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Abstract

Background: Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as
an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction.

Methodology/Principal Findings: Manual rating methods have limited reliability and are time-consuming. We developed a
new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual
rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for
microbleeds by a trained observer. After spatially normalizing each patient’s GRE T2* images into a standard stereotaxic
space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating
an ‘‘extra’’ tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between
manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We
found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar
microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of
microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients
with multiple ($2) lobar microbleeds.

Conclusions/Significance: MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing
step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar
microbleeds.

Citation: Seghier ML, Kolanko MA, Leff AP, Jäger HR, Gregoire SM, et al. (2011) Microbleed Detection Using Automated Segmentation (MIDAS): A New Method
Applicable to Standard Clinical MR Images. PLoS ONE 6(3): e17547. doi:10.1371/journal.pone.0017547

Editor: Wang Zhan, University of California San Francisco, United States of America

Received October 8, 2010; Accepted February 8, 2011; Published March 23, 2011

Copyright: � 2011 Seghier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Mohamed Seghier and Alex Leff were funded by the Wellcome Trust. Simone Gregoire was supported by a grant from The Stroke Association. David
Werring is supported by a Department of Health and Higher Educational and Funding Council for England Clinical Senior Lectureship Award. This work was
undertaken at UCLH/UCL, which received a proportion of funding from the UK Department of Health’s National Institute for Health Research Biomedical Research
Centers funding scheme (UCLH/UCL Comprehensive Biomedical Research Trust). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: d.werring@ion.ucl.ac.uk

Introduction

Over the last decade, the use of iron-sensitive MRI sequences

(including Gradient Echo [GRE] T2*-weighted imaging and

susceptibility-weighted imaging) has increased in many clinical

settings, including acute stroke units and clinics. This has led to the

improved detection of cerebral microbleeds (CMBs) and other

forms of intracranial haemorrhage. Cerebral microbleeds are

small, rounded areas of homogeneous low signal visualized on

GRE T2*-weighted images because haemosiderin (a paramagnetic

product of blood degradation) has high magnetic susceptibility,

causing local field inhomogeneities and signal loss. Cerebral

microbleeds are due to perivascular bleeding from small vessels

affected mainly by hypertensive vasculopathy and cerebral

amyloid angiopathy [1]. Cerebral microbleeds are increasingly

found in elderly subjects and patients with cerebrovascular disease,

raising many important questions: Are patients with CMBs at

increased risk of intracerebral haemorrhage? Do CMBs cause

brain dysfunction? Are they a useful diagnostic marker for cerebral

amyloid angiopathy (CAA)? CMBs are also found frequently in

traumatic brain injury and may be a useful marker for diffuse

axonal injury with potential relevance for prognosis [2]. To tackle

these questions, it is important to reliably detect and map CMBs.

The current reference standard method for microbleed

identification is based on the manual definition of abnormal brain

tissue using visual rating scales, which is laborious, operator-

dependent and time-consuming, with limited intra-rater and inter-

rater reliability [3]. Furthermore, manual rating does not easily

allow the comparison of the spatial distribution of microbleeds

between individuals or groups, which may be crucial in assessing
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correlations with clinical measures, e.g. cognitive tests [4]. Because

of the many CMB ‘‘mimics’’ with similar signal and morphological

characteristics, and the unpredictable, widespread distribution of

CMBs in the brain, automatic identification is challenging.

Moreover, standard clinical GRE MRI inherently has limited

tissue contrast and is very sensitive to susceptibility artefacts from

field inhomogeneities; the modest standard field strength (1.5T),

thick slices and non-isotropic voxels, may further reduce the

conspicuity and size of some microbleeds [3].

An ideal automated CMB rating method should: (1) reliably

detect CMBs; (2) be able to do so given standard clinical images;

(3) be simple to use, and less time consuming than manual

methods; and (4) should map CMBs in a common stereotactic

space. We propose a new procedure for microbleed detection

using automated segmentation (MIDAS), which explicitly incor-

porates an ‘extra’ tissue class for abnormal voxels within a unified

segmentation-normalization model [5,6]. The performance of

MIDAS is assessed here on a real dataset of standard clinical MR

images from 30 stroke patients.

