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Abstract

The environmental mycobacterium, M. vaccae has been used in mouse models to support the contemporary hygiene
hypothesis that non-pathogenic microorganisms reduce allergy associated T helper (Th)2 responses and inflammatory
diseases by augmenting regulatory T cells. However, data for human models and possible mechanisms are limited. We
tested the effect of innate immune interactions between human DC and M. vaccae on DC-dependent T cell responses. M.
vaccae activation of DC via Toll like receptor (TLR)2 was compared to a specific TLR2 ligand (Pam3CSK4) and alternative
stimulation with a TLR4 ligand (LPS). M. vaccae induced DC dependent inhibition of Th2 responses, in contrast to Pam3CSK4,
which had the opposite effect and LPS, which had no polarizing effect. DC maturation, gene expression and cytokine
production, in response to each stimulus did not correlate with the specific functional effects. Comparable DC
transcriptional responses to M. vaccae and Pam3CSK4 suggested that TLR2 mediated transcriptional regulation was not
sufficient for inhibition of Th2 responses. Transcription factor enrichment analysis and assessment of signaling events,
implicated a role for selective early activation of the CREB pathway by M. vaccae. Further study of the CREB pathway may
provide novel insight into the molecular mechanisms of DC-dependent T cell polarization.
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Introduction

The role of dendritic cells (DC) in shaping adaptive immune

responses has been subject to extensive research with the aim of

therapeutic modulation of the immune system [1,2]. The hygiene

hypothesis suggests that non-pathogenic or commensal microor-

ganisms may influence the nature of adaptive immunity [3,4]. In

animal models of asthma and eczma [5,6,7,8,9,10] administration

of heat-killed preparations of M. vaccae reduce antigen-specific

allergic responses. A number of human clinical trials showed that

M. vaccae may also have therapeutic effects in asthma or atopic

dermatitis [11,12], albeit inconsistently [13,14,15]. In addition, M.

vaccae might enhance host defenses against tuberculosis (TB)

[16,17,18]. Data from animal models suggest that M. vaccae exerts

these effects by reducing allergy-associated T helper (Th)2

responses, by increasing regulatory T cell (Treg) responses [6],

and by increasing cell-mediated immunity-associated Th1 re-

sponses [19]. Whether these effects are also evident in human

cellular immunology and the underlying mechanisms are not

known. DC support Th cell responses through antigen presenta-

tion and provision of co-stimulatory signals [20]. In view of their

potency to activate naive T cells, DC-T cell interactions are

thought to influence Th polarization through changes in the

cytokine microenvironment [1,21] and by the strength of TCR

stimulation [22,23,24], but the molecular mechanisms are not

established. Microbial organisms interact with DC through innate

immune receptors and consequently stimulate intracellular signals

that lead to genome-wide transcriptional changes, expression of

cell surface molecules and secretion of cytokines and chemokines,

which contribute to DC-T cell interactions [1] and may contribute

to differential polarization of Th cells. Such effects have been

reported for DC primed with Bordetella pertussis to promote mixed

Th1/Th17 polarization, DC primed with schistosomal omega-1

protein that induced Th2 cells, or with probiotics that increased

Treg responses [22,25,26]. In a mouse model of ovalbumin-

induced airway allergy, M. vaccae induced inhibition of Th2

responses together with the development of CD11c+ve cells,

possibly DC, associated with increased expression of immuno-

modulatory cytokines [27]. We tested the hypothesis that M. vaccae

induces changes to human Th polarized responses that are

mediated by DC. We used heat-killed M. vaccae similar to

preparations used in the animal and human trials. By qualitative

comparison of DC responses to M. vaccae and to other stimuli that

use common or different innate immune receptors, we sought to

obtain new insights into the mechanisms by which differential

innate immune activation of DC control Th polarization. We

found that genome-wide transcriptional responses to M. vaccae are

directly comparable to specific Toll-like receptor (TLR)2 stimu-

lation, but associated with divergent effects on DC-dependent Th2

responses. By focusing on specific transcriptional responses to each
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stimulus, we identified and confirmed selective early activation of

the CREB pathway by M. vaccae. Further assessment of upstream

and downstream signaling events may lead to better resolution of

the molecular mechanisms by which DC control polarization of

Th responses.

