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Abstract 

 

Africa's climate is prone to extended rainfall deficits. In extreme cases these may lead to 

droughts and humanitarian disasters. Skilful prediction of seasonal rainfall would bring 

sound humanitarian and economic benefit to the many African countries that depend on 

rain-fed agriculture.  

 

Seasonal rainfall hindcast skill from the DEMETER multi-model ensemble system is 

examined across Africa. Skill at 0-month lead is found to be weak over much of Africa, 

except for the August-October (ASO) season in the Sahel and the November-January 

(NJD) season in equatorial East Africa, Nigeria and South Africa. For the ASO season, 

correlation values of 0.3-0.8 (p-values < 0.1) are found across the sub-Sahara belt. For 

the NDJ season, correlation values of 0.5-0.6 (p-values < 0.1) occur in Kenya, Tanzania 

and Uganda. 

 

Innovative statistical seasonal rainfall hindcast models are developed for six 

homogeneous rainfall regions in Kenya, using linear regression techniques. Kenya has 

experienced seven severe droughts over the period 1991-2008 affecting over 35 million 

people. Lagged sea surface temperature and atmospheric wind predictors are selected 

based on having a significant and temporally stable correlation with regional rainfall 

indices, and a clear physical-linking mechanism. Moderate-to-high rainfall hindcast 

skill is found for most regions at 0- and 1-month leads for the October-December rainy 

season. In contrast, no robust predictors are found for the March-May rainy season.  

 

In 2009 an improved version of DEMETER, called EUROSIP, was released. This study 

is the first to assess the skill of the EUROSIP rainfall hindcasts for the Kenyan October-

December rainy season and to compare this with the statistical model skill. For the most 

heavily populated and cultivated West and Southwest regions of Kenya, which are 

home to 68% of the Kenyan population, the statistical models outperform the EUROSIP 

model with correlation values ≥ 0.42 (p-values ≤ 0.06) over the common verification 

period 1987-2005. 
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1974. (a) Histogram of the rainfall index to highlight the non-normal 

distribution. (b) Quantile-Quantile (QQ) plot comparing the observed 

rainfall index to the theoretical normal distribution. The black diagonal 

line in (b) indicates the theoretical position of the points if the data were 

normally distributed. The black dashed arrows highlight the high rainfall 

years that are responsible for the large departure from normality................ 

5.6 „@Risk‟ plot showing the gamma distribution (red) that best represents 

the OND seasonal rainfall index from the Southwest region over the years 

1959-1974. The green line shows the normal distribution for comparison.. 

5.7 Transformed (using log(x+1)) OND seasonal rainfall index from the 

Southwest region over the years 1959-1974. (a) „@Risk‟ plot showing the 

Log Logistic (red) and Normal (green) distributions that best represents 

the transformed OND seasonal rainfall index from the Southwest region 

over the years 1959-1974. (b) QQ-plot comparing the transformed rainfall 

index to the theoretical normal distribution.................................................. 

5.8 Schematic of the fundamentals of least-squares linear regression. Here, x 

represents the predictor variable, y represents the predictand and 

y specifies a predicted value of y. The regression line ( mxcy ) 

minimises the sum of the squared residuals, which are the vertical 

differences between the points and the regression line )( iii xyye ....... 

6.1 Scatter plots of hindcast vs. observed OND rainfall (mm/season) over the 

1991-2006 independent verification period for each region of Kenya: (a) 

Southeast, (b) northwest, (c) southwest, (d) northeast, (e) south and (f) 

west. The lead 0 skill measure shown is Rank correlation (rrank) and the 

observed data are threshold corrected regionally averaged rain gauge data 

from the KMD.............................................................................................. 

6.2 The most skilful predictor regions for OND rainfall in West Kenya. 

Correlation predictor selection plots for these regions are shown in 

Appendix B.1................................................................................................ 
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6.3 The most skilful predictor regions for OND rainfall in Southwest Kenya. 

Correlation predictor selection plots for these regions are shown in 

Appendix B.2................................................................................................ 

6.4 The most skilful predictor regions for OND rainfall in South Kenya. 

Correlation predictor selection plots for the SST Sep predictor region are 

shown in Appendix B.3. Composite difference predictor selection plots 

for the u-wind Aug predictor region are shown in Appendix B.4................ 

6.5 The most skilful predictor regions for OND rainfall in Northeast Kenya. 

Composite difference predictor selection plots for this South Kenya 

predictor region are shown in Appendix B.4................................................ 

6.6 The most skilful predictor regions for OND rainfall in Northwest Kenya. 

Correlation predictor selection plots for this region are shown in 

Appendix B.5................................................................................................ 

6.7 The most skilful predictor regions for OND rainfall in Southeast Kenya. 

Correlation predictor selection plots for this region are shown in 

Appendix B.6................................................................................................ 

6.8 The most skilful predictor regions for the OND rainfall in (a) Southeast-

east and (b) Southeast-west Kenya. Correlation predictor selection plots 

for these predictor regions are shown in Appendix B.7 and B.8 

respectively...................................................................................................  

7.1 (a) A west to east topographical cross-section of Kenya taken along the 

line linking A and B shown in (b). Figures are adapted from Figures 1 and 

4 in Hills (1979)............................................................................................ 

7.2 Composite difference plot showing direction, magnitude and significance 

of the difference in 950hPa wind anomalies for those subset years in 

Group 1 and Group 2. Group 1 comprises the 4 years (over the period 

1954-1990) with the highest number of days with Tropical Cyclone or 

Tropical Depression occurrence in the region 30-80°E and 5-35°S. Group 

2 comprises the 4 years over the same period with the least occurrence. 

Shaded areas show p-values < 0.05 in either the u- or v-component of the 

wind, according to the two-sided t-test. Figure from Shanko and 

Camberlin (1998).......................................................................................... 

7.3 March (a) 700hPa and (b) 400hPa and May (c) 700hPa and (d) 400hPa air 

transport climatologies over Africa (1971-1975) to and from Kenya. Red 

solid arrows indicate the dominant wind direction. Red dashed arrows 
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indicate the second most dominant wind direction. This Figure is adapted 

from Figures 5 (a) and (d) and 6 (a) and (d) in Gatebe et al. 

(1999)............................................................................................................ 

7.4 The best April predictor region for the Southeast region of Kenya. 

Correlation predictor selection plots for these regions are shown in 

Appendix C.1................................................................................................  

7.5 The best April predictor region for the West region of Kenya. Correlation 

predictor selection plots for these regions are shown in Appendix C.2........ 

8.1 Map of Kenya showing the rain gauge stations selected for use in the 

study, the homogeneous rainfall region boundaries (purple lines) and the 

EUROSIP and CMAP grid square boundaries (red lines). The 16 Synoptic 

rain gauge stations are marked with an asterisk (*) and 6 non-synoptic rain 

gauge stations are marked by a square (□)..................................................... 
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  Chapter 1 

Introduction 

 

1.1     Motivation and objectives of the thesis 

 

Africa‟s climate is prone to extended rainfall deficits. In extreme cases these may lead 

to droughts, economic hardship and humanitarian disasters. Between 1970 and 2006 

over 100 million people in Africa were affected by drought, requiring immediate 

humanitarian assistance (EM-DAT, 2009). Droughts were also responsible for the death 

of 97% of the persons killed by natural disasters over this period in Africa (Figure 1.1). 

The impacts of drought are felt in many economic and social sectors including 

agriculture and food security, livestock development, hydro-electricity production, 

transport, fire management, water resource management, health and public safety 

(Heim, 2002; Mukabana, 2008). When any one of these sectors becomes damaged, the 

effect can spread quickly and a whole country may suffer. Skilful prediction of seasonal 

rainfall would bring sound humanitarian and economic benefit to the many African 

countries that depend on rain-fed agriculture. It would enable timely actions to be taken 

by aid agencies and governments to avert or minimize potential hunger, destitution and 

famine resulting from drought (Verdin et al. 2005).  
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Figure 1.1. The proportion of persons killed by droughts between 1970 and 2006 

by continent compared to other natural disasters. (Courtesy of the Centre for 

Research on the Epidemiology of Disasters (EM-DAT, 2006)). 
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East Africa is unique as it is the only area on the continent to experience a low annual 

average rainfall total as well as a high standard deviation of annual rainfall (Figure 1.2). 

This indicates high climatic variability, leaving East Africa particularly susceptible to 

climatic extremes such as droughts. Currently, statistical seasonal rainfall forecasts for 

East Africa are developed for each rainy season by the local Meteorological Agencies 

(Buizer et al., 2000; Likumana, 2008; Muita, 2008; Ogallo, 2008). Forecasters also refer 

to outputs from several dynamical seasonal rainfall forecast models, prior to issuing 

their forecasts. However, the seasonal rainfall forecasting skills of these statistical and 

dynamical models have not been thoroughly assessed over East Africa. It is therefore 

uncertain how much confidence one can have in their forecasts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study focuses on Kenya, in East Africa. Kenya has experienced 7 severe droughts 

over the period 1991-2008, affecting over 35 million people who required immediate 

humanitarian assistance (Table 1.1). Figure 1.3 shows the distribution of the world‟s 

highest mortality risk disaster hotspots, by hazard type, across Africa. The location of 

Kenya is shown by the red box. It can be seen that west and southwest Kenya, which are 

home to approximately 70% of the country‟s population (CIESIN, 2005), are amongst 

the top 30% regions of the world with the highest mortality risk due to droughts and 

floods.  

 

(a) (b) 

Figure 1.2. Annual GPCC rainfall data (section 3.1.1) for Africa between 1958 and 2000. (a) 

Annual average rainfall totals (0-260 cm/year). (b) Standard deviation of annual rainfall 

assuming a Gaussian distribution (0-325mm/year). Note the two plots have different scales. 



 

Page 21 

 

 

 

Years Country Affected 

(nearest 0.1mn) 

Years Country Affected 

(nearest 0.1mn) 

1989-92 Angola 1.9 1980-85  1.5 

1983-85 Benin 2.1 2001-03 Mauritania 1.0 

1982-87 Botswana 1.0 1980-85  1.6 

1990 Burkina Faso 2.6 2005 Mozambique 1.4 

1980-1985  1.3 1991-92  3.3 

2005-06 Burundi 2.2 1981-85  4.8 

1999-01  1.0 1979-82  6.0 

2008 Eritrea 1.7 2005 Niger 3.6 

1999-03  2.3 2001-02  3.6 

1993  1.6 1990-91  1.6 

2008 Ethiopia 6.4 1988  1.0 

2003-04  12.6 1980-85  3.5 

1997  1.0 1983-85 Nigeria 3.0 

1989-94  6.5 1989 Rwanda 0.1 

1987  7.0 1982-85 Senegal 1.2 

1983-84  7.8 2008 Somalia 3.3 

1983-85 Ghana 12.5 2000-01  1.2 

2008 Kenya 1.4 1987  0.5 

2005-06  3.5 2004 South Africa 15.0 

2004  2.3 1988  1.3 

1999-02  23.0 2000-01 Sudan 2.0 

1997-98  1.6 1991-92  8.6 

1994-95  1.2 1987  3.5 

1991-92  2.7 1983-85  8.4 

2002-04 Madagascar 1.0 2003-04 Tanzania 1.9 

1988-92  1.0 1996-00  3.0 

1981  1.0 1984  1.9 

2005-06 Malawi 4.5 1999-01 Uganda 0.7 

2002  2.8 2005 Zambia 1.2 

1992-95  7.0 1995  1.3 

1990  2.8 1991-92  1.7 

1987-88  1.4 2001-03 Zimbabwe 6.0 

2005 Mali 1.0 1991-95  5.0 

 

Table 1.1. Major African droughts over the period 1980-2008 as reported on the Emergency 

Events Database (EM-DAT, 2009), including the numbers of persons affected (to the nearest 

million). A person is affected if they require immediate humanitarian assistance including: food, 

water, shelter, sanitation and immediate medical assistance for their basic survival during an 

emergency (EM-DAT, 2004). In order to present only the major Africa droughts, this table 

includes only those with reports of over 1 million people affected or over 100 deaths according 

to EM-DAT (2009).  

 
The data shown in this table should be regarded as indicative and not absolute. They are 

collected by EM-DAT from sources including: Governments, insurance companies, press 

agencies and aid agencies and are retrospectively analysed and cross-referenced. However, there 

are several problems to consider when using the data: the original information was not 

necessarily gathered for statistical purposes; collection methodologies and definitions are not 

standardised across all sources; words such as “affected”, although defined as above by EM-

DAT, can be open to interpretation (EM-DAT, 2004).  
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Rain-fed agriculture is the backbone of 

Kenya‟s economy. Over 80% of the 38 

million population (UN, 2007) are 

involved in agriculture (Brass and Jolly, 

1993; Bowden, 2007), which contributes 

24% of the Gross Domestic Product 

(GDP) (Mwagore, 2002). Agriculture is 

arguably the most vulnerable sector to 

drought, with crops affected badly if the 

drought occurs during the growing 

season. Any damage to the agricultural 

sector leaves the country exposed to 

hunger, famine and increase in disease 

incidence.  

 

 

A recent example of a severe drought affecting Kenya was the humanitarian crisis that 

developed over the period 1999-2002 (EM-DAT, 2009). Over 23 million people were 

affected by drought in western and central Kenya, the agricultural heartland of the 

country (Table 1.1). Electricity was rationed due to decreases in hydropower production 

(CERF, 2008; CIA, 2009) and many crops were damaged by a lack of irrigation. This 

affected the tea and coffee industry, causing tea production to reduce by 15% over the 

period 1999-2002 (Rice, 2006). This prolonged drought is estimated to have cost the 

Kenyan economy around 2.5 billion US dollars (CERF, 2008), which was 

approximately 20% of Kenya‟s GDP at the time (IMF, 2008).  

 

The main aims of this thesis are: 

 To perform a detailed assessment of the current seasonal rainfall hindcast skill of 

leading dynamical models over Africa. A hindcast is a retrospective forecast. 

 To produce skilful statistical hindcast models for seasonal rainfall in Kenya. 

 To improve the understanding of which predictors have strong, temporally stable 

links to Kenyan rainfall and the mechanisms responsible for their influences. 

 To compare statistical and dynamical models over Kenya in order to determine 

which produces the most skilful seasonal rainfall hindcasts. 

Figure 1.3. Distribution of the highest 30% 

mortality risk natural disaster hotspots. 

Geophysical refers to earthquakes, volcanoes 

and/or landslides; Hydro refers to floods 

and/or cyclones (Dilley, 2005). The location of 

Kenya is shown by the red box. 
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1.2     Thesis outline 

 

The thesis will begin by providing background information on Africa and its climate. 

Chapter 2 then progresses to examine the Kenyan climate and the impacts of drought on 

this country. A literature review follows on the current state of knowledge of Kenyan 

rainfall variability, predictability and teleconnections between rainfall and global Sea 

Surface Temperatures (SSTs). The operational seasonal forecasting methods used in 

Kenya are then discussed. In Chapter 3, the data, quality control techniques and 

detrending methods employed in this study are described. The results of an assessment 

of the current dynamical seasonal rainfall hindcast skill over Africa, available from the 

DEMETER multi-model ensemble hindcast system, are presented in Chapter 4. 

 

Chapter 5 describes the methodology behind the development of statistical seasonal 

rainfall hindcast models. Monthly rain gauge data are clustered into homogeneous 

rainfall regions to create new regional, seasonal rainfall indices. The predictor selection 

criteria are then outlined. These consist of analysis of correlations between Kenyan 

seasonal rainfall and predictors, their statistical significance and the stability of their 

relationships over time. The methods used to develop the statistical seasonal rainfall 

hindcast models and to assess their hindcast skills are presented. 

 

Chapters 6 and 7 present the statistical seasonal rainfall hindcast models for the Kenyan 

„short- and long-rains‟ seasons. Both chapters begin with the current state of knowledge 

of the physical mechanisms for each season. Chapter 6 examines the predictors selected 

for the „short-rains‟ season and their physical links to Kenyan rainfall. It then provides 

the results of a detailed skill assessment of the statistical seasonal rainfall hindcast 

models over each region of Kenya. An investigation into the predictors for the „long-

rains‟ season is presented in Chapter 7. Issues that arise from this investigation are then 

discussed. 

 

A comparison of statistical and dynamical OND hindcast models is made in Chapter 8. 

The seasonal rainfall hindcast skill available from the EUROSIP multi-model ensemble 

system is assessed over Kenya. A discussion on which type of model produces the most 

skilful hindcasts for each region of Kenya is then presented. Finally, conclusions are 

presented in Chapter 9, along with a discussion on the wider implications of this study 

and suggestions for future directions.  
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Chapter 2 

Background and Literature Review 
 

 

2.1     Africa and its climate 

 

Africa is the world‟s second largest continent after Asia. It covers over 30 million km² 

and has over 50 countries. Africa spans the equator from 37°N to 35°S and comprises a 

range of extreme climatic zones from tropical rainforests to arid deserts. Most of Africa 

lies within the tropics and subtropics where temperatures are high throughout the year 

and where the diurnal temperature range (~10-15°C) exceeds the interannual 

temperature range (~6-10°C), except in the deserts (Nicholson, 2001). The mean annual 

rainfall distribution varies from less than 1mm/yr in the Sahara to over 2m/year in the 

tropical rainforests of the Guinea coast and Congo (Figure 1.2 (a)). 

 

The climate of Africa is dominated by planetary scale features (Glantz, 1988) such as 

the meridional overturning of the Hadley Circulation, the influences of the Atlantic and 

Indian Ocean monsoons, the Inter-Tropical Convergence Zone (ITCZ) and 

teleconnections with sea-surface temperature (SST) and pressure features such as the 

El-Niño Southern Oscillation. The finer features of the climates of individual countries 

are determined by localised factors such as topography and the presence of large bodies 

of water. The latitude of each country is a major factor in the distribution of the rainy 

seasons across the year, which is linked to the passage of the sun in the Tropics.  

 

2.1.1     African droughts 

 

Africa has a long history of droughts of varying lengths and intensities (Gommes and 

Petrassi, 1996). Table 1.1 shows that severe droughts have affected over 200 million 

people across 25 African countries during the period 1980-2008, as reported in the 

Emergency Events Database (EM-DAT, 2009).  
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When considering African droughts it is important to first establish a definition of 

drought. There is considerable disagreement in the literature on this subject. A simple 

definition is provided by Gibbs (2000) as “a shortage of water to meet essential needs”, 

although this depends greatly on how water is used in the region. The absence of a 

precise and universally accepted definition can lead to confusion over determining the 

onset and cessation of a drought (Wilhite, 2000). The effect of a drought depends on the 

intensity, duration and spatial extent of the dryness and the vulnerability of the 

population. Vulnerability depends on the accuracy and availability of any predictions, 

monitoring and early warning systems, mitigation and the preparedness of the 

population (Wilhite, 2000).  

 

Figure 2.1 shows the different types of drought that can occur and the impacts over time 

that these may bring. The four generally accepted forms of drought shown in this figure 

are: meteorological, agricultural, hydrological and socio-economic (Heim, 2002).  

 

A meteorological drought is defined as an absence or a large reduction in rainfall over 

an extended period of time relative to the regional climatic norm. There can be no other 

form of drought without first experiencing a meteorological drought; therefore this is 

the definition that will be used for the rest of this thesis.  

 

An agricultural drought may follow a meteorological drought, with its lag time 

depending on the prior moisture of the soil (Heim, 2002). An agricultural drought is 

caused by short term dryness in the root layer of the soil. If the dry period occurs at a 

critical time in the growing season then the effect on the crops can be widespread and 

severe.  

 

After a long period of dryness a hydrological drought may develop, when the effect 

reaches the surface and subsurface water supply. This reduces stream flow and lake 

levels, which are often the first visible signs of a drought taking place. Hydrological 

droughts generally persist for longer periods and can have a huge impact on the death 

toll of a drought in Africa, as the vast majority of the population depend on wells and 

natural water sources for their drinking water and for crop irrigation.  

 

Finally, a socio-economic drought occurs when the situation has reached quite a severe 

scale and the effects are seen in the supply of economic goods.   
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Figure 2.1. Relationships between different types of drought and duration of drought events. 

Based on Figure 1.4 from page 10 of Drought: a Global Assessment (Wilhite, 2000). 

Reproduced with kind permission of the publishers. 
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2.1.2     Selecting a suitable country to study 

 

This study starts by examining the seasonal prediction of African rainfall in general and 

then progresses to examine the seasonal prediction of Kenyan rainfall by region. Why 

was Kenya chosen? 

 

The first criterion to select a suitable country to study is the number of severe droughts 

that have affected the country over recent years. Table 1.1 shows that Kenya and 

Ethiopia have experienced more major droughts than any other African country over the 

period 1980-2008. Kenya and Ethiopia have experienced drought conditions in 

approximately 50% and 45% of the years in this period. They have also both had the 

highest number of people affected by drought during this period, with over 35 and 40 

million people respectively. For comparison, this is over 10 million more people than 

the third highest affected country, Sudan, which experienced drought conditions for 

24% of the same period.   

 

The second selection criterion is that the country has an accurate, reliable and dense rain 

gauge network over an adequately long historical period. This is fundamental to the 

development and verification of reliable statistical forecast models for seasonal rainfall. 

Figure 2.2 shows the global availability of rain gauges with a minimum of 90% data 

availability during the period 1951 to 2000 (Beck et al. 2005). It can be seen that the 

rainfall data across Africa has a sparse and uneven distribution compared to the more 

developed areas of the world. In East Africa, Kenya has the highest density of rain 

gauges with 90% data availability.  

 

Ethiopia and Kenya fulfil both selection criteria. There has been less research published 

on rainfall prediction and variability in Kenya compared to Ethiopia. Therefore, Kenya 

was selected as a suitable country to investigate in further detail for this study. 
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2.2     Kenya and its climate 
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Figure 2.2. Map of available rain gauge stations which provide input to the GPCC data 

set (section 3.1.1). These stations have at least 90% data availability between 1951 and 

2000. There are about 500 stations in Africa and 9343 stations worldwide (Courtesy of 

Beck et al., 2005). 

 

Figure 2.3. Map of the position of Kenya on the continent of Africa. Both maps of Africa and 

Kenya are from the Encyclopaedia Britannica (1998 and 1999 respectively). 
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2.2     Kenya and its climate 

 

Kenya is located in East Africa, straddling the equator from 5°S-5°N and 34°E-42°E 

(Figure 2.3). It has a land area of approximately 580,000 km² and a population of over 

38 million (UN, 2007). Kenya experiences two main rainy seasons: the „long-rains‟ in 

March-May (MAM) and the „short-rains‟ in October-December (OND). This annual 

cycle is influenced by the movement of the Inter-Tropical Convergence Zone (ITCZ), 

which migrates between 15°S and 15°N between January and July respectively. The 

ITCZ is a surface convergence zone (Nicholson, 2008) of equator-ward moving 

airmasses from both hemispheres (Okoola, 1998, 1999). Its migration is governed by 

the overhead passage of the Sun heating the Earth. The Tropical Rain Belt is the zone of 

maximum cloudiness and rainfall within the ITCZ (Okoola, 1998; Nicholson, 2008). 

The monsoonal winds of the ITCZ are the major source of Kenya‟s moisture flux. 

Inland, the winds are significantly modified by Kenya‟s topography (Ogallo, 1988). 
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 Figure 2.4. Topographical map of Kenya. The scale is metres above 

sea level (Courtesy of Richard Anyah, personal communication). 

  -2 

    2 

   34    38     42 

Longitude (°E) 

  -4 

  36  40 

E
lev

atio
n

 (m
etres) 

    4 

    0 

L
at

it
u
d
e 

(°
N

) 



 

Page 30 

 

Kenya‟s diverse topography (Figure 2.4) contributes towards the high spatial variance in 

the seasonal rainfall distribution. Figure 2.5 shows the annual rainfall time series from a 

representative sample of rain gauge stations across Kenya over the period 1959-2006. 

The „long- and short-rain‟ seasons can be seen at all stations. The stations with the 

highest annual rainfall totals are found along the Indian Ocean coast and in the western 

and central highland regions. The high rainfall totals in the coastal region have allowed 

a narrow band of fertile land to develop along the Indian Ocean coast, extending up to 

100km inland. The western and central highland areas are generally the most fertile in 

Kenya and therefore the most populated and best cultivated (Bowden, 2007). The 

central highland area is comprised of two mountain belts, divided by the Great Rift 

Valley, which cuts across the landscape from the north to the south. The width of the 

Great Rift Valley ranges from 40km at its narrowest to 320km at its widest point 

(Bowden, 2007). Mount Kenya is the highest point of these highlands at 5,199m.  

 

Kenya‟s climate is normally dry between the „long- and short-rain‟ seasons. The 

exception to this is the high plateau region to the west of the Great Rift Valley, which 

has a third rainy season during July-August. This is due to the influx of a moist westerly 

airstream from the Atlantic Ocean and Congo/Zaire basin (Davies et al. 1985; Ogallo 

1988). This third, localised rainy season can be seen in the time series from Kisii Met 

station in Figure 2.5. Moving towards the north of Kenya, the terrain turns to 

inhospitable deserts in the northwest and semi-arid conditions in the northeast (Blades, 

2000). The driest and least populous region is the northwest, where the Lodwar rain 

gauge station receives <50mm/month at its peak (Figure 2.5).  

 

2.2.1     Drought impacts in Kenya 

 

The effects of drought on a country depend on three main conditions: the regularity of 

severe droughts, the country‟s dependence on rain-fed agriculture and the ability of the 

population to prepare for and adapt to drought conditions.  

 

The first condition is the regularity of severe droughts. Table 1.1 shows that Kenya 

experienced severe drought conditions in 50% of the years between 1980 and 2008. 

Most years Kenya will experience either localised or more widespread droughts 

(Ogallo, 1989), which affect many sectors including: agriculture, livestock, forests, 

wildlife, tourism, water resources and hydroelectric power generation. 
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Figure 2.5. Annual rainfall time series from a representative sample of rain gauge stations 

across Kenya averaged over the period 1959-2006. Rainfall data are from the Kenya 

Meteorological Department, the map of Kenya is from Online Maps (2009). 
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Figure 2.6. Population density (a) and land use (b) maps of Kenya. Population data are from the 

1989 population census (UN, 2006). 

The second condition is the country‟s dependence on rain-fed agriculture. For the case 

of Kenya, this was established in Chapter 1. The third condition is the ability of the 

population to prepare for and adapt to drought conditions. Kenya is a developing 

country with 46% of the rural population living below the poverty line, on less than 1 

US $ per day. 32% of the rural population are also below the food poverty line (Boken 

et al., 2005), which means they cannot afford enough food to provide the minimum 

nutritional amount to survive. The Kenyan Government and the population do not have 

the financial resources to adequately prepare for and adapt to drought conditions.  

 

Therefore, as a result of the above three conditions being met, the impacts of drought 

are felt very heavily in Kenya. The effects of regional droughts depend on: the 

population of the region affected and the land use types. Figure 2.6 shows the (a) 

population density and (b) land use types across Kenya. In areas of greatest population 

density and agricultural production, which generally are coincident, a drought would 

cause maximum damage. It can be seen that these areas are located in western and 

central Kenya, around the rift valley and highlands and in a narrow strip along the 

Indian Ocean coast.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Population Density Land Use  
(a) (b) 

 

 
 

 

Lakes 
 

Forest boundaries 

 
 

0-5 

5-50 

50-100 

100-200 

200-500 

>500 

Population density (Inhabitants/Km
2
) 

   0     50   100  150  200  250   Km 

 

Perennial cropland 
 

Arable cropland 
 

Improved grazing land 
 

Wetland/riverine forest 
 

Flooding zones 

       

Swampy areas 
 

Moorlands 
 

Settlements 

 

Forests 
 

Lakes/bogs 
 

Arid zones 
 

Semi-arid zones 
 

 

   Equator 



 

Page 33 

 

2.2.2     Kenyan drought case studies 

 

1999-2002: drought in western and central Kenya 

 

A severe drought affected over 37 million people across 9 countries in Africa between 

1999 and 2002 (Table 1.1). This drought may have been forced by the La Niña (Chapter 

2.3.1) that persisted in the Pacific Ocean over the period 1999-2001. La Niñas are 

generally linked to reduced rainfall over East Africa in the boreal winter.  

 

The humanitarian effects of this drought were particularly devastating in western and 

central Kenya. These are the most heavily populated and cultivated regions in the 

country. Humanitarian assistance was necessary with over 23 million Kenyans being 

affected (Table 1.1). This was the highest number of people reported to have been 

affected by drought in Africa for over 100 years (EM-DAT, 2009). At the peak of the 

drought, in 2000, malnutrition had affected 40% of the population and 3.2 million 

Kenyans were dependent on food aid (CERF, 2008). The lack of food and water caused 

severe conflicts between pastoral communities in central Kenya (IRI, 2005).  

 

It is estimated that this prolonged drought cost the Kenyan economy around 2.5 billion 

US $ (CERF, 2008). This was approximately 20% of Kenya‟s GDP at the time (IMF, 

2008). The tea and coffee industries, which are the leading contributors to Kenya‟s 

GDP, were damaged during this drought as the leaves withered in the dry heat. Tea 

production fell by 15% between 1999 and 2002 (Rice, 2006). Further damage to 

Kenya‟s economy was caused by hydroelectric power rationing (Mutimba, 2005; ISS, 

2009), which was implemented throughout the period 1999-2001 (CIA, 2009). This 

caused a reduction in agricultural output as the amount of available electricity fell by 

25% in 2000 (CERF 2008).  

 

2005-2006: drought in northern and eastern Kenya 

 

In 2005-2006 the northern and eastern regions of Kenya were affected by severe 

drought conditions (CERF, 2009). This drought was initiated by the failure of the 

„short-rains‟ from October to December in 2005.  
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The northern and eastern regions are the least populous in Kenya, as the land is mainly 

arid or semi-arid. A drought in these regions, therefore, has a far smaller humanitarian 

impact than in the western and central regions. Humanitarian assistance was required by 

3.5 million people (Table 1.1). The worst affected communities were the nomadic 

pastoralists in the northeast of Kenya. In some areas of the northeast 70% of the 

livestock died (CERF, 2009). The London Times (Rice, 2006) reported that this drought 

also had an adverse affect on the tea industry. The Chief of the Tea Board of Kenya, 

Sicily Kariuki, reported that black-tea production fell by 20% in the first half of 2006 

compared to the same period in 2005 (News 24, 2006).  

 

The Central Emergency Response Fund (CERF) was established by the United Nations 

in March 2006 to ensure that funds from major international aid organisations (such as 

the World Health Organization, the World Food Programme and United Nations 

funding) go to where they are most needed. Between March-December 2006 CERF 

provided aid costing over 27 million US $ to Kenya‟s worst affected sectors including: 

food, health, agriculture, water and sanitation (CERF, 2009). This aid directly helped 

over 3 million people (Table 1.1).     

 

2.3     Current state of knowledge of Kenyan rainfall  

  variability and predictability 
 

Although there has been much research into the variability and predictability of monthly 

and seasonal East African rainfall over the past 25 years (Davies 1985; Nicholson and 

Entekhabi 1986; Ropelewski and Halpert 1987, 1989; Ogallo et al. 1988; Ogallo 1989; 

Hastenrath et al. 1993, Gommes and Petrassi 1996; Nicholson and Kim 1997; 2004; 

Okoola 1999; Saji et al. 1999; Sun et al 1999a, 1999b; Webster et al. 1999; Hastenrath 

2000, 2007; Indeje et al. 2000; Nicholson 2000, 2001; Nicholson and Selato 2000; 

Camberlin et al. 2001; Neng et al. 2002; Black 2003, 2005; Clark et al. 2003; Manpande 

and Reason 2005; Marchant et al. 2006; McHugh 2006; Zablone and Ogallo 2008), the 

scientific community is currently unable to consistently issue accurate forecasts of 

seasonal rainfall for East Africa.  

 

Several publications present statistical models that have been developed to provide 

large-scale seasonal rainfall hindcasts and forecasts at zero-month lead for the whole of 
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East Africa (Mutai et al., 1998; Mutai and Ward, 2000; Philippon et al., 2002; Colman 

and Graham, 2005). Mutai et al. (1998) developed statistical models to forecast the 

large-scale OND rainfall anomaly over East Africa (15°N-15°S and 30°E-41.25°E). 

Their most skilful forecast for East Africa has a correlation skill value of 0.6 (p-value < 

0.05) over an independent verification period of 1981-1994. They note that further work 

is necessary to enhance the utility of the forecasts and to raise the skill of the forecasts 

over smaller spatial scales. They suggested that this could be done by training models 

for specific sub regions of East Africa (Mutai et al. 1998; Mutai and Ward 2000). 

Philippon et al. (2002) have also developed a skilful hindcast model for OND rainfall 

over East Africa (4°N-4°S and 30°E-39°E). The hindcast has a cross-validated 

correlation skill value of 0.8 (p-value < 0.05) over the period 1968-1997. Forecast skill 

results are not shown over an independent verification period. The Met Office started to 

issue experimental statistical forecasts for East African (5°N-15°S and 30°E- the Indian 

Ocean Coast) OND rainfall in 1994 (Colman and Graham, 2005). The Met Office 

hindcasts have a cross-validated correlation skill value of > 0.5 (p-value < 0.05) over 

the period 1948-1997.  

 

Statistical hindcast models have also been developed on a smaller spatial scale. These 

provide regional statistical seasonal rainfall hindcast models for the East African coast, 

Kenya and Ethiopia. Research by Hastenrath et al. (2004) found that correlation was not 

robust over time for their regional hindcast model, developed for the East African coast. 