Results

Here, we turn to the performance of MIDAS in detecting

CMBs across a range of 30 unselected patients with known CMB

status based on manual identification by an expert, considered

here as the reference standard to define the true positives. In the

manual identification, the presence, number and anatomical

distribution of CMBs was rated using the validated Microbleed

Anatomical Rating Scale (MARS) [3]. The data used here were

previously acquired with a standard clinical protocol and thus

were not prospectively optimised for MIDAS. For more details, see

the Materials and Methods section below.

Figure 1 illustrates CMBs identified in six representative

patients using MIDAS. Our method clearly identified these

CMBs, of variable sizes and located in different brain regions

(Figure 1).

The results can be summarised by the following key points.

First, MIDAS was much more successful for detecting CMBs in

lobar regions than infratentorial or deep regions (detailed results in

each patient are provided in the tables in Supplementary Material

S1). Specifically, across the 22 patients who have lobar CMBs, 17

patients were identified by the automated method. A close look at

the 5 unsuccessful cases revealed that all of them have only a single

CMB (cases 2, 8, 14, 17 and 28; see Supplementary Material S1).

Thus, if we consider whether a patient has a single or multiple

CMBs, we found that MIDAS identified 8 out of 13 patients (62%)

who have a single CMB but successfully identified all 9 patients

who have 2 or more CMBs (100%).

Second, some CMBs were missed by MIDAS, predominantly in

two situations (Figure 2A): (i) lesions located within our artefact

mask, predefined within MIDAS as a map of potential artefacts

(see Materials and Methods section below), and thus rejected from

the final output images (see example of a CMB in the right

cerebellum, column 1 Figure 2A); and (ii) small CMBs with low

contrast from their background, probably caused by partial

volume effects due to the thick slices of our clinical T2* images

(see columns 2 and 3 of Figure 2A).

Despite the morphological procedures applied here in cleaning

up the output images (see Materials and Methods section below),

the resulting maps may still contain a few artefacts. These consist

of regions of low signal intensity that mimic CMBs, of three types:

(i) most frequently at the edges of brain regions (air-bone

susceptibility effects) – these include the inferior temporal,

orbitofrontal and posterior fossa regions (see columns 1 and 2 of

Figure 2B); (ii) low signal within other abnormalities in the brain

such as infarcts (column 3 of Figure 2B); and (iii) flow voids in

blood vessels (column 4 of Figure 2B). However, these artefacts

were easily removed using a ‘‘semi-automated’’ approach, i.e. by

(manually) excluding the obvious artefacts from the final maps.

These obvious artefacts, in particular those of type (i) at the edges

of brain regions, were excluded by a trained observer (MAK) and

were seen in 12 patients (see the tables in Supplementary Material

S1 for more details).

The Kappa coefficient for agreement between MIDAS and the

reference standard manual identification (MARS) in patients who

had one or more CMBs in lobar regions was 0.43, increasing to

0.65 using the semi-automated approach. The intraclass correla-

tion coefficient for agreement about CMB count in lobar regions

using MIDAS in comparison to MARS was 0.71, increasing to

0.87 when using the semi-automated method. The Kappa

coefficient of identifying patients with two or more lobar CMBs

increased to 0.74 using the semi-automated approach.

Discussion

We present here a new method of identifying CMBs (MIDAS).

To the best of our knowledge, this is the first (semi-)automated

method developed for detecting and mapping CMBs on standard

clinical images which are routinely available in many stroke clinics.

Our method has several important advantages over purely manual

rating: first, it eliminates intra- and inter-rater reliability; second, it

is less laborious, and thus more practical for analyzing large

datasets; third, MIDAS can generate detailed lesion maps in a

standard coordinate space, making group analyses and correlation

with clinical, behavioural or genetic data straightforward; fourth, it

can automatically quantify additional spatial characteristics,

including CMB location, size, and shape; fifth, the algorithm is

flexible and can potentially incorporate other type of images with

different contrasts and resolution. A final advantage is that the

software in which our method is implemented is freely available

(see Materials and Methods below).