Results

M. vaccae induces dose dependent maturation of
monocyte derived dendritic cells and can stimulate TLR2
dependent cellular activation

The hallmark of innate immune DC priming for T cell

activation is upregulated expression of co-stimulatory molecules

such as CD86 and the maturation marker CD83 [2]. M. vaccae

stimulates dose dependent maturation of DC in this way

(Figure 1A), at concentrations that are comparable to those

achieved by intradermal injection of 1 mg in clinical trials. In

order to develop insight into the specific consequences of DC

priming by M. vaccae, we sought to make comparisons with other

stimuli for cellular receptors which are shared or distinct from

those of M. vaccae. Screening of reporter cell lines expressing

different TLR homo- or heterodimer combinations (Figure 1B)

confirmed TLR2 dependent gene expression in response to M.

vaccae, in keeping with existing literature on TLR2 interactions

with mycobacteria [28]. The lack of TLR4 stimulation confirmed

the absence of lipopolysaccharide (LPS) contamination in this

preparation, and allowed us to compare the effects of M. vaccae on

DC, to TLR4 stimulation with LPS and specific TLR2 stimulation

with Pam3CSK4. Comparison of maximal increases in CD83 and

CD86 expression, suggested that LPS and M. vaccae-induced

maturation was significantly greater than that of Pam3CSK4

(Figure 1C). Therefore a 10-fold lower concentration of M. vaccae

(10 mg/mL), to induce comparable maturation to Pam3CSK4 was

also included in the experimental paradigm. Next we tested the

effect of priming DC with each of these stimuli, 24 hours before

addition of naive allogeneic T cells, thereby excluding memory T

cells for mycobacteria (Figure 2A). DC number and innate

immune priming were independently associated with T cell

proliferation. This effect was statistically more significant in DC

primed with LPS or 100 mg/mL M. vaccae in comparison to

Pam3CSK4 or 10 mg/mL M. vaccae (Figure 2B).

M. vaccae attenuates Th2 responses
We then tested the qualitative effect of DC priming with each

stimulus on allogeneic T cell responses by intracellular staining for

IFNc and IL-4, as markers for Th1 and Th2 responses

respectively. We found no double positive cells in these

experiments (Figure 3A). Increasing numbers of DC showed a

positive correlation with Th1 and negative correlation with Th2

responses (Figure 3B–C). We therefore tested the effect of innate

immune priming across the range of DC:T cell ratios. LPS,

Pam3CSK4 and M. vaccae stimulation of DC did not affect the

relationship between DC and Th1 responses (Figure 3D,F).

However, Pam3CSK4 priming of DC was associated with

sustained Th2 responses, reducing the inverse relationship

between number of DC and proportion of IL-4+ve T cells, and

DC priming with M. vaccae augmented this negative relationship

(Figure 3E,G). This is clearly shown in pair wise comparisons of

the effect of DC priming with Pam3CSK4 and M. vaccae, on IFNc
or IL-4 producing cells (Figure 3F–G). M. vaccae priming of DC

was associated with greater reduction of Th2 responses with

increasing number of DC (Figure 3G), emphasizing the role of

DC. The magnitude of this effect was similar to that of innate

immune priming of DC on T cell proliferation (Figure 2). The

same effects were also evident in antigen (tetanus toxoid) specific

responses by memory T cells (Figure 4A–C). Greater inhibition of

IL-4 producing T cells by 100 mg/mL M. vaccae compared to

10 mg/mL M. vaccae suggested a dose-response relationship for this

effect (Figure 3E). Significant differences between 10 mg/mL M.

vaccae and Pam3CSK4 priming of DC were also evident despite

comparable levels of DC maturation. In addition, LPS priming of

DC did not significantly attenuate Th2 responses despite inducing

similar levels of DC maturation to priming with 100 mg/mL M.

vaccae. Taken together, these findings show that enhanced DC-

dependent inhibition of Th2 responses were specific to priming

with M. vaccae and independent of levels of DC maturation.

Previous reports from animal models suggested that inhibition

of Th2 responses may be the result of enhanced Treg responses in

mice receiving M. vaccae. In the present model, there was a clear

relationship between the number of DC and induction of

CD25high/FoxP3high cells (Figure 5A). Priming of DC with LPS

or 100 mg/mL M. vaccae significantly enhanced this induction, but

this effect was not evident with Pam3CSK4 or 10 mg/mL M. vaccae

(Figure 5B). These findings did not demonstrate a consistent

correlation with effects of DC priming on Th2 responses or

inhibition of T cell proliferation. In addition we found no evidence

of IL-10 production by these cells using intracellular cytokine

staining or ELISA of cell culture supernatants (data not shown).

Therefore the CD25high/FoxP3high phenotype may be a feature of

T cell activation rather than Treg differentiation and was not

investigated further in the present study.

