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Abstract 

Simulation remains a very important approach to testing the robustness and accuracy of phylogenetic 

inference methods.  However, current simulation programs are limited, especially concerning realistic 

models for simulating insertions and deletions (indels).  In this thesis I implement a new, portable and 

flexible application, named INDELible, which can be used to generate nucleotide, amino acid and 

codon sequence data by simulating indels (under several models of indel length distribution) as well 

as substitutions (under a rich repertoire of substitution models). 

 

In particular, I introduce a simulation study that makes use of one of INDELible’s many unique 

features to simulate data with indels under codon models that allow the nonsynonymous/synonymous 

substitution rate ratio to vary among sites and branches.  This data is used to quantify, for the first 

time, the precise effects of indels and alignment errors on the false-positive rate and power of the 

widely used branch-site test of positive selection.  Several alignment programs are used and assessed 

in this context.  Through the simulation experiment, I show that insertions and deletions do not cause 

the test to generate excessive false positives if the alignment is correct, but alignment errors can lead 

to unacceptably high false positives.  Previous selection studies that use inferior alignment programs 

are revisited to demonstrate the applicability of my results in real world situations. 

 

Further work uses simulated data from INDELible to examine the effects of tree-shape and branch 

length on the alignment accuracy of several alignment programs, and the impact of alignment errors 

on different methods of phylogeny reconstruction.  In particular, analysis is performed to explore 

which programs avoid generating the kind of alignment errors that are most detrimental to the process 

of phylogeny reconstruction. 
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1.1 Background 

Describing, organising and explaining the earth’s biological diversity has always been a goal of 

naturalists, but it was a goal pursued in a framework that was independent of evolutionary thought for 

many centuries. That changed on July 1
st
 1858 when Darwin and Wallace’s theory of evolution by 

natural selection was read at the Linnean Society of London. The central tenet of this theory is that 

heritable traits that will confer an advantage on an organism, making it more likely to survive and 

successfully reproduce, will become more prevalent in a population over successive generations. The 

publication of this controversial idea, The Origin of Species (1859), revolutionised biological thinking 

and sparked fierce scientific, moral and political debate.  

 

1.1.1 Studying Evolutionary History 

Within just a few years of The Origin of Species, scientists were already attempting to reconstruct the 

evolutionary history of all the Earth’s organisms and describe them in the form of an evolutionary 

tree, or phylogeny (Haeckel 1866), and thus the field of Phylogenetics was born. Unfortunately, most 

early phylogenetic studies were little more than inspired guesswork. Generally they were 

amalgamations of plausible assertions from experts on particular taxonomic groups, and were based 

on few (if any) objective criteria. This did not change for nearly a century because systematists at that 

time were primarily concerned with questions about species classification, species diversity, 

speciation, and geographic variation rather than with questions about phylogenetics and the estimation 

of the evolutionary history that underlies that diversity.   

However, this began to change in the middle of the 20th century. Scientists such as Willi 

Hennig (1950; 1966) began to define objective methods for rebuilding phylogenies based on the 

common characteristics and attributes (morphology) of both extinct and extant organisms. These 

methods were cultivated into explicit criteria for estimating phylogenies in the 1960’s and computer 

programs were soon written to implement algorithms based on these criteria, allowing analysis of 

large and complex datasets. Around the same time, advances in molecular biology meant that 

molecular sequences began to take over as the primary source of information which scientists could 
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use to inform their attempts at reconstructing evolutionary history. Early statistical methods for 

analysing evolutionary history which made use of molecular sequences fell into the cladistic paradigm 

begun by Hennig. In this type of study, scientists sought the most parsimonious evolutionary tree that 

could account for the descent of certain characteristics (e.g. the states of the four nucleotides, Fitch 

1971) whilst inferring the minimum number of evolutionary steps. Such maximum parsimony 

methods, which make use of this minimum change criterion, have been in widespread use for decades. 

However, they suffer from an inability to account for well-known phenomena such as convergent or 

parallel evolution. There may be many reasons why two organisms share a trait that was not present in 

their last common ancestor. Therefore, taking the existence of this shared trait as evidence of an 

evolutionary relationship could often lead one to infer an incorrect evolutionary history. 

More recent likelihood methods (Felsenstein 1981) take a different approach and aim to 

model sequence evolution explicitly as a probabilistic process. The parameters that define the process 

are then estimated and the evolutionary tree which maximises the probability of observing the 

sequence data is chosen (Yang et al. 1995). Such approaches have advantages over parsimony 

analyses because, for example, they allow the use of likelihood ratio tests to compare different 

evolutionary hypotheses in order to see which hypothesis fits the data best (e.g. Golding, Felsenstein 

1990; Huelsenbeck, Bull 1996). In addition, the process of parametric bootstrapping (Felsenstein 

1985) can give a rough error associated with the estimate of the tree (e.g. Huelsenbeck et al. 1996a).  

Over the decades since the introduction of the cladistic and likelihood approaches, molecular 

phylogenetics research has experienced phenomenal growth. This is largely due to the concurrence of 

advances in computer manufacturing and molecular sequencing. Indeed, both the amount of 

sequenced molecular data available for analysis and the computational power available with which to 

perform such analyses has been growing exponentially for over 30 years. Furthermore, this trend 

shows no sign of abating (Goldman, Yang 2008) which makes it an exciting time to be involved in the 

field.  
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1.1.2 Studying the Mechanisms behind Evolution 

Darwin knew that natural selection could only be properly described in terms of heritable traits, but 

his theory lacked a mechanism to explain the transfer of biological information between generations. 

Furthermore, modes of heredity were poorly understood at that time. It was an Augustinian monk, 

Gregor Mendel, who first shed light on the matter when he published work based on his breeding 

experiments involving pea plants (Mendel 1866).  

Mendel observed that the inheritance patterns of particular traits obeyed simple statistical 

rules, and whilst not all features displayed these patterns, now known as Mendelian inheritance, his 

work was the first to show that applying statistics to inheritance could prove highly useful. Mendel’s 

work would remain largely unnoticed by his contemporaries. It wasn’t until the turn of the 20th 

century that it was re-discovered but, even then, most evolutionary discussion and research still used 

Darwin as a starting point. 

This changed in the early 20th century with the birth of modern quantitative genetics, marked 

by Ronald Fisher’s (1918) publication of a genetic model that suggested Mendelian inheritance could 

be used to explain continuous variation of characters. Through the 1920’s Fisher, and other pioneers 

in population genetics such as Sewall Wright and J.B.S. Haldane, laid the foundations for the theory 

of neo-Darwinism which emerged in the 1930’s. This theory demonstrated that Mendelian genetics 

could be consistent with evolution and Darwinian natural selection. Therefore, it was sometimes 

known as the modern evolutionary synthesis (Huxley 1942), because it served to bridge the gap 

between naturalists and experimental geneticists. Natural selection began to be seen as the 

predominant force in shaping genetic makeup, and mutation was accepted as the major cause of 

genetic variation. This remains, to some extent, the paradigm in which modern evolutionary biology 

operates. 

The landmark discovery of the structure of DNA (Deoxyribonucleic acid) (Watson, Crick 

1953) that followed directly led to the central dogma of molecular biology (Crick 1958; 1970); that 

DNA makes RNA, RNA makes proteins, and proteins determine the traits of an organism. DNA 

replication provides the biological mechanism (that Darwin and Mendel had lacked) to explain the 

heritability of those traits, and changes to DNA during replication can explain genetic variation from 
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generation to generation. Subsequent advances in molecular techniques opened the door for scientists 

to challenge Darwin’s hypothesis by searching for evidence of natural selection on the molecular 

level.  A paper by Mitoo Kimura (1968), and another by Jack King and Thomas Jukes (1969), 

provocatively titled "Non-Darwinian Evolution", marked the birth of the neutral theory of evolution 

(Kimura 1983). This theory argued, by means of species comparisons, that amino-acid substitutions 

were mostly selectively neutral and the result of random genetic drift, as opposed to natural selection. 

This contradiction of Darwin’s theory was seen as controversial at the time since neo-

Darwinism dominated mainstream evolutionary thought. However, the neutral theory has become 

generally accepted in the present-day and is commonly used in evolutionary biology as a null 

hypothesis that scientists seek to reject when they are searching for adaptive mutations.  Thus, by the 

1970’s, scientists were already pursuing one of the two main goals of modern studies of evolution at 

the molecular level, namely, investigating the forces and mechanisms behind the evolutionary process 

itself. Much progress has been made since then.  

We now know that DNA does not evolve only by means of single point substitutions that 

change the nucleotide on the copied strand, but also by means of insertions and deletions (collectively 

known as indels) of nucleotides that add or remove nucleotides from the copied strand. Whilst less 

understood than substitutions, it is generally accepted that indels tend to be small in size and that their 

length can be well described by a power law (e.g. Fan et al. 2008) – i.e. an indel of length u occurs 

with a probability that is proportional to u-a for some value of the parameter a. There is also evidence 

that the two evolutionary processes interact – the level of nucleotide divergence has been found to be 

significantly correlated with the number and size of nearby indel events in a variety of genomes 

including those of primates, rodents, fruit fly and yeast (Tian et al. 2008). DNA can also evolve by 

large scale rearrangements of the DNA known as recombination events (McGlynn 2004; Kreuzer 

2005) although the mechanisms for these types of events are probably the least well understood.  

Whilst attempts have been made to mathematically model the processes of insertion and deletion (see 

section “1.4.8  Statistical Approaches to Multiple Sequence Alignment” below), and recombination 

(e.g. Ringrose et al. 1998), the process of point mutations is by far the most extensively studied (and 

modelled) and shall be described in more detail in the following sections of this chapter.  
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1.2 Mathematical Models of Evolution 

There are two main approaches to modelling the evolution of biological sequences. One approach is 

to construct an empirical model by making comparisons between large numbers of real sequences, 

and calculating certain properties of, or observed patterns between, the sequences. These patterns (e.g. 

relative rates of mutation between different amino-acids) are then fixed in the model and there is little 

to no way for the model to be influenced by the data which it is used to analyse. Most models of 

amino-acid substitution are empirical.  An alternative approach is to define a mechanistic model 

whose form and structure is motivated by the biological or chemical properties of the type of 

sequence data that it is used to analyse. The obvious advantage of this type of model is that parameter 

values are not fixed and may be independently derived from the dataset in question. The majority of 

nucleotide models are mechanistic. 

It is generally accepted that such mechanistic models provide a statistically superior fit to 

observed sequence data than empirical models. However, empirical models still have their place. In 

particular, they are far less computationally intensive and appear to be at least equally efficient as 

parametric models when it comes to reconstructing phylogenetic trees (p41, Yang 2006). Regardless 

of whether a probabilistic model of evolution is empirical or mechanistic in nature they are normally 

implemented by means of a continuous time Markov chain (CTMC). Below is some background 

about CTMCs in the context of biological sequence evolution that will be useful in the later sections 

which describe specific models. 

  

1.2.1 Continuous Time Markov Chains 

Normally, positions in a sequence are assumed to evolve independently of each other, and 

substitutions at any particular position are then described by a CTMC with a finite number of states. 

The defining feature of the CTMC is the ‘memoryless’ or ‘Markovian’ property that: the conditional 

probability distribution describing the states of the process depends only on the present state, i.e. 

“given the present, the future does not depend on the past”. Given this basic assumption, the 

parameters of the substitution model are used to define an instantaneous rate matrix { }ijq=Q  that 
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describes the rate of change of the probability that a given sequence position is in a given state (i.e. 

ij tq δ  can be thought of as the probability that a given sequence position changes from state i to state j 

in an infinitesimally small time interval tδ ). The diagonals of this matrix are defined by the 

mathematical requirement that the rows sum to zero, so ii ij

j i

q q
≠

= −∑ .  

This rate matrix is then used to calculate a second matrix  ( ) { ( )}ijt p t=P  that describes the 

probability ( )ijp t  that state i changes to state j over some time interval 0t > . These transition 

probabilities can be calculated from the rate matrix by solving a set of linear ordinary differential 

equations known as the Kolmogorov forward equations:   

( )
( ) ,

ij

ij jk

k

dp t
q p t i j

dt
= ∀∑  

or in matrix notation: 

d (t)
(t)

dt
= ⋅

P
P Q  

If we exponentiate Q, and remember that in the case of no evolution ( 0t = ) we have (0) =P I  (the 

identity matrix), then the matrix of transition probabilities is given by: 

( )
0

( ) { ( )} exp( )
!

k

ij

k

t
t p t t

k

∞

=

= = =∑
Q

P Q  

If the CTMC is time-homogenous, so that it is described by a single rate matrix Q, then the limiting 

distribution of the CTMC is defined as:  lim ( )ij j
t

p t π
→∞

=  where ∑ =
j

j 1π .  

In other words, as t →∞ , jπ  is the probability that a given site in a sequence is in state j regardless 

of the initial state at that site. For this reason the limiting distribution is also known as the stationary 

or equilibrium distribution.  

If the CTMC is time-reversible then for all t it will obey the detailed balance condition 

( ) ( )j ji i ijp t p tπ π= . The reversed CTMC has the same transition probability matrix as the original 

CTMC. Equivalently, this may be written j ji i ijq qπ π= , i.e. the expected amount of change from state 



 22

i to state j is equal to the expected amount of change from state j to state i. Most substitution models 

are time-reversible. 

 Markov chain models satisfy an equation known as the Chapman-Kolmogorov theorem which 

states that the probability that a site in state i will be in state k a time 1 2t t+  later is equal to the sum 

over all potential states j that could have occurred at time 1t , i.e. 

1 2 1 2( ) ( ) ( )ik ij jk

j

p t t p t p t+ =∑      

Hence the transition probabilities ( ) { ( )}ijt p t=P  account for all possible evolutionary paths that a 

given site in a sequence might have taken. This is one of the main advantages that Markovian models 

have over simpler parsimony models. Parsimony models cannot, for example, accommodate the 

possibility that a site may have changed multiple times in a given time period, or may infer no change 

has taken place if a site changes state then reverts back to its original state. 

 It should be noted that the rate (Q) and time (t) only appear as a product (Qt) in the transition 

probability matrix. Therefore Q specifies relative rates only and it is impossible to distinguish 

between a sequence evolving at a given rate for a given time, or the same sequence evolving at twice 

the rate for half the time. In addition, the rate matrices are over parameterised, so one of the ijq  is 

normally set equal to 1 and the rate matrix Q is rescaled, prior to calculating ( )tP , by dividing every 

entry by a scale factor s that corresponds to the mean instantaneous substitution rate. For a 

homogenous-sites model this is given by:  ( )i ij j ji

i j i

s q qπ π
>

= +∑∑ . This has the effect that the 

average instantaneous substitution rate of Q becomes equal to 1, and means that t now represents the 

evolutionary distance measured in expected number of substitutions per site.  

 

1.2.2 Mechanistic Models of Nucleotide Substitution 

When modelling nucleotide substitution, the state space of the Markov chain is given by the four 

nucleotides: thymine (T), cytosine (C), adenine (A) and guanine (G). The rate matrices { }ijq=Q  of 

four of the simplest nucleotide substitution models are shown in Figure 1.1.  
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The first (and simplest) Markov model of molecular evolution is known as JC69 (Jukes, Cantor 1969) 

and assumes that the rate of substitution of any one nucleotide to another is equal. For the JC69 

model, solving the Kolmogorov equations implies that the probability that a site in state i changes to 

state j after a given time t is given by: 

1 3
( )

4 4
( )

1 1
( )

4 4

t

ij

t

e i j

p t

e i j

−

−

 + =
= 
 − ≠


 

We can see that as t →∞ , the equilibrium probability of a site being in state j is given by: 

( ) 1 4ij jp t π→ =  for JC69 no matter what state j is. 

 

 

 

Figure 1.1: The rate matrices of four simple models of nucleotide substitution 

The rate matrices on the bottom row allow unequal stationary nucleotide frequencies, whereas those 

on the top row do not. Similarly, the rate matrices on the right allow for transitions and transversions 

to occur at a different rate, whilst those on the left do not. The diagonal elements have been replaced 

by *, but they are defined so that the sum of each row is zero. 
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A second model known as F81 (Felsenstein 1981) extends JC69 by allowing distinct stationary base 

frequencies πT, πC, πA and πG that act as weighting factors in the model, causing certain bases to be 

more likely to arise when a substitution happens. This can be seen as an improvement over JC69 since 

it has long been known that the four nucleotides do not occur in equal proportions (e.g. Subak-Sharpe 

1967).  A third model, known as K80 (Kimura 1980),  extends JC69 in a different manner by allowing 

the rate of transition substitutions between two biochemically similar pyrimidines (T ↔  C) or 

purines (A ↔  G) to differ from the rate of transversion substitutions between the two groups (purine 

↔  pyrimidine). κ  is therefore referred to as the transition/transversion rate ratio. Again, this is an 

increase in realism because there exists a well documented excess of observed transitions over 

observed transversions in real data (e.g. Jukes 1987; but for a counterexample see Keller et al. 2007) . 

The HKY85 model is the logical integration of the K80 and F81 models and allows both 

unequal nucleotide frequencies and a transition/transversion rate ratio that is different to 1. There is 

another model, known as F84 (Felsenstein, DNAML program since 1984, PHYLIP version 2.6) that is 

essentially equivalent to the HKY85 model, although it is calculated in a slightly different manner. It 

should be noted that as a substitution model becomes more complex the solution is still found in the 

same manner, i.e. by solving the Kolmogorov equations.  Further generalisations of HKY85 exist, 

such as the TN93 model (Tamura, Nei 1993) that allows the transition rate between pyrimidines to 

differ from the transition rate between purines. The least specific reversible rate matrix is that of the 

General Time Reversible (GTR) model (Tavaré 1986) given by: 
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where { }ijsS=  is a symmetrical matrix and diag{ , , , }T C A Gπ π π πΠ =  is the diagonal matrix 

containing the equilibrium nucleotide frequencies. 
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The obvious conclusion of this generalisation process is UNREST – the irreversible and unrestricted 

model of Yang (1994a) which places no constraint on the form of Q. The equilibrium frequencies (πi) 

for this model must be calculated by solving the system of simultaneous equations 
i iji
qπ∑  = 0 for 

all j, subject to the constraint 
ii

π∑  = 1. Yang used this model to estimate the pattern of nucleotide 

substitution, which had previously only been done in a parsimony framework (e.g. Gojobori et al. 

1982). 

Functional proteins are produced from coding DNA sequences consisting of nucleotide 

triplets called codons (see section 1.2.5). There is much evidence that the evolutionary rates of sites at 

each position in the codon are highly auto-correlated (Yang 1995b) with a three position offset. That 

is to say, a nucleotide at position 1, 2 or 3 in a particular codon will tend to evolve at the same rate as 

a nucleotide at position 1, 2 or 3 in another codon. The third codon position evolves the fastest and so 

is most likely to provide useful phylogenetic signal when sequences are closely related and highly 

similar. However, substitutions at the third position can quickly become saturated so instead the first 

and second codon positions (which evolve more slowly) can be used to infer relationships between 

more divergent species. There is some evidence to suggest that such codon position models are 

statistically superior to nucleotide models (Shapiro et al. 2005; Bofkin, Goldman 2006). 

 

1.2.3 Empirical Models of Amino-Acid Substitution 

When modelling protein sequences, the unit of evolution is the amino-acid and the state space of the 

Markov chain is the twenty standard amino-acids used by cells in protein biosynthesis.  

Amino-acid sequences are less prone to substitutional saturation than nucleotide sequences, making 

them preferable to use when inferring deep-level phylogenies (e.g. Ren et al. 2005). However, the 

much larger state space alphabet results in a computational problem of far greater complexity. The 

result of this is that the small datasets typically used in phylogenetic analyses may not contain enough 

information to reliably estimate amino-acid replacement rates using a mechanistic type model such as 

GTR (GTR amino-acid models have 208 parameters that must be estimated versus only 8 parameters 

for GTR nucleotide models). However, simple and unrealistic mechanistic models do exist. Two 
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examples are the Poisson and Equalin models which are essentially generalisations of  the nucleotide 

models JC69 and F81 respectively. Therefore, fixed empirical amino-acid rate matrices that have been 

pre-estimated from large datasets are normally used instead. Such empirical models are constructed 

under the GTR framework given in the last section and the ij jis s=  are often referred to as the amino-

acid exchangeablilities (Whelan, Goldman 2001).  

 The grandfather of all empirical amino-acid substitution models is that constructed by 

Dayhoff et al. (1978). They analysed 71 protein sequences and used the principle of parsimony to 

estimate a phylogeny then infer ancestral sequences at the interior nodes. To reduce the effect of 

multiple hits and parallel and backward substitutions, which parsimony ignores, Dayhoff et al. chose 

only to analyse closely related sequences which shared > 85% identity. They then tabulated the 

relative frequencies of the 1572 different observed amino-acid changes and used this to approximate 

(0.01)P , the transition probability matrix for an expected distance of 0.01, also known as 1 PAM 

(Percent Accepted Mutation). Other PAM matrices were constructed by repeatedly multiplying the 

PAM1 matrix by itself, for example, PAM250 is equivalent to an average of 2.5 substitutions per 

amino-acid site. The PAM matrices remained the defacto standard for over a decade and were 

commonly used to score matches and mismatches during the process of amino-acid alignment.  

 In 1992 a flurry of activity saw three new scoring matrices published, motivated largely by 

the great increase in size of protein databases available by that time. The first, the JTT matrix (Jones 

et al. 1992) was constructed in the same manner as Dayhoff and colleagues but using a larger 

collection of 16,130 sequences containing some 59,190 mutations. The second matrix, known as the 

Gonnet matrix (Gonnet et al. 1992), resulted from the exhaustive matching of the entire 1991 

SwissProt database with itself and included sequences which differed by 6.4 to 100 PAM units – this 

matrix is used for amino-acid alignments in the latest version of perhaps the most widely used 

alignment program ClustalW (Thompson et al. 1994). The third set of matrices are known as the 

BLOSUM (BLOcks of AminoAcid SUbstitution Matrix) matrices (Henikoff, Henikoff 1992) and 

were constructed by scanning the BLOCKS database for conserved regions of protein families then 

using these to calculate the amino-acid frequencies and substitution rates. There are different 

BLOSUM matrices corresponding to different divergence thresholds used in the Henikoff’s clustering 



 27

method, the most common being BLOSUM62, where sequences with greater than 62% identity were 

clustered together and their contribution to the relative replacement rates was downweighted. This 

reduced the relative influence of the many highly related sequences that may have biased construction 

of the PAM matrices. In addition, matrices such as BLOSUM62 are all constructed from analysis of 

observed alignments which is in stark contrast to the analogous PAM250 matrix which is extrapolated 

from a matrix constructed from very closely related sequences. These two reasons appear to have 

resulted in the BLOSUM matrices being more suitable for matching divergent sequences (Altschul 

1991) and the vast majority of alignment programs in use today implement BLOSUM62 to score 

matches and mismatches between protein sequences. Interestingly, it was shown in 2008 that the 

computer code used to construct the BLOSUM matrices actually contained errors, which had gone 

unnoticed for 15 years, and the published matrices are actually quite different from those that should 

have been produced by the Henikoff’s algorithm, if it had been implemented correctly. Whilst 

computer bugs are quite a common occurrence this case is worthy of note because the BLOSUM 

matrices, in particular BLOSUM62, are ubiquitous in comptational biology and, curiously, the 

“incorrect” matrices perfom better than the “intended” matrices (Styczynski et al. 2008)! 

 One of the main problems with the aforementioned parsimony approach to estimating amino-

acid replacement rates is that the method has no time structure, such that the probability of a 

substitution occurring is equally likely in a short or a long time interval. This means that, even though 

a tree topology is used in the analysis, inferred amino-acid changes are merged across all branches 

with no regard for the branch length, which is obviously very important when it comes to determining 

the number of changes that have occurred on a given branch. This lead Adachi and Hasegawa (1996) 

to estimate amino-acid replacement rates using the same maximum likelihood method employed by 

Yang (1994a) for nucleotides, and this is the general procedure that has been employed for most 

published matrices since then (although see Müller, Vingron 2000 who use the 'resolvent' method). 

The WAG model is an update to the earlier PAM and JTT matrices that was  constructed using the 

superior maximum likelihood methodology, and outperformed both of the earlier matrices with 

respect to maximum-likelihood values of database protein families (Whelan, Goldman 2001). In a 

similar manner, the more recent LG model provides further subsequent improvement over the WAG 
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model (Le, Gascuel 2008), as judged by the Akaike information criterion, or AIC (Akaike 1974), and 

frequently leads to inference of different tree topologies. 

 The models described so far have all been based on analysis of nuclear proteins, and 

replacement rates in other types of proteins can differ considerably. This has lead to a plethora of 

other models. Some early examples were mtREV  (Adachi, Hasegawa 1996) and MTMAM (Yang et 

al. 1998), which were based on vertebrate and mammalian mitochondrial proteins respectively, and 

CpREV (Adachi et al. 2000) which was based on chloroplast proteins. Since the replacement rates for 

these models are fixed, and the models were estimated from quite specific datasets, this may lead to 

concerns about how applicable the models are to other types of dataset. Such concerns directly lead to 

the development of models for mitochondrial proteins for different datasets such as arthropods 

(MtArt: Abascal et al. 2007; MtPan: Carapelli et al. 2007), narrower datasets such as fish (MtPip: 

Kitchovitch et al. 2009), or broader datasets such as metazoans (MtZoa: Rota-Stabelli et al. 2009). 

Specific models have also been developed for viral reverse transcriptase proteins (RtREV: Dimmic et 

al. 2002), HIV-1 viral genes (HIVb and HIVw: Nickle et al. 2007), and the influenza virus (I09: Dang 

et al. 2009). All of these models purport to be a statistically better fit to the type of data they were 

developed for, and this is likely to fuel the development of further empirical models in the future. 

 A common variation to these empirical models is to replace the equilibrium frequencies (the 

jπ ) of the model with the observed frequencies of the different amino-acids present in the data being 

analysed, whilst still using the amino-acid exchangeabilities (the ijs ) from the model (Cao et al. 

1994). This often considerably improves the fit of the model to the data. Such variations are denoted 

with a suffix “+F” so, for example, the WAG model variation would be called WAG+F.  Other types 

of empirical amino-acid model have also been developed based on hydrophobicity of different amino 

acids (e.g. Kyte, Doolittle 1982) or their structure (e.g. Bordo, Argos 1991) although these types of 

model are rarely used in phylogenetics. Another, potentially more useful, group of matrices aim to 

detect frameshift mutations that have created new coding sequences, but may also be used to identify 

sequencing errors (Claverie 1993). 
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1.2.4 Rate Heterogeneity Among Sites 

The models described so far all assume that the rate of substitution is constant over sites in a 

sequence. This assumption may not be valid for real data where mutation rates may vary over sites, 

and mutations may accumulate at different rates in different parts of a sequence due to structural or 

functional constraints. There is much evidence in the literature that suggests variable substitution rates 

is a real phenomenon (e.g. Fitch, Margoliash 1967b; Uzzell, Corbin 1971; Holmquist et al. 1983; 

Fitch 1986) and failing to account for rate variation has been shown to lead to drastic effects such as 

underestimation of evolutionary distance or transition rate bias, as well as incorrect reconstruction of 

phylogenies (Yang 1996).  

One approach to dealing with this is to assume that sites belong to categories which have 

different rates. The simplest model of this type assumes that a proportion of sites are invariant while 

the others are evolving at a constant rate (the "+I" model: Hasegawa et al. 1985), but it has been found 

that a two-rate-category model could not provide an adequate fit to real data (Wakeley 1993). One 

problem with this approach is that the estimate of 0p , the proportion of invariant sites, is very 

sensitive to the sampling of taxa. This is because 0p  will never be larger than the observed proportion 

of constant sites, and so when more divergent sequences are added to the analysis the proportion of 

observed ‘constant’ sites becomes lower and estimates of 0p  tend to decrease as well (pp. 113-114, 

Yang 2006). A three-rate-category approach has also been implemented (Hasegawa et al. 1993; 

Felsenstein, Churchill 1996) but appears to introduce too many parameters to be estimated.  

A second approach is to assume that sites have rates drawn from a continuous distribution 

such as a log-normal distribution (Olsen 1987; Waddell et al. 1997). Alternatively, the gamma 

distribution  has been found to provide a statistically acceptable fit to data (Wakeley 1993) and has 

been used in many studies that aimed to estimate distances between two sequences (e.g. Tamura, Nei 

1993). However, it was Yang (1993) who first described the use of a continuous gamma distribution 

in a joint likelihood analysis (the “+Γ” model). The gamma distribution is given by: 

1( , , ) ( )rg r e rα β αα β β α− −= Γ  

where 0α >  is the shape parameter and 0β >  is the scale parameter. The mean and variance of this 
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distribution are α β  and 
2α β  respectively. To avoid the use of too many parameters, Yang chose 

to set β α=  such that the mean of the distribution is 1 and the variance is 1 α . Thus the shape 

parameter completely describes the new distribution, and is now inversely related to the degree of rate 

variation among sites (see figure 1.2)  making the model easy to interpret.  If 1α = , then the 

distribution reduces to the exponential distribution with rate parameter β = 1. If 1α > , then the 

distribution is bell-shaped, and as α →∞  the distribution collapses into the model of a constant rate 

for all sites. If 1α ≤ , then the distribution is highly skewed with most sites evolving at a very low 

rate and some sites evolving with high rates.  

 Advantages of the continuous gamma model are that it is easy to interpret and the rate 

variation is described completely by one parameter. However, it is very computationally intensive and 

so is not practical to use on large datasets. This was the motivation behind the discrete gamma model  

 

Figure 1.2: Probability density function of the Gamma distribution. 

The scale parameter of the gamma distribution for variable rates among sites is fixed such that the 

mean rate is always equal to 1. Therefore, the distribution is fully specified by the shape parameter α. 

The x-axis is the relative substitution rate, and the y-axis is proportional to the number of sites with 

that rate. Adapted from Yang (2006). 