In comparison with a validated visual rating scale (MARS),

MIDAS has shown generally moderate to good agreement for the

presence of lobar CMBs (Kappa 0.43, improved to 0.65 using the

semi-automated method), which compares favourably with

previous manual methods showing inter-observer Kappa values

in the range of 0.33 to 0.88 [7]. Agreement about the number of

CMBs was very good for lobar regions. Of note, our method

successfully identified all patients with multiple (.1) CMBs: this

may be important because multiple CMBs on standard GRE T2*

sequences may be of more significance than a single lesion; it has

also been suggested that only patients with more than one CMB be

included in research studies, to maximize the reliability of ratings

[3,7]. The inclusion of patients judged to have a single CMB

substantially reduces the inter-rater reliability of CMB identifica-

tion, suggesting that raters find it most difficult to reliably decide

whether one CMB or no CMBs are present. Because reliability is

critical for any useful clinical or research tool, we investigated the

ability of MIDAS to identify the group of patients with 2 or more

CMBs. There are also biological grounds to suggest that multiple

CMBs are of greater significance than a single lesion: for example,

a recent prospective study of stroke patients [8] showed that a

single CMB did not substantially increase the risk of ischaemic

stroke or fatal intracranial haemorrhage; whilst having 2 or more

CMBs did have prognostic relevance for these outcomes [8]. Thus,

MIDAS could be used in a clinical or research setting to rapidly

screen patients for ‘‘multiple lobar CMBs’’, a group potentially of

clinical importance with regard to diagnosing cerebral amyloid
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angiopathy (CAA) [9]; or in assessing the risk of intracerebral

haemorrhage in patients taking antithrombotic drugs [8,10].

We now discuss the potential factors that may explain the

moderate agreement between the fully automated MIDAS and the

manual identification using MARS. First, it is worth noting

MIDAS was tested here on relatively challenging clinical data that

were acquired using standard T2* sequences at 1.5T. Specifically,

with a slice thickness of 5.0 mm and a gap of 1.5 mm, partial

volume effects can have a strong impact on the T2* signal

distribution when using the unified spatial normalisation in

MIDAS that involved data smoothing and re-slicing [5], and

may thus hinder the detectability of CMBs. These partial volume

effects can explain why a few (tiny) CMBs have been missed by

MIDAS on these datasets (as illustrated in Figure 2A). Second, the

manual method (MARS) was applied on native (unresliced) images

that had better in-plane resolution and were not smoothed or re-

sliced, whereas MIDAS mapped all CMBs on the final normalised

(re-sliced) images. Third, MIDAS operated in a monospectral

mode using GRE T2* images only, whereas in the manual method

clinicians were allowed to use other available images if needed to

identify CMB mimics (e.g. [1]). Although this may introduce a bias

in favour of the manual method, we preferred here to compare

MIDAS to the manual method as commonly practiced in the

clinical setting. On the other hand, we did not incorporate these

additional images within the modified unified segmentation

framework (for instance in a multispectral mode) because of the

spatial distortion and signal loss in the T2* images that make the

co-registration (voxel-to-voxel mapping) between the different

images particularly challenging.

Future iterations of our technique should substantially improve

its performance. For example, use of a predefined artefact mask by

removing all regions with expected artefacts, might increase the

specificity of our method for CMBs in deep and infratentorial

regions. Importantly, the flat prior used here for CMBs (see

Materials and Methods section) can potentially be further

optimised if additional knowledge about the regional prevalence

of CMBs is available (e.g. [11]); for instance by increasing the prior

CMB probability in vulnerable regions and decreasing it in less

likely regions. Furthermore, a systematic investigation of the

impact of the different thresholds used here, including thresholds

on posterior probabilities and size of CMBs, would help in

optimizing the thresholds for specific applications more objective-

ly. Future applications could also extend the analysis to include

other imaging modalities/contrasts to better distinguish genuine

CMB from their mimics.

It is premature to conclude that MIDAS should substitute

manual methods for diagnosis or screening for CMBs in clinical

practice. Further improvements are needed before we can

recommend its routine clinical use. The limitations of MIDAS

were particularly noted for patients with a single CMB (here 5 out

of 13 patients with a single CMB were missed) and when using

non-optimised data acquisition protocols (the output in 12

segmented patients contained some artefacts/mimics). Neverthe-

less, the semi-automated method with manual editing substantially

improves the performance of MIDAS even on standard clinical

images. For instance, to assist clinicians and speed up the detection

of CMBs, it is possible to use the output from MIDAS as a starting

map and then clinicians can manually alter it by either adding any

missed CMBs or deleting any mimics. Manual editing using a

semi-automated method has been shown to be an attractive

alternative to time-consuming fully manual methods in various

fields, including for instance multiple sclerosis [12,13].

