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Abstract

Background: There has been recent interest in capturing the functional relationships (FRs) from
high-throughput assays using suitable computational techniques. FRs elucidate the working of genes
in concert as a system as opposed to independent entities hence may provide preliminary insights
into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques
and its extensions have been used successfully for modelling FRs from expression profiles. Such
techniques are especially useful in discovering undocumented FRs, investigating non-canonical
signalling mechanisms and cross-talk between pathways. The objective of the present study is to
develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that
houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in
the form of acyclic networks from gene expression profiles and their subsequent analysis.

Results: NATbox is a menu-driven open-source GUI implemented in the R statistical language for
modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute
missing observations in the given data (ii) model FRs and network structure from gene expression
profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap
procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its
topological properties using network analysis metrics, (iv) retrieve FRs of interest from published
literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL
across high-dimensional data by parallelizing the bootstrap routines.

Conclusion: NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene
expression profiles. By incorporating readily available functions from existing R-packages, it
minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic
of open-source environments. NATbox is especially suited for interdisciplinary researchers and
biologists with minimal programming experience and would like to use systems biology approaches
without delving into the algorithmic aspects. The GUI provides appropriate parameter
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recommendations for the various menu options including default parameter choices for the user.
NATbox can also prove to be a useful demonstration and teaching tool in graduate and
undergraduate course in systems biology. It has been tested successfully under Windows and Linux
operating systems. The source code along with installation instructions and accompanying tutorial
can be found at http://bioinformatics.ualr.edu/natboxWiki/index.php/Main_Page.

Background
Classical biological experiments have focused on under-
standing changes in the expression of single genes across
distinct biological states. Such differential gene expres-
sion analyses while useful may not provide sufficient
insight into their interactions or functional relationships
(FRs). Understanding FRs is crucial as genes work in
concert as a system as opposed to independent entities.
On a related note, phenotype formation is mediated by
pathways comprising of complex interactions between
several genes as opposed to a single gene. Recent
development of high-throughput assays in conjunction
with sophisticated computational tools has enabled
modelling such interactions and gain system-level
understanding.

Several commercial and non-commercial software
packages have been developed in the past for modelling
gene interactions. Ontology-based packages [1,2] that
rely on prior knowledge have been used traditionally to
identify pathways enriched in a given experiment from
existing documented pathways. Commercial packages
(Ingenuity Pathway Analysis, Ingenuity Systems, Red-
wood City, CA) and (Pathway Studio, Ariadne Geno-
mics, Rockville, MD) provide menu-driven GUI for
retrieving functional relationships on a given set of
genes from published literature. It is important to note
that such techniques draw conclusions based on
documented pathways and pooling knowledge across
disparate sources. This in turn can render the conclusions
noisy as genes and FRs may exhibit considerable
variations across studies. Such an approach also relies
implicitly on prior information, hence may have limited
use in discovering novel FRs. Recent studies have
provided compelling evidence of non-canonical signal-
ling mechanism and cross-talk between pathways [3,4]
that demand inferring network structure from the given
data as opposed to direct inference from documented/
curated pathways.

Bayesian structure learning (BSL) techniques [5] have
been used successfully to infer interactions between a
given set of genes in the form of graphs. The inherent
probabilistic nature of gene expression and access to
high-throughput assays that facilitate simultaneous
measurement of transcriptional, translational and post-
translational activities [4] are some of the reasons for

their wide-spread use. Gene expression data with
interventions [4] have also been recently shown to
improve the conclusions drawn using Bayesian network
modelling [4]. Probabilistic mechanisms underlying
gene expression can be attributed to inherent noisiness
and heterogeneity within/between cell population(s) [6].
High-throughput assays such as microarrays [7,8] and
clonal gene expression profiling [9] in conjunction with
BSL [10] had been used successfully in the past to
capture functional relationships at the transcriptional
level. More recently, high-throughput flow cytometry
data from single-cells with perturbations in conjunction
with BSL were used to obtain system-level understanding
at translational and post-translational data [4].

