia-Reinoso. Bluetooth Location Networks. In Proceedings of

IEEE GLOBECOME, pages 233–237, 2002.

[55] I. Gupta, R. Van Renesse, and K. Birman. A probabilistically correct leader election protocol

for large groups. In Proceedings of the 14th International Conference on Distributed Computing

(DISC), pages 89–103, 2000.

[56] J. Haartsen. Bluetooth-The universal radio interface for ad hoc, wireless connectivity. Ericsson

review, 3(1):110–117, 1998.

[57] J. Haartsen and S. Mattisson. Bluetooth-a new low-power radio interface providing short-range

connectivity. PROCEEDINGS-IEEE, 88(10):1651–1661, 2000.

[58] J. Haartsen and E. Radio. The Bluetooth radio system. IEEE Personal Communications, 2000.

[59] Z. Haas, M. Pearlman, and P. Samar. The zone routing protocol (ZRP) for ad hoc networks.

draft-ietf-manet-zone-zrp-02. txt, 1999.

[60] L. Har-Shai, R. Kofman, A. Segall, and G. Zussman. Load-Adaptive Inter-Piconet Scheduling in

Small-scale Bluetooth Scatternets. IEEE Communications Magazine, 42(7):136–142, 2004.

[61] L. Har-Shai, R. Kofman, G. Zussman, and A. Segall. Inter-piconet scheduling in Bluetooth scat-

ternets. In Proc. OPNETWORK, volume 2, 2002.

[62] G. Hernando, J. Cabero, J. Jodrá, and S. Pérez. Implementation and Comparison of AODV and

OLSR Routing Protocols in an Ad-Hoc Network over Bluetooth. In Proceedings of the 8th Inter-

national Conference on Ad-Hoc, Mobile and Wireless Networks, pages 347–353, 2009.

[63] X. Hong, K. Xu, and M. Gerla. Scalable Routing Protocols for Mobile Ad Hoc Networks. IEEE

Network, 16(4):11–21, 2002.

References 142

[64] M. Hossain and W. Soh. A comprehensive study of bluetooth signal parameters for localization.

In Proceedings of the IEEE 18th International Symposium on Personal Indoor and Mobile Radio

Communications (PIMRC), pages 1–5, 2007.

[65] I. Howitt. Mutual interference between independent Bluetooth piconets. IEEE Transactions on

Vehicular Technology, 52(3):708–718, 2003.

[66] C. Hsu and S. Hsu. An Adaptive Interpiconet Scheduling Algorithm Based on HOLD Mode in

Bluetooth Scatternets. IEEE Transactions on Vehicular Technology, 57(1):475–489, 2008.

[67] S. Hsu. A novel hold-mode-based adaptive inter-piconet scheduling algorithm in bluetooth scat-

ternets. pages 469–474, 2006.

[68] IEEE Computer Society. IEEE Standard for Local and Metropolitan Area Networks - Me-

dia Access Control (MAC) Bridges. http://standards.ieee.org/getieee802/

download/802.1D-2004.pdf, 2004.

[69] L. Isaksson, M. Fiedler, and A. Nilsson. Validation of simulations of bluetooths frequency hopping

spread spectrum technique. In Proceedings of the 2004 Design, Analysis, and Simulation of

Distributed Systems, Arlington, Virginia, USA, pages 156–165, 2004.

[70] P. Jacquet, P. Muhlethaler, A. Qayyum, A. Laouiti, L. Viennot, and T. Claussen. Optimized Link

State Routing Protocol. Technical report, Internet Draft, IETF, draft-ietf-manetolsr-00.txt, 1998.

[71] H. Janzadeh, K. Fayazbakhsh, M. Dehghan, and M. Fallah. A secure credit-based cooperation

stimulating mechanism for MANETs using hash chains. Future Generation Computer Systems,

25(8):926–934, 2009.

[72] J. Jaramillo and R. Srikant. Darwin: Distributed and adaptive reputation mechanism for wireless

ad-hoc networks. In Proceedings of the 13th annual ACM international conference on Mobile

computing and networking (MOBICOM), pages 87–97, 2007.

[73] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large dynamic networks.

ACM Transactions on Computer Systems (TOCS), 23(3):219–252, 2005.