Figure 1. MIDAS detection in 6 different patients with variable numbers and locations of cerebral microbleeds. Typical T2* axial slices
are shown with a zoom (white rectangle) on the region with successfully identified cerebral microbleed(s).
doi:10.1371/journal.pone.0017547.g001
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Although we have shown moderate agreement for MIDAS with

the reference standard of a validated rating scale, we anticipate

that it will be even more successful when applied to research-

optimised data, including for instance isotropic voxels with thin

slices and high in-plane resolution [14]), optimized contrast for

CMB detection (e.g. susceptibility-weighted imaging [SWI] [15]),

or higher magnetic field strength [14,16].

In conclusion, this study has demonstrated a new semi-

automated CMB detection method (MIDAS), which can be useful

for CMB rating on standard clinical MR datasets. This method

has particular promise in: (i) fast screening of patients for multiple

lobar CMBs, and (ii) locating CMBs in stereotaxic space, which is

useful for producing group lesion overlap maps. We plan to use

this method to investigate spatially sensitive hypotheses concerning

the relationship between CMBs and clinical measures, including

cognitive impairment. However, further improvements in the

method presented here are necessary in order to increase its

performance for clinical applications.

Materials and Methods

Subjects
We considered unselected, consecutive patients admitted to the

Stroke Service at the National Hospital for Neurology and

Neurosurgery (NHNN). Our stroke service takes all suspected

stroke patients admitted from the surrounding district and has a

policy of performing MRI with GRE T2* sequence in all of them

unless there is a contra-indication (e.g. too medically unstable,

Figure 2. Missed cerebral microbleeds and artefacts. (A) example of missed cerebral microbleeds when using MIDAS (false negatives). (B)
example of some remaining artefacts that resisted the clean-up step in MIDAS (false positives).These false positives are easily and quickly identified in
a final manual editing step.
doi:10.1371/journal.pone.0017547.g002
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severe claustrophobia, metallic implants). Patients who did not

have an MRI or with poor quality images (e.g. due to motion

artefact) were excluded (30% of all patients presenting to our

clinical service). The first 30 consecutive eligible patients (mean

age 69 years, range 21–83 years, 14 males, 16 females) with

definite or probable microbleeds on GRE T2* sequences were

included (images were rated manually by an experienced

observer [SMG] using the Microbleed Anatomical Rating Scale

[3]). Using MARS, microbleeds were detected in 28% of our

population.

We also included a control group of 44 subjects (mean age 52

years, range 21–83 years, 23 males, 21 females) referred to the

Stroke Service over the same time period, who had an entirely

normal MRI study (reported by a consultant neuroradiologist and

checked by an experienced observer [SMG] as having no CMBs

or any other imaging evidence of cerebrovascular disease). The

data from these controls is not essential for the automated

algorithm, but was used here to generate a map of potential

artefacts (false positives) to be excluded from the output images

(see below).

The study was approved by the National Hospital for

Neurology and Neurosurgery Research Ethics Committee.

Data acquisition
MRI acquisitions were carried out at 1.5 Tesla on a GE

EchoSpeed system (General Electric, Milwaukee, WI, USA) using

a standardized protocol, between 2004 and 2007. Each subject

had axial T2-weighted Fast Spin Echo (TR = 6000 ms, TE =

105 ms, matrix = 2566224, field-of-view = 24618 cm, slice thick-

ness = 5 mm, slice gap = 1.5 mm, voxel size = 0.93860.93866.5

mm3, NEX2) and axial T2*-weighted gradient echo GRE

(TR = 300 ms, TE = 40 ms, flip angle = 20u, field-of-view = 246
18 cm, slice thickness = 5 mm, slice gap = 1.5 mm, voxel size =

0.93860.93866.5 mm3, acquisition time 2 min).

Microbleed Detection by Automated Segmentation
(MIDAS)

All analyses were carried out with scripts written in Matlab (The

MathWorks, Natick, MA, USA) that incorporated processing

functions of the statistical parametric mapping (SPM8) software

package (Wellcome Trust Centre for Neuroimaging, London, UK,

http://www.fil.ion.ucl.ac.uk/spm/).