Several open-source packages are available for BSL and
can be used to model gene networks [11-13]. However,
these packages expect the user to be familiar with the
programming environment and syntax. NATbox, Fig. 1,
aims to overcome some of these obstacles by providing a
menu-driven GUI for modelling and analysis of gene
expression networks. It invokes functions from existing
R-packages to accomplish this [14]. Reusing existing
functionalities is strongly encouraged in an open-source
environment and can minimize redundancy while
improving transparency, reproducibility and sustainabil-
ity. The target audience of NATbox are interdisciplinary
researchers and biologists who wish to explore the tools
of systems biology and network modelling for investi-
gating signalling mechanisms. NATbox does not require
the user to be familiar with R-programming or the
algorithmic intricacies. Suitable parameter recommenda-
tions along with popular default parameter choices are
provided as required to the user. As with any R-package,
NATbox is open-source, hence lends itself to be
customized by users with expertise in R. A detailed
Wiki help page accompanies the toolbox and provides a
systematic overview of the toolbox functions along with
examples AT http://bioinformatics.ualr.edu/natboxWiki/
index.php/Main_Page.

Results
Prior to a detailed description of NATbox functionalities,
we briefly review those of a closely related package
BNArray [13] which was designed to provide a higher-
level abstraction of R-routines from existing packages for
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gene network modelling. BNArray is a command line
driven package where the user is expected to be familiar
with the R environment [14] and syntax. It consists of
four main modules (i) determine missing values in a
given data using the functions LLSimpute, also imple-
mented in the R-package pcamethods [15] (ii) Learn
acyclic network structure using BSL routines from the
R-package deal [16]. Subsequently display the graph by
invoking functions from the R-package dynamicGraph
[17] (iii) identify what the author term as 1st order
network structure using a resampling procedure and (iv)
reconstruct coherent sub-regulatory networks using an
extended version of the algorithm CODENSE [18]. In the
following discussion, we describe the features of NATbox
as well as compare those implemented in BNArray in a
systematic manner.

The comparisons are also enclosed under Table 1 for a
quick review.

i. GUI: NATbox provides a convenient menu-driven
graphical user interface (GUI) developed using Tcl/Tk for
modelling and analysis of gene expression networks.
This has to be contrasted with BNArray [13], which is a

command line driven package and demands the user to
be familiar with the R-environment and syntax.

ii. Input/output: The input data in NATbox is assumed
to be in tab-delimited text format, similar to that of
BNArray. In NATbox, the rows of the input file represent
independent experiments whereas the columns represent
the names of the genes. However, in BNArray the rows
represent the genes of interest and the columns represent
their expression across experiments. Unlike NATbox,
BNArray does not specify whether the experiments need
to be independent or dependent.

iii. Missing values: Gene expression profiles often have
missing values. For instance, in microarray data such
missing values are common and may be attributed to
experimental artefact, improper hybridization and non-
specific binding of the probes. It is prudent to use
suitable statistical techniques to accommodate such data
sets rather than discard them. NATbox provides an
option to determine missing values using nearest-
neighbour averaging approach (menu: File), impute.knn
(R-package impute) which has been found to perform
well for high-dimensional data sets [19]. BNArray also

Figure 1
Network Analysis Toolbox (NATbox). A screen shot of the Network Analysis Toolbox (NATbox) showing the main
menu and the interface for Bayesian structure learning (BSL) with parameter recommendations and default values.
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provides a neighbourhood-based imputation technique,
namely the least local squares (LLSImpute) [15] algo-
rithm for determining missing values. A version of
LLSImpute algorithm is also available through the
(R-package pcamethods).

iv. Functional relationships: NATbox provides the
option to model functional relationships using a battery
of Bayesian structure learning techniques from the
R-package (bnlearn) [20] (menu: Bayesian Networks). It
is important to note that they model the network
structure solely from the joint probability distribution
in the absence of explicit temporal information. The tab-

delimited input data should be in the form of a matrix
where the columns represents the number of genes, and
rows the number of repeated (independent) experi-
ments. Each element in the matrix represents the
expression value of that gene in a given experiment.