2.0

0.0

1.0

1.5

2.01.51.0

0.5

0.50.0 2.5 3.0

Rate (r)

G
a

m
m

a
 D

e
n

si
ty

 g
(r

,α
)

α = 0.2

α = 1

α = 2

α = 20



 31

of Yang (1994b) that uses K categories of equal proportion to approximate the continuous gamma 

distribution (denoted “+ΓK”) . The mean rate of a category is used to represent all rates in the category 

(figure 1.3).  Yang (1994b) found that as few as four categories could be sufficient to provide an 

optimal or near-optimal fit to data. This approach appears to capture the best features of the 

continuous gamma model whilst also achieving a similar computational efficiency to the simpler 

discrete rate class models.  As a result the method has been widely used. 

 A common variation of these models is to combine the invariable sites model with gamma-

distributed rates for other sites (the “+I+Γ” and “+I+ΓK” models ) (Gu et al. 1995). However, this 

approach may not be worthwhile since the gamma distribution already permits very low rates at some 

sites (Golding 1983). The result of combining both methods in this way is that there is a strong 

correlation between 0p  and α  so it is generally impossible to estimate both parameters accurately 

(Sullivan et al. 1999). An alternative approach to implementing a multi-modal distribution of rates is 

to use a mixture of gamma densities (Mayrose et al. 2005). 

 

 

Figure 1.3: Discrete gamma model of variable rates across sites with 1α =  

An example of the discrete-gamma model of variable rates among sites with five equal-probability 

categories used to approximate the continuous gamma distribution. Shown here is the probability 

density function with shape parameter 1α = . The four vertical lines are at r = 0.22, 0.51, 0.92 and 

1.61 and represent the 20th, 40th, 60th, and 80th percentiles of the distribution, separating the rates in to 

five categories each with proportion 0.2.  The mean rates in the five categories, given here by 0.11, 

0.36, 0.70, 1.22, and 2.61, are used to represent all rates in that class. 
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1.2.5 Models of Codon Substitution 

Functional proteins are produced from coding DNA sequences consisting of nucleotide triplets called 

codons. Since there are four possible nucleotides, this means there are 64 possible codons. During 

protein production an organism’s genetic code is used to translate each codon into one of the 20 

possible amino-acids. Thus, the genetic code is degenerate and more than one codon can code for the 

same amino-acid (table 1.1).  Rather than being static the genetic code has evolved (Osawa, Jukes 

1989), so it is reasonable for one to ask why the code has evolved into this degenerate form.  Far from 

being wasteful, the degenerate assignment of amino-acids to multiple codons is highly non-random 

and extremely efficient – indeed, it has been suggested that only 1 in every million random alternative 

codes is more efficient (Freeland, Hurst 1998). It appears that as the code evolved, biochemically or 

physically similar amino-acids were assigned to codons close together in the code, presumably as a 

form of error-minimisation in order to lessen the impact of mutations and mistranslations of the 

reading frame (Freeland et al. 2003).  Since the genetic code is degenerate this leads to two types of 

underlying nucleotide substitution – the synonymous or silent substitution (where the encoded amino-

acid is conserved), and the non-synonymous (amino-acid altering) substitution (see figure 1.4).   

 

Table 1.1:  The 20 amino-acids that the 64 codons specify (Standard Genetic Code) 

  SECOND BASE   

   T C A G    

F
IR
S
T
 B
A
S
E
 

s
 

TTT 
 F (Phenylalanine) 

TCT 

 S (Serine) 

TAT 
 Y (Tyrosine) 

TGT 
 C (Cysteine) 

T 

T
H
IR
D
 B
A
S
E
 

TTC TCC TAC TGC C 

TTA 
 L (Leucine) 

TCA TAA 
 Stop codon 

TGA  Stop codon A 

TTG TCG TAG TGG  W (Tryptophan) G 

C 

CTT 

 L (Leucine) 

CCT 

 P (Proline) 

CAT 
 H (histidine) 

CGT 

 R (Arginine) 

T 

CTC CCC CAC CGC C 

CTA CCA CAA 
 Q (Glutamine) 

CGA A 

CTG CCG CAG CGG G 

A 

ATT 

 I (Isoleucine) 

ACT 

 T (Threonine) 

AAT 
 N (Asparagine) 

AGT 
 S (Serine) 

T 

ATC ACC AAC AGC C 

ATA ACA AAA 
 K (Lysine) 

AGA 
 R (Arginine) 

A 

ATG  (M) Methionine ACG AAG AGG G 

G 

GTT 

 V (Valine) 

GCT 

 A (Alanine) 

GAT 
 D (Aspartic acid) 

GGT 

 G (Glycine) 

T 

GTC GCC GAC GGC C 

GTA GCA GAA 
 E (Glutamic acid) 

GGA A 

GTG GCG GAG GGG G 

        NOTE – The codon ATG codes for the amino-acid Methionine but is also a start codon. 
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Figure 1.4: Substitution rates to the target codon CTA from its nine neighbours. 

This is an example of which codons may instantaneously change into the codon CTA by means of just 

one nucleotide substitution. The amino-acid each codon specifies is shown in parentheses. The size of 

the circles represent the relative codon frequencies calculated from the base compositions at the three 

codon positions in a dataset of five α and β mammalian globin gene sequences (dataset abglobin.nuc 

in PAML, Yang 2007b).  Codons that specify the same amino-acid as codon CTA are shown with 

bolder circles. Therefore, synonymous substitutions are represented by arrows from bold circles, and 

nonsynonymous substitutions are represented by arrows from normal circles. Red and black arrows 

indicate if the nucleotide substitution was a transition or a transversion respectively. The thickness of 

the arrows indicates the relative rates of substitution. This diagram was drawn using 1 3ω =  and 

2κ =  such that the four rates to the codon CTA are in the ratio 1:2:3:6, for nonsynonymous 

transversion ( ,i CTA CTAq ωπ= ), nonsynonymous transitions ( ,i CTA CTAq κωπ= ), synonymous 

transversion ( ,i CTA CTAq π= ) and synonymous transition ( ,i CTA CTAq κπ= ) respectively.  

Adapted from Yang (2006). 
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Instead of modelling amino-acid substitution empirically at the protein level, it is possible to construct 

a mechanistic model at the codon level.  For codon models the state space of the Markov chain 

consists of the sense codons of the genetic code, (e.g., 61 sense codons for the universal or standard 

genetic code, see table 1.1).  Stop codons are not allowed inside a functional protein and so they are 

not considered in the Markov chain.   

The basic codon model assumes mutations occur independently at the three codon positions and 

specifies the instantaneous rate of substitution from codon i to j as 

 

0,  if  and  differ at two or three positions,

, if  and  differ by a synonymous transversion,

, if  and  differ by a synonymous transition,

, if  and  differ by a nonsynonymous transvers

j

ij j

j

i j

i j

q i j

i j

π

κπ

ωπ

=

ion,

, if  and  differ by a nonsynonymous transition,j i jωκπ











  

where ω is the nonsynonymous/synonymous rate ratio, κ is the transition/transversion rate ratio, and 

πj is the equilibrium frequency of codon j (Goldman, Yang 1994; Yang, Nielsen 1998).   

The substitution rate between codons is proportional to the equilibrium frequency (the jπ )  of the 

target codon. Several choices can be made about these parameters. The simplest and most unrealistic 

option would be to presume that the frequencies of all codons are equal (known as Fequal). Instead, 

the frequencies can be calculated from the observed frequencies of the three nucleotides, tabulated 

over the sequence as a whole (known as F1X4 - 1 set of 4 frequencies) or at each of the three codon 

positions (known as F3X4 - 3 sets of 4 frequencies). Explicitly, for a codon consisting of the 

nucleotide triplet xyz the frequencies are given by 1xyz x y z kπ π π π=  and 
1 2 3

3xyz x y z
kπ π π π=  where 

mπ  is the frequency of nucleotide m at all three codon positions,
n

mπ  is the frequency of nucleotide m 

at the nth codon position, and 1k  and 3k  are normalizing constants accounting for the presence of 

stop codons. The final and most parameter rich choice is to allow the frequencies of all codons to be 

different, subject only the constraint that they sum to 1 (known as F61). 

It is difficult to compare nucleotide, amino-acid and codon models because of their differing 

data structure. However, methods for converting the lower-dimensional nucleotide and amino-acid 

models in to 64-dimensional codon models with nucleotide triplet substitution have been developed 
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(Seo, Kishino 2009). This allows comparison of these different types of models using traditional 

model selection criteria such as the Akaike information criterion (AIC) or the Bayesian information 

criterion (BIC), which are described further in section 1.3.7. Such comparisons suggest that codon 

models are generally superior to nucleotide or amino-acid models, but the increased dimensionality 

means the computational burden is too great to make tree searches in large datasets feasible.  

However, the true utility of codon models lies in testing for adaptive evolution. If ω ≈ 1 this 

would imply that mutations that change the amino-acid are just as likely to occur as those that 

preserve the amino-acid, and if ω < 1 this can interpreted as purifying selection acting to preserve the 

amino-acid sequence. If Kimura’s theory of neutral evolution was true then we would not expect to 

find ω > 1 as this represents evidence of positive selection where advantageous amino-acid changes 

have become fixed in the protein. Therefore, the null hypothesis in tests for adaptive evolution does 

not allow ω > 1, whilst in the alternative hypothesis this is permitted. Thus, the null is nested within 

the alternative hypothesis and a Likelihood Ratio Test (LRT) can be used to compare whether the 

alternative is a significantly better statistical fit to the observed sequence data (see 1.3.7). More 

complicated models have been developed (Yang 1998) but they all share the common feature that the 

null model contains a distribution to describe 1ω ≤  and is nested within the alternative model which 

contains an extra category allowing values of ω > 1. Even more complicated models allow ω to vary 

along branches in the tree, among sites in the gene, or both along branches and among sites. These 

models are discussed further in chapter 3. 

 

1.2.6 Improvements to Standard Codon Models 

Despite the success of the standard codon model it does have limitations. For example, it has been 

known for some time that amino-acid residues that share similar physico-chemical properties such as 

composition, polarity and molecular volume, tend to replace each other more frequently than those 

that are dissimilar (e.g. Grantham 1974). This basic codon model ignores this fact, although attempts 

have been made before to incorporate dependence among codons because of the protein structure  

(Robinson et al. 2003). Similarly, the basic codon model does not allow instantaneous multiple 
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nucleotide substitutions, although this has been shown to be a real phenomenon (Averof et al. 2000) 

and their inclusion can lead to statistically significant improvements in the fit of models to data (the 

SDT model: Whelan, Goldman 2004). The unrestricted Empirical Codon Model (ECM), was 

constructed, in the same manner as the maximum likelihood empirical amino-acid models mentioned 

above, whilst permitting multiple nucleotide changes, and is also reported to outperform comparable 

mechanistic models (Kosiol et al. 2007).  

However, this debate is far from closed as others have argued the case for successive single 

compensatory changes instead (e.g. Bayzkin et al. 2004). A different approach is that of the 

mechanistic-empirical-combined (MEC) method (Doron-Faigenboim, Pupko 2007) which allows the 

assimilation of empirically derived amino-acid replacement probabilities into a codon substitution 

matrix. The justification for such an approach is twofold. Firstly, differing rates of 

nonsynonymous/synonymous substitutions and transition/transversion substitutions can be 

accommodated together with the observation that distinct amino-acids differ in their replacement 

rates. Secondly, the model may be considered somewhat context-dependent as highly-specific amino-

acid substitution matrices can be employed –  possibly making the model more relevant to the data 

being analysed for the same reasons described in section 1.2.3. Again, the authors of this approach 

report an improved fit of the model to data. 

Since synonymous codons that code for the same amino-acid occur at different rates in 

protein coding genes (Ikemura 1981; Ikemura 1985), it is a controversial and hotly debated topic as to 

whether mutation or selection is responsible for the origin or perpetuation of this codon usage bias 

(e.g. Duret 2002). This points to another problem with standard codon models, namely that they do 

not explicitly consider the separate effects of the two processes and so are incapable of inferring 

which is responsible for evolution at silent sites. The novel model FMutSel (Yang, Nielsen 2008) 

attempts to address this deficiency by separating the processes via the introduction of distinct codon-

fitness and mutation-bias parameters. As before, an improved fit to data was observed as a result. 
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1.2.7 Context Dependent Substitution 

Most of the simplifying assumptions originally introduced to methods of phylogenetic inference have 

been relaxed, resulting in models of increased power and realism.  For example, the assumption that 

nucleotides substitute for each other at the same average rate and that this average rate is constant 

across sites, both gave way to more realistic alternatives.  One assumption that largely persists to the 

present day – despite biological evidence to the contrary – is that sites in a sequence evolve 

independently of each other. However, the rate of nucleotide substitution has been found to vary as 

much as 10-fold for different pairs of flanking bases, with context-dependent rates varying by as 

much as 50-fold (Blake et al. 1992; Hess et al. 1994). The most dramatic instance of this variation is 

found in so-called CpG dinucleotide “hotspots” (Ehrlich, Wang 1981; Zhang et al. 2007).  

The two immediate neighbours of a given site exert the strongest influence in such context 

effects. But, under certain conditions, the effect is also detectable for the second and third pairs of 

flanking bases (Morton et al. 1997), and subtle effects may even extend as far as 200 bp (Zhao, 

Boerwinkle 2002).  In addition, observed dinucleotide frequencies significantly deviate from the 

expectation values calculated from the frequencies of individual nucleotides (Karlin, Mrazek 1997), in 

particular, the dinucleotide CpG is observed only 23% as much as expected (Gentles, Karlin 2001).  It 

has been suggested that context biases may be correlated with this bias in dinucleotide frequencies 

that is observed in the human genome (Zhang, Gerstein 2003). There is strong evidence that 

simultaneous doublet-nucleotide substitutions occur with high frequency (Averof et al. 2000). The 

doublet model (Schoniger, von Haeseler 1994) attempts to account for this in a naïve manner by 

allowing changes from one doublet to another in a two-step process. First, one nucleotide is 

substituted for another according to a standard nucleotide model, then the matching nucleotide 

evolves according to the same model. Thus, there are no instantaneous doublet substitutions; a 

common doublet is only replaced by another doublet via an intermediate rare doublet.   

Codon models are another simple way to model nucleotide context as they allow dependence 

between different sites of the codon triplet.  However, context effects have been shown to be 

significant across codon boundaries (Siepel, Haussler 2004) and very low CpG frequencies are 

sometimes seen across codon boundaries which violates the hypothesis of independence among 
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codons (Pedersen et al. 1998) upon which most codon models rely (but see Robinson et al. 2003). 

Some researchers have argued that considering context dependence leads to better fitting models than 

using richer substitution models, or allowing rate heterogeneity across sites, under the assumption of 

site independence (Siepel, Haussler 2004).  Despite this there have been relatively few attempts to 

model the more complicated forms of context-dependent substitution that are apparent in real 

biological data (for examples see: Jensen, Pedersen 2000; Hwang, Green 2004; Siepel, Haussler 2004; 

Lindsay et al. 2008; Misawa, Kikuno 2009). Therefore, this may be an active avenue of model 

development in the years to come. 

 

1.2.8 Practical Calculation of the Transition Probability Matrix 

Whilst closed form solutions of ( )P t  exist for the simpler nucleotide models, the calculation becomes 

extremely cumbersome, if not completely intractable, when there are a larger number of states such as 

in codon and amino-acid models. Therefore, ( )P t  is normally calculated through numerical 

computation of the eigenvalues and eigenroots of the rate matrix Q (Yang, 1995).   

This is done by first noting that Q is similar to the symmetrical matrix 
1 2 1 2B Q −=Π Π  

(where 
1 2 1 2 1 2 1 2

1 2diag , , , nπ π π Π =  … , 
1 2−Π  is the inverse of 

1 2Π ,  and jπ is the jth stationary 

frequency).  Since similar matrices have identical eigenvalues, one can also define 

[ ]1 2
diag , , ,

n
λ λ λΛ = …  as the matrix with the common eigenvalues of Q and B.  The matrix B can 

then be constructed and diagonalised as 
1B R R−= Λ . 

( ) ( )1 2 1 2 1 2 1 1 2Q B R R− − −⇒ =Π Π = Π Λ Π    

where the right and left eigenvectors corresponding to the eigenvalues of Q in Λ  are the columns of 

1 2U R−=Π , and the rows of 
1 1 1 2U R− −= Π , respectively.  The transition probability matrix is then:  

( ) ( ) ( )1 1

1 2( ) exp( ) exp( ) diag exp ,exp , ,exp nP t Qt U t U U t t t Uλ λ λ− −= = Λ =   …  

This method of calculating ( )P t  is not an advisable approach for irreversible rate matrices as, despite 

( )P t  being real, Q may have complex eigenroots and the numerical algorithm may become unstable 
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when complex numbers are involved.  A simple workaround used for calculating the rate matrices of 

irreversible models, such as UNREST, is to use the slower and less accurate method of  repeated 

matrix squaring (Yang 2006, pp 68-70). This approach makes use of the relationship:  

( )
2

1

2

m

m
Qt Qt m m Qt Qt

e e A I
m m

  = ≈ = + +     
 

For a reasonably large m, the matrix A will have positive elements only, and will yield an accurate 

approximation to ( )P t . Given a method of calculating ( )P t  for a certain set of parameter values, the 

question then becomes which set of parameter values are “best” for a given dataset. The likelihood 

method (section 1.3) discussed below is an ideal method for determining “good” parameter values. 

 

1.3 The Likelihood Method 

Maximum Likelihood (ML) estimation is a methodology used to estimate parameters under a given 

model; it is a cornerstone of statistics and computational statistics and has been widely used in 

molecular phylogenetics since it was introduced by Felsenstein (1981). Formally, a full phylogenetic 

model consists of a tree topology τ containing branch length parameters { }0 1
, , ,

n
t t t t= …  for the n 

branches of τ, and substitution model parameters (collectively termed θ) such as the state frequencies 

and transitition/transversion rate ratio. Informally the term ‘model’ is often loosely used to refer to the 

substitution model alone. In this section I shall begin by describing how to compute the likelihood for 

a model in simple cases where parameters are known, then extend this to the problem of parameter 

estimation, before discussing applications.  

 

1.3.1 Computing the Likelihood for a Given Tree and Substitution Model 

The assumption of independence among sites means that the likelihood L for a given set of sequences 

of length n is simply the product of the probability at each site. Given the substitution parameters θ 

and the branch lengths { }0 1 5
, , ,t t t t= …  the likelihood of observing the states { }0 1 2 3

, , ,kx x x x x=  at 

position k of the sequences at the tips of the rooted four taxon tree shown in figure 1.5 is 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 1 0 2 1 0 1 1 2 2 2 3

0 1 2

0 1 2 3 4 5| ,k

k y y y y y y x y x y x y x

y y y

f f x t p t p t p t p t p t p tθ π = =  ∑∑∑  

where 
0yπ is the equilibrium frequency of state 0y  in the model, and ( )ij

p t  is the probability of state 

i changing to state j after time t as defined by the transition probability matrix. The quantity in the 

square brackets is simply the probability of observing state 0y  at the root, multiplied by six different 

transition probabilities for the substitutions that took place in order to give rise to the observed site 

pattern xk at the tips. Since { }0 1 2
, ,y y y y=  is unknown, the likelihood is given by summing over all 

possible ancestral states.  Thus, given the assumption of independence among sites, the likelihood L, 

for the four sequences of length n at the tips, is given by the product: 

1 2 1

n

k n kk
L f f f f f

=
= × × × × × =∏… …  

The likelihood becomes vanishingly small very quickly, and in any large analysis it would certainly 

become too small to be represented in computer memory. As a result the log-likelihood (log of the 

likelihood) is normally used instead and the product over sites becomes a sum over sites: 

1 2 1
log( ) log( ) log( ) log( ) log( ) log( )

n

k n kk
L f f f f f

=
= = + + + + + =∑ℓ … …  

 

1.3.2 The Likelihood Function When Rates Among Sites Are Variable 

If the substitution model assumes gamma distributed rate heterogeneity then calculation of the 

probability of the observed data, given the phylogeny and the substitution model, proceeds in a similar 

manner. However, now the branch lengths are multiplied by a scale factor r (representing the faster or 

slower relative rate of evolution – see section 1.2.4), and the probability of the site pattern must be 

multiplied by the probability of drawing the value r from the gamma distribution. Thus, if the gamma 

distribution has shape parameter α  and probability density ( , , )rg g rα α α= , then the probability of 

observing the site pattern shown in figure 1.5 would now be given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 1 0 2 1 0 1 1 2 2 2 3

0 1 2

0 1 2 3 4 5| , ,k

y y y y y y x y x y x y x r

y y y

f x t r p r t p r t p r t p r t p r t p r t g αθ π = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∑∑∑
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Figure 1.5: An example of one site in a rooted tree of 4 taxa 

The observed states are given by the ix , the ancestral states are given by the iy , and the branch 

lengths in expected number of substitutions per site are given by the it . 

 

1.3.3 Felsenstein’s Pruning Algorithm and Other Computational Shortcuts 

A rooted tree of m species has m – 1 internal nodes and 2m – 2 branches. Therefore, for data with c 

possible states there are 
1mc −
 ancestral states on the tree which need to be averaged. Fully expanding 

a likelihood calculation of the form given by kf  leads to 
1mc −
– 1 additions and 

1 (2 – 2mc m− × )  

multiplications. For codon data with 61 states, on the four taxa tree in Figure 1.5 this amounts to a 

staggering 
361 1 220,000− >  additions and 

361 3 1,300,000× > multiplications.  

However, we can drastically reduce the number of operations we need to perform by restructuring the 

likelihood sum and moving the summation ∑ symbols over to the right as far as possible. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 1 1 0 1 1 0 2 2 2 2 3

0 1 2

0 2 3 1 4 5| ,k

k y y y y x y x y y y x y x

y y y

f f x t p t p t p t p t p t p tθ π
 

   = = ×    
 

∑ ∑ ∑  

In this simpler format our toy example now only involves the use of 5 1 306c + =  multiplications and 

3 3 180c − =  additions, for the same single codon site on the four taxon tree. For datasets with more 

taxa and larger trees the computational savings are even more dramatic. This “nesting” principle 

amounts to performing the likelihood calculation by working backwards from the tips of the tree to 

y0

x1
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y1

x2

x3

x0
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the root, calculating the probabilities of successive subtrees on the way (as opposed to starting the 

calculation at the root of the tree). Approaching the likelihood calculation in this labour-saving 

manner is known as Felsenstein’s Pruning Algortihm (1981). 

It should also be noted that for substitution models with homogenous rates the transition 

probability matrix ( )tP  is the same for all sites and so need only be calculated once for each branch, 

leading to futher computational efficiency. Also, the probability of a particular site pattern (e.g. 

0 1 2 3x x x x ) at the tips of the tree is the same whenever it occurs so need only be calculated once. For 

this reason, sequence data is normally collapsed into counts of different site patterns before the 

likelihood calculation is performed.  Let there be s different site patterns for a set of sequences of 

length n. If the likelihood and count of the kth site pattern is given by kp  and  kN  respectively, 

where  
1

s

kk
N n

=
=∑ , the likelihood calculation for all sites becomes 

1
log( ) log( )

s

k kk
L N p

=
=∑ . 

 

1.3.4 The Pulley Principle  

Time-reversible substitution models obey the detailed balanced condition ( ) ( )
0 0 1 1 1 00 0y y y y y y
p t p tπ π=  

and the Chapman-Kolmogorov equation tells us that 1 2 1 2( ) ( ) ( )ik ij jk

j

p t t p t p t+ =∑ . Thus we have 

( ) ( ) ( ) ( ) ( ) ( )
0 0 1 0 2 1 1 0 0 2 1 1 0 0 2 1 1 2

0 0 0

0 1 0 1 0 1 0 1( )y y y y y y y y y y y y y y y y y y

y y y

p t p t p t p t p t p t p t tπ π π π= = = +∑ ∑ ∑ .  

The original likelihood calculation for the rooted tree in figure 1.5 has now become: 

( ) ( ) ( ) ( ) ( )
1 1 2 1 0 1 1 2 2 2 3

1 2

0 1 2 3 4 5| , ( )k

k y y y y x y x y x y x

y y

f f x t p t t p t p t p t p tθ π = = + ∑∑  

As a result Felsenstein’s pruning algorithm involves c less multiplications and c – 1 less additions: 

( ) ( ) ( ) ( ) ( ) ( )
1 1 0 1 1 1 2 2 2 2 3

1 2

2 3 0 1 4 5| ,k

k y y x y x y y y x y x

y y

f f x t p t p t p t t p t p tθ π
 

 = = × +  
 

∑ ∑  

Therefore, for time reversible substitution models one can move the root of the tree to any node on the 

tree (in the equation above it has been moved to the node containing state 1y ) and the likelihood 
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calculation gives the same result. Felsenstein called this the pulley principle (1981). Figure 1.6 shows 

the unrooted tree that corresponds to the rooted tree shown in figure 1.5. 

 

 

 

Figure 1.6: An example of one site in an unrooted tree of 4 taxa 

This is the unrooted tree that corresponds to the rooted tree in figure 1.5. 

 

1.3.5 Determining the Position of the Root of a Tree 

A direct consequence of the pulley principle is that the reversible model in the toy example was over 

parameterised with six branch lengths – there is only enough data to estimate 0 1t t+   but not to 

estimate 0t  and 1t  separately. Indeed, with reversible substitution models the position of the root 

cannot be determined without making further restrictive assumptions.  For example, if one assumes 

that substitution rates have been constant over the whole tree, i.e. over time (known as the molecular 

clock), then the root can be determined since every tip sequence is now equidistant from the root.  

Conversely, it is theoretically possible to determine the root position using an irreversible model (e.g. 

Yap, Speed 2005) as the likelihood of the data given the model and tree will change depending on the 

lengths of the two branches from the root. However, in real data analyses the parameter values are not 

known and it may be the case that, if there are not enough data, uncertainties in parameter estimates 

may lead to greater changes in the log-likelihood than changing the position of the root. In this 

situation estimates of the root position by this method would be inaccurate at best. 
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1.3.6 Maximum Likelihood Estimation 

The examples above have demonstrated how to compute the likelihood for a given set of parameter 

values. In practice we do not know the “real” values of the branch length parameters or the 

substitution model parameters. These values must be estimated from the data (for now knowledge of 

the correct tree is still assumed). This is done by searching for the parameter values that maximise the 

likelihood. In other words, if the probability of observing the data x given the parameter θ is  

( )|f x θ  then the maximum likelihood estimate (MLE) of the parameter, θ̂ , is given by: 

( )ˆ( ) arg max log |f x
θ

θ θ=   ℓ  

Most phylogenetic analyses involve a large number of parameters for branch lengths and the 

substitution model and, in practice, non-linear multidimensional optimisation problems of this kind 

can almost never be solved analytically (but see Yang 2000 for one example). Therefore, numerical 

methods are used instead.    Newton’s method of minimising a multi-dimensional function begins by 

assuming that the function can be locally approximated by a quadratic function found by taking a 

Taylor expansion about the current estimate. The quadratic function involves the gradient vector of 

partial first order derivatives, and the Hessian matrix of partial second order derivatives. In most cases 

it is not possible to calculate the Hessian, and often it is not possible to calculate the gradient too. 

Thus Quasi-Newton methods that approximate the Hessian (and the gradient if needs be) are widely 

used instead. Explicitly, if kx  is the estimate of the minimum at iteration k of the algorithm, and kx∆  

is a step away from that point, then the function f to be minimised can be approximated by the 

quadratic function: 

  [ ] [ ]1
( ) ( ) ( )

2

T T

k k k k k k k kf x x f x f x x x B x+ ∆ ≈ + ∇ ∆ + ∆ ∆  

where ( )kf x  is the function, ( )kf x∇  is the gradient vector of f  (partial first derivatives) and kB  is 

an approximation of the Hessian matrix (partial second order derivatives), evaluated at the point kx .  

The Newton search direction is then found by solving [ ]( )
k k k

x B f x∆ = − ∇  (Gill et al. 1981). 

A line search is then performed along the Newton search direction until the minimum along that 
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direction has been found. At this new point, if convergence has not been achieved, the approximation 

to the Hessian kB  is updated to 1kB + , a new search direction is calculated and the algorithm begins 

another iteration. Many methods of updating kB  have been devised, but perhaps the most commonly 

used is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which calculates a first order 

approximation to the Hessian by computing the change in the gradient along the search direction (see 

Fletcher 1987). If the form of the gradient cannot be calculated then it can also be approximated using 

difference formulae. Thus, Quasi-Newton methods allow researchers to tackle multi-dimensional and 

highly non-linear optimisation problems in molecular phylogenetics using the powerful maximum 

likelihood framework, even when the derivatives are too expensive or impossible to calculate. 

 

1.3.7 Likelihood Ratio Tests and Hypothesis Testing 

The maximised log-likelihood value of an evolutionary model can be used to compare it to other 

evolutionary models, with the highest likelihood value representing the model that fits the data best.  

Consider two models 0H  and 1H , with 0n  and 1n  parameters respectively, and maximised log-

likelihood values of 0ℓ  and 1ℓ . If 0H  is a special case of 1H   (with 1 0n n> ), we would also expect 

the more general model to be better, i.e. 1 0≥ℓ ℓ  even when the nested model 0H  is true. Thus, a 

simple comparison of the log-likelihoods can be misleading. However, in this scenario a likelihood 

ratio test (LRT) for composite hypotheses (e.g. Kalbfleisch 1985) can be performed. Twice the 

difference in log-likelihood between the models follows a 
2χ  distribution with 1 0n n−  degrees of 

freedom, i.e. 
1 0

2

1 0
2( )

n n
χ −−ℓ ℓ ∼  

If the test statistic 1 02( )−ℓ ℓ  is greater than the 
1 0

2

n n
χ −  critical value at the chosen level of 

significance then we reject 0H  and accept 1H . It is important to note that there are certain regularity 

conditions required for the 
2χ  approximation to hold. Firstly, the two models need to be `nested’, i.e. 

the more complex model can be transformed into the simpler model by imposing some linear set of 

constraints on its parameters. Even if the models are nested other issues can arise the cause the 

regularity conditions to be violated. For example, the complex mixture model used for detecting 
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positive selection by Zhang et al. (2005) contains a parameter which is not identifiable at the 

boundary of the parameter space in the simpler model. Thus, the
2χ  approximation cannot hold, and 

the correct asymptotic distribution is unknown. However,  if those conditions are not satisfied then the 

correct null distribution can be still be derived from Monte Carlo simulations (Goldman 1993).  