[74] M. Joa-Ng and I. Lu. A peer-to-peer zone-based two-level link state routing for mobile ad hoc

networks. IEEE Journal on Selected Areas in Communications, 17(8):1415–1425, 1999.

[75] N. Johansson, F. Alriksson, and U. Jönsson. JUMP mode–a dynamic window-based scheduling

framework for Bluetooth scatternets. In Proceedings of the 2nd ACM international symposium on

Mobile ad hoc networking & computing (MobiHoc), pages 204–211, 2001.

http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf

References 143

[76] P. Johansson, R. Kapoor, M. Kazantzidis, and M. Gerla. Personal area networks: Bluetooth or

IEEE 802.11? International Journal of Wireless Information Networks, 9(2):89–103, 2002.

[77] P. Johansson, R. Kapoor, M. Kazantzidis, and M. Gerla. Rendezvous scheduling in Bluetooth

scatternets. In IEEE International Conference on Communications, pages 318–324, 2002.

[78] P. Johansson, M. Kazantzidis, R. Kapoor, and M. Gerla. Bluetooth: An enabler for personal area

networking. IEEE Network, 15(5):28–37, 2001.

[79] D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks. Kluwer

International Series in Engineering and Computer Science, pages 153–179, 1996.

[80] V. Jones, R. Bults, D. Konstantas, and P. Vierhout. Healthcare PANs: Personal Area Networks for

trauma care and home care. In Proceedings Fourth International Symposium on Wireless Personal

Multimedia Communications (WPMC), pages 9–12, 2001.

[81] M. Joos. Acoustic phonetics. Language, 24(2):5–136, 1948.

[82] S. Jung, U. Lee, A. Chang, D. Cho, and M. Gerla. Bluetorrent: Cooperative content sharing for

bluetooth users. Pervasive and Mobile Computing, 3(6):609–634, 2007.

[83] M. Kalia, S. Garg, and R. Shorey. Scatternet structure and inter-piconet communication in the

Bluetooth system. In IEEE national conference on communications, 2000.

[84] C. K. Kalló, S. Jung, L. J. Shen, M. Brunato, and M. Gerla. Throughput, Energy and Path Length

Tradeoffs in Bluetooth Scatternets. In Proceedings of IEEE International Conference on Commu-

nications (ICC ’05), pages 3319–3323, 2005.

[85] R. Kapoor, L. Chen, Y. Lee, and M. Gerla. Bluetooth: carrying voice over ACL links. In Proc. of

MWCN, pages 379–383, 2002.

[86] R. Kapoor and M. Gerla. A zone routing protocol for bluetooth scatternets. In IEEE Wireless

Communications and Networking Conference (WCNC), pages 1459–1464, 2003.

[87] R. Kapoor, M. Y. M. Sanadidi, and M. Gerla. An Analysis of Bluetooth Scatternets Topologies.

In Proceedings of IEEE International Conference on Communications (ICC ’03), pages 266–270,

2003.

[88] R. Kapoor, A. Zanella, and M. Gerla. A fair and traffic dependent scheduling algorithm for

Bluetooth scatternets. Mobile Networks and Applications, 9(1):9–20, 2004.

[89] M. Karam and F. Tobagi. Analysis of the delay and jitter of voice traffic over the Internet. In IEEE

INFOCOM, pages 824–833, 2001.

References 144

[90] J. Karaoguz. High-rate wireless personal area networks. IEEE Communications Magazine,

39(12):96–102, 2001.

[91] O. Karjalainen, S. Rantala, and M. Kivikoski. A comparison of bluetooth low power modes. In

Proceedings of the 7th International Conference on Telecommunications ConTEL 2003, pages

121–128, 2003.

[92] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard. The importance of being opportunistic:

Practical network coding for wireless environments. In Proc. 43rd Annual Allerton Conference

on Communication, Control, and Computing, 2005.

[93] Y. Ko and N. Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks. Wireless

Networks, 35(4):307–321, 2000.

[94] C. Kunze, U. Grossmann, W. Stork, and K. Müller-Glaser. Application of ubiquitous comput-

ing in personal health monitoring systems. Biomedizinische Technik/Biomedical Engineering,

47(s1a):360–362, 2002.

[95] A. Kvalbein, A. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP network recovery using

multiple routing configurations. In Proceedings of IEEE INFOCOM, pages 1–11, 2006.