Constraint-based techniques in NATbox that model the
network based on the results of conditional indepen-
dence tests include:

• Grow-Shrink Algorithm (GS) [21]: GS is based on the
Grow-Shrink Markov blanket, the first (and simplest)
Markov blanket detection algorithm.

Table 1: Comparison of main features in NATbox and BNArray

NATbox BNArray

Provides a Graphical User Interface (GUI) Command-line driven with no graphical user interface (GUI).
Supported across operating systems: Windows and Linux. Supported across operating systems: Windows and Linux.
Parameter recommendations are provided for the various algorithms with default
values automatically inserted in GUI.

No parameter recommendations and default values are
provided for the algorithms.

Input file is tab-delimited where columns represent the genes of interest and
rows represent the experiments. The rows are assumed to be independent
of one another.

Input file is tab-delimited where rows represent the genes of
interest and columns their measurements across experiments.
Unlike NATbox, no specifications are provided as to whether
the experiments need to be correlated or uncorrelated.

Imputation of missing values is accomplished by k-nearest neighbour approach
impute.knn from the R-package impute

Imputation of missing values is accomplished by local least
square estimation LLSImpute also implemented in the R-package
pcamethods.

Bayesian Structure Learning (BSL) algorithms are invoked from the R-Package
bnlearn.

Bayesian Structure Learning (BSL) algorithms are invoked from
the R-Package deal.

BSL algorithms ideally suited for continuous as well as discrete data sets characteristic
of gene expression profiles and their quantized/coarse-grained counterparts.

BSL algorithm is ideally suited for mixed data type consisting of
continuous as well as discrete values. Although, the authors of
BNArray use it for analyzing temporally correlated gene
expression data.

BSL algorithms from the package bnlearn include constraint-based (GS, IAMB,
Fast-IAMB, IIAMB, MMPC) as well as search and score techniques
(Hill-Climbing) are implemented.

No options are provided for multiple BSL algorithms.

BSL techniques implemented from bnlearn provide choice of several conditional
independence tests and scoring criteria for continuous and discrete data sets under
constraint-based and search and score techniques respectively.
Conditional independence tests for constraint-based: mutual information, mutual
information for Gaussian distributed data, fast mutual information, Pearson X2,
Akaike information criterion, linear correlation and Fisher’s Z.
Scoring Criteria for search and score: multinomial likelihood, multinomial log-
likelihood, Akaike information criterion, Bayesian information criterion, Bayesian
Dirichlet score and Gaussian posterior density).

No options are provided for multiple BSL algorithms.

Provides options to incorporate structural priors during BSL by whitelisting
(include) and blacklisting (exclude) edges.

No options are provided for incorporating structural priors.

Confidence of an edge is determined by bootstrapping. Uses R-package RGraphviz
for visualization, which is designed to handle the layout of large graphs.
Provides options to highlight edges whose confidence is greater than user specified
threshold.

Confidence of an edge is determined by bootstrapping. Uses
R-package dynamicGraph for visualization, which may require
manual tuning of the node layout for large graphs.
No options are provided to highlight edges whose confidence is
greater than user specified threshold.

Parallelization of the bootstrap routines is accomplished by invoking functions
from the R-package SNOW.

No options are provided for parallelization.

Topological properties of the results of BSL are investigated using centrality
measures (degree, betweenness and closeness) from the R-package igraph.

Does not provide any centrality measures.

Provides motif finder from the package igraph for identifying motifs from the
results of BSL. Results from igraph can also be loaded into Cytoscape fro
detailed visualization.

Provides a modified version of the algorithm CODENSE for
constructing coherent sub-networks from the results of BSL.

Provides a text retrieval interface to retrieve published literature to retrieve
functional relationships of interest. This is useful justifying the choice structural
priors in BSL.

No interface for text retrieval is provided.
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• Incremental Association Markov Blanket Algorithm
(IAMB) [22]: IAMB is based on the Markov blanket
detection algorithm. It uses a two-phase selection
scheme. A forward selection followed by an attempt to
remove false positives which scales well up to thousands
of variables.