Although correlation values of up to 0.74 were found for OND hindcasts over the period 

1958-1977, this dropped to correlation values of <0.32 over the period 1978-1996. A 

similar result was found by Farmer (1988) when developing a statistical hindcast model 

for the September-December rainy season in Kenya. Over the period 1901-1942 the 

hindcast provided only an equivalent skill to using climatology with a correlation of 

0.33, whereas over the period 1943-1984 the correlation value increased to 0.52. 

However, these results may be questionable due to the poor quality of the Kenyan 

rainfall data in first half of the 20
th

 Century.  

 

There has been more research published about Ethiopian seasonal rainfall prediction 

compared to that published about Kenya. Skilful regional statistical hindcast models 

have been developed for the Ethiopian June-September rainy season by Diro et al. 

(2008), based on the work of Gissila et al. (2004). Diro et al. (2008) divided Ethiopia 

into homogeneous rainfall regions and developed probabilistic seasonal rainfall hindcast 
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models for each region. They found that their hindcasts were more skilful than 

climatology or a random hindcast in each homogeneous rainfall region. Korecha and 

Barnston (2007) have also developed skilful hindcast and forecast models for the 

Ethiopian June-September rainy season. Correlation values of 0.64 and 0.51 were found 

for hindcasts over the periods 1970-1996 and 1997-2004. This latter independent 

verification period is acknowledged by the authors to be too short to strongly 

demonstrate that the forecast skill is robust. 

  

2.3.1     Teleconnections between Sea Surface Temperatures (SSTs) and  

   rainfall 

 

A good understanding of the atmospheric dynamics through which seasonal rainfall in 

East Africa can be forced by large scale coupled ocean-atmosphere systems should 

accompany the development of statistical forecast models. This knowledge will assist 

the statistical relationships between rainfall and SST anomalies and their associated 

pressure and wind anomalies being used with confidence to predict seasonal rainfall 

(Camberlin et al., 2001). The following sub-sections will outline the teleconnections 

that have been reported in the literature between SSTs and Kenyan and East African 

rainfall.  

 

2.3.2     Pacific Ocean: El Niño Southern Oscillation (ENSO)  

 

The El Niño Southern Oscillation (ENSO) is a global climate phenomenon caused by 

ocean-atmosphere interactions that occur mainly in the tropical-subtropical Pacific and 

Indian Ocean basins (Diaz and Markgraf, 2000; Chang and Zebiak, 2003). ENSO is an 

irregular phenomenon that tends to reoccur every 2-7 years (Diaz and Markgraf, 2000) 

alternating between its two extremes: El Niño and La Niña. An El Niño (La Niña) 

occurs when warm (cool) SST anomalies and their associated decreased (increased) sea 

level atmospheric pressure anomalies are observed in the central and/or eastern 

equatorial Pacific Ocean (Glantz, 2001). An El Niño (La Niña) is defined by Trenberth 

(1997) to occur if the 5-month running mean of SST anomalies in the Niño 3.4 region 

(5°N-5°S, 120°-170°W) exceeds (is less than) 0.4°C (-0.4°C) for 6 months or more. 

Most ENSO events begin in the northern hemisphere spring or summer and reach peak 
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intensity between November and January. An „average‟ event tends to last for 18-24 

months although all events vary in magnitude, spatial extent, onset, duration and 

cessation (Diaz and Markgraf, 2000).  

 

The term „El Niño‟ has been used by Peruvians since before 1892 to describe the 

current of warm water that moves southwards along their coast every few years (Glantz, 

2001). Walker (1924) was the first to document the term „Southern-Oscillation‟, which 

he referred to as a „seesaw‟ of atmospheric pressure between the Pacific and Indian 

Oceans. Berlage published a paper in 1957 linking the Southern Oscillation to El Niño. 

Bjerknes (1966 and 1969) was the first to explain the link between the Southern 

Oscillation and SST changes in the eastern equatorial Pacific Ocean, showing that El 

Niño was a basin-wide phenomenon.  

 

Although the origins of ENSO are in the Tropical Pacific, its impacts extend to weather 

patterns around the globe (Chang and Zebiak, 2003). Numerous studies have found a 

significant correlation between East African rainfall and the El Niño Southern 

Oscillation, with the sign of the correlation and its variance depending on the precise 

region and season (Ropelewski and Halpert 1987, 1989; Janowiak 1988; Ogallo et al. 

1988; Nicholson and Kim 1997; Mutai and Ward 2000; Nicholson and Selato 2000; 

Camberlin et al. 2001; Neng et al. 2002; Korecha and Barnston 2007). These studies 

have shown that El Niño is associated with droughts in Ethiopia with a negative peak in 

correlation during the July-September rainy season. However, the teleconnection 

structure is quite different further south in Equatorial East Africa (EEA) during the 

„short rain‟ season from October to December (Mutai and Ward, 2000). Here El Niño is 

associated with abnormally wet conditions with a positive correlation peak during OND 

(Lau and Sheu 1988; Indeje et al. 2000; McHugh 2006), with a few exceptions such as 

along the Kenyan coastline (Ogallo 1988; Hastenrath et al. 1993). The opposite 

situations occur during a La Niña with abnormally wet conditions in Ethiopia during 

July-September and dry conditions during the „short rain‟ season in EEA. This link 

between Kenyan/Ugandan rainfall and ENSO can be seen in Figure 2.7. This Figure 

shows the Climate Prediction Center‟s analysis of the relationships between El Niño and 

La Niña and global temperature and rainfall patterns during the December-February 

season (CPC, 2007).  
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 Cold Episode Relationships (December – February) 

 

 

Figure 2.7. The Climate Prediction Center‟s analysis of the relationships 

between El Niño (warm episode) and La Niña (cold episode) and global 

temperature and rainfall patterns for December-February (CPC, 2007). The 

boxed regions highlight the Kenya/Uganda region. 
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Theories behind the dynamics of this teleconnection are suggested in several papers. 

Camberlin et al. (2001) suggests that the link between El Niño and East African rainfall 

is due to El Niño weakening the equatorial Walker cell over the Indian Ocean. This 

results in low-level convergence and upper-level divergence over East Africa, 

producing anomalously wet „short-rains‟ in most of EEA. Black (2003, 2005) and Mutai 

and Ward (2000) suggest that El Niño events are associated with a general warming of 

the Indian Ocean and that anomalous cold SSTs are introduced to the south Indian 

Ocean around the Maritime Continent via the Indonesian through flow. These cold SST 

anomalies could be a response to anomalous along-shore southerly winds (Black, 2003, 

2005) causing upwelling of colder waters (Xie and Annamalai, 2002). This generates an 

east-west sea-level pressure gradient that drives moist easterly wind across the Indian 

Ocean towards East Africa. Black (2003, 2005) expands on this idea by suggesting that 

the observed link between ENSO and East African rainfall is actually a manifestation of 

the link between ENSO and the Indian Ocean Dipole (IOD). This theory has gathered 

support in the literature since the discovery of the IOD in 1999 (Saji et al., 1999; 

Webster et al., 1999). The following sub-section presents the IOD as a potential 

predictor for East African rainfall. 

 

2.3.3     Indian Ocean: Indian Ocean Dipole (IOD) 

 

The IOD is a coupled ocean-atmosphere system, with fluctuations in SST anomalies 

across the Indian Ocean (Saji et al., 1999; Webster et al., 1999). Research into the IOD 

and its associated climate anomalies is still in its infancy (Luo et al., 2008). Pioneering 

work on the IOD was first published in 1999 by Saji et al. and Webster et al. with 

further research being published in recent years supporting the idea of an independent 

ocean-atmosphere coupled circulation system in the Indian Ocean driving surrounding 

climate variability. The Dipole Mode Index (DMI) was developed by Saji et al. (1999) 

as a simple index to measure the IOD, describing the zonal gradient in SST anomalies 

across the Indian Ocean between the west (50°-70°E, 10°S-10°N) and the east (90°-

110°E, 10°S-Equator). These SST anomalies appear around June and generally peak in 

October. The SST anomalies force changes in atmospheric circulations and rainfall 

patterns across the Indian and west Pacific Ocean Basins. The SST, wind and rainfall 

anomalies associated with the IOD are presented in Figure 2.8. 
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  Negative Dipole Mode 

 

  Positive Dipole Mode 
 

(a) 

(b) 

Figure 2.8. The Indian Ocean Dipole (IOD) and its associated negative (blue) and 

positive (red) SST anomalies. White indicates areas of increased convective activity. 

Low-level wind direction is indicated by the yellow arrows. Significant anomalies 

appear around May-June, intensify through July to September and peak in October, 

followed by a rapid demise (Saji et al., 1999).  
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The positive mode of the IOD is presented in Figure 2.8 (a). Positive SST anomalies are 

observed in the equatorial-west Indian Ocean with negative SST anomalies in the 

equatorial-east Indian Ocean, Indonesia and in the ocean around northern and eastern 

Australia. This reversed SST gradient, relative to the climatological mean (Webster et 

al., 1999), drives an atmospheric circulation with easterly low-level wind anomalies.  

Rising motion is enhanced over the positive SST anomalies in the western Indian 

Ocean. Convective activity and rainfall amounts have been observed to increase over 

this area, including over parts of East Africa, during the „short-rain‟ season, with the 

relationship strength varying by region (Zablone and Ogallo, 2008).  

 

The opposite SST anomaly patterns occur during the negative mode of the IOD as 

shown in Figure 2.8 (b). This SST gradient drives an atmospheric circulation with 

westerly low-level wind anomalies. Rising motion and convective activity is enhanced 

over the positive SST anomalies in the eastern Indian Ocean. The low-level westerlies 

lead to enhanced subsidence over East Africa and increased transport of moisture away 

from the continent, leading to the observed reduction in East African rainfall 

(Hastenrath et al. 1993; Hastenrath 2000; Manpande and Reason 2005).  

 

2.3.4     The relationship between the IOD and ENSO 

 

The relationship between the IOD and ENSO is a controversial issue in the literature 

with the scientific community split between the IOD being dependent on ENSO 

(Reason et al. 2000; Baquero-Bernal et al. 2002; Xie and Annamalai 2002) and 

independent of ENSO (Saji et al. 1999; Webster et al. 1999; Guan et al. 2003; Saji and 

Yamagata 2003; Marchant et al. 2006; Luo et al. 2008).  

 

The IOD and ENSO do appear to be linked to some extent. The Spearman‟s Rank 

correlation between the OND Niño 3.4 index and the OND DMI is moderately strong 

and temporally stable with Rank Correlation values >0.55 for each period 1959-1974, 

1975-1990 and 1959-1990. The paragraphs below present the two main suggested 

theories from the literature for the relationship between the IOD and ENSO:  
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1. The IOD is forced primarily by ENSO  

 

Baquero-Bernal et al. (2002) conducted a series of coupled ocean-atmosphere model 

experiments and found that the dipole-like variability in the Indian Ocean can only be 

explained in the context of ENSO, although they did suggest that the dipole may 

sometimes be forced stochastically by the atmosphere. Xie and Annamalai (2002) 

conclude that much of the Indian Ocean variability is due to oceanic Rossby waves that 

propagate from the east and are forced by ENSO. These Rossby waves are thought to 

interact with the atmosphere after reaching the western Indian Ocean.  

 

2. The IOD can be forced by different circulations, including ENSO 

 

There are several papers that conclude that although the IOD may sometimes evolve 

without ENSO external forcing, it does on some occasions interact with ENSO, possibly 

through the Walker Circulation or via the Indonesian through-flow (Yamagata et al. 

2002; Behera and Yamagata 2003; Black 2003, 2005; Behera et al. 2006). Drbohlav et 

al. (2007) and Behera and Yamagata (2003) add to the debate by suggesting that the 

IOD can be induced by both ENSO and local Indian Ocean circulations, although the 

resulting spatial IOD structures may be slightly different. This idea is supported by 

Black (2003, 2005) and Xie and Annamalai (2002) who have proposed that the 

occurrence of IOD events with no El Niño, such as in 1961, may suggest that the IOD 

can be triggered by factors other than ENSO. During the East African floods of 1961, an 

IOD structure was evident in the SST patterns of the Indian Ocean but there was no El 

Niño in the Pacific (Saji et al., 1999).  

 

Which is the most dominant forcing: ENSO or IOD? 

 

It is important for this study to explore which SST teleconnections are the most 

important in forcing East African rainfall variability. Several recent studies provide 

evidence that the IOD is more dominant that ENSO in forcing East African rainfall 

variability (Black, 2003; Clark et al., 2003; Ummenhofer et al., 2009). Black (2003) 

observes that there has been above average rainfall in East Africa during every positive 

IOD year from 1960 to 2000, compared to only during 4 out of 9 El Niños, and that the 

top 5 highest rainfall seasons occurred during a positive IOD during this period. 
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Figure 2.9. African OND rainfall anomaly linked to the IOD independent of ENSO (panels (a) to (c)) and linked to ENSO independent of the IOD (panels (d) to (f)) for 1959-2000. 

Panel (c) shows the difference in OND rainfall anomaly between those subset years when the OND ENSO is neutral and the OND IOD is (a) above median and (b) below median. 

Panel (f) shows the difference in OND rainfall anomaly between those subset years when the OND IOD is neutral and the OND ENSO is (d) above median and (e) below median. 
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Figure 2.9 supports the suggestion that the IOD has a stronger link to East African 

rainfall variability than ENSO has. OND rainfall anomalies over Africa are presented in 

each panel for a specified subset of years (see below) selected from the period 1959-

2000. The location of Kenya is shown by the black box in each panel. 

 

The link between the IOD and African OND seasonal rainfall anomalies, independent of 

ENSO, is investigated in panels (a-c). Panel (a)  shows the rainfall anomalies for the 5 

years when both the OND seasonal average Niño 3.4 index value lies within the middle 

tercile of the 42-year period („ENSO neutral phase‟) and the OND seasonal average 

DMI value lies above the median of the 42-year period („IOD positive phase‟). Panel (b)  

shows the rainfall anomalies for the 9 years when both the OND seasonal average Niño 

3.4 index value lies within the middle tercile („ENSO neutral phase‟) and the OND 

seasonal average DMI value lies below the median („IOD negative phase‟). Panel (c) 

shows the difference in rainfall anomalies between panel (a) and panel (b), which 

represents the overall link between the IOD, independent of ENSO, and OND seasonal 

rainfall anomalies. The IOD has a strong link to Kenyan OND seasonal rainfall 

anomalies during ENSO neutral years, producing overall positive rainfall anomalies of 

32 to 120mm/season. The results also show that the positive phase of the OND IOD has 

a stronger affect on Kenyan OND rainfall than the negative OND IOD phase. 

 

The link between ENSO and African OND seasonal rainfall anomalies, independent of 

the IOD, is investigated in panels (d-f). Panel (d)  shows the rainfall anomalies for the 6 

years when both the OND seasonal average DMI value lies within the middle tercile of 

the 42-year period („IOD neutral phase‟) and the OND seasonal average Niño 3.4 index 

value lies above the median of the 42-year period („ENSO positive phase‟). Panel (e)  

shows the rainfall anomalies for the 8 years when both the OND seasonal average DMI 

value lies within the middle tercile („IOD neutral phase‟) and the OND seasonal average 

Niño 3.4 index value lies below the median („ENSO negative phase‟). Panel (f) shows 

the difference in rainfall anomalies between panel (d) and panel (e), which represents 

the overall link between ENSO, independent of the IOD, on OND seasonal rainfall 

anomalies. ENSO has a weaker link to Kenyan OND seasonal rainfall anomalies during 

IOD neutral years, producing overall rainfall anomalies of -71 to 41mm/month. 

 

The IOD therefore has a stronger link to Kenyan OND seasonal rainfall variability than 

ENSO. The results show that any link between Kenyan OND rainfall and OND ENSO 
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is not linear. It must be noted that Figure 2.9 considers only contemporaneous 

relationships between rainfall anomalies and the IOD and ENSO over the OND season.  

 

2.3.5     Atlantic Ocean 

 

There have been several studies suggesting links between positive rainfall anomalies in 

East Africa and periods of westerly outbreaks, bringing moist Atlantic air into the 

region (Davies et al. 1985; Nicholson and Entekhabi 1987; McHugh and Rogers 2001; 

Camberlin and Philippon 2002; McHugh 2004). McHugh and Rogers (2001) 

demonstrated that this link tended to occur during the positive phase of the North 

Atlantic Oscillation (NAO), which generally peaks during the boreal winter. The NAO 

is an atmospheric oscillation in sea-level pressure over the North Atlantic Ocean 

between the Azores subtropical high and the Icelandic polar low. A positive NAO 

occurs when these systems have higher and deeper pressures respectively, which can be 

linked to perturbations in atmospheric circulation away from the North Atlantic.  

 

McHugh (2004) provides a dynamical explanation for the link between westerly 

outbreaks of moist Atlantic air flow and increased rainfall in East Africa. Atlantic air 

masses can be advected into central Africa around the northern margins of the 

climatological heat low over southwest Africa. These are lifted over the highlands of 

East Africa and meet with the easterly monsoon flows from the Indian Ocean in a 

complex, meridional convergence zone. This mechanism for increased rainfall is 

dependent on the convergence of low-level water fluxes into the region, which causes 

the lower atmosphere to become unstable and produce rainfall. This adds to Ntale et 

al.‟s (2003) idea that low MAM rainfall in East Africa is associated with low SSTs in 

the Indian Ocean adjacent to East Africa. This negative SST anomaly acts to lower the 

pressure gradient across the basin and reduce the easterly moisture advection towards 

East Africa. This would prevent the Congo westerly from depositing moisture in East 

Africa due to the lack of moisture convergence at low-levels over East Africa.  
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2.4     Long-range forecasting methods 

 

Seasonal climate forecasting is one of the most promising developments for the early 

warning of climate hazards (Murphy et al., 2001). Long-range forecasts of seasonal 

rainfall are made operationally for East Africa using statistical methods, dynamical 

models and a combination of the two. The National Meteorological Agencies of the 

countries of East Africa use statistical methods to develop their seasonal forecasts 

before each rainy season (Section 2.5). They also refer to output from Coupled General 

Circulation Models (CGCMs), which produce global monthly rainfall forecasts 

(Chapters 4 and 8). The scientific community has not reached a consensus over which 

method produces the most consistently skilful forecasts over East Africa. There is a lot 

of scope for further research and debate on this subject.  

   

2.4.1     Statistical forecasting methods 

 

Reliable statistical seasonal rainfall forecasts would help to provide warnings of 

droughts in East Africa. Long-range forecasting is possible because climatic 

perturbations are forced by lower-boundary conditions, such as SSTs. These evolve 

more slowly than the atmospheric perturbations that they create (Murphy et al., 2001). 

Due to the coupled nature of the oceanic-atmospheric system first outlined by Bjerknes 

(1966, 1969), the evolution of SSTs influence the atmosphere through heat, mass and 

momentum exchanges. The methodology behind the development of statistical rainfall 

hindcast models is discussed in detail in Chapter 5.  

 

2.4.2     Dynamical forecasting models 

 

Seasonal forecasts can be made using mathematical models of the climate system. 

Powerful computers are needed in order to run these dynamical climate models by 

simultaneously solving the fundamental equations of mass, momentum and energy that 

govern the processes in the atmosphere and the oceans (Doblas-Reyes et al., 2006). 

Within the computer models, the globe is split into grid boxes, both horizontally and 

vertically. Within each grid box the fundamental equations are solved as the models are 
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integrated forward through time, in order to predict the future evolution of the climate 

system (Murphy et al., 2001). CGCMs are an advanced form of dynamical model, 

which mathematically model the oceanic and atmospheric processes as well as their 

interactions and allow SSTs, which usually act as the lower boundary forcing, to evolve 

over time.  

 

In reality the SSTs often depend on the initial state of the atmosphere. Models are 

sometimes run several times with slightly perturbed initial conditions. Each individual 

run is called a member and the collective term for all the members is an ensemble. The 

proportion of atmospheric variance that is different in each of these ensemble members 

is likely to be a result of chaos in the system. Chapters 4 and 8 introduce two ensemble 

forecasting systems and present their hindcasting skill for seasonal rainfall over Africa.  

 

2.5     Operational seasonal forecasting in Kenya  

 

Seasonal forecasts for Kenyan rainfall are issued twice a year, before each rainy season, 

for the use of the public, government and businesses. Statistical seasonal rainfall 

forecasts for each region of the country are originally developed by the Kenya 

Meteorological Department (KMD), using the methods described in the next paragraph. 

Their forecasts are then compared against the statistical forecasts from neighbouring 

countries, as well as against the forecasts from several global dynamical models, issued 

by Meteorological agencies in Europe and the USA. The forecasts are then 

amalgamated into a consensus forecast, which gives the tercile probabilistic forecast of 

rainfall being in a particular category (above-, near- or below-normal rainfall), across 

the whole of the Greater Horn of Africa. An example OND consensus forecast can be 

seen in figure 2.10 (a). This 2008 forecast shows areas of near- to above-normal rainfall 

in green and near- to below-normal rainfall in yellow, with the probabilities for each 

tercile in the boxes. This forecast is then re-adjusted by each country‟s Meteorological 

office. The resultant OND 2008 seasonal forecast for Kenya can be seen in Figure 2.10 

(b).    
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Figure 2.10. (a) OND 2008 rainfall forecast, issued September 2008 (ICPAC, 2008). Shows 

probability distributions that indicate above-, near-, or below-normal rainfall for each zone. Green 

represents near-normal to above-normal rainfall; yellow represents near-normal to below-normal 

rainfall. (b) OND 2008 rainfall forecast, adapted for Kenya, issued September 2008 (KMD, 

2008). Shows rainfall forecasts of near-normal to above-normal rainfall (green) and near-normal 

to below-normal rainfall (yellow). (c) OND 2008 rainfall performance, issued March 2009 

(KMD, 2009). Shows the observed rainfall performance relative to a long-term climatology. 

Regions showing values of > 100% experienced above-normal rainfall and regions showing 

values of < 100% experienced below-normal rainfall. 
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The following paragraph details the methods used to develop statistical seasonal rainfall 

forecasts by the National Meteorological Agencies in the Greater Horn of Africa. The 

information was gained through personal communication with operational 

meteorologists from Tanzania and Kenya (Likumana, 2008; Muita, 2008). The 

statistical seasonal rainfall forecasts are developed using a program called SYSTAT. 

This program has functions that allow the user to correlate global SSTs, up to 6 months 

prior to the rainy season, with historical rainfall data from synoptic weather stations. 

The rainfall data used to represent each of Kenya‟s homogeneous rainfall regions is 

taken from a single rain gauge station from each region, with good quality rainfall data. 

However, it is unclear as to what definition of „good‟ is used. When a correlation value 

of > 0.5 is located, SYSTAT takes the regional historical SSTs over a period from 1961-

1991 to develop a forecast model for seasonal rainfall using linear regression. The 

period from 1992-present day is reserved as an independent verification period to assess 

the number of years that the model predicts the rainfall to be in the correct tercile. These 

regional forecasts are then compared against those of the neighbouring countries. If they 

don‟t agree, the forecasters look at historical years with similar SST patterns to see 

which of their forecasts are most similar to the rainfall events in that historical year. 

 

2.5.1     The Greater Horn of Africa Climate Outlook Forum (GHA COF) 

 

The Greater Horn of Africa Climate Outlook Forum (GHA COF) was established in 

1997 by ICPAC (the Intergovernmental Authority on Development Climate Prediction 

and Applications Centre) in Nairobi. The idea behind this bi-annual forum is to bring 

together meteorologists and climate scientists from the East African National 

Meteorological Services to develop a consensus forecast before each of the main rainy 

seasons (Ogallo, 2008). The COF is also attended by Government representatives, Non-

Government Organisations, media and other forecast users (Patt et al., 2007). This 

allows an opportunity for the forecasters to explain the forecasts to the users and to help 

them interpret the forecasts for their regions of interest.  

 

The primary objectives of the COFs are: (1) to develop a consensus climate outlook, (2) 

to facilitate research and forecasting cooperation and data exchange between countries 

and (3) to create a regular dialogue between climate scientists/forecasters and the users 

of the forecasts (Buizer et al., 2000). During the forum a consensus seasonal climate 
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forecast is established for the coming rainy season, which is tailored to be useful to 

climate sensitive sectors. This is made available through an outlook map, with an 

accompanying description on the internet by the IRI (International Research Institute for 

Climate and Society), NOAA (National Oceanic and Atmospheric Administration) and 

ICPAC (Buizer, 2000; Ogallo, 2008). The usefulness of the forecasts is improved in 

three ways. Firstly they are made to be specific to users needs (e.g. feeding into the crop 

prediction models). Secondly, forecasters work with users during the forum to help 

them to interpret the forecasts. Thirdly, inclusive communication is used, as farmers do 

not understand probabilistic forecasts and need the reliability information to be 

explained (Patt et al., 2007).   

 

The continuing success and growth of the COF is limited by several factors, some of 

which were presented by Ogallo (2008) at the COF in February 2008. The primary 

limitation is finance from the East African Governments. The budget for the GHA COF 

is very low at US$20,000 and users have to pay for themselves to attend. Another issue 

is weak and corrupt Governments and a political mistrust of the forecasts, partially due 

to a lack of understanding of the science by the politicians. A further problem is in 

communicating the forecast to the millions of East African people who speak any of the 

thousands of regional languages within the areas covered by the climate outlook.  

 

One final issue is that the seasonal forecasts are not thoroughly verified following the 

rainy season. This is primarily because, as the budgets are so low, there is no money left 

after the COF to spend time on a thorough verification. Figure 2.10 (c) presents the only 

verification published by the KMD for the 2008 OND rainy season. It shows the 

observed seasonal rainfall performance relative to a long-term climatology. The regions 

>100%, which experienced above normal rainfall, cover the majority of the northern 

half of Kenya. The forecast was therefore not accurate, as Figure 2.10 (b) shows that 2/3 

of the northern half of Kenya was forecast to have near- to below-normal rainfall over 

this season. Also, the south-central area of Kenya was forecast to have near- to above 

normal rainfall (Figure 2.10 (b)), whereas in fact the majority of this area received only 

50% of the average rainfall. This one example shows that a thorough verification of the 

seasonal forecasts is necessary in order for the KMD to see where their forecast lacked 

skill so that improvements can be made in the future. 
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Chapter 3 

Data 

 

 

Chapter 3 describes the data employed in this study. High quality rainfall data are 

fundamental to the verification of seasonal rainfall hindcasts and to the development of 

new statistical hindcast or forecast models for seasonal rainfall. Several other forms of 

data are also used in the study, as predictors to develop the statistical hindcasts and 

forecasts. These data include global SSTs (Section 3.2), 850hPa winds (Section 3.3) and 

a selection of climate indices and oscillations (Section 3.4). 

 

3.1     Rainfall 

 

Two forms of historical monthly rainfall data are used in this study. In order to verify 

the seasonal rainfall hindcasts of leading dynamical models in Chapters 4 and 8, 

accurate and continuous gridded rainfall data are required with the same spatial and 

temporal resolution as the hindcasts. Section 3.1.1 describes the gridded rainfall data 

sets employed in this study. Other gridded rainfall datasets were also tested for potential 

use, such as the Global Precipitation Climatology Project (GPCP) monthly mean 

estimates of precipitation dataset (Huffman et al., 1997). Although the GPCP dataset 

was not used in this study, it provided confidence to see that the gridded rainfall datasets 

presented in Section 3.1.1 were found to be consistent with the GPCP‟s monthly mean 

rainfall values, with correlation values of > 0.9 across the whole of East Africa.  

 

Section 3.1.2 introduces the Kenyan rain gauge data sets that were obtained from the 

Kenya Meteorological Department (KMD). These rain gauge data are required to 

partition Kenya into homogeneous rainfall regions (Chapter 5.1) and to develop skilful 

seasonal rainfall hindcast models (Chapters 5-7). As rain gauge data are direct 

measurements, it is necessary to conduct a thorough quality control assessment (Section 

3.1.3) in order to assess the data for erroneous values and long-term trends. These then 

need to be corrected, with erroneous data reduced to a threshold value and any long-

term trends removed, so that only the year-to-year climate variability remains. This 

removes the influence of any multi-decadal variability, as investigation into this aspect 

of climate is beyond the scope of this thesis. 
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3.1.1     Gridded rainfall data 

 

Global Precipitation Climatology Center’s (GPCC) precipitation climatology 

 

In order to assess the seasonal rainfall hindcast skill available from the DEMETER 

hindcast system (Chapter 4), a verification rainfall data set is required with the same 

spatial and temporal resolution as the hindcasts. This allows a direct comparison to be 

made between the seasonal rainfall hindcasts and the observed rainfall. The verification 

data requirements for Chapter 4 are a gridded rainfall data set on a 2.5°x2.5° 

latitude/longitude grid with monthly-averaged data spanning the period 1959-2000. The 

dotted red lines in Figure 3.1 show the 2.5°x2.5° grid box boundaries used in this study. 

 

A thorough comparison of all available gridded precipitation data sets is made. The 

Global Precipitation Climatology Center‟s (GPCC) VASClimO (Variability Analyses of 

Surface Climate Observations) 50 year precipitation climatology data set (Beck et al., 

2005) best fits these spatial and temporal requirements and is therefore selected for use 

in this study. The GPCC monthly rainfall data are available on a 2.5°x2.5° 

latitude/longitude grid over the period 1951-2000. The GPCC data are available from 

http://www.dwd.de.  

 

The GPCC data are purely observation-based and are derived from historical rainfall 

records from three main sources: the precipitation databases of the Food and Agriculture 

Organization of the United Nations, the Climatic Research Unit at the University of East 

Anglia in the UK, and the Global Historical Climatological Network. The merging 

procedure is designed to incorporate data from each information source based on an 

estimate of its quality. The GPCC apply thorough quality controls to these data to 

increase the reliability of their gridded monthly data.  

 

The accuracy of an historical rainfall data set is limited by the uneven distribution of 

rain gauges, incomplete data records, and random errors in the records. This is a 

particular problem in Africa where the rain gauge network is particularly sparse, 

comprising about 500 stations. Figure 2.2 shows the distribution of rain gauge stations 

that contribute to the GPCC gridded data set. Only stations with at least 90% data 

availability between 1951 and 2000 are included. It is clear that station coverage over 

half of the continent is either poor or non-existent. The densest coverage is found over 

sub-Saharan West Africa (between Senegal and Nigeria), parts of southern Africa and 
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parts of Kenya. This non-uniform station coverage may affect the spatial reliability of 

hindcast skill assessment. For example, where the station density is low the hindcast 

skill might be expected to be low, and vice versa.  

 

Climate Prediction Centre’s (CPC) Merged Analysis of Precipitation (CMAP) 

 

In Chapter 8 an assessment is made of the seasonal rainfall hindcast skill available from 

the EUROSIP system. These hindcasts are available on a 2.5°x2.5° latitude/longitude 

grid over the shorter period of 1981-2005. As this hindcast period is limited to 25 years 

and the GPCC data set ends in 2001, another gridded rainfall data set is selected in order 

to verify EUROSIP‟s hindcasts over its entire hindcast period.  

 

The Climate Prediction Center‟s Merged Analysis of Precipitation (CMAP) data set 

(Xie and Arkin, 1997) fulfils the spatial and temporal requirements for the verification 

of EUROSIP‟s hindcasts, as the data are available on a 2.5°x2.5° latitude/longitude grid 

over the period 1979-2008. The CMAP data set is formed by merging rain gauge data 

from: the GPCC, precipitation estimates from several satellite-based algorithms 

(infrared and microwave) and precipitation distributions from the National Centers for 

Environmental Prediction/National Center for Atmospheric Research (NCEP-NCAR) 

reanalysis. CMAP data are provided by the Physical Sciences Division (PSD) of the 

Earth System Research Laboratory (ESRL), which is based at the National Oceanic and 

Atmospheric Administration (NOAA), Boulder, Colorado, USA. The data are available 

from http://www.cdc.noaa.gov/data/gridded/data.cmap.html. 

 

3.1.2     Rain gauge data  

 

Rain gauge data are required to partition Kenya into homogeneous rainfall regions prior 

to developing statistical seasonal rainfall hindcast models for each region. This is 

necessary due to the heterogeneous nature of the rainfall distribution over Kenya. 

Monthly rain gauge data are obtained from the KMD. Long historical rainfall records 

are vital to assess the long-term stability of statistical relationships. Stations with 

rainfall records covering the period 1959-2006 are therefore selected for potential use. 