LRTs have been widely employed in molecular phylogenetics, for example, in tests to detect 

positive selection (see chapter 3), in procedures of substitution model selection (e.g. Posada, Crandall 

1998), in tests of monophyly (Huelsenbeck et al. 1996b), in tests to detect conflicting phylogenetic 

signal (Huelsenbeck, Bull 1996), and in tests for the adequacy of gamma distributed rate 

heterogeneity (Goldman, Whelan 2000).  

Alternatives to the LRT include the Akaike Information Criterion (AIC: Akaike 1974) and the 

Bayeisan Information Criterion (BIC: Schwarz 1978) given by AIC 2 2 p= − +ℓ  and 

BIC 2 log( )p n= − +ℓ  where ℓ  is the log-likelihood, p is the number of parameters and n is the 

sequence length.  Both of these quantities are perhaps more flexible than LRTs because they can be 

used to test many nested or non-nested models simultaneously, and can also allow for model-averaged 

inference of parameters or phylogenies (Posada, Buckley 2004), but there is evidence that some LRT 

methods perform better overall (Posada, Crandall 2001). 

 

1.3.8 Phylogeny Reconstruction 

Different phylogenies represent distinct and non-nested statistical models. However, the optimised 

likelihood can still be used to assess different candidate phylogenies once they are found. This may be 

done by a simple comparison of the log-likelihoods or by using a likelihood based statistical test such 

as the KH-test (Hasegawa, Kishino 1989; Kishino, Hasegawa 1989) – although it has been shown that 

in most circumstances the SH-test (Shimodaira, Hasegawa 1999) is more appropriate (Goldman et al. 

2000). The main difficulty in choosing an optimal tree is that finding a candidate set of approximately 

optimal trees to test is a far from trivial task (Neyman 1971). The number of bifurcating rooted trees 

for n species (and the number of bifurcating unrooted trees for n + 1 species) is given by 

2

(2 3)!

2 ( 2)!
n n

n
T

n−

−
=

−
. As an example, for as few as 10 species there are 34.5 million possible rooted 
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trees. For 20 species there are 
218 10×∼  different rooted trees. If one considers that this is more than 

16,000 times the number of seconds since the beginning of the universe (14 billion years 
175 10≈ ×  

seconds) then one can understand why Felsenstein (1978) stated that one of the two main uses of these 

type of calculations in the future would be to “frighten taxonomists”!  Unsurprisingly, finding the 

optimal phylogeny has been classified as a member of a particularly difficult class of optimisation 

problems known as NP-complete (Day 1987).  

 Tree-space is highly non-linear and novel search algorithms have to be implemented in order 

to traverse the tree-space and find candidate topologies. Three such procedures are known as nearest-

neighbour interchange (NNI), subtree pruning and regrafting (SPR), and tree bisection and 

reconnection (TBR). Figure 1.7 shows an example of each type of move. In a bifurcating tree every 

internal branch separates four subtrees – two on one side of the branch and two on the other side of 

the branch. An NNI move involves swapping one of the subtrees on one side of the branch with one 

of the subtrees from the other side of the branch. An SPR move involves pruning a subtree and 

reattaching it to another branch on the tree. A TBR move involves removing a branch from the tree to 

leave two subtrees, then rejoining the two subtrees with a newly created branch. The SPR operation 

may be of particular interest as it could represent biological processes such as recombination or 

horizontal gene transfer (Allen, Steel 2001) but it is not the most complete move. NNI rearrangements 

are a subset of SPR rearrangements which are themselves a subset of TBR rearrangements Therefore, 

TBR can be considered the most thorough algorithm for traversing tree-space, whilst also being the 

most computationally expensive (Maddison 1991).  

A typical likelihood based attempt at phylogeny reconstruction would proceed by choosing an 

initial starting tree (possibly a random tree or the maximum parsimony tree) and optimising the model 

parameters (such as branch lengths and parameters from the substitution model) to obtain an 

optimised log-likelihood value. Then a new tree is proposed (through e.g. TBR) and the parameters 

are re-estimated to obtain a new optimised log-likelihood. The new tree is then accepted or rejected 

based on the optimality criterion of the algorithm at work, and the process continues. A “greedy” hill-

climbing algorithm will always accept/reject trees that result in better/worse log-likelihood values, 
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Figure 1.7: Examples of moves used to traverse “tree-space” 

Shown here are the nearest-neighbour interchange (NNI), subtree pruning and regrafting (SPR), and 

tree bisection and reconnection (TBR) moves. A to F can represent different taxa or subtrees. 
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whereas other algorithms such as genetic algorithms (e.g. Lewis 1998) or simulated annealing (e.g. 

Stamatakis 2005) may allow “downhill” moves in an attempt to avoid getting stuck in local peaks in 

the likelihood surface. 

An alternative (and far faster) approach to phylogeny reconstruction is that adopted by the so-

called distance-based methods. These methods break the problem in to two steps: calculation of the 

evolutionary distances between each pair of sequences, followed by reconstruction of the tree from 

the matrix of pairwise distances using a clustering algorithm. In a likelihood framework the first step 

is relatively simple; each pairwise distance is simply the optimised branch length obtained from 

maximising the likelihood, given the substitution model and the sequence data, on a two taxon tree. 

An example of a clustering algorithm required for step two is the well known neighbour-joining (NJ) 

method (Saitou, Nei 1987) based on the minimum-evolution criterion. The method begins by 

assuming a star-tree (a tree with only one internal node at the root joining all branches). Then, an 

extra internal node is created, chosen such that it joins together the two leaf nodes that will yield the 

greatest reduction in tree length. The dimension of the distance matrix is thus reduced by one, and the 

algorithm proceeds to choose another pair of nodes to join, and so on. NJ is widely used because it is 

elegant and fast, and when given the true distances the method is guaranteed to recover the true tree 

topology, and will still do so when there are small errors in the distance estimates (Atteson 1997).  

One drawback of any distance-matrix based method is that large distances can be poorly estimated. 

Therefore, several improvements to NJ have been suggested such as weighting the distances to 

account for these errors (WEIGHBOR: Bruno et al. 2000), or accounting for the variances in large 

distance estimates (BIONJ: Gascuel 1997). Phylogeny reconstruction is discussed in greater detail in 

chapter 4. 

 

1.3.9 Bayesian Methods 

Any review of the use of computational statistics in molecular phylogenetics would be remiss not to 

mention the Bayesian paradigm. Thus I shall introduce it here briefly for completeness, but will not 

go into detail because I do not implement or investigate any such methods during later chapters of this 
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thesis. The interested reader may wish to consult a more thorough review of Bayesian phylogenetics 

(e.g. Huelsenbeck et al. 2001; Holder, Lewis 2003; Yang 2005; chapter 5 of Yang 2006).  

The likelihood method, as described above, is a cornerstone of classical or frequentist 

statistical theory. In this paradigm the probability of an event is defined as the expected frequency 

with which that event will occur in repeated random draws from some (real or imaginary) population, 

and parameter values are considered to be unknown constants that need to be determined. The 

likelihood function is deemed to contain all the information in the data about the parameters and is 

interpreted as the probability of observing the data given that a particular model is correct. Bayesian 

inference, once known as inverse probability, turns this principle on its head by asking: what is the 

probability that this model is correct given that I have observed the data? When compared to 

likelihood the central difference of Bayesian methods is the concept that parameters have probability 

distributions and that probability now represents the uncertainty about the parameters. Before the data 

is analysed the parameters are assumed to follow a prior distribution, then Bayes theorem is used to 

calculate the posterior distribution of the parameters, that is, the conditional distribution of the 

parameters given the data. If θ  are the parameters and x are the data then Bayes Theorem is given by: 

( ) ( | ) ( ) ( | )
( | )

( ) ( ) ( | )

f f x f f x
f x

f x f f x d

θ θ θ θ
θ

θ θ θ
= =

∫
 

where ( | )f xθ  is the posterior, ( )f θ  is the prior, ( | )f x θ  is the likelihood and ( )f x  is the 

marginal probability of the data, averaged over all parameter values (a normalising constant such that 

the posterior integrates to one). All inferences about parameters are based on the posterior. For 

example, the mean, median or mode (the maximum a posteriori probability or MAP estimate) of the 

posterior distribution can be used as a point estimate of a parameter value instead of the maximum 

likelihood estimate. This may be useful, for example, if one is interested in investigating the 

mechanisms behind the evolutionary process and therefore would like to estimate the values of 

particular parameters in the substitution model. However, sometimes the ultimate goal may be 

something else, such as the estimation of an underlying phylogeny. In that scenario, the substitution 

model parameters are simply an annoyance that have to be accommodated. The Bayesian method 
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provides a natural way of handling such nuisance parameters. Explicitly, the joint conditional 

distribution of two sets of parameters, θ  and λ , is given by: 

( , ) ( | , ) ( , ) ( | , )
( , | )

( ) ( , ) ( | , )

f f x f f x
f x

f x f f x d d

θ λ θ λ θ λ θ λ
θ λ

θ λ θ λ θ λ
= =

∫ ∫
 

If the θ  are the parameters of interest, then the nuisance parameters λ  can be integrated out and the 

marginal posterior density of θ  can be obtained as:  ( | ) ( , | )f x f x dθ θ λ λ= ∫  

In statistics in general there is much controversy about how one should arrive at a choice of prior 

distribution (e.g. basing it on subjective beliefs versus past observations) or, indeed, the need to 

specify the prior in the first place. Aside from these conceptual and philosophical issues a major 

reason that Bayesian methods were not widely used until recently is that the normalising constant 

( )f x  is rarely analytically tractable, excepting simple toy examples, and numerical methods must 

normally be used to compute the (normally high-dimensional) integral. However, Bayesian 

computation has become widespread in recent years after efficient Markov-Chain Monte Carlo 

algorithms (MCMC: Metropolis et al. 1953; Hastings 1970) were first popularised when Gelfand and 

Smith (1990) demonstrated such approaches were viable for analyses of non-trivial problems1.  

When the target distribution has multiple peaks, as is the case with the highly non-linear tree-

space, MCMC algorithms can get stuck in local peaks and fail to find the true mode. One of the most 

successful strategies for dealing with this problem is the so-called Metropolis-Coupled MCMC or 

MC
3
 method (Geyer 1991) where multiple chains are run in parallel. The first chain is the cold chain 

with the desired target density, and the remaining chains are incrementally heated by raising the 

density to increasingly smaller powers T (with 1T < ).  This has the effect of flattening out the peaks 

of the distribution, allowing the hotter chains to traverse between peaks in an easier fashion than the 

cold chain can on the original distribution. During the MCMC run states are sometimes swapped 

                                                      

1
 It should be noted that even before the Metropolis algorithm was conceived there existed a means of sampling 

from an arbitrary target distribution known as the “rejection method” (von Neumann, J. 1951. Various 

techniques used in connection with random digits. National Bureau of Standards Applied Mathematics Series 

12:36-38.).  However, in practice, the method was limited to low dimensional parameter spaces. 
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between chains, allowing the cold chain to occasionally jump over valleys, leading to better mixing. 

At the end of the run, only the output from the cold chain is used to determine the posterior. Further 

details of this, and other, MCMC methods will not be covered here. The keen reader may wish to refer 

to one of the many excellent textbooks on the subject (e.g. Gilks et al. 1996). 

Bayesian methods were first introduced to phylogenetics more than a decade ago (Rannala, 

Yang 1996; Yang, Rannala 1997). It did not take long for efficient MCMC algorithms for phylogeny 

reconstruction to be devised (Larget, Simon 1999), implemented (e.g. MrBayes: Huelsenbeck, 

Ronquist 2001; Ronquist, Huelsenbeck 2003) and used to infer species relationships such as the origin 

of land plants (Karol et al. 2001), or the radiation of different mammalian orders (Murphy et al. 2001). 

Since then the method has become very popular and widely used, particularly in the processes of 

phylogeny reconstruction (e.g. Huelsenbeck et al. 2001), estimation of species divergence times under 

relaxed molecular clocks (e.g. Thorne et al. 1998; Kishino et al. 2001; Yang, Rannala 2006), or 

inference of ancestral population sizes (e.g. Rannala, Yang 2003). Proponents of the Bayesian 

approach commonly point to the fact that it provides an attractive alternative to maximum likelihood 

since posterior probabilities are easy to interpret whilst also circumventing some of the controversies 

surrounding interpretation of the nonparametric bootstrap (Felsenstein 1985) – the most common 

method of assessing phylogenetic uncertainty.  

However, critics have noted that the method often produces surprisingly high posterior 

probabilities for trees or clades (e.g. Suzuki et al. 2002) and this was even noted in the very first 

Bayesian phylogenetic study (Rannala, Yang 1996). Subsequent work has showed that the choice of 

prior distribution, evolutionary model and type of data can all strongly affect the posterior probability 

of trees (Yang, Rannala 2005; Yang 2007a; Yang 2008, also see Appendix A) to the point where the 

method may infer different trees, sometimes with strong support, even when they are contradictory. 

One proposal that has been shown to reduce such conflicts is to make use of a data size-dependent 

prior (Yang 2008) where the prior mean approaches zero faster than 1 n  but slower than 1 n  where 

n is the sequence length. This type of prior was found to give weaker support for unstable 

relationships and could therefore be useful in reducing apparent conflicts in the results of Bayesian 

analyses, or making the method less sensitive to model violations.  
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1.4 Multiple Sequence Alignment 

Most phylogenetic methods used today, such as those mentioned earlier in this chapter, require as 

input a hypothesis about homology between sequence sites in the form of an alignment of sequences 

of equal length. However, one unavoidable consequence of the evolutionary processes of insertion 

and deletion is that evolutionarily related biological sequences end up having different lengths. 

Multiple sequence alignment (MSA) is the name given to any procedure that converts such a group of 

sequences into a set of sequences of equal length, by constructing a hypothesis about which characters 

from each sequence are homologous. Explicitly, a MSA method infers where gaps should be placed in 

each sequence such that homologous characters are subsequently located at the same position in each 

sequence. Therefore, constructing an MSA is a crucial first step in most phylogenetic studies.  

However, MSAs themselves can often be the ultimate goal of researchers since, for example, 

they can allow identification of conserved protein regions that may be of functional or structural 

importance  (e.g. Thomas et al. 2003; Minovitsky et al. 2007). Given their widespread use and 

applicability, the fundamental procedure of constructing an MSA can be considered one of the 

foundations of modern computational biology as a whole. Perhaps the clearest confirmation of this 

self evident fact is that, at the time of writing, one widely used MSA program (ClustalW: Thompson 

et al. 1994) has been cited over 30,000 times.  

The performance of many MSA methods and their effect on downstream phylogenetic 

analyses form part of the work presented in later chapters of this thesis. Therefore, the following 

pages will be devoted to describing approaches to MSA in detail. 

 

1.4.1 Pairwise Sequence Alignment and Scoring Schemes 

The simplest alignment problem which can be considered is that of determining the pairwise 

homology between the sites of just two sequences. In order to choose between competing alignments 

it is necessary to define an objective scoring function that quantifies how ‘good’ or ‘bad’ a certain 

alignment is. Then, depending on how the function is defined, the goal of the alignment method is to 

maximise or minimise the resulting score.  These objective functions can take many forms, but 

perhaps the simplest type would involve three types of score: a (positive) score for the benefit of 
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aligning a pair of sites that contain the same character, a (negative) score for the cost of aligning a pair 

of sites that contain different characters, and a (negative) score for the cost of aligning a character 

from one sequence opposite a gap. For this function the goal of the alignment method would be to 

maximise the resulting score. Another simple scoring scheme could be to use the edit distance, which 

is simply defined as the number of changes that are necessary to change one sequence into another. 

Therefore, in this case, an alignment method would aim to minimise the edit distance as it searched 

for the ‘best’ alignment between two sequences. 

But even in a pairwise alignment scenario, using a simplistic scoring scheme such as those 

described above, an attempt at finding the ‘best’ alignment (as determined by the scoring function) 

through some sort of brute force search is misguided. If one sequence has length n and the other has 

length m then the number of distinct alignments of the two sequences has been calculated by Torres et 

al. (2003) as:  

min{ , }

0

( , ) 2
n m

k

k

m n
f n m

k k=

  
=   

  
∑     

As an example, this implies that there are nearly 40 million possible alignments between one 

sequence of length 16, and one sequence of length 8. Biological sequences of interest are normally far 

longer than this.  Therefore, a brute force search very quickly becomes completely impractical, even 

with two sequences. Luckily, given a particular objective scoring function, a technique known as 

dynamic programming is guaranteed to find the optimal alignment of two sequences and will do it in 

far less time than a brute force search.  

 

1.4.2 Dynamic Programming 

In essence, this technique involves approaching complex problems by breaking them down into 

smaller overlapping subproblems and solving them recursively whilst checking at each stage if the 

solution to a particular subproblem has already been found. In the context of pairwise sequence 

alignment this amounts to calculating the alignment score by breaking the problem down into the 

combination of choosing how to align the single sites at the end of the two sequences with their 

optimally aligned subsequences (Eddy 2004). The algorithm is best described via a worked example. 
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Consider two sequences x and y that we wish to align, which are of lengths m and n respectively. Let 

xi denote the i-th position of sequence x and yj denote the j-th position of sequence y. Also, let us 

define ( , )s a b  to be a score for aligning two characters a and b, and let λ be some gap-penalty for 

aligning a character opposite a gap. Finally, let ( , )S i j  be the score for the optimal alignment of 

characters 1 to i in sequence x with characters 1 to j in sequence y. 

Clearly there are only three ways that the last character of each of the two sequences, xm and 

yn, can be aligned. Either xm is opposite a gap with yn further back in the alignment (score of λ), or yn 

is opposite a gap with xm further back in the alignment (score of λ), or xm and yn are aligned together 

(with a score of ( , )m ns x y ). Thus, the optimal total alignment will have the largest score out of these 

three possibilities: ( 1, )S m n λ− + , ( , 1)S m n λ− + , and ( 1, 1) ( , )m nS m n s x y− − + .  In order to find out 

which of these alignments has the highest score we need to calculate the three scores for the three 

slightly smaller subproblems, namely ( 1, )S m n− , ( , 1)S m n− , and ( 1, 1)S m n− − .   

Crucially, to calculate these three scores the exact same logic can be applied again. For 

example, to calculate ( 1, )S m n−  we first consider the three possible ways to align xm-1 with yn, and 

then must calculate the three scores ( 2, )S m n− , ( 1, 1)S m n− −  and ( 2, 1)S m n− − , and so on. We 

can continue in this manner, applying the logic recursively, until we reach very small subproblems 

with obvious solutions, e.g. the score for aligning nothing with nothing (0,0) 0S = . Therefore we can 

write a generalised recursive definition for the partial optimal alignment scores ( , )S i j : 

( 1, 1) ( , )

( , ) max ( 1, )

( , 1)

i jS i j s x y

S i j S i j

S i j

λ
λ

− − +


= − +
 − +

 

Although relatively simple to explain, this top-down approach leads to many redundant 

determinations of the optimal subsequence alignments. Infact, the number of redundant calculations 

grows exponentially as we move deeper into the recursion.  Obviously it would make sense to keep 

track of the different subproblems that had already been solved so there was no wastage. This is the 

central advantage that dynamic programming algorithms have over naive simple recursive algorithms: 

the optimal scores ( , )S i j  of the different subproblems are stored as the algorithm proceeds. For a 
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pairwise alignment algorithm optimal scores are tabulated in a two-dimensional matrix (see figure 

1.8). To fill in the matrix efficiently most algorithms take a “bottom-up” approach and begin by 

calculating the simplest subproblems first, i.e. the top left cell (0,0) 0S =  (nothing aligned with 

nothing) first, followed by the left-most column ( ,0)S i i λ=  (i characters from x aligned against i 

gaps scores i times λ, 1 i m≤ ≤ )  and the top row (0, )S j j λ=  (j characters from y aligned against j  

 

 

Figure 1.8: Dynamic Programming Matrix 

An example of a filled dynamic programming matrix for two DNA sequences x = TTCATA and y = 

TGCTCGTA, under a scoring system with +5 for a match, -2 for a mismatch and -6 for each insertion 

or deletion. The cells for the optimum path are shown in red. The arrows are “backtracing pointers” 

that indicate which of the three cases were optimal for reaching that cell.  It should be noted that some 

cells can be reached by more than one optimal path of equal score.  Dynamic programming algorithms 

tend to resolve such conflicts by arbitrarily choosing one path. However, in this example the optimal 

path is unique.  Example reproduced from Eddy (2004).  
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gaps scores j times λ, 1 j n≤ ≤ ). Then, the remaining cells can be filled in using the recursive 

definition of ( , )S i j  from page 55, and the scores from the three neighbouring cells to the upper left, 

i.e  cells ( 1, )i j− , ( 1, 1)i j− −  and ( , 1)i j − . Once the matrix is filled in we know the score of the 

optimal alignment ( , )S m n  as it is simply the score of the bottom-right cell (11 in our example), but 

we don’t know the optimal alignment itself. To find this we backtrace through the matrix in the top-

down manner originally described. First we begin in cell m, n and determine which of the three 

previous cases, ( 1, )m n− , ( 1, 1)m n− −  or ( , 1)m n− , was used to get to that cell (i.e. by repeating the 

same 3 calculations), record that choice as part of the optimal alignment, then repeat the process over 

and over until we reach cell (0,0) and the optimal alignment is fully constructed.  

Although there had been other attempts at automating sequence alignment (e.g. Fitch 1966) it 

was this elegant dynamic programming algorithm solution  proposed by Needleman and Wunsch 

(1970) that is considered antecedent to all others. The efficiency of this general approach has been 

refined and improved many times since. For example, the algorithm of Gotoh (1982) involves far 

fewer computational steps, and Myers and Miller (1988) extended Gotoh’s algorithm such that the 

memory requirements were lower. However, the general alignment principle implemented in each 

algorithm essentially remained the same and is still used in many programs to this day. Despite the 

lack of wastage in the algorithm it is still very computationally demanding since filling in the 

programming matrix takes time proportional to mn so, for example, the alignment of two sequences of 

length 200 will take four times as long as for two sequences of length 100. For this reason, much 

research is devoted to finding good approximations to the dynamic programming algorithm and this 

shall be discussed in later sections. 

 

1.4.3 Global and Local Alignment Strategies 

The alignment strategy described above is known as a global alignment algorithm as it assumes that 

the two sequences to be aligned are sequentially homologous and tries to simultaneously find the 

optimal alignment for all the sites from both sequences. This assumption may not be valid for 

sequences that have experienced large scale rearrangements such as inversions, where part of one 
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 sequence is reversed compared to the second sequence, or transpositions, where part of one sequence 

has changed location relative to other sites in the sequence (e.g. see Kent et al. 2003).  In these cases 

only certain subsections of the two sequences will be truly homologous and a global approach could 

lead to a poor alignment. An alternative approach is local alignment whereby the alignment method, 

rather than considering the two sequences as a whole, only attempts to align different subsections of 

each sequence at any one time with no regard for the overall global structure of the alignment. This 

approach is useful for very dissimilar sequences as regions of high similarity can be aligned whilst 

leaving highly divergent regions unaligned.  

The archetypal local alignment algorithm is that of Smith and Waterman (1981). It is actually 

a variation of the Needleman-Wunsch algorithm described previously – the main difference being that 

the negatively scoring gap and mismatch elements of the scoring matrix are set equal to zero, thus 

rendering the remaining positively scoring local alignments ‘visible’ to the alignment algorithm. Since 

the Smith-Waterman algorithm is a derivative of the Needleman-Wunsch algorithm, the approach also 

benefits from the desirable properties of dynamic programming, namely that the optimal local 

alignment (with respect to the scoring function) is guaranteed to be found.  

As an aside, it is interesting to note that the biologically motivated advances in local 

alignment algorithms have cross-pollinated other areas of research. For example, sequence alignment 

methods are now sometimes used in natural language processing during the first step of comparative 

reconstruction of ancient languages (Covington 1996; Covington 1998; Barzilay, Lee 2002). 

 

1.4.4 The Objective Scoring Function 

The scoring functions at the centre of most modern alignment programs tend to score matches and 

mismatches between characters using complicated sums based on the substitution matrices of 

probabilistic Markov models such as those described in section 1.2 (e.g. HKY or K80 are widely used 

for nucleotide alignments, and BLOSUM62 and WAG are commonly used for amino-acid 

alignments). The scoring of gaps is normally carried out in a far less complicated framework. The 

simplest way to score gaps is to simply assign a constant value (–k) for a gap of any length. Since it is 

known that insertions and deletions tend to be small in size it makes more sense to penalise large gaps 
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to a greater degree than small gaps in an alignment. The simplest scoring system for penalising gaps 

that respects this intuition is a simple linear function that is proportional to the number of gaps (n) 

being inserted, e.g. ( )f n kn= −  for some constant k.  

A common extension of this approach is the so-called convex or affine gap penalty where 

different penalties are used for opening gaps in the alignment as opposed to extending them (the 

former normally being more costly than the latter), e.g. [ ]1 2 1 2
( ) ,f n k k n k k= − + > . Gotoh’s 

algorithm makes use of affine gap costs and it is the efficiency of this algorithm that has perpetuated 

the use of this scoring scheme (as opposed to the scheme’s biological realism).  The observation that 

indel sizes can be well described by a power law (e.g. Fan et al. 2008) led many researchers to 

propose that logarithmic gap penalties  

[ ]1 3
( ) ln( )f n k k n= − +  

were more realistic than affine gap penalties (Gonnet et al. 1992; Gu, Li 1995). More recently this 

assumption has been questioned and it may be possible that log-affine gap penalties (Cartwright 2006) 

are more appropriate, i.e.  

[ ]1 2 3
( ) ln( )f n k k n k n= − + + .  

It is important to underline once again that the elegant Needleman-Wunsch and Smith-Waterman 

algorithms (and their variations) are by no means guaranteed to find the alignment that represents the 

true homology between characters in homologous sequences. In contrast, they are only guaranteed to 

find the optimal alignment that is implied by the objective function they are using to score the 

potential alignments being examined. Of course, different functions can imply different ‘optimal’ 

alignments, so the scoring function used is perhaps the single most important factor in obtaining an 

alignment of good quality. Therefore, it is no surprise that the effect on alignment quality that the 

choice of gap penalties (Altschul 1998; Liu et al. 2009a),  gap scoring model (Cartwright 2006) or 

substitution matrix (Edgar 2009) have is an active avenue of research.  
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1.4.5 Database Searching 

Bioinformaticians often desire to search DNA and protein databases for sequences with regions of 

similarity to some target sequence of interest. For example, if a new gene sequence is discovered in 

the rat genome, then a researcher may wish to search a database to see if there are sequences of the 

human genome that are similar to the rat gene sequence. It was realised at an early stage that to be of 

any use this process would need to be automated and an algorithm to facilitate this search would need 

to be devised (e.g. Korn et al. 1977; Wilbur, Lipman 1983). The need for good search algorithms is 

perhaps even more of an issue in the modern day with the preponderance of sequence data now 

available since querying a database in this manner could potentially involve performing hundreds of 

thousands of pairwise alignments. For example, it is predicted that the EMBL Nucleotide Sequence 

Database (Kulikova et al. 2004) will contain over a trillion nucleotides in the near future (Goldman, 

Yang 2008). Thus, the need to search a sequence database has yielded many improvements in local 

alignment algorithms over the years. 

One such algorithm is FASTA (Lipman, Pearson 1985; Pearson 1988). This algorithm was so 

successful that compatibility with the FASTA file format is now offered by almost every other 

database search or sequence alignment tool. Another algorithm, perhaps the most widely known, is 

BLAST – the Basic Local Alignment Search Tool (Altschul et al. 1990; Altschul et al. 1997), which 

has become so ubiquitous to database searching that “BLAST” is commonly used as a verb in the 

same way that GOOGLE is when one wants to refer to searching the web. FASTA and BLAST both 

make use of “word” (sometimes called “k-tuple” or “k-mer”) heuristic search methods that begin by 

identifying a series of nonoverlapping subsequences (words) of length k in the test sequence, and then 

try to match these words to candidate sequences from the database. If multiple distinct words are 

found at the same relative position in a database sequence as in the test sequence (allowing for some 

fixed offset) then further alignment criteria are evaluated. Thus, both methods avoid making many 

unnecessary sequence comparisons and it is this emphasis of speed over sensitivity that makes them 

practical to use on large databases – BLAST is over 50 times faster than the exhaustive Smith-

Waterman algorithm that it approximates. 
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1.4.6 Progressive Alignment 

Dynamic programming algorithms, whilst time-consuming, are at least tractable for pairwise 

alignment. In theory the approach can be extended to alignment of multiple sequences but quickly 

becomes unusable. This is because, when aligning n sequences, it requires the use of an n-dimensional 

matrix to keep track of the optimal scores. In addition, the growth of the number of possible 

alignments of multiple sequences as the number of taxa increases is truly staggering (Slowinski 1998), 

and is at least as dramatic as the incredible growth of the number of possible phylogenetic trees as the 

number of taxa increases that was mentioned previously (Felsenstein 1978). In fact, like tree 

reconstruction, the problem of MSA has been shown to be NP-complete (Wang, Jiang 1994). For all 

these reasons, MSA algorithms must use heuristic search strategies. 

The heuristic that is most prevalent among alignment programs is the progressive alignment 

strategy first described by Feng and Doolittle (1987). A variation on this algorithm is used in many 

popular alignment programs such as PRANK (Löytynoja, Goldman 2005), MAFFT (Katoh, Toh 

2008b), MUSCLE (Edgar 2004), ProbCons (Do et al. 2005), T-Coffee (Notredame et al. 2000), 

DIALIGN-TX (Subramanian et al. 2008) and ClustalW (Larkin et al. 2007).  The method typically 

begins by calculating the ( 1) 2n n−  possible pairwise alignments of the n sequences to be aligned 

using, for example, the Needleman-Wunsch algorithm. These pairwise alignments are then used to 

calculate the distances between each pair of sequences and a clustering algorithm such as NJ 

(Neighbour Joining) or UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is used to 

construct a phylogenetic tree. Using this tree as a guide the two most similar sequences are aligned 

with a pairwise algorithm and then sequences are progressively added to the alignment, one at a time, 

based on their position in the tree. Some methods (e.g. Muscle and MAFFT) seek further speed 

increases by skipping the initial pairwise alignment stage and approximating the distances between 

sequences using the number of shared k-tuples instead.  