The predominant transcriptional and cytokine responses
to M. vaccae and specific TLR2 stimulation are
comparable

In order to investigate the differential effects of M. vaccae and

Pam3CSK4 on DC-mediated inhibition of Th2 responses, we next

compared genome-wide transcriptional responses in DC primed

with LPS, Pam3CSK4 and 100 mg/mL M. vaccae. The frequency

distribution of significantly (.2-fold) upregulated and downregu-

lated genes suggested that LPS had the greatest effect on gene

expression, followed by M. vaccae and then Pam3CSK4 (Figure 6A).

In addition, qualitative comparison of gene expression changes

suggested shared and stimulus specific responses (Figure 6A), but

this may simply reflect differences in many genes which were only

modestly affected. We therefore used principle component analysis

(PCA) of transcriptional profiles to compare components of the

data that are responsible for the greatest gene expression

differences (Figure 6B). In this analysis, LPS stimulation of DC

induced the greatest gene expression changes in principle

component (PC)1 and PC2. Gene expression changes represented

by PC2 at 4 hours returned to baseline levels at 24 hours and gene

expression changes represented by PC1 at 4 hours increased

further at 24 hours. In these components, gene expression profiles

in DC primed with Pam3CSK4 or M. vaccae, showed the same

pattern of responses, albeit quantitatively less than responses to

LPS. PC3 and PC4 showed a different pattern of gene expression

changes in stimulated DC. In PC3, LPS stimulation caused

transcriptional changes at 4 hours and 24 hours that were

divergent to those of DC stimulated with Pam3CSK4 or M. vaccae.

PC4 showed comparable transcriptional changes associated with

all three stimuli at 4 hours, but divergent responses at 24 hours.

Quantitative, qualitative and time course assessment of genome-

wide transcriptional responses by PCA, suggested that the major

transcriptional responses in Pam3CSK4 and M. vaccae stimulated

DC were comparable. This was reflected in gene expression data

for the top 20 genes that make the greatest contribution to each

PC (Figure 7).

DC Priming by M. vaccae Inhibits Th2 Responses
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Upregulated genes in stimulated DC were significantly enriched

for extracellular factors with cytokine and chemokine activity

(Table 1). Therefore to validate the expression profiling analysis

and look for discordance between transcriptional and protein

responses, we measured cytokine release by differentially stimu-

lated DC (Figure 8). In keeping with the microarray data, LPS

stimulated the largest responses. Pam3CSK4 and M. vaccae induced

comparable smaller responses. Interestingly, although increased

gene expression of IL-1b was induced by all these stimuli, the

protein was only detected at modest concentrations in DC

stimulated with 100 mg/mL M. vaccae, suggesting activation of

the inflammasome pathway [29]. We considered the possibility

Figure 1. Maturation of DC by LPS, Pam3CSK4 and M. vaccae. Cell surface CD83 and CD86 expression in DC showed dose dependent
response to 24 hours stimulation with M. vaccae (A). Flow cytometry histograms show representative data from multiple experimental replicates. (B)
HEK293 cells stably transfected with plasmids expressing the TLR receptors 6CD14 as indicated, were treated with medium (#), increasing
concentrations of positive control ligands or M. vaccae. TLR2/CD14: heat killed Listeria monocytogenesis (107–108/mL), TLR1/2: Pam3CSK4 (62.5–
500 ng/mL), TLR2/6: FSL-1 (25–200 ng/mL), TLR3: poly(I:C) (25–200 mg/mL), TLR4/CD14: LPS (0.1–100 ng/mL), TLR5: Flagellin (0.5–4 mg/mL), TLR7:
Gardiquimod (0.625–5 mg/mL), TLR8: CL075 (5–40 mg/mL), TLR9: OND2006 (0.3–2.5 mM) and M. vaccae (1–1000 mg/mL). TLR-dependent cellular
activation was measured after 24 hours by ELISA quantifying IL-8 concentrations in the cell culture supernatants. Data show mean (6SD) of three
independent experiments. (C) Upregulation of CD83 and CD86 expression (mean fluorescence intensity) in response to M. vaccae (100 mg/mL) was
comparable to that of LPS (100 ng/mL) and significantly greater than the response to Pam3CSK4 (1 mg/mL). Stimulation of DC with 10-fold lower
concentration of M. vaccae (10 mg/mL) generated comparable DC maturation to Pam3CSK4. Bars represent mean 6SD of 14 separate experiments
(w denotes significant differences to unstimulated cells,and { denotes significant differences to stimulation with Pam3CSK4 or M. vaccae (10 mg/mL),
p,0.001 by paired t tests).
doi:10.1371/journal.pone.0018346.g001
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that IL-1b may contribute to DC-dependent co-stimulation of T