• Fast Incremental Association Markov Blanket Algo-
rithm (Fast-IAMB) [23]: Fast-IAMB is a variant of IAMB
which uses speculative stepwise forward selection to
reduce the number of conditional independence tests.

• Interleaved Incremental Association Markov Blanket
Algorithm (Inter-IAMB) [22]: Inter-IAMB is another
variant of IAMB that uses forward stepwise selection to
avoid false positives in the Markov blanket detection
phase. Even though it often requires more conditional
tests than the other IAMB variants, it’s still able to scale
up to thousands of variables while maintaining its
robustness against false positives.

• Max-Min Parents Children Algorithm (MMPC) [24]:
MMPC is a forward selection technique for neighbour-
hood detection based on the maximization of the
minimum association measure. It learns the underlying
structure of the Bayesian.

Several choices of conditional independence tests for
categorical/discrete (mutual information, mutual informa-
tion for Gaussian distributed data, fast mutual information,
Pearson’s c2, Akaike information criterion) as well as
numerical/continuous distributions (linear correlation,
Fisher’s Z) are provided. NATbox also provides an
interface to the search and score algorithm (HC, Hill-
climbing) from bnlearn. HC searches the model space and
retrieves the best model using a scoring criterion which is
also provided. Several choices of scoring criterion are
provided for categorical/discrete (multinomial likelihood,
multinomial log-likelihood, Akaike information criterion,
Bayesian information criterion, Bayesian Dirichlet score, K2
score) and numerical/continuous distributions (Gaussian
posterior density). Each BSL technique works under
implicit assumptions and may result in spurious
conclusions when these assumptions are violated. NAT-
box provides a battery of BSL techniques to alleviate such
concerns. For instance, constraint-based techniques can
be affected by sample sizes and are sensitive to initial
results of the conditional independence tests. Search and
score algorithms can result in local optima, hence may
benefit from multiple random restarts unlike constraint-
based approaches.

On the other hand, BNArray [13] uses a greedy search
implementation of the BSL technique implemented in deal
to learn the network structure. It is important to note that

algorithm implemented in deal is ideally suited for
handling mixed data types consisting of continuous as well
as discrete data types. Although the authors [13] of
BNArray have demonstrated the performance of their
approach on temporal gene expression profile, it is unclear
as to whether deal algorithm accommodates such temporal
explicit information during structure learning. This is in
contrast with NATbox which implements algorithms from
bnlearn for learning the network structure from homogenous
data types characteristic of gene expression profiles, i.e.
either continuous or discrete data sets.

v. Bootstrap parallelization: Bootstrap techniques are
commonly used for confidence estimation from a given
empirical sample. Confidence [7] of an edge is determined
by bootstrapping the given empirical data with replace-
ment. Edges whose confidence is greater than a user-
defined threshold (0 < θ < 1) are deemed robust. Bootstrap
procedures can be computationally demanding for high-
dimensional data sets. Search and score techniques such as
hill-climbing implicitly require several random restarts
during the confidence estimation. NATbox provides an
option to parallelize bootstrapping across multiprocessor
or multi-core processor by invoking the appropriate
routines from the R-package SNOW (Simple Network Of
Workstations) [25]. Such parallelization fall under embar-
rassingly parallel problems. However, they can significantly
reduce the overall time complexity. Parallelization of the
BSL routines themselves was not found to yield any
significant improvement with increasing number of
processors. We believe this may be due to inherent
overhead in the master-worker configuration in SNOW.
This is still under investigation. The performance for the
various structure learning algorithms with increasing
number of bootstraps and processors on BSL of the protein
expression data [4] is shown in Fig. 2. A marked decrease in
computational time is observed with increasing number of
processors. The computational time with 1 processor is
almost 5 folds of that obtained by 8 processors across the
three algorithms (GS, IAMB and MMPC) and 1000
bootstrap simulations.

The results of the bootstrap are written onto a tab-
delimited file. An option is also provided for high-
lighting the robust FRs (θ > 0.8) on the acyclic graph
learned from the given data, Fig. 3. BNArray also
implements bootstrap routines to determine what the
author call as first-order network structures. Unlike
NATbox, BNArray does not provide any options for
bootstrap parallelization. BNArray uses routines from
the package dynamicGraph [17] for visualization of the
resulting acyclic network.