The first step is to spatially transform or ‘‘normalize’’ each

patient’s brain images into a standard space; we used that defined

by the Montreal Neurological Institute (MNI) [17]. This spatial

transformation is based on the unified probabilistic normalisation-

segmentation framework that combines image registration, tissue

classification, and bias correction as implemented in SPM8 [5],

with two major modifications: (i) it incorporates some constrains

on the mixture of Gaussians used to model the T2*-weighted

image intensities, and (ii) it considers CMBs as an unexpected and

atypical tissue class that can explicitly be modelled within the

probabilistic framework as an extra class with an iteratively

optimised empirical prior (for more details see [6]). The output

of this modified normalisation-segmentation method produces six

separate probabilistic images, one for each tissue class (Figure 3B

and 4A): i) normal brain, a mixture of grey and white matter

(GWM); ii) cerebrospinal fluid (CSF); iii) CMBs; iv) ‘‘skull’’ and

other low intensities around the brain; v) ‘‘scalp’’; and, vi)

background (other).

The initial iteration of the unified normalisation-segmentation

procedure uses some modified priors and constrained mixture of

Gaussians; producing a ‘‘first pass’’ of the empirical prior which,

unlike the modified priors, is subject-specific. This subject-specific

prior is optimised (i.e. cleaned up) using morphological operations

on the output tissue class form the first step. This included

binarisation, granulometry and masking applied on the output

tissue class to reduce false positives (see pages 23 and 318 of Ref.

[18]). The optimised prior is then included in a second iteration of

the unified normalisation-segmentation procedure. The output is

an image that codes the degree of abnormality at each voxel.

Additional thresholds (on both size and height) are then used to

generate a binary map that visualises CMB localisation and extent.
1. Constrained mixture of Gaussians. The mixture of

Gaussians used in the unified normalisation-segmentation

procedure incorporates a smooth intensity variation and

nonlinear registration with tissue priors [5]. The priors on the

tissue class are encoded by deformable tissue probability maps

generated from the averages of affine registered and tissue

classified images of 452 subjects (http://www.loni.ucla.edu/

ICBM/). These maps, in MNI space, represent the probabilities

of finding GM, WM, and CSF tissues at each voxel. We also

considered additional priors as implemented in the new

segmentation toolbox of SPM8, which have been optimised for

segmenting high resolution anatomical images (e.g. T1-weighted)

of normal brains. The first challenge was to adapt these priors to

the signal distribution in our T2*-weighted images. As illustrated

in Figure 3A, the distribution of T2*-intensities has a rather poor

differentiation between brain tissues, which has direct implications

on the optimal choice of priors:

(i) GM and WM voxels appear at comparable intensities

within a similar range. For this reason, the prior for coding

GM and WM voxels was approximated by the sum of GM

and WM priors (as one class noted GWM in Figure 3B).

This is reasonable as the correct classification between gray

and white matter voxels is not critical when using T2*-

images at low spatial resolution.

(ii) In order to model high signal values of the CSF in the

ventricles and around the cortex, an explicit CSF prior was

included (CSF in Figure 3B).

(iii) Because there is maximal uncertainty about the a priori

spatial locations of CMBs, that is, they may appear

anywhere in the brain [1,19], a flat prior was used (CMB in

Figure 3B). This was constructed by having non-null values

(e.g. prior = 0.1) inside the brain and zeros outside the

brain. It models all voxels that cannot be considered as

‘‘normal’’ in the mixture of Gaussians algorithm (similar to

the ‘‘rejection class’’ principle suggested by previous work

[20]). This is the empirical prior that is optimised

iteratively in the next steps.

(iv) To take into account low signal intensity voxels around the

brain (i.e. the skull) that might be similar to the intensities

of interest in CMBs, a fourth tissue probability map

(‘‘skull’’ in Figure 3B) was explicitly included.

(v) The soft tissue outside the cortex with relatively high

intensities (e.g. scalp and eyes) was modelled with an

additional tissue probability map (‘‘scalp’’ in Figure 3B).

(vi) All voxels outside the subject’s head (air/background) were

explicitly modelled with another prior (noted ‘‘other’’ in

Figure 3B); this is included by default in the unified

segmentation procedure of SPM8 [5].