cells that is responsible for the inhibition of Th2 responses

associated with M. vaccae priming. However, the homeostatic

regulator of IL-1b activity, IL-1-receptor antagonist (ra) was also

present in cell culture supernatants at high concentrations that

were likely to negate any biological activity of relatively small

increase in IL-1b concentration (Figure 8B). In summary, the

major genome-wide transcriptional responses in DC stimulated

with M. vaccae were reproduced by specific TLR2 stimulation, but

these stimuli had divergent effects on DC-dependent Th cell

polarization. These findings strongly suggested that the pro-

gramme of transcriptional responses to M. vaccae in general and

those mediated by TLR2 specifically were insufficient to inhibit

DC-dependent Th2 responses.

M. vaccae selectively stimulates early activation of the
CREB pathway

We next focused on the differences in M. vaccae and Pam3CSK4

induced transcriptional responses to assess alternative innate

immune signaling pathways, which may contribute to the

differential functional effects under study. Each combination of

shared or exclusive gene lists upregulated by LPS, Pam3CSK4 or

M. vaccae was assessed for statistical enrichment of transcription

factor binding sites (Figure 9A). As expected, this showed

enrichment for NFkB components in the common response for

all stimuli. The most highly enriched (Z-score 19.98) transcription

factor in genes exclusively upregulated by M. vaccae was found to

be cyclic AMP responsive element binding protein (CREB)1. This

finding was supported by assessment of signaling events in

differentially stimulated DC to assess IkBa degradation in the

classical NFkB pathway, phosphorylation of p38 and ERK1/2 in

the MAP kinase pathway and phosphorylation of CREB1. Despite

marked differences in DC maturation, transcriptional and

cytokine responses in DC stimulated with LPS and Pam3CSK4,

the innate immune signaling events assessed here showed a very

similar profile (Figure 9B–C) with evidence for activation in all of

the pathways tested. However, M. vaccae induced selective early

and sustained activation of the CREB pathway. The transcrip-

tional profiling data suggested that M. vaccae also activates NFkB

pathways, but the time course of NFkB RelA nuclear translocation

in response to M. vaccae was slower in comparison to LPS or PCSK

stimulation (Figure 9D). These data suggest that investigation of

the pathway upstream of CREB activation may identify distinct

innate immune signaling events that are involved in DC-

dependent inhibition of Th2 responses.

Discussion

The power of DC control over T cell function is self-evident in

our experimental model. The major effects on T cell proliferation

were directly proportional to the DC:T cell ratio in both allogeneic

and antigen-specific responses, further augmented by innate

immune priming of DC that correlated with the magnitude of

DC maturation. Increasing DC:T cell ratio also caused increasing

Th1 polarization, potentially as a result of increasing T cell receptor

signal strength [23]. In this context, innate immune priming of DC

had differential effects on T cell polarization. Our finding that M.

vaccae priming of DC augmented the DC-dependent reduction of

IL-4+ve T cells, suggests that the hypothesis derived from animal

models, that M. vaccae may reduce allergy by inhibition of Th2

responses [30,31], may also be operative in human cellular

immunology and that this effect is mediated by DC.

We also attempted to address the molecular mechanisms by

which DC may inhibit Th2 responses by comparing the effects of

M. vaccae to those of other stimuli that use common or alternative

innate immune cellular activation pathways. Like other mycobac-

teria, M. vaccae can stimulate cells via TLR2 [28,32,33] but not

TLR4. Therefore, we made comparisons to specific TLR2 and

TLR4 stimulation. In stark contrast to the effect of M. vaccae,

specific TLR2 (Pam3CSK4) priming of DC, supported Th2

polarized responses. Others have also shown Pam3CSK4 priming

of human monocyte derived DC increase Th2 polarization of

naive T cells [34]. This is further supported by murine studies

showing that administration of a Pam3CSK4 with OVA

augmented Th2-associated cytokine production by antigen-

specific T cells [35]. However conflicting data from mouse allergy

models suggest that Pam3CSK4 stimulation may increase IFNc
producing Th1 cells [36,37], cells with a Th1/Treg profile [38], or

possibly reduce both Th1 and Th2 cells through CD4+ T cell

apoptosis [39]. In human blood mononuclear cells from mite

sensitized individuals, Pam3CSK4 reduced Th2 responses [40],

and in whole blood cultures from nematode-infected children

Pam3CSK4 was shown to have IL-10 inducing capacity [41]. The

context specific effects of TLR2 stimulation on T cell responses

therefore require further study.