This 48-year period is split into three 16 year periods. The first two periods are used to 

find suitable predictors and develop statistical seasonal rainfall hindcast models for each 

homogeneous rainfall region. The period from 1991 to 2006 is reserved as an 

independent verification period (Chapter 5).  
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Station short 

name 

Station full name Kenyan 

Region 

Latitude 

(ºN) 

Longitude 

(ºE) 

Data available 

from 

Missing 

data (%) 

Lamu Lamu Meteorological Station * South -2.16 40.54 1908 2.4 

Malindi Malindi Meteorological Station * South -3.14 40.06 1961 10.9 

Mombasa Mombasa Port Reitz Airport* South -4.02 39.37 1946 2.4 

Garissa Garissa Meteorological Station * Southeast -0.29 39.38 1932 2.1 

Katumani Katumani Research Station
□
 Southeast -1.36 37.14 1953 2.3 

Makindu Makindu Meteorological Station * Southeast -2.17 37.50 1904 1.0 

Marania Timau Marania Timau
□
 Southeast 0.05 37.27 1925 5.0 

Meru Meru Forest Station
□
 Southeast 0.03 37.38 1948 6.6 

Voi Voi Meteorological Station * Southeast -3.24 38.34 1904 1.2 

Dagoretti Dagoretti Corner Meteorological Station * Southwest -1.18 36.45 1954 1.7 

Nakuru Nakuru Railway Station
□
 Southwest -0.17 36.04 1904 6.1 

Narok Narok Meteorological Station * Southwest -1.06 35.52 1913 1.4 

Chorlim Chorlim Agricultural Development Corporation
 □

 West 1.02 34.48 1926 14.6 

Kakamega Kakamega Agromet Station* West 0.17 34.36 1957 1.7 

Kisii Met Kisii Meteorological Station* West -0.41 34.47 1963 10.6 

Kisumu Kisumu Meteorological Station * West -0.06 34.45 1938 1.2 

Baragoi Baragoi El Barta District Office
□
 Northwest 1.47 36.48 1938 17.0 

Lodwar Lodwar Meteorological Station * Northwest 3.07 35.37 1919 2.1 

Mandera Mandera Meteorological Station * Northeast 3.56 41.52 1936 1.9 

Marsabit Marsabit Meteorological Station * Northeast 2.19 37.59 1920 5.6 

Moyale Moyale Meteorological Station * Northeast 3.32 39.03 1920 1.9 

Wajir Wajir Meteorological Station * Northeast 1.45 40.04 1917 3.3 

Table 3.1. Kenyan rain gauge stations used in the study (data obtained from the Kenya Meteorological Department). Only stations with >80% data 

available over the period 1959-2006 are included. The positions of these stations are shown on the map in Figure 3.1. The region names are referred 

to in Chapter 5. 
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The quality of rainfall data varies greatly between the observation stations in terms of 

time span of available data records and missing data. The first challenge is to select 

enough well distributed, good quality rain gauge data sets to use in the study. Table 3.1 

presents information on the 22 stations that are employed in this study including: the 

station names, regions (used in Chapter 5), coordinates, years from which data are 

available and percentages of missing data. Camberlin (2008) recommends obtaining 

monthly rainfall data from Kenya‟s synoptic stations, as more confidence can be had in 

their measurements are they are official meteorological stations. There are 39 official 

synoptic stations across Kenya. However, upon examination of the data, 23 of these 

stations cannot be used. This is due to: 3 stations having the same coordinates as other 

stations, 15 covering too short a time period and 5 missing more than 20% of their 

monthly data (the acceptance criterion for this study is at least 80% data availability 

over the period 1959-2006). Details of the remaining 16 synoptic stations that are 

employed in the study are presented in Table 3.1. The station locations are presented on 

the Kenyan map in Figure 3.1, marked with an asterisk in both cases.  

 

To provide a wider spread of stations from across the country, data are also obtained 

from other non-synoptic stations in the southwest and central areas. These consist of 

over 2000 rain gauges across Kenya with locations ranging from Schools to Police 

Stations; however the majority have far less than 80% available data. 6 further stations 

with >80% data availability over the period 1959-2006 are selected for use in the study. 

Details of these stations are presented in Table 3.1 and their locations can be seen in 

Figure 3.1. These 6 non-synoptic stations are marked with a square in both cases. All of 

the rain gauge data from the KMD were compared against the rain gauge data collected 

by Professor Nicholson across her career (Personal communication, 2007) and were 

found to be consistent. This provides confidence in the quality of the rain gauge data 

provided by the KMD. Nicholson‟s data were also used to verify the seasonal rainfall 

hindcast skill in Chapter 6. The results were found to be very similar to those found 

using the KMD rain gauge data. Therefore they were not included in the thesis. 
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3.1.3     Quality control  

 

The monthly rain gauge data sets obtained from the KMD contain many outlying data 

points, which can be either erroneous measurements or correct but extreme values. To 

deal appropriately with these, a quality control method is developed, based on that used 

by Gonzalez-Rouco et al. (2001) to quality control precipitation data in southwest 

Europe.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first stage is to reduce the magnitude of any outliers to a threshold value. This 

retains the information of an extreme event, but has a smaller influence on non-resistant 

statistics, such as the mean and standard deviation. This study uses the upper and lower 

Figure 3.1. Map of Kenya showing the rain gauge stations selected for use in this 

study. The 16 Synoptic rain gauge stations are marked with an asterisk (*) and 6 

non-synoptic rain gauge stations are marked by a square (□). The red dotted lines 

show the grid box boundaries of the gridded datasets used in this study. 
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threshold values (Pupper and Plower) given by Gonzalez-Rouco et al. (2001) and Wilks 

(2006), namely: 

 

Pupper = q0.75 + (3*IQR) 

Plower = q0.25 – (3*IQR) 

 

where q0.75 and q0.25 are the upper and lower quartiles and IQR is the inter-quartile 

range, which is a resistant measure of the spread of data. Any rainfall values above 

Pupper or below Plower are replaced with the respective threshold value.  

 

The final stage in preparing the data involves removing any long-term trends. Removing 

long-term trends, which could be due to climate change (Jewson et al., 2005), leaves 

only the natural year-to-year climate variability. It is assumed that the trends are 

approximately linear. The trend line of the original rainfall can be calculated using 

linear regression, where the gradient of the line indicates the long-term increase or 

decreases in rainfall. Each original value is therefore detrended by adding the difference 

in height of the trend line (change in rainfall) over the period. Therefore, for an overall 

decreasing trend, the trend line would be negative, and the original value would 

decrease to compensate for the trend and vice versa for an increasing trend.  

 

The rainfall data for both OND and MAM are detrended over each sub-period used in 

this study. In Chapters 5-7 the sub-periods used are: 1959-1974, 1975-1990, 1959-1990 

and 1991-2006. In Chapter 8 the sub periods used are: 1981-2005 and 1987-2005. Table 

3.2 shows a representative example of the average linear trends removed from the OND 

regional rainfall indices over the period 1959-1990. It can be seen that the linear trends 

that are removed from the station data are generally small values when compared to the 

mean rainfall over the OND season. This is the case for all sub-periods in both seasons. 

The time series were found to have no significant signal of decadal or multi-decadal 

variability following the linear trend removal. 

 

 

 

 South Southeast Southwest West Northwest Northeast 

Average linear trend in 

mm/season (1959-1990) 

 

-12.4 
 

-11.0 
 

-1.7 
 

-6.0 
 

-1.7 
 

-9.6 

Mean OND rainfall 

(mm/season)  

 

80 
 

107 
 

73 
 

111 
 

42 
 

49 

Equation 3.1 

Equation 3.2 

Table 3.2. Average linear trends that are removed from the original regional OND rainfall data 

over the period 1959-1990 (mm). 
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3.2     Sea surface temperatures 

 

SST data are used in several places throughout this study, but arguably their most 

important function is as predictors for the statistical hindcast models for seasonal 

rainfall (Chapters 5-7). NCEP/NCAR Global Reanalysis monthly mean skin 

temperature data covering the period 1948-present are employed in this study (Kalnay et 

al., 1996). These data are available on the same 2.5ºx2.5º latitude/longitude grid as the 

other gridded data used in this study. These data are available from 

http://www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html. 

The SST data are detrended per grid square using the method described in Section 3.1.3. 

 

3.3     Wind 

 

NCEP/NCAR Global Reanalysis monthly mean, 850hPa (roughly 1.5km above sea-

level), u- and v-direction wind data over the period 1948-present are used as potential 

predictors in Chapters 5-7 of this study (Kalnay et al., 1996). These data are available 

on a 2.5ºx2.5º latitude/longitude grid from: http://www.cdc.noaa.gov/data/gridded/ 

data.ncep.reanalysis.pressure.html. Winds at 850hPa height are used because these are 

linked to low-level wind convergence, which directly affects rainfall.  

 

3.4     Climate indices and oscillations 

 

3.4.1     Niño indices (Niño 3.4 and Niño 4) 

 

The strength and sign of the ENSO (Chapter 2.3.1) can be measured by the Niño 3.4 

and Niño 4 indices. These monthly indices record the area average SST anomalies in the 

Niño 3.4 (5ºN-5ºS, 120ºW-170ºW) and Niño 4 (5ºN-5ºS, 160ºE-150ºW) regions 

respectively. The Niño 3.4 and Niño 4 indices are available over the period 1950-

present from the Climate Prediction Center at: http://www.cpc.ncep.noaa.gov/data/ 

indices/sstoi.indices. 
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3.4.2     Southern Oscillation Index (SOI) 

 

The SOI is another ENSO index, which measures the difference in sea-level 

atmospheric pressure anomalies between Tahiti and Darwin, Australia (Trenberth, 

1984). The negative phase of the SOI occurs when below-normal atmospheric pressure 

at Tahiti (east-central Pacific) and above-normal pressure at Darwin (west Pacific) are 

observed. Prolonged periods of negative (positive) SOI generally coincide with positive 

(negative) SST anomalies in the east-central Pacific, associated with an El Niño (a La 

Niña). These data are available over the period 1951-present from the Climate 

Prediction Center at: http://www.cpc.noaa.gov/data/indices/soi. 

 

3.4.3     Dipole Mode Index (DMI) 

 

The DMI (Chapter 2.3.1) was developed by Saji et al. (1999) to measure the strength of 

the IOD, describing the zonal gradient in SST anomalies across the Indian Ocean 

between the west (50°-70°E, 10°S-10°N) and the east (90°-110°E, 10°S-Equator). The 

DMI time series was kindly extended upon the author‟s request up to 2008 by Drs. 

Sasaki and Yamagata at the Japan Agency for Marine-Earth Science and Technology 

(JAMSTEC). The DMI is available from 1958-2008 from JAMSTEC at: 

http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi_HadISST.txt.  

 

3.4.4     Quasi-Biennial Oscillation (QBO) Index 

 

The QBO is a quasi-periodic reversal of the stratospheric and tropospheric zonal winds 

(Ebdon and Veryard, 1961; Reed et al., 1961; Veryard and Ebdon, 1961; Angell and 

Korshover, 1964). An „average‟ event tends to last for 22-34 months with a mean period 

of around 27 months (Cariolle et al., 1993), although all events vary in magnitude and 

duration. Indeje and Semazzi (2000) showed that globally averaged, stratospheric 

(30hPa) equatorial zonal winds were linked to East African MAM rainfall over the 

period 1979-1992. Further details on the QBO and its reported teleconnections to East 

African rainfall are presented in Chapter 7. The QBO monthly mean zonal wind data are 

produced by combining observations from three radiosonde stations: Canton Island, 

Gan Maldives Islands and Singapore.  QBO-Index (30hPa) data are available from the 
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Freie Universität, Berlin, over the period 1953-present at: http://www.geo.fu-berlin.de/ 

met/ag/strat/produkte/qbo/qbo.dat. 

 

3.4.5     Madden-Julian Oscillation (MJO) 

 

The MJO is a tropical atmospheric phenomenon, which develops over the Indian Ocean 

and progresses east across the tropics with a period of 30-60 days (Madden and Julian, 

1994). The active phase of the MJO brings enhanced precipitation followed by 

suppressed precipitation. Pohl and Camberlin (2006) showed that the MJO was linked 

to the early onset of the MAM rains in Equatorial East Africa over the period 1979-

1995. This study examines the MJO to test the robustness of its relationship with 

Kenyan seasonal rainfall over different time periods. The CPC have computed MJO 

indices at a selection of longitudes around the equator. The MJO Index at 70ºE is used 

in this study as this is the closest index available to Kenya, situated in the central Indian 

Ocean. This MJO index is available over the period 1978-2006 at: 

http://www.cpc.noaa.gov/products/precip/CWlink/daily_mjo_index/proj_norm_order 

.ascii.  
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Chapter 4 

Assessment of Current Dynamical Seasonal 

Rainfall Hindcast Skill over Africa 

 

 

4.1     Introduction 

 

Dynamical forecast systems, comprised of coupled ocean-atmosphere climate models, 

are thought to offer greater potential for forecast skill than statistical forecast models 

and greater skill than from individual coupled climate models (e.g. Krishnamurti et al., 

1999; Goddard et al., 2001; Stefanova and Krishnamurti, 2002; Barnston et al., 2003; 

Palmer et al., 2004; Doblas-Reyes et al., 2005, 2006; Hagedorn et al., 2005). However, 

few quantitative assessments have been made of the skill of such forecast systems. This 

chapter presents an in-depth assessment of the seasonal rainfall hindcast skill over 

Africa available from the DEMETER multi-model ensemble system and from its 

comprising individual coupled models (Palmer et al., 2004). No such assessment of 

DEMETER has been made before. However, Thomson et al. (2006) and Jones et al. 

(2007) used DEMETER multi-model rainfall hindcasts to assess the potential for 

malaria early warnings in Botswana and Tanzania. 

 

4.1.1     Aim of the assessment 

 

This chapter is the first to examine the seasonal rainfall hindcast skill over Africa 

available from the DEMETER multi-model ensemble hindcast system. This assessment 

is made over the period 1959-2000 and employs hindcasts from three of the DEMETER 

coupled models; those from: the European Centre for Medium-Range Weather 

Forecasts (ECMWF), the Centre National de Recherches Météorologiques (Météo 

France) and the UK Met Office (UKMO). These three models are examined 

individually and as a multi-model.  
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4.1.2     Definitions  

 

A hindcast is a retrospective forecast made by a model employed in real-time 

forecasting (AMS, 2009). DEMETER‟s hindcasts are produced by using historical 

ECMWF 40-year Re-Analysis (ERA-40) data (Uppala et al., 2005) to force the ocean 

analysis and to provide atmospheric and land surface initial conditions. The model skill 

is assessed by comparing the output against historical observations. 

 

Hindcast lead time is the period of time between when the hindcast is issued and the 

date that it becomes valid (AMS, 2009). For example, a hindcast issued at the start of 

May for May is a zero month lead (lead 0) hindcast, while a hindcast issued at the start 

of May for July is a two months lead (lead 2) hindcast. The results in this chapter are 

shown mostly for lead 0 to maximise the skill, with the results in Section 4.3.3 showing 

the decrease in skill when the lead is extended to 3 months.  

 

A season refers to a period of 3 months. This study focuses on hindcasts of seasonal 

averages rather than individual months because seasonal (and longer) deficits of rainfall 

are relevant for droughts. The following (non-standard) seasons receive prime focus in 

this chapter: February, March, April (FMA); May, June, July (MJJ); August, 

September, October (ASO); and November, December, January (NDJ). These seasons 

correspond to the average of the first 3 months of each DEMETER hindcast period. The 

DEMETER hindcasts are initialised on 1 February, 1 May, 1 August and 1 November.  

 

The term multi-model ensemble is defined in this study as an average of several 

individual coupled models over the period 1959-2000. Unless otherwise stated, this 

averaging is performed by weighting the contribution from each individual model by the 

Mean Squared Error (MSE) of its hindcasts in order to maximise the hindcast skill.  

     

Coupled ocean-atmosphere climate models are advanced forms of dynamical models. 

These are used to mathematically model oceanic and atmospheric processes and 

interactions, whilst allowing the sea-surface temperature boundary conditions to evolve 

over time. The physical equations that govern these processes and interactions are 

solved for many different variables in each grid box at different levels around the globe 

as the models are integrated forward through time (Murphy et al., 2001).   
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4.1.3     Introduction to DEMETER 

 

DEMETER is a European dynamical multi-model ensemble global hindcast system, 

(Palmer et al. 2004). Its name derives from the project title: Development of a European 

Multi-model Ensemble system for seasonal-to-inTERannual prediction. 

 

DEMETER comprises seven state-of-the-art European coupled ocean-atmosphere 

global climate models. The contributing research centres are: European Centre for 

Medium-Range Weather Forecasts (ECMWF), Centre National de Recherches 

Météorologiques (Météo-France), UK Met Office (UKMO), European Centre for 

Research and Advanced Training in Scientific Computation (CERFACS), Istituto 

Nazoinal de Geofisica e Vulcanologia (INGV), Laboratoire d‟Océanographie 

Dynamique et de climatologie (LODYC) and Max-Plank Institut für Meteorologie 

(MPI). Each of these seven coupled models comprises nine ensemble members, each 

initialised with slightly perturbed initial conditions. These produce monthly hindcasts 

out to a lead of 5 months over the period 1980-2001.  

 

The motivation behind the DEMETER multi-model ensemble system is to attempt to 

reduce hindcast errors, which are caused by model uncertainties and sensitivity to initial 

conditions (Palmer et al., 2004). Hindcast errors can occur due to problems with the 

processing of the model‟s equations. Although the equations that govern the atmosphere 

and oceans are well understood at the level of partial differential equations, their 

representations as ordinary differential equations, for the purpose of integrating on a 

computer, introduce errors. Such inaccuracies can easily propagate upscale in the model 

and produce large errors in the final hindcast values. These errors are reduced by 

combining individual coupled models, developed quasi-independently across Europe, 

into a multi-model ensemble (Palmer et al. 2004). The potential for errors in 

DEMETER‟s hindcasts due to model sensitivity to initial conditions is reduced by 

running each individual coupled model nine times with slightly perturbed initial 

conditions. Each of these nine model runs is called a member. The hindcasts from each 

of the nine members are then averaged together to give the resulting hindcast for that 

model.  

 

A longer hindcast period from 1959 to 2001 is available for three of these models; those 

from: the ECMWF, Météo France and the UKMO. These three models, with their 
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extended hindcast availability, are employed in this chapter‟s skill assessment. Table 4.1 

describes the characteristics of these three models. The DEMETER hindcasts are 

available on a 2.5°x2.5° latitude/longitude global grid. Due to the computational cost of 

running multi-model ensembles, DEMETER hindcast start dates are quarterly rather 

than monthly, initialised on: 1 February, 1 May, 1 August and 1 November. Each 

initialisation is integrated forward to give leads of up to 5 months for all nine members 

of each model. Hindcasts are available up to 2001 as DEMETER is intended only for 

research activities, not as an operational system. These hindcasts are accessible from the 

ECMWF website at http://data-portal.ecmwf.int/data/d/demeter_mnth/1950/. 

 

 

 DEMETER 

 ECMWF Météo France UKMO 

Long Title European Centre 

for Medium-Range 

Weather Forecasts 

Centre National de 

Recherches 

Météorologiques 

United Kingdom 

Met Office 

Country of Development International 

Organisation (based 

in UK) 

 

France 

 

UK 

System 2 2 2 

Atmospheric Component ECMWF IFS ARPEGE v4 HadAM3 

Atmospheric Horizontal 

Resolution 

 

1.9° x 1.9° 
 

2.8° x 2.8° 
 

2.5°x3.75° 

Atmospheric Vertical 

Levels 

 

40 
 

31 
 

19 

Oceanic Component HOPE ORCA   GLOSEA OGCM 

Oceanic Horizontal 

Resolution 

 

1° x 1° 
2° x (2° to 0.5 at 

Equator) 

1.25° x (1.25° to 

0.3° at Equator) 

Oceanic Vertical Levels 29 31 40 

Hindcast Ensemble 

Members 

 

9 
 

9 
 

9 

Hindcast Years 

Available 

1958-2001 

(44 years) 

1958-2001 

(44 years) 

1959-2001 

(43 years) 

Hindcast Issue Dates 1
st
 Feb, 1

st
 May, 1

st
  

Aug, 1
st
 Nov 

1
st
 Feb, 1

st
 May, 1

st
  

Aug, 1
st
 Nov 

1
st
 Feb, 1

st
 May, 1

st
  

Aug, 1
st
 Nov 

Hindcast Lead Time* 

(months) 

 

0-5 
 

0-5 
 

0-5 

Grid Resolution 2.5° x 2.5° 2.5° x 2.5° 2.5° x 2.5° 

Table 4.1. Characteristics of the three DEMETER coupled general circulation models employed 

in this study (Palmer et al., 2004). 

*Hindcast lead time refers to the period of time between the issue of the hindcast and the start of 

the hindcast period 
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4.2     Methodology 

 

4.2.1     Bias correction 

 

Due to inherent systematic errors, DEMETER and other dynamical models tend to drift 

with time towards a climate that differs to that observed (Vitart et al., 2007). This drift 

is called a bias and its removal is termed bias correction. This correction must be 

performed before any verification of the hindcasts takes place. The DEMETER 

hindcasts are bias corrected using a standard cross validation method (Wilks, 2006). 

This method computes the average difference between the hindcast and observation 

values for all years excluding the year of interest. The average difference is then 

removed from the hindcast value for the year of interest. This is repeated for all years, 

thus yielding a time series of bias-removed DEMETER hindcast values.  

 

In some low rainfall cases this bias removal method produces a negative rainfall 

amount. If this occurs the rainfall value is forced to zero as negative rainfalls are 

unphysical. The above method was compared to another bias removal method used by 

the ECMWF (Doblas-Reyes, 2007), which uses anomalies of observations and 

hindcasts instead of absolute values. The ECMWF method retains the original error 

between the hindcast and the observations, which could be artificially reduced when the 

bias-removed rainfall is corrected from a negative value to zero. Differences between 

the two bias removal schemes are found to be small and lead to changes in correlation 

coefficient of <0.1 in over 96% of African grid squares. 

 

4.2.2     Skill assessment 

 

The skill of the deterministic DEMETER hindcasts of seasonal rainfall is examined over 

the period 1959-2000. Deterministic hindcasts provide a single (i.e. the most likely) 

output value. Confidence intervals on the deterministic skill are computed (Section 

4.2.6). Three standard verification measures are used to assess deterministic hindcast 

skill (WMO, 2006; Wilks, 2006). These are rank correlation (rrank), mean square skill 

score (MSSS), and percentage of hindcasts with the correct anomaly sign.  These 

measures are described in the following sub-section, together with the methods used to 

compute the skill significances. 
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The hindcasts from different ensemble members within each model are sometimes used 

to create a probability distribution to assess hindcast uncertainty. This method of using 

probabilistic skill measures is not used in this thesis. There are two main reasons for 

this. Firstly, the main users of the results of this thesis are the Kenyan Meteorology 

Department. The only form of probabilistic skills measure that they use operationally is 

tercile probabilities. This shows the probability of the forecast lying in the below-

normal, normal, and above-normal categories (Barnston et al. 2003). It was felt that 

restricting the results of this study to the form of tercile probabilities would limit the 

depth of verification of the hindcast results. Also, the author felt that it was important to 

use different methods to those used by Diro et al. (2008) at The University of Reading. 

They used probabilistic skill measures to assess the seasonal rainfall hindcast skill of 

their hindcast models for different regions of Ethiopia. Using deterministic skill 

measures ensures that the work in this thesis remains original and innovative.  

 

4.2.3     Rank correlation (rrank) 

 

Correlation coefficients describe the degree of linear association, or correspondence in 

phase, between hindcasts and observations (Murphy, 1995). The Spearman rank 

correlation coefficient (rrank) is used as a robust and resistant alternative to the more 

common Pearson product-moment correlation coefficient. rrank is robust to deviations 

from linearity in a relationship, and is resistant to the influence of outliers. Since 

gridded seasonal rainfall data over Africa often have non-normal distributions and 

contain outliers, it is more appropriate to use rrank. The rank correlation is bounded by 

values of -1 and 1, where 1 (-1) represents a perfect positive (negative) linear 

association between the rankings of the observations and hindcast data. Spearman rank 

correlation is computed using the following equation from Wilks (2006): 
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where Di is the difference in ranks between the i
th

 pair of data values for a sample size 

n. If a particular datum value appears more than once, resulting in tied rankings, all of 

the equal values are assigned their average rank before computing the Di values. 
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4.2.4     Mean Square Skill Score (MSSS) 

 

The MSSS is the skill metric recommended by the World Meteorological Organisation 

(WMO) in assessing deterministic seasonal hindcast skill (WMO, 2006). The MSSS 

(Equation 4.2) is the percentage reduction in mean squared error provided by the 

hindcasts (MSE, Equation 4.3) over that provided by using climatology as the hindcast 

(MSEclim, Equation 4.4). MSSS is calculated using the following equations from Wilks 

(2006): 

 

    %1001
limcMSE

MSE
MSSS               Equation 4.2 

 

The MSE is calculated using the equation: 
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where yk and ok are the k
th

 of n pairs of hindcasts and observations. The MSE of the 

climatological reference hindcast (MSEclim) is calculated using: 
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       Equation 4.4 

 

where o  is the climatological rainfall average over the period 1959-2000. 

 

4.2.5     Percentage of hindcasts with correct anomaly sign 

 

A simple skill measure which is readily understandable by potential users is the 

percentage of years that the hindcasts correctly predict the sign of the rainfall anomaly. 

This is computed by noting the number of years that the hindcast rainfall and observed 

rainfall are both either above median or below median in the same year. The percentage 

of „successful‟ hindcast years is then calculated.  
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4.2.6     Statistical significance 

 

The significances (p-values) of the hindcast seasonal rainfall skills for the period 1959-

2000 are computed by grid square. The significances of the three skill measures are 

computed as follows.  

 

The significances for rrank are computed by randomly shuffling the 42-year time series 

of hindcast and observed seasonal rainfalls and selecting, with replacement, a number of 

hindcast and observed rainfall pairs. This number of pairs corresponds to the number of 

degrees of freedom after correction for serial correlation (Davis, 1976; Chen, 1982) in 

the unshuffled time series. This process, sometimes known as bootstrapping (Efron and 

Tibshirani, 1993), is repeated 10,000 times per grid square. The rrank from each random 

set is calculated and the results are displayed in histogram form to give the number of 

random sets with an rrank greater than the original rrank. This number, divided by 10,000, 

is the skill p-value. A low p-value therefore indicates a low likelihood that the hindcast 

skill arose from chance alone. 

 

The significances for MSSS are calculated and defined in a way similar to those of rrank 

except that a p-value < 0.05 means there is less than a 5% likelihood that the hindcast 

skill is negative. The p-values are computed by randomly shuffling the 42-year time 

series for hindcast and observed seasonal rainfall and using the above bootstrapping 

method, selecting a number of pairs corresponding to the total number of years in the 

time series. The MSSS (%) for each of the 10,000 random sets is then calculated. The p-

value is the number of random sets that have a negative MSSS skill, divided by 10,000. 

A low p-value indicates that there is positive MSSS skill to a high confidence.  

 

The significances for the percentage of years that the DEMETER hindcasts correctly 

predict the sign of the rainfall anomaly are calculated using Fisher’s Two-Sided Exact 

Probability Test (Fisher, 1925). This test involves creating a 2x2 contingency table of 

the number of years where the hindcast and observation are both above or below median 

for each grid square. The Fisher probability test gives the p-value that this contingency 

table could have arisen by random chance. A p-value < 0.05 means there is at least 95% 

likelihood that the number of correct signed hindcasts did not occur by random chance.  
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4.3     Results 

 

This section summarises the skill assessment results for the seasonal rainfall hindcasts 

over Africa from DEMETER. The focus is on the ASO and NDJ seasons where 

moderate skill is found a lead 0 (Sections 4.3.1 and 4.3.2). Results are not displayed for 

the FMA and MJJ seasons as little skill was found. The lead 3 skill is assessed in 

Section 4.3.3, for the two regions and seasons with the highest skill at lead 0.   

Figure 4.1. Seasonal rainfall hindcast skill for ASO at lead 0 from the three individual 

DEMETER models and the multi-model ensemble. The skill measure is Rank Correlation 

(rrank) and the verification data are from the GPCC rainfall data set. The panels show rrank 

for (a) UKMO hindcasts (1959-2000), (b) Météo France hindcasts (1958-2000), (c) 

ECMWF hindcasts (1958-2000) and (d) Multi-model ensemble hindcasts (1959-2000). 

White lines denote areas with p-values < 0.05. 
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Figure 4.2. DEMETER multi-model ensemble seasonal rainfall hindcast skill for ASO and 

NDJ at lead 0; based on MSSS (%) and percentage of correct anomaly sign measures over 

the period 1959-2000. The white lines in panels (a) and (c) denote areas with p-values 

<0.05. The white lines in panels (b) and (d) denote areas where the two-tailed probability 

of obtaining the displayed percentage by random chance is < 0.05. 
 

             ASO MSSS ASO Percent Correct Sign 

           NDJ MSSS NDJ Percent Correct Sign 
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4.3.1     ASO skill in the Sahel 

 

The DEMETER seasonal rainfall hindcast skill for ASO over Africa at lead 0 is 

displayed in Figures 4.1 and 4.2 (a and b). Figure 4.1 shows the hindcast skill based on 

rrank with panels (a), (b), (c) and (d) displaying rrank for the UKMO, Météo-France, 

ECMWF and multi-model DEMETER hindcasts respectively. Figures 4.2a and 4.2b 

show the multi-model seasonal rainfall hindcast skill for ASO based on the MSSS and 

percent of hindcasts with correct anomaly sign measures. White lines denote areas with 

p-values < 0.05.  

 

Little or no skill is found over most of Africa, with the exception of the sub-

Saharan/Sahel belt (7.5°N-20°N, 30°E-10°W) where significant moderate skill is seen 

in all skill measures. Visual inspection of Figure 4.1 shows that the multi-model (panel 

d) has the greatest overall rrank skill, with significant values of 0.3-0.8 extending across 

the entire sub-Sahara belt. The highest rrank of 0.7-0.8 occurs in central Chad for the 

multi-model‟s hindcast. Figures 4.2 (a and b) show a similar zone of elevated ASO 

rainfall hindcast lead 0 skill across the sub-Sahara. The MSSS peaks at values of 30-

50% over southern Ghana, the Ivory Coast and along the Chad/Sudan border. The 

percentages of correct anomaly-signed hindcasts peak at 70-90% in a band stretching 

across southern Niger/northern Nigeria and central Chad. Thus in these regions the 

DEMETER multi-model hindcasts for ASO seasonal rainfall outperform a climatology 

rainfall hindcast in 70-90% of the years. The likelihood of achieving this skill by 

random chance is < 5%.   

 

4.3.2     NDJ skill in eastern and south-eastern Africa 

 

The DEMETER seasonal rainfall hindcast skill for NDJ over Africa at lead 0 is 

displayed in Figures 4.3 and 4.2 (c and d). Figure 4.3 shows the skill based on rrank in 

the same format as in Figure 4.1. Figures 4.2 (c and d) show the multi-model skill based 

on MSSS and percent of hindcasts with correct anomaly sign in the same format as in 

Figures 4.2 (a and b). As is the case for the ASO season, little or no hindcast skill is also 

found over most of Africa during the NDJ season. However, exceptions exist for central 

East Africa (Kenya, Uganda, Tanzania and Somalia), Nigeria and South Africa, where 
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Figure 4.3. Seasonal rainfall hindcast skill for NDJ seasonal rainfall at lead 0 from the 

three individual DEMETER models and the multi-model ensemble. The skill measure is 

Rank correlation (rrank) and the verification data are from the GPCC rainfall data set. The 

panels show rrank for (a) UKMO hindcasts 1959-2000, (b) Météo France hindcasts 1958-

2000, (c) ECMWF hindcasts 1958-2000 and (d) Multi-model ensemble hindcasts 1959-

2000. White lines denote areas with p-values < 0.05. 
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the hindcast skill is significant in all three measures (although this is marginal for MSSS 

in Nigeria). Inspection of Figure 4.3 shows the UKMO (panel a) and DEMETER multi-

model (panel d) have the highest rrank skill, with significant values peaking at 0.5-0.6 in 

Tanzania and the eastern Democratic Republic of Congo. The MSSS and percent of 

correct anomaly-signed hindcast skill measures also have significant peaks in these 

regions. The MSSS peaks at values of 20-40% over Kenya, Uganda, Tanzania and 

Ethiopia. The percent of correct anomaly-signed hindcasts peak at 60-70% in a zone 

stretching across central Africa and also in South Africa. Overall the DEMETER peak 

seasonal rainfall hindcast skill for NDJ is lower than that found for the ASO season. 

 

4.3.3     Skill extension to lead of 3 months 

 

The two regions that were found to have the highest, significant seasonal rainfall 

hindcast skill for ASO and NDJ at 0-month lead are examined further to see whether 

this skill extends to a lead of 3-months. A 3-month lead is examined as the quarterly 

initialisation dates of the DEMETER hindcasts (Section 4.1.2) preclude examination of 

the ASO and NDJ seasons at leads of 1- and 2-months. During the ASO season the 

region of greatest lead 0 skill selected for further examination is the Sahel region (10°N-

20°N, 10°E-10°W) as defined in Nicholson (2005) and comprising Mali, East 

Mauritania, West Niger and Burkina Faso. The region of greatest lead 0 skill selected 

for further examination during the NDJ season is an area of East Africa (10°S-0°N, 

30°E-40°E), comprising Tanzania and Southern Kenya. The MSSS measure is used for 

this 3-month lead seasonal rainfall hindcast skill assessment. MSSS values are optimised 

for the two regions by taking a regional average of the hindcast seasonal rainfall then 

calculating the MSSS for each region. Figure 4.4 shows the change in the DEMETER 

models‟ seasonal rainfall hindcast skill as the lead increases from 0 to 3 months. It is 

clear in both ASO and NDJ cases that where moderate hindcast skill exists at lead 0 this 

skill disappears by lead 3.   