In addition, NATbox GUI also provides options for
incorporating (directional) structural priors in BSL by
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whitelisting (include) and blacklisting (exclude) FRs. Such
priors impose constraints on the network structure
which implicitly rely on prior knowledge and needs to
be chosen prudently in order to avoid bias during
learning. However, a proper choice can alleviate uncer-
tainty and improve accuracy of the conclusions. A text
retrieval interface is provided for identifying structural
priors and can be useful for investigating well-estab-
lished signalling mechanisms.

vi. Network analysis metrics: BSL techniques are useful
in inferring the cause-effect relationships and network
structure from the gene expression profiles. However,
they provide no insight into the network’s topological
properties. NATbox incorporates social network analysis
metrics and motif finder from the package (igraph) [26]
under (menu: Network Analysis Metrics) for investigating
the topological properties of the networks generated
using BSL techniques. Such metrics can be especially
useful in investigating large networks. The input is
assumed to be a binary adjacency matrix of the network
constructed using BSL with ones and zeros representing
the presence/absence of an edge respectively. Since BSL
results in directed acyclic graphs, the corresponding
binary adjacency matrix need not be symmetric. The
centrality measures (degree centrality, closeness centrality,
betweenness centrality, alpha centrality) along with their
respective parameter options are provided for the user.
A detailed discussion of these centrality measures are
deferred to [26,27]. Degree centrality is one of the
commonly used measures of centrality and broadly
classified into out-degree (edges directed outward from a
node) and in-degree (edges directed into a node). The
distribution of the degree centrality has been widely
studied and provides crucial insight into the topology of
a network. Recent studies have elucidated the prevalence
of power-law degree distribution in biological networks
[28]. Such power-law distributions may be accompanied
by interesting properties such as the presence of hubs
(critical genes) and scale-free phenomena unlike expo-
nential degree distributions. Justification of power-law
degree distributions can be challenging especially when
the information about the tail of the distribution is
insufficient [29]. Betweenness centrality is useful in
identifying genes that act as important mediators
between other genes, although they themselves might
not be densely connected to all the packages. Genes with
high betweenness centrality may play an important role
in bridging the gap between densely connected sub-
groups. On the other hand, closeness centrality is useful
in identifying genes that are directly or indirectly
dependent on other genes. The menu also provides an
option to determine the diameter and identify recurrent
structures or motifs of sizes 3 and 4 in the given network
by invoking the respective functions from igraph [26].

Figure 2
Performance of BSL with bootstrap parallelization.
The performance of three BSL techniques (GS, IAMB and
MMPC) with increasing number of processors (np = 1, 2, 4, 6
and 8) and 1000 bootstrap simulations, across an
8-processor Linux machine for the data [4]. Each of these
algorithms exhibits (~5 fold) decrease in computational
time at (np = 8) compared to (np = 1).

Figure 3
Highlight Robust FRs. The network structure learned
using the Grow-Shrink (GS) algorithm from the data [4].
Robust FRs are deemed as those whose confidence is greater
than the user-defined threshold (θ > 0.8), highlighted in red.
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Motifs are recurrent atomic structures with frequency
distribution different from that of random network.
Recent studies have identified certain specific motifs that
persist across distinct real world networks [30]. The
igraph package incorporated into NATBox also provides
option to save the acyclic network in formats compatible
with Cytoscape [31] for detailed visualization.

vii. Retrieving FRs from literature: Finally, NATbox
provides options for retrieving FRs of interest using NCBI
ESearch (menu: Text Retrieval). The user has the option to
input the (a) pairs of gene names (co-occurrence) of
interest through the GUI or (b) upload a two-column
matrix of FRs of interest or those identified as robust by
the bootstrap procedure. For well-documented studies,
an integrated approach that incorporates the results from
the Text Retrieval (structural prior) in justifying the
choice of whitelisted (include) and/or blacklisted (edges)
in BSL. The Text Retrieval results are in html format, with
a list of PUBMED identifiers hyper-linking to the
respective abstracts/articles in PUBMED. The results of

text retrieval on gene expression data from [4] is shown
in Fig. 4.