One issue that has been noticed concerning progressive alignments is that the order in which 

sequences are added can bias downstream phylogeny reconstruction (Lake 1991; Thorne, Kishino 

1992). Avoiding this artefact of the alignment process is one potential advantage of a one-step process 

that attempts to align all sequences simultaneously rather than progressively (Lipman et al. 1989; 
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Stoye et al. 1997; Stoye 1998), although standalone one-step alignment programs of this kind are not 

widely used in phylogenetic studies (but see comments on simultaneous alignment and phylogeny 

reconstruction below, in section 1.4.8). 

 

1.4.7 Improving and Refining a Progressive Alignment  

Another problem with progressive alignment is that it is what is known as a greedy algorithm. A 

greedy algorithm makes the locally optimal choice at each stage, and any mistakes made in a 

particular stage are fixed during later stages and so propagate through to the final output. One 

technique commonly employed to try and correct or minimise such mistakes is known as iterative 

refinement and has been shown to be a successful strategy (Wallace et al. 2004). This process 

involves taking a progressive alignment and trying to improve it in some way. For example, an 

alignment method may repeatedly divide the sequences into two randomly chosen groups and then 

realign the subalignments (Berger, Munson 1991). A better performing approach offered by some 

programs (e.g. MAFFT) is to pursue a weighted sum-of-pairs score where the weights are introduced 

to correct for uneven representations of particular subgroups of sequences (Gotoh 1996). Many 

common alignment methods (e.g. MAFFT, Muscle, PRANK, DIALIGN) implement a different type 

of iterative refinement where the initial progressive alignment is used to construct a second guide tree 

which is in turn used to guide a new progressive alignment. This procedure may be repeated more 

than once in some of the programs. 

 Iterative refinement attempts to fix the mistakes made by progressive alignment strategies. An 

alternative approach is to try to prevent those mistakes occurring in the first place. This is the ultimate 

goal of consistency based alignment methods and was pioneered by the novel program T-Coffee, and 

implemented later in other programs such as ProbCons. The standard T-Coffee alignment process 

begins by calculating the global pairwise alignments between each pair of sequences using ClustalW.  

These are then used, along with the 10 ‘best’ local alignments associated with each sequence pair, 

calculated with Lalign (Huang, Miller 1991),  to create a library of pairs of characters that could be 

aligned, each with an associated weight. This initial library is then searched for pairwise similarities 

that support each other, i.e. similarities involving more than two sequences. These overlapping 
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pairwise similarities are then used to construct a second library, which is then used to guide the 

normal progressive alignment strategy in place of the traditional guide tree. ProbCons is similar to T-

Coffee, however, it uses a probabilistic consistency scoring function and then employs a Hidden 

Markov Model (see below) to construct the alignment by maximising the expected accuracy. 

DIALIGN is another program that can make use of both local and global alignment features, allowing 

areas of locally aligned subsequences to be interrupted by other globally aligned or unaligned 

subsequences. 

Several other interesting T-Coffee variants have been also been designed. For example, M-

Coffee (Wallace et al. 2006) uses other packages (such as Clustal, MAFFT, ProbCons, Muscle, etc) to 

generate alignments and uses the same consistency based methods to combine them into one unique 

final alignment. Other variants can additionally constrain the alignment process by using non-

sequence based sources of information such as protein structure (3D-Coffee/Expresso: Poirot et al. 

2004; Armougom et al. 2006) or RNA secondary structures (R-Coffee: Wilm et al. 2008). The ability 

to incorporate structural information in this way has also been added to MAFFT (Katoh, Toh 2008a) 

as well.  

Perhaps the most significant variation on the decades old progressive alignment strategy are 

the improvements found in the algorithm at the core of PRANK that allow the program to correctly 

handle insertions and deletions. The problems other programs experience stem from the fact that in a 

pairwise alignment the processes of insertion and deletion are indistinguishable and, as mentioned 

above, the order of the backtracking progressive alignment strategy used by most alignment methods 

is based on initial pairwise alignments (or approximations to them). This has the effect that a gap for a 

deletion, and its associated penalty, are created only once whereas a gap for an insertion has to be 

opened many times. Essentially this leads to a full penalty being assigned to each of these gap 

opening events, resulting in excessive penalisation of single insertion events (Löytynoja, Goldman 

2008). Other alignment methods (such as ClustalW and Muscle) implicitly tackle this problem by 

lowering the penalty for opening gaps at alignment positions that already contain gaps. However, it 

has been shown that this strategy of site-specific gap penalties, far from solving the problem, actually 

encourages the incorrect matching of independent insertions. This can result in systematically biased 
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alignments that suggest implausible insertion-deletion histories containing an excess of deletions and 

substitutions and too few insertions (Löytynoja, Goldman 2008). In stark contrast to this, PRANK 

uses an algorithm that identifies the gaps in an alignment as coming from either an insertion or a 

deletion. Then, in subsequent rounds of the progressive alignment, the algorithm chooses to allow 

gaps to be added opposite pre-existing insertions without penalty in each new sequence. In addition, 

the program can use closely related sequences to infer some sites as “permanent” insertions that 

cannot be matched in other sequences. The means that independent insertion events that occurred at 

the same position in the alignment will be correctly kept apart rather than attracted to each other as in 

normal progressive alignment strategies. The alignments that PRANK produces tend to be more 

accurate and less compressed as a result (see chapter 3). 

 

1.4.8 Statistical Approaches to Multiple Sequence Alignment 

An alternative to the character-based alignment methods mentioned above is to use a statistical 

estimation procedure based on the likelihood method. Although statistical approaches were first 

suggested a long time ago (Bishop, Thompson 1986) they were slow to take off, mostly due to the 

heavy computational burden that these methods impose.  

The first tractable statistical models of the insertion-deletion process suffered from unrealistic 

assumptions such as assuming that indel events involve only one character  (TKF91: Thorne et al. 

1991) or that sequences are made from non-overlapping indivisible fragments (TKF92: Thorne et al. 

1992). The structure of both these models induces a pair hidden Markov model or pair HMM (Durbin 

et al. 1998) that can assign likelihoods to all of the possible combinations of matches, mismatches and 

gaps to determine the most likely MSA or set of MSAs. Furthermore, by optimising the parameters of 

the model for every sequence pair in a given dataset it is possible to directly construct a neighbour 

joining tree without knowledge of the underlying multiple alignments (Thorne et al. 1992). Most 

subsequent attempts at statistical alignment have used these two models as a starting point. 

 Shortly after HMMs were formally developed further (Baldi et al. 1994; Krogh et al. 1994) 

the first software packages for statistical alignment began to appear. Two early examples were 

HMMER (Eddy 1995) and SAM (Hughey, Krogh 1995). Further work led to the use of statistical 
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alignment for phylogenetic profiling (Durbin et al. 1998) and homology testing (Hein et al. 2000). 

Other work by Mitchison (1999) described an early statistical attempt at co-estimating alignment and 

phylogeny and helped pave the way for one of the first Bayesian alignment software packages Handel 

(Holmes, Bruno 2001). In these works the concept of a pair HMM was extended by Holmes and 

Bruno into that of an Evolutionary HMM or Tree HMM that associated the TKF91 pair HMM with 

each branch in a phylogenetic tree. That tree was then used as a guide to combine suitable pair HMMs 

in a progressive manner analogous to classical progressive alignment described above.  

Some models and methods developed in the following years relaxed the fixed-fragment 

assumption of TKF91 and TKF92 (Knudsen, Miyamoto 2003; Metzler 2003; Miklós et al. 2004). 

Meanwhile, the idea of simultaneous estimation of phylogeny and alignment has been pursued further 

by using, for example, direct optimisation to minimise the edit cost for the given data (POY: Wheeler 

et al. 2003), simulated annealing  (Fleissner et al. 2005), a Bayesian framework (Lunter et al. 2005; 

Redelings, Suchard 2005; BAli-Phy: Suchard, Redelings 2006), or a Maximum Likelihood framework 

(SATé: Liu et al. 2009b). One of the latest developments in modelling indels is the use of Finite State 

Transducers or FSTs from automata theory which are very similar to pair HMMs in many ways 

(Bradley, Holmes 2007). Kim and Sinha (2007) applied FSTs to the problem of reconstructing 

ancestral indel histories, but more recently the same framework has been applied in a novel manner 

with the goal of alignment-free phylogeny reconstruction (Schwarz, Fletcher et al., 2010). The 

performance of this approach shall be examined and compared to more traditional two-phase 

approaches in chapter 4.  

 

1.4.9 Determining Accuracy of Multiple Sequence Alignment Methods 

Accuracy of a particular alignment method is normally assessed by inspecting its performance when 

aligning a “gold-standard” dataset whose true homology is presumed known (e.g. Thompson et al. 

1999a; Notredame 2002; Wallace et al. 2004). The best known benchmark of this kind is probably 

BAliBASE (Thompson et al. 1999b; Bahr et al. 2001; Thompson et al. 2005) which consists of 

alignment test cases constructed from three dimensional structural superpositions that have been 

manually refined, in order to ensure correct alignment of functional residues. Indeed, all of the 
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alignment programs mentioned above have been compared with each other using one benchmark 

dataset or another. However, these benchmarks contain alignments that represent functional or 

structural similarities between sites in different sequences, which are not necessarily congruent with 

evolutionary homologies. Therefore, an alignment method performing well on such benchmark tests 

for structure prediction is not necessarily an indication that the alignments it produces are suitable for 

phylogenetic analyses. In addition, the quality of some of these benchmarks has been called into 

question recently because there are often significant portions of a database that have unknown, 

contradictory or conflicting structure annotations (Edgar 2010).   

For pairwise alignment, efforts have been made to try and determine the distribution of 

optimal local alignment scores for random sequences (e.g. Altschul et al. 2001; Pang et al. 2005b) in 

order to assess the statistical significance of a given alignment. However, no equivalent methodology 

is available for MSA methods, although recent studies have sought a method of scoring MSA 

accuracy without knowledge of the true alignment (Landan, Graur 2007; Hall 2008a; Penn et al. 

2010b) with mixed results.  As a result, simulation is the most important way to assess the accuracy of 

MSA methods (e.g. Pollard et al. 2004; Rosenberg 2005a; Nuin et al. 2006; Ogden, Rosenberg 2006) 

and has been used by the authors of just about every MSA method to demonstrate the improvements 

that their program brings to the field. 

 

1.5 Project Aims 

There exists a large variety of methods and computer programs for aligning multiple sequences, 

reconstructing phylogenetic trees and estimating evolutionary parameters. However, true phylogenetic 

relationships are rarely known with any certainty.  Therefore, simulated data are used to investigate 

the accuracy, robustness and efficiency of phylogenetic inference procedures instead. In a limited 

number of experimental studies known phylogenies have been generated in vivo using a system based 

on the serial propagation of fast-evolving bacteriophages (Hillis et al. 1992; Sousa et al. 2008), but 

even then simulation may be used to reinforce the findings of the study (Sousa et al. 2008). 



 67

To give some other examples, simulated data has been used to investigate the accuracy and 

efficiency of phylogenetic reconstruction methods(von Neumann 1951; Huelsenbeck 1995), ancestral 

sequence reconstruction methods (e.g. Blanchette et al. 2004), tests for positive selection (Anisimova 

et al. 2003; Zhang et al. 2005), and methods of MSA (see last section, 1.4.7).  They can also be used 

in parametric bootstrap analysis to calculate confidence intervals for parameter estimates or to 

estimate the null distribution for hypothesis testing (e.g. Goldman 1993).  Simulation can also be used 

to examine the robustness of the analytical method to model misspecification, by simulating data 

under a complex model and analyzing them under a simplistic incorrect model (e.g. Lemmon, 

Moriarty 2004 and chapter 3).  When the simulation does not incorporate indels, there will be no need 

for sequence alignment and thus an important step that may contribute significantly to errors in 

inference is ignored.  However, current simulation programs are limited, especially concerning 

realistic models for simulating insertions and deletions.  

In the next chapter of this thesis I will introduce a portable and flexible application, named 

INDELible, for generating nucleotide, amino acid and codon sequence data by simulating insertions 

and deletions (indels) as well as substitutions.  Indels are simulated under several models of indel 

length distribution.  The program implements a rich repertoire of substitution models, including the 

general unrestricted model and non-stationary non-homogeneous models of nucleotide substitution, 

mixture and partition models that account for heterogeneity among sites, and codon models that allow 

the nonsynonymous/synonymous substitution rate ratio to vary among sites and branches.  In later 

chapters I will use some of INDELible’s many unique features to evaluate the performance of different 

inference methods, including those for multiple sequence alignment, phylogenetic tree inference and 

detection of positive selection. 
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Chapter 2  

INDELible: A Powerful and Flexible Simulator of 

Biological Sequence Evolution  
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2.1 Introduction 

Many methods exist for reconstructing phylogenies from molecular sequence data, but few 

phylogenies are known and can be used to check their efficacy. Therefore, simulation remains the 

most important approach to testing the accuracy and robustness of methods of phylogenetic inference. 

When the simulation does not incorporate insertions and deletions (indels), there is no need for 

sequence alignment and thus an important step that may contribute significantly to inference errors is 

ignored.  However, existing programs for simulating molecular sequence evolution are often found 

lacking, especially concerning the simulation of insertions and deletions.   

Two widely used programs, Evolver (Yang 1997) and Seq-Gen (Rambaut, Grassly 1997), do 

not include indels at all.  EvolveAGene (Hall 2008a) is inflexible and only allows the use of the 

spontaneous mutational spectrum of Escherichia coli, and Rose (Stoye et al. 1998)1859 has an 

unrealistic model of indel formation that does not allow simulation of, for example, transmembrane 

regions where low-frequency indels occur in regions with high substitution rates.  Similarly, 

GSimulator (Varadarajan et al. 2008) does not use continuous branch lengths nor does it implement 

the most commonly used substitution models; it must be “trained” before use and only comes pre-

trained with estimates based on the Drosophila genome.  DAWG (Cartwright 2005) cannot simulate 

under amino acid or codon models whilst indel-Seq-Gen (Strope et al. 2007) and SIMPROT (Pang et 

al. 2005a) cannot simulate nucleotide or codon sequences.  Only MySSP (Rosenberg 2005b) can 

simulate under non-stationary and non-homogenous models, while Evolver (Yang 1997) is the only 

program that can simulate under codon models.  Furthermore, several of these programs are known to 

handle insertions and deletions incorrectly (Strope et al. 2009) and this is discussed further in chapter 

4. Thus I have developed INDELible to plug these gaps and to provide a powerful and flexible tool for 

simulating molecular sequence evolution. This chapter will describe the program in full. 

 

2.2 Outline of the Simulation Algorithm 

The main difficulty in dealing with indels, especially when developing a likelihood model for 

inference (e.g., Bishop, Thompson 1986; Thorne et al. 1991), lies in the lack of independence of data 
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amongst sites in the sequence.  However, if one chooses to view the entire sequence (instead of one 

nucleotide, amino acid or codon in the sequence) as the basic unit of evolution, then the change from 

one sequence to another is described by a Markov chain, with the whole sequence being the state of 

the chain.  Thus, sequence evolution through insertions and deletions as well as substitutions can be 

simulated using the standard algorithm for simulating Markov chains, that is, by generating 

exponentially-distributed waiting times and then sampling from the jump chain (Yang 2006: pp. 303-

4).  This is also known as Gillespie’s algorithm (Gillespie 1977).   

Consider a simulation of the evolution of a sequence along a branch on a phylogeny, with both the 

branch length (t) and the sequence at the start of the branch given.  Let λ = I + D + S be the total event 

rate for the current sequence, where I, D, and S are the total insertion, deletion and substitution rates, 

respectively.  The waiting time until the next event s1 is generated by sampling from the exponential 

distribution with mean 1/λ.  If s1 > t, then no event occurs before the end of the branch.  Otherwise an 

event occurs at time s1, and is randomly chosen to be an insertion, deletion, or substitution with 

probabilities I/λ, D/λ, or S/λ, respectively.  Similarly, the location of the event is determined by 

random sampling with probabilities proportional to the rates.  If the event is an indel (insertion or 

deletion), then the location is drawn uniformly from the pool of all possibilities and the length of the 

indel is drawn from the indel-length distribution (see below).  If the event is a substitution, a site is 

chosen at random with a probability that is proportional to the substitution rate at that site, and the 

new state at the site is chosen using the transition matrix of the jump chain J (see below).  Thus the 

new sequence at time s1 is generated, and the rates for the new sequence and the sequence length L are 

updated.  The time remaining for the branch (= t – s1) is calculated.  The next waiting time s2 is then 

generated based on the total rate for the current sequence.  This procedure is repeated until the end of 

the branch is reached, i.e. until s1 + s2 + … > t.   

Ideally the root sequence length L should be sampled from the distribution of sequence lengths 

that is implied by the model of insertions and deletions (Thorne et al. 1991).  However, sampling from 

this distribution is complicated because of the arbitrary nature of the indel-size distributions 

implemented in INDELible.  Instead L must be specified by the user.  The root sequence is then 

generated by randomly sampling L characters (nucleotides, amino acids or codons) from the 
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equilibrium distribution of the substitution model at the root.  For models of rate heterogeneity among 

sites, the rates at sites are generated from the rate distribution.  The Gillespie algorithm is then used to 

simulate the evolution of the sequence from the root along the branches towards the tips of the tree.  

The sequences at the tips of the tree constitute a replicate dataset.  

The models I have implemented assume that insertion and deletion rates are constant among sites 

in the sequence. The substitution process is independent of insertions and deletions, so substitutions 

can therefore be simulated separately from insertions and deletions.  Thus, an alternative procedure is 

to use the Gillespie algorithm to simulate indels only, with substitutions simulated afterwards by 

sampling from the transition probability matrix for the branch (Yang 2006: p. 303).  This will be 

referred to in this chapter as method 1 and is the method used by Cartwright (2005).  The method 

described above, of simulating waiting times for substitutions as well as insertions and deletions, is 

referred to as method 2.  For most models, method 2 is less efficient than method 1 but the opposite is 

true when using models of continuous rate variation among sites (see Results).  However, method 2 

provides a way of simulating sequences under more complex models in which the insertion and 

deletion rates may depend on the local sequence context and vary along the sequence (see Discussion) 

 

2.3 Simulation of Substitutions 

Substitutions are assumed to be independent among sites, and are described by a continuous-time 

Markov chain (see Chapter 1), characterized by the instantaneous rate matrix   

 Q = 

11 12 1

21 22 2

1 2

,

c

c

c c cc

q q q

q q q

q q q

 
 
 
 
 
 

…

…

⋮ ⋮ ⋱ ⋮

…

 (2.1) 

where c is the number of characters (equal to 4, 20 and 64 for nucleotides, amino acids and codons, 

respectively). The diagonal elements of the matrix are defined as qii = ijj i
q

≠
−∑ , whereas the off-

diagonal elements are specified by the model.  INDELible rescales the rate matrices such that branch 

lengths represent the expected number of substitutions per site (or the average expected number of 

substitutions per site under a heterogeneous-sites model).   
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Method 1 requires the transition probability matrix ( )P t  = e
Qt

 for a branch of length t.  As mentioned 

in Chapter 1, for reversible models this is calculated by numerical computation of the eigenvectors and 

eigenvalues of Q (Yang 1995a), while for non-reversible models it is calculated by repeated matrix 

squaring (Yang 2006, pp 68-70).   

Method 2 requires the calculation of substitution rates at individual sites.  Given Q, the rate “away” 

from state i is defined as qi = –qii.  Thus, the total substitution rate for the entire sequence is   S = 

( )

1
k

L

i k

k

q r
=
∑  where kr  is the relative rate at site k and i(k) is the state at site k.  Given that a substitution 

occurs at site k, the new state is sampled using the transition matrix of the jump chain,    M = { }
ij

m , 

where mij = qij/qi if i ≠ j and mij = 0 otherwise (Yang 2006, equation 9.7).  In other words, if a site is 

currently in state i, the probability that the new state is j is simply given by mij. 

 

2.3.1 Nucleotide Substitution Models 

The most general model of nucleotide substitution possible places no constraint on the rate matrix Q.  

This is known as the UNREST model (Yang 1994a) and, in INDELible, it is specified by using 11 relative 

rate parameters (the off-diagonal elements of the rate matrix Q).  INDELible calculates the equilibrium 

frequencies (πi) by solving the system of simultaneous equations 
i iji
qπ∑  = 0 for all j, subject to the 

constraint 
ii

π∑  = 1 (e.g., Yang 2006, p. 32).  It should be noted that the rate matrix for this model is 

often described incorrectly in the literature (e.g. Swofford et al. 1996).  In addition, INDELible also 

implements the general time-reversible model (GTR or REV, Tavaré 1986; Yang 1994a) and many of the 

commonly used models that are its special cases, such as JC69 (Jukes, Cantor 1969), K80 (Kimura 1980), 

K81 (Kimura 1981), F81 (Felsenstein 1981), F84 (Felsenstein, DNAML program since 1984, PHYLIP 

Version 2.6), HKY85 (Hasegawa et al. 1984; Hasegawa et al. 1985), T92 (Tamura 1992), and TN93 

(Tamura, Nei 1993).  The rates under GTR may be written as qij = sijπj, with sij = sji, where sij is also 

known as the exchangeability between i and j (Whelan, Goldman 2004).  Thus GTR is specified using the 

nucleotide frequencies πj and the exchangeability parameters sij. 
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Table 2.1:  Empirical amino-acid substitution models implemented in INDELible 

Model Source of alignment Reference 

DAYHOFF Nuclear proteins (Dayhoff et al. 1978) 

JTT Nuclear proteins (Jones et al. 1992) 

WAG Nuclear proteins (Whelan, Goldman 2001) 

VT Nuclear proteins (Müller, Vingron 2000) 

DAYHOFF (DCMUT) Nuclear proteins (Kosiol, Goldman 2005) 

JTT (DCMUT) Nuclear proteins (Kosiol, Goldman 2005) 

LG Nuclear proteins (Le, Gascuel 2008) 

BLOSUM62 Nuclear proteins (Henikoff, Henikoff 1992) 

MTMAM Mammalian mitochondrial proteins (Yang et al. 1998) 

mtREV Vertebrate mitochondrial proteins (Adachi, Hasegawa 1996) 
MtArt Arthropod mitochondrial proteins (Abascal et al. 2007) 

CpREV Chloroplast proteins (Adachi et al. 2000) 

RtREV Viral reverse transcriptase proteins (Dimmic et al. 2002) 

HIVb and HIVw HIV-1 viral genes  (Nickle et al. 2007) 

I09 I09 Influenza proteins (Dang et al. 2009) 

MtZoa Broad Metazoan proteins (Rota-Stabelli et al. 2009) 

 

2.3.2 Amino-Acid Substitution Models 

Currently INDELible incorporates sixteen empirical amino-acid substitution models, which were 

derived from analysis of protein alignments from a variety of sources (table 2.1).  All of these models 

are time-reversible, and are specified using the stationary amino acid frequencies πj and the amino 

acid exchangeabilities sij (see description above).  It is also possible for the user to supply a time-

reversible substitution rate matrix.  INDELible also implements the Poisson model of protein 

evolution, which assumes that the substitution rates between any two amino acids are the same.   

 

2.3.3 Among-Site Heterogeneity 

INDELible incorporates a number of different random-sites models for simulating rate heterogeneity 

among sites in a sequence.  Under these models the relative rates are independent and identically 

distributed among sites. If INDELible is simulating under a non-homogeneous model then different 

branches may have different models, and thus the rate for a site may change as a result of the changed 

model. Otherwise, the relative rate at each site is held constant throughout the simulation process with 

daughter sites inheriting the rate of their parent.  For nucleotide and amino-acid simulations, variable 
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substitution rates among sites can be simulated using any of the following models: (a) a constant rate 

for all sites, (b) a proportion of invariable sites plus a constant rate for all other sites (+I, Hasegawa et 

al. 1985), (c) a continuous or discrete-gamma distribution of rates among sites (the “+Γ” and “+Γ5” 

models) (Yang 1993; 1994b), and (d) a proportion of invariable sites plus gamma-distributed rates for 

other sites (“+I+Γ” and “+I+Γ5” models ) (Gu et al. 1995). 

 

2.3.4 Codon Substitution Models 

For codon models the state space consists of the sense codons of the genetic code, e.g., 61 sense 

codons for the universal code or 60 for the vertebrate mitochondrial code.  Stop codons are not 

allowed inside a functional protein and so they are not considered in the chain.  INDELible currently 

supports 17 genetic codes: codes 1-6, 9-16 and 21-23 listed in GenBank.  The basic codon model that 

(as described in chapter 1) specifies the instantaneous rate of substitution from codon i to j as 

 

0,  if  and  differ at two or three positions,

, if  and  differ by a synonymous transversion,

, if  and  differ by a synonymous transition,

, if  and  differ by a nonsynonymous transvers

j

ij j
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i j

i j
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 (2.2) 

where ω is the nonsynonymous/synonymous rate ratio, κ is the transition/transversion rate ratio, and 

πj is the equilibrium frequency of codon j (Goldman, Yang 1994; Yang, Nielsen 1998).  INDELible 

also allows the use of two empirical codon models (ECMs, Kosiol et al. 2007).  The first (ECMrest) 

was constructed under the assumption that only one codon position can change instantaneously, as in 

equation (2.2).  The second (ECMunrest) was constructed whilst allowing instantaneous doublet and 

triplet changes as well. 

INDELible also implements several advanced models of codon substitution, which allow the 

selective pressure on the protein-coding gene (as measured by the nonsynonymous/synonymous rate 

ratio ω) to vary among branches in the tree, among sites (codons) in the gene, or among both branches 

and sites (see Anisimova, Kosiol 2009 for a recent review).  The site models allow ω to vary among 

sites (Nielsen, Yang 1998; Yang et al. 2000).  All the site models are special cases of model M3 
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(discrete), which assumes a general discrete distribution for ω (Yang et al. 2000).  M3 is implemented 

in INDELible by specifying the number of site classes, and the ω ratios and proportions for those site 

classes.  A small script is included with INDELible, which can calculate the discrete ω values from the 

parameters of the other models M4-M13 of Yang et al. (2000). 

The branch models (Yang 1998) and branch-site models (Yang, Nielsen 2002; Yang et al. 2005; 

Zhang et al. 2005) are implemented in INDELible as well.  The latter allows the ω ratio to vary among 

branches and among sites.  While the branch-site model described by Yang et al. (2005) allows only 

two types of branch (the foreground and background branches) and only four site classes, INDELible 

allows an arbitrary number of site classes and branch types to be used.   

Those codon models are widely used in likelihood ratio tests of natural selection affecting the 

evolution of protein-coding genes.  Implementation of those models in INDELible makes it possible to 

evaluate the impact of alignment errors and of insertions and deletions on the robustness of those 

methods and that will be done, for the first time, in chapter 3 of this thesis. 

 

2.4 Non-Stationary and Non-Homogeneous Processes 

Most models currently used in phylogenetic analysis assume stationarity and homogeneity of the 

substitution process across the whole tree; that is to say, substitutions have occurred according to the 

same rate matrix Q, and nucleotide, amino-acid or codon frequencies have remained more or less 

constant, during the course of evolution.  Sequences from distantly related species have often been 

noted to have different nucleotide or amino acid frequencies, which is a clear indication of violation 

of these assumptions.  Only a few attempts have been made to implement nonhomogeneous models 

(Yang, Roberts 1995; Galtier, Gouy 1998; Blanquart, Lartillot 2006) for phylogenetic inference.  

Therefore, data simulated under such non-homogeneous and non-stationary conditions should be 

useful for testing the robustness of phylogenetic reconstruction methods.   

The branch and branch-site models of codon substitution mentioned above may be considered 

examples of non-homogeneous models, because the ω ratio and thus the rate matrix Q varies along 

branches.  INDELible allows any parameter or any aspect of the evolutionary model to change along 
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branches in the tree.  Each branch may have its own insertion/deletion rates and size distributions, 

equilibrium frequencies, substitution model or level of rate heterogeneity among sites.  Under codon 

models the genetic code is also allowed to vary between branches, as long as all the codes used on the 

tree share the same stop codons. Parameters are also allowed to change at arbitrary points along a 

branch. This is achieved by specifying a tree with an internal node that has only one daughter branch. 

 

2.5 Simulation of Insertions and Deletions 

2.5.1 Indel Formation 

INDELible treats insertions and deletions as separate processes, each with its own size distribution and 

instantaneous rate.  The model assumes that insertions and deletions occur at the fixed rates λI and λD, 

respectively, at every site in the sequence.  I define one time unit as one expected substitution per site, 

so λI and λD are then the expected numbers of indels per substitution.  In simulation under codon 

models, a site refers to a codon, and so only indels of whole codons are permitted. 

Insertions are relatively simple to simulate.  If a sequence has L sites then there are L + 1 possible 

positions for insertion (including both ends of the sequence).  Therefore, the total rate of insertions is 

given by I = λI (L + 1).  Insertions at the two ends of the sequence are allowed, and the sequence has 

an “immortal link” at the beginning (Thorne et al. 1991).  If an insertion occurs, the insertion-size 

distribution is used to generate the size of the insertion (u).  Then u characters (nucleotides, amino 

acids or codons) are generated by randomly sampling from the equilibrium distribution of the 

substitution model to form the insertion sequence.  For site-heterogeneous models, the rates for the u 

sites are then generated by sampling at random from the rate distribution.  