The unified normalisation-segmentation model combines tissue

class, intensity bias and nonlinear warping into the same

probabilistic models that are assumed to generate subject-specific

images (see equation (14) in [5]). Hence, it was critical to ensure

Microbleed Detection by Automated Segmentation
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that the mixture of Gaussians would model the appropriate

intensities of the tissue class expected at the locations coded in the

priors. Following an initial test of the algorithm (results not shown

here), we implemented two empirical constrains on the mixture of

Gaussians during the optimisation of its parameters using the

Expectation-Maximisation algorithm. This was to minimise the

impact of low contrast, partial volume in the thick slices and

possible spatial distortions. We achieved this by forcing the mean

of the Gaussians (equation (23) in [5]) for (i) CSF tissue to be

higher than the mean of Gaussians of GWM (right-side to the

dashed line of the histogram in Figure 3A), and (ii) CMBs to be less

than the 50% of the mean of Gaussians of GWM (i.e. forcing the

search for CMBs in the left-side to the dashed line of the histogram

in Figure 3A).

All six priors were sampled to an isotropic 1.5 mm resolution.

The unified model used the following number of Gaussians

(3,2,2,3,2, and 4) to model each of the intensity distributions of

GWM, CSF, CMBs, ‘‘skull’’, ‘‘scalp’’ and the ‘‘other’’ tissues

respectively. The rest of the normalisation-segmentation param-

eters were identical to our previous work (see for more details [6]).

2. Optimisation of the empirical prior. The initial unified

normalisation-segmentation on the index patient data resulted in

different tissues classes which corresponded with the expected

tissues, including the CMB class (Figure 4A). This image contained

all the CMBs identified by an experienced rater for this patient.

However, it also contained some artefacts (false positives)

mimicking CMBs that needed to be removed. These artefacts

were misclassified because their T2* intensities were comparable

to CMBs (arrows in Figure 4B). These ‘‘mimics’’ include

calcification or iron deposits in the basal ganglia, dentate nuclei,

substantia nigra, and brainstem; flow voids of cerebral vessels and

air/bone susceptibility artefacts particularly at the edges of the

frontal or temporal lobes, or cerebellum.

To minimise false positives we used the following morphological

operations [18]. First, the CMB class was converted to a binary

image using a 0.2 probability threshold. Second, we set an upper

limit for the size of a cerebral microbeed to differentiate them from

‘‘macrobleeds’’ (e.g. lobar haemorrhage). We set an upper

diameter limit for a CMBs of 8 mm; a previous study suggests

that intracerebral haemorrhage volume (at least in CAA) has a

Figure 3. Illustrations of T2* signal intensity histogram and tissue priors. (A) histogram of typical T2* intensities in a patient with multiple
cerebral microbleeds. The unit of T2* intensity is arbitrary. The dashed line indicates the mean intensity of gray and white tissue voxels. (B) Illustration
of the 6 tissue priors used in MIDAS during the first iteration of unified normalisation-segmentation. GWM = gray and white matter,
CSF = cerebrospinal fluid, CMB = cerebral microbleeds.
doi:10.1371/journal.pone.0017547.g003
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bimodal distribution with a cut off of about 5.7 mm diameter

[7,21,22]. In order to take into account possible partial volume

effects, we used a cut-off volume of 0.675 cm3 corresponding to a

cylinder of maximum 2-slices high by 8 mm diameter. All regions

with larger volumes (.0.675 cm3) assessed by morphological

granulometry (see pages 318–327 of Ref. [18]) were excluded. It is

also possible to introduce a lower limit for the size of CMBs in

order to match the thresholds used in the manual procedure (see

below). To do that, only CMBs that are at least two contiguous

voxels in size were considered (i.e. single voxel CMBs (volu-

me,0.006 cm3), if any, were excluded). Third, all regions of the

‘‘skull’’ class, including the artificial hypointensities around the

cortex (e.g. air-bone susceptibility effects at the skull base), were

used as a mask and removed from the CMB class. Fourth, because

we were not interested in hypointenisties within CSF, we excluded

all voxels and their nearest neighbours that showed a reasonably

high probability (.0.5) of being in the CSF tissue class. Finally, we

created an additional mask of irrelevant voxels by including all

voxels that had been identified as false positive CMBs (e.g. from

basal ganglia calcification [23] or air-bone susceptibility artefacts)

in any of our 44 healthy controls. This was achieved by running

the whole automated procedure on each healthy control separately

using the same parameters and then grouping any identified voxels

as CMBs in one map (that we referred to as the artefact mask).