Conclusion
Modelling and analysis of gene expression networks is an
area of active research. Several tools have been proposed
in the literature for the same. Recently, Bayesian
structure learning (BSL) techniques in conjunction with
high throughput assays were used successfully to capture
functional relationships. Existing packages may demand
the user to have considerable programming expertise.
NATbox provides a convenient menu-driven GUI along
with appropriate parameter recommendations including
default parameter choices for modelling and analysis of
gene expression networks. It incorporates diverse func-
tionalities from existing R-packages. This in turn
encourages transparency and reproducibility, character-
istic of open-source environment. NATbox can also be
used as a teaching and demonstration tool for graduate
courses in systems biology. Immediate future

Figure 4
Text retrieval interface for structural priors. Results of text retrieval interface (html file) revealing prior literature
(PubMed identifiers) on one of the robust FRs (PIP2-PIP3) identified by BSL of the expression data [4]. These results in
turn can be used to impose structural priors, hence refine BSL.
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enhancements to the toolbox include (i) expand the
choice of structure learning algorithms including
dynamic bayesian networks (ii) improve statistical
inference of the network features (ii) parallelization of
the implemented routines across multi-core and multi-
processor machines of BSL functions as well as boot-
strapping (iii) provide a web-interface so as to obviate
the need for local installation of the toolbox (iv)
enhance text retrieval so as to accommodate advanced
text mining approaches.

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
SSC and MAB implemented the toolbox under RN’s
guidance. MS developed the bnlearn package and was
involved in trouble shooting the Bayesian structure
learning routines. RN wrote the manuscript.

Acknowledgements
RN acknowledges funding from R03L008853 and #P20-RR16460 from
IDeA Network of Biomedical Research Excellence (INBRE) Program of
the National Center for Research Resources (NCRR/NIH).

This article has been published as part of BMC Bioinformatics Volume 10
Supplement 11, 2009: Proceedings of the Sixth Annual MCBIOS
Conference. Transformational Bioinformatics: Delivering Value from
Genomes. The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2105/10?issue=S11.

References
1. Subramanian A, et al: Gene set enrichment analysis: a knowl-

edge-based approach for interpreting genome-wide expres-
sion profiles. Proc Nat Acad Sci USA 2005, 102(43):15545–50.

2. Carbon S, et al: AmiGO: online access to ontology and
annotation data. Bioinformatics 2009, 25(2):288–9.

3. Zhou , et al: Modulation of morphogenesis by noncanonical
Wnt signaling requires ATF/CREB family-mediated tran-
scriptional activation of TGFb2. Nature Genetics 2007,
39:1225–1234.

4. Sachs K, et al: Causal Protein-Signaling Networks Derived
from Multiparameter Single-Cell Data. Science 2005,
308:523–529.

5. Pearl J: Causality: Models, Reasoning, and Inference. Cam-
bridge University Press; 2000.

6. McAdams H and H Arkin AP: Genetic Regulation at the
Nanomolar Scale: It’s a Noisy Business! Trends in Genetics
1999, 15(2):65–69.

7. Friedman N, et al: Data Analysis with Bayesian Networks: A
Bootstrap Approach. Proc Fifteenth Conf on Uncertainty in Artificial
Intelligence (UAI) 1999, 196–205.

8. Friedman N, et al: Using Bayesian Network to Analyze
Expression Data. J Computational Biology 2000, 7:601–620.

9. Madras N, et al: Modeling Stem Cell Development by Retro-
spective Analysis of Gene Expression Profiles in Single
Progenitor-Derived Colonies. Stem Cells 2002, 20:230–240.

10. Nagarajan R, et al: Modeling genetic networks from clonal
analysis. J Theor Biol 2004, 230(3):359–73.

11. Hartemink A: Bayesian Network Inference with Java Objects
(BANJO). http://www.cs.duke.edu/~amink/software/.

12. Murphy K: Bayes NET Toolbox for MATLAB. http://www.cs.
ubc.ca/~murphyk/Software/BNT/bnt.html.

13. Chen X, et al: BNArray: an R package for constructing gene
regulatory net-works from microarray data by using
Bayesian network. Bioinformatics 2006, 22(23):2952–4.