Deletions are more complex to simulate as one has to make somewhat arbitrary decisions 

concerning deletions at the ends of the sequence.  I choose to follow the procedure of Cartwright 

(2005), and consider that the simulated sequence, of length L, lies within a larger sequence, of length 

N, with N » L.  Let the maximum deletion length be M, with M « N.  Therefore, a deletion of size u in 

the larger sequence will only delete some of the smaller sequence if it occurs at any of the L sites of 

the smaller sequence or at any of the u – 1 sites preceding the smaller sequence.  Deletions are 
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assumed to occur uniformly in the larger sequence so the probability that a deletion of size u in the 

larger sequence deletes some sites from the smaller sequence is given by (u – 1 + L)/N.   

Thus the probability that a deletion in the larger sequence deletes some sites in the smaller 

sequence is PD = ( 1 )Du L N− + , where Du is the mean deletion size (Cartwright 2005).  The total 

rate of deletion in the larger sequence is NλD where λD is the rate of deletion per site, so that the total 

rate of deletion in the smaller sequence is D = NλDPD = ( )1
D D

u Lλ − + .  This is independent of N. 

 

2.5.2 Indel Size Distributions 

INDELible uses two independent distributions to model the sizes of insertions and deletions.  For the 

sake of simplicity, here I use indel size distribution to refer to both.  Several different indel size 

distributions are implemented in INDELible. 

The first is the negative binomial distribution, for which the probability that the indel has size u is  

 f(u) = 
1

2
(1 )

1

r u
r u

q q
u

−+ − 
− − 

, u = 1, 2, …, (2.2) 

where the parameters are the integer r and probability q. This mean of this distribution is given by    

u  = 1 + rq/(1 – q) and the variance is rq/(1 – q)2.  If r = 1, the distribution reduces to the geometric 

distribution.   

The second model is a power law or Zipfian distribution, for which indel length u has probability   

 f(u) = 
( )

au

aζ

−

,  u = 1, 2, …, (2.3) 

where a > 1 is a parameter of the distribution and ζ(a) = 
1

a

v
v

∞ −

=∑  is the Riemann Zeta function.  This 

distribution has a very heavy tail, and the mean is infinite if a < 2 and the variance is infinite if a < 3.  

If a > 2, the mean is u  = ζ(a – 1)/ζ(a), and if a > 3, the variance is ζ(a – 2)/ζ(a) – 
2u .  Empirical 

estimates of a range from 1.5 to 2, with infinite variance (Benner et al. 1993; Gu, Li 1995; Zhang, 

Gerstein 2003; Chang, Benner 2004; Yamane et al. 2006; Cartwright 2009).  There is also evidence 

that parameter a, which is inversely related to the indel size, differs for insertions and deletions (Gu, 
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Li 1995; Zhang, Gerstein 2003), so INDELible’s ability to allow different length distributions for 

insertions and deletions may prove useful.   

The third model is the Lavalette distribution, an extension of Zipf’s law that was originally 

proposed to describe the distribution of journal impact factors (Lavalette 1996; Popescu et al. 1997; 

2003). For this distribution the probability of an indel of size u is given by:  

 f(u) ∝ 
1

a
u M

M u

−
 
 − + 

,  u = 1, 2, …, M, (2.4) 

where M is the maximum indel size and a is the parameter. The proportionality constant is determined 

such that the probabilities sum to 1.  This model has two desirable features.  Firstly, the mean and 

variance are always finite because of the maximum length M.  Secondly, it can be made to 

approximate the Zipf distribution arbitrarily well by the use of a large value for M.  This is because 

the two distributions differ only by the factor ϕ = [M/(M – u + 1)]
–a

, apart from the normalizing 

constants, and ϕ ≈ 1 when M ≫ 1.  Figure 2.1 shows the distribution for a few different values of M. 

Besides these three models above, INDELible also allows the user to define an indel size distribution. 

 

 

 

Figure 2.1:  The Lavalette distribution  

Indel lengths are plotted for different values of the maximum indel length M, with a = 0.5 fixed (see 

eq. 2.4).  N.B.  u can take integer values 1, 2, …, M only. 
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A number of authors have attempted to estimate empirical indel size distributions.  Gu and Li 

(1995) suggested that the geometric model was an inadequate fit to the data and found to the power-

law model to fit the data much better.  Many other studies have also found that the power-law fitted a 

variety of datasets reasonably well (Benner et al. 1993; Zhang, Gerstein 2003; Chang, Benner 2004; 

Yamane et al. 2006).  Qian and Goldstein (2001) used a mixture of four exponential distributions to 

describe indel lengths, which was later adapted into a distance-dependent indel length distribution for 

use in the simulation program SIMPROT (Pang et al. 2005a).  This distribution appears to be more 

complicated than necessary. 

 

2.6 Program Validation 

I conducted extensive simulations to confirm the validity of this simulation program.  Relying on the 

consistency of maximum likelihood estimates, I chose to validate the implementation of the 

substitution models by simulating larger and larger datasets (e.g. with 106 or 107 sites) before 

confirming that the parameter estimates were close to the true values by analysing them under the 

same model using BASEML and CODEML in the PAML package (Yang 1997).  It is more difficult to 

validate simulations under the different models of insertions and deletions, as correct analytical results 

are lacking.  However, I did compare the observed indel size distribution of the simulated datasets 

with the true distribution and found that they were a close match.  I also simulated datasets on trees of 

2, 8 or 40 taxa with insertions only, with deletions only, or with both insertions and deletions, using 

many different rates, parameters and length distributions.  The proportions of columns in the true 

alignment that had 0, 1, 2, … gaps were calculated and compared with the correct proportions 

generated using a simple and independent simulation program that kept track of the sequence lengths 

only.  In all combinations that were investigated there was good agreement between the two.   

My extensive comparisons with DAWG revealed a few problems with DAWG version 1.1.2 and 

earlier.  For example, there are two biological mechanisms that can generate columns with all gaps in 

the true alignment: (a) deleted insertions, i.e., deletion of part of an earlier insertion on the same 

branch, and (b) parallel deletions, i.e., deletion of the same nucleotides but along different lineages.  
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DAWG keeps track of (b) but not of (a).  Furthermore, the true alignment produced by DAWG was 

sometimes incorrect with nucleotides from parallel insertions misaligned.  Those bugs have been 

fixed in version 1.2 of the program (R. Cartwright, pers. comm.). 

 

2.7 Results 

DAWG (Cartwright 2005) is the simulation program that is most similar to INDELible.  While DAWG 

does not have some of the advanced features available in INDELible, it is possible to simulate data 

under the same nucleotide-substitution models in order to make a fair comparison.  Thus I conducted 

several computer simulations to examine the computational efficiency of the two programs.   

Sequence data was simulated under the HKY model, with κ = 2 and base frequencies 0.4 (T), 0.3 (C), 

0.2 (A) and 0.1 (G).  In the base model I set the insertion and deletion rates to λI = λD = 0.1 per 

substitution, with the indel length following a negative binomial distribution with q = 0.25 and r =1 

(the geometric distribution).  The phylogenetic tree used was symmetric with 32 taxa and all branch 

lengths were set to be 0.1 substitutions per site.  Substitution rates over sites were either constant or 

followed the gamma distribution with shape parameter α = 1.  The number of replicate datasets was 

100.  I then explored several variations of this base simulation scheme in order to examine the impact 

that different factors had on simulation efficiency.  INDELible (methods 1 and 2) and DAWG were used 

to generate the data, and the results are shown in figure 2.2 (panels A to E). Factors explored include  

the number of taxa (A), the amount of evolution measured by the branch length (B), the sequence 

length at the root (C), the insertion/deletion rate ratio λI/λD (D) and the average indel length (E).   

DAWG is faster than INDELible in simple circumstances, such as when simulating short sequences 

with low insertion rates and small insertions on small trees with few taxa and short branches.  

However, with increased simulation complexity, the time taken by DAWG increases much faster than 

the time taken by INDELible.  The exception to this pattern is simulations involving INDELible method 

2, which is sensitive to the average branch length as longer branches need simulation of more rounds 

of exponential-waiting times in the main algorithm.  However, method 2 has a speed advantage over  
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Figure 2.2:  Speed comparison between DAWG and INDELible 

Comparisons are made with and without continuous gamma rate heterogeneity.  The base simulation 

model used is specified by the settings in figure 2.6. In each plot one factor is varied at a time to see 

its impact.  INDELible simulation under methods 1 and 2 is referred to as INDELible1 and INDELible2 

respectively.  The tests were carried out on a SunFire Opteron X4600M2 server running Linux.   
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method 1 and DAWG for simulation under the continuous gamma model of variable rates among sites.  

Under this model, every site has a distinct rate. This means the transition probability matrix P(t) needs 

to be calculated for every site on every branch.  Conversely, the transition matrix of the jump chain 

(M in method 2, page 68) is the same for all sites and so does not need to be calculated for every site, 

leading to an increase in computational efficiency. 

These speed differences between DAWG and INDELible are largely a matter of programming 

design.  Both programs are written in C++, and both programs store sequence information in the STL 

vector container. However, INDELible implements insertions via a modified lookup table approach 

whose execution time is largely independent of simulation complexity, but can be slow in very simple 

simulations.  In contrast, DAWG implements insertions via the C++ function vector::insert, the speed 

of which is proportional to the number of elements between the insertion position and the end of the 

vector (due to moving) plus the number of elements to be inserted (due to copying).  This shall be 

discussed in a more detail in the next section. 

 

2.8 Discussion 

2.8.1 Computational Efficiency of INDELible – Data Storage 

The efficient mechanism for storing data in INDELible is best explained through some examples. 

Figure 2.3 demonstrates how sequence data is stored and manipulated in INDELible as a root 

sequence is created and evolves through a chain of 5 indel events in a simulation (from top to bottom). 

This particular simulation begins with the creation of a root sequence of size 40. This root sequence is 

stored in a vector of 40 integers representing the states at the different sites (blue squares). At the 

same time a vector of size 41 is created whose elements are all also vectors of integers – i.e. a “vector 

of vectors”. The 41 positions are the 41 possible positions where insertions can occur between sites in 

the root. At first, all of these 41 vectors are empty. The first indel event (1) is a deletion of size 3 in 

the root sequence. This deletion involves 3 write operations to the root vector in C++ to label these 

sites as deleted sites that should be ignored for the rest of the simulation.  The second event is an 

insertion of size 3 occuring within the root sequence (2). This insertion involves copying 3 integers to  
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Figure 2.3:  Storage of sequence data in INDELible during a simulation 

This toy example shows a sequence of initial length 40 being subjected to 5 indel events in a 

simulation (from top to bottom). Full explanation of the data storage is in the main text. The first indel 

event is a deletion of size 3 at position 4 in the sequence (1). This is followed by an insertion of length 

3 between positions 1 and 2 of the sequence (2). Next we have a deletion occurring at position 3 of the 

new sequence, i.e. position 2 of the previous insertion (3).  This is followed by an insertion of size 2 

between sites 15 and 16 in the “current” sequence, i.e. between positions 13 and 14 of the initial root 

sequence (4). Finally there is an insertion between positions 16 and 17 of the “current” sequence, i.e. 

between positions 1 and 2 of the previous insertion (5). Thus, this toy example encompasses each kind 

of indel event that can occur during a simulation: deletion of root sites, insertion between root sites, 

deletion of inserted sites, and insertions within pre-existing insertions. 
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the end of the empty vector at position 2 (of 41) in the “insertion” container, i.e. 3 copy operations.  

The third event is a deletion of length 1 occurring within that insertion (3).  Again, this just involves 

one write operation to the insertion vector at position 2, in order to label that site as deleted. The 

fourth event is another insertion in the root, this time of length 2, so involves 2 copy operations. The 

fifth and final event is an insertion of length 2 within a previous insertion.  This is performed using 

the C++ vector::insert function, and so involves 1 move operation to move the second inserted site 2 

spaces to make room (as elements of a C++ vector must be contiguous and in order in computer 

memory), and 2 copy operations to copy over the newly inserted sites to the vector. 

So, for INDELible the total cost of this simulation was 3 write + 3 copy + 1 write + 2 copy + (1 move 

+ 2 copy) = 4 writes + 7 copies + 1 move.     

 Other programs, such as DAWG, use the in-built vector::insert and vector::delete functions to 

literally carry out insertion and deletion operations on a single vector containing the sequence data. 

Thus, these programs are much slower because of the requirement that the C++ vector container 

stores its elements, in order, in contiguous memory (it is this property that gives vectors their 

excellent access speed). So, using the same example, we can work out the consequence of using this 

convenient strategy.  The first deletion (1) of size 3 now involves 34 move operations as the entire 

back of the sequence is moved to ensure the vector is contiguous in memory (vector::insert and 

vector::delete operations work by moving the back end of the sequence in memory, with the portion 

of the vector containing the first element remaining static). This move is shown in figure 2.4 (top). 

The sequence vector now has length 37.  The second event (2), an insertion of size 3, involves 36 

move operations as the back of the sequence is moved to make room for the insertion, followed by 3 

copy operations to place that actual insertion within the sequence container. This move is also shown 

in figure 2.4 (bottom).  The vector now has length 40 again.  If we continue in this manner we find 

that the computational cost was 34 moves + (36 moves + 3 copies) + 38 moves + (24 moves + 2 

copies) + (25 moves + 2 copies) = 157 moves + 7 copies.  Clearly this is a contrived example and the 

cost will be less if indels occur towards the back of the sequence, but it serves to show that it is all this 

literal moving of sequence sites around in the computer memory that makes other programs get 

exponentially slower. If the root (or inserted) sequences, and therefore the vectors, are much longer 
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there is obviously a lot more elements that need moving about (or copying) and this takes longer, and 

if the insertion/deletion rates are higher or branches are longer then there will be that many more 

reshuffling events going on behind the scene. This explains the performance curves that can be seen in 

figure 2.2 

Despite these speed increases there is another advantage to storing sequence data in this 

manner. Whilst the method may be more memory intensive it allows for the true alignment to be 

directly read from the sequence vectors, without any ambiguity.  If a program employs a method 

where sequence data is literally inserted and deleted from memory then elaborate “colouring” 

schemes need to be used in order to identify what happened at a given site through the simulation  

 

 

Figure 2.4:  Inefficient memory management in other programs 

The first two events of the same simulation process (figure 2.3) are shown here as step-by-step 

memory moves. Because the C++ vector container stores its elements in contiguous memory every 

insert and delete operation involves a lot of unnecessary shuffling that can be avoided. 
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history so that the true alignment can be reconstructed.  Such colouring schemes are undoubtedly very 

clever, but leave the door open for errors because of the complicated nature of phylogenetic 

simulations. It was such an error that was responsible for the aforementioned bug that I found in 

earlier versions of the DAWG program (R. Cartwright, pers. comm. and DAWG website). 

 

2.8.2 Computational Efficiency of INDELible – Locating a Site 

When simulating using constant insertion and deletion rates with a program that literally inserts and 

deletes sites in a vector, determining the location where an insertion or deletion will occur is very 

simple. First, for a sequence of length L the algorithm generates a random integer u between 1 and L if 

a deletion has occurred, or between 1 and L+1 if an insertion has occurred, and then calls either the 

vector::delete function (using the boundaries u and u+n), or the vector::insert function (with position 

u), when the indel was sampled to have length n. 

 In contrast, the speed efficiency of INDELible’s data storage procedures comes at the 

expense of convenience. The problem that must be overcome by INDELible is to find where the 

“real” nth position in the sequence is given that there will be many deleted sites in memory, i.e. there 

will be sites that do not exist in the simulation sequence that is being evolved but that still exist in 

computer memory (so as to avoid unnecessary memory shuffling to gain a speed advantage, and to 

enable accurate reconstruction of the true alignment unambiguously and correctly).  Therefore the site 

positions in the sequence do not correspond with the site positions in memory.  So now the algorithm 

must determine the site j for which  ( )
1

j

k

k

v u j u
=

= ≥∑
 

 where kv  is a binary variable denoting 

whether a site in memory has been deleted or not. 

A similar problem occurs when using method 2 for substitutions, regardless of the data 
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For both cases, a naive approach would just iterate from the start of the vector and count the number 

of non-deleted sites, or add the individual substitution rates from non-deleted sites, in order to find the 

chosen site j.  This would involve a large number of additions and accesses to the vector memory and 

would go some way to negate the speed increases that the efficient memory management facilitates 

when using constant indel rates across sites (N.B. for varying indel rates across sites, or when using 

method 2 for substitutions, this is a problem that is unavoidable). 

 To circumvent this difficulty INDELible constructs and maintains a decision-tree indexing 

system to navigate the sites quickly (see figure 2.5).  In principle this is constructed as follows.  

 

 

 

Figure 2.5:  Decision tree structure for quickly navigating sequence sites 

A pictorial example of how one can navigate very quickly through sequence substitution rates in order 

to find a particular area where a substitution has randomly been chosen to occur (when using method 

2). The exact same approach is used for locating the area where an indel occurs (see main text). 
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Firstly, in layer 1, we have the actual sequence information which is site specific. In layer 2, vectors 

are constructed that contain the sum of the rates at each insertion vector site and root site position. In 

layer 3 a smaller vector is constructed where each element is the sum of 10 numbers from layer 2. 

Then in layer 4 an even smaller vector is constructed where each element is the sum of 10 numbers 

from layer 3 and so on. This process is repeated, layer after layer, until there is one vector at the top of 

the decision tree containing only one element that is either the total substitution rate, or total 

insertion/deletion rate of the whole sequence.  

` Once the tree has been constructed it is simple to update once an evolutionary event occurs. 

For example, if we define 
*

0
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k j
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T T
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to find the site we 

want, we begin by comparing numbers in the second highest layer (layer 6 in the example in figure 

2.5). If, for example, we find that 
* *

6 7T s T< ≤
 

, we have narrowed down the search and can look now 

in layer 5, in the section that 7T

 

holds the total for. A few more additions and comparisons and we 

may find 
* * *

2 6 3U s T U< − ≤  allowing us to look in the corresponding section of the layer below. 

Continuing on we find 
* * * *

4 6 2 5V s T U V< − − ≤  , then 
* * * * *

1 6 2 4 2X s T U V X< − − − ≤ , and finally we 

find that
* * * * * *

7 6 2 4 1 8Y s T U V X Y< − − − − ≤  which has narrowed down the substitution to occurring 

at the site marked in yellow.  

Thus, in this example, we have navigated a sequence with a length of approximately one 

million sites (or more) using, on average, 25 additions and 25 comparisons, as opposed to a naive 

strategy of exhaustively cycling through the actual sequence where we would have needed, on 

average, 500,000 additions and comparisons!  Once the substitution has occurred the tree is easily 

maintained. If the difference between the old and new substitution rates at the yellow site is s* then 

we simply add s* to the elements 8Y , 2X , 5V , 3U , 7T , S  and the process may begin again.  The 

principle is exactly the same for insertion/deletion rates whether they are constant across sites or not. 

For method 1 of evolving sequences such a decision tree structure is not necessary. However, the use 

of the decision-tree facilitates the use of the creative data structure mentioned in section 2.8.1 which is 

what gives INDELible its speed advantage over competitors. Furthermore, this new approach would 
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be utterly necessary if one wanted to implement indel rates that are not constant across sites, or 

wanted to simulate under context-dependent models using method 2 (see below). The fact that the 

algorithm is adaptable in this way is one of the features that makes INDELible unique and 

innovational among simulation programs. General features of the program are discussed  below. 

 

2.8.3 Features of INDELible 

INDELible is driven by a control file (figure 2.6).  The program is designed to be flexible, and so a 

wide range of options can be specified in this file to control different aspects of the simulation 

including, but not limited to, the substitution model, the heterogeneous-rates model, indel models and 

indel-size distributions, and the underlying phylogeny. No constraints are placed on the size and 

structure of the tree, the sequence length, or the values of model parameters. The tree with branch 

lengths (measured by the expected number of substitutions per site) may be specified by the user or 

created at random from the birth-death process with species sampling (Yang, Rannala 1997).  The 

user can also choose to generate random ultrametric or non-ultrametric branch lengths for a given 

topology, or can choose to rescale the tree to have a given depth or length, or rescale the tree to have a 

given maximum pairwise distance between sequences at the tips. Furthermore, the user can choose to 

make branches on the tree randomly larger or smaller in order to simulate deviations from the 

molecular clock.  

INDELible also offers the ability to simulate data in multiple partitions where different 

partitions can have different substitution models, indel lengths, or heterogeneous rate distributions and 

may also evolve on different trees (e.g. to simulate gene-tree/species-tree conflict).  Deletions are not 

allowed to span different partitions, the different partitions must have the same data type (nucleotide, 

amino-acid or codon) and the tree must have the same number of leaves.  Apart from those 

restrictions, every other parameter or setting is permitted to vary between partitions.   The history of 

any insertions and deletions that occur is maintained during the course of the simulation.  To avoid 

possible complications when outputting sequences, deletions are not actually removed from the 

computer memory but are simply marked as deletions and ignored during the remainder of the 
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simulation.   For the same reason, inserted bases/residues are stored in separate memory containers to 

those in the original sequence at the root.  Thus, at the end of the simulation, sites are immediately 

recognisable as either core sites that evolved from the root, deleted core sites, insertions, or deleted 

insertions, and the true alignment can be assembled and output easily, without the need for any 

translation or interpretation.  INDELible also offers the option to print inserted residues in lower-case 

and print core residues that evolved from the root in upper-case, or to distinguish between gaps placed 

opposite insertions and gaps that are deleted insertions. In addition, codon sequences can also be 

translated into amino-acid sequences for output, using the genetic code of that branch. 

 

 

 

 

Figure 2.6:  An example input file for INDELible.  

In this example the substitution model has been set to HKY+Γ with a transition/transversion rate ratio 

of κ = 2 and stationary base frequencies of 0.4 (T), 0.3 (C), 0.2 (A), and 0.1 (G). Continuous gamma 

rate variation has been used with shape parameter α = 1.  Insertions and deletions have both been set 

to have an instantaneous rate of 0.1 (relative to an average substitution rate of 1), and have been 

assigned the same geometric length distribution with a mean length of 4.  Next the phylogeny with 

branch lengths is specified.  In the simulations for the speed tests, a symmetric, 32-taxa, strictly 

bifurcating tree with all branch lengths equal to 0.1 was used instead.  This simulation will create 100  

replicate datasets each containing one partition with a randomly created root sequence of 1000 bases. 

[TYPE] NUCLEOTIDE 1               // nucleotide simulation using algorithm 1

[MODEL] m1  

[submodel]    HKY 2             // HKY with kappa = 2

[basefreq]    0.4 0.3 0.2 0.1   // frequencies for T C A G

[rates]       0  1  0           // pInv alpha Ngammacat

[indelrate]   0.1               // insertion rate = deletion rate = 0.1

//  (relative to average substitution rate of 1) 

[indelmodel]  NB 1 0.25         // Geometric length distribution

//  with mean indel length of 4

[TREE] t2  (a:0.1,b:0.1);         // user defined guide tree

[PARTITIONS] p1                   // one partition with root length 

[t2 m1 1000]                    // of 1000 that uses tree t2

[EVOLVE]  p1 100 outputname // produce 100 replicates of partition p1
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A summary of features of INDELible in comparison with other simulation programs is provided in 

table 2.2.  INDELible is unique in its implementation of codon models and non-stationary and non-

homogeneous models among programs of indel simulation.  

 

Table 2.2:  Comparison of simulation programs 

Feature S
eq

-G
en

  

v
1
.3

.2
 

E
v

o
lv

er
  
 

v
4
 

R
o
se

  

v
1
.3

 

D
A

W
G

 

v
1
.1

.2
 

M
y
S

S
P

  

v
1
.0

 

In
d
el

-S
eq

-

G
en

 v
1

.0
.3

 

E
v

o
lv

eA
G

e

n
e 

v
3

 

G
S

im
u
la

ti
o
r 

v
1
.1

 

S
IM

P
R

O
T

  

v
1
.0

1
 

IN
D

E
L
ib

le
 

v
1
.0

4
 

GTR x x  x x     x 

UNREST          x 

Empirical amino acid models 6 10a    3   3 16a 

Empirical codon models          2 

Codon site model  x        x 
Codon branch model  x        x 

Codon branch-site model  x        x 

Non-stationary models     x     x 

Discrete gamma  x x        x 

Continuous gamma x x  x x    x x 

Proportion of invariant sites x   x  x    x 

Indels   x x x x x x x x 

Ancestral sequences x x x x x x x x  x 

Batch mode  x  x x     x 

Multi-gene mode x    x x   x x 
Platform           

   Unix x x x x  x x x x x 
   Mac OS X x x x x  x x   x 

   Win32 x x  x x  x  x x 

Note.  
a
Evolver and INDELible can also use user-defined amino-acid substitution models. 

 

2.8.4 Correct Simulation Under a Model and Biological Realism 

It is important for any indel-simulation program to simulate data correctly under a model that includes 

insertions and deletions, as well as substitutions. That is to say, it must generate datasets with the 

correct probability distribution under such a model.  Most existing indel-simulation programs do not 

appear to have achieved this goal as they often involve somewhat arbitrary manipulations of the 

simulation process that cannot be justified under any model.  It is often claimed that those 

manipulations improve the biological realism of the generated data.  A common mistake is to fix the 

sequence at the root of the tree to be a real sequence rather than generating a sequence at random (as 
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in EvolveAGene). However, in a model of insertions, deletions and substitutions, the sequence at the 

root is a random realisation of the model and should be allowed to vary among datasets.   

While it is certainly important for any simulation to represent real-data scenarios, this goal should 

be achieved by specifying representative values of the parameters in the model (such as substitution 

rates, sequence length, base or amino acid frequencies, and the size and shape of the tree, etc).  Most 

parameters, such as substitution rates, stationary frequencies, or heterogeneous rate distributions, can 

be easily estimated via maximum likelihood using standard phylogenetic software (e.g. PAML: Yang 

1997). Parameters for indel formation and indel length distributions present more of a problem.  

INDELible is designed to be a simulation program and so does not include methods for estimating any 

model parameters from real data, which is the remit of an inference tool.  However, a number of 

studies have produced estimates of the insertion and deletion rates (λI and λD) relative to the 

substitution rate (λS), with λS/(λI + λD) normally estimated to be around 13-15 (Silva, Kondrashov 

2002; Britten et al. 2003; Ogurtsov et al. 2004).  Estimates have also suggested that insertions occur 

less often than deletions, with λD/λI ranging from 1.3 to 4 (Gu, Li 1995; Zhang, Gerstein 2003; Arndt, 

Hwa 2004), although it is noted that Mills et al. (2006) estimated λD/λI ≈ 1 in a comparison of 

chimpanzee and human genomes.  Thus, the ability of INDELible to specify separate insertion and 

deletion length distributions, and separate insertion and deletion rates (λI, λD), and to permit those 

parameters to change at any point on the tree, may be of importance for realistic simulation of 

molecular sequence evolution.  

 

2.8.5 Extending the Evolutionary Model 

In the future, INDELible could be improved upon in a number of ways, by incorporating important 

features of sequence or genome evolution.  Indeed the current incarnation of INDELible is mainly 

designed for generating sequences suitable for phylogenetic comparison, and does not currently 

include models of genome rearrangements such as inversion, duplication, and translocation.   

To evaluate methods that attempt to reconstruct ancestral genomes (Blanchette et al. 2004), it may be 

important to simulate such large-scale events.  Also, repetitive elements appear to have very high 
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insertion and deletion rates.  For example, the ALU sequence in humans is about 300 base pairs long, 

and recurs 300,000 times throughout the DNA.  This causes a conspicuous spike in the observed indel 

size distribution at around ≈300bp when the human genome is compared against other genomes (Kent 

et al. 2003).  Even shorter sequences may be repeated as many as 106 times.  Such repetitive 

sequences can create indel hotspots and clearly violate the assumption of uniform insertion/deletion 

rates.  

Similarly, substitution or mutation rate is known to depend on the local sequence context.  As 

mentioned in chapter 1, the most dramatic instance of such a context effect is found in the so-called 

CpG dinucleotide “hotspots” (e.g. Ehrlich, Wang 1981).  Codon models incorporate the context effect 

to some extent by accounting for dependence between the different positions of the codon triplet, but 

they cannot deal with context effects across codon boundaries (Pedersen et al. 1998; Siepel, Haussler 

2004).  There is also some evidence that rates of substitution, insertion, and deletion are positively 

correlated, meaning that genomic regions with high substitution rates also display high insertion and 

deletion rates (Waterston 2002). It has also been found that there is a specific enrichment of CpG 

dinucleotides in close proximity to insertion events and that both insertions and deletions are more 

common in higher G+C content sequences (Taylor et al., 2004). 

It should be straightforward to extend INDELible to simulate genome-rearrangement events, to 

accommodate insertions/deletions of repetitive elements, substitutional context effects, or correlated 

substitution and indel rates, as long as precise models for these processes can be formulated.  Note 

that simulation of the evolutionary process by Gillespie’s algorithm (INDELible method 2 but not 

method 1 or DAWG) is still possible as long as one can generate a sequence at the root of the tree and 

calculate the instantaneous rates; there is no need for matrix-exponential solutions to the transition 

probabilities, contra Varadarajan et al. (2008) and their justification for GSimulator’s design.  Even 

with dependence among sites in the sequence, the evolution from one sequence to another can still be 

described by a Markov chain, and the instantaneous rates of various events are easy to calculate. Thus, 

it should be straightforward to simulate the process.  Nevertheless, such processes are poorly 

understood at present, and the lack of any suitable inference tools to analyze real data makes it 

difficult to obtain reliable parameter estimates under such models.   



 94

2.9 Implementation Details and Program Availability 

INDELible, now in version 1.04, is written in standard ANSI C++, and has been tested on Windows, 

Mac OS X and Linux systems.  Pre-compiled executables are provided for Mac OS X and Windows 

while the C++ source code is provided for compilation on UNIX systems.  The program is distributed 

free of charge (for academic use) at the web site http://abacus.gene.ucl.ac.uk/software/indelible/ 

which also contains an extensive manual and tutorial with examples. 
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Chapter 3  

The Effect of Insertions, Deletions and Alignment 

Errors on the Branch-Site Test of Positive Selection 
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3.1 Introduction 

The nonsynonymous to synonymous substitution rate ratio (ω) can be used to measure the selective 

pressure on the protein.  A ratio ω < 1 indicates purifying selection acting to preserve the amino-acid 

sequence, whereas a neutrally evolving sequence will exhibit ω ≈ 1, and ω > 1 represents positive 

selection driving the fixation of amino-acid changes. 