Figure 2. Priming of DC with M. vaccae enhances allogeneic T
cell proliferation. Naive CD4+ T cell proliferation was assessed by
thymidine incorporation (CPM) after 3 days stimulation with allogeneic
DC. The effects of DC number and DC priming with the stimuli
indicated were assessed by repeated measure 2-way ANOVA. Increasing
DC:T cell ratios were associated with significantly increased T cell
proliferation (A), and in comparison to unstimulated cells, DC primed
with each of the stimuli also significantly increased proliferation (B).
There were no significant differences between the stimuli. Each
experiment is represented by paired data points.
doi:10.1371/journal.pone.0018346.g002
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M. vaccae may induce cellular activation of DC via receptors

such as DC-SIGN, CCR5, dectin-1, NOD2 or the mannose

receptor [42,43,44,45,46]. Therefore, we hoped to identify

differences between Pam3CSK4 and M. vaccae-mediated effects

on DC as candidate mechanisms for divergent Th polarization in

our model. Comparable upregulation of CD83 and CD86 in DC

primed with LPS or M. vaccae (100 mg/mL) and in DC primed

with Pam3CSK4 or M. vaccae (10 mg/mL) did not correlate with

the effects on Th2 responses. Therefore differences in DC

maturation as judged by these markers are not sufficient for

DC-mediated inhibition of Th2 responses. Transcriptional

profiling was used to make more comprehensive comparison of

DC primed with Pam3CSK4 or M. vaccae. Remarkably PCA of

these data showed that the major gene expression changes induced

by these stimuli were extremely similar, and markedly different to

changes induced by LPS. Therefore, although M. vaccae is likely to

stimulate multiple innate immune receptors in DC the main

transcriptional responses can be mediated via TLR2, and these are

not suffucient for inhibition of Th2 responses.

Transcriptional responses were mirrored by measurements of

cytokines in cell culture supernatants, except for increased

secretion of IL-1b in M. vaccae primed DC. IL-1b secretion is

Figure 3. Stimulation of DC with M. vaccae attenuates Th2 responses. In 3 day allogeneic co-cultures of DC with naive CD4+ T cells, IFN-c+

and IL-4+ producing T cells were enumerated by intracellular immunofluorescence staining and flow cytometry, after PMA/ionomycin stimulation (A).
Increasing DC:T cell ratios were associated with increased proportions of IFN-c+ cells, but decreased proportions of IL-4+ cells (p,0.0001, 2-way
repeated measure ANOVA) (B–C). In order to assess the effect of DC priming in this model, the regression relationship between DC:T cell ratio and
proportions of IFN-c+ or IL-4+ cells was determined for each experiment (dotted lines) and the gradient of these relationships in unprimed DC were
compared to those of primed DC (D–E). DC priming had no significant effect on DC-dependent IFN-c polarization of T cells, priming with M. vaccae
significantly enhanced DC-dependent reduction of IL-4+ producing T cells in contrast to priming with Pam3CSK4, which had the opposite effect
(paired t test). Direct comparison, showed significant reduction (2-way repeated measure ANOVA) of IL-4+ T cells with increasing numbers of DC
primed with M. vaccae compared to those primed with Pam3CSK4 (G). No differential effects on IFN-c+ T cells were evident (F). Data points represent
results from individual experiments.
doi:10.1371/journal.pone.0018346.g003

DC Priming by M. vaccae Inhibits Th2 Responses
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tightly regulated by activation of the inflammasome and caspase-1.

In view of the role of this pathway as a bridge between innate and

adaptive immunity [47], we considered the possibility that IL-1b is

involved in inhibition of Th2 responses by M. vaccae primed DC,

but the substantial concentrations of IL-1ra in the same samples

shed doubt on the biological significance of modest increases in IL-

1b. In addition, the inflammasome has been reported to augment

rather than inhibit Th2 responses [48].