[96] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and I. Stoica. Achieving

convergence-free routing using failure-carrying packets. ACM SIGCOMM Computer Communi-

cation Review, 37(4):252, 2007.

[97] B. Lavelle, D. Byrne, C. Gurrin, A. Smeaton, and G. Jones. Bluetooth Familiarity: Methods

of Calculation, Applications and Limitations. In Proceedings of the 5th Workshop on Mobile

Interaction with the Real World (MIRW), pages 55–58, 2007.

[98] C. Law and K. Siu. A Bluetooth Scatternet Formation Algorithm. In Proceedings of GLOBECOM

’01, pages 2864–2869, 2001.

[99] E. Le Merrer, A. Kermarrec, and L. Massoulie. Peer to peer size estimation in large and dynamic

networks: A comparative study. In Proceedings of the IEEE International Symposium on High

Performance Distributed Computing (HPDC), pages 0–0, 2006.

[100] S. Lee, R. Muhammad, and C. Kim. A Leader Election Algorithm Within Candidates on Ad Hoc

Mobile Networks. Embedded Software and Systems, 4523:728–738, 2007.

[101] Y. Lee, R. Kapoor, and M. Gerla. An Efficient and Fair Polling Scheme for Bluetooth. In Pro-

ceedings IEEE MILCOM, pages 1062–1068, 2002.

References 145

[102] P. Lieberman and S. Blumstein. Speech physiology, speech perception, and acoustic phonetics.

Cambridge University Press, 1988.

[103] T. Lindholm. Setting up a bluetooth packet transport link, 2003.

[104] P. Littieri and M. Srivastava. Adaptive Frame LEngth Control for Improving Wireless Link

Throughput, Range, and Energy Efficiency. In Proceedings of IEEE INFOCOM, pages 564–571,

1998.

[105] k. Maalaoui and L. Azouz Saidane. Priority Based Intra Piconet Scheduling Scheme for QoS

Guaranties in Bluetooth Networks. In Proceedings of the IEEE Symposium on Computers and

Communications (ISCC), pages 147–152, 2009.

[106] N. Malpani, J. Welch, and N. Vaidya. Leader election algorithms for mobile ad hoc networks.

In Proceedings of the 4th international workshop on Discrete algorithms and methods for mobile

computing and communications, pages 96–103, 2000.

[107] M. A. Marsan, C. F. Chiasserini, A. Nucci, G. Carello, and L. De Giovanni. Optimising the

Topology of Bluetooth Wireless Personal Area Networks. In Proceedings of IEEE INFOCOM,

pages 572–579, 2002.

[108] L. Marzegalli, M. Masa, and M. Vitiello. Adaptive RTP/UDP/IP Header Compression for VoIP

over Bluetooth. In European Wireless: Next Generation Wireless Networks, 2002.

[109] L. Massoulie, E. Le Merrer, A. Kermarrec, and A. Ganesh. Peer counting and sampling in overlay

networks: random walk method. In Proceedings of the twenty-fifth annual ACM symposium on

Principles of distributed computing, pages 123–132, 2006.

[110] P. Michiardi and R. Molva. CORE: A Collaborative Reputation Mechanism to Enforce Node

Cooperation in Mobile Ad Hoc Networks. In Proceedings of the 6th IFIF Conference on Com-

munications and Multimedia Security, pages 107–121, 2002.

[111] G. Miklós, A. Rácz, Z. Turányi, A. Valkó, and P. Johansson. Performance aspects of bluetooth

scatternet formation. In MobiHoc ’00: Proceedings of the 1st ACM international symposium on

Mobile ad hoc networking & computing, pages 147–148, 2000.

[112] B. Miller and C. Bisdikian. Bluetooth revealed. Prentice Hall PTR Upper Saddle River, NJ, USA,

2001.

[113] H. Minn, M. Zeng, A. Annamalai, and V. Bhargava. An efficient ARQ protocol for adaptive error

control over time-varying channels. Wireless Personal Communications, 17(1):3–20, 2001.

References 146

[114] H. Minn, M. Zeng, and V. Bhargava. On ARQ scheme with adaptive error control. IEEE Trans-

actions on Vehicular Technology, 50(6):1426–1436, 2001.