14. R Development Core Team: R: A language and environment for
statistical computing. R Foundation for Statistical Computing;
2008.

15. Kim H, et al: Missing value estimation for DNA microarray
gene expression data: local least squares imputation.
Bioinformatics 2005, 21(2):187–198.

16. Bøttcher SG and Dethlefsen C: Deal: a package for learning
Bayesian Networks. J Stat Software 2003, 8:1–40.

17. Badsberg JH: DynamicGraph, CRAN package, 0.2.2.5 2009.
18. Hu H, et al: Mining coherent dense subgraphs across massive

biological networks for functional discovery. Bioinformatics
2005, 21(Suppl):i213–i221.

19. Hastie T, Tibshirani R, Sherlock G, Eisen M, Brown P and Botstein D:
Imputing Missing Data for Gene Expression Arrays Stanford University
Statistics Department Technical Report; 1999.

20. Scutari M: bnlearn: Bayesian network structure learning, Version 1.3,
CRAN package 2008.

21. Margaritis D: Learning Bayesian Network Model Structure
from Data. Ph.D. Thesis, School of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 2003. Technical Report CMU-CS-03-153.

22. Tsamardinos I, et al: Algorithms for Large Scale Markov
Blanket Discovery. Proceedings of the Sixteenth International Florida
Artificial Intelligence Research Society Conference 2003, 376–381.

23. Yaramakala S and Margaritis D: Speculative Markov Blanket
Discovery for Optimal Feature Selection. Proceedings of the
Fifth IEEE International Conference on Data Mining 2005, 809–812.

24. Tsamardinos I, et al: The Max-Min Hill-Climbing Bayesian
Network Structure Learning Algorithm. Machine Learning
2006, 65(1):31–78.

25. Tierney , et al: snow: Simple Network of Workstations, CRAN package
0.3–3 2008.

26. Csardi G: igraph: Routines for simple graphs, network analysis Version
0.5.1. CRAN package 2008.

27. Wasserman S and Faust K: Social Network Analysis Cambridge
University Press; 2007.

28. Barabási A-L, et al: Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics 2004,
5:101–113.

29. Goldstein ML, et al: Problems with fitting to the power-law
distribution. The European Physical Journal 2004, B41:255–258.

30. Milo R, et al: Network Motifs: Simple Building Blocks of
Complex Networks. Science 2002, 298:824–827.

31. Shannon P, et al: Cytoscape: a software environment for
integrated models of biomolecular interaction networks.
Genome Research 2003, 13(11):2498–504.

32. Margaritis D: Learning Bayesian Network Model Structure
from Data. Ph.D. Thesis, School of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA 2003, Available as Technical Report CMU-
CS-03-153.

33. Tsamardinos I, Aliferis CF and Statnikov A: “Algorithms for Large
Scale Markov Blanket Discovery”. “Proceedings of the Sixteenth
International Florida Artificial Intelligence Research Society Conference”
AAAI Press; 2003, 376–381.

34. Yaramakala S and Margaritis D: “Speculative Markov Blanket
Discovery for Optimal Feature Selection”. “ICDM ‘05:
Proceedings of the Fifth IEEE International Conference on Data Mining”
IEEE Computer Society, Washington, DC, USA; 2005, 809–812.

35. Tsamardinos I, Brown LE and Aliferis CF: “The Max-Min Hill-
Climbing Bayesian Network Structure Learning Algo-
rithm”. Machine Learning 2006, 65(1):31–78.

BMC Bioinformatics 2009, 10(Suppl 11):S14 http://www.biomedcentral.com/1471-2105/10/S11/S14

Page 8 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S11
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10098409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10098409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12004081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12004081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12004081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15302546?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15302546?dopt=Abstract
http://www.cs.duke.edu/~amink/software/
http://www.cs.duke.edu/~amink/software/
http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
http://www.ncbi.nlm.nih.gov/pubmed/17005537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15333461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15333461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