Many methods have been developed that aim to detect positive selection that affects specific 

lineages (Messier, Stewart 1997; Zhang et al. 1997; Yang 1998) or a subset of sites (Nielsen, Yang 

1998; Suzuki, Gojobori 1999; Yang et al. 2000), but both approaches may lack power.  In the branch 

test, positive selection is detected on the branch only if ω averaged over all sites is significantly 

greater than 1, and similarly the site test will detect positive selection only if the ω ratio averaged over 

all branches on the tree is greater than 1.  As a result both tests have generally been superseded by 

more powerful tests that are designed to detect episodic positive selection that affects only a few 

amino-acid residues on a few lineages (Yang, Nielsen 2002; Guindon et al. 2004; Yang et al. 2005).  

The original branch-site test (Yang, Nielsen 2002) was found to generate excessive false positives 

when model assumptions were violated (Zhang 2004).  However, a modified version (Yang et al. 

2005) was found to have reasonable power and an acceptable false positive rate under a variety of 

selection schemes (see Zhang et al. 2005 and below).  This modified test has been widely used, for 

example, to investigate the adaptive evolution of genes underlying schizophrenia (Crespi et al. 2007) 

and possible positive selection affecting human disease genes (Vamathevan et al. 2008).   

Although previous studies noted that different alignment methods may lead to different 

conclusions concerning detection of positively selected sites (Wong et al. 2008), and that alignment 

problems as well as poor sequence quality can cause spurious detection of positive selection by the 

branch-site test (Schneider et al. 2009; Mallick et al. 2010), the effects of insertions, deletions and 

alignment errors on the branch-site test have not been systematically examined.  In this chapter I use 

the recently-developed simulation program INDELible (chapter 2, Fletcher, Yang 2009) to generate 

datasets under codon models incorporating indels to examine the performance of the test.  The study 

is an update of Zhang et al. (2005).  The effect of indels is examined by analysis of the true 
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alignments and the effect of alignment errors by analysis of alignments generated using alignment 

programs, including PRANK (Löytynoja, Goldman 2005; Löytynoja, Goldman 2008), MUSCLE 

(Edgar 2004), MAFFT (Katoh, Toh 2008b) and ClustalW (Larkin et al. 2007). 

 

3.2 Method 

3.2.1 The Branch-Site Test of Positive Selection 

I refer the reader to the original papers (Yang, Nielsen 2002; Yang et al. 2005) for further details of 

the branch-site test of positive selection.  The model assumes that the branches on the phylogeny are 

divided a priori into foreground branches where some sites may be under positive selection and 

background branches where positive selection is absent.  The model assumes four site classes (table 

3.1).  Site class 0 (with proportion p0) includes codons that evolve under purifying selection on all 

lineages, with 0 < ω0 < 1.  Site class 1 (with proportion p1) includes codons that evolve neutrally 

throughout the tree, with ω1 = 1.  Codons in site classes 2a and 2b (with proportion 1 – p0 – p1) are 

under positive selection on the foreground branches, with ω2 > 1, but are conserved or neutral on the 

background branches.  The model involves four parameters in the ω distribution that are estimated 

from the data: p0, p1, ω0 and ω2.  This branch-site model is the alternative hypothesis in the likelihood 

ratio test (LRT), and the null hypothesis is the same model but with ω2 = 1 fixed.   

 

Table 3.1: The Branch-Site Model 

Site Class Proportion Background Foreground 

0 p0 0 < ω0 < 1 0 < ω0 < 1 

1 p1 ω1 = 1 ω1  = 1 

2a (1 – p0 – p1) p0 /( p0 + p1)    0 < ω0 < 1 ω2  ≥ 1 

2b (1 – p0 – p1) p1/( p0 + p1) ω1 = 1 ω2  ≥ 1 

NOTE – This model is the alternative hypothesis for the branch-site test  

of positive selection.  The null model is the same except ω2 = 1 is fixed. 
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If the null hypothesis is true, twice the difference in log-likelihood between the two models (2∆ℓ) 

should follow an asymptotic distribution that is a 50:50 mixture of point mass 0 and 
2

1χ , with critical 

values of 2.71 and 5.41 at the 5% and 1% levels, respectively (e.g. Self, Liang 1987).  I follow Zhang 

et al. (2005) and use 2

1χ  to conduct the test, with critical values of 3.84 and 5.99.  This makes the test 

more conservative.   

If the null hypothesis is rejected, a Bayes empirical Bayes (BEB) approach can be used to 

calculate the posterior probabilities that each site has evolved under positive selection on the 

foreground lineages (Yang et al. 2005). 

 

3.2.2 Computer Simulation 

INDELible (Fletcher, Yang 2009) was used to generate both the unaligned sequences and the true 

alignment.  For easy comparison I followed Zhang et al. (2005) and used the two rooted trees shown 

in figure 3.1.  One branch on the tree is designated the foreground branch while the others are the 

background branches.  The transition/transversion rate ratio is fixed at κ = 4.  Different from Zhang et 

al. (2005), the number of replicates used is 1000 (instead of 200), the root sequence length is 300 

codons (instead of 200), and the number of sites in each site class is random instead of being fixed.  

The stationary codon frequencies are those calculated from the base compositions at the three codon 

positions in a dataset of five α and β mammalian globin gene sequences (dataset abglobin.nuc in 

PAML, Yang 2007b).   

As in Zhang et al. (2005), the simulation model assumes 10 site classes.  The background branch 

always uses selection scheme X, while the foreground branches use one of schemes X, Y, Z, U or V 

(table 3.2).  The ω values for site classes under the different selection schemes are listed in table 3.2  

Schemes X, Y, and Z do not allow any sites under positive selection with ω > 1 while schemes U and 

V do.  Scheme X assumes some neutral sites (with ω = 1) and other sites subject to varying degrees of 

negative selection (with ω < 1).  Scheme Y represents a partial relaxation of functional constraints 

where some sites have higher ω values than in scheme X.  In scheme Z all sites have ω = 1,  
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representing a complete relaxation of functional constraints.  This is a very unrealistic scheme for any 

functional protein, but is included partly because it may cause the test to generate false positives.  In 

scheme U, some sites that experienced purifying selection in scheme X become positively selected, 

whilst scheme V differs from scheme X in a more complicated manner with some sites having lower 

ω and some having higher ω.   

The molecular clock (rate constancy) holds for the synonymous substitution rate in both trees.  In 

this study, as in Zhang et al. (2005), branch lengths are defined as the number of synonymous 

substitutions per synonymous site (dS).  For example, each branch in tree I represents about 10% of 

divergence at synonymous sites and, for the background scheme X with average ω = 0.5 (table 3.2), 

5% of divergence at nonsynonymous sites.   

 

 

 

Figure 3.1:  Two model trees used in computer simulation  

Branch lengths are drawn to scale, in terms of the number of synonymous substitutions per 

synonymous site.  Greek letters indicate the foreground branches used in the simulation.   

Tree I Tree II
γ

β

α

α

α

δ

β

γ

0.00.2 0.10.30.4 0.00.2 0.10.30.4

Tree I Tree II
γ

β

α

α

α

δ

β

γ

0.00.2 0.10.30.4 0.00.2 0.10.30.4 0.00.2 0.10.30.4 0.00.2 0.10.30.4 0.00.2 0.10.30.4 0.00.2 0.10.30.4



 100

However, INDELible defines branch lengths as the average number of substitutions per codon (t).  

They are related approximately by  

t = 3(NdN + SdS) = 3dS (ωN + S) ≈ 3dS(0.5 × 0.7 + 0.3) = 1.95dS 

(Yang, Nielsen 2000), where N and S are the proportions of nonsynonymous and synonymous sites 

with S ≈ 0.3 when κ = 4 (see fig. 3 of Yang, Nielsen 1998), and ω = 0.5 is the average ω for the 

background scheme X.  Therefore, for example, when a branch length of dS = 0.1 is quoted in this 

study I have used t = 0.195 in INDELible.  For simulations that included indels, the rates of insertion 

and deletion were set to be equal (λI = λD), and the ratio of substitutions to indels was similar to 

estimates in the literature, with λS/(λI + λD) = 10 (e.g. Ogurtsov et al. 2004).  A geometric distribution 

was used to model insertion and deletion lengths, with parameter q = 1 – p = 0.35 chosen as it was 

deemed an adequate fit to published data on indels for protein coding sequences in mammalian 

genomes (e.g. Taylor et al. 2004). The mean of this distribution is 1 1.54p =  codons, and the standard 

deviation is 0.91q p = . 

 

Table 3.2: The ω Values for the Different Selection  

Schemes Used in Computer Simulation 

Site Class 

Selection Schemes 

X Y Z U V 

1 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 0.70 

3 0.80 1.00 1.00 4.00 4.00 

4 0.80 0.90 1.00 0.80 0.80 

5 0.50 1.00 1.00 2.00 2.00 

6 0.50 0.75 1.00 0.50 0.50 

7 0.20 1.00 1.00 0.20 0.30 

8 0.20 0.60 1.00 0.20 0.20 

9 0.00 1.00 1.00 0.00 0.10 

10 0.00 0.50 1.00 0.00 0.00 

Average ω 0.50 0.88 1.00 0.97 0.96 

 

NOTE – The proportion of each site class is 1/10. 
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A random DNA sequence of 300 codons was generated at the root of the tree, by sampling from 

the stationary distribution and from the site classes specified in the ω scheme.  The sequence is then 

“evolved” along the branches of the tree by simulating insertions and deletions, as well as 

substitutions.  To preserve the reading frame, only insertions and deletions of whole codons are 

allowed.  When new codons are inserted they are assigned to one of the 10 site classes at random.  

INDELible records the insertions and deletions that occurred on the tree, generating the sequences for 

the tips of the tree as well as the true alignment. 

The sequences at the tips of the tree are aligned using the default options of the programs PRANK  

(version 081202, Löytynoja, Goldman 2005), MAFFT (version 6.716, Katoh, Toh 2008b), MUSCLE 

(versions 3.7 and 4, Edgar 2004) and ClustalW (version 2.0.11, Larkin et al. 2007).  The guide tree is 

calculated by those programs, and I did not provide the true tree to the alignment program as this 

option is not often available in real data analysis.  To avoid out-of-frame indels, the codon sequences 

were translated into amino-acid sequences, aligned, and then “back-translated” into codon alignments.  

In addition I used PRANK’s “codon” option that uses the empirical codon model (ECM, Kosiol et al. 

2007) to directly align the codon sequences whilst preserving the reading frame.  This shall be 

referred to as PRANK (codon), with PRANK (aa) referring to the amino-acid based alignment. 

The aligned codon sequences were analyzed using codeml from the PAML package (Yang 

2007b).  Besides the estimated alignments, I also analyzed the true alignments.  This allowed me to 

evaluate the impact of insertions and deletions (in the true alignments) separately from that of 

alignment errors.  Alignment gaps are either removed or kept.  In the latter case, they are treated as 

missing data.  The correct tree topology and correct identification of the foreground branches was 

assumed.  The branch lengths on the unrooted tree were estimated by maximum likelihood without 

assuming the molecular clock.  Then LRTs were performed at the 5% significance level, as described 

earlier.  Analysis of each dataset was conducted three times, with different initial values used for the 

numerical optimization to guard against codeml getting stuck in local maxima.  In ~98% of datasets 

all three analyses produced identical log-likelihood values, while in the remaining cases the largest 

log-likelihood value was used in the LRT. 
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3.2.3 Measures of Alignment Quality 

In order to investigate the effect of alignment errors on the branch-site test I used two measures of 

alignment accuracy: the total column score (TC) and the sum of pairs score (SPS).  TC is the 

proportion of columns from the true alignment that are reproduced exactly in the test alignment, and 

SPS is the proportion of aligned codon pairs from the true alignment that are also aligned together in 

the test alignment (Thompson et al. 1999a).  TC is more stringent than SPS.  For the true alignment, 

TC = SPS = 1.   

 

3.3 Results and Discussion 

3.3.1 False-Positive Rate of the Branch-Site Test Under Models of Relaxed Constraints 

I investigated the false-positive rate of the test when the data were simulated using one of schemes X, 

Y or Z as the foreground scheme (table 3.2).  The background scheme was always X.  Thus the data 

were generated without positive selection but the null hypothesis of the test is violated because the 

selection scheme is more complex than assumed by the null model.  Note that the branch-site model is 

designed to test whether any residues in the protein experienced positive selection along the 

foreground branches (with ω > 1), and is not intended to infer the detailed selection scheme on every 

branch or to estimate the ω ratio for every site and every branch.  The latter task is hardly achievable 

due to lack of information in typical datasets (c.f. Guindon et al. 2004).  

I analyzed the data first with alignment gaps treated as missing data, and then with gaps removed.  

The results are presented in table 3.3.  The first set of analyses (column headed “No indels”) was 

conducted on datasets generated without indels in order to establish a baseline by which I could 

evaluate the effects of indels and alignment errors.  The false positive rate ranged from 0-4%, all 

below the nominal 5%.  The results are similar to those of Zhang et al. (2005), even though there are 

differences in the two simulation experiments (in the number of codons, in codon usage frequencies 

and in the use of fixed vs. random number of sites in each site class).  A second set of analyses was 

conducted on the true alignments of data generated with indels (column headed “True Alignment”).  

The false positive rate was also low, at 0-4%.  Next I analyzed the estimated alignments.  The false
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positive rates were 2-13% for PRANK (codon), 4-29% for PRANK (aa), 7-65% for MAFFT, 17-58% 

for MUSCLE v4, 9-73% for MUSCLE v3.7, and 12-100% for ClustalW.  Finally another set of 

analyses was performed on the same alignments after removing columns that contained gaps (using 

the cleandata option in codeml).  With this approach, the false positive rates were 0-6% for the true 

alignments, and 2-10% for PRANK (codon), 3-21% for PRANK (aa), 6-45% for MAFFT, 11-46% for 

MUSCLE v4, 8-53% for MUSCLE v3.7, and 10-99% for ClustalW.  

The results indicate that insertions and deletions do not cause the branch-site test to generate 

excessive false positives if the alignment is correct: the false positive rates were at or below 5% in all 

cases, and were very similar for the data generated with and without indels.  However, false positives 

were often unacceptably high when the alignments were generated using the alignment programs.  

PRANK (codon) consistently produces the lowest false positives. This may be because the codon-

based ECM model it uses to score substitutions is inherently superior to those used to score amino-

acids in the other methods. However, I would be remiss not to mention that it could be, at least in part, 

that the codon-based ECM model is simply the most appropriate scoring scheme for aligning the 

sequences generated under the similar codon-based models used in INDELible. At any rate PRANK 

can still be considered superior since PRANK (aa), which does not share this potential advantage, 

tends to produce the second lowest false positives. The two versions of MUSCLE, and MAFFT, come 

in third, fourth and fifth (none being clearly superior), and ClustalW generally performs worst.  

PRANK was the only method that had any false positive rates below 5%.  Compared with the true 

alignment, PRANK has room for improvement. 

I conducted two simulations to investigate the robustness of the branch-site test to more complex 

variations in the ω ratio across lineages in the tree.  I tested whether the branch-site test would be 

misled to produce false positives, in the presence of indels, when the foreground branch is not under 

positive selection but is surrounded in the phylogeny by background branches that are under positive 

selection.  As in Zhang et al. (2005) I used tree II with foreground branch β and foreground scheme 

X.  All other branches are background branches evolving under scheme X, except for the two internal 

branches adjacent to branch β which evolved under scheme V (table 3.2).  In the second simulation, 

all three branches neighbouring branch β evolved under scheme V.  With the true alignment the false 
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positive rate was ~0.01 in both simulations.  As in Zhang et al. (2005), the branch-site test is robust 

and not misled by positive selection on branches close to the foreground branch of interest, even in 

the presence of indels and unequal codon frequencies. 

Alignment quality is known to be closely related to sequence divergence.  To investigate the 

effect of sequence divergence on the false-positive rate of the test, I kept the indel/substitution rate 

ratio constant, and proportionally decreased the branch lengths in tree I to generate data at different 

divergence levels, using foreground branch α and foreground scheme X.  Figure 3.2 shows the false 

positive rate and alignment quality plotted against the sequence divergence, measured by the 

synonymous branch length dS (note that all branches in tree I have the same length).  The results when  

 

 

Figure 3.2:  False positive rate and alignment accuracy 

The false positive rate (top) and alignment accuracy (bottom) for the different alignment methods, 

plotted against sequence divergence as measured by the synonymous branch length (dS) on Tree I.  

Branch α in Tree I was the foreground branch, with scheme X used for all branches.  Alignment gaps 

were treated as missing data. 
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alignment gaps were removed were very similar and thus not shown.  For all alignment methods, the 

false positive rate decreased and alignment accuracy increased as sequences became less divergent.   

I also simulated data with insertions but no deletions and with deletions but no insertions.  

MUSCLE, MAFFT and ClustalW were found to generate fewer false positives when there were 

deletions only, but more false positives when there were insertions only (table 3.3).  This result is 

consistent with the observation that a major problem with programs like ClustalW, MAFFT and 

MUSCLE is that they do not deal with insertions properly, penalizing the same insertion event 

multiple times during the progressive alignment algorithm, while they deal with deletions more or less 

appropriately (Löytynoja, Goldman 2005).  For PRANK the pattern was the opposite.  At any rate, 

whether there were deletions or insertions only, PRANK (codon) always had the lowest false 

positives, PRANK (aa) always came second, and ClustalW had the highest false positives, with 

MAFFT and the two versions of MUSCLE falling in-between. 

 

3.3.2 Power of the Branch-Site Test in Detecting Positive Selection 

To test how often the branch-site test correctly identifies positive selection on the foreground 

branches, I conducted simulations using either scheme U or V for the foreground branch.  Scheme X 

is always used for the background branches.  The results are shown in table 3.4.  Again, use of the 

true alignments for data with indels produced very similar results to simulations without indels.  For 

tree I, the power was 5-11% for data generated without indels, and 4-11% for data with indels (table 

3.4).  Similarly, in tree II the power was 1-32% without indels, and 1-33% with indels.  Whilst these 

are relatively low detection rates, it should be noted that the average ω across all sites on the 

foreground branch under both schemes U and V is <1, and the average ω over all branches on the tree 

is never greater than 1 for any site class. 

Next I analyzed the alignments generated with the six alignment methods.  The power was 10-

67% for PRANK (codon), 12-85% for PRANK (aa), 17-95% for MAFFT, 21-93% for MUSCLE v4, 

20-94% for MUSCLE v3.7, and 22-100% for ClustalW.  If the gaps were removed, the power became 

1-26% for the true alignments, 6-49% for PRANK (codon), 10-74% for PRANK (aa), 12-85% for 
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MAFFT, 16-82% for MUSCLE v4, 12-84% for MUSCLE v3.7, and 17-99% for ClustalW.  Thus 

methods that had high false positives when there was no positive selection also had high true positives 

when there was positive selection.  The conflicts between the accuracy and power of the test are 

considered in the next section, but in the rest of this section, I mainly focus on the true alignments and 

PRANK alignments. 

I investigated the effect of sequence divergence on the power of the test. This was done in the 

same manner as in figure 3.2, except that I now use scheme U in place of scheme X for the 

foreground branch.  The results are shown in figure 3.3.  Power decreased and alignment accuracy 

increased as sequences became less divergent.   

 

 

 

Figure 3.3:  Power and alignment accuracy 

The power (top) and alignment accuracy (bottom) for the different alignment methods, plotted against 

sequence divergence as measured by the synonymous branch length (dS) on Tree I. Foreground branch 

α and foreground scheme U were used on Tree I. Alignment gaps were treated as missing data.  
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It may be expected that the method should be able to infer recent substitutions more reliably than 

ancient ones, and therefore it should be harder to detect positive selection on branches deeper in the 

phylogeny.  This intuition appears to be correct for both schemes on both trees -- in tree I the power is 

higher for branch γ than for branch β, and in tree II the power is higher for branch γ than for branch β, 

and higher for branch β than for branch α.  However, the length of the foreground branch had a much 

greater effect -- the branch-site test had greater power for branch α, the deepest branch in tree I, than 

for either of the shorter and more recent branches β and γ, and in tree II the test had much greater 

power for the longer branch δ than for any of the shorter branches α, β, and γ.   

To investigate the effect of foreground branch length, I performed further simulations with the 

length of branch β in tree II increased from 0.05 to 0.15, or 0.45.  Under these conditions the power of 

the test increased by twofold to sevenfold over the different alignments.  When the foreground branch 

becomes too long I would expect the power to decrease because of saturation of substitutions.  

Furthermore, I expect the power to increase when the same sites are under positive selection on 

several branches.  To test this I applied the same selection scheme to branches γ and δ on tree II, and 

identified both as foreground branches when running codeml.  Power was substantially higher than 

when γ or δ alone was the foreground branch (table 3.4) for both the true alignment and the PRANK 

(codon) alignment. 

I also expect the power to be higher if the positive selection is stronger (with higher ω ratios) or if 

more sites are under positive selection.  This was indeed the case.  I conducted two sets of simulations 

using tree II, foreground branch β (with length 0.15), and foreground scheme V, to examine such 

effects.  In the first set, I increased the ω ratios for site classes 3 and 5 from 2 and 4 to 4 and 8 

respectively (table 3.2).  For the true alignment power increased by more than threefold, while for the 

estimated alignments, the increase was 13-68%.  In the second set of simulations I increased the 

length of the root sequence from 300 to 900 codons, with 3 times as much data as before.  For the true 

alignment power increased more than twofold, with similar increases for PRANK. 

 



110 

 

3.3.3 Which Alignment Method is Best for Detecting Positive Selection? 

A commonly used procedure for evaluating a test is the ROC (Receiver Operating Characteristic) plot.  

An example is shown in figure 3.4 for simulations using branch α on tree I as the foreground branch.  

Scheme X was used for the foreground to calculate the false positive rate and U was used to calculate 

the true positive rate.  Schemes X and U differ only in the positively selected site classes, and can thus 

be used for a fair comparison.  ROC curves that bulge towards the top left corner indicate a good 

predictor.  It has been suggested that the area under the ROC curve (AUC) can be used as a summary 

to measure the performance of a method (Ling et al. 2003).  Note that AUC = 0.5 for a random guess 

and =1 for a “perfect” method that makes no mistakes.  I then calculated the AUC for each alignment 

method and foreground branch combination using the trapezoidal method (Hanley, McNeil 1983).   

 

Figure 3.4:  Example ROC curves  

ROC curves for the the six alignment methods, and the true alignment, when using foreground branch 

α and tree I. The true positive rate is generated under foreground scheme U, and the false positive rate 

is generated under foreground scheme X. The box shows a section of the curve for the true alignment. 

No graphical smoothing has been used. Each individual segment of the curve is a very small vertical 

(or horizontal) line signifying the branch-site test has correctly (or incorrectly) deemed that positive 

selection occurred in one further simulated dataset as the significance level of the test is increased.  
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The results are shown in table 3.5 for analyses where gaps were kept and in table 3.6 for analyses 

where gaps were removed. 

For the true alignment, AUC was smaller when gaps were removed than when they were kept, 

regardless of the tree or foreground branch. This is consistent with the expectation that given the 

correctness of the alignment, removing gap columns amounts to reducing the amount of data 

available.  For the estimated alignments, one aim of removing gaps is to reduce the alignment errors 

 

Table 3.5: 

AUC values for the ROC analysis (Gaps Removed) 

Tree FGB
a
 

True 

Alignment 

PRANK 

(codon) 

PRANK 

(aa) MAFFT 

Muscle 

v4 

Muscle 

v3.7 

ClustalW 

2.0.11 

I α 0.651 0.634 0.641 0.605 0.615 0.617 0.583 

I β 0.593 0.590 0.566 0.551 0.547 0.554 0.521 

I γ 0.625 0.622 0.617 0.600 0.573 0.584 0.579 

I C 0.623 0.615 0.608 0.584 0.578 0.582 0.541 

II α 0.539 0.532 0.518 0.525 0.520 0.511 0.524 

II β 0.551 0.567 0.556 0.554 0.543 0.538 0.546 

II γ 0.646 0.646 0.660 0.666 0.601 0.648 0.645 

II δ 0.699 0.670 0.678 0.641 0.620 0.657 0.606 

II C 0.609 0.602 0.562 0.593 0.571 0.587 0.570 

a
 FGB = Foreground Branch.  

b
 C = Combined dataset of all foreground branches on the tree.   

 

Table 3.6: 

AUC values for the ROC analysis (Gaps Kept) 

Tree FGB
a
 

True 

Alignment 

PRANK 

(codon) 

PRANK 

(aa) MAFFT 

Muscle 

v4 

Muscle 

v3.7 

ClustalW 

2.0.11 

I α 0.658 0.642 0.632 0.614 0.625 0.630 0.609 

I β 0.599 0.584 0.583 0.570 0.575 0.570 0.532 

I γ 0.643 0.631 0.627 0.604 0.592 0.600 0.577 

I C 0.633 0.619 0.614 0.593 0.596 0.596 0.545 

II α 0.541 0.544 0.523 0.527 0.515 0.514 0.525 

II β 0.569 0.575 0.566 0.551 0.544 0.547 0.531 

II γ 0.666 0.692 0.689 0.680 0.618 0.670 0.666 

II δ 0.746 0.726 0.701 0.654 0.634 0.670 0.616 

II C 0.630 0.631 0.613 0.598 0.578 0.595 0.570 

a FGB = Foreground Branch.  b C = Combined dataset of all foreground branches on the tree.   
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and the false positives of the test.  However, it had this effect in only 6 out of the 42 combinations of 

alignment method, tree, and foreground branch (twice for ClustalW, and once for each of Muscle v4, 

MAFFT and the two PRANK variations).  Removing gaps before applying the branch-site test was 

thus ineffective in reducing alignment errors or false positives. 

I thus focus on table 3.6, where gaps were kept.  For tree I the average AUC values were 0.633 for 

the true alignment, 0.619 for PRANK (codon), 0.614 for PRANK (aa), 0.596 for the two versions of 

Muscle, 0.593 for MAFFT, and 0.545 for ClustalW.  For tree II they were 0.630 for the true 

alignment, 0.631 for PRANK (codon), 0.613 for PRANK (aa), 0.598 for MAFFT, 0.595 for Muscle 

v3.7, 0.578 for Muscle v4 and 0.570 for ClustalW.  These values are shown in figure 3.5 (for tree I) 

and figure 3.6 (for tree II) with binomial exact 95% confidence intervals (as vertical bars). Also the 

standard errors, calculated according to the method of (DeLong et al. 1988), are shown below (in the 

bar charts). The AUC values thus indicated that PRANK (codon) was the superior alignment method 

among those tested, followed by PRANK (aa), MAFFT and Muscle, with ClustalW to be the poorest.  

I consider the false detection of positive selection (false positive) to be a more serious error than a 

failure to detect positive selection (false negative), as this may lead to wasted time, effort, and funding 

being devoted to downstream research. Therefore, I suggest that a test with excessive false positives 

(with rate >20%, say) be avoided in real data analysis.  With this viewpoint, the differences among the 

methods look even greater than suggested by the AUC values.  For example, only PRANK had the 

false positive rate under control in some datasets (table 3.3), but even PRANK leaves room for 

improvement.  The rankings of the alignment methods are nevertheless the same whether I use the 

false positives or the AUC values.   It should be noted that the validity of AUC has come into 

question, with some claiming it to be misleading measure (Lobo et al. 2008) because, for example, it 

summarises the test performance over regions of the ROC space in which one would rarely operate 

and it weights false negatives in the same way as false positives. However, if I was to give greater 

weight to certain regions of the ROC curves, to favour avoidance of false positives, the AUC value 

differences would become more, not less, exaggerated and the same would also happen if we were to 

employ partial ROC curves (Walter 2005), in the region with false positives < 20% say. Therefore, I 

feel the use of AUC in this study is justified and the conclusions are sound. 
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Figure 3.5:  AUC values on Tree I when gaps are kept  

Average AUC values for each alignment method (and the true alignment) on Tree I. The vertical 

capped lines are binomial eaxact 95% confidence intervals. The vertical bars below the scatter plot are 

the standard errors for each alignment. 



114 

 

 

 

 

 

Figure 3.6:  AUC Values on Tree II when gaps are kept 

Average AUC values for each alignment method (and the true alignment) on Tree II. The vertical 

capped lines are binomial eaxact 95% confidence intervals. The vertical bars below the scatter plot are 

the standard errors for each alignment. 
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3.3.4 Performance of BEB in Identifying Positively Selected Sites 

When the branch-site test of positive selection is significant the BEB procedure (Yang et al. 2005) can 

be used to calculate the posterior probability that a particular codon belongs to the class of positive 

selection.  A codon with a high posterior probability is likely to have been evolving under positive 

selection on the foreground branches.  I calculated the average frequency at which a codon was 

identified as being under positive selection using 95% or 99% cut-offs.  I analyzed only the true 

alignments because alignment errors cause sites from different classes to be aligned together, making 

the calculations difficult.  I only performed the BEB analysis on datasets in which the LRT was 

significant at the 5% level.   

If BEB is conservative when evaluated under the Frequentist criterion (see Yang et al. 2005) one 

would expect the false positives to occur less than 5% of the time at the 95% cut-off, and less than 1% 

of the time at the 99% cut-off.  This was found to be true for datasets generated with indels, and with 

no positive selection (table 3.3), in 45 of 46 cases. 

For the 23 cases where datasets were generated without indels, and under selection schemes X, Y 

or Z, the false positive rates were sometimes higher – at 6-7% for 2 cases at the 95% cut-off, and 1-

2% for 5 cases at the 99% cut-off.  For all simulations with positive selection (table 3.4) the false 

positive rate was very low (<0.1% at both cut-offs).  However the power of BEB in detecting 

positively selected codons was also very low, at ≤1% in all but one case. 