 

In this examination of hindcast skill at 3-month lead, the MSSS is computed for the three 

individual DEMETER models and for three different multi-model ensembles. The 

multi-models are distinguished by the use of different methodologies to compute the 

weighting of each individual model. The skills and confidence intervals of the multi-

models are sensitive slightly to how the individual models are weighted to produce the 
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multi-model, as shown by the differences in skill between each multi-model‟s hindcasts 

in Figure 4.4. Multi-model 1, marked by unfilled, red circles in Figure 4.4, is formed by 

weighting the three individual models by MSSS. In this case any model with a negative 

MSSS has zero weighting, as a negative MSSS indicates no skill. Multi-model 2 uses the 

simplest method, involving a straight average of the three constituent models with no 

weighting. This method, used by the ECMWF, consistently produces the lowest multi-

model hindcast skill, as shown by the small, filled red circles in Figure 4.4. The final 

method involves weighting the three constituent models by mean squared error (MSE). 

This is represented by the large, filled red circles in Figure 4.4. Weighting by MSE has 

been selected as the preferred method to compute the weighting for the multi-model 

ensembles in the other figures and results in this chapter. This weighting method is 

selected because: it offers improved skill over the straight average; it does not exclude 

any of the models as the MSSS method may do; and it generally produces the tightest 

95% confidence intervals, as shown by the error bars in Figure 4.4.  

 

 

 

 

 

 

 

Figure 4.4. DEMETER seasonal rainfall hindcast skill for the Sahel (ASO) and East 

Africa (NDJ) at leads of 0 and 3 months. MSSS (%) is the skill measure and the 

verification data are from the GPCC rainfall data set. Hindcast skill is shown for the 

three individual DEMETER models and for three multi-models. The latter are 

distinguished by different weightings as follows: (1) weighted using MSSS with 

negative MSSS not contributing, (2) a straight average using no weighting and (3) 

weighted using MSE (this is the weighting used in all other figures and results). Error 

bars show the 95% confidence intervals on skill. 
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The 95% confidence intervals included around the deterministic MSSS values in Figure 

4.4 are computed using the bootstrap method (Efron and Tibshirani, 1993; Lloyd-

Hughes et al., 2004). This involves randomly selecting with replacement, 42 years of 

observed rainfall data together with the associated hindcast and climatology. The MSSS 

skill is computed and the process is repeated 10,000 times to obtain a distribution of 

skill values from which a 95% two-tailed confidence interval is readily obtained. This 

confidence interval means there is 95% probability that the skill computed over the 42 

year period will lie within this uncertainty window.  

 

4.4     Conflicting skill results 

 

Conflicting skill results occur sometimes. For example, there are grid squares with a 

large positive rrank, but a negative MSSS skill value. Figure 4.5(a) explains how this is 

possible using, as an example, NDJ 0-month lead rainfall hindcasts for a grid square in 

southeast Chad. Here rrank = 0.55 and MSSS = -3%. The black dashed line shows the 

squared difference between the multi-model hindcast rainfall anomalies (red line) and 

the GPCC observed anomalies (light blue line). Large values of the squared difference 

in two years (1985 and 1997) give rise to a negative MSSS. However, rrank remains 

moderately positive because the hindcast and observed rainfall time series are generally 

in phase. Thus the conflicting skills arise due to two poorly hindcast years and the larger 

impact this has on MSSS than on rrank. 

 

The origin of the conflicting skill values in the above example is examined further in 

Figure 4.5(b). This presents the contribution of each of the individual models to the 

multi-model ensemble time series shown in figure 4.5(a). Of the three individual 

models, the UKMO (dark blue line) is the model that over- and under-predicts the 

magnitude of seasonal rainfall anomalies to the greatest degree. However, when you 

compare the magnitudes of the single models in figure 4.5 (b) to that of the multi-model 

ensemble in figure 4.5 (a) the importance of the weighting can easily be seen. The 

multi-model ensemble, weighted by MSE, has given almost zero weighting to the 

UKMO model and its magnitude is instead similar to the models that are closest to the 

GPCC verification data set in each year.   
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Figure 4.5. Investigation of the source of conflicting seasonal rainfall hindcast 

skill values for NDJ over the period 1959-2000 for a grid square in southeast 

Chad (centred at 17.5°E, 10°N). Panel (a) shows that the squared difference 

between the DEMETER multi-model ensemble and GPCC anomalies is large 

in a few years thereby causing MSSS to be negative. Panel (b) shows the 

hindcast anomalies from the three individual DEMETER models. 
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4.5     Verification from the DEMETER website 

 

The DEMETER website (http://www.ecmwf.int/research/demeter/d/charts/verification) 

displays a general overview of the performance of the DEMETER multimodel and its 

comprising models. The performance assessment includes a suite of verification scores 

for deterministic hindcasts of rainfall in the form of global maps and bar charts averaged 

over a set of regions. The set of regions available over Africa are not coincident with the 

regions discussed in this Chapter, therefore this section will focus on assessing the 

global verification maps. It is difficult to perform a direct comparison between the 

verification assessments available on the DEMETER website and the results from this 

Chapter. This is mainly because the verification maps on the DEMETER website are 

produced for the seasons: March-May (MAM), June-August (JJA), September-

November (SON) and December-February (DJF). These are all at 1-3 months lead, 

rather than the 0-2 months lead used in this study.   

 

Figure 4.6 shows the African section of the seasonal rainfall hindcast skill maps 

available from the DEMETER website, showing the MSSS over the period 1979-2001. 

It can be seen that the majority of Africa has negative MSSS over each season (shown in 

red to yellow). There are however some areas of positive MSSS (shown in light grey).  

 

The main areas of positive MSSS from the DEMETER website are found in: Figure 4.6 

b) Kenya and Tanzania during JJA, Figure 4.6 c) Kenya during SON and Figure 4.6 d) 

the Sahara during DJF. These broadly agree with the main areas of positive MSSS found 

in this study. Figures 4.2 a) and c) show the MSSS across Africa for the ASO and NDJ 

seasons. Positive MSSS values are found over Kenya and Tanzania during both of these 

seasons, as well as in the sub-Saharan/Sahel belt and parts of the Sahara during ASO. 

However, in no positive MSSS values are found for the FMA and MJJ seasons across 

the whole of Africa in this study.  

 

The positive MSSS values shown in figure 4.6 are much lower than those found in the 

rest of this Chapter. This is mainly due to the 1-3 month lead time used for the 

verification on the DEMETER website.  Section 4.3.3 showed that the seasonal rainfall 

hindcast skill reduces dramatically with extended lead time. Using 0-2 month lead time 

in this thesis has shown the maximum skill available from the DEMETER multi-model 
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ensemble. It is also important to note that the multi-model ensemble shown on the 

DEMETER website is a straight average of the UKMO, Météo France and ECMWF 

models. This differs from the method used in this thesis of weighting the contribution 

from each individual model by the MSE of its hindcasts in order to maximise the skill of 

the multi-model ensemble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Seasonal rainfall hindcast skill for a) MAM, b) JJA, c) SON and d) DJF 

at lead 1 from the DEMETER multi-model ensemble over the period 1979-2001. 

The skill measure is Mean Square Skill Score (%), available from the DEMETER 

website (http://www.ecmwf.int/research/dem eter/d/charts/verification). 
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Figure 4.7. Investigation of the source of changing seasonal rainfall hindcast skill with 

each season from the DEMETER multi-model ensemble. The lead 0 skill measure shown 

is Rank correlation (rrank) and the verification data are from the GPCC rainfall data set. 

The panels show scatter plots for seasonal rainfall for a grid square (centred at 37.5°E, 

7.5°S) near Dar es Salaam, Tanzania over the period 1959-2000 for: (a) FMA (b) MJJ (c) 

ASO and (d) NDJ seasonal averages. 
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4.6     Discussion on lack of skill 

 

With a few notable exceptions there is little seasonal rainfall hindcast skill over Africa 

offered by the DEMETER hindcasts for the period 1959-2000. Why is this? Many 

factors may be involved, with these varying with region and season across Africa. Since 

a full examination of factors is beyond the scope of this study attention is focused 

instead on one grid square centred at 37.5°E, 7.5°S, near Dar es Salaam, Tanzania to 

examine why hindcast failures occur at this location through the changing seasons.  

 

Scatter plots of DEMETER multi-model lead 0 seasonal rainfall hindcast data against 

observed rainfall data for each of the seasons: (a) FMA, (b) MJJ, (c) ASO and (d) NDJ 

are displayed in Figure 4.7. The greatest rrank is shown in Panel (d) for the NDJ season at 

0.62. In this panel the variance of the hindcast values is the greatest at around 

300mm/season and the points are positioned the closest to the line dotted line. If the 

points were positioned exactly along the dotted line, this would represent a perfect 

positive correlation (rrank = 1) between the hindcast and observed data. In the other 

seasons (Panels a-c) the correlation is either low or negative. In these panels the 

hindcast data vary by less than 50mm/season, whilst the observed values vary by over 

300 mm/season. The lack of variance in the hindcasts compared to that of the 

observations explains the low or negative correlation skill values in panels (a-c).  

 

Another contributing factor for the lack of skill over Africa is the poor geographical 

representation of the continent within the models. Not only is the horizontal resolution 

very coarse, but some important, large geographical features are completely missing 

from the models. For example, Lake Victoria has a huge influence on the weather of the 

surrounding countries (Section 7.1.2). However, Météo France and the Met Office do 

not have a representation of Lake Victoria in their DEMETER models. The area is 

actually taken to be a land point (Culverwell, 2010 and Doblas-Reyes, 2010). ECMWF 

on the other hand treat Lake Victoria as part of the HOPE Ocean Model.  

 

One final factor likely related to the poor hindcast seasonal rainfall skill is the sparse 

density of rain gauge stations over much of Africa. Figure 4.8 shows (a) the distribution 

of rain gauges over Africa and the rrank for the (b) ASO and (c) NDJ seasonal rainfall at 

lead 0 from the DEMETER multi-model ensemble hindcasts. Figure 4.8 is a 
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compilation of Figures 2.4, 4.1(d) and 4.3(d) respectively. It is interesting to note that 

the regions with the greatest seasonal rainfall hindcast skill correspond to those areas 

with the densest network of observations; namely the sub-Sahara, South Africa and 

parts of East Africa. Where the station density is low, the hindcast skill is generally low. 

One final factor is that the seasons in which the greatest seasonal rainfall hindcast skills 

are found are often coincident with the rainy season in that region. For example, the 

„short-rains‟ of East Africa fall from October-December and this region has the greatest 

seasonal rainfall hindcast skill in Africa during the NDJ season.  

 

Figure 4.8. (a) Map of available rain gauge stations over Africa which provide input to the 

GPCC verification data set. These stations have at least 90% data availability between 1951 and 

2000 (Courtesy of Beck et al., 2005). (b) Rank correlation for ASO seasonal rainfall at lead 0 

from the DEMETER multi-model ensemble hindcasts 1959-2000 as shown in Figure 4.1(d). (c) 

Rank correlation for NDJ seasonal rainfall at lead 0 from the DEMETER multi-model ensemble 

hindcasts 1959-2000 as shown in Figure 4.3(d). White lines denote areas with p-values < 0.05. 
 

(a) 

(b) (c) 
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4.7     Summary 

 

The results of the skill assessment show that the DEMETER individual model and 

multi-model seasonal rainfall hindcasts have weak correlation with the observed GPCC 

rainfall data over most of Africa at zero lead for the period 1959-2000. However, 

moderately high, significant correlations are found during the ASO season at lead 0 over 

the southern Sahel region and for the NDJ season at lead 0 in the south-eastern Sahel 

region, and parts of eastern and southern Africa. The regions of high seasonal rainfall 

hindcast skill found from the DEMETER system cover a small area of Africa. This 

suggests that there is room for improvement in the development of dynamical forecast 

models for seasonal rainfall over Africa. 

 

The regions of skill found in the multi-model ensemble hindcasts are coincident with 

regions and seasons that are affected by severe droughts. Therefore although there were 

only a small number of skilful areas found, they could be important results due to the 

humanitarian impacts that droughts cause in those areas. It is important to bear in mind 

the uneven distribution of rain gauges in Africa. The areas that show the highest 

DEMETER hindcast skill are coincident with those areas of Africa that have the highest 

concentrations of rain gauge stations. The DEMETER models seem to be able to best 

predict the seasonal rainfall during some rainy seasons. This may be because during the 

rainy seasons the dynamics are better represented over some of these regions of Africa 

as the dynamical links to global sea-surface temperatures are at their strongest.     
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Chapter 5 

Methodology behind the Development of 

Statistical Seasonal Rainfall Hindcast Models 

 

This chapter outlines the methodology used to develop regional statistical seasonal 

rainfall hindcast models for Kenya. The methods used to split Kenya into homogeneous 

rainfall regions are presented in Section 5.1. The techniques used to select predictors, 

develop seasonal rainfall hindcast models and to assess their skills are described in 

Sections 5.2-5.4.   

 

It is important to define the usefulness of a forecast. The Kenyan forecasters need to 

make use of the forecast models to predict extended rainfall deficits. In this thesis the 

usefulness is defined by a combination of the skill assessments (Sections 4.2.3, 4.2.4 

and 5.4), and the importance of the Kenyan regions in terms of population and the 

economy (Section 5.1.2). Hindcast models that are found to be skilful in Chapters 6-8 in 

the most populous and highly cultivated regions of Kenya will only be truly useful if 

they are used operationally to produce skilful forecasts in Kenya (Section 9.3).  

 

5.1     Clustering the rain gauge data into homogeneous  

  rainfall regions 
 

Uneven rainfall distribution provides a problem when forecasting seasonal rainfall in 

Kenya, as it is often the case that just a few storms can produce the majority of a 

season‟s rainfall (Indeje et al., 2000; Indeje and Semazzi, 2000). The uneven spatial 

distribution of rainfall (Figure 2.5) is due to Kenya‟s complex topography (Figure 2.4), 

the effects of large nearby bodies of water such as the Indian Ocean and Lake Victoria, 

and to other regional factors (Indeje and Semazzi, 2000). Spatial rainfall averages are 

therefore necessary in order to reduce the influence of the uneven spatial distribution of 

the rainfall and to reduce noise in the data (Indeje et al., 2000). For this study Kenya is 

split into homogeneous rainfall regions. The monthly rainfall data from the rain gauge 

stations within each homogeneous rainfall region are then averaged together for each 

rainy season and used as regional seasonal rainfall indices. 
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Figure 5.1. Part 1: Monthly rainfall climatology (averaged over the period 1959-2006) for 

each homogeneous rainfall region: (a) South, (b) Southeast and (c) Southwest. 
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Figure 5.1. Part 2: Monthly rainfall climatology (averaged over the period 1959-2006) for 

each homogeneous rainfall region: (d) West, (e) Northwest and (f) Northeast. 
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5.1.1     Methodology 

 

A four stage process is used to cluster Kenya‟s rain gauge stations into homogeneous 

rainfall regions. 

 

1. Kenyan topography and geographic proximity of the rain gauge stations 

  

Throughout the clustering process it is important to consider the topography of Kenya 

(Figure 2.4) and the geographic proximity of the rain gauge stations (Figure 3.1) 

(Gissila et al, 2004). The escarpments of the Great Rift Valley act as a natural 

meridional boundary, separating the fertile highlands of the Rift Valley in the southwest 

from the less fertile lowland regions of the southeast. There is also a natural zonal 

boundary between the arid region of northern Kenya and the semi-arid and fertile 

regions of central and southern Kenya. These natural boundaries will help to guide the 

position of the borders of the homogeneous rainfall regions. 

  

2. Intra-annual rainfall variability 

 

The intra-annual variability is assessed visually at each individual rain gauge station. 

The rainfall climatology by month (averaged over the period 1959-2006) for each of the 

22 rain gauge stations employed in this study are shown in Figure 5.1. The monthly 

rainfall climatology for those stations located in the South (Panel a), Southeast (Panel 

b), Northwest (Panel e) and Northeast (Panel f) of Kenya vary in phase with each other. 

Further clustering analysis is necessary to group the remaining rain gauge stations. 

 

3. Inter-annual rainfall variability 

 

The next stage of the clustering process is a detailed examination of the inter-annual 

rainfall variability at each rain gauge station. The method is adapted from that used by 

Gissila et al. (2004), who calculated the cross-correlation between the seasonal average 

rainfalls from all of the rain gauge stations in Ethiopia. For each station of interest, the 

three stations with the highest cross-correlations are recorded. The user may then further 

cluster the stations with the strongest correlations, whilst also taking into account the 

results of the intra-annual variability assessment. 
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Cross-correlations are then calculated between each established cluster. This is designed 

to confirm if the mean cross-correlation within a cluster is greater than the mean 

correlation with any other cluster. If this is not the case then the comprising rain gauge 

stations are re-assessed to see whether they would be better placed in a neighbouring 

homogeneous rainfall region. 

 

4. Local knowledge 

 

Local knowledge is invaluable in providing guidance on the locations of the 

homogeneous rainfall regions. Kenyan climate scientists (Indeje, 2000; Indeje et al., 

2000) use Empirical Orthogonal Function (EOF) and correlation analysis to delineate 

East Africa into homogeneous climatic regions, using both annual and seasonal rainfall 

data (Figure 5.2). The homogeneous rainfall regions are similar in each case over 

Kenya, which shows that the regional boundaries have little seasonal dependence 

Figure 5.2. Homogeneous rainfall regions over Kenya from Indeje (2000) and Indeje et al. 

(2000). Rainfall was delineated into regions through EOF and correlation analysis using annual 

(black dotted lines) and seasonal (purple dotted lines) rainfall over the period 1961-1990. 
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(Indeje, 2000). Indeje uses the regions formed using seasonal rainfall data (the purple 

dotted lines in Figure 5.2) throughout his thesis (2000) and published research on East 

African seasonal rainfall (Indeje et al., 2000; Indeje and Semazzi, 2000). It is important 

to note that Indeje‟s homogeneous rainfall regions are designed to cover the whole of 

East Africa. Therefore, due to the difference in study area and rain gauge data employed 

in this study, the regional boundaries will be not be identical to those used by Indeje et 

al. (2000). 

 

The boundaries of the homogeneous rainfall regions that will be employed throughout 

the rest of this study are shown in Figure 5.3. Further details on the exact position of the 

comprising rain gauge stations are presented in Table 3.1. The black lines in Figure 5.3 

show the boundaries of the regions developed using the methods outlined above. The 

purple dotted lines show the boundaries of the regions developed by Indeje (2000) and 

Indeje et al. (2000) using seasonal rainfall data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The black lines show the boundaries of the homogeneous rainfall regions, over 

Kenya, used in this study. The purple dotted lines show the regional boundaries from Indeje‟s 

seasonal rainfall analysis shown in Figure 5.2 (Indeje, 2000 and Indeje et al., 2000). Map of 

Kenya from Online Maps (2009). 
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It is important to note that stages 1-3 (above) are conducted independently of stage 4. 

The clustering of the regions is not therefore influenced by the results of Indeje. 

However, Indeje‟s boundaries serve to guide the exact location of the new regional 

boundaries, to take into account local knowledge. Four main changes are made to the 

regional boundaries developed by Indeje (2000) and Indeje et al. (2000): (1) The West 

region is expanded to include Chorlim, as this is more strongly linked to the West 

region than to the Southwest; (2) The Southwest region is expanded to include the 

greater Nairobi area, so that this heavily populated area is not split into two regions; (3) 

The Northwest region is expanded to include Baragoi, as this is the most data sparse 

region of Kenya; (4) The boundary of the South region has been moved due to the low 

cross-correlations between Voi and the three rain gauge stations in the South region. 

 

The monthly rainfall data from all stations within each homogeneous rainfall region are 

then investigated over each rainy season. This is to ensure that there is at least 50% 

monthly rainfall data availability across each region and season per year. If > 50% of 

the seasonal rainfall data in a given year are not available then the seasonal rainfall 

average for that region and year is set to NA.  

 

The monthly rainfall data are averaged together over the „long- and short- rains‟ seasons 

for each of the six regions to produce twelve regional seasonal rainfall indices for 

Kenya. These rainfall indices cover the period 1959-2006. Each rainfall index is split 

into three sub-periods of 16 years: 1959-1974, 1975-1990 and 1991-2006. The first two 

sub-periods are used as training periods to find potential predictors and to develop 

regional seasonal statistical hindcast models. Potential predictors are investigated 

separately for each rainy season, at time lags of zero to five months. The remaining sub-

period is reserved to develop regional statistical forecast models over an independent 

verification period (Hastenrath, 1995; Mutai et al., 1998; Hastenrath et al., 2004).  

 

5.1.2     Selected Kenyan rainfall regions 

 

The following paragraphs provide details on the importance of each homogeneous 

rainfall region (Figure 5.3) in terms of: settlement, agriculture and topography. Details 

on land use and topography are taken from Figures 2.6(b) and 2.4 respectively. 

Population data from 2000 with estimated population data for 2015 are presented in 

Table 5.1 (CIESIN, 2005). 
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Southwest and West regions 

 

The Southwest and West are the most important regions of Kenya in terms of 

population and economy. These regions produce the majority of Kenya‟s tea, coffee, 

cereal, cattle and sugar output. They are the most populous regions of Kenya, 

comprising 11.1 and 8.6 million people (38.1% and 29.6% of the total population) 

respectively. The Southwest region includes the 2.3 million people living in the capital 

city, Nairobi (CIESIN, 2009).  

 

Over half of the land in the Southwest is semi-arid. The second largest land use is 

perennial cropland, which is cultivated with long term crops that do not need replanting 

after each harvest. Perennial crops contribute towards Kenya‟s economy and include: 

tea, coffee, vine, palm and banana. The next largest land uses are improved grazing 

(where cattle are raised), forests, arable cropland, arid zones and flooding zones. Arable 

cropland is cultivated with crops that need replanting after each harvest. Arable crops 

also contribute towards Kenya‟s economy and include: cereals, cotton and sugar. Land 

use in the West region is mainly perennial cropland, with a small area of forest to the 

Region 

Population 

(millions) 

2000 

Population (%) 

2000 

Population 

(millions) 

2015 

Population (%) 

2015 

South 0.95 3.3 1.3 3.4 

Southeast 7.6 26.3 9.0 23.8 

Southwest 11.1 38.1 15.6 41.4 

West 8.6 29.6 10.6 28.2 

Northwest 0.37 1.3 0.52 1.4 

Northeast 0.42 1.4 0.68 1.8 

Table 5.1. Population per homogeneous rainfall region. Measured in millions of people and 

percentage of total Kenyan population for 2000 and estimates for 2015. Population data from 

the Gridded Population of the World, Version 3 (GPWV3), produced by CIESIN (Centre for 

International Earth Science Information Network) (CIESIN, 2005). 
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north. Both Southwest and West regions are located at high elevations; mainly over 

500m, increasing to over 1.5km along the escarpments of the Rift Valley. The West 

region borders the fertile shores of Lake Victoria.  

 

Figures 5.1 (c) and (d) show the annual rainfall time series from the Southwest and 

West regions respectively. Both regions receive moderate to large amounts of rainfall 

during the „long- and short-rains‟ seasons, with peaks of 120-280mm/month in April 

and 80-200mm/month in November. The West region experiences a third rainy season 

from July to September, with a peak in August of 80-220mm/month.   

 

Southeast and South regions 

 

The Southeast is the third most populous region in Kenya with 7.6 million people 

(26.3% of total population). The majority of the land is semi-arid, with an exception in 

the west of the region. The Southeast region slopes down from > 1.5km in the west to < 

100m in the east. The main form of livelihood for the population is nomadic 

pastoralism, where livestock are herded seasonally or continuously in order to find 

grazing land and water. This subsistence farming does not contribute to the Kenyan 

economy. In the western third of the Southeast region, around 50% of the land use is 

arable cropland, which contributes towards Kenya‟s economy, with small areas of 

forests and wetlands. Figure 5.1 (b) shows the annual rainfall time series from the 

Southeast region. The region receives moderate to large amounts of rainfall during the 

„long- and short-rains‟ seasons, with peaks of 80-300mm/month in April and 

November.  

 

The South region borders the Indian Ocean, and comprises a narrow band of fertile land, 

extending up to 100km inland. This region has the third smallest population in Kenya 

with 950,000 people (3.3% of total population). Most of the land use is either semi-arid 

or wetland, however around a quarter of the land is used as arable cropland, thus 

contributing towards Kenya‟s economy. Figure 5.1 (a) shows the annual rainfall time 

series from the South region. Large amounts of rainfall are received during the „long-

rains‟ season, with a later peak in May of 220-320mm/month. A lesser amount of 

rainfall is received during the „short-rains‟ season, with a peak of 60-100mm/month in 

October/November. 
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Northwest and Northeast regions 

 

The Northwest and Northeast are the least important regions of Kenya in terms of 

population and economy, comprising 370,000 and 420,000 people (1.3% and 1.4% of 

total population) respectively. They do not significantly contribute to the Kenyan 

economy, as the main form of livelihood is nomadic pastoralism. The land use is not 

conducive to farming as it is semi-arid or arid with some lake areas. Elevation varies 

between 50-300m, sloping down towards the southeast. Figures 5.1 (e) and (f) show the 

annual rainfall time series from the Northwest and Northeast regions respectively. Both 

regions receive rainfall during the „long- and short-rains‟ seasons with peaks of 40-

240mm/month in April and 20-110mm/month in November. The amount of rainfall 

received in these regions is generally far lower than in the rest of Kenya, especially in 

the Northwest, which receives < 100mm/month at its peak in April. 

 

5.2     Predictor selection criteria 

 

Potential predictors for seasonal rainfall in Kenya are sourced from the monthly data 

introduced in Chapter 3, namely: global SSTs, global 850hPa winds, Niño indices, the 

SOI, the DMI, the QBO index and the MJO index. The methods used to select potential 

SST predictors are based on those used by Diro et al. (2008) and Gissila et al. (2004) in 

their search for predictors for seasonal rainfall in Ethiopia. Potential wind predictors are 

selected using methods outlined in Saunders and Lea (2005). Note that in all cases 

actual values are used unless it is clearly specified that an anomaly is used instead. 

 

The following sections outline the criteria used to identify potential predictor regions, 

which have strong (Section 5.2.1), temporally stable (Section 5.2.2) and significant 

(Section 5.2.3) correlations with the Kenyan regional seasonal rainfall indices. Section 

5.2.4 describes the methods used to select potential wind predictor regions that have 

strong, temporally stable and significant links to the Kenyan rainfall indices. The data 

within these regions are then averaged together to form potential predictor indices.  
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Figure 5.4. Example spatial correlation plots: Southwest regional OND seasonal rainfall 

index correlated with prior August-September (AS) two-month average SST global 

field over the periods: (a) 1959-1974 and (b) 1975-1990. White areas denote land mass. 

Red (blue) shows positive (negative) correlations, grey shows low correlations 

(between -0.2 and 0.2) and the black lines show areas with p-values < 0.15. The AS 

potential predictor region for this example is highlighted by the purple box. 

(a) 

AS 

AS 

(b) 
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5.2.1     Correlation of seasonal rainfall and predictors  

 

Regional statistical seasonal rainfall hindcast models are developed using linear 

regression techniques (Section 5.3). There must be a strong linear correlation between 

predictor and predictand in order for a linear regression model to have skill (Gissila et 

al., 2004). Potential predictors are selected through assessing their correlations with 

each of the twelve Kenyan regional seasonal rainfall indices (Section 5.1.1) at lead 

times of up to 5 months. The correlation assessment is repeated for each homogeneous 

rainfall region and rainy season. Potential predictors are correlated with the regional 

seasonal rainfall indices as individual monthly data and as two- and three-month 

averages in order to select the strongest potential predictors for each rainy season and 

homogeneous rainfall region.  

 

In the cases when the potential predictors are in the form of indices, such as the Niño 

3.4 index, a straight correlation can be calculated between the predictor index and the 

regional seasonal rainfall index over each training period. In the case of SSTs, when the 

potential predictor is in the form of a global gridded data field, potential predictor 

regions are selected through visual analysis of global correlation plots over each training 

period. These are produced by calculating the correlation between the regional seasonal 

rainfall index and the potential predictor data within each grid square across the globe.  

 

5.2.2     Stability of predictors over time 

 

Potential predictors need to have strong, temporally stable correlations with the regional 

seasonal rainfall indices. The training period is therefore split into two 16-year periods: 

(a) 1959-1974 and (b) 1975-1990. Figure 5.4 shows examples of spatial correlation 

plots over each of these 16-year training periods. The correlations are between the 

Southwest OND regional rainfall index and the prior August-September (AS) two-

month average global gridded SST field. The purple box shows the region that has been 

selected as a potential SST predictor region due to the strong correlations that are stable 

over both half periods. The assessment of the correlation plots is performed visually, 

rather than by using a program to automatically select grid squares that are stable over 

time. If a strongly correlated grid square shifts spatially by even 1 grid square over the 
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two periods then the potential predictor region would be erroneously missed by an 

automatic selection program. 

 

5.2.3     Significance of correlations 

 

It is important that the potential predictors have a significant correlation with the 

regional seasonal rainfall indices. The significance threshold required for the correlation 

assessment has been set at a p-value < 0.15 over both half periods over most of the 

potential predictor region. To calculate the p-values per grid square for each of the 

hundreds of spatial correlation plots produced using the bootstrapping method (Chapter 

4.2.6) is too computer and time intensive. Fisher‟s Two-Sided Exact Probability Test 

(chapter 4.2.6) is a less computer and time intensive method to calculate the p-values for 

the global spatial correlation plots. 

 

The following compares the p-values calculated using Fisher‟s Two Sided Exact 

Probability Test and the bootstrapping method for a random example. The rrank between 

the South cluster‟s MAM seasonal average rainfall index and the MAM Niño 4 index is 

found to be 0.45. The associated p-values are 0.03 and 0.05 calculated using Fisher‟s 

Two Sided Exact Probability Test and the bootstrapping method respectively. The 

similarity between these two results indicates that Fisher‟s Two Sided Exact Probability 

Test is a suitably stringent but less computer and time intensive method to calculate p-

values. Fisher‟s Two Sided Exact Probability Test will therefore be used to calculate the 

p-values for the global spatial correlation plots throughout this study. 

 

5.2.4     Potential wind predictor selection method 

 

Potential 850hPa wind predictors cannot be selected through correlation analysis, as 

wind data are in vector form. They are therefore selected through visual analysis of 

global composite difference plots over each training period, based on the method used 

by Saunders and Lea (2005). Each composite difference plot shows the direction, 

magnitude and significance of the composite difference in wind anomalies for those 

subset years when the regional seasonal rainfall index is in its upper and lower quartiles. 

The statistical significance is calculated using the bootstrapping method as described in 



 

Page 96 

 

Chapter 4.2.6. Regions of strong, temporally stable and significant wind vectors are 

linked to above median regional seasonal rainfall in Kenya. The average u-wind is taken 

over each potential predictor region as a potential predictor index. This is because the u-

component of the wind is generally the most dominant within the potential wind 

predictor regions.  

   

5.2.5     Physical link between regional rainfall and potential predictor  

   indices 

 

A dynamical link must exist between each potential predictor and its associated regional 

seasonal rainfall index. Potential predictors are therefore only selected from regions 

with known teleconnections with Kenyan rainfall, as presented in Chapter 2.3. The 

purple box in Figure 5.4, for example, shows the area of SSTs that have been selected as 

a potential predictor region for the OND rainfall in the Southwest region of Kenya. This 

potential SST predictor region, located off the coast of East Africa, has a strong, 

positive, temporally stable correlation with the Southwest OND rainfall index. Rising 

motion and convective activity are enhanced over this region due to the positive SST 

anomalies. Understanding the dynamical link between the regional rainfall variability 

and the SST anomalies gives us confidence to use this region as a potential predictor. 

 

5.3     Formulation of statistical models 

 

The following sub-sections outline the methodology used to develop regional statistical 

seasonal rainfall hindcast models for Kenya. For each season and region, hindcast 

models are first developed using a cross-validation method over three training periods 

(1959-1974, 1975-1990 and 1959-1990). These three periods are used to assess the 

temporal stability of the hindcast skill. The hindcast models are then applied in a 

replicated real-time sense to the independent verification period of 1991-2006. It is then 

possible to assess the forecast skill available from these models over this independent 

verification period.    
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Figure 5.5. OND rainfall index from the Southwest region over the period 1959-1974. (a) Histogram of 

the rainfall index to highlight the non-normal distribution. (b) Quantile-Quantile (QQ) plot comparing 

the observed rainfall index to the theoretical normal distribution. The black diagonal line in (b) indicates 

the theoretical position of the points if the data were normally distributed. The black dashed arrows 

highlight the high rainfall years that are responsible for the large departure from normality. Note/ 

Rainfall data from the years 1960, 1964 and 1966 are not available for this example.  
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5.3.1     Test for normality of data     

 

Seasonal rainfall hindcast models are developed for regions of Kenya using linear 

regression modelling (Section 5.3.2). In order to satisfy the validity assumptions for 

using linear regression, the residuals around the regression line (Section 5.3.2) need to 

follow a normal distribution (Wilks, 2006). To achieve this, the actual potential 

predictor and predictand indices are tested for normality before the linear regression 

models are developed. Any indices that do not satisfy the validity assumption are 

transformed to a normal distribution and re-tested for normality. Linear regression 

modelling is then performed on the transformed data to produce regional seasonal 

rainfall hindcasts (Section 5.3.2). The residuals around the regression line are then 

themselves tested for normality. Finally, the hindcast values are transformed back to 

their original dimensions before the hindcast skill is computed (Section 5.4).  

 

Rainfall data often follow a Gamma Distribution (Wilks, 2006), which is positively 

skewed with an elongated tail to the right. This distribution is due to the physical 

constraint that rainfall must be positive and the fact that most days record low amounts 

with just a few high rainfall events (Wilks, 2006). Figure 5.5 (a) shows the distribution 

of the OND rainfall index from the Southwest region over the years 1959-1974. This is 

a typical example of a gamma distributed regional seasonal rainfall index. 