Analysis of transcriptional regulation in gene expression changes

exclusively induced by M. vaccae showed striking enrichment for

CREB1 binding sites and assessment of intracellular signaling

pathways showed that stimulation of DC with M. vaccae selectively

induced early activation of the CREB pathway. This finding is

consistent with other reports of mycobacterial induction of CREB

pathways in macrophages [49,50] and PBMC [51], and of

particular interest in the light of increasing evidence for the role of

CREB in modulation of immune responses [52]. In the present

study, comparable activation of signaling pathways by LPS and

Pam3CSK4 was discordant with marked differences in transcrip-

tional responses, cytokine production and cell surface maturation

phenotype. Nonetheless, selective early activation of the CREB

pathway by M. vaccae was reflected in the transcriptional response,

Figure 4. Stimulation of MDDC with M. vaccae attenuates Th2 differentiation in antigen specific responses. T cell proliferation
stimulated by 3 day culture with autologous DC primed for 24 hours 6 tetanus toxoid (TT) showed DC and TT-dependent responses in cells from 3
separate donors (A). Repeated measure 2-way ANOVA showed a significant increase in proliferative responses associated with the priming of MDDC
with Pam3CSK4 and M. vaccae (B). Data points represent individual experiments and lines link paired data from the same donor/experiment. In
antigen-specific responses to tetanus toxoid, in order to assess the effect of DC priming on Th polarization, the regression relationship between DC:T
cell ratio and proportions of IFN-c+ or IL-4+ cells was determined after 3 days and the gradient of these relationships in unprimed DC compared to
those of primed DC (C). DC priming had no significant effect on DC-dependent IFN-c polarization of T cells, but priming with M. vaccae significantly
enhanced DC-dependent reduction of IL-4+ producing T cells in comparison to priming with Pam3CSK4 (paired t test).
doi:10.1371/journal.pone.0018346.g004

DC Priming by M. vaccae Inhibits Th2 Responses
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suggesting that the temporal relationship or sequence of signaling

events is functionally important, and supported reports that

transcriptional regulation by NFkB may compete and antagonize

CREB-dependent regulation [53]. However our data show that

these differences in the primary (4 hour) transcriptional response

to M. vaccae and Pam3CSK4, did not lead to divergence of the

transcriptome at subsequent time points (24 hours). Therefore it is

unlikely that the critical determinants of the immunomodulatory

effects of M. vaccae under investigation are mediated by effects of

transcription. However, further study of the cellular components

upstream of CREB1 phosphorylation and the downstream

consequences may provide novel insights into the molecular

mechanisms of M. vaccae interactions with DC and DC-mediated

inhibition of Th2 responses.

Materials and Methods

M. vaccae suspension and TLR ligands
Heat-killed M. vaccae (strain NCTC 11659, batch MV07)

manufactured under good manufacturing practice conditions were

provided by Eden Biodesign (Liverpool, U.K.). Lipopolysaccha-

ride (LPS) from Salmonella enterica serotype typhimurium was

obtained from Sigma Aldrich. Pam3CSK4, heat killed Listeria

monocytogenesis, FSL-1, Poly(I:C), Flagellin, Gardiquimod, CL075

and OND2006 were purchased from Invivogen.

TLR reporter cell line
Human embryonic kidney (HEK)-293 cells stably transfected

with one or two TLR genes were used to screen for TLR-mediated

cellular activation assessed by ELISA for IL8 production [54].

Cells expressing TLR3, TLR5, TLR7, TLR8, TLR9, TLR1/2 or

TLR2/6 were obtained from InvivoGen and maintained under

10 mg/mL blasticidin selection (InvivoGen). Cells expressing

CD14/TLR2 and CD14/TLR4 were a kind gift from Dr. E.

Latz, (University of Massachusetts) and maintained under 5 mg/

mL puromycin selection (InvivoGen).

Primary cells
Human blood samples were obtained from healthy volunteers

for isolation of peripheral blood mononuclear cells (PBMC). The

study was approved by the joint University College London/

Figure 5. Priming of DC with M. vaccae induces CD25+FoxP3+ T cells. In 6 day allogeneic cocultures of DC with naive CD4+ T cells, CD25+

FoxP3+ T cells were enumerated by intracellular immunofluorescence staining and flow cytometry. The effects of DC number and DC priming with
the stimuli indicated were assessed by repeated measure ANOVA. Increasing DC:T cell ratios were associated with increased proportions of
CD25+FoxP3+ T cells (A). In comparison to unstimulated cells, DC primed with LPS or M. vaccae (100 mg/mL) also significantly increased CD25+FoxP3+

T cells (B). Each experiment is represented by paired data points.
doi:10.1371/journal.pone.0018346.g005

DC Priming by M. vaccae Inhibits Th2 Responses
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University College London Hospitals National Health Service

Trust Human Research Ethics Committee and written informed

consent was obtained from all participants. PBMC, were prepared

by density-gradient centrifugation of heparinized blood with

Lymphoprep (Axis-Shield) according to the manufacturer’s

instructions and used to isolate CD14+ monocytes by magnetic

cell sorting (Miltenyi Biotec). Monocytes were differentiated into

dendritic cells (DC) for 4 days using GM-CSF and IL-4 as

previously described [55]. T cell subsets were isolated from

CD142ve PBMC using the CD4+ T Cell Isolation Kit II or Naive

CD4+ T Cell Isolation Kit II respectively (Miltenyi Biotech).