[115] D. Miorandi, S. Merlin, A. Trainito, and A. Zanella. On Efficient Configurations for Bluetooth

Scatternets. Ad Hoc Networks, 4(6):768–787, 2006.

[116] J. Mišic and V. Mišic. Bridges of Bluetooth county: topologies, scheduling, and performance.

IEEE Journal on selected areas in communications, 21(2):240–258, 2003.

[117] V. Mišić, E. Ko, and J. Mišić. Load and QoS-Adaptive Scheduling in Bluetooth Piconets. In

Proceedings of the IEEE 37th Hawaii International Conference on System Sciences (HICSS ’04),

pages 294–303, 2004.

[118] V. Mišić and J. Mišić. Modeling Bluetooth piconet performance. IEEE Communications Letters,

7(1):18–20, 2003.

[119] E. Modiano. An Adaptive Algorithm for Optimizing the Packet Size in Wireless ARQ Protocols.

Wireless Networks, 5(4):279–286, 1999.

[120] R. Morrow. Bluetooth operation and use. McGraw-Hill Professional, 2002.

[121] N. Muller. Bluetooth demystified. McGraw-Hill Boston, MA, 2001.

[122] S. Muruganathan, D. Ma, R. Bhasin, and A. Fapojuwo. A centralized energy-efficient routing

protocol for wireless sensor networks. IEEE Communications Magazine, 43(3):8–13, 2005.

[123] V. Nagarajan. Broadcom: Bluetooth Today and Tomorrow. http://www.sramanamitra.

com/2008/02/24/broadcom-bluetooth-today-and-tomorrow/, 2008.

[124] K. Naik, D. Wei, and Y. Su. Packet interference in a heterogeneous cluster of Bluetooth piconets.

In Proceedings of the IEEE 58th Vehicular Technology Conference (VTC), pages 582–586, 2003.

[125] B. Nazir and K. Zia. QoS aware Interpiconet Scheduling in Bluetooth Scatternet (QIPS). In

Proceedings of the IEEE International Conference on Emerging Technologies (ICET), pages 68–

73, 2007.

[126] S. Nelakuditi, S. Lee, Y. Yu, Z. Zhang, and C. Chuah. Fast local rerouting for handling transient

link failures. IEEE/ACM Transactions on Networking, 15(2):359–372, 2007.

[127] P. Networking. Personal Area Networking Profile. 2001.

[128] I. Niemegeers and S. Heemstra de Groot. From personal area networks to personal networks: A

user oriented approach. Wireless Personal Communications, 22(2):175–186, 2002.

http://www.sramanamitra.com/2008/02/24/broadcom-bluetooth-today-and-tomorrow/
http://www.sramanamitra.com/2008/02/24/broadcom-bluetooth-today-and-tomorrow/

References 147

[129] I. Niemegeers and S. Heemstra de Groot. Research issues in ad-hoc distributed personal network-

ing. Wireless Personal Communications, 26(2):149–167, 2003.

[130] N. Nikaein, L. H., and B. C. DDR: Distributed Dynamic Routing Algorithm for Mobile Ad Hoc

Networks. In Proceedings of the 1st ACM International Symposium on Mobile Ad Hoc Networking

& Computing (MOBIHOC), pages 19–27, 2000.

[131] R. Ogier, F. Templin, and M. Lewis. Topology dissemination based on reverse-path forwarding

(TBRPF). Request for Comments, 3684, 2004.

[132] V. Park and M. Corson. A highly adaptive distributed routing algorithm for mobile wireless

networks. In Proceedings of IEEE INFOCOM, volume 3, pages 1405–1413, 1997.

[133] G. Pei, M. Gerla, and T. Chen. Fisheye State Routing: A routing Scheme for Ad Hoc Wireless

Networks. In Proceedings of IEEE International Conference Communications (ICC), pages 70–

74, 2000.

[134] C. Perkins, E. Belding-Royer, and S. Das. Ad-hoc On-demand Distance Vector (AODV) Routing.

Request for Comments, 2004.

[135] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector routing

(DSDV) for Mobile Computers. SIGCOMM Computer Communcations Review, 24(4):234–244,

1994.

[136] B. Peterson, R. Baldwin, J. Kharoufeh, and R. Raines. Refinements to the packet error rate upper

bound for Bluetooth networks. IEEE Communications Letters, 7(8):382–384, 2003.