 

 

Quantile-Quantile (QQ) scatter plot 

 

The normality of the distributions of the predictor and predictand indices are tested 

separately using two techniques. Firstly, a Quantile-Quantile (QQ) scatter plot is 

produced to show how closely the normal distribution represents the distribution of the 

data (Figure 5.5 (b)). The location of each point is given by a coordinate pair consisting 

of an observed rainfall data value and the corresponding theoretical estimate for the data 

value derived from an empirical formula for the normal distribution. Figure 5.5 (b) 

shows a QQ plot for the example case of the OND Southwest rainfall index. The black 

diagonal line indicates the theoretical position of the points if the data were normally 

distributed. The curvature of the points therefore indicates the extent of the departure of 

the data from normality. It can be seen that the curvature of the data is greatest towards 
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the right of the plot. The black dashed arrows draw attention to the high rainfall years 

that contribute towards the departure from normality.  

 

Histogram with fitted theoretical distributions 

 

Further investigation is required for those potential predictor and predictand indices that 

show departures from the normal distribution. The Excel-based risk analysis software 

“@Risk” has a function that plots a histogram, superimposed with the theoretical 

distributions that best represent the data. This software calculates the Goodness-of-Fit of 

a selection of theoretical distributions to the data using the Kolmogorov-Smirnov (K-S) 

Test. An example plot is shown in Figure 5.6 for the OND Southwest rainfall index. 

The theoretical distribution that best fits the data in this example is found to be the 

gamma distribution (red line). The normal distribution (green line) is also included for 

comparison.    

 

Figure 5.6. „@Risk‟ plot showing the gamma distribution (red) that best represents the OND 

seasonal rainfall index from the Southwest region over the years 1959-1974. The green line 

shows the normal distribution for comparison. Note/ Rainfall data from the years 1960, 1964 

and 1966 are not available.  
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Transformations  

 

Each potential predictor or predictand index that shows departures from the normal 

distribution needs to be transformed to a normal distribution. In each case several 

transforms are first tested on the actual data (x) including: log(x), log(1+x), 3 x and the 

Box-Cox transformation. The Box-Cox transformation, given by: 

 

xxT )(      
            Equation 5.1 

 

may be used to transform positively skewed rainfall data to a more normal distribution. 

The Box-Cox power (λ) varies from 0 to 1 (Box and Cox, 1964) and is calculated using 

the box.cox.powers function in the statistical program “R”. This function calculates the 

logarithm of the likelihood function (LLF) for λ varying between 0 to 1. The λ that act 

to maximise the LLF is used as the λ in equation 5.1 (Box and Cox, 1964).  

 

Each transformed data index is then re-tested for normality and the data that have the 

greatest resemblance to the normal distribution are used to develop the linear regression 

seasonal rainfall hindcast models. Figure 5.7 shows the results of the transformation for 

the example case of the OND Southwest rainfall index. The function used here to 

transform the data to the most normal distribution is given by: 

 

                                                           T(x) = log (1 + x)                          Equation 5.2 

 

where x is the OND Southwest rainfall index over the period 1959-1974. Figure 5.7 (a) 

shows that the transformed data are jointly best represented by the Log Logistical (red 

line) and normal (green line) distributions. Figure 5.7 (b) shows the QQ plot associated 

with these transformed values. The points now lie closer to the black diagonal line than 

before the transformation (Figure 5.5 (b)) and the large departure from normality has 

been removed.  

 

Table 5.2 shows the functions that were used in this study to transform the rainfall 

indices to normal distributions. Normality tests showed that the potential predictor 

indices were already close to a normal distribution. No transformations were therefore 

necessary for these data. 
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Figure 5.7. Transformed (using log(x+1)) OND seasonal rainfall index from the Southwest region over 

the years 1959-1974. (a) „@Risk‟ plot showing the Log Logistic (red) and Normal (green) distributions 

that best represents the transformed OND seasonal rainfall index from the Southwest region over the 

years 1959-1974. (b) QQ-plot comparing the transformed rainfall index to the theoretical normal 

distribution. Note/ Rainfall data from the years 1960, 1964 and 1966 are not available for this example.  
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5.3.2     Simple linear regression  

 

Regional seasonal rainfall hindcast models are developed using the standard statistical 

procedure of least-squares linear regression. The fundamentals of least-squares 

regression are presented below and in Figure 5.8. More details can be found in Wilks 

(2006). 

 

Simple least-squares linear regression attempts to summarise the relationship between 

predictor and predictand, by a single straight line, on a scatter plot between the two 

variables as shown in Figure 5.8. The procedure positions the regression line by 

minimising the squared error for the prediction of the predictand (y) given the 

observations of the predictor (x).  

 

 

Figure 5.8. Schematic of the fundamentals of least-squares linear regression. Here, x 

represents the predictor variable, y represents the predictand and y specifies a predicted value 

of y. The regression line ( mxcy ) minimises the sum of the squared residuals, which are 

the vertical differences between the points and the regression line )( iii xyye . 
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Minimising the squared error across the line is equivalent to minimising the sum of the 

squared vertical distances (the dotted lines in Figure 5.8) between the regression line 

and the data points (the residuals, ei). Each individual residual is defined as: 

 

)( iii xyye                Equation 5.3 

 

where y specifies a predicted value of y. The resulting prediction equation for the 

regression line is: 

 

y  = c + mx                Equation 5.4 

 

where c is the intercept and m is the gradient of the line as shown in Figure 5.8. 

 

The statistical software “R” includes a function, lm, which performs a linear regression 

between a predictor and a predictand index (R Development Core Team, 2009). The lm 

function calculates the intercept (c) and gradient (m) coefficients of the regression line, 

allowing the predicted values to be calculated using Equation 5.4.  

 

Examination of the residuals 

 

The residuals in each hindcast model must be normally distributed about the regression 

line in order to satisfy the validity assumptions of linear regression (Wilks, 2006). It is 

therefore vital that after each linear regression hindcast model has been developed, the 

distribution of the residuals (ei) around the regression line is tested through a QQ plot 

(Chandler, 2009). Due to the effort of ensuring that the actual predictor and predictand 

indices follow a normal distribution, the residuals are found in all cases to be normally 

distributed around the regression line.    

 

After the linear regression hindcast models have been developed, the resulting hindcasts 

need to be transformed back using the reverse of the transformation functions listed in 

Table 5.2. This ensures that the hindcast rainfall values are returned to their original 

dimensions, allowing the seasonal rainfall hindcast skill to be assessed (Section 5.4). 
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Region of the 

Rainfall Index 

Time period of the 

Rainfall Index 

Transformation 

Function 

South 1959-1990
 3 x  

South 1959-1974 x  

South 1975-1990 log(x) 

Southeast 1959-1990
 

log(x) 

Southeast 1959-1974 3 x  

Southeast 1975-1990 x  

Southeast-east 1959-1990
 3 x  

Southeast-east 1959-1974 3 x  

Southeast-east 1975-1990 x  

Southeast-west 1959-1990
 

log(x) 

Southeast-west 1959-1974 log(x) 

Southeast-west 1975-1990 None 

Southwest 1959-1990
 

log(1+x) 

Southwest 1959-1974 log(1+x) 

Southwest 1975-1990 x  

West 1959-1990
 3 x  

West 1959-1974 log(1+x) 

West 1975-1990 x  

Northwest 1959-1990
 

x  

Northwest 1959-1974 x  

Northwest 1975-1990 3 x  

Northeast 1959-1990
 

x  

Northeast 1959-1974 log(x) 

Northeast 1975-1990 3 x  

Table 5.2. Functions used to transform the OND regional rainfall indices 

to normal distributions. No transformations were required for the potential 

predictor indices. No transformations are reported for MAM as linear 

regression forecasts were not developed for this season. 
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5.3.3     Multiple linear regression 

 

For those regions and seasons with multiple potential predictors, the rainfall hindcast 

models are developed using multiple linear regression (MLR). This is the more general 

form of the simple linear regression described in Section 5.3.2.   

 

The prediction equation for MLR is given by Mutai et al. (1998) and Wilks (2006) as: 

 

      y = β0 + β1x1 + β2x2 + • • • + βkxk               Equation 5.5 

 

Each of the k predictor variables (xk) has its own coefficient (βk), which is analogous to 

the slope (m) in Equation 5.4. The “regression constant” (β0) is analogous to the 

intercept (c) in Equation 5.4. Simple linear regression is the special case where k=1. 

 

The lm function in the software “R” is used to perform a MLR between a predictand 

index and various predictor indices. The function calculates the regression constant (β0) 

and the regression coefficients (βk) for each predictor index, allowing the predicted 

values to be calculated using Equation 5.5.  

 

MLR can only be used when several potential predictor regions are found to have 

strong, temporally stable and significant correlations with the regional seasonal rainfall 

index. The potential predictor regions must be independent of one another. Any 

potential predictors that are used in combination within a MLR are tested for correlation 

with each other. The predictors should preferably have a low correlation with each other 

and be separated spatially. The hindcast would not be improved by forming a MLR 

between two related predictors or through using the same predictor region at different 

lead times. This is because most of the variance would already be explained by the first 

predictor. There are occasions when a single (simplifying) index can be created from 

two, or more, multiple predictors (Sanders and Lea, 2005). An example of this would be 

combining two potential predictor regions as a dipole. The difference between these two 

regions of the same predictor field should have a known dynamical link, such as two 

SST regions that form part of the IOD. 
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Any potential predictor indices that are used as part of a MLR need to be normalised to 

give each predictor a similar weighting within the linear regression model. The 

standardised anomaly of the predictor is used in the MLR, which is the predictor‟s 

anomaly normalised by the standard deviation. The standardised anomaly (z), which is 

dimensionless, is given by Wilks (2006) as: 

 

    
xs

xx
z                  Equation 5.6 

 

where x  is the average of the predictor index (x) over the training period and sx is the 

standard deviation of x. The use of the standardised anomalies in the MLR reduces the 

influence of location and spread from the predictor indices.  

 

5.4     Skill Assessment 

 

The hindcast skills available from the seasonal rainfall hindcast models are examined 

over the three periods: 1959-1974, 1975-1990 and 1959-1990. The hindcast models are 

then applied in a replicated real-time sense to the independent verification period of 

1991-2006. The forecast skills available over this later period are also examined. The 

verification measures used to assess the hindcast skills are rank correlation (rrank), mean 

square skill score (MSSS) and the percentage of hindcasts in the correct tercile. Rrank and 

MSSS are introduced in Chapters 4.2.3 and 4.2.4 respectively. The percentage of 

hindcasts in the correct tercile is computed by noting the number of years that the 

hindcast and observed rainfall are both in the same tercile in the same year. The 

percentage of „successful‟ hindcast years is then calculated. The statistical significance 

(p-value) of the hindcast skills are calculated using the methods described in Chapter 

4.2.6. 

 

The skills of the hindcasts are also assessed over the extreme rainfall years. The upper 

and lower quartile rainfall years from each of the training and validation periods are 

examined separately. The skills found over these extreme years are important to assess 

as it is these years that are more likely to lead to drought or flooding in Kenya. 
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Cross validation over the 1959-1990 training periods 

 

The most skilful hindcast model is selected based on the results from the cross 

validation skill assessment (Chapter 6). A block-removal, cross validation method is 

used for the development of the regional seasonal rainfall hindcast models and the 

assessment of their skill over the training periods of 1959-1974, 1975-1990 and 1959-

1990. This is based on the method used by Gissila et al. (2004). For each time period of 

n years, the year of interest is removed along with 2 years either side, leaving a data set 

of n-5 years to use for calibration. The year of interest can then be used to validate the 

model. Block-removal prevents any artificial skill enhancement from multi-annual 

persistence.  

 

Replicated real-time verification over the 1991-2006 independent period 

 

Once the most skilful hindcast model has been selected for a given region and season a 

final verification is necessary for a robust assessment of the forecast skill. The last 16 

years of data (1991-2006) are reserved as an independent verification data set. These 

data have no influence on the development of the models or the selection of the 

predictors and therefore allow for a stringent, independent assessment of the forecast 

skill. The hindcast models are assessed using a replicated real-time method over this 

independent verification period. In this case the regression replicated real-time forecast 

model is developed over the years proceeding the year of interest. The regression 

coefficients from this model are substituted into Equation 5.4 along with the predictor 

values from the year of interest to give the forecast value for that year.  



 

Page 108 

 

 

Chapter 6 

Statistical Seasonal Hindcast Models for the 

Kenyan „Short-Rains‟ Season 

 

Skilful prediction of seasonal rainfall would bring sound humanitarian and economic 

benefit to Kenya due to its dependence on rain-fed agriculture. This Chapter presents 

the regional OND rainfall hindcast models for Kenya that have been developed through 

this study. The hindcast skills of the models are assessed and improvements are made to 

the knowledge of the predictors that have strong, temporally stable links to regional 

OND rainfall in Kenya. Mechanisms are suggested that could be responsible for the 

dynamical links between the regional rainfall and predictor indices.  

 

6.1     Overview of known factors contributing to  

  interannual variability in the Kenyan „short-rains‟ 
 

Previous research into the interannual variability and predictability of Kenyan seasonal 

rainfall has focused on the „short-rains‟ season (Chapter 2.3). This is because the „short-

rains‟ are more predictable than the „long-rains‟, even though they generally produce 

less rainfall (figure 5.1). The better predictability of the „short-rains‟ compared to that of 

the „long-rains‟ is due to their stronger interannual variability (Camberlin and Philippon, 

2002) and spatial coherence of rainfall anomalies (Mutai and Ward, 2000).  

 

Several publications (Lau and Sheu 1988; Indeje et al. 2000; Mutai and Ward 2000; 

McHugh 2006) have reported teleconnections between ENSO and East African OND 

rainfall. El Niño (La Niña) is found to have a positive (negative) correlation with 

Equatorial East African rainfall, with a peak during the OND „short-rains‟ season. 

Exceptions to this include along the Kenyan coastline (Ogallo, 1988; Hastenrath et al., 

1993). The theories behind the dynamics of these ENSO teleconnections are outlined in 

Chapter 2.3.1. 
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Since the discovery of the IOD in 1999 (Saji et al., 1999 and Webster et al., 1999) other 

publications (Black 2003, 2005; Clark et al 2003; Ummenhofer et al., 2009) have 

suggested that the IOD may have a stronger influence than ENSO on OND rainfall in 

EEA. This was further supported by evidence presented in Figure 2.9 (Chapter 2.3.4). 

The IOD has a positive correlation with Equatorial East African rainfall (Hastenrath et 

al. 1993; Hastenrath 2000; Manpande and Reason 2005), with a peak during the OND 

„short-rains‟ season. The relationship strength varies by region (Zablone and Ogallo, 

2008). The theories behind the dynamics of these IOD teleconnections are outlined in 

Chapter 2.3.1. 

 

During periods of El Niño and the positive phase of the IOD, positive rainfall anomalies 

are often observed in EEA during the „short-rains‟ season. During both of these events, 

similar patterns of SST and wind anomalies are generally observed in the Indian Ocean, 

with warm SST anomalies in the equatorial-west Indian Ocean and cold SST anomalies 

in the equatorial-east Indian Ocean (Chapter 2.3.1). These SST anomalies drive an 

atmospheric circulation of low-level wind anomalies from east to west over the Indian 

Ocean. The ascending branch of the Walker circulation shifts to a position over EEA as 

rising motion is enhanced over the positive SST anomalies in the equatorial-west Indian 

Ocean (Philippon et al., 2002). This leads to the observed increase in convective activity 

and rainfall amounts in EEA during the „short-rains‟ season. A shift of the atmospheric 

Walker circulation is also generally observed over the Pacific Ocean, with the 

descending branch positioned over Indonesia and westerly winds over the equatorial-

west Pacific Ocean (Chapter 2.3.1). The following Sections show that some of these 

regions of SST and wind anomalies are found to be the strongest predictor regions for 

regional OND rainfall in Kenya. 

 

6.2     Skill assessment of statistical hindcast models 

 

The most skilful hindcast models for OND rainfall in each Kenyan region are 

determined using the three cross-validated training periods between 1959 and 1990. 

Table 6.2 shows the hindcast skill of each model for each period as well as their skill in 

replicated real-time forecast mode for the period 1991-2006. The locations of the 

predictor regions, used to develop the best hindcast models, are shown in Figures 6.2-

6.7 and their coordinates are given in Table 6.1. 
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Homogeneous 

rainfall region 

Predictor 

region 

Predictor region 

longitude range 

(°E) (min:max) 

Predictor region 

latitude range 

(°N) (min:max) 

Region 

description 

West SOI Aug Index defined in 

Chapter 3.4.2 

Index defined in 

Chapter 3.4.2 

Tahiti and Darwin 

(Australia) 

West DMI Sep Index defined in 

Chapter 3.4.3 

Index defined in 

Chapter 3.4.3 

West and East 

Indian Ocean 

West* (SST AS(1)) – 

(SST AS(2)) 

SST AS(1): (56:69) 

SST AS (2): 

(114:129) 

SST AS(1): (2:8) 

SST AS (2): 

(-15:-5) 

SST AS(1): NW 

Indian Ocean 

SST AS(2): East 

Indian Ocean 

Southwest SST JAS (48:56) (-9:4) Indian Ocean off 

Kenyan coast 

Southwest SST JA (46:55) (-6:2) Indian Ocean off 

Kenyan coast 

Southwest* SST AS (48:58) (-10:-2) Indian Ocean off 

Kenyan coast 

South SST JJA (223:238) (11:19) East Pacific Ocean 

South u-wind Aug (110:150) (0:10) Indonesia 

South* (u-wind Aug) 

+ (SST Sep) 

u-wind Aug: 

(110:150) 

SST Sep: (46:58) 

u-wind Aug: (0:10) 

SST Sep: (-8:2) 

u-wind: Indonesia 

SST: Indian Ocean 

off Kenyan coast 

Northeast South region‟s 

(u-wind Aug) 

+ (SST Sep) 

u-wind Aug: 

(110:150) 

SST Sep: (46:58) 

u-wind Aug: (0:10) 

SST Sep: (-8:2) 

u-wind: Indonesia 

SST: Indian Ocean 

off Kenyan coast 
Northeast* South region‟s 

u-wind Aug 

(110:150) (0:10) Indonesia 

Northwest SST Jun (47:59) (-4:2) Indian Ocean off 

Kenyan coast 

Northwest* SST JJA (47:59) (-4:2) Indian Ocean off 

Kenyan coast 

Southeast SST JA (142:160) (36:42) Pacific Ocean off 

Japanese coast 

Southeast* SST JJA (142:162) (36:42) Pacific Ocean off 

Japanese coast 

Table 6.1. Locations of the potential predictor regions for each of the OND regional hindcast 

models. The regions are listed in order of increasing strength of forecast skill. 

* marks the best hindcast models for each homogeneous rainfall region.  
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West Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

(SST AS(1)) - (SST AS(2)) 0.57 0.01 22.4  0.58   0.02 20.4 0.38 0.10 9.6 0.65 0.01 53.6 

             Southwest Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST AS 0.50 0.01 18.1 0.55 0.03 23.0  0.39   0.09 0.1 0.42 0.07 28.2 

             South Kenya 1959-1990 1959-1974 1975-1990 1991-2006         

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

(u-wind Aug) + (SST Sep) 0.46    0.01 22.1 0.37 0.10 0.4 0.41 0.07 7.2 0.53     0.04        30.7 

             Northeast Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

South region's u-wind Aug 0.40 0.01 19.6 0.37 0.07 21.3 0.36 0.13 0.8 0.46 0.02 5.90 

             Northwest Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST JJA 0.33 0.05 3.9 0.35 0.09 -8.1 0.54 0.02 11.3 0.29 0.23 7.80 

             Southeast Kenya 1959-1990 1959-1974 1975-1990 1991-2006         

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST JJA 0.25 0.15 0.7 0.37 0.09 12.2 0.49 0.04 14.4 -0.02     0.48 -32.6 

Table 6.2. Table comparing the OND rainfall hindcast and replicated real-time forecast skill scores for the best models for each homogeneous 

rainfall region in Kenya. Predictor regions and skill score results for the hindcasts from each model are shown (rrank and its associated p-value and 

MSSS (%)) over the periods 1959-1990, 1959-1974, 1975-1990 and 1991-2006. Red values show when: rrank ≥ 0.4, p-value ≤ 0.1 and MSSS > 0%. 

The hindcast models are presented in order of strength of skill, from highest to lowest. 
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West Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

(SST AS(1)) - (SST AS(2)) 0.64 0.06 30.2 0.64 0.12 22.5 0.43 0.21 8.3 0.76 0.03 58.8 

             Southwest Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST AS 0.31 0.04 30.7 0.55 0.18 16.0 0.76 0.05 32.4 0.74 0.03 35.0 

             South Kenya 1959-1990 1959-1974 1975-1990 1991-2006         

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

(u-wind Aug) + (SST Sep) 0.56 0.03 38.3 0.54 0.09 36.4 0.55 0.08 24.0    0.33     0.10         29.3 

             Northeast Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

South region's u-wind Aug 0.61 0.08 33.4 0.69 0.07 26.8 0.43 0.15 20.2 0.48 0.29 -5.1 

             Northwest Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST JJA 0.50 0.06 20.7 0.29 0.12 0.4 0.88 0.01 54.7 0.24 0.07 32.0 

             Southeast Kenya 1959-1990 1959-1974 1975-1990 1991-2006         

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST JJA 0.05 0.14 -2.1 0.48 0.10 11.8 0.31 0.13 20.2 -0.14 0.30 -3.5 

Table 6.3. Table comparing the OND rainfall hindcast and replicated real-time forecast skill scores over the extreme years (upper and lower 

quartiles of each period only) for the best models for each homogeneous rainfall region in Kenya. Predictor regions and skill score results for the 

hindcasts from each model are shown (rrank and its associated p-value and MSSS (%)) for the upper and lower quartiles of the periods 1959-1990, 

1959-1974, 1975-1990 and 1991-2006. Red values show when: rrank ≥ 0.4, p-value ≤ 0.1 and MSSS > 0%. 
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Figure 6.1. Scatter plots of hindcast vs. observed OND rainfall (mm/season) over the 1991-2006 

independent verification period for each region of Kenya: (a) Southeast, (b) northwest, (c) southwest, (d) 

northeast, (e) south and (f) west. The lead 0 skill measure shown is Rank correlation (rrank) and the 

observed data are threshold corrected regionally averaged rain gauge data from the KMD. The dotted line 

represents the position of the points if there were a perfect correspondence between the hindcast and 

observed data. 
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The hindcast models are listed in order of decreasing strength of OND rainfall hindcast 

skill. The strongest OND rainfall hindcast skill over all verification periods is from the 

best model developed for West Kenya (Section 6.2.1). A summary of the OND rainfall 

hindcast skill results for the best hindcast models for each region of Kenya is presented 

in Table 6.2. Scatter plots of hindcast vs. observed OND rainfall over the period 1991-

2006 are shown for each region of Kenya in Figure 6.1. The dotted line represents the 

position of the points if there were a perfect correspondence between the hindcast and 

observed data. The greatest rrank is shown in panel (f) for the West region at 0.65. It can 

be seen that the points are positioned the closest to the dotted line. 

 

6.2.1     West Kenya 

 

The Kenyan region offering the highest OND rainfall hindcast skill is West Kenya 

(Table 6.4). This region has an average rrank of 0.55 (p-value ≤ 0.04). The skill scores 

are consistently high with rrank ≥ 0.38 (p-values ≤ 0.1) and MSSS > 0% over all 4 

verification periods, peaking with a replicated real-time rrank of 0.65 (p-value ≤ 0.01) 

over the period 1991-2006 (Figure 6.1 (f)). The skill scores are also consistently high 

during the extreme years, with rrank ≥ 0.43 and MSSS > 0% over all verification periods 

(Table 6.3). It must be noted, however, that the skill scores for the extreme years are 

only calculated using the upper and lower quartiles in each period, therefore the results 

have a lower significance. The hindcast skill is also found to be high for the number of 

years in the correct tercile, with 16 out of 32 anticipated correctly (Appendix B.1).  

 

The best OND rainfall hindcast model for West Kenya is developed using a MLR based 

regression on the difference between two predictor indices: SST AS(1) and SST AS (2). 

These comprise the area average standardised anomalies of the AS two-month average 

SSTs over the West and East Indian Ocean predictor regions respectively. The predictor 

regions are shown in 6.2 and their location coordinates are given in Table 6.1.  

 

The „short-rains‟ of West Kenya are found to have strong links to the IOD (Section 6.1). 

The SST AS(1) and SST AS(2) predictor regions are coincident with the areas of SST 

anomalies that form the main part of the IOD, as shown in Figure 2.8. To further 

demonstrate the strong link to the IOD, the second most skilful hindcast model is 

developed using a simple linear regression based on the September DMI (Chapter 2.3.1) 

as the predictor (Appendix B.1). 
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The West is the second most populous region of Kenya with 29.6% of the total 

population. The land in the West of Kenya is mainly comprised of perennial cropland, 

which contributes towards Kenya‟s economy (Chapter 5.1.2). It is therefore important 

for the population of Western Kenya and the economy of the whole country that the 

hindcasts for OND rainfall are consistently skilful for this region.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2     Southwest Kenya 

 

The Kenyan region with the second strongest OND rainfall hindcast skill is the 

Southwest (Table 6.5), with an average rrank of 0.47 (p-value ≤ 0.05). The skill scores 

are consistently high with rrank ≥ 0.39 (p-values < 0.1) and MSSS > 0% over all 4 

verification periods, peaking with a cross-validated rrank of 0.55 (p-value ≤ 0.03) over 

the period 1959-1974. The skill scores are also high during the extreme years, with rrank 

Period rrank p-value MSSS (%) 

1959-1990 0.57 0.01 22.4 

1959-1974 0.58 0.02 20.4 

1975-1990 0.38 0.10 9.6 

1991-2006 0.65 0.01 53.6 

Figure 6.2. The most skilful predictor regions for OND rainfall in West Kenya. 

Correlation predictor selection plots for these regions are shown in Appendix A.1.  

Table 6.4. OND rainfall hindcast skill scores for the best hindcast model 

for the West region of Kenya. The skill score results are shown (rrank and 

its associated p-value and MSSS) over the periods 1959-1990, 1959-

1974, 1975-1990 and 1991-2006. Red values show when: rrank ≥ 0.4, p-

value ≤ 0.1 and MSSS > 0%. 

West 

SST AS(1) 

 SST AS(2) 
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≥ 0.55 (p-values < 0.1) and MSSS > 0% throughout all verification periods (Table 6.3). 

Two exceptions to this are rrank = 0.31 over the period 1959-1990 and p-value = 0.18 

over the period 1959-1974. It must be noted, however, that the skill scores for the 

extreme years are only calculated using the upper and lower quartiles in each period, 

therefore the results have a lower significance. 

 

The best OND rainfall hindcast model for Southwest Kenya is developed using a simple 

linear regression based on the AS two-month average SSTs over a region off the coast 

of East Africa (SST AS). The predictor region is shown in Figure 6.3 and the location 

coordinates are given in Table 6.1.  

 

The „short-rains‟ in Southwest Kenya are found to have strong links to the SSTs off the 

coast of East Africa, in the West Indian Ocean (Figure 6.3). To further demonstrate this 

link, the second and third most skilful hindcast models for Southwest Kenya are also 

developed using SST predictors from this region (Appendix B.2 and Table 6.1).  

 

The SST AS predictor region is coincident with the predictor region used by Philippon 

et al. (2002) to develop their skilful OND rainfall hindcast models for East Africa 

(Chapter 2.3). The positive SST anomalies off the coast of East Africa are related to the 

ascending branch of the Walker circulation (Philippon et al., 2002). The positive 

correlation with Southwest Kenyan OND rainfall shows that strong ascending motion is 

favourable to rainfall over this region. The SST AS predictor region is also coincident 

with the SST AS(1) predictor region for Western Kenya (Section 6.2.1). The SST AS 

predictor for Southwest Kenya may also, therefore, be linked to the IOD.  

 

The Southwest is the most populous region of Kenya with 38.1% of the total 

population, including the 2.3 million people who live in the capital city, Nairobi. The 

land is used to produce perennial and arable crops and improved grazing, all of which 

contribute towards the Kenyan economy (Chapter 5.1.2). It is therefore important for 

the population of the Southwest and economy of the whole country that the hindcast for 

OND rainfall for the Southwest are consistently skilful.  

 
Period rrank p-value MSSS (%) 

1959-1990 0.50 0.01 18.1 

1959-1974 0.55 0.03 23.0 

1975-1990 0.39 0.09 0.1 

1991-2006 0.42 0.07 28.2 

Table 6.5. As Table 6.4 but for the southwest region of Kenya. 
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6.2.3     South Kenya 

 

The Kenyan region with the third highest skill scores for OND rainfall is the South 

(Table 6.6), with an average rrank of 0.44 (p-value ≤ 0.06). The skill scores are 

consistently high with rrank ≥ 0.37 (p-values ≤ 0.1) and MSSS > 0% over all 4 

verification periods, peaking with a replicated real-time rrank of 0.53 (p-value ≤ 0.04) 

over the period 1991-2006 (Figure 6.1 (e)). During the extreme years the skill scores are 

also consistently high with rrank ≥ 0.54 (p-values < 0.1) and MSSS > 0% over all 

verification periods (Table 6.3). This excludes the period 1991-2006 where rrank = 0.33 

(p-value ≤ 0.1). It must be noted, however, that the skill scores for the extreme years are 

only calculated using the upper and lower quartiles in each period, therefore the results 

have a lower significance. 

 

The best OND rainfall hindcast model for Southern Kenya is developed using a MLR 

based regression on a combination of two predictors: an SST predictor index in the 

West Indian Ocean and a zonal (u) wind predictor index over Indonesia. The SST Sep 

predictor index comprises the area average standardised anomalies of the September 

SSTs over the West Indian Ocean as shown in Figure 6.4. The u-wind Aug predictor 

index comprises the area average standardised anomalies of the August u-winds over 

Indonesia, also shown in Figure 6.4. The predictor region location coordinates are given 

in Table 6.1.  

Figure 6.3. The most skilful predictor regions for OND rainfall in Southwest Kenya. 

Correlation predictor selection plots for this region are shown in Appendix A.2.  

 Southwest 

SST AS 
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To further demonstrate the link between the South Kenyan OND rainfall and these two 

predictor regions, the second most skilful hindcast model is a simple linear regression 

model based on the u-wind Aug predictor index. The third most skilful hindcast model 

is a simple linear regression model based on the average standardised anomalies of the 

JJA three-month average SSTs off the coast of East Africa (Appendix B.3). 

 

The two predictor regions, SST Sep and u-wind Aug, are related through the dynamics 

described in Section 6.1. During a positive IOD or an El Niño, positive SST anomalies 

are observed in the equatorial-west Indian Ocean (SST Sep). The descending branch of 

the Walker circulation shifts to be positioned over Indonesia, producing westerly low-

level winds across the west Pacific Ocean (u-wind Aug). The SST and wind anomalies 

associated with the shifts in the Walker circulation peak at different lead times, hence 

the difference in the timings of the predictors.   

Period rrank p-value MSSS (%) 

1959-1990 0.46 0.01 22.1 

1959-1974 0.37 0.10 0.4 

1975-1990 0.41 0.07 7.2 

1991-2006 0.53 0.04 30.7 

Table 6.6. As Table 6.4 but for the South region of Kenya. 

Figure 6.4. The most skilful predictor regions for OND rainfall in South Kenya. 

Correlation predictor selection plots for the SST Sep predictor region are shown in 

Appendix A.3. Composite difference predictor selection plots for the u-wind Aug 

predictor region are shown in Appendix A.4.  

South 

SST Sep 
 u-wind Aug 
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Clark et al. (2003) also find a strong correlation between the coastal OND rainfall in 

Kenya and the IOD over the period 1950-1999. The positive (negative) correlations 

between OND rainfall in coastal Kenya and western (eastern) Indian Ocean SSTs peak 

in the autumn concurrent with the „short-rains‟. This is further supported by Hastenrath 

et al. (2004), who find a positive correlation between OND rainfall in coastal Kenya and 

SSTs in the West Indian Ocean. The IOD and its associated SST and wind anomalies 

are, therefore, robust predictors for seasonal rainfall hindcast models for the South 

region of Kenya.  

 

The South has the third smallest population in Kenya with 3.3% of the total population. 

Most of these live in the second most populous city in Kenya, Mombasa. Around a 

quarter of the land use is arable cropland, which contributes towards the Kenyan 

economy (Chapter 5.1.2). It is therefore important to the 950,000 people that live in the 

South region and of some importance to the Kenyan economy that the hindcast for OND 

rainfall for the South are consistently skilful. 

 

6.2.4     Northeast Kenya 

 

The Northeast region OND rainfall index does not have a significant or temporally 

stable link to any of the predictors introduced in Chapter 3. Thus a different technique is 

required to develop an OND rainfall hindcast model for the Northeast region. The 

Northeast OND rainfall index is correlated with each of the other regional OND rainfall 

indices. The results show that the Northeast rainfall index is most strongly correlated 

with the South OND rainfall index. The rrank values between the South and Northeast 

OND rainfall indices are found to be 0.57, 0.81 and 0.70 (p-values < 0.1) for the periods 

1959-1974, 1975-1990 and 1959-1990 respectively. This strong correlation is used in 

combination with the strongest hindcast model for the South region to develop OND 

rainfall hindcast models for the Northeast of Kenya. 