DC stimulation and co-culture with T cells
DC were stimulated for 4–24 hours with LPS, Pam3CSK4 or

M. vaccae. 10 mg/mL of tetanus toxoid (National Institute for

Biological Standards and Control, UK) was added for antigen

specific experiments. In some experiments iDC were treated with

the following inhibitors for 2 hours prior to stimulation: H89

(50 mM; Sigma-Aldrich), SQ 22536 (100 mM), PD 98059 (25 mM),

SB 203580 (25 mM) and LY 294002 (25 mM) (all Calbiochem).

101–104 DC were mixed with either 105 naı̈ve allogeneic or

unselected autologous CD4+ T cells in triplicate. T cell

proliferation was assessed by addition of 1 mCi of [3H]thymidine

for 18 hours and measurement of thymidine incorporation by

liquid scintillation counting. Intracellular cytokine production by

T cells was assessed on day 3, after 5 hours stimulation with

7.5 mg/mL ionomycin (Sigma Aldrich) and 125 ng/mL phorbol

12-myristate 13-acetate (Sigma Aldrich) for allogeneic cultures, or

10 mg/mL tetanus toxoid for autologous cultures in the presence

of 25 mg/mL Brefeldin A. Cell surface staining of DC was

performed with directly conjugated antibodies for CD83 (clone

HB15e) and CD86 (clone 2331- FUN-1) (both BD Biosciences).

Figure 6. The predominant transcriptional responses to M. vaccae and specific TLR2 stimulation are comparable. (A) Quantitative
comparison of (.2-fold) up- and downregulated gene expression changes in DC after 4 h of stimulation with LPS (100 ng/ml), Pam3CSK4 (1 mg/ml) or
M. vaccae (100 mg/ml) and qualitative Venn diagram comparison of (.2-fold) upregulated genes. Data are derived from the mean of three separate
experiments using cDNA microarray gene expression profiling. (B) Principal component analysis (PCA) of transcriptional profiling differences in DC
stimulated for 4 h or 24 h with LPS (100 ng/ml), Pam3CSK4 (1 mg/ml) or M. vaccae (100 mg/ml) and control unstimulated DC. Data points show mean
(6SEM) PCA scores for three independent experiments. Lines and arrows indicate vector of transcriptional responses to each stimulus with time. PC1
and PC2 show common transcriptional changes to all stimuli, which are quantitatively greatest as a result of LPS stimulation. PC3 and PC4 show
divergent responses in LPS stimulated cells compared to Pam3CSK4 or M. vaccae. Transcriptional profiles in M. vaccae and Pam3CSK4 stimulated cells
are closely aligned in each component.
doi:10.1371/journal.pone.0018346.g006
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Intracellular cytokine staining was performed with mouse anti IL-4

PE conjugated antibody (clone 8D4-8) and mouse anti IFN-c APC

conjugated antibody (clone B27) using the Cytofix/Cytoperm kit

(all BD Biosciences). Intracellular FoxP3 staining was conducted

on day 6 following surface staining for CD25 (clone M-A251) and

CD4 (clone L200), using anti human FoxP3 antibody (clone

Figure 7. Relative expression levels for gene expression differences in differentially stimulated DC. Heat map representation of relative gene
expression levels for top 20 genes which are responsible for the greatest variance in the first four principle components (PC) of gene expression differences
in differentially stimulated DC. Data are derived from the mean of three separate experiments using cDNA microarray gene expression profiling.
doi:10.1371/journal.pone.0018346.g007
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259D/C7) staining kit (all BD Biosciences). DC apoptosis and cell

death, were detected by Annexin-V and propidium iodide (PI)

staining, using the Annexin-V FITC Apoptosis Detection Kit

(eBioscience). Stained cells were examined by flow cytometry using

a FACScan flow cytometer (BD Biosciences). Data were analyzed

with FlowJo software (Tree Star).