[137] C. Petrioli, S. Basagni, and I. Chlamtac. Configuring BlueStars: Multihop scatternet formation

for Bluetooth networks. IEEE Transactions on Computers, 52(6):779–790, 2003.

[138] C. Petrioli, S. Basagni, and I. Chlamtac. BlueMesh: degree-constrained multi-hop scatternet

formation for Bluetooth networks. Mobile Networks and Applications, 9(1):33–47, 2004.

[139] S. Radhakrishnan, G. Racherla, C. Sekharan, N. Rao, and S. Batsell. DST - A Routing Protocol

for Ad Hoc Networks Using Distributed Spanning Trees. In IEEE Wireless Communications and

Networking Conference (WCNC), pages 1543–1547, 1999.

[140] R. Razavi, M. Fleury, and M. Ghanbari. Fuzzy logic control of adaptive ARQ for video distribu-

tion over a Bluetooth wireless link. Advances in Multimedia, 2007(1):8–20, 2007.

[141] Road Safety Devision 6, Department for Transport. Mobile Phones and Driving: Regula-

tory Impact Assessment. http://www.dft.gov.uk/consultations/aboutia/ria/

mobilephonesanddrivingregula5538, 2003.

http://www.dft.gov.uk/consultations/aboutia/ria/mobilephonesanddrivingregula5538
http://www.dft.gov.uk/consultations/aboutia/ria/mobilephonesanddrivingregula5538

References 148

[142] E. Royer and C. Toh. A review of current routing protocols for ad-hoc mobile wireless networks.

IEEE personal communications, 1999.

[143] E. Royer and C. Toh. A Review of current Routing Protocols for Ad Hoc Mobile Wireless Net-

works. IEEE Personal Communications, 6(2):46–55, 1999.

[144] S. Saha and M. Matsumoto. An Inter-Piconet Scheduling Algorithm for Bluetooth Scatternets.

In Proceedings of the Advanced Int’l Conference on Telecommunications and Int’l Conference on

Internet and Web Applications and Services (AICT/ICIW), pages 24–28, 2006.

[145] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed Topology Construction of

Bluetooth Personal Area Networks. In Proceedings of IEEE INFOCOM, pages 1577–1586, 2001.

[146] N. Saxena, J. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing based on a visual

channel. In 2006 IEEE Symposium on Security and Privacy, pages 306–313, 2006.

[147] R. Schmidt, T. Norgall, J. Mörsdorf, J. Bernhard, and T. von der Grün. Body Area Network

BAN - A Key Infrastructure Element for Patient-Centered Medical Applications. Biomedizinische

Technik/Biomedical Engineering, 47(s1a):365–368, 2002.

[148] T. Shafaat, A. Ghodsi, and S. Haridi. A Practical Approach to Network Size Estimation for Struc-

tured Overlays. In Proceedings of the 3rd International Workshop on Self-Organizing Systems,

pages 71–83, 2008.

[149] L. Shek and Y. Kwok. Efficient multi-hop communications in Bluetooth scatternets. In Proceeding

of the 14th IEEE international symposium on personal, indoor, and mobile radio communication

(PIMRC), pages 755–759, 2003.

[150] R. Shepherd. Bluetooth wireless technology in the home. Electronics and Communication Engi-

neering Journal, 13(5):195–203, 2001.

[151] M. Shirali, A. Toroghi, and M. Vojdani. Leader Election Algorithms: History and Novel Schemes.

In Third International Conference on Convergence and Hybrid Information Technology, IC-

CIT’08, pages 1001–1006, 2008.

[152] D. M. D. Smith, C. F. Lee, J.-P. Onnela, and N. F. Johnson. Link-space formalism for network

analysis. Physical Review E, 77(3):1–18, 2008.

[153] Z. Specification. v1. 0: ZigBee Specification (2005). San Ramon, CA, USA: ZigBee Alliance.

[154] N. Sriskanthan, F. Tan, and A. Karande. Bluetooth based home automation system. Microproces-

sors and Microsystems, 26(6):281–289, 2002.

References 149

[155] C. Strangio. The RS232 standard. CAMI Research Inc., Lexington, Massachusetts, 2005, 2003.