 

A simple linear regression is formed between the Northeast and South rainfall indices, 

which have already been transformed to normal distributions using the functions in 

Table 5.2. The intercept (c) and gradient (m) values (Equation 5.4) from this regression 

are then used in a second linear regression in which the predictor (x) is the hindcast 

values produced from one of the strongest hindcast models from the South region of 

Kenya (Section 6.2.3). These hindcast values are transformed to a normal distribution
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Period rrank p-value MSSS (%) 

1959-1990 0.40 0.01 19.6 

1959-1974 0.37 0.07 21.3 

1975-1990 0.36 0.13 0.8 

1991-2006 0.46 0.02 5.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

using the same function as for the South OND rainfall index (Table 5.2). The predicted 

values resulting from the regression then need to be returned to the original rainfall 

dimensions, using the reverse of the transform functions used for the Northeast OND 

rainfall index (Table 5.2). This produces a new index of hindcast OND rainfall values 

for the Northeast region. This is repeated for the two other strong hindcast models from 

the South region. The skill scores of the resulting hindcast values for the Northeast of 

Kenya are then assessed and the strongest hindcast model is selected. The strongest 

hindcast model is based on a u-wind Aug predictor, located around Indonesia as shown 

in Figure 6.5. The location coordinates are given in Table 6.1.  

 

The skill scores for the strongest OND rainfall hindcast model for the Northeast region 

of Kenya are shown in Table 6.7. These skill scores show an average rrank of 0.40 (p-

value ≤ 0.06). The skill scores are moderately high with rrank ≥ 0.36 (p-values ≤ 0.13) 

and MSSS > 0% over all verification periods, peaking with a cross-validated rrank of 0.46 

(p-value ≤ 0.02) over the period 1991-2006 (Figure 6.1 (d)). The skill scores are 

Table 6.7. As Table 6.4 but for the Northeast region of Kenya. 

Northeast 

South Region 

u-wind Aug 

Figure 6.5. The most skilful predictor regions for OND rainfall in Northeast Kenya. 

Composite difference predictor selection plots for this South Kenya predictor region 

are shown in Appendix A.4.  
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generally stronger over the extreme years during the periods 1959-1990 and 1959-1974, 

with rrank ≥ 0.61 (p-values < 0.1) and MSSS > 0% (Table 6.3). However, although rrank > 

0.43 over the extreme years during the periods 1975-1990 and 1991-2006, the skill 

scores are not significant with p-values ≥ 0.15 and a negative MSSS over the period 

1991-2006. It must be noted that the skill scores for the extreme years are only 

calculated using the upper and lower quartiles in each period, therefore the results have 

a lower significance. 

 

It remains unclear as to why the Northeast and South OND rainfall indices share such a 

strong relationship. Their link may be aided by the fact that the two regions follow 

similar annual rainfall distributions and that they are not separated by any topographical 

boundaries.  

 

The Northeast has the second lowest population in Kenya with 1.4% of the total 

population. The main form of livelihood is nomadic pastoralism (Chapter 5.1.2), which 

means that the Northeast region does not contribute significantly to the Kenyan 

economy. The effect on the overall economy of Kenya of just moderate prediction skill 

for Northeast OND rainfall is thus small.   

 

6.2.5     Northwest Kenya 

 

The hindcast skill scores for OND rainfall in the Northwest region of Kenya are the 

second weakest in the country (Table 6.8), only marginally lower than for the Northeast. 

The average rrank for the Northwest region is 0.38 (p-value ≤ 0.10), compared to the 

0.40 (p-value < 0.06) for the Northeast. The skill scores are generally moderate with r-

rank ≥ 0.33 (p-values ≤ 0.09) for all verification periods excluding the replicated real-

time period 1991-2006, which has rrank = 0.29 (p-value = 0.23). MSSS is positive over 

all verification periods, excluding over the period 1959-1974. The skill scores are 

similar during the extreme years, with rrank ranging from 0.24 to 0.88 (p-values ranging 

from 0.12 to 0.01). MSSS is, however, positive throughout all verification periods 

during the extreme years (Table 6.3). It must be noted that the skill scores for the 

extreme years are only calculated using the upper and lower quartiles in each period, 

therefore the results have a lower significance. 
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The best OND rainfall hindcast model for Northwest Kenya is developed using a simple 

linear regression based on the JJA three-month average SSTs over a region off the coast 

of East Africa (SST JJA). The predictor region is shown in Figure 6.6 and the location 

coordinates are given in Table 6.1. To further demonstrate the link to this region of 

SSTs, the second most skilful hindcast models for Northwest Kenya is also based on 

SSTs in this region (Appendix B.5 and Table 6.1).  

 

The skill scores are not consistently strong over all of the verification periods. Therefore 

it is not possible to draw conclusions as to the mechanisms that drive rainfall in this 

region. The poor skill scores may be a result of problems with the quality of the rainfall 

data in the Northwest of Kenya. Only two stations contribute towards the rainfall data 

for this region (Baragoi and Lodwar), as no other rain gauge stations have >80% data 

availability over the period 1959-2006. Table 3.1 shows that Baragoi has the greatest 

percentage of missing data of all stations employed in the study, with 17% missing 

months. 93% of the missing months are in the second half of the period. This may 

explain the reduction in skill scores during the replicated real-time verification over the 

period 1991-2006. The Northwest OND rainfall index is not strongly correlated with the 

rainfall indices from any other region. This is indirect evidence that the OND rainfall 

data from the Northwest are of lower quality than in other regions. The lack of strong 

correlations to other regional rainfall indices hinders the development of improved 

hindcasts for this region using the methods employed in Section 6.2.4.  

 

The Northwest is the least populous region of Kenya with 1.3% of the total population. 

The main form of livelihood is nomadic pastoralism (Chapter 5.1.2) hence the 

Northwest does not significantly contribute to the Kenyan economy. It is, therefore, of 

little damage to the economy of Kenya that the hindcasts for OND rainfall for the 

Northwest produce low skill. 

 

Period rrank p-value MSSS (%) 

1959-1990 0.33 0.05 3.9 

1959-1974 0.35 0.09 -8.1 

1975-1990 0.54 0.02 11.3 

1991-2006 0.29 0.23 7.80 

Table 6.8. As Table 6.4 but for the Northwest region of Kenya. 
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6.2.6     Southeast Kenya 

 

The Kenyan region offering the lowest OND rainfall hindcast skill is Southeast Kenya 

(Table 6.9), with an average rrank of 0.27 (p-value ≤ 0.19). The skill scores are 

consistently low with rrank > 0.40 in only one verification period (1975-1990). The 

hindcast values are, however, generally more skilful than climatology over the cross-

validated periods between 1959 and 1990, as shown by the positive MSSS results (Table 

6.9). The skill scores over the independent verification period (1991-2006) are low with 

rrank close to zero and MSSS < 0%. Similar results are seen during the extreme years 

(Table 6.3), with rrank > 0.4 in only one verification period (1959-1974) and low skill 

scores over the period 1991-2006 with rrank close to zero and MSSS < 0%.  

 

 

 

 

 

 

 

 

 

 

Period rrank p-value MSSS (%) 

1959-1990 0.25 0.15 0.7 

1959-1974 0.37 0.09 12.2 

1975-1990 0.49 0.04 14.4 

1991-2006 -0.02 0.48 -32.6 

Northwest 

 SST JJA 

Figure 6.6. The most skilful predictor regions for OND rainfall in Northwest Kenya. 

Correlation predictor selection plots for this region are shown in Appendix A.5.  

Table 6.9. As Table 6.4 but for the Southeast region of Kenya. 
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The best OND rainfall hindcast model for Southeast Kenya is developed using a simple 

linear regression based on the JJA three-month average SSTs over a region off the coast 

of Japan (SST JJA). The predictor region is shown in Figure 6.7 and the location 

coordinates are given in Table 6.1.  

 

The „short-rains‟ in Southeast Kenya are found to be linked to a region of SSTs off the 

coast of Japan. A potential dynamical link between this predictor region and the 

Southeast OND rainfall index is through the IOD. Figure 2.8 shows the regions of SST 

anomalies that form the IOD. The SST JJA predictor for the Southeast of Kenya is 

coincident with the location and timing of the IOD SST anomalies off the coast of Japan 

in Figure 2.8. Appendix A.6 shows that, in the first training period (1959-1974), the 

correlation patterns in the Indian Ocean are similar to those that the IOD would 

produce. However, this Indian Ocean IOD signal is not present in the second period 

(1975-1990). This is the period with the strongest skill scores in Table 6.9 and therefore 

where there is greatest predictability. This suggests that the predictor is unlikely to be 

linked to the IOD. Without a temporally stable IOD signal evident in the Indian Ocean 

during both periods it may be possible that the potential IOD link is not strong enough 

to produce strong hindcast skill scores in Southeast Kenya. 

 

 

Southeast 

SST JJA 

Figure 6.7. The most skilful predictor regions for OND rainfall in Southeast Kenya. 

Correlation predictor selection plots for this region are shown in Appendix A.6.  
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The Southeast is the third most populous region of Kenya, with 26.3% of the total 

population. The majority of the land is semi-arid, where the main form of livelihood is 

nomadic pastoralism. Around 15% of the region (in the west) is used for arable 

cropland, which contributes towards the Kenyan economy (Chapter 5.1.2). Therefore, it 

is of little damage to the economy of Kenya that the hindcast for the OND rainfall for 

the Southeast produce low skill. It is, however, important for the 7.6 million people that 

live in this region. Due to the large number of people affected by these poor hindcasts, 

further work is needed to try to improve the forecast skill for the Southeast region. The 

Southeast OND rainfall index is not strongly correlated with the rainfall indices from 

any other region. Therefore, it is not possible to use those methods described in Section 

6.2.4 to develop improved forecast models for this region. An alternative method to 

potentially improve the skill is detailed in the following section.   

 

6.2.7     Splitting Southeast Kenya into Southeast-east and Southeast-west 

 

One potential reason for the low rainfall hindcast skill for the Southeast of Kenya is the 

diverse topography of this region (Figure 2.4). In order to attempt to improve the OND 

rainfall hindcast skill for Southeast Kenya, the region is split into two sub-regions: 

Southeast-east and Southeast-west. The Southeast-east region comprises Garissa, 

Makindu and Voi, which are located at elevations between 300-1500m on semi-arid 

plains. The Southeast-west comprises Katumani, Marania Timau and Meru, which are 

located in the highlands at elevations of over 1500m.    

 

The skill scores for the best OND rainfall hindcast models for the Southeast-east and 

Southeast-west regions are shown in Table 6.10. The skill scores provide only marginal 

improvement on the results for the whole Southeast region (Table 6.9) with average rrank 

values of 0.25 and 0.30 (p-values = 0.15 and 0.16) for the Southeast-east and Southeast-

west regions respectively. The skill scores remain consistently low with rrank > 0.4 in 

only one verification period (1975-1990) for each sub-region. The hindcast values are, 

however, generally more skilful than climatology over the cross-validated periods 

between 1959 and 1990, as shown by the positive MSSS results (Table 6.10). The skill 

scores over the independent verification period (1991-2006) are low with rrank close to 

zero and MSSS < 0%.  
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             Southeast-east Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST JA 0.31 0.05 10.2 0.36 0.12 6.5 0.41 0.07 15.3 0.09 0.36 -11.3 

             Southeast-west Kenya 1959-1990 1959-1974 1975-1990 1991-2006 

Predictor rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS rrank p-value MSSS 

SST JA 0.36 0.04 3.0 0.33 0.09 14.8 0.42 0.09 11.2 0.07 0.40 -14.1 

 

Homogeneous 

rainfall region 

 

Predictor 

region 

Predictor region 

longitude range 

(°E) (min:max) 

Predictor region 

latitude range 

(°N) (min:max) 

 

Region 

description 

 

Southeast-east 
 

SST JJA 
 

(142:158) 
 

(36:42) Pacific Ocean off 

Japanese coast 
 

Southeast-east 
 

SST JJ 
 

(142:170) 
 

(36:42) Pacific Ocean off 

Japanese coast 
 

Southeast-east* 
 

SST JA 
 

(142:158) 
 

(36:42) Pacific Ocean off 

Japanese coast 
 

Southeast-west 
 

SST JJA 
 

(142:156) 
 

(36:42) Pacific Ocean off 

Japanese coast 
 

Southeast-west* 
 

SST JA 
 

(143:150) 
 

(38:47) Pacific Ocean off 

Japanese coast 

Table 6.10. Table comparing the OND rainfall hindcast skill scores for the best forecast models for the Southeast-east and Southeast-west sub-

regions of Kenya. Predictor regions and skill score results for the hindcasts from both models are shown (rrank and its associated p-value and MSSS 

(%)) over the periods 1959-1990, 1959-1974, 1975-1990 and 1991-2006. Red values show when: rrank ≥ 0.4, p-value ≤ 0.1 and MSSS > 0%. 

Table 6.11. Locations of the potential predictor regions for the OND regional hindcast models for 

the Southeast-east and Southeast-west sub-regions of Kenya.  

* marks the best hindcast models for each homogeneous rainfall region.  
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 (a) Southeast-east 

 (b) Southeast-west 

Figure 6.8. The most skilful predictor regions for the OND rainfall in (a) Southeast-east 

and (b) Southeast-west Kenya. Correlation predictor selection plots for these predictor 

regions are shown in Appendix A.7 and A.8 respectively.  
 

SST JA 

SST JA 
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The best OND rainfall hindcast models for the Southeast-east and Southeast-west 

regions of Kenya are developed using a simple linear regression based on the JA two-

month average SSTs over regions off the coast of Japan (SST JA). The predictor regions 

are shown in Figure 6.8 and the location coordinates are given in Table 6.11. The 

predictor regions for the Southeast and its two sub-regions are all independently 

selected off the coast of Japan. Separating Southeast Kenya into sub-regions therefore  

demonstrates further the link between the „short-rains‟ in this region and the region of 

SSTs off the coast of Japan. However, it does not help to improve the OND rainfall 

hindcast skill for the Southeast region. Further work is needed to find alternative 

predictors in order to improve the hindcast skill for this region. 

 

6.3     Summary 

 

This Chapter provides an overview of the OND rainfall hindcast skill for each of the 

models developed for the six regions of Kenya. Highest hindcast skill scores are 

achieved for the well populated and cultivated West and Southwest regions of Kenya. 

These have average rrank values of 0.55 (p-value ≤ 0.04) and 0.47 (p-value ≤ 0.05) 

respectively. OND rainfall in these regions has strong links to the IOD. The next highest 

hindcast skill scores are achieved for the South of Kenya, with an average rrank of 0.44 

(p-value ≤ 0.06). The model is developed using a MLR based on a regression between 

the OND rainfall and a combination of SSTs and wind predictors that represent parts of 

the Walker circulation during positive IOD and El Niño years.  

 

No strong, temporally stable predictor is found for the Northeast region. The correlation 

between the OND rainfall in the Northeast and South regions does, however, allow for a 

moderately skilful OND rainfall hindcast for the Northeast to be made. This model has 

an average rrank of 0.40 (p-value ≤ 0.06). The models for the Northwest and Southeast 

regions of Kenya produce the lowest OND rainfall hindcast skill scores. These have 

average rrank values of 0.38 (p-value ≤ 0.10) and 0.27 (p-value ≤ 0.19) respectively. 

Poor quality rainfall data is thought to be mainly responsible for the lack of Northwest 

OND rainfall hindcast skill. The OND rainfall in the Southeast region of Kenya is 

linked to an area of SSTs off the coast of Japan. Saji et al. (1999) found that this region 

of SSTs was linked to East African rainfall through the IOD. However, it seems that this 

region of SSTs is not a strong predictor, as the skill results were the lowest of all the 

regions.  
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Chapter 7 

Statistical Seasonal Hindcast Models for the 

Kenyan „Long-Rains‟ Season 

 

 

Rainfall during the „long-rains‟ season (MAM) is generally heavier and lasts longer than 

during the „short-rains‟ season (Figure 5.1). Thus, rainfall deficits during the „long-

rains‟ season have a larger impact on the Kenyan economy, through water and power 

shortages, than rainfall deficits during the „short-rains‟ season (Camberlin and 

Philippon, 2002). Despite the importance of the „long-rains‟ season for Kenya and East 

Africa, little research has been published on its interannual variability and predictability 

(Camberlin and Philippon, 2002). This chapter presents the current state of knowledge 

of the mechanisms that may be responsible for the variability and complexity of the 

„long-rains‟. The analysis finds that there are few strong, significant and temporally 

stable potential predictors for the „long-rains‟ in Kenya. This hinders the development 

of skilful regional MAM rainfall forecast models for Kenya. Further research into the 

variability and predictability of the „long-rains‟ is necessary in order to be able to 

predict them in the future. 

 

7.1     Overview of reported factors contributing to the  

  interannual variability of the Kenyan „long-rains‟ 
 

Current knowledge is limited on the physical mechanisms which cause variability in the 

East African „long-rains‟ season (Camberlin and Philippon, 2002). This is due partly to 

the „long-rains‟ exhibiting a lower interannual variability than the „short-rains‟ 

(Camberlin and Philippon, 2002; Camberlin and Okoola, 2003). Also, the „long-rains‟ 

are associated with complex interactions between regional and large-scale mechanisms, 

which lead to a heterogeneous spatial and temporal rainfall distribution across Kenya 

(Beltrando 1990; Semazzi et al. 1996; Okoola 1998; Indeje et al. 2000). As a result, the 

influence of large-scale climate anomalies on interannual variability of the „long-rains‟ 

is found to be low (Camberlin and Philippon, 2002; Camberlin and Okoola, 2003) 
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(Section 7.2). This is a problem for developing statistical forecast models for the MAM 

season.  

 

The following sub-sections present a review of the current knowledge of the physical 

mechanisms that are thought to be linked to the variability of the Kenyan „long-rains‟.  

 

7.1.1     The northward passage of the ITCZ 

 

The Kenyan „long-rains‟ are found to be associated with the northward passage of the 

ITCZ (Hastenrath et al., 1993) as described in Chapter 2.2. The ITCZ favours large 

scale convergence through deep humidification of the air, giving rise to conditions 

suitable for rain generation (Mukabana and Pielke, 1996). However, Gatebe et al. 

(1999) and Okoola (1998) find that although Kenya‟s climate is dominated by the 

migration of the ITCZ, local variations due to topography and large bodies of water 

introduce significant modifications to the country‟s weather, producing mesoscale 

weather systems (Mukabana and Pielke, 1996). The Kenyan seasonal rainfall cycle 

cannot, therefore, be said to follow the classical ITCZ pattern. Anyah (2008) finds that 

MAM rainfall in Kenya is not always located at the exact point of wind convergence, 

which is the definition of the location of the ITCZ.  

 

7.1.2     Topography, large bodies of water and other mesoscale forcings 

 

It is generally accepted by Kenyan forecasters (Gitau 2008; Likumana 2008; Muita 

2008; Mutemi 2008; Ogallo 2008) that Mesoscale processes dominate during the „long-

rains‟ season. Several publications (Mukabana and Pielke 1996; Camberlin and Wairota 

1997; Okoola 1998; Gatebe et al. 1999) agree that regional peculiarities in Kenya‟s 

climate are due to the country‟s complex topography and the proximity of the Indian 

Ocean and Lake Victoria. Lake Victoria has a surface area of about 60,000 km
2
. Figure 

7.1 shows an east to west cross-section of Kenya. This emphasises the heterogeneous 

topography across the country and the dominance of the Kenyan highlands, the Indian 

Ocean and Lake Victoria on the landscape. The South and West regions, which border 

the large bodies of water, receive the greatest amounts of rainfall out of all the Kenyan 

regions during the MAM season (Figure 5.1). These regions are affected by land-sea 
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breeze circulations. These circulations result from the contrast in temperature between 

the water and the land, due to differential solar heating and radiative cooling (Indeje, 

2000). Lake Victoria has an associated semi-permanent trough, which migrates from 

land to lake and vice versa during the night and day respectively.  

 

Large scale thermal convection is often responsible for clouds and localised storms in 

Kenya. The country receives strong direct solar insolation due to its equatorial position. 

Random thermal convective clouds are therefore induced by afternoon heating of the 

ground (Mukabana and Pielke, 1996). Shanko and Camberlin (1998) provide evidence 

that the development of above-normal annual numbers of Tropical Cyclones in the 

Southwest Indian Ocean is associated with significant circulation anomalies. These 

anomalies reduce moisture advection from the Indian Ocean into EEA and can prevent 

the northward movement of the ITCZ, thus reducing rainfall over East Africa. Figure 

7.2 (Shanko and Camberlin, 1998) presents evidence for this in the form of a composite 

difference plot showing the difference in 950hPa wind direction and magnitude for 

those subset years as described in the figure caption. A marked cyclonic circulation can 

be seen in the Southwest Indian Ocean (SWIO) region during those years with 

numerous Tropical Cyclones. Enhancement of the southern Hadley Cell is shown to 

result in reduced low-level moisture advection from the Indian Ocean towards East 

Africa. This produces unfavourable conditions for convective activity in East Africa.   
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Figure 7.1. (a) A west to east topographical cross-section of Kenya taken along the line 

linking A and B shown in (b). Figures are adapted from Figures 1 and 4 in Hills (1979).  

Figure 7.2. Composite difference plot showing direction, 

magnitude and significance of the difference in 950hPa wind 

anomalies for those subset years in Group 1 and Group 2. 

Group 1 comprises the 4 years (over the period 1954-1990) 

with the highest number of days with Tropical Cyclone or 

Tropical Depression occurrence in the region 30-80°E and 5-

35°S. Group 2 comprises the 4 years over the same period with 

the least occurrence. Shaded areas show p-values < 0.05 in 

either the u- or v-component of the wind, according to the two-

sided t-test. Figure from Shanko and Camberlin (1998). 

A  B 

West-East Distance (1000Km) 

         1.5 m/s 

Equator 

(b)           

A B 

(a)            
 
 

5 
 

4 

 
3 

 
2 

 
1 

 

0 

El
ev

at
io

n
 (

K
m

) 

Cross-section 
A-B 

 0                                    1 

INDIAN 
OCEAN 

(a)           



 

Page 133 

 

7.1.3     The stratospheric QBO index 

 

Indeje and Semazzi (2000) found contemporaneous and lagged significant correlations 

between MAM rainfall in some regions of Kenya and the stratospheric QBO index 

(Chapter 3.4.4) at 30hPa (QBO-30) over the period 1979-1992. The correlation results 

found by Indeje and Semazzi (2000) are presented in Table 7.1. The regions are defined 

as: (a) the central and western highlands of Kenya, (b) northwest Kenya (c) Western 

Kenya/the Lake Victoria region. As a result of these strong correlations, Kenyan 

forecasters assume that the QBO can be used as a predictor for the „long-rains‟ (Gitau 

2008; Muita 2008; Mutemi 2008). However, there is reason to question the strength of 

the results of Indeje and Semazzi (2000) as the correlations are not tested for temporal 

stability over two consecutive half-periods. Indeje and Semazzi also admit that the 

relationship fails during years that experience strong El Niños. Section 7.4.3 presents 

further analysis of the temporal stability of the link between Kenyan MAM rainfall and 

the QBO. 

 

 

QBO-30 Period Region (a) Region (b) Region (c) 

JJA 0.84 0.48 0.59 

SON 0.63 0.54 0.46 

DJF 0.08 0.04 0.27 

MAM 0.57 0.15 0.47 

June 0.76 0.30 0.48 

July 0.84 0.49 0.59 

Aug 0.79 0.58 0.61 

Sep 0.70 0.57 0.53 

Oct 0.62 0.54 0.46 

Nov 0.55 0.50 0.37 

Dec 0.46 0.46 0.26 

Jan 0.12 -0.02 0.28 

Feb 0.20 0.00 0.31 

Mar 0.39 0.06 0.43 

Apr 0.53 0.16 0.47 

May 0.67 0.20 0.45 

Table 7.1. Results from Indeje (2000) showing correlations (rrank) between the 

QBO-30 index (over the periods given in the left column) and MAM rainfall over 

the 14-year period 1979-1992. Red values have p-values < 0.1 calculated using a 

two-sided t-test based on a sample size of 14. Regions, as defined by Indeje and 

Semazzi (2000), cover (a) the central and western highlands of Kenya, (b) 

northwest Kenya and (c) western Kenya respectively. This Table is based on Table 

3.1 in Indeje (2000). 
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7.1.4     ENSO and the IOD 

 

Conflicting results are presented in the literature on the proposed links between ENSO 

and the „long-rains‟ in East Africa. Several publications (Ogallo 1988; Ogallo et al. 

1988; Hastenrath et al. 1993; Rowell et al. 1995; Philips and McIntyre 2000) show, 

using different spatial and temporal scales, that there are no significant correlations 

between East African MAM rainfall and either the atmospheric or oceanic component 

of ENSO. Other publications (Nicholson and Kim 1997; Indeje et al. 2000) show that 

the relationship between ENSO and East African MAM rainfall shifts across the season 

depending on the phase of the El Niño. These publications show weak positive 

correlations during the onset year of an El Niño, with stronger negative correlations 

during the decaying phase of an El Niño. Mutai and Ward (2000) show that the May 

rainfall in East Africa could be linked to the SOI. However, there is no link found 

between the SOI and the East African rainfall during the months of March and April. 

 

McHugh (2006) finds that circulation variability in the sub-tropical South Pacific Ocean 

is associated with significant reductions in East African MAM rainfall with rrank = -0.33 

(p-value < 0.02). McHugh suggests that the north-easterly winds become strengthened, 

blowing from Sudan, across EEA and on to the Atlantic Ocean. These winds then 

weaken or prevent the influx of moist westerly airflow, which can be associated with 

rainfall generation in EEA.   

 

Zablone and Ogallo (2008) find that the IOD is not significantly correlated with MAM 

rainfall over East Africa. This is attributed to the timing of the IOD, which peaks 

between July and December. Beltrando (1990) also finds that there are no strong 

teleconnections between MAM rainfall over East Africa and SSTs in the Indian Ocean. 

 

7.1.5     The MJO 

 

Pohl and Camberlin (2006) find that the MJO is linked to East African MAM rainfall. 

They propose that, on an interannual timescale, the variability of the „long-rains‟ is 

significantly affected by the amplitude of the MJO. A strong MJO is found to be related 

to the early onset of the „long-rains‟, leading to a longer rainy season and an increased 
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likelihood of more extreme events. Pohl and Camberlin do not use the MJO as a 

predictor, but as a contemporaneous modulator of the large scale rainfall variability over 

East Africa.  

 

7.2     Data quality 

 

Correlation of MAM rainfall between stations in each region 

 

Previous studies into MAM rainfall predictability in East Africa have found weak 

correlations between rainfall time series at neighbouring rain gauge stations (Ogallo, 

1989; Beltrando, 1999). In this thesis, correlations are made between the MAM rainfall 

indices from the stations in each homogeneous rainfall region. In contrast to the findings 

of earlier studies, the correlations between stations in each region are found to be 

generally strong (rrank > 0.45), except between stations in the South and Northwest 

regions. In the South region, rrank values of ≤ 0.35 are found between the stations of 

Lamu and Mombasa over the periods 1959-1974 and 1991-2006 and rrank values of ≤ 

0.45 are found over the period 1959-1990. Low correlation values are also found in the 

Northwest region, between Baragoi and Lodwar, with rrank values of ≤ 0.43 and ≤ 0.04 

over the periods 1959-1974 and 1991-2006 respectively. The cross-correlation values 

for these two regions are, therefore, not temporally stable. The MAM rainfall data in the 

South and Northwest regions of Kenya cannot, therefore, be used with confidence to 

search for potential predictors and to develop forecast models. Section 7.3 describes the 

investigation to find potential predictors for the „long-rains‟ in the remaining Southeast, 

Southwest, West and Northeast regions of Kenya. 

 

Correlation of MAM rainfall between regions 

 

Correlations between regional MAM rainfall indices are also investigated. High 

correlations between MAM rainfall indices from different regions would indicate 

potential predictability from large-scale climate anomalies. Previous studies have found 

that MAM rainfall has a heterogeneous spatial distribution across Kenya (Beltrando 

1990; Semazzi et al. 1996; Okoola 1998; Indeje et al. 2000). It is therefore suggested 

that large-scale climate anomalies have a low influence on the interannual variability of 

the „long-rains‟ (Camberlin and Philippon, 2002; Camberlin and Okoola, 2003).  
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Tables 7.2 and 7.3 show the rrank between OND and MAM rainfall from the different 

regions of Kenya over the period 1959-1990. It can be seen that, in contrast to OND 

rainfall, MAM rainfall is not as well correlated between regions. The MAM rainfall is 

therefore not expected to be as predictable as OND rainfall from large-scale climate 

factors. This is supported by Indeje (2000), who suggests that the high spatial variability 

across Kenya shows that local factors are more dominant than large-scale factors in 

modulating the MAM rainfall patterns. 

 

 South Southeast Southwest West Northwest Northeast 

South 1 0.43 0.58 0.57 0.34 0.70 

Southeast 0.43 1 0.40 0.36 0.42 0.37 

Southwest 0.58 0.40 1 0.40 0.41 0.45 

West 0.57 0.36 0.40 1 0.30 0.49 

Northwest 0.34 0.42 0.41 0.30 1 0.27 

Northeast 0.70 0.37 0.45 0.49 0.27 1 

 

 

 

 

 South Southeast Southwest West Northwest Northeast 

South 1 0.18 0.13 -0.07 -0.02 0.29 

Southeast 0.18 1 0.34 0.41 0.22 0.48 

Southwest 0.13 0.34 1 0.43 0.21 0.49 

West -0.07 0.41 0.43 1 0.34 0.44 

Northwest -0.02 0.22 0.21 0.34 1 0.23 

Northeast 0.29 0.48 0.49 0.44 0.23 1 

 

 

 

7.3     New methods to investigate „long-rains‟ predictors 

 

Several publications (Ogallo, 1988; Ogallo et al., 1988; Beltrando 1990; Hastenrath et 

al., 1993; Rowell et al., 1995; Philips and McIntyre, 2000; Camberlin and Philippon 

2002; Camberlin and Okoola 2003; Zablone and Ogallo 2008) suggest that the East 

African „long-rains‟ do not exhibit strong relationships with large-scale climate or SST 

anomalies. This study aims to verify whether this is the case for regional MAM rainfall 

Table 7.3. rrank values of MAM rainfall between the different regions of Kenya over the period 

1959-1990. rrank values ≥ 0.4 are shown in bold. 

Table 7.2. rrank values of OND rainfall between the different regions of Kenya over the period 

1959-1990. rrank  values ≥ 0.4 are shown in bold.  
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in Kenya. Potential predictors are sourced from the monthly data introduced in Chapter 

3. The strength, significance and temporal stability of the correlations between the 

potential predictors and the MAM rainfall in Southeast, Southwest, West and Northeast 

Kenya are assessed, using the methods described in Chapter 5.2. 

 

No strong, significant and temporally stable potential predictor regions are found for the 

regional MAM rainfalls in Kenya out of the pool of potential predictors introduced in 

Chapter 3. The methods therefore need to be amended in order to expand the search for 

more potential predictors for this season. Firstly, two new SST indices are developed 

(newSST-north and newSST-south). These comprise the average SSTs in the regions off 

the coast of East Africa bound by the coordinates (i) 50 to 70°E and 0 to 15°N and (ii) 

50 to 70°E and 0 to 15°S. It is suggested that these new SST regions could be important 

to Kenyan moisture availability during the „long-rains‟ season. Indeje and Semazzi 

(2000) suggest links between MAM rainfall in Kenya and the stratospheric QBO 

(Section 7.1.3). This study tests the relationship between the regional Kenyan MAM 

rainfall and the QBO indices at both 30hPa and 50hPa (QBO-30 and QBO-50) for an 

extended period of time.  

 

Finally, the MAM rainy season is divided into its individual months of March, April 

and May. Beltrando (1990) and Rowell et al. (1994) suggest that, for analysis of the 

interannual variability of the „long-rains‟ over East Africa, each month should be 

studied separately. Camberlin and Philippon (2002) support this argument as they find 

that the „long-rains‟ season exhibits a low temporal coherence. Gatebe et al. (1999) find 

that the climatological air transport to and from Kenya switches between March and 

May. Figure 7.3 shows the air transport climatologies from Gatebe et al. (1999) for 

March (a) 700hPa and (b) 400hPa, and for May (c) 700hPa and (d) 400hPa. During 

March, the lower level winds are mainly easterly, from the Indian Ocean. mid level 

winds are also mainly easterly. During May the lower level wind direction switches to 

being mainly southerly, from Tanzania and along the Indian Ocean coast. Mid level 

winds remain mainly easterly, from the Indian Ocean. The switch in low-level winds, 

from easterly in March to southerly in May, is likely to be linked to the northward 

passage of the ITCZ and the associated change in the monsoon winds. This strengthens 

the argument that each month within the MAM season should be assessed 

independently.  
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7.4     Potential predictors for the „long-rains‟ 

 

In order to select potential predictors, the methods outlined in Chapter 5 are 

implemented along with the additions introduced in Section 7.3. A small selection of 

seven potential predictors are identified as having strong, significant and temporally 

stable correlations with regional March, April or May rainfall in Kenya. A summary of 

the potential predictors is presented in Table 7.4. Two potential predictors, comprised of 

DJF SSTs, are found to be linked to the April rainfall indices in the Southeast and West 

regions of Kenya (Section 7.4.1). The newSST-south index is found to be linked to the 

March rainfall index in the Southwest of Kenya (Section 7.4.2). Finally, the DMI, MJO 

and QBO indices are found to be linked to a selection of March, May and MAM rainfall 

indices in Southwest and Northeast Kenya (Section 7.4.3).  