Transcriptional profiling by DNA microarray
DC culture lysates collected in RLT buffer (Qiagen) were used to

purify total RNA and generate Cy3 or Cy5 labelled cRNA for

hybridization with Agilent 4644K whole human genome cDNA

microarrays and data acquisition as previously described [56]. Log2

transformed data were then subjected to LOESS normalization [57]

and compared by paired T-tests (p,0.05) using MultiExperiment

Viewer v4.4.1 (http://www.tm4.org/mev/). Gene lists of interest

were annotated using DAVID functional annotation clustering

(http://david.abcc.ncifcrf.gov), and subjected to transcription

factor enrichment analysis oPOSSUM (http://www.cisreg.ca/

oPOSSUM/). These analyses were restricted to genes with refseq

accession numbers for which contemporary functional annotation is

available. Principle component analysis was performed using the R-

project (http://www.r-project.org/) to obtain a global overview of

gene expression data. MIAME compliant microarray data have

been submitted to the ArrayExpress database (www.ebi.ac.uk/

arrayexpress), accession number: E-TABM-998.

Quantitation of soluble factors released by DC
Cytokines and chemokines in cell culture supernatants were

quantified using human Biosource multiplex bead immunoassay

Figure 8. responses to M. vaccae and specific TLR2 stimulation are comparable at protein level. (A). Selected cytokine and chemokine levels
in the supernatants of DC stimulated for 24 hours with LPS, Pam3CSK4 or M. vaccae (MV) and control unstimulated DC are presented in a heat map
showing mean of three experiments. In general, this showed highest levels in LPS stimulated cells and comparable levels in Pam3CSK4 and M. vaccae
stimulated cells. Concentrations of IL-1b and IL-1 receptor antagonist (ra) are shown in (B). Data show mean (6SD) of three independent experiments.
doi:10.1371/journal.pone.0018346.g008

Table 1. Gene ontology terms from top 3 enriched groups of genes identified by functional annotation clustering analysis of
genes that show .2-fold upregulation in DC stimulated with M. vaccae for 4 hours.

Gene ontology term P value No of genes % of gene list Fold enrichment

GO:0005125,cytokine activity 3.25220 35 8.71 7.54

GO:0009611,response to wounding 4.85219 56 13.93 4.06

GO:0012501,programmed cell death 3.88216 56 13.93 3.52

GO:0016265,death 5.97216 61 15.17 3.24

GO:0006915,apoptosis 8.41216 55 13.68 3.51

GO:0008219,cell death 1.82215 60 14.93 3.21

GO:0006952,defense response 8.22215 54 13.43 3.37

GO:0006954,inflammatory response 2.98214 38 9.45 4.49

GO:0005615,extracellular space 1.19212 49 12.19 3.19

GO:0044421,extracellular region part 6.35212 58 14.43 2.69

GO:0005576,extracellular region 2.04205 73 18.16 1.62

doi:10.1371/journal.pone.0018346.t001
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kits (Invitrogen) with the Luminex 200 platform LuminexIS

software 2.3 (Luminex, Austin, TX).

Assessment of cellular innate immune signaling
Cell lysates from DC cultures were collected directly into SDS

sample buffer for Western blotting as previously described [56].

Rabbit anti-Ser133-phosphorylated CREB (clone 87G3; Cell

Signaling Technology), rabbit anti-IkBa (clone 44D4; Cell

Signaling Technology), rabbit anti-phosphorylated ERK1/2

(clone 197G2; Cell Signaling Technology), rabbit anti-phosphor-

ylated p38 MAPK (clone 3D7; Cell Signaling Technology), and

mouse anti-b-actin (Abcam) were used as primary antibodies.

Classical NFkB activation was measured by quantitative confocal

immunofluorescence analysis of NFkB nuclear translocation [56].

Figure 9. M. vaccae selectively stimulates early activation of the CREB pathway. Analysis of significantly enriched transcription factor
binding sites in genes upregulated by DC stimulation (4 h) is shown (A). Western blot analysis of candidate innate immune signaling events
in DC, show comparable degradation of IkBa, and phosphorylation of p38, ERK1/2 and CREB in DC after 30 min and 120 min of stimulation with
LPS (100 ng/ml) and Pam3CSK4 (1 mg/ml), but selective activation of the CREB pathway by M. vaccae (B). Quantitative densitometry data from
3 separate experiments are shown in (C). Bars represent mean 6SD. Quantitative confocal immunofluorescence staining used to detect NFkB
RelA (p65) nuclear translocation in response to innate immune stimulation of DC (D) showed that activation of the classical NFkB pathway
was evident by 30 minutes in response to LPS or Pam3CSK4, and by 120 minutes in response to M. vaccae (B). Representative images from
3 separate experiments are shown. Box and whisker plots represent median, and range of data from approximately 500 single cell
measurements.
doi:10.1371/journal.pone.0018346.g009
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