 

3.3.5 Alignment Accuracy 

The selection schemes and root sequence length had little effect on alignment accuracy.  Thus I 

averaged over the simulation conditions and present the results for each tree (table 3.7).  The 

alignment accuracy is in the order PRANK (codon) > PRANK (aa) > MUSCLE v4 & MUSCLE v3.7 

& MAFFT > ClustalW (table 3.9).  This is the case for both trees and for all different simulation 

conditions (results not shown).  This ranking was observed in ~100% (TC) and 88% (SPS) of the 

replicates for tree I, and 87% (TC) and 43% (SPS) of the replicates for tree II.  PRANK (codon) was 

clearly the best among the alignment methods examined here on most datasets.  MAFFT was better 
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than MUSCLE in most cases, but the relative performance of the two versions of MUSCLE was less 

clear.  On average, TC judged MUSCLE v3.7 as better on tree I but worse on tree II, whilst SPS 

scored the two methods very similarly for both trees (table 3.9).  It is noted that MUSCLE v4 is 

experimental.  Overall, the order of alignment accuracy is exactly the opposite of the order for the 

false positive rate discussed before.  

To understand the nature of the alignment errors, I simulated datasets similarly to figure 3.3, but 

kept the substitution rate λS constant while increasing the indel rate λI + λD (with λI = λD).  I then 

calculated the average alignment length and the average number of distinct codons in a column after 

removal of columns with gaps.  The programs MAFFT, MUSCLE and ClustalW produced much 

shorter alignments than the true alignments, while PRANK alignments were of a similar length 

(results not shown).  The number of distinct codons in a column is shown in figure 3.7.  This ranges 

from 1 to 16 for my data with 16 sequences.  For the true alignment, the number remained roughly 

constant regardless of the indel rates.  For PRANK (codon) and PRANK (aa), this number is similar 

to that for the true alignment.  For MAFFT, MUSCLE and ClustalW, this number is much greater, 

especially at high indel rates.  Those results are consistent with the observation of Loytynoja and 

Goldman (2005) that the main problem with those poor alignment methods is that they place 

nonhomologous codons (amino acids) into the same column.  As such alignment errors remain after  

 

Table 3.7: Alignment Accuracy for Different Alignment Methods 

 Average accuracies   Insertions or Deletions only 

 Total Column 

Score (TC) 

 Sum of Pairs 

Score (SPS) 

 Insertions 

(Tree I) 

 Deletions 

(Tree I)  

  Tree I Tree II   Tree I Tree II  TC SPS  TC SPS 

True Alignment 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

PRANK (codon) 0.79 0.63  0.95 0.91  0.83 0.96  0.73 0.94 

PRANK (aa) 0.71 0.54  0.94 0.90  0.75 0.94  0.64 0.93 

MAFFT 0.56 0.47  0.91 0.89  0.64 0.89  0.61 0.91 

Muscle v4 0.42 0.44  0.88 0.86  0.42 0.87  0.50 0.90 

Muscle v3.7 0.46 0.40  0.88 0.88  0.46 0.89  0.41 0.89 

ClustalW 2.0.11 0.25 0.22  0.71 0.75  0.21 0.67  0.35 0.80 

NOTE. Simulations where root sequence length, branch lengths, or insertion/deletion  

    rates were changed are excluded from the average accuracies. 
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gaps are removed, the strategy of removing gaps to reduce the false positive rate of the test is 

ineffective (table 3.2). The nature of the alignment errors as discussed above suggests that the site 

models (Nielsen, Yang 1998; Yang et al. 2000) may be similarly affected by alignment errors, 

although site models are not examined in this study.  The impact of the alignment errors on the branch 

model (Yang 1998) appears to be more complex and may depend on the location of the foreground 

branch in the tree or whether errors are introduced when sequences on one side of the foreground 

branch are aligned against sequences on the other side.  

The empirical codon model (ECM, Kosiol et al. 2007) underlying PRANK (codon) was 

derived from the PANDIT database (Whelan et al. 2006), which has an average ω of 0.192 (Kosiol et 

al. 2007).  Thus PRANK (codon) should be more successful at aligning codons under selective 

constraint than those under positive selection. Similar bias may be expected for Prank (aa), MAFFT, 

MUSCLE and ClustalW, as they use empirical amino acid substitution/exchange matrices derived 

from large databases dominated by purifying selection.   

 

 

Figure 3.7: Average number of different codons per column for different alignment methods 

The number of distinct codons per alignment column plotted against the indel/substitution rate ratio 

for simulations when the substitution rate λS was fixed.  Tree I was used with scheme X for both 

foreground and background branches.  Alignment gaps were removed.   
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Furthermore, conserved amino acids correspond to less variable codons which are easier to align.  

In sum, codons under positive selection or under weak constraint are expected to be most prone to 

alignment errors.  This prediction was found to be true for all six alignment methods.  For example, 

figure 3.8 shows the alignment accuracy for codons in different site classes of scheme X for tree I for 

PRANK (codon).  Codons in site classes with lower ω ratios were aligned more accurately.  The 

background ω ratios had far greater effects on alignment quality than the foreground ω ratios.   

However, for a given site class with the same background ω ratio, alignment quality was slightly 

better for lower foreground ω ratios. 

 

 

 

 

Figure 3.8: Average alignment accuracy in different site classes for PRANK (codon) 

Average alignment accuracy for PRANK (codon) for codons in the ten site classes of background 

scheme X and for different foreground ω ratios.   Tree I was used.  The number above each column is 

the foreground ω ratio for that site class.  Other alignment programs showed a similar pattern. 
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Recently Hall (2008b) suggested that a measure of “consistency” known as the Heads-or-

Tails (HoT) score (Landan, Graur 2007) had a direct correlation with alignment accuracy, and that it 

can be used to choose between alignments produced by different methods.  The HoT score is the 

proportion of columns shared between the “Heads” alignment, generated from the original sequences, 

and the “Tails” alignment, generated from the reversed sequences.  On my data the HoT score chose 

MUSCLE v4 as the best method 93% of the time, while TC consistently favored PRANK (codon).  

This discrepancy appears to be due to the fact that PRANK breaks ties at random, while MUSCLE v4 

makes the same choices so that alignment errors are consistent.  I do not recommend the HoT score as 

a measure of alignment quality.   

 

3.3.6 Implications for Past Studies of Positive Selection 

What levels of sequence divergences may cause serious alignment errors and false detection of 

positive selection?  To get a rough idea about this question, I examined two recent studies of positive 

selection using the branch-site test, one using five mammalian species (human, chimp, dog, mouse 

and rat) (Vamathevan et al. 2008), and the other using a broader range of vertebrate species (five 

fishes, the Xenopus frog, the chicken, and at least four mammals) (Studer et al. 2008).  Both studies 

used MUSCLE v3 to construct the alignments and both removed columns with gaps before applying 

the branch-site test.  While Studer et al. re-aligned some of their genes using MAFFT and obtained 

highly similar results, I note that consistency between MAFFT and MUSCLE was not a good 

indication for high alignment quality in my simulations. 

The MUSCLE alignments for the 3,081 mammalian genes were provided by Jessica Vamathevan 

(pers. comm.).  The gene sequences were re-aligned using PRANK (codon), and both sets of 

alignments were analyzed using the branch-site test, with the human or chimpanzee lineages 

designated as the foreground branch.  Following Vamathevan et al. (2008), I used the 5% significance 

level and the Bonferonni correction for multiple testing (Anisimova, Yang 2007).  The initial analysis 

of Vamathevan et al. identified 69 (2.2%) and 354 (11.5%) genes under positive selection on the 

human and chimpanzee lineages, respectively (Vamathevan 2008: table 3.1).  The counts from my re-
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analysis of the same data were nearly identical, at 70 and 355.  My analysis of the PRANK (codon) 

alignments produced 33 (1.1%) and 83 (2.7%) genes for the human and chimpanzee branches, 

respectively, much smaller than for the MUSCLE alignments, indicating that the original MUSCLE 

alignments may involve substantial alignment errors.  Problems with the MUSCLE alignments were 

noted by Vamathevan et al., who applied a manual curation step and reported 54 (1.8%) and 162 

(5.3%) positively selected genes for the human and chimpanzee branches, respectively (Vamathevan 

2008, table 1).  These counts are much smaller than from the original MUSCLE alignments but are 

still much higher than those from the PRANK (codon) alignments. 

The MUSCLE alignments for 767 vertebrate genes were downloaded from 

http://bioinfo.unil.ch/supdata/Singleton.html  (Studer et al. 2008).  Both the original alignments and 

the PRANK (codon) re-alignments were analyzed using the branch-site test, with three foreground 

branches considered: the mammal lineage, the euteleosts lineage, or the boney vertebrate lineage.  

Studer et al. (2008) used the 1% significance level and identified 8%, 25%, and 31% of genes to be 

under positive selection along the three branches.  My re-analysis of the same original alignments 

produced 8%, 24% and 30%.  The counts were 6%, 16% and 18% from analysis of the PRANK 

(codon) alignments.  

Those comparisons suggest that mammalian and vertebrate gene sequences are divergent enough 

for the impact of alignment errors on the branch-site test to be a real concern.  This conclusion is 

consistent with the results of Schneider et al. (2009) and Mallick et al. (2010).  Many past studies 

detecting positive selection in divergent genes may benefit from a re-analysis using alignments 

generated from a more reliable method such as PRANK (codon).   

 

3.4 Conclusion 

In this study I investigated the accuracy and robustness of the branch-site test in the presence of 

insertions, deletions and alignment errors.  My results obtained from analyses of the true alignments 

suggested that indels have little effect on the performance of the branch-site test.  In the presence of 

indels the test is still robust to violation of model assumptions such as the existence of more than three 

site classes, more than one site class evolving under positive selection, or more than one kind of 
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background branch.  The BEB method for detecting positively selected sites was noted to have low 

false positives under such conditions.   

This study has highlighted the importance of alignment quality to detection of positive selection 

using the branch-site test.  In particular most current alignment programs tend to place 

nonhomologous codons (or amino-acids) in the same column, misleading the test into claiming 

excessive amino acid changes at those sites.  Removing alignment gaps helped to reduce false 

positives only slightly.  I found that PRANK was superior to MAFFT, MUSCLE and ClustalW.  In 

particular, PRANK (codon) produced the most accurate alignments, with the lowest false positive 

rates.  Nevertheless, even PRANK (codon) does not have the false positive rate under control.  It is 

hard to imagine tests of positive selection that are tolerant of gross alignment errors, and I suggest that 

it may be profitable to try and improve current alignment algorithms. 
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Chapter 4  

The Effect of Alignment Accuracy on  

Methods of Phylogeny Reconstruction 
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4.1 Introduction 

Phylogeny reconstruction is one of the oldest problems in studies of evolution (Haeckel 1866) and is 

amongst the most challenging statistical problems (Neyman 1971; Felsenstein 1978). Methods based 

on molecular sequences have been in use for over forty years (e.g. Fitch, Margoliash 1967a) and are 

now the main technique used for phylogeny inference. The alignment problem, that is estimating the 

homology between sites in different biological sequences, is confounded with the problem of 

phylogeny estimation. Therefore, many methods have recently been developed that try to find the 

solution to both problems simultaneously (e.g. Lunter et al. 2005; Suchard, Redelings 2006; Liu et al. 

2009b). However, the most commonly used strategy remains a two-phase process where homology 

between sites is estimated through the process of multiple sequence alignment (MSA), and the process 

of tree building (TB) is not considered until after the MSA has been calculated and fixed. 

Some studies involving real data have suggested that the choice of MSA method may have 

more impact on the resulting phylogeny than the choice of TB method (e.g. Morrison, Ellis 1997; 

Ogden, Whiting 2003). Despite claims like these, MSA methods are still often assessed using 

simulated data without giving consideration to the problem of TB (e.g. Pollard et al. 2004; Nuin et al. 

2006). Similarly, many attempts at using simulation to assess TB have been undertaken whilst 

ignoring the problem of MSA (e.g. Hillis 1995; Huelsenbeck 1995; Posada, Crandall 2002; 

Rosenberg, Kumar 2003). Even when biological realism is increased through the inclusion of 

insertions and deletions the “true” simulated alignment is often used which negates the need for an 

MSA (e.g. Dwivedi, Gadagkar 2009). Even if a study uses an MSA method to align the simulated data 

this still tells us nothing about the role that alignment errors may play if no comparison is made 

between the true alignments and the estimated alignments (e.g. Hall 2005).  

The few studies that have attempted to directly assess the role of MSA accuracy on 

downstream TB are often found lacking. For example, they may have focused on MSA and only used 

one method of TB (Roshan et al. 2006), or vice versa (Hall 2005; Ogden, Rosenberg 2006), whilst 

perhaps investigating only small trees (Ogden, Rosenberg 2006) or only balanced trees (Hall 2005). 

All of these studies generated their simulated data using computer programs (ROSE: Stoye et al. 

1998; MySSP: Rosenberg 2005b; EvolveAGene: Hall 2008a) that are known to handle insertions and 
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deletions incorrectly (Strope et al. 2009). The problem stems from the fact that these programs 

implement indel rates that depend on the sequence length at the last interior node, rather than rates 

that depend on the current sequence length as they properly should since the total rate is a sum over 

sites (see Discussion). This may have had some effect on the conclusions drawn from those studies. 

This investigation aims to address many of those issues. Firstly, the data is generated using 

INDELible (Fletcher, Yang 2009) which is one of the few simulation programs that updates indel 

rates correctly. Secondly, both balanced and pectinate tree shapes are used in the simulations to test 

whether alignment errors are more important for TB on pectinate trees as has been suggested before 

(Ogden, Rosenberg 2006). For each tree shape the complexity of the simulation is increased by 

progressively adding more taxa, by increasing branch lengths or indel rates, or by deviating from the 

molecular clock more and more severely. Thirdly, a total of 8 MSA alignment programs and 4 

methods of TB are tested. The MSA programs used were: PRANK  (Löytynoja, Goldman 2005); 

MAFFT (Katoh, Toh 2008b); MUSCLE (Edgar 2004); ProbConsRNA (Do et al. 2005); T-Coffee 

(Notredame et al. 2000); ClustalW (Larkin et al. 2007); and DIALIGN-TX (Subramanian et al. 2008). 

The TB methods used included: maximum likelihood (ML) with RAxML (Stamatakis 2006); 

maximum parsimony (MP) with DNAPARS
2
; distance calculation with DNADIST

1
 followed by 

neighbour joining (NJ) with NEIGHBOR1; and a novel alignment-free method (FST, see below).  

Comparison of the estimated alignments with the true alignment allows identification of 

which MSA methods are more accurate, and which types of dataset are harder to align. TB performed 

on these estimated alignments allows identification of which methods generate alignments that are 

conducive to recovering the most accurate tree. The additional use of the true alignment allows proper 

assessment of the accuracy of different TB methods when there are no alignment errors, and provides 

a benchmark for TB performed on the estimated alignments. Therefore, this study allows a full 

assessment of which methods are most accurate for each phase of the process; permits identification 

of the types of datasets that are particularly problematic (or otherwise) for each phase; and allows me 

to identify whether, in some situations, one of the phases is particularly important (or unimportant).  

                                                      

2
 DNAPARS, DNADIST and NEIGHBOR are all part of the PHYLIP package (Felsenstein, 2010) 
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4.2 Method 

4.2.1 Simulation Process 

Two basic ultrametric trees of 16 taxa were used as the starting point for all simulations. The basic 

balanced tree (figure 4.1a) had equal branch lengths of B 0.025t =  giving an overall tree length of 

0.75. The basic pectinate tree (figure 4.1b) was scaled to also have a tree length of 0.75, giving a basic 

branch length unit of P 1/180 0.0056t = ≈ . Five sets of simulations were performed. In the first set of 

simulations the number of taxa on each tree was changed. Explicitly, data was simulated on 

ultrametric balanced trees with 4, 16, 32, 64, 128 or 256 taxa, or on ultrametric pectinate trees with 4, 

6, 8, …, 46, 48 taxa, whilst keeping the values of Bt  and Pt  mentioned above constant. Figure 4.1 

shows how the 32 taxa balanced tree and the 18 taxa pectinate tree are related to the two basic 16 taxa  

 

 

Figure 4.1:  The two tree shapes used in simulation  

Two basic 16 taxa trees were used (solid lines). Both of these trees have a total length of 0.75. The 

basic branch lengths used were B 0.025t =  and P 0.0056t = . An example of how taxa were added to 

each of the trees is represented by the dotted lines. N.B. the estimated trees are unrooted. 

tP

tB

(a) (b) 
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trees. In the second set of simulations sequence divergence was increased by repeatedly adding 0.025 

or 0.0056 to the two basic branch length units Bt  and Pt , i.e. doubling the branch lengths, then 

tripling them, and so on. Branch lengths Bt  ≤ 0.6 and Pt  ≤ 0.1 were considered. The third set of 

simulations was similar, except only the relative rate of insertion and deletion was increased such that 

the branch length measured in expected substitutions remained constant. 

The fourth and fifth sets of simulations were designed to generate datasets that deviated from 

the molecular clock using two new features available in INDELible v1.04. In the fourth set, the trees 

became less and less ultrametric whilst keeping sequence divergence roughly constant. This was done, 

by making each branch length on the tree bigger or smaller, with equal probability, and repeating the 

process for each replicate dataset. The deviation factor (F) from the basic branch length units Bt  and 

Pt  was either ±10%, ±20%, …, ±100%, i.e. in the most extreme case branch lengths were either 

doubled or collapsed to zero. The fifth set of simulations was a little more complicated as they 

combined increasing sequence divergence with increasingly severe violation of the molecular clock. 

This was performed by randomly multiplying or dividing branch lengths (with equal probability) by a 

divergence factor k = 2, 3, …., 10. Again, this process was repeated for each replicate dataset. 

 For all combinations of tree shape and branch lengths the choice of substitution model and 

indel model was the same. For substitutions I used HKY (Hasegawa et al. 1984; Hasegawa et al. 

1985) with a transition/transversion rate ratio of κ = 4 and nucleotide frequencies of πT = 0.1, πC = 

0.2, πA = 0.3 and πG = 0.4. Gamma rate variation (Yang 1994b) was used with shape parameter α = 

0.5 and five discrete categories. Insertion and deletion lengths were both modelled by a truncated 

power law distribution with parameter a = 1.8 which is consistent with empirical estimates (Benner et 

al. 1993; Gu, Li 1995; Zhang, Gerstein 2003; Chang, Benner 2004; Yamane et al. 2006; Cartwright 

2009) and a maximum indel size of 100, giving a mean indel length of approximately 4.4. Insertion 

and deletion rates were both set at 0.05 relative to the substitution rate giving a substitution/indel rate 

ratio of 10.  INDELible was then used to generate both the unaligned sequences and the true 

alignment for 1000 replicate datasets of each combination of model and tree, with an initial root 

sequence of length 1000, sampled from the stationary nucleotide frequencies. 
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4.2.2 Multiple Sequence Alignment Methods and Measuring Alignment Accuracy 

The unaligned sequences generated by INDELible were subjected to MSA with one of 8 alignment 

programs. The MSA programs used were: PRANK  (version 091016, Löytynoja, Goldman 2005); 

MAFFT (version 6.716b, Katoh, Toh 2008b); MUSCLE (versions 3.7 and 4, Edgar 2004); ClustalW 

(version 2.0.11, Larkin et al. 2007); ProbConsRNA (version 1.1, Do et al. 2005); T-Coffee (version 

8.14, Notredame et al. 2000); and DIALIGN-TX (version 1.0.2, Subramanian et al. 2008). 

In each case the program’s default options were used unless a “slow and thorough” or “accurate” 

mode was available (e.g. “+F” in PRANK, or “--localpair” in MAFFT) . 

In order to investigate the effect of MSA errors on TB I used two measures of alignment 

accuracy: the total column score (TC) and the sum of pairs score (SPS).  TC is the proportion of 

columns from the true alignment that are reproduced exactly in the test alignment, and SPS is the 

proportion of aligned nucleotide pairs from the true alignment that are also aligned together in the test 

alignment (Thompson et al. 1999a).  I use both because one can think of scenarios where the two 

scores could disagree dramatically.  For example, consider first a dataset that contains very many 

closely related species and one very distantly related “orphan” sequence.  The resulting alignment 

may align the large number of similar sequences with great accuracy but sites in the one orphan 

sequence may be placed incorrectly.  Such an alignment would have a high SPS score but a low TC 

score, and one may feel that TC penalizes such an alignment too heavily.  In another case, consider a 

dataset containing two non-homologous groups of sequences, where sequences within each group are 

homologous and closely related.  In the true alignment the sub-alignments for each group would be 

placed opposite gaps in the other group.  If the two sub-alignments are incorrectly placed opposite   

each other in an estimated alignment then the TC score would be low.  However, the SPS score would 

be very close to that of the true alignment.  In this scenario SPS might be seen to not penalize the 

alignment enough.  Therefore, SPS may be considered a less stringent measure than TC and the two 

measures reveal different aspects of an alignment method’s accuracy. Note that the true alignment has 

TC = SPS = 1. 
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4.2.3 Phylogeny Reconstruction Methods and Measuring Their Performance 

The main TB methods used are: maximum likelihood (ML) with RAxML (version 7.0.4, Stamatakis 

2006) using the GTRGAMMA model; maximum parsimony (MP) with DNAPARS; or distance 

calculation with DNADIST using the F84 model, followed by neighbour joining (NJ) with 

NEIGHBOR. The three programs DNAPARS, DNADIST and NEIGHBOR are all part of the 

PHYLIP package (version 3.69, Felsenstein 2010). Only DNADIST required model parameter values 

as input, so the correct values were provided where necessary. Specifically, the correct coefficient of 

variation for the gamma distribution 
1/2CV 2 1.41α −= = ≈  and average transition/transversion rate 

ratio ( ) ( )( )T C A G T C A G
8 3 2.67R π π π π κ π π π π = + + + = ≈   (p. 18, Yang 2006) were given to 

DNADIST. The true nucleotide frequencies were not provided, and DNADIST used the empirical 

frequencies instead.  

In addition, a novel and (currently) unpublished method of  distance-based alignment-free 

phylogeny reconstruction (Schwarz, Fletcher et al., 2010) based on finite-state transducers was also 

tested (FST). This method will not be described here in detail but is centred on applying the positive 

semi-definite (PSD) rational kernel framework of Cortes et al (2004) to the problem of calculating a 

weight matrix. The method has theoretical advantages over other distance methods because the kernel 

score incorporates information about indels as well as substitutions, and implicitly takes all possible 

alignments between each pair of sequences into account. Furthermore, the calculated weights obey the 

triangle inequality and so can be considered as relative distances in the mathematical sense. The FST 

method takes the unaligned sequences as input and outputs a weight matrix. The final inferred tree 

was generated from this weight matrix using NEIGHBOR.  

For each replicate dataset, the true alignment and the alignments from the 8 MSA programs 

were subjected to the three main methods of TB, and the original unaligned sequences were subjected 

to the FST method of TB. For the MP analyses, if there were many tied trees then the strict consensus 

tree was taken as the inferred tree. Thus a total of 28 trees were estimated for each replicate dataset. 

The accuracy of each method was calculated as the average proportion of branches from the true tree 

that were correctly recovered in the 1000 inferred trees, hereafter referred to as PBR. 
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4.3 Results 

4.3.1 Alignment Accuracy 

The data that was generated on the two basic trees did not present a difficult challenge to any of the 

MSA methods. On the balanced tree the average TC was 0.93 for PRANK, 0.91 for the two versions 

of Muscle, 0.90 for T-Coffee and MAFFT, and 0.87 for Clustal and DIALIGN-TX, with all methods 

having an average SPS ≥ 0.97.  For the pectinate tree the average TC was 0.92 for PRANK and 

Muscle v4, 0.91 for ProbConsRNA and Muscle v3, 0.89 for MAFFT, 0.86 for DIALIGN-TX and 0.85 

for Clustal. The average SPS for each method was ≥ 0.98.  However, in nearly every one of the more 

complicated simulations either PRANK or Muscle v4 produced the most accurate alignments. 

Therefore, much of the following comparisons will be concerning those programs only. The relative 

performance of these two methods for selected simulations is shown in table 4.1 below.  

Table 4.1: Alignment Accuracy of PRANK and Muscle v4 in Selected Cases 

    Average CS  

% of the time that 

MSA method was 

most accurate as 

judged by TC  Average SPS  

% of the time that 

MSA method was 

most accurate as 

judged by SPS 

Tree Set Details   PRANK   Muscle   PRANK   Muscle    PRANK   Muscle    PRANK   Muscle  

B
al

an
ce

d
 

- Basic Tree  0.93  0.91  82  5  0.99  0.99  59  15 

1 
64 taxa  0.82  0.73  100  0  0.98  0.97  94  6 

256 taxa  0.75  0.51  100  0  0.98  0.97  100  0 

2 
tB = 0.3  0.27  0.13  100  0  0.36  0.43  6  94 

tB = 0.6  0.12  0.03  92  0  0.06  0.08  11  90 

3 
(λI + λD)/λS = 0.5  0.74  0.56  100  0  0.93  0.91  98  2 

(λI + λD)/λS = 0.8  0.64  0.40  100  0  0.86  0.84  95  6 

4 
F = ±50%  0.93  0.91  81  5  0.99  0.99  58  18 

F = ±100%  0.93  0.90  80  6  0.99  0.99  60  17 

5 
k = 5  0.76  0.67  96  3  0.95  0.94  60  33 

k = 10   0.51   0.39   98   2   0.82   0.84   28   71 

P
ec

ti
n

at
e
 

- Basic Tree  0.92  0.92  36  41  0.99  0.99  22  46 

1 
32 taxa  0.70  0.72  26  74  0.97  0.98  2  96 

48 taxa  0.50  0.52  22  79  0.93  0.95  0  100 

2 
tP = 0.05  0.26  0.27  43  57  0.63  0.76  0  100 

tP = 0.1  0.16  0.11  64  2  0.25  0.39  0  100 

3 
(λI + λD)/λS = 0.5  0.68  0.63  90  10  0.94  0.95  10  82 

(λI + λD)/λS = 0.8  0.57  0.49  96  4  0.88  0.90  8  92 

4 
F = ±50%  0.92  0.92  40  39  0.99  0.99  25  43 

F = ±100%  0.90  0.90  34  44  0.99  0.99  20  50 

5 
k = 5  0.64  0.68  26  65  0.94  0.96  8  84 

k = 10   0.32   0.38   15   79   0.82   0.88   1   97 

NOTE – percentages may not sum to 100 if other methods were most accurate on some replicates. 
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Figures 4.2 to 4.6 show the accuracy of the 8 methods of MSA, for each of the five sets of simulations 

that build on the two basic trees.  From the first set of simulations it was found that as the number of 

taxa increased, alignment accuracy decreased (figure 4.2) for both shapes of tree. PRANK performed 

much better on the balanced trees. As the number of taxa increases PRANK recovers a significantly 

greater number of columns correctly when compared to Muscle v4, yet the SPS scores are roughly 

similar with both methods correctly recovering the vast majority of the nucleotide pairs that are 

aligned together in the true alignment (table 4.1). However, in the true 256 taxa alignments there were 

approximately 30 million aligned nucleotide pairs on average. Therefore, the difference of 1% in the 

SPS scores actually represents the fact that Muscle misaligns several hundred thousand nucleotide 

pairs more than PRANK. The majority of these errors occurred for nucleotide pairs that were on  

 

 

Figure 4.2:  MSA Accuracy when Number of Taxa Increases  
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opposite sides of the deepest branch in the phylogeny. This accounts for the small difference in SPS 

and the large difference in TC between the two methods. For the pectinate tree shape Muscle v4 

appeared to perform better than PRANK (table 4.1).  The differences in MSA accuracy scores for the 

two methods on the pectinate tree are small but consistent. This change in relative performance of the 

two methods on balanced and pectinate trees is a pattern that is repeated on the other datasets (this 

shall be discussed further below).  Explicitly, PRANK tends to have the best TC on the balanced tree 

and Muscle v4 tends to have the best SPS on the pectinate tree, with SPS on the balanced tree and TC 

on the pectinate tree judging the two methods to be roughly similar.  

This general pattern also held true for the simulations where sequence divergence increased 

(figure 4.3, table 4.1). It is interesting to note that when sequences are very divergent DIALIGN-TX, 

with its local alignment strategy, begins to perform better than most other methods when it comes to 

 

 Figure 4.3:  MSA Accuracy when Sequence Divergence Increases 



132 

 

recovering alignment columns correctly. For example, when Bt  = 0.6 and Pt  = 0.1, DIALIGN-TX has 

the second highest average TC scores, 0.08 and 0.15, with the method being most accurate on 8% and 

34% of the replicates, on the balanced and pectinate trees respectively. SPS scores for DIALIGN were 

only 0.04 and 0.20 for the same two cases. These results are consistent with the observation that local 

alignment algorithms become increasingly appropriate and accurate as sequences become more 

divergent. Such algorithms are good at aligning locally conserved regions of sequences and they focus 

on this goal with less regard for alignment quality over the alignment as a whole (see chapter 1). It is 

for this reason that they are commonly used in database search algorithms that compare divergent 

sequences looking for regions that may be conserved due to functional or structural constraints.  

For the third set of simulations the rate of insertion/deletion relative to substitutions was 

increased, but the branch lengths remained the same (figure 4.4). Thus, when compared to the last set  

 

Figure 4.4:  MSA Accuracy when Indel Rate Increases 
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of simulations, this set places more emphasis on the accuracy of the procedures for handling indels as 

opposed to the scoring scheme used for nucleotide substitutions. As a result this set of simulations 

favours PRANK more than the last set and this is reflected in the results (table 4.1). Indeed, PRANK 

can be seen to be better as judged by TC on both trees, whilst also being better for SPS on the 

balanced tree. Muscle remains superior as judged by SPS on the pectinate trees. 

 The fourth set of simulations involved datasets that deviated from the molecular clock in an 

increasingly severe fashion whilst keeping the overall level of divergence roughly constant (figure 

4.5). The degree that simulation guide trees deviated from ultrametricity had little effect on alignment 

accuracy (table 4.1), with all methods performing roughly the same as they did on the two basic trees. 

Again PRANK performed better on the balanced tree or when judged by TC, and Muscle performed 

better on the pectinate tree or when judged by SPS. 