 

Figure 7.3. March (a) 700hPa and (b) 400hPa and May (c) 700hPa and (d) 400hPa 

air transport climatologies over Africa (1971-1975) to and from Kenya. Red solid 

arrows indicate the dominant wind direction. Red dashed arrows indicate the second 

most dominant wind direction. This Figure is adapted from Figures 5 (a) and (d) and 

6 (a) and (d) in Gatebe et al. (1999). 

(a)                 March 700hPa     (b)                 March 400hPa     

 

(c)                   May 700hPa     

 

(d)                   May 400hPa     
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7.4.1     SST potential predictor regions 

 

A region of December-February (DJF) SSTs in the eastern Indian Ocean is found to 

have a strong, significant and temporally stable, negative correlation with the April 

rainfall index in the Southeast of Kenya (Figure 7.4). The coordinates of the SST 

potential predictor region are 98°E to 118°E and 30°S to 42°S. This is the only potential 

predictor region found for the Southeast region of Kenya. 

 

A second SST potential predictor is a region of DJF SSTs in the eastern Indian Ocean. 

This has a strong, significant and temporally stable correlation with the April rainfall 

index for the West of Kenya (Figure 7.5). The coordinates of this SST potential 

predictor region are 105°E to 115°E and 8°S to 38°S. 

Region Rainfall Period Potential Predictors Further Details 

 

Southeast 

MAM NA NA 

March NA NA 

April DJF - SSTs East Indian Ocean 
Section 7.4.1 and Figure 

7.4 

May NA NA 

 

Southwest 

MAM NA NA 

March February - newSST-South Section 7.4.2 

April NA NA 

May 
February - DMI 

February - MJO 

Section 7.4.3 

Section 7.4.3 

 

West 

MAM NA NA 

March NA NA 

April DJF – SSTs East Indian Ocean 
Section 7.4.1 and Figure 

7.5 

May NA NA 

 

Northeast 

MAM NA NA 

March 
October - QBO-30 

January - MJO 

Section 7.4.3 

Section 7.4.3 

April NA NA 

May NA NA 

Table 7.4. Potential predictors for the „long-rains‟ season in Kenya. Potential predictors are 

shown for MAM, March, April and May for the Southeast, Southwest, West and Northeast 

regions. The South and Northwest regions are not shown due to the poor quality of MAM 

rainfall data. “NA” indicates occasions where no potential predictors have been found. Further 

details on the correlations between the potential predictor and the rainfall indices can be found in 

the sections and figures listed in the final column. 
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Southeast - April 

 SST DJF 

Figure 7.4. The best predictor region for April rainfall in Southeast Kenya. 

Correlation predictor selection plots for this region are shown in Appendix C.1. 

West - April 

  SST DJF 

Figure 7.5. The best predictor region for April rainfall in West Kenya. Correlation 

predictor selection plots for this region are shown in Appendix C.2. 
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7.4.2     New SST potential predictor indices  

 

One example is found of a strong, temporally stable relationship between one of the 

new SST indices and a regional rainfall index. The correlations between the February 

newSST-south index and the March rainfall index for the Southwest of Kenya are 

consistently high with rrank ≥ 0.4 over the periods 1959-1974, 1975-1990 and 1959-

1990.  

 

7.4.3     DMI and MJO potential predictor indices 

 

There is one example where the DMI is found to be a potential predictor for a regional 

rainfall index. The February DMI has a strong, temporally stable correlation with the 

May rainfall in the Southwest of Kenya, with rrank ≥ 0.48 over the periods 1959-1974 

and 1975-1990.  

 

There are two examples of a link between the MJO index and regional rainfall indices in 

Kenya. The February MJO index is found to have strong, temporally stable correlations 

with the May rainfall in Southwest Kenya, with rrank ≥ 0.43 over the periods 1978-

1986, 1987-1995 and 1978-1995. Secondly, the January MJO index is found to have 

strong, temporally stable correlations with the March rainfall in Northeast Kenya, with 

rrank ≤ -0.44 over the same periods.   

 

7.4.4     QBO potential predictor index 

  

The QBO has been accepted by Kenyan forecasters as a skilful operational predictor for 

the Kenyan „long-rains‟ (Indeje and Semazzi 2000; Gitau 2008; Muita 2008; Mutemi 

2008). However, this study finds that there is only one example of a strong, temporally 

stable correlation between a QBO index and a Kenyan regional rainfall index. The 

correlations between the October QBO-30 index and the March rainfall in the 

Northeast of Kenya are consistently ≥ 0.41 over the periods 1959-1974 and 1975-1990. 

There were no other examples of strong and temporally stable correlations with either 

QBO index.  
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The original, strong correlation values found by Indeje and Semazzi (2000) (Table 7.1) 

have been reproduced in the course of this thesis. However, they are found to be 

unstable when the period is split in half or tested over the periods used throughout this 

study (1959-1974 and 1975-1990). The rrank values over these half periods are generally 

found to be less than 0.3, with only a handful of higher values. It is therefore concluded 

that the QBO index is not a temporally stable predictor for the „long-rains‟ in any region 

of Kenya and should not, therefore, be used as an operational predictor.  

 

7.4.5     Summary 

 

There are few potential predictors identified for the MAM rainfall in Kenya, out of a 

wide selection of available climate predictors. It is possible that a proportion of the 

strong correlations between regional MAM rainfall indices and potential predictor 

indices are statistical artefacts. This is due to the large number of correlations being 

calculated at different lead times, where one would expect a few strong correlations to 

occur through random chance. The results therefore need to be viewed with caution. It is 

not possible, therefore, to use these potential predictors with confidence to develop 

regional rainfall forecast models for the MAM season in Kenya.  

 

7.5     The spring predictability barrier 

 

Why is it so difficult to find predictors for the „long-rains‟ in Kenya? The „spring 

predictability barrier‟ (Webster, 1995) explains why the „long-rains‟ cannot be predicted 

using observations of coupled ocean-atmosphere systems from the Pacific Ocean basin, 

such as ENSO. Correlations between regional rainfall and Pacific Ocean based ocean-

atmosphere systems decrease throughout the boreal spring. This limits the predictability 

of coupled ocean-atmosphere systems such as ENSO (Webster, 1995). Physically, the 

pressure gradients across the Pacific Ocean are at their weakest during the spring. 

Therefore, ENSO events can grow quickly in response to small perturbations. This 

makes it difficult to make forecast based on ENSO or Pacific Ocean SSTs during this 

season. Webster (1995) finds that long term coupled numerical model prediction 

experiments also show this „spring predictability barrier‟, with a substantial decrease in 

observation-prediction correlation across the boreal spring. Chapter 2.3.4 showed that 
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the IOD is contemporaneously linked to ENSO. Hence the „spring predictability barrier‟ 

also affects the predictability of the Indian Ocean during this season.   

 

The „spring predictability barrier‟ also affects the prediction of the main rainy seasons 

in other East African countries. Korecha and Barnston (2007) show that forecasts for the 

main rainy season in Ethiopia (named Kiremt), from June-September, are primarily 

based on ENSO predictors. Skilful forecasts for the Kiremt rainy season can only be 

produced with at least a 3 month lead (issued on 1
st
 March or before). This lead time is 

necessary to avoid the spring predictability barrier, which excludes the use of SST 

predictors from March, April or May. It is possible to develop ENSO-based forecasts 

for the Kiremt rainy season in Ethiopia due to its later start date at beginning of the 

boreal summer.  

 

7.6     Discussion 

 

The key question that remains is what would it take to develop skilful statistical MAM 

rainfall forecast models for Kenya? Firstly, it would take a large amount of dedicated 

research time to search for new potential predictors for the „long-rains‟. A suggestion 

for an alternative predictor is the strength of the ITCZ. This could be measured using 

Outgoing Longwave Radiation (OLR) measured to the south of Kenya. Finally, more 

research is required into the variability of the Kenyan „long-rains‟, so that knowledge of 

the mechanisms that force this variability can be improved. 
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Chapter 8 

Comparison of Statistical and Dynamical 

Hindcast Models for the Kenyan „Short-Rains‟ 

 

 

This Chapter presents a comparison of statistical and dynamical hindcast models for the 

„short-rains‟ season. The aim is to examine which type of model produces the most 

skilful regional OND rainfall hindcasts for each homogeneous rainfall region in Kenya.  

 

Statistical seasonal rainfall forecasts are developed operationally before each rainy 

season in Kenya by the country‟s Meteorological Department (Chapter 2.5) (Buizer et 

al., 2000; Likumana, 2008; Muita, 2008; Ogallo, 2008). Forecasters also refer to outputs 

from dynamical seasonal rainfall forecast models, prior to issuing their forecasts. This is 

the first study to compare the OND rainfall hindcast skills available from statistical and 

dynamical hindcast models for Kenya. Specifically, the hindcasts from the best 

statistical OND rainfall models for each region of Kenya (Chapter 6) are compared 

against the hindcasts from the dynamical multi-model ensemble system, EUROSIP 

(Section 8.1). The results will help to inform the Kenyan forecasters as to which model 

has the greatest OND rainfall hindcast skill for each region. 

 

8.1     EUROSIP 

 

The EUROSIP (EUROpean Seasonal to Interannual Prediction) dynamical multi-model 

ensemble global forecast system was built on the success of the DEMETER project 

(Chapter 4) (Vitart et al., 2007). The hindcasts from EUROSIP were first made 

available to the public in 2009. This is the first study to use the EUROSIP hindcasts 

independently of the developing institutions.  

 

EUROSIP comprises three state-of-the-art European coupled ocean-atmosphere global 

climate models. These models are from the ECMWF (European Centre for Medium-
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Range Weather Forecasts), Météo-France (Centre National de Recherches 

Météorologiques) and the UKMO (UK Met Office). The EUROSIP models are updated 

versions of the models used in the DEMETER system (Chapter 4). Table 8.1 shows the 

characteristics of these different models in the DEMETER and EUROSIP systems 

(Palmer et al., 2004; Davey and Ferranti, 2006; Anderson et al., 2007; Vitart et al., 

2007; ECMWF, 2009). Improvements have been made to all models, with upgrades 

between systems 2 and 3. The horizontal and vertical resolutions of the atmospheric 

components of the ECMWF and Météo France models have been increased, as shown in 

Table 8.1. A major difference between DEMETER and EUROSIP is that the latter is an 

operational system. Each forecast is run in real-time with initial conditions from the 1
st
 

of each month. The forecasts are then issued on the 15
th

 of the month to allow time for 

SST field acquisition and to run the forecasts on a reliable operational schedule (Vitart 

et al., 2007). Stockdale (2007) explains that the operational real-time forecasts are 

comprised of 41 members per model with forecasts out to 5-6 months lead. The 

hindcasts are produced from 11 members and are available from 1987 to present 

(Stockdale, 2007).  

 

It is not possible to directly compare the skills of the hindcasts from the statistical 

regional OND rainfall hindcast models with those from DEMETER. This is because the 

hindcasts from DEMETER are issued quarterly and the hindcast issue date closest to the 

OND rainy season in Kenya is the 1
st
 August, which is a lead of 2 months. Chapter 4.3.3 

shows that the DEMETER rainfall hindcast skill is optimised at 0-month lead, 

decreasing to zero skill at 3-months lead. Therefore, a hindcast issued on the 1
st
 August 

for OND would have no hindcast skill for rainfall in November and December. In 

contrast to DEMETER, the EUROSIP hindcasts are issued monthly. Thus it is possible 

to directly compare a 0-lead OND hindcast from EUROSIP against a statistical OND 

hindcast.  
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 DEMETER EUROSIP 

 ECMWF Météo France UKMO ECMWF Météo France UKMO 
 

System 
 

2 
 

2 
 

2 
 

3 
 

3 
 

3 

Atmospheric 

Component 

 

ECMWF IFS 
 

ARPEGE v4 
 

GLOSEA 1 
 

ECMWF IFS 
 

ARPEGE v4.4 
 

GLOSEA 3 

Atmospheric 

Horizontal Resolution 

 

1.9° x 1.9° 
 

2.8° x 2.8° 
 

2.5°x3.75° 
 

1.125° x 1.25° 
 

2.8° x 2.8° 
 

2.5°x3.75° 

Atmospheric Vertical 

Levels 

 

40 
 

31 
 

19 
 

62 
 

91 
 

19 

Oceanic Component  

HOPE 
 

ORCA   
GLOSEA 

OGCM 

 

HOPE  
 

ORCA   
GLOSEA 

OGCM 

Oceanic Horizontal 

Resolution 

 

1° x 1° 
2° x (2° to 0.5 at 

Equator) 

1.25° x (1.25° to 

0.3° at Equator) 

 

1° x 1° 
2° x (2° to 0.5 at 

Equator) 

1.25° x (1.25° to 

0.3° at Equator) 

Oceanic Vertical 

Levels 

 

29 
 

31 
 

40 
 

29 
 

31 
 

40 

Hindcast Ensemble 

Members 

 

9 
 

9 
 

9 
 

11 
 

15 
 

15 

Operational Forecast 

Ensemble Members 

 

Not Operational 
 

Not Operational 
 

Not Operational 
 

41 
 

41 
 

41 

Hindcast Years 

Available 

1958-2001 

(44 years) 

1958-2001 

(44 years) 

1959-2001 

(43 years) 

1981-2005 

(25 years) 

1981-2005 

(25 years) 

1987-2005 

(19 years) 

Hindcast/Forecast 

Issue Dates 

1
st
 Feb, 1

st
 May, 

1
st
  Aug, 1

st
 Nov 

1
st
 Feb, 1

st
 May, 

1
st
  Aug, 1

st
 Nov 

1
st
 Feb, 1

st
 May, 

1
st
  Aug, 1

st
 Nov 

15
th
 of every 

month 

15
th
 of every 

month 

15
th
 of every 

month 

Hindcast/Forecast 

Lead Times* (months) 

 

0-5 
 

0-5 
 

0-5 
 

0-6 
 

0-6 
 

0-5 

Grid Resolution 2.5° x 2.5° 2.5° x 2.5° 2.5° x 2.5° 2.5° x 2.5° 2.5° x 2.5° 2.5° x 2.5° 

Table 8.1. Characteristics of the ECMWF, Météo France and UKMO coupled general circulation models used in the DEMETER and EUROSIP 

systems (Anderson et al., 2007; Davey and Ferranti, 2006; ECMWF, 2009; Palmer et al., 2004; Vitart et al., 2007).  

*Hindcast lead time refers to the period of time between the issue of the hindcast and the start of the hindcast period 
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8.2     Methodology for comparing statistical and dynamical  

  hindcast models for the Kenyan „short-rains‟ 
 

8.2.1     EUROSIP hindcast skill assessment 

 

The OND rainfall hindcast skills available from the individual EUROSIP models and 

the MSE-weighted multi-model ensemble (defined in Chapter 4.1.2 and Equation 4.3) 

are investigated. Skill assessment methods are based on those described in Chapter 4. 

Firstly, the EUROSIP hindcasts are bias corrected using the standard cross validation 

method described in Section 4.2.1. The observed rainfall data are taken from the CMAP 

data set (Chapter 3.1.1). These data are available on a 2.5°x2.5° latitude/longitude grid 

over the period 1979-2008. The CMAP data are bias corrected over each grid square 

over the periods 1981-2005 and 1987-2005. These correspond to the periods of 

available hindcasts from the individual EUROSIP models: 1981-2005 for the ECMWF 

and Météo France models, and 1987-2005 for the UKMO model and the multi-model 

ensemble (Table 8.1). The OND hindcasts from each EUROSIP model are then bias 

corrected per grid square over these available hindcast periods.  

 

The skills of the hindcasts available from the individual EUROSIP models and the 

MSE-weighted multi-model ensemble are then assessed using the methods described in 

Chapter 4.2. The assessments are made per grid square over the available hindcast 

period of each model.  

 

8.2.2     Statistical hindcast skill assessment 

 

In order to conduct a direct comparison between the statistical and dynamical models, 

the statistical models are re-developed over the periods 1981-2005 and 1987-2005, 

using the methods described in Chapter 5.3. The original homogeneous rainfall regions 

and their associated best predictor regions are used (as shown in Table 6.1, marked with 

an asterisk), with the data detrended over the new verification periods. The skills of the 

OND rainfall hindcasts for each region and verification period are then assessed using 

the methods described in Chapters 4.2.3 and 4.2.4. The hindcast skill scores are assessed 

using a block-removal cross-validation method as described in Chapter 5.4.  
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Region Southwest West South 

Coordinates (35°E, 0.0°S) (35°E, 0.0°S) (40°E, 2.5°S) 

rrank 0.91 0.79 0.94 

Region Northeast Northwest Southeast 

Coordinates (40°E, 2.5°N) (37.5°E, 2.5°N) (37.5°E, 0.0°N) 

rrank 0.99 0.51 0.94 
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Figure 8.1. Kenyan rain gauge stations selected for use in the study. 

The homogeneous rainfall region boundaries are shown in dark blue 

and the EUROSIP and CMAP grid square boundaries are shown in 

red. The 16 Synoptic rain gauge stations are marked with an asterisk 

(*) and 6 non-synoptic rain gauge stations are marked by a square (□). 

The names of the regions are shown in purple boxes: South (S), 

Southeast (SE), Southwest (SW), West (W), Northwest (NW) and 

Northeast (NE). 
 

 

Table 8.2. Coordinates of the grid squares with the strongest rrank. Correlation values are 

calculated over the period 1981-2005 between OND CMAP rainfall and each regional OND 

rainfall index.   
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8.2.3     Direct comparison methods 

 

It is difficult to make a direct comparison between the hindcasts from the statistical and 

EUROSIP models due to the gridded format of the EUROSIP hindcasts. These are 

issued on a 2.5°x2.5° latitude/longitude grid as presented in Figure 8.1. The red solid 

lines show the boundaries of the EUROSIP and CMAP grid squares and the dark blue 

lines show the boundaries of the homogeneous rainfall regions. There are several 

EUROSIP/CMAP grid squares that cover multiple homogeneous rainfall regions. For 

example, the grid square centred at 35°E and 0°N covers the West and Southwest 

regions. There are also several rainfall regions that are covered by multiple grid squares. 

For example, the Southeast region is covered by four grid squares. In order to select a 

grid square to represent each homogeneous rainfall region, the regional OND rainfall 

indices are correlated against the CMAP rainfall data from each overlapping grid 

square. The coordinates of the grid squares with the strongest correlation between OND 

CMAP rainfall indices and the regional OND rainfall indices over the period 1981-2005 

are shown in Table 8.2. The EUROSIP hindcasts from these grid squares will be used to 

represent the dynamical hindcasts for each homogeneous rainfall region. This will allow 

a direct comparison between the dynamical and statistical hindcast skills for each 

region. Only one model grid square is selected to represent each region in order to be 

compatible with the methods used by forecaster in East Africa. This should help to 

make it easier for the Kenyan forecasters to use the results of this study operationally. It 

must also be noted that the regional seasonal rain gauge rainfall indices from the KMD 

were also used for comparison in this Chapter, giving very similar results. This gives us 

confidence in the realistic representation of the CMAP rainfall data over Kenya. 

 

8.3    Comparison results 

 

The following sub-sections compare the OND rainfall hindcast skill available from the 

statistical and dynamical hindcast models for each region of Kenya. Tables 8.3 to 8.8 

show the OND rainfall hindcast skill assessment results, for each region of Kenya, from 

the individual EUROSIP models, the EUROSIP multi-model and the best regional 

statistical models over the verification periods 1981-2005 and 1987-2005. In each table, 

the model with the best overall skill score is shown in red. In the event of several 

models producing hindcasts with strong skill scores, the greatest weighting is given to 
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rrank. The dynamical model with the strongest skill score is highlighted in green and the 

statistical model with the strongest skill score is highlighted in blue.   

 

8.3.1     Statistical models: Southwest and West Kenya 

 

The best statistical hindcast model is found to outperform the EUROSIP models in 

hindcasting OND rainfall for the Southwest (Table 8.3) and West (Table 8.4) regions 

of Kenya. These regions are home to 67.7% of the total population of Kenya (CIESIN, 

2005) (Chapter 5.1.2).  

 

The best statistical forecast models for the Southwest and West regions are based on the 

best predictors regions from Chapter 6 (marked with an asterisk in Table 6.1). Tables 

8.3 and 8.4 show respectively the skill assessment results for the Southwest and West 

regions of Kenya. The statistical OND rainfall hindcasts are consistently more skilful 

than climatology, with MSSS > 23% over both verification periods. The correlation 

results are also high with rrank > 0.4 (p-values ≤ 0.06) over both verification periods.  In 

comparison, the OND hindcast skill scores from the individual EUROSIP models and 

multi-model ensemble are consistently lower, with rrank < 0.4 (p-values ≥ 0.07). 

 

 Model Period Lead Time rrank p-value MSSS (%) 

UKMO 1987-2005 0 0.29 0.11 15.9 

UKMO 1987-2005 1 0.16 0.26 0 

UKMO 1987-2005 2 0.11 0.31 0 

ECMWF 1981-2005 0 0.04 0.42 0 

ECMWF 1981-2005 1 0.10 0.33 0 

ECMWF 1981-2005 2 -0.08 0.37 0 

Météo France 1981-2005 0 0.21 0.16 0 

Météo France 1981-2005 1 0.19 0.18 0 

Météo France 1981-2005 2 0.04 0.43 0 

Multi-model 1987-2005 0 0.36 0.07 8.3 

Multi-model 1987-2005 1 0.22 0.18 0 

Multi-model 1987-2005 2 -0.11 0.32 0 

Statistical 1981-2005 0 0.42 0.07 23.6 

Statistical 1987-2005 0 0.42 0.06 28.5 

Table 8.3. Comparison of the Southwest OND rainfall hindcast skill assessments 

from the individual EUROSIP models, the EUROSIP multi-model and the best 

statistical model. The EUROSIP results are from the grid square representing the 

Southwest region of Kenya (35°E, 0.0°N). The model with the best overall skill 

score is shown in red. The dynamical model with the strongest skill score is 

highlighted in green. The statistical model with the strongest skill score is 

highlighted in blue.  
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Model  Period Lead Time rrank p-value MSSS (%) 

UKMO 1987-2005 0 0.29 0.11 15.9 

UKMO 1987-2005 1 0.16 0.26 0 

UKMO 1987-2005 2 0.11 0.31 0 

ECMWF 1981-2005 0 0.04 0.42 0 

ECMWF 1981-2005 1 0.1 0.33 0 

ECMWF 1981-2005 2 -0.08 0.37 0 

Météo France 1981-2005 0 0.21 0.16 0 

Météo France 1981-2005 1 0.19 0.18 0 

Météo France 1981-2005 2 0.04 0.43 0 

Multi-model 1987-2005 0 0.36 0.07 8.3 

Multi-model 1987-2005 1 0.22 0.18 0 

Multi-model 1987-2005 2 -0.11 0.32 0 

Statistical 1981-2005 0 0.59 0.01 33.7 

Statistical 1987-2005 0 0.55 0.01 25.4 

 

 

 

8.3.2     Dynamical models: South and Northeast Kenya 

 

The EUROSIP multi-model ensemble is found to outperform the most skilful statistical 

models in hindcasting OND rainfall for the South (Table 8.5) and Northeast (Table 

8.6) regions of Kenya. These regions are home to 4.7% of the total population of Kenya 

(CIESIN, 2005) (Chapter 5.1.2). 

 

The best statistical forecast models for the South and Northeast regions of Kenya are 

based on the best predictors regions from Chapter 6 (marked with an asterisk in Table 

6.1). Table 8.5 shows the skill assessment results for Southern Kenya. The OND rainfall 

hindcast skill from the EUROSIP multi-model outperforms climatology with MSSS > 

28% between 1987 and 2005. The correlation result is the highest of any region with 

rrank = 0.70 (p-value < 0.01). The skill scores from the best statistical hindcast model are 

lower with rrank = 0.53 (p-value < 0.01) and MSSS = 13.5% over the period 1981-2005.  

 

The skill assessment results for the Northeast region of Kenya are presented in Table 

8.6. The OND rainfall hindcast skills from the EUROSIP multi-model are high with 

rrank = 0.60 (p-value < 0.03) and MSSS > 9% over the period 1987-2005. In comparison, 

the skill scores from the best statistical hindcast model are lower, with rrank = 0.24 (p-

value = 0.11) and MSSS < 0% over the period 1981-2005.  

Table 8.4. As Table 8.3 but for the West of Kenya. The EUROSIP results are from 

the grid square representing Western Kenya (35°E, 0.0°N). Note that the dynamical 

skill scores are the same as in Table 8.3 as the same EUROSIP grid square covers 

both the West and the majority of the Southwest regions (as shown in Figure 8.1). 
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Model  Period Lead Time rrank p-value MSSS (%) 

UKMO 1987-2005 0 0.67 0.01 35.7 

UKMO 1987-2005 1 0.19 0.23 19.1 

UKMO 1987-2005 2 0.20 0.21 20.4 

ECMWF 1981-2005 0 0.50 0.01 31.9 

ECMWF 1981-2005 1 0.19 0.18 18.4 

ECMWF 1981-2005 2 0.07 0.36 5.4 

Météo France 1981-2005 0 0.24 0.15 6.1 

Météo France 1981-2005 1 -0.03 0.45 0 

Météo France 1981-2005 2 0.23 0.13 7.1 

Multi-model 1987-2005 0 0.70 0.01 28.9 

Multi-model 1987-2005 1 0.41 0.04 16.8 

Multi-model 1987-2005 2 0.26 0.14 12.7 

Statistical 1981-2005 0 0.53 0.01 13.5 

Statistical 1987-2005 0 0.47 0.03 6.1 

Model  Period Lead Time rrank p-value MSSS (%) 

UKMO 1987-2005 0 0.51 0.03 22.1 

UKMO 1987-2005 1 0.24 0.18 15.2 

UKMO 1987-2005 2 -0.02 0.46 7.9 

ECMWF 1981-2005 0 0.44 0.02 16.8 

ECMWF 1981-2005 1 0.40 0.05 8.6 

ECMWF 1981-2005 2 0.27 0.10 6.2 

Météo France 1981-2005 0 0.30 0.10 6.5 

Météo France 1981-2005 1 0.10 0.32 0 

Météo France 1981-2005 2 0.14 0.27 1 

Multi-model 1987-2005 0 0.58 0.02 16.1 

Multi-model 1987-2005 1 0.60 0.03 9.6 

Multi-model 1987-2005 2 0.09 0.35 6 

Statistical 1981-2005 1 0.24 0.11 0 

Statistical 1987-2005 1 0.17 0.24 0 

Table 8.5. As Table 8.3 but for the South of Kenya. The EUROSIP results are from 

the grid square representing the South region of Kenya (40°E, 2.5°S).  

 

Table 8.6. As Table 8.3 but for the Northeast of Kenya. The EUROSIP results are 

from the grid square representing the Northeast region of Kenya (40°E, 2.5°N).  
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8.3.3     Northwest and Southeast Kenya 

 

The skill assessment results for the Northwest and Southeast regions of Kenya are 

shown in Tables 8.7 and 8.8 respectively. Both statistical and dynamical hindcast 

models produce low OND rainfall hindcast skill scores for these regions.  

 

The best statistical forecast models for the Northwest and Southeast regions of Kenya 

are based on the best predictors regions from Chapter 6 (marked with an asterisk in 

Table 6.1). Table 8.7 shows the skill assessment results for the Northwest region of 

Kenya. This region is home to 1.3% of the total population of Kenya (CIESIN, 2005) 

(Chapter 5.1.2). The statistical OND rainfall hindcast is more skilful than those from the 

EUROSIP models with rrank = 0.3 (p-value = 0.17) and MSSS = 4.3% over the period 

1987-2005. However, this skill does not extend to the period 1981-2005. The skill 

scores from the dynamical models are lower. The best performing dynamical model is 

from Météo France, with rrank = 0.19 (p-value = 0.17) with MSSS = 2.1% over the 

period 1981-2005.  

 

 

 

 

Model  Period Lead Time rrank p-value MSSS (%) 

UKMO 1987-2005 0 -0.02 0.47 0 

UKMO 1987-2005 1 -0.08 0.38 0 

UKMO 1987-2005 2 -0.20 0.22 0 

ECMWF 1981-2005 0 -0.13 0.27 0 

ECMWF 1981-2005 1 0.11 0.32 0 

ECMWF 1981-2005 2 -0.13 0.27 0 

Météo France 1981-2005 0 0.15 0.23 2.2 

Météo France 1981-2005 1 0.19 0.17 2.1 

Météo France 1981-2005 2 0.09 0.33 0 

Multi-model 1987-2005 0 0.16 0.27 0 

Multi-model 1987-2005 1 0.10 0.35 2.1 

Multi-model 1987-2005 2 -0.23 0.18 0 

Statistical 1981-2005 1 0.15 0.29 0 

Statistical 1987-2005 1 0.30 0.17 4.3 

Table 8.7. As Table 8.3 but for the Northwest of Kenya. The EUROSIP results are 

from the grid square representing the Northwest region of Kenya (37.5°E, 2.5°N).  
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The skill assessment results from the Southeast region of Kenya are presented in Table 

8.8. This region is home to 26.3% of the total population of Kenya (CIESIN, 2005) 

(Chapter 5.1.2). The EUROSIP multi-model OND rainfall hindcast is more skilful than 

the hindcast from the statistical model with rrank = 0.39 (p-value = 0.07) and MSSS = 

6.5% over the period 1987-2005. The UKMO is the strongest contributing individual 

model with rrank = 0.32 (p-value < 0.09) and MSSS = 12.4% The skill scores from the 

best statistical model are lower, with rrank = 0.10 (p-value = 0.32) with MSSS < 0% over 

the period 1981-2005.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Model  Period Lead Time rrank p-value MSSS (%) 

UKMO 1987-2005 0 0.32 0.09 12.4 

UKMO 1987-2005 1 0.22 0.20 1.5 

UKMO 1987-2005 2 0.24 0.16 3.6 

ECMWF 1981-2005 0 -0.10 0.31 0 

ECMWF 1981-2005 1 0.06 0.40 0 

ECMWF 1981-2005 2 -0.04 0.43 0 

Météo France 1981-2005 0 0.20 0.16 0 

Météo France 1981-2005 1 0.18 0.19 0 

Météo France 1981-2005 2 0.15 0.24 1.9 

Multi-model 1987-2005 0 0.39 0.07 6.5 

Multi-model 1987-2005 1 0.31 0.09 0.3 

Multi-model 1987-2005 2 0.17 0.24 0 

Statistical 1981-2005 1 0.10 0.32 0 

Statistical 1987-2005 1 0.05 0.42 0 

Table 8.8. As Table 8.3 but for the Southeast of Kenya. The EUROSIP results are 

from the grid square representing the Southeast region of Kenya (37.5°E, 0.0°N).  
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8.4     Discussion 

 

A summary of the comparison of the best OND rainfall hindcast models for each region 

of Kenya is presented in Table 8.9. Statistical models are found to produce the best 

OND rainfall hindcasts for half of the regions in Kenya, comprising 69% of the total 

population. The EUROSIP dynamical models are found to produce the best OND 

rainfall hindcasts for the other half of Kenya, which is home to 31% of the total 

population. Table 8.9 shows that the models offer potentially useful skill (with rrank ≥ 

0.39 and p-values ≤ 0.07) for 98.7% of the Kenyan population (based on 2000 

population figures). The available lead time is either 0- or 1-month for the OND season 

depending on region (Tables 8.3-8.8). Why do all models produce low hindcast skill for 

the Northwest region? A likely explanation is the poor quality of the rainfall data in this 

region (as discussed in Chapter 6.2.5).   

 

There is scope for further research in this area. In the cases where there is a large 

difference in OND hindcast skill, it could be beneficial to examine the causes behind the 

skill difference. This would provide direction to improve the skill of the less skilful 

model type. Further improvements to the OND rainfall hindcast skill could be made by 

combining the statistical and EUROSIP multi-model hindcasts. Finally, it would also be 

interesting to examine the MAM rainfall hindcast skill of the EUROSIP multi-model.  
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Region 

 

Best Model 

 

Statistical Model 

Predictor 

Dynamical 

Model Grid 

Square 

 

rrank 

 

p-value 

 

MSSS 

(%) 

Population 

(millions) 

2000 

Population 

(%) 

2000 

Population 

(millions) 

2015 

Population 

(%) 

2015 
 

Southwest 
 

Statistical 
AS SSTs off East 

African Coast 

 

(35°E, 0.0°S) 
 

0.42 
 

0.06 
 

28.5 
 

11.1 
 

38.1 
 

15.6 
 

41.4 

 

West 
 

Statistical 
AS SSTs off East 

African Coast 

 

(35°E, 0.0°S) 
 

0.59 
 

0.01 
 

33.7 
 

8.6 
 

29.6 
 

10.6 
 

28.2 

South Multi-model NA (40°E,2.5°S) 0.70 0.01 28.9 0.95 3.3 1.3 3.4 

Northeast Multi-model NA (40°E,2.5°N) 0.60 0.03 9.6 0.42 1.4 0.68 1.8 
 

Northwest 
 

Statistical 
JJA SSTs off East 

African Coast 

 

(37.5°E,2.5°N) 
 

0.30 
 

0.17 
 

4.3 
 

0.37 
 

1.3 
 

0.52 
 

1.4 

Southeast Multi-model NA (37.5°E,0°N) 0.39 0.07 6.5 7.6 26.3 9.0 23.8 

Table 8.9. Summary of the best OND rainfall hindcast models for each region of Kenya. The skill scores are shown for the period 1987-2005 (except for the West 

region of Kenya, where skill scores are shown for the period 1981-2005).  