[156] The Economist. Bluetooth quiet success. http://www.ebusinessforum.com/index.

asp?layout=rich_story&doc_id=8680&categoryid=&channelid=&search=

connecting, 2006.

[157] TheMathworks, INC. MATLAB R2008b. http://www.mathworks.co.uk/.

[158] C. Toh. Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc

networks. IEEE communications Magazine, 39(6):138–147, 2001.

[159] UCL Division of Psychology & Language Sciences. SFS/RTGram Version 1.2. http://www.

phon.ucl.ac.uk/resource/sfs/rtgram/.

[160] M. Valenti, M. Robert, and J. Reed. On the Throughput of Bluetooth Data Transmissions. In

Proceedings of IEEE WCNC, pages 119–123, 2002.

[161] M. Varghese and M. Shreedhar. Efficient Fair Queuing Using Deficit Round Robin. In Proceed-

ings ACM SIGCOMM, pages 231–243, 1996.

[162] U. Varshney. Multicast over wireless networks. Communications of the ACM, 45(12):31–37,

2002.

[163] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader election algorithm for

mobile ad hoc networks. In Proceedings of the 12th IEEE International Conference on Network

Protocols (ICNP), pages 350–360, 2004.

[164] A. Vlavianos, L. Law, I. Broustis, S. Krishnamurthy, and M. Faloutsos. Assessing link quality in

IEEE 802.11 Wireless Networks: Which is the right metric? In Proceedings of the IEEE 19th

International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pages

1–6, 2008.

[165] W. Wang, M. Chatterjee, K. Kwiat, and N. Rome. An Economic Approach to Hierarchical Rout-

ing in Resource Rationed Ad Hoc Networks. In IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks, 2007. WoWMoM 2007, pages 1–8, 2007.

[166] Z. Wang, R. Thomas, and Z. Haas. Bluenet – A New Scatternet Formation Scheme. In Proceed-

ings of the IEEE 35th Hawaii International Conference on System Sciences (HICSS ’02), pages

61–69, 2002.

[167] Z. Wang, R. J. Thomas, and Z. J. Haas. Performance comparison of Bluetooth scatternet formation

protocols for multi-hop networks. Wreless Networks, 15(2):209–226, 2009.

http://www.ebusinessforum.com/index.asp?layout=rich_story&doc_id=8680&categoryid=&channelid=&search=connecting
http://www.ebusinessforum.com/index.asp?layout=rich_story&doc_id=8680&categoryid=&channelid=&search=connecting
http://www.ebusinessforum.com/index.asp?layout=rich_story&doc_id=8680&categoryid=&channelid=&search=connecting
http://www.mathworks.co.uk/
http://www.phon.ucl.ac.uk/resource/sfs/rtgram/
http://www.phon.ucl.ac.uk/resource/sfs/rtgram/

References 150

[168] A. Willig. Polling-based MAC protocols for improving real-time performance in a wireless

PROFIBUS. IEEE Transactions on Industrial Electronics, 50(4):806–817, 2003.

[169] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE transactions on

evolutionary computation, 1(1):67–82, 1997.

[170] S. Woo and S. Singh. Scalable Routing Protocol for Ad Hoc Networks. Wireless Networks,

7(5):513–529, 2001.

[171] Z. WU, X. ZHONG, W. YU, and Z. LIU. System level simulation modeling of bluetooth voice and

its interference. In Proceedings of the IEEE 7th International Conference on Signal Processing

(ICSP), pages 29–32, 2004.

[172] D. Yang, G. Nair, B. Sivaramakrishnan, H. Jayakumar, and A. Sen. Round robin with look ahead:

a new scheduling algorithm for Bluetooth. In Proceedings of the International Conference on

Parallel Processing Workshops (ICPPW), pages 45–50, 2002.

[173] Y. Yang, H. Wu, and W. Zhuang. MESTER: minimum energy spanning tree for efficient routing

in wireless sensor networks. In Proceedings of the 3rd ACM International Conference on Quality

of Service in Heterogeneous Wired/Wireless Networks, pages 8–17, 2006.

[174] C. Yu, K. Yu, and S. Lin. Efficient Scheduling Algorithms for Bluetooth Scatternets. Wireless

Personal Communications, 48(2):291–309, 2009.