 

 

Figure 4.5:  MSA Accuracy when Molecular Clock is Violated 
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The final set of simulations combined increasing sequence divergence with increasing 

deviation from the molecular clock (figure 4.6). The results are broadly similar to those where 

sequence divergence increased but the molecular clock held true (k = 10 corresponds to Bt  ≈ 0.12 and 

Pt  ≈ 0.03 in figure 4.3), and the different methods were generally ranked in the same order. 

In summary, increasing the number of taxa in a dataset, increasing the sequence divergence, 

or increasing the insertion/deletion to substitution ratio all cause a decrease in alignment accuracy, as 

one would expect. Conversely, increasing violation of the molecular clock, while keeping sequence 

divergence low and roughly constant, results in datasets that are no harder to align than their 

ultrametric counterparts. Also, a consistent pattern emerged: PRANK generates more accurate 

alignments for data generated from a balanced tree or, more generally, when alignments are judged by 

TC. This is in contrast to Muscle v4 which tends to generate more accurate alignments on pectinate 

trees and tends to appear relatively more accurate when judged by SPS. 

 

Figure 4.6:   MSA Accuracy when Molecular Clock is Violated and Divergence Increases 
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4.3.2 Phylogeny Reconstruction Accuracy  

I shall now discuss the accuracy of the different methods of TB, first focusing on the analyses where 

there are no alignment errors, before proceeding to discuss the TB performance on the generated 

alignments. 

For the basic balanced tree the PBR was > 0.99 for the true alignment, and for each of the 

generated alignments, regardless of the TB method, meaning that inferred trees were nearly always 

100% correct. For the basic pectinate tree there was a little more variation. For the true alignment the 

PBRs were 0.92 (ML), 0.84 (MP) and 0.85 (NJ), whilst for the generated alignments the PBRs were 

0.91 to 0.92 (ML), 0.79 to 0.83 (MP), and 0.82 to 0.84 (NJ). Thus, on this relatively easy dataset we 

can see that ML seems to be the superior TB method. The FST method had a PBR of 0.88. Note how 

this is better than any of the other PBR scores based on NJ reconstruction of a distance matrix, even 

that which was based on the true alignment.  

 Figures 4.7 to 4.11 show the results for the four different TB methods when there are no 

alignment errors to contend with, and figures 4.12 to 4.16 show the results for each MSA and TB 

combination.  Selected PBR values and comparisons are reported in table 4.2. PBR values are 

reported for the ML, MP and NJ analyses performed on the true alignment, and for the three “best” 

performing inference combinations from the remainder of the analyses (PRANK+ML, Muscle 

v4+ML, FST+NJ, one of these was the most accurate for each set of simulation conditions). Three 

sets of comparisons are also reported in table 4.2. Firstly, I compare the performance of the different 

TB methods when there was no MSA to perform (C1), then I compare the performance of each TB 

method on the true alignment compared to the estimated alignments (C2), and finally I compare the 

relative performance of the three “best” inference methods mentioned above (C3).  

  

Phylogeny Reconstruction Accuracy in the Absence of Alignment Errors 

Comparison of the ML, MP, NJ analyses of the true alignments, and of the FST analyses of the 

original sequences, allows for a fair comparison of TB methods, and which types of dataset and tree 

are more problematic, when there are no alignment errors. The results for the four TB methods and 

the five sets of simulations are shown in figures 4.7 to 4.11 
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Firstly when sequence divergence is relatively low, balanced trees are far easier to recover than 

pectinate trees as more taxa are added (figure 4.7). For the balanced trees all methods recovered 

nearly every branch, For the pectinate tree, all methods struggled to recover the deeper branches as 

they were added, but ML performs better nearly 100% of the time with the other 3 methods 

consistently failing to recover nearly twice as many branches as ML (table 4.2). 

As sequence divergence increases on the balanced tree (figure 4.8) the pairwise distance 

calculations become less accurate until they reach a point where saturation of substitutions makes the 

calculations impossible and the NJ method fails to recover any branches correctly at all. Performance  

 

Figure 4.7:  TB Accuracy when Number of Taxa Increases  

 
 

Figure 4.8:  TB Accuracy when Sequence Divergence Increases 
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of the FST method also degrades, albeit at a slower rate, whilst the accuracy of the MP and ML 

methods barely changes (table 4.2). On the pectinate tree the performance of most methods 

deteriorates as divergence increases but does not for the MP analyses. Whilst this is true for both tree 

shapes (figure 4.8) it is perhaps most obvious on the pectinate tree.   

When divergence is low changing the indel rate has little effect (figure 4.9). On the balanced 

tree all methods recover the correct tree with a very high accuracy rate and performance deteriorates 

only slowly on the pectinate tree. Once again ML was the superior method. In the two sets of 

simulations where the molecular clock is violated (figures 4.10 and 4.11) ML, MP and NJ are all 

affected in a similar manner as the trees become less and less ultrametric and the ranking of the 

relative performance of the three methods remains the same (table 4.2). The most striking result of 

this set of simulations is the comparatively poor performance of the FST method, which is most 

striking for the pectinate tree shape. Deviations from the molecular clock seem to cause this method to 

decrease in accuracy, although it should be noted that the FST method is at a disadvantage compared 

to the other three methods as it was not provided with any information about the true alignment. 

Therefore, rather than failing on these last two sets of simulations it may be more appropriate to view 

the performance of the FST method as surprisingly good on the previous three sets of simulations. 

Indeed, in those cases, NJ on FST weights is more accurate that NJ on DNADIST distances which 

were derived from the true alignment with knowledge of the true parameter values. 

 

Figure 4.9:  TB Accuracy when Indel Rate Increases 
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In summary, when there are no alignment errors two very clear patterns hold true over all five sets 

of simulations. Firstly, shallow and balanced phylogenies are easier to recover than deeper pectinate 

shaped phylogenies for all TB methods. Secondly, ML is clearly the superior TB inference method in 

general. ML has the largest PBR values (table 4.2) and yields the most accurate trees more often (C1) 

in nearly every set of simulations. The only two exceptions to this trend are for pectinate trees with 

long branches (figure 4.8) where MP performs better, and for balanced trees when divergence is high 

and the molecular clock is severely violated (figure 4.11) where FST performs better. 

 

 

Figure 4.10:  TB Accuracy when Molecular Clock is Violated 

 

 

Figure 4.11:   TB Accuracy when Molecular Clock is Violated and Divergence Increases 
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Phylogeny Reconstruction Accuracy In the Presence of Alignment Errors 

The results for simulations that involved estimated alignments are shown in figures 4.12 to 4.15, with 

separate panels for each of the three main TB methods. The FST method is shown on each panel and 

the results for the true alignments are also included for comparison.  For all combinations of MSA 

method, TB method and simulation conditions, the pectinate trees were once again harder to recover 

than the balanced trees. Therefore this will not be commented on again in this section and instead I 

shall focus discussion on the relative performance of the different MSA-TB combinations.  

 Looking first at the set of simulations where the number of taxa was increased (figure 4.12) it 

is clear that MSA errors play a key role in the fallibility of each method of TB. On average, for both 

tree shapes, all three main TB methods were most accurate when given the true alignment as input. In 

addition, for the ML and NJ analyses involving both tree shapes, the two least accurate alignment 

methods according to SPS (Clustal and DIALIGN-TX) lead to the least accurate TB performance, on 

average in both the ML and NJ analyses. On the balanced tree PRANK was the most accurate MSA 

method and on the pectinate tree Muscle v4 was superior. This was also true for the ML and NJ 

analyses for both trees. On the balanced tree PRANK was best and very close to the true alignment 

(PBRs of 1.00 for both in ML, and PBRs of 0.99 for both using NJ) with Muscle v4 and MAFFT 

coming in second and third, with the other MSA methods trailing behind. For the pectinate tree 

Muscle v4 was better for both the ML (followed closely by MAFFT) and NJ (followed closely by 

PRANK) analyses with the other methods performing worse.  For the MP analyses the worst 

alignment methods did not lead to the worst TB performance, and Muscle v4 was actually one of the 

worst methods on the balanced tree. Again PRANK was best on the balanced tree but MAFFT was 

slightly better than Muscle v4 on the pectinate tree.  

The FST method is worthy of note since it performed better than any of the NJ or MP based analyses, 

even those that were performed using the true alignment. However, for the ML analyses the FST 

method was beaten by PRANK, MAFFT and Muscle v4 on the balanced tree and only performed as 

well as the worst method (Clustal) on the pectinate tree. The fact that FST performs better than any 

MSA for MP and NJ but as bad as the worst MSA for ML neatly underlines that ML is the superior 

inference method as the number of taxa is increased and is the least susceptible to the effects of 
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alignment errors. This is, perhaps, more noticeable for the balanced tree where even the worst ML 

inference method (DIALIGN-TX + ML) has a PBR of ≈0.99 when there are 256 taxa, compared to 

ProbConsRNA and Muscle v3 having PBRs ≈0.97 for MP (failing to recover ~ 5 branches on 

average), and Clustal having a PBR ≈0.86 for NJ (failing to recover ~35 branches on average). This 

comparison looks more convincing when one considers that PRANK, the best performer for the MP   

 

 

Figure 4.12:  MSA+TB Accuracy when Number of Taxa Increases  
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and NJ analyses, had PBRs > 0.99 which is not much different to the worst ML based score. 

In the second set of simulations, where sequence divergence increased (figure 4.13), it is NJ 

that performs somewhat differently to the other two TB methods. For both ML and MP the relative 

ranking of the analyses based on the different MSA methods is very similar. For example, on the 

balanced tree, T-Coffee, MAFFT, Muscle v3 then ProbConsRNA perform worst for both ML and  

 

 

Figure 4.13:  MSA+TB Accuracy when Sequence Divergence Increases 
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MP, and PRANK, Muscle v4 and DIALIGN-TX were better. Therefore, I shall discuss these two TB 

methods first before moving on to NJ and FST.  

Interestingly, the worst MSA method (Clustal for both trees by both TC and SPS) is ranked 

solidly in the middle for the ML and MP analyses which is clear proof that the type of errors that 

MSA programs make in certain scenarios can be far more important than the amount of errors. 

Another clear example of this principle is that, despite the fact that PRANK had better TC and worse 

SPS than Muscle v4 (for both tree shapes in both the ML and MP analyses) when divergence was 

greatest ( Bt  = 0.6 and Pt  = 0.1) Muscle v4 performed better on the balanced tree and PRANK 

performed better on the pectinate tree. When divergence is high this can be explained as follows. On 

pectinate trees there are very many “deep” pairwise sequence relationships that pass through the root, 

and so it is highly probable that a large number of parallel insertions and deletions will have occurred 

on the different lineages. This obviously favours an algorithm that deals with insertions and deletions 

correctly, such as that implemented in PRANK. Conversely, on the balanced tree there are many 

relatively “shallow” pairwise relationships which negates this benefit somewhat. 

 The NJ analyses in this set of simulations outline the main problem with distance based 

methods. When sequence divergence reaches a critical point pairwise distance estimation becomes 

inaccurate then impossible. On the balanced tree each MSA+NJ method collapses, one after the other, 

until no branches at all are successfully recovered. When Bt  = 0.15, the SPS of the 8 MSA methods 

was 0.46, 0.58, 0.65, 0.70, 0.71, 0.73, 0.78 and 0.80 for Clustal, DIALIGN-TX, MAFFT, T-Coffee, 

ProbConsRNA, Muscle v3, PRANK and Muscle v4 respectively. This order exactly matches the PBR 

ranking of the different MSA methods when one looks at the order in which the PBR scores of the 8 

methods deteriorate as Bt  increases (bottom left of figure 4.13). This is perhaps no surprise as it has 

been shown before that alignment accuracy can heavily bias the pairwise distance estimation process, 

particularly those based on the normal greedy progressive alignment algorithms (Rosenberg 2005a). 

For the pectinate trees the NJ based analyses also performed worse than either of the ML or MP 

analyses. In particular, alignment errors resulted in the distance estimates becoming inconsistent for 

the Muscle, MAFFT, T-Coffee and ProbConsRNA analyses which lead to a non-monotonic decrease 
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in performance of these methods. Once again the FST method performed very well. When the true 

alignment is excluded from the comparisons, the FST method was better than any of the eight MSA-

TB combinations, for both tree shapes, both by average PBR value and by how often the tree was 

most accurate (table 4.2, comparison C3, and figure 4.13).  

 

 

Figure 4.14:  MSA+TB Accuracy when Indel Rate Increases 
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As before, alignment accuracy was important in the third set of simulations (figure 4.14)  

where the indel rate was increased. The worst alignment method for this set of simulations (Clustal) 

was worst in 5 of the 6 MSA-TB combinations and, again, the true alignment consistently yielded the 

most accurate trees with each TB method (table 4.2). In general, PRANK was the most accurate MSA 

method (figure 4.4) and it was also the most accurate method on the balanced tree, and for the MP 

analyses of the pectinate tree. However, Muscle v4 performed better in the ML and NJ analyses on the 

pectinate tree.  

The FST method was more accurate than any of the MP or NJ analyses on either tree, 

including those that involved the true alignment. For ML analyses, FST is only outperformed by the 

true alignment for the pectinate tree when the indel rate is high. On the balanced tree FST performs 

equally as well as Muscle v4, PRANK and the true alignment (table 4.2). Once again ML seems least 

susceptible to alignment errors overall, with all MSA methods yielding more accurate trees than with 

MP or NJ. 

All MSA methods performed well for the fourth set of simulations, generating alignments that 

were very similar to the true alignment. As a result the performance of each TB method on the 

generated alignments was virtually identical to that of the true alignment. There was some variation in 

the accuracy of each TB method that depended on the MSA used, but the differences were small. 

Therefore, no figure is shown for these results as each panel would essentially just show many nearly 

superimposed lines that followed the shapes shown in figure 4.10. 

 In the final set of simulations sequence divergence increased while trees became increasingly 

nonultrametric as well (figure 4.15). The FST method performed worse than all other methods for this 

scenario on the pectinate tree. However, on the balanced tree, the FST method was better than the 

other NJ distance methods, including those involving the true alignment, and it was also better in the 

MP and ML analyses when the divergence was high. On the pectinate tree the true alignment yielded 

more accurate trees for all three TB methods, which demonstrates the importance of alignment 

accuracy once more. 
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Figure 4.15: MSA+TB Accuracy when Molecular Clock is Violated and Divergence Increases 
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4.4 Discussion 

4.4.1 Alignment Accuracy 

Muscle v4 and PRANK were clearly the two most accurate MSA methods over the datasets tested. 

However, whilst PRANK consistently generated more accurate alignments from data generated on a 

balanced tree, it performed less well on the pectinate tree and Muscle v4 was more accurate. 

This change in relative performance between the two methods can be readily explained.  

Firstly, PRANK’s phylogeny aware gap placement algorithm is very sensitive to the choice of 

underlying guide tree. When no guide tree is provided, an approximate unrooted tree is calculated and 

mid-point rooting (MPR: Farris 1972) is used, where the root is placed at the mid-point of the longest 

distance between two taxa in the tree. MPR has been shown to be less accurate when there is only a 

single outgroup taxon as is the case for pectinate trees (Hess, De Moraes Russo 2007). Thus, one 

might expect PRANK’s calculated guide tree to be less accurate for datasets generated on pectinate 

trees. This is indeed the case. For the basic balanced tree (figure 4.1a) the initial PRANK guide tree 

was rooted correctly 99% of the time, but only 23% of the time for the basic pectinate tree (figure 

4.1b). Incorrect root placement will inevitably bias PRANK’s choice of gap placement and lessen the 

impact of the program’s advantage gained from handling indels correctly. A second reason that the 

algorithm will enjoy less of an advantage on pectinate tree shapes is that for a pectinate tree of a given 

length there are far fewer pairwise evolutionary paths that pass through the root of the tree compared 

to a balanced tree of a similar length. Therefore there is less chance of an insertion or deletion 

occurring on the path between any two given taxa, which minimises the benefits that the correct gap 

placement algorithm brings. Finally, when the influence of gap placement has less effect on an 

alignment’s accuracy the scoring scheme used for matching pairs of nucleotides will become more 

important. PRANK’s default option employs the HKY model with a transitition/transversion rate ratio 

of κ = 2. This is quite different from the true value of κ = 4 used in simulations, and ignoring rate 

heterogeneity is known to lead to underestimates of κ anyway (Yang 1996), further exacerbating the 

problem.  This incorrect value will mean that nucleotide pairings that imply transversion substitutions 

would not have been penalised heavily enough by PRANK. It may be that Muscle’s choice of match 
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scoring scheme – which is based on a scoring scheme derived by Chiaromonte et al. (2002) for use in 

the BLASTZ program (Schwartz et al. 2000) – is more appropriate for scoring the patterns of 

nucleotide substitution used in the simulations in this study. 

 

4.4.2 Does Alignment Accuracy affect Tree Building Accuracy? 

In this study I have shown that alignment accuracy can indeed have a large impact on phylogeny 

reconstruction. For all three methods, analysis of the true alignment yielded more accurate trees in 

every set of simulations.  In addition, the analyses that involved the more accurate generated 

alignments tended to produce more accurate trees.  

 However, the type of alignment errors that an MSA program makes may be more important 

than the number of errors. For the sets of simulations where divergence was increased Clustal was the 

worst MSA method by any measure, on both trees, yet Clustal+TB was hardly ever the worst TB 

method. In addition, PRANK had by far the best TC on the balanced tree, and Muscle had a slightly 

better SPS. On the pectinate tree, the two methods had very similar TC but Muscle was much better 

by SPS. Despite this fact, Muscle v4 + ML performed best on the balanced tree and PRANK + ML 

performed best on the pectinate tree. This suggests that for TB on shallow balanced trees the most 

important factor in alignment accuracy is accurate alignment of closely related pairs of sequences, 

with the global alignment quality being less important. This is further evidenced by the fact that, when 

divergence was low but the number of taxa was high, all MSA+ML methods were very successful in 

recovering accurate trees. Conversely, when divergence was high on the pectinate tree, PRANK 

clearly provided better MSAs for use in TB – many deep pairwise relationships between divergent 

sequences allowing PRANK’s superior algorithm to show its true worth. It seems clear that on large 

datasets with many divergent sequences the PRANK alignments would yield the most accurate trees. 
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4.4.3 Which Datasets Present the Hardest Problem for Multiple Sequence 

Alignment and Phylogeny Reconstruction Methods? 

It is clear that increasing the insertion/deletion rate, the level of divergence or the number of taxa 

increases the difficulty of the MSA problem for both balanced and pectinate trees, but didn’t always 

make the TB problem harder. Conversely, increasing the deviation from the molecular clock, and 

making the tree “harder” by including combinations of long and short internal branches, has little 

effect on the difficulty of the MSA problem when divergence is low. However, such “hard” trees were 

increasingly difficult to recover with every TB method, underlining that such datasets provide an easy 

challenge to MSA methods but a much harder problem to TB methods. The opposite trend was also 

observed. Raising the indel rate when divergence was low, or increasing the number of taxa, 

drastically increased the complexity of the MSA problem but had very little effect on ML TB 

accuracy on the balanced tree which demonstrates that there are also types of dataset where alignment 

is hard and TB can be relatively easy. A common thread among all simulations is that pectinate trees 

with “deep” phylogenies are far harder to recover than balanced trees. 

 

4.4.4 Which Method of Phylogeny Reconstruction is Best? 

Perhaps the clearest result of this study is that ML outperformed MP and NJ quite substantially. 

Firstly, the best MSA+TB method was always based on ML and, secondly, the worst MSA+ML 

inference method was nearly always better than the best MSA+MP or MSA+NJ inference method. 

This stems from the fact that ML seems far more resistant to the detrimental effects of MSA errors 

from all the tested MSA methods. Indeed, in almost every set of simulations it is immediately 

apparent that the errors that some MSA programs make can severely bias MP and NJ inference – 

especially the distance based methods which suffer hugely when alignment accuracy decreases. 

 Deserved of special mention is the FST method. Firstly, TB based on FST+NJ outperformed 

any MSA+NJ method in the first three sets of simulations. This is very impressive given that the FST 

method was given absolutely no information about the true substitution parameters or structure of the 

alignment, yet still outperformed DNADIST+NJ (referred to as NJ) which was given the correct 
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values for R and CV, and still had worse PBRs even when the distance matrix generated from the true 

alignment was used!  Furthermore, when alignment accuracy was low because sequence divergence 

was high the FST method was the best performing on both tree shapes – even outperforming the best 

MSA+ML inference methods, and beaten only by ML on the true alignment. These successes suggest 

great promise for the FST approach to TB. However, the fact that the method performed relatively 

poorly in the experiments where the molecular clock did not hold suggest that there are further 

development avenues to be pursued before the method can compete consistently at the highest level.  

 

4.4.5 Comparison to Other Studies 

Ogden and Rosenberg (2006) were among the first to attempt to quantify the effect of tree-shape and 

alignment accuracy on phylogenetic inference. They concluded that as alignment error increased the 

accuracy of reconstructed topologies decreased. They also suggested that this was more pronounced 

for pectinate trees than for balanced ultrametric trees where alignment accuracy had little average 

effect. One problem with their study is that they simulated data using MySSP which does not update 

sequence lengths when insertions and deletions take place along a branch. Since they used a deletion 

rate that was 2.5 times the insertion rate this meant that on the long branches of a pectinate tree the 

sequence length should be getting smaller and smaller along the branch. Thus, the overall indel rate 

should also get smaller as a result because it should properly be formulated as a sum over sites in the 

sequence. However, MySSP only updates indel rates at interior nodes. This has the effect on long 

branches that the insertion and deletion rate per site in the sequence actually increases along the 

branch which was not their intention (figure 4.16). This may have contributed to the difficulty in 

phylogeny reconstruction that they observed and attributed to the pectinate tree shape. However, in 

this study I have confirmed that the pectinate tree shape is indeed inherently harder by using a 

simulation program that does ensure indel rates are kept at the desired levels. 

 Another conclusion drawn by Ogden and Rosenberg (2006) was that whilst alignment 

accuracy was related to tree building accuracy on average, there was no real relationship on a dataset-

to-dataset basis. This conclusion appears to have be an artefact from only having implemented one  
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Figure 4.16: Comparison of the number of indel events in INDELible and MySSP 

I followed Ogden and Rosenberg (2006) and created 1000 replicate datasets on a 16 taxa pectinate 

tree with maximum pairwise distance of 2.0 (tree depth of 1.0), with insertions and deletions having 

rates of 1 per 100 and 1 per 40 substitutions respectively, and a mean length of 4 for both. To 

calculate the number of events I compared characters from the root sequence with characters from 

each leaf sequence in turn. If the root has a blank and the leaf does not then I classed this as an 

insertion, and if the leaf has a blank and the root does not then I classed that as a deletion. Therefore 

the comparison ignores deleted insertions. The counts for each program were then normalised by 

dividing by the mean indel length. Although the calculations are not accurate since deleted insertions 

are ignored they do serve to show how the number of insertion and deletion events increase depending 

on the number of nodes along a given evolutionary path. This is not what Ogden and Rosenberg 

(2006) intended and may have contributed to the relative difficulty they observed in reconstructing the 

phylogenies of datasets generated on pectinate trees.  In comparison, the number of indel events that 

occur along a branch in INDELible remain roughly constant and are independent of the number of 

internal nodes. This phenomenon was first observed by Strope et al  (2009). 
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MSA program. It makes sense that different replicate datasets may be harder or easier to align, or to 

rebuild trees from, and we should not necessarily expect any absolute correlation between the 

accuracy of the two processes for a fixed MSA method on different datasets. However, in this study I 

have shown that for a given fixed dataset there is a strong correlation between the accuracy of a 

particular MSA method and the accuracy of the tree inferred, regardless of the tree building method 

applied downstream. 

 Other studies have also suggested this correlation (Wang et al. 2009) but failed to highlight 

examples where MSA or TB was particularly important or less important as I did in this study. In 

addition, Wang et al omitted PRANK from their study and Muscle v4 was not available then. The 

absence of these two accurate MSA methods (the current state-of-the-art in the field), combined with 

their choice of simulating data using the conceptually incorrect program ROSE, means that their 

conclusions may not be as valid or relevant as they could have been. 

 

4.5 Conclusion 

This study has shown that alignment accuracy is generally important to the accuracy of different 

methods of phylogenetic reconstruction, but that there are certain types of dataset where the choice of 

MSA or TB method may be less important. I have shown that balanced trees are easier than pectinate 

trees to recover, and that Muscle v4 and PRANK are currently the best performing MSA methods for 

TB, but still leave room for improvement. When sequence divergence was high PRANK’s superior 

algorithm gave better performance when resolving deep phylogenies, but when phylogenies were 

relatively shallow the choice of substitution scoring scheme used could be more important. The novel 

FST method does not require alignment and on divergent datasets showed great promise, yet it was 

still outperformed by ML on the true alignment.  The fact that the true alignment yielded the most 

accurate trees for each method underlines once again the critical role that alignment accuracy plays in 

phylogeny reconstruction and I suggest that further improvements in alignment quality can only help 

increase the accuracy of downstream phylogeny reconstruction.  
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In this thesis I have presented a novel simulation program, INDELible, that combines many features only 

previously found in other disparate programs, or not at all, and allows new and exciting avenues of 

research to be pursued. At the time of writing (Sep 2010) INDELible has been downloaded by more than 

250 unique users at universities and institutes from some 40 countries and has already been used in other 

published studies (Albayrak et al. 2010; Fletcher, Yang 2010; Kim, Sinha 2010; Penn et al. 2010a; Penn et 

al. 2010b; Schwarz et al. 2010) with many more works in progress around the world (pers. comm.).  

The program continues to evolve (currently in v1.04) as I have added new features at the request 

of colleagues from around the world and I expect this trend to continue as I wish the program to be a useful 

tool for the phylogenetics community. In particular, INDELible has demonstrated the potential of the 

jump-chain formulation of markov chain simulations which can be adapted in the future to allow 

simulation of complex content-dependent substitution models. This is something that is not possible using 

the traditional transition probability matrix employed in all other simulation programs unless one makes 

unrealistic simplifying assumptions such as discretising time (Varadarajan et al. 2008). Given the ever 

present drive in Phylogenetics for increased biological realism in statistical inference methods the ability to 

simulate under such models will be important in the years to come. Another factor that makes INDELible 

particularly useful for researchers is that it can be used to simulate very large datasets with great speed 

compared to other programs because of the unique design of the program. In particular INDELible can 

simulate many replicate megabase sized datasets (with indels) in minutes or hours whereas every other 

simulation program I have tested takes days or weeks to simulate under the same conditions. Real-life 

datasets grow in size year on year – indeed we are on the cusp of an era of Phylogenetics that could 

potentially use whole genomes as datasets and so the ability to simulate large datasets in a timely fashion 

in order to test such methods will only become more important as time goes on. 

          I have used INDELible to show categorically, for the first time, that the widely used branch-site 

test of positive selection is unaffected by insertions and deletionswhen the alignment is correct, but that 

alignment errors mislead the test to generate an unacceptable number of false positives, thus highlighting 

the need for improved alignment methods in studies of positive selection. It is my hope that INDELible 

will be used for other novel projects such as this in the future.   
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Appendix A   

A Brief Demonstration of How Bayesian Methods Can Be Sensitive to the Prior  

In this section I will present a brief example that demonstrates how Bayesian model selection can be 

sensitive to the choice of prior when the models being compared are all weakly supported given the 

data. For this purpose I modified MrBayes v3.12 to implement separate exponential priors for internal 

and external branch lengths in the same manner as Yang and Rannala (2005) had done to MrBayes 

v3.02 for an earlier study (modified program available at http://abacus.gene.ucl.ac.uk/software.html).  

This modified version of MrBayes was used to perform a Bayesian tree search on a relatively 

uninformative dataset (bglobin.nex included in MrBayes, from Yang et. al. 2000) using the JC69 and 

HKY85 models. In addition, the translated amino-acid dataset was analysed under the WAG model.  

In all three cases, 2 parallel MCMC runs were conducted, each with 4 incrementally heated chains 

and a different random starting tree. The first 200,000 generations were discarded as burn-in. Tree 

topologies were sampled from the subsequent 2 million generations, every 100th generation, to 

contribute to the posterior distribution. The standard deviation between runs was ~ 0.01 by the end of 

the MCMC runs indicating that convergence had been reached. The posterior distribution resulting 

from this tree-search is shown in figure 1.8.  The resulting MAP tree that is inferred differs depending 

on the choice of data type (nucleotide or amino-acid), substitution model or combination of prior 

distribution on branch lengths. In particular, notice that when 1 0 0µ µ ≈≫  all trees look like the star 

tree and so the posterior probability of every tree is roughly equal (to zero). Also, when 1 0µ ≈  

external branch lengths in every tree are forced to be ≈ zero – such trees are all unrealistic, causing the 

chain to rarely leave the random starting tree, resulting in spuriously high posterior probabilities ≈ 0.5.  

Poor performance when using extreme exponential branch length priors (with 1 0µ µ= ) has 

been observed before (Mar et al. 2005) with extreme values for the branch length priors. However, for 

less extreme values such as 
3

1 0, 10µ µ −≥ , one can see here that the choice of branch length prior 

distribution still affects the posterior probability distribution of trees to the point that the method 

infers different MAP trees. One proposal (that was mentioned in the main text.) that has been shown 

to reduce such conflicts is to make use of a data size-dependent prior (Yang 2008) 
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Figure A1:   Example of the Effect the Branch-Length Prior can have on the Posterior 

Tree Distribution obtained during Bayesian Phylogeny Reconstruction 

The image is shown on the next page. The three panels (top to bottom) show the results of Bayesian 

analysis of the nucleotide dataset with the JC69 model, then the HKY85 model, with the bottom panel 

showing analysis of the translated amino-acid dataset under the WAG model. µ0 and µ1 are the means 

of the exponentially distributed priors on internal and external branch lengths respectively. PP is the 

posterior probability. Each coloured surface represents a distinct tree topology, and the colours are 

consistent across all of the images (e.g. the red surface in each image represents the same phylogeny). 

The left and right panel for each model show the same results, but from different angles. The pictures 

were constructed using custom-written Mathematica code. 
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