 

Regional population figures are shown (in millions of people and percentage of total Kenyan population) for 2000 with future estimates for 2015. Population data 

are from the Gridded Population of the World, Version 3, produced by CIESIN (Centre for International Earth Science Information Network) (CIESIN, 2005). 
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Chapter 9 

Conclusions and Wider Implications 

 

9.1     Summary and Conclusions 

 

The aim of this thesis has been to investigate the seasonal prediction of African rainfall, 

with a focus on Kenya. Africa‟s climate is prone to extended rainfall deficits. In extreme 

cases these can lead to droughts and humanitarian disasters. Skilful prediction of 

seasonal rainfall would therefore bring sound humanitarian and economic benefits to 

countries, such as Kenya, that are highly dependent on rain-fed agriculture.  

 

The thesis first performed a detailed assessment of the current seasonal rainfall hindcast 

skill available from leading dynamical models over Africa. The DEMETER individual 

model and multi-model seasonal rainfall hindcasts are found to have weak correlation 

with the observed GPCC rainfall data over most of Africa at zero lead for the period 

1959-2000 (Chapter 4) with the following two exceptions. In the sub-Sahara/Sahel belt 

moderate ASO rainfall hindcast skill is found from the DEMETER multi-model 

ensemble hindcasts with rrank values of 0.3-0.8 (p-values < 0.1) and positive MSSS 

values. In Equatorial East Africa and around Nigeria and South Africa moderate NDJ 

rainfall hindcast skill is found from the DEMETER multi-model ensemble hindcasts 

with rrank values of 0.5-0.6 (p-values < 0.1) and positive MSSS values. In both cases this 

skill disappears as the lead increases from 0- to 3-months. Many factors may be 

responsible for the overall low hindcast skill across Africa. One contributing factor is 

the lower variance in the hindcasts, compared to the observations. Another factor is the 

uneven distribution of rain gauges across the continent. The areas that show the highest 

DEMETER hindcast skill are found to be coincident with those areas of Africa that have 

the highest concentrations of rain gauge stations. 

 

The thesis then progressed to focus on Kenya, as it has experienced 7 severe droughts 

over the period 1991-2008, affecting over 35 million people. Kenya has a highly 

variable spatial rainfall distribution. Therefore, it is necessary to split the country into 
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six homogeneous rainfall regions (Chapter 5). Statistical OND rainfall hindcast models 

are developed for each region, using linear regression techniques as described in 

Chapter 5. Predictors are selected from lagged SST and atmospheric wind fields 

(Chapter 3) based on having significant, temporally-stable correlations with regional 

rainfall indices and clear physical linking mechanisms.  

 

Chapter 6 shows that temporally stable, moderate-to-high OND rainfall hindcast skills 

are found for the West, Southwest, South and Northeast regions of Kenya with average 

rrank ≥ 0.40 (p-value ≤ 0.06) and MSSS > 0. These regions comprise 72.4% of the total 

population of Kenya. The strongest hindcast skill scores in Kenya are produced by the 

best OND rainfall hindcast model for the West and Southwest regions of Kenya with 

average rrank values of 0.55 (p-value < 0.04) and 0.47 (p-value < 0.05) respectively. 

These models are based on SST predictors located in the Indian Ocean. 

 

The statistical OND rainfall hindcast models for the Northwest and Southeast regions of 

Kenya produce the lowest OND rainfall hindcast skill scores. These have average rrank 

values of 0.38 (p-value ≤ 0.10) and 0.27 (p-value ≤ 0.19) respectively. It is suggested 

that the lack of Northwest OND rainfall hindcast skill is mainly a result of poor quality 

rainfall data. The OND rainfall in the Southeast region of Kenya is found to be linked to 

an area of SST off the coast of Japan. Saji et al. (1999) found that this region of SST 

was linked to East African rainfall through the IOD. However, it seems that this region 

of SST is not a strong predictor, as the skill results are the lowest of all the regions.  

 

Few strong, significant and temporally stable potential predictors are found for the 

MAM rainy season or for its individual comprising months (Chapter 7). It is possible 

that a proportion of the strong correlations between regional MAM rainfall indices and 

potential predictor indices are statistical artefacts.  The results of Chapter 7 therefore 

need to be viewed with caution. Thus it is not possible to use the potential predictors 

with confidence to develop regional rainfall forecast models for the „long-rains‟ season 

in Kenya. Previous research has suggested that the QBO could be a strong predictor for 

the Kenyan „long-rains‟ (Indeje and Semazzi, 2000). The QBO has been accepted by 

Kenyan forecasters as a skilful operational predictor for this season. However, this study 

shows that the QBO does not have strong, temporally stable correlations with the 

regional MAM rainfall indices in Kenya. The QBO should, therefore, not be used 

operationally as a predictor for the Kenyan „long-rains‟.  



 

Page 159 

 

The thesis concluded by comparing statistical and dynamical hindcast models over 

Kenya, in order to determine which produces the most skilful OND rainfall hindcasts 

(Chapter 8). The results of this comparison could help to inform Kenyan forecasters as 

to which method has the greatest OND rainfall forecast skill for each region. This is the 

first independent study to use the hindcasts from the EUROSIP multi-model ensemble 

system, which is an improved version of DEMETER. The statistical hindcast models are 

found to produce the most skilful OND rainfall hindcast, compared to those from 

EUROSIP, in the most populous and heavily cultivated regions in Kenya. These regions 

of the west and southwest are home to 67.7% of Kenya‟s population. The 19.7 million 

people living in these regions could directly benefit from operational use of these 

statistical forecasts, rather than dynamical forecasts. The EUROSIP multi-model 

ensemble is shown to produce more skilful OND rainfall hindcasts than the statistical 

models in the South and Northeast regions of Kenya. These less populous regions 

comprise 4.7% of the total population of Kenya. Both statistical and dynamical hindcast 

models produce low OND rainfall hindcast skill scores for the Northwest and Southeast 

regions of Kenya. The Northwest region is sparsely populated with 0.37 million people 

(1.3% of the total population). However, the Southeast region comprises 7.6 million 

people (26.3% of the total population). The poor hindcasts from both the dynamical and 

statistical models in the southeast region could leave this large population exposed to 

drought and famine with no prior warning.  

 

9.2     Recent drought prediction skill 

 

The prime motivation for this study was the high number of severe droughts that affect 

African countries such as Kenya, and the humanitarian impacts that these often lead to. 

Skilful prediction of seasonal rainfall would bring sound humanitarian and economic 

benefit to Kenya, but only if these predictions are skilful in years of rainfall deficit that 

lead to severe drought. This section investigates how well the statistical and dynamical 

hindcast models discussed and developed in this thesis performed over two of the most 

recent and notable droughts in Kenya. 

 

The most recent and notable droughts to affect Kenya occurred in 1999-2002 and 2005 

affecting 23 and 3.5 million people respectively (Table 1.1 and Section 2.2.2). The 

1999-2002 drought affected people in the west and central areas of Kenya and is 



 

 

 

 

 

Year 

             

OND seasonal rainfall (mm/season) 
 

Southeast 
 

Southwest 
 

Northeast 

Rain gauge Statistical EUROSIP Rain gauge Statistical EUROSIP Rain gauge Statistical EUROSIP 

1999 99 122 137 68 61 98 55 45 74 

2000 77 114 134 96 86 99 37 67 75 

2001 83 93 119 64 54 88 51 88 70 

2005 57 82 112 29 37 74 25 61 69 

 

 

Year 

 

OND seasonal rainfall (mm/season) 
 

Northwest 
 

West 
 

South 

Rain gauge Statistical EUROSIP Rain gauge Statistical EUROSIP Rain gauge Statistical EUROSIP 

1999 32 54 90 78 84 98 73 37 81 

2000 31 56 84 99 88 99 76 66 79 

2001 3 45 77 95 79 88 50 94 75 

2005 N/A 26 76 77 75 74 51 40 76 

Table 9.1. OND seasonal rainfall (mm/season) from the rain gauges of the KMD, and hindcasts from the best statistical models for 

each region (Chapter 6) and the EUROSIP multi-model ensemble at 0-lead. The values are shown for 1999-2001 and 2005 as 

examples of recent notable droughts in Kenya. The underlined values highlight the regions that were most badly affected in each 

drought year. 2005 rain gauge data from the Northwest region of Kenya is not available. 
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thought to have been forced by the 1999-2001 La Niña. The drought in 2005 affected 

the north and eastern areas of Kenya and was forced by the failure of the OND rains in 

2005. Table 9.1 displays the OND seasonal regional rainfall totals recorded by the 

KMD over the years 1999-2001 and 2005 as well as the corresponding hindcast values 

from the best statistical model for each region and from the EUROSIP multi-model 

ensemble at 0-lead. This is a clear way of showing which model produced the most 

accurate seasonal regional hindcast values in each case.  

 

It can be seen from Table 9.1 that in 70% of cases the statistical models produced a 

rainfall hindcast value that was closer to the observed value that that produced from 

EUROSIP. The regions that were reported to be most badly affected in each drought are 

underlined in Table 9.1. In 75% of these cases the statistical models produced a more 

accurate hindcast than those from the EUROSIP multi-model ensemble at 0-lead. In the 

majority of cases the seasonal rainfall hindcast values from the statistical models were 

very close to the regional rain gauge values from KMD. This shows that the rainfall 

deficits responsible for these two high impact droughts would have been predictable for 

most of the regions of Kenya. These results give added confidence in using these 

statistical forecast models operationally over Kenya. 

 

9.3     Benefits to operational forecasting in Kenya 

 

Chapter 6 has shown that it is possible to develop consistently skilful statistical OND 

rainfall forecast models for the West, Southwest, South and Northeast regions of Kenya. 

These regions are home to 72.4% of the total population of Kenya. Further research into 

improving the forecast skill for the remaining regions is necessary, especially the 

Southeast, before these forecast models could be used as a real time operational forecast 

system for the whole country.  

 

This study has highlighted several points that may be useful to forecasters in Kenya. 

Firstly, The Kenyan Meteorological Department issues seasonal rainfall forecasts before 

both the „short-‟ and „long-rains‟ seasons. The forecasts for the „long-rains‟ season are 

based on weak correlations between regional rainfall indices and SSTs and the QBO. 

The skill of these operational MAM forecasts may be questionable due to the poor 

quality of the predictors available for this season. This study recommends that the 
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Kenyan Meteorological Department should make the users aware of the reliability of the 

MAM forecasts. Users will then be able to make an informed decision on how much 

confidence they can have in the forecasts. 

 

Secondly, the most consistently skilful regional OND rainfall hindcasts found in this 

study are from forecast models based on Indian Ocean SST predictors off the coast of 

East Africa. Convective activity and rainfall are enhanced over this region by positive 

SST anomalies. Similarly, negative SST anomalies here tend to suppress East African 

rainfall. Currently, operational forecasters in Kenya use SYSTAT to automatically 

select predictor regions with strong correlations to Kenyan rainfall. These predictor 

regions are currently accepted for operational use with no consideration of whether a 

viable physical mechanism exists to link them to the „short-rains‟. Improvements to 

forecast skill could be made by only accepting predictor regions that have established 

physical links to the Kenyan „short-rains‟. The predictor regions found in this study 

could also be used by the Kenyan forecasters when developing their OND rainfall 

forecast models in addition to those found through the SYSTAT program. Chapter 8 

shows the optimal combination of statistical and dynamical forecast models to 

maximise regional OND rainfall hindcast skill across Kenya. This could assist 

forecasters in deciding which type of forecast model to trust for each region of Kenya. 

 

9.4     Future directions 

 

This thesis has focused on the seasonal prediction of African rainfall, with a focus on 

Kenya. The skilful OND rainfall forecasts presented in this thesis could be used to 

explore the development of useful regional Kenyan drought prediction models. This 

work would need to be conducted in partnership with the end users, in order to optimise 

the usefulness of the forecasts. The first step would be for the user to determine which 

definition of drought the user is most interested in (Chapter 2.1.1) and to quantifying 

this. Thresholds of seasonal rainfall deficit would then need to be set to establish when a 

drought is likely to occur for each region. The results of this study should be taken into 

account when deciding whether or not to act on the seasonal rainfall forecasts for each 

region. Drought prediction models are very complex and need to consider variables 

such as: duration of rainfall deficit, surface land use, soil moisture capacity, 
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groundwater storage, streamflow, evapotranspiration and water demand in order to 

determine the extent of a drought based on the seasonal rainfall deficit predicted.  

 

Scope exists for further research into the variability of the Kenyan „long-rains‟. Further 

research is required to try to identify and understand the physical factors which affect 

the year-to-year variability in Kenyan regional MAM rainfall. This understanding 

would be a pre-requisite for improving Kenyan MAM rainfall predictions.   

 

This was the first study to assess the skill of the EUROSIP seasonal rainfall hindcasts 

(independently of the developing institutions) as the hindcasts were only made available 

to the public in 2009. It would be interesting to directly compare the hindcasts over 

Africa available from the DEMETER and EUROSIP systems in order to quantify the 

improvement in skill that has resulted from the model upgrades. A more detailed skill 

assessment of the EUROSIP seasonal rainfall hindcasts over the whole of Africa would 

allow users to know how much confidence they can have in the EUROSIP forecasts for 

their region of Africa. Further work is also needed to examine whether merging the 

statistical and EUROSIP models would lead to an improved multi-model prediction of 

OND Kenyan rainfall.  

 

It would be useful to examine the potential for using satellite-derived rainfall data to 

improve the quality of the Kenyan historical rain gauge data. Satellite-derived rainfall 

data have a shorter available climatology than rain gauge data. However, they have 

other benefits, such as higher spatial and temporal resolutions. This could lead to 

improvements to the seasonal rainfall forecast skill, particularly in regions of sparse rain 

gauge density.  

 

Finally, it is hoped that future studies may be able to apply the techniques developed in 

this thesis for the seasonal prediction of regional rainfall in other East African countries 

that are also prone to rainfall deficits and droughts.  
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Appendix A  

Predictor Selection Plots for OND Rainfall  

for each Region of Kenya 
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Figure A.1. West October-December (OND) rainfall index correlated with prior August-

September (AS) two-month average SST global field over the periods: (a) 1959-1974 and 

(b) 1975-1990. White areas denote land mass. Red (blue) shows positive (negative) 

correlations, grey shows low correlations (between -0.2 and 0.2) and the black lines show 

areas with p-values < 0.15. The SST AS(1) and SST AS(2) predictor regions are 

highlighted by the purple boxes.  
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Figure A.2. Southwest OND rainfall index correlated with prior August-September (AS) 

two-month average SST global field over the periods: (a) 1959-1974 and (b) 1975-1990. 

As Figure B.1 but the SST AS predictor region is highlighted by the purple box.  
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Figure A.3. South OND rainfall index correlated with the prior September SST global 

field over the periods: (a) 1959-1974 and (b) 1975-1990. As Figure B.1 but the SST Sep 

predictor region is highlighted by the purple box.  

 

(a) 

(b) 

Sep 

Sep 



 

Page 168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4. Composite difference plot showing the direction, magnitude and significance of 

the composite difference in 850 hPa August wind anomalies for those subset years when the 

OND South rainfall index is in its upper and lower quartiles over the periods: (a) 1959-1974 

and (b) 1975-1990. Colours show p-values with the darker shades of red indicating the 

greatest significance. The u-wind Aug predictor region is highlighted by the purple box.  
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Figure A.5. Northwest OND rainfall index correlated with the prior June-August (JJA) SST 

global field over the periods: (a) 1959-1974 and (b) 1975-1990. As Figure B.1 but the SST 

JJA predictor region is highlighted by the purple box.  
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Figure B.6. Southeast OND rainfall index correlated with the June-August (JJA) SST 

global field over the periods: (a) 1959-1974 and (b) 1975-1990. As Figure B.1 but the SST 

JJA predictor region is highlighted by the purple box.  
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  JJA 

  JJA 

Figure A.6. Southeast OND rainfall index correlated with the prior June-August (JJA) SST 

global field over the periods: (a) 1959-1974 and (b) 1975-1990. As Figure B.1 but the SST 

JJA predictor region is highlighted by the purple box.  
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Figure A.7. Southeast-east OND rainfall index correlated with the prior July-August (JA) 

SST global field over the periods: (a) 1959-1974 and (b) 1975-1990. As Figure B.1 but the 

SST JA predictor region is highlighted by the purple box.  
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Figure A.8. Southeast-west OND rainfall index correlated with the prior July-August (JA) 

SST global field over the periods: (a) 1959-1974 and (b) 1975-1990. As Figure B.1 but the 

SST JA predictor region is highlighted by the purple box.  
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Appendix B  

Skill Score Results for Potential OND Rainfall  

Hindcast Models for each Region of Kenya 
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Skill scores for West Kenya - OND 

  

  

  Predictor Models 

    SOI Aug DMI Sep (SST AS(1)) - (SST AS(2)) 

 
  rrank 0.48 0.51 0.57 

 
1959-1990 p-value 0.01 0.01 0.01 

 
  MSSS 17.2 37.2 22.4 

 
  rrank 0.41 0.38 0.58 

 
1959-1974 p-value 0.10 0.08 0.02 

 
  MSSS 9.7 23.2 20.4 

 
  rrank 0.39 0.42 0.38 

 
1975-1990 p-value 0.09 0.13 0.10 

 
  MSSS 13.5 25.7 9.6 

 
  rrank 0.49 0.65 0.65 

 
1991-2006 p-value 0.03 0.01 0.01 

 
  MSSS 31.5 36.9 53.6 

 

     

 
Extreme Years only: Upper and lower quartiles 

      Predictor Models 

  
 

  SOI Aug DMI Sep SST AS(1)) - (SST AS(2)) 

    rrank 0.62 0.63 0.64 

  1959-1990 p-value 0.05 0.07 0.06 

    MSSS 25.8 46.6 30.2 

    rrank 0.50 0.57 0.64 

  1959-1974 p-value 0.15 0.10 0.12 

    MSSS 13.1 28.5 22.5 

    rrank 0.36 0.52 0.43 

  1975-1990 p-value 0.17 0.11 0.21 

    MSSS 11.9 23.3 8.3 

    rrank 0.79 0.79 0.76 

  1991-2006 p-value 0.05 0.02 0.03 

    MSSS 43.9 67.30 58.8 

 

 

 

 

 

 

 

 

 

 
Number of years in correct tercile 

    Predictor Models 

  

 
SOI Aug DMI Sep SST AS(1)) - (SST AS(2)) 

 
Num/32 15 21 16 

 
p-value 0.29 0.01 0.11 

 
Num/1st16 6 8 10 

 
p-value 0.27 0.30 0.27 

 
Num/2nd16 8 9 9 

 
p-value 0.23 0.19 0.20 

 

(a) 

(b) 

(c) 

Figure B.1. Skill score results for the hindcasts models based on the best potential predictor regions for 

the West region of Kenya. (a) rrank with associated p-values and MSSS results for each of the periods: 

1959-1990, 1959-1974, 1975-1990 and 1991-2006. (b) Same as (a) for the extreme years only (upper 

and lower quartile of rainfall years). (c) Shows the Number of years in the correct tercile for the first 32 

years (1959-1990), the 1
st
 16 years (1959-1974) and the 2

nd
 16 years (1975-1900) and associated p-

values. The best predictor is highlighted (yellow for training periods, green for independent verification 

period). Red values show when: rrank ≥ 0.4, p-value ≤ 0.1, MSSS >0, (Num/32) ≥ 16 and (Num/16) ≥ 8. 
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Skill scores for Southwest Kenya - OND 

  

  

  Predictor Models 

    SST JAS SST JA SST AS 

 
  rrank 0.34 0.24 0.50 

 
1959-1990 p-value 0.05 0.12 0.01 

 
  MSSS 12.2 7.7 18.1 

 
  rrank 0.51 0.52 0.55 

 
1959-1974 p-value 0.04 0.04 0.03 

 
  MSSS 35.9 42.7 23.0 

 
  rrank 0.41 0.42 0.39 

 
1975-1990 p-value 0.09 0.06 0.09 

 
  MSSS -2.4 -7.2 0.1 

 
  rrank 0.52 0.40 0.42 

 
1991-2006 p-value 0.03 0.08 0.07 

 
  MSSS 11.3 -2.2 28.2 

      

 
Extreme Years only: Upper and lower quartiles 

      Predictor Models 

  
 

  SST JAS SST JA SST AS 

    rrank 0.51 0.47 0.31 

  1959-1990 p-value 0.03 0.02 0.04 

    MSSS 36.2 35.2 30.7 

    rrank 0.55 0.55 0.55 

  1959-1974 p-value 0.13 0.12 0.18 

    MSSS 30.1 38.0 16.0 

    rrank 0.76 0.76 0.76 

  1975-1990 p-value 0.04 0.05 0.05 

    MSSS 33.6 32.4 32.4 

    rrank 0.93 0.67 0.74 

  1991-2006 p-value 0.05 0.05 0.03 

    MSSS 18.0 5.1 35.0 

 

 

 

 

 

 

 

 

 

 
Number of years in correct tercile 

    Predictor  Models 

  

 
SST JAS SST JA SST AS 

 
Num/32 11 11 15 

 
p-value 0.05 0.21 0.05 

 
Num/1st16 7 6 7 

 
p-value 0.23 0.32 0.22 

 
Num/2nd16 7 5 7 

 
p-value 0.19 0.13 0.20 

Figure B.2. As Figure B.1 but for the Southwest region of Kenya. 

(a) 

(b) 

(c) 
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Skill scores for South Kenya - OND 

  

  

  Predictor Models 

    SST JJA u-wind Aug (u-wind Aug) + (SST Sep) 

 
  rrank 0.38 0.50 0.46 

 
1959-1990 p-value 0.02 0.01 0.01 

 
  MSSS -1.1 17.1 22.1 

 
  rrank 0.32 0.39 0.37 

 
1959-1974 p-value 0.07 0.12 0.10 

 
  MSSS -18.2 25.0 0.4 

 
  rrank 0.36 0.51 0.41 

 
1975-1990 p-value 0.10 0.06 0.07 

 
  MSSS -1.3 -19.7 7.2 

 

  rrank 0.36 0.37 0.53 

 

1991-2006 p-value 0.10 0.10 0.04 

 
  MSSS -24.1 4.5 30.7 

      
 

Extreme Years only: Upper and lower quartiles 

      Predictor Models 

  
 

  SST JJA u-wind Aug (u-wind Aug) + (SST Sep) 

    rrank 0.58 0.56 0.56 

  1959-1990 p-value 0.02 0.04 0.03 

    MSSS 16.1 28.9 38.3 

    rrank 0.54 0.77 0.54 

  1959-1974 p-value 0.27 0.10 0.09 

    MSSS -36.8 56.0 36.4 

    rrank 0.67 0.64 0.55 

  1975-1990 p-value 0.12 0.11 0.08 

    MSSS 14.7 2.8 24.0 

    rrank 0.26 0.12 0.33 

  1991-2006 p-value 0.23 0.23 0.10 

    MSSS -14.2 2.4 29.3 

 

 

 

Number of years in correct tercile 

    Predictor  Models 

  
 

SST JJA u-wind Aug (u-wind Aug) + (SST Sep) 

 
Num/32 13 12 11 

 
p-value 0.07 0.02 0.02 

 
Num/1st16 6 6 6 

 
p-value 0.13 0.12 0.12 

 
Num/2nd16 9 9 7 

 
p-value 0.28 0.20 0.19 

(a) 

(b) 

(c) 

 

Figure B.3. As Figure B.1 but for the South region of Kenya. 
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 Skill scores for Northeast Kenya - OND 

   

  Predictor Models 

 
  South region's (u-wind Aug) + (SST Sep) South region's u-wind Aug 

 
  rrank 0.36 0.40 

 
1959-1990 p-value 0.03 0.01 

 
  MSSS 21.6 19.6 

 
  rrank 0.17 0.37 

 
1959-1974 p-value 0.27 0.07 

 

  MSSS 20.3 21.3 

 
  rrank 0.22 0.36 

 
1975-1990 p-value 0.20 0.13 

 
  MSSS -0.3 0.8 

 
  rrank 0.31 0.46 

 
1991-2006 p-value 0.08 0.02 

 
  MSSS 22.10 5.90 

    

  

 
Extreme Years only: Upper and lower quartiles 

 

    Predictor Models 

  
 

  South region's (u-wind Aug) + (SST Sep) South region's u-wind Aug 

 
  rrank 0.52 0.61 

 
1959-1990 p-value 0.12 0.08 

 
  MSSS 33.4 33.4 

 
  rrank 0.45 0.69 

 
1959-1974 p-value 0.06 0.07 

 
  MSSS 26.2 26.8 

 
  rrank 0.33 0.43 

 
1975-1990 p-value 0.14 0.15 

 
  MSSS 23.2 20.2 

 
  rrank 0.69 0.48 

 
1991-2006 p-value 0.11 0.29 

 
  MSSS 13.9 -5.1 

 
Number of years in correct tercile 

    Predictor  Models 

  

 
South region's (u-wind Aug) + (SST Sep) South region's u-wind Aug 

 
Num/32 12 13 

 
p-value 0.02 0.05 

 
Num/1st16 7 8 

 
p-value 0.55 0.55 

 
Num/2nd16 6 6 

 
p-value 0.35 0.35 

  

    

Figure B.4. As Figure B.1 but for the Northeast region of Kenya. 

(a) 

(b) 

(c) 
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Skill scores for Northwest Kenya - OND 

   

  Predictor Models 

 
  SST Jun SST JJA 

 
  rrank 0.26 0.33 

 
1959-1990 p-value 0.08 0.05 

 
  MSSS 4.6 3.9 

 
  rrank 0.27 0.35 

 
1959-1974 p-value 0.16 0.09 

 

  MSSS -3.6 -8.1 

 
  rrank 0.51 0.54 

 
1975-1990 p-value 0.03 0.02 

 
  MSSS 15.3 11.3 

 
  rrank 0.18 0.29 

 
1991-2006 p-value 0.28 0.23 

 
  MSSS -11.30 7.80 

    

  

 
Extreme Years only: Upper and lower quartiles 

 

    Predictor Models 

  
 

  SST Jun SST JJA 

 
  rrank 0.43 0.50 

 
1959-1990 p-value 0.11 0.06 

 
  MSSS 17.5 20.7 

 
  rrank 0.35 0.29 

 
1959-1974 p-value 0.08 0.12 

 
  MSSS 11.0 0.4 

 
  rrank 0.90 0.88 

 
1975-1990 p-value 0.01 0.01 

 
  MSSS 57.1 54.7 

 
  rrank 0.10 0.24 

 
1991-2006 p-value 0.30 0.07 

 
  MSSS -5.50 32.00 

   

    

 

 
Number of years in correct tercile 

    Predictor  Models 

  

 
SST Jun SST JJA 

 
Num/32 13 17 

 
p-value 0.34 0.12 

 
Num/1st16 5 7 

 
p-value 0.08 0.16 

 
Num/2nd16 8 7 

 
p-value 0.14 0.27 

Figure B.5. As Figure B.1 but for the Northwest region of Kenya. 

(a) 

(b) 

(c) 
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Skill scores for Southeast Kenya - OND 

   

  Predictor Models 

 
  SST JA SST JJA 

 
  rrank 0.21 0.15 

 
1959-1990 p-value 0.16 0.23 

 
  MSSS 1.4 0.7 

 
  rrank 0.34 0.37 

 
1959-1974 p-value 0.11 0.09 

 

  MSSS 11.5 12.2 

 
  rrank 0.42 0.49 

 
1975-1990 p-value 0.07 0.04 

 
  MSSS 6.7 14.4 

 
  rrank -0.09 -0.02 

 
1991-2006 p-value 0.37 0.48 

 
  MSSS -24.6 -32.6 

     

 
Extreme Years only: Upper and lower quartiles 

 

    Predictor Models 

  
 

  SST JA SST JJA 

 
  rrank 0.15 0.05 

 
1959-1990 p-value 0.30 0.14 

 
  MSSS -2.6 -2.1 

 
  rrank 0.48 0.48 

 
1959-1974 p-value 0.09 0.10 

 
  MSSS 10.7 11.8 

 
  rrank 0.14 0.31 

 
1975-1990 p-value 0.22 0.13 

 
  MSSS 6.4 20.2 

 
  rrank -0.21 -0.14 

 
1991-2006 p-value 0.39 0.30 

 
  MSSS 7.4 -3.5 

 

 

 

 

 

 

 

 

 

 
Number of years in correct tercile 

    Predictor  Models 

  

 
SST JA SST JJA 

 
Num/32 11 12 

 
p-value 0.82 0.82 

 
Num/1st16 6 6 

 
p-value 0.35 0.35 

 
Num/2nd16 11 6 

 
p-value 0.02 0.13 

Figure B.6. As Figure B.1 but for the Southeast region of Kenya. 

(a) 

(b) 

(c) 
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Skill scores for Southeast-east Kenya - OND 

   

  Predictor Models 

 
  SST JJA SST JA 

 
  rrank 0.27 0.31 

 
1959-1990 p-value 0.07 0.05 

 
  MSSS 9.0 10.2 

 
  rrank 0.40 0.36 

 
1959-1974 p-value 0.09 0.12 

 

  MSSS 8.7 6.5 

 
  rrank 0.51 0.41 

 
1975-1990 p-value 0.03 0.07 

 
  MSSS 30.7 15.3 

 
  rrank 0.03 0.09 

 
1991-2006 p-value 0.46 0.36 

 
  MSSS -22.5 -11.3 

     

 
Extreme Years only: Upper and lower quartiles 

 

    Predictor Models 

  
 

  SST JJA SST JA 

 
  rrank 0.41 0.38 

 
1959-1990 p-value 0.06 0.10 

 
  MSSS 16.0 13.3 

 
  rrank 0.38 0.33 

 
1959-1974 p-value 0.10 0.16 

 
  MSSS 9.6 4.6 

 
  rrank 0.43 0.29 

 
1975-1990 p-value 0.05 0.12 

 
  MSSS 38.0 16.1 

 
  rrank -0.12 0.01 

 
1991-2006 p-value 0.41 0.39 

 
  MSSS -6.0 9.7 

 

 

 

 

 

 

 

 

 
Number of years in correct tercile 

    Predictor  Models 

  

 
SST JJA SST JA 

 
Num/32 14 11 

 
p-value 0.54 0.32 

 
Num/1st16 8 7 

 
p-value 0.32 0.17 

 
Num/2nd16 6 5 

 
p-value 0.36 0.06 

Figure B.7. As Figure B.1 but for the Southeast-east sub-region of Kenya. 

(a) 

(b) 

(c) 
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Skill scores for Southeast-west Kenya - OND 

   

  Predictor Models 

 
  SST JJA SST JA 

 
  rrank 0.11 0.36 

 
1959-1990 p-value 0.30 0.04 

 
  MSSS -3.8 3.0 

 
  rrank 0.26 0.33 

 
1959-1974 p-value 0.17 0.09 

 

  MSSS 15.2 14.8 

 
  rrank 0.03 0.42 

 
1975-1990 p-value 0.47 0.09 

 
  MSSS -12.3 11.2 

 
  rrank -0.01 0.07 

 
1991-2006 p-value 0.49 0.40 

 
  MSSS -5.4 -14.1 

     

 
Extreme Years only: Upper and lower quartiles 

 

    Predictor Models 

  
 

  SST JJA SST JA 

 
  rrank 0.06 0.43 

 
1959-1990 p-value 0.42 0.05 

 
  MSSS -7.2 6.2 

 
  rrank 0.12 0.38 

 
1959-1974 p-value 0.10 0.10 

 
  MSSS 8.6 9.4 

 
  rrank 0.01 0.17 

 
1975-1990 p-value 0.47 0.13 

 
  MSSS -3.0 19.7 

 
  rrank 0.01 0.17 

 
1991-2006 p-value 0.50 0.36 

 
  MSSS -5.4 16.2 

 

 

 

 

 

 

 

 
Number of years in correct tercile 

    Predictor  Models 

  

 
SST JJA SST JA 

 
Num/32 11 16 

 
p-value 0.43 0.40 

 
Num/1st16 6 5 

 
p-value 0.27 0.02 

 
Num/2nd16 3 6 

 
p-value 0.36 0.71 

Figure B.8. As Figure B.1 but for the Southeast-west sub-region of Kenya. 

(a) 

(b) 

(c) 
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Appendix C  

Predictor Selection Plots: Correlation Plots Between 

Regional Seasonal Rainfall Indices and Global SSTs 
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Figure C.1. Southeast April rainfall index correlated with December-February (DJF) three-

month average SST global field over the periods: (a) 1959-1974 and (b) 1975-1990. White 

areas denote land mass. Red (blue) shows positive (negative) correlations, grey shows low 

correlations (between -0.2 and 0.2) and the black lines show areas with p-values < 0.15. 

The SST DJF predictor region is highlighted by the purple box.  

 

(a) 

(b) 

   DJF 

   DJF 
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Figure C.2. West April rainfall index correlated with December-February (DJF) three-

month average SST global field over the periods: (a) 1959-1974 and (b) 1975-1990. White 

areas denote land mass. Red (blue) shows positive (negative) correlations, grey shows low 

correlations (between -0.2 and 0.2) and the black lines show areas with p-values < 0.15. 

The SST DJF predictor region is highlighted by the purple box.  

 

(a) 

(b) 

   DJF 

   DJF 
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