[175] G. Yu, C. Chang, and Shih. Relay Reduction and Disjoint Routes Construction for Scatternet over

Bluetooth Radio Systems. Wireless Personal Communications, 40(1):117–135, 2007.

[176] A. Zanella and M. Zorzi. Throughput and Energy Efficiency of Bluetooth v2 + EDR in Fading

Channels. In Proceedings of IEEE WCNC, pages 1661–1666, 2008.

[177] G. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees-scatternet formation to enable Bluetooth-based

ad hoc networks. In Proc. IEEE ICC, 2001.

[178] C. Zhang, M. Zhou, and M. Yu. Ad Hoc Network Routing and Security: A Review. International

Journal of Communication Systems, 20(8):909–925, 2007.

[179] S. Zhong, J. Chen, and Y. Yang. Sprite: A simple, cheat-proof, credit-based system for mobile

ad-hoc networks. In IEEE INFOCOM, pages 1987–1997, 2003.

[180] T. Zimmerman. Personal area networks (PAN): Near-field intra-body communication. PhD thesis,

Master Thesis - Massachusetts Institute of Technology, 1995.

References 151

[181] G. Zussman and A. Segall. Energy efficient routing in ad hoc disaster recovery networks. Ad Hoc

Networks, 1(4):405–421, 2003.

[182] G. Zussman, A. Segall, and U. Yechiali. Bluetooth time division duplex-analysis as a polling

system. In Proc. 1st IEEE Conference on Sensor and Ad Hoc Communications and Networks,

2004.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivations
	Challenges
	Objectives
	Thesis Structure

	The Bluetooth Technology
	Introduction
	Bluetooth Radio Layer
	Bluetooth Baseband Layer
	Baseband Channels
	Addressing
	Baseband Packets
	SCO Packets
	ACL Packets
	Baseband Packet Exchange

	Link Manager Protocol (LMP)
	Establishing Bluetooth Piconets
	Inquiry
	Paging

	Low Power Modes
	HOLD Mode
	Park Mode
	Sniff Mode

	Link Layer Control and Adaptation Protocol (L2CAP)
	Bluetooth Network Encapsulation Protocol (BNEP)
	BNEP Data Packets
	BNEP Control Packets

	Bluetooth Profiles
	Personal Area Networking Profile

	Summary

	Ad Hoc Personal Area Networking
	Introduction
	Bluetooth Personal Area Networking
	Network Formation
	Transmission Scheduling
	Intra-piconet Scheduling
	Inter-piconet Scheduling

	Error Control

	Routing in Personal Area Networks
	Proactive Routing Protocols
	Reactive Routing Protocols
	Hybrid Routing Protocols

	Summary

	Packet Error Correction (PEC)
	Introduction
	System Overview
	Channel Monitoring
	Link Quality

	Packet Error Correction (PEC) Scheme
	Buffer Management
	Retransmission Mechanism
	Analysis of the PEC Scheme

	Evaluation
	Simulation Settings
	Metrics
	Packet Delivery Rate
	Data Overhead
	Audio Quality
	Delay

	Summary

	Network Size Estimation
	Introduction
	Network Formation
	Random Walk-based Network Size Estimation
	Dealing With Mobility
	Algorithm Evaluation

	Gossip-based Network Size Estimation
	Effect of Node Mobility
	Evaluation

	Summary

	Cooperative Network Leader Election
	Introduction
	Cooperative Leader Election
	Dealing with Node Mobility
	Performance Evaluation

	Summary

	Routing for Mobile Personal Area Networks
	Introduction
	Basic Operations
	C2HR Routing
	Proactive Routing
	Link Costs
	Topology View Generation
	Topology Maintenance

	Reactive Routing
	Route Search
	Route Found

	Support for Multicast Routing
	Evaluation
	Assumptions
	Topology Discovery
	Route Recovery
	Excess Cost
	Throughput
	Routing Overhead
	Energy Efficiency

	Summary

	Conclusions and Future Work
	Conclusions
	Contributions
	Enhancing Transmission Reliability
	Scatternet Formation
	Network Size Estimation
	Leader Election
	Ad Hoc Routing

	Future Work
	Improving Transmission Through Network Coding
	Promoting Cooperation Amongst Nodes

	Acronyms and Abbreviations
	Implementation in Matlab
	PEC Implementation
	C2HR Implementation

	Publications
	References