Note that air-bone susceptibility effects were the dominant source

of artefacts (false positives) over our 44 controls, in particular at the

edges of the inferior temporal, orbitofrontal and posterior fossa

regions. Hypointense areas in patients classified as CMBs by our

method were discarded if they overlapped with this artefact mask.

These different morphological operations (i.e. binarisation,

granulometry and masking) were hard-coded by default in our

method and produced a refined image of the CMB class (see

schematic illustration of all steps in Supplementary Material S1).

3. Unified normalisation-segmentation: second iteration.

The refined version of the CMB class was then used with the

other unchanged classes (GWM, CSF, ‘‘skull’’, and ‘‘scalp’’)

as new priors for unified normalisation-segmentation of the

original T2*-weighted image. This second iteration was more

specific for identifying true CMBs (Figure 5), as the influence

of artificial hypointensities had been minimised. The identified

hypointensities appeared as continuous probability values in

the CMBs class varying from 0 to 1 (Figure 5 middle row); these

values represent the likelihood that a voxel is part of a CMB

rather than one of the other four tissue classes. It is possible to

threshold this image to generate a binary CMB map (example

with CMBs shown in red, lowest row Figure 5, using typically a

threshold of 0.5), and calculate both their exact location in

stereotaxic MNI space, and volume (not shown).

MIDAS takes less than 3 minutes to run per patient (PC 64-bit,

3.2 GHz Intel CPU, 12 GB RAM). An additional 5–10 minutes

Figure 4. Illustrations of typical first iteration outputs. (A) output of the first iteration on typical T2*-images of a patient with multiple
microbleeds (white arrows). (B) illustration of typical artefacts (white arrows) that are later removed in MIDAS.
doi:10.1371/journal.pone.0017547.g004
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on average were needed for the semi-automated approach to

manually exclude the obvious artefacts that were seen in some

patients (see Results section above).

Manual identification of cerebral microbleeds: reference
standard

The GRE T2*-weighted MRI images were displayed in semi-

dark conditions using an Agfa IMPAX PACS system, and assessed

manually by a clinical neurologist (SMG) who was trained in CMB

rating by an experienced consultant neuroradiologist (HRJ). The

presence, number and anatomical distribution of CMBs was rated

using the validated Microbleed Anatomical Rating Scale (MARS)

[3]. The rater was blinded to clinical data and the results of

automatic CMB detection procedure. Definite CMBs were defined

as small, rounded or circular, well-defined hypointense lesions

within brain parenchyma with clear margins raging from 2 mm to

10 mm in size. Care was taken to exclude all CMB mimics using

all available imaging, including axial T2-weighted fast spin echo

images that were acquired in the same session as the GRE T2*

images. In particular, flow voids in blood vessels were excluded by

their location in cerebral sulci, their visibility on the T2-weighted

images, and their lack of ‘‘blooming’’ on T2*-weighted images.

The inter-rater agreement for the presence of definite CMBs

identified in any brain location using MARS was kappa = 0.68 [3].

The manual identification is considered here as the reference

standard to define the true positives. All identified abnormalities

from MIDAS were classified by a trained observer (MAK) as true

positives or false positives (artefacts), without reference to the

manual ratings. Cases of uncertainty (in 5 patients) were decided

by consensus (MAK and DJW). Agreement between the manual

and the automated method was assessed by the intraclass

correlation coefficient (ICC) and Kappa statistics [24], either over

the whole brain or in separate brain regions (e.g. lobar versus

deep/infratentorial). The interpretation of Kappa values was

Figure 5. Illustration of genuine cerebral microbleeds. Top: axial T2*-weighted slices at different z-coordinates. Middle: final output images
from the second iteration of MIDAS showing the microbleeds identified in white. Bottom: visualisation of the same cerebral microbleeds in red on a
white background whole-brain mask.
doi:10.1371/journal.pone.0017547.g005
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based on the following definitions: ,0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8,

.0.8 for poor, fair, moderate, good and excellent respectively (see

Table II of ref. [25]). All post hoc analyses were performed with the

Statistical Package for the Social Sciences (SPSS, v. 16.0, IBM).

Supporting Information

Supplementary Material S1

(PDF)
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