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Abstract
In both engineering and medical applications it is often useful to use the knowledge of the

conditions under which adhering liquid droplets appear, deform and interact with surrounding

fluids, in order to either remove or create them. Examples include the de-wetting of aircraft

surfaces and the process of injecting glue into the bloodstream in the treatment of aneurysms.

The particular types of models discussed here theoretically are based on droplets with a large

density compared to that of the surrounding fluid. Using this ratio as a small parameter, the

Navier-Stokes equations may be simplified, and in view of the nature of the interfacial bound-

ary conditions the droplet may be considered as solid to leading order at any given time step for

a certain time scale.

In the first part of the thesis, we study an example of an initially semicircular droplet adhering

to a wall for low-to-medium Reynolds numbers (along with simpler test problems). We numeri-

cally determine unsteady solutions in both the surrounding fluid and the droplet, coupling them

together to obtain a model of the droplet deformation. Analysis within the droplet leads to the

identification of two temporal stages, and the effect on large-time velocities is discussed.

The second part of the thesis sees a similar approach applied to a surface mounted droplet com-

pletely contained within the boundary layer of an external fluid for high Reynolds numbers.

The two-fluid interface for such a regime is analysed using a lubrication approximation within

the viscous sublayer of a triple-deck structure. Finally, the lubrication is abandoned and we

present a fully non-linear solution in air over any obstacle shape, as well as a two-way inter-

acting model of droplet deformation, capable of simulating the free surface of the droplet as it

becomes severely distorted.
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Chapter 1

Introduction

1.1 Background and motivation

Thin liquid films, droplets and bubbles are encountered in a wide range of physical conditions.

Simple examples include raindrops on car windscreens or air bubbles within a carbonated drink,

but there are many examples of medical and industrial application where an understanding of

how two fluids interact with one another and their surroundings is important to recreating and

manipulating droplet and liquid behaviour.

In the aviation industry, any ice amassing on the fuselage, wings and tail of an aeroplane

creates a potential hazard. Unwanted ice can significantly alter the aerodynamics of the flight

surfaces: decreasing lift while increasing drag and elevating the risk of the aerofoil stalling.

Large pieces of ice breaking off in flight may be ingested by the engine or cause damage to

propellers. As such, effective ice removal is vital to aircraft safety. If ignored, catastrophic

consequences for aircraft performance may occur, as has been demonstrated throughout history,

with 9.5% of all fatal air carrier accidents reporting icing as a contributing factor.

Aircraft are prone to the accumulation of ice both on the ground and in the air. On the ground

in freezing conditions, ice or snow can build up, leaving the aerodynamic surfaces as rough and

uneven. In flight, as an aircraft passes through the wet base of the cloud, a thin liquid layer of
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water will form on the wings. If the volume of water passing over the wing exceeds what is

blown off by the shear forces, this layer can freeze to form clear ice. As the aircraft continues to

climb, the increased altitude and lower temperatures cause the water droplets within the cloud

to become super cooled, maintaining their liquid structure, but they will instantaneously freeze

on impact with the aircraft, forming solid ice crystals which will adhere to the wing. In such a

case rime ice is formed alongside clear ice on the surface of the aerofoil.

Aircraft on the ground may be sprayed with anti-icing fluid to prevent the build up of any

ice or snow. After take off the shear forces of the air flow over the wings cause the anti-icing

fluid to thin and run off, leaving a clean and smooth aerodynamic surface. An understanding of

how liquid droplets and films adhere to surfaces and deform in the presence of a shear flow is

important for the design of such anti-icing fluids and the hydrophobic aerofoil surfaces which

assist effective de-icing.

Within the brain, 13% of all strokes are caused by aneurysms and arteriovenous malforma-

tions (AVMs). Aneurysms involve a localised weakening of an arterial wall, balloon shaped

and filled with blood. As the size of an aneurysm increases so too does the chance of bursting,

causing severe and potentially fatal haemorrhaging. To avoid the invasive procedure of surgical

clipping, recent advancements in the treatment of aneurysms see neurologists feed radiograph-

ically guided catheters through an artery in the leg up to the brain. The aneurysm is then filled

with a special glue, liquid Onyx, which stabilises the vessel wall as it solidifies, preventing

rupture. AVMs, which are an abnormal connection between the arteries and veins within the

brain, may be treated in a similar manner, where the glue serves the purpose of cutting off the

blood supply to the affected area in a process known as embolization. A knowledge of how two

fluids of different densities interact with one another becomes vital to the design of the glue and

the success of such a procedure.
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In agricultural crop spraying, the objective is to cover all surfaces of the plant evenly with

pesticide. Using large amounts of chemical can cause droplets to coalesce and run off from

the plant, reducing effectiveness and increasing costs while having a negative impact on the

environment. Similarly in industrial spray painting, the aim is to obtain an even coverage

using a minimum amount of paint. Creating the desired droplet size to achieve this requires an

understanding of how droplets split and merge when passing through a surrounding fluid.

With these and many other motivations in mind, a vast amount of literature on modelling

the flows of two fluids has been produced in recent years across many different disciplines,

presenting both theoretical and experimental studies. Thomas, Cassoni and MacArthur [72],

Politovice [42] and Myers, Charpin and Thompson [40] present work on aircraft icing, White

[74] on embolization and Sivakumar and Tropeaon [53] on spray impact. In a more general

context, overviews of analytic and computational approaches may be seen in Joseph and Re-

nardy [27] and [28] and Ishii [25], while experimental papers include Dussan V. and Davis [16]

Villermaux and Bossa [73] and Bentley and Leal [5].

The free surface or interface between two fluids is of particular interest within the litera-

ture as it plays an important role in the dynamics of many two fluid systems. Modelling the

evolution of this interface, equivalent in some cases to modelling droplet deformation, is the

main aim of this thesis. This task has been tackled computationally by many authors in the past

using a wide range of techniques, a selection of which are as follows.

The volume of fluid method (VOF) presented first by Hirt and Nichols [24] and employed,

for example, by Renardy, Renardy and Li [48], Renardy, Renardy and Cristini [49], approx-

imates the characteristic functions of the two fluids by using a scalar fraction function. The

result may be interpolated to achieve a smooth description of the interface, while conserving

the mass of the traced fluid.
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A similar approach is that of the level set method, an overview of which may be seen in

Osher and Fedkiw [41], which uses an auxiliary function to represent the interface as a closed

curve. The numerical simulations employ techniques such as Chorin’s projection method as

in Croce, Griebel and Schweitzer [13], the Godunov method, Sussman et al. [69] or standard

finite difference schemes, Spelt [65].

Other groups such as Harlow and Welch [21] and Bierbrauer and Philips [7] use massless

Lagrangian marker particles within the two fluids, where tracking their distribution over time

allows the moving interface to be reconstructed.

While the majority of methods treat the interface as sharp, distinct and infinitesimally thin,

in reality it is a slowly varying region, a few molecules thick. Drawing from these phys-

ical properties, diffuse-interface models such as those outlined in Anderson, McFadden and

Wheeler [3] apply a region of continuous variations, with thickness related to a small parameter.

The focus in this thesis is more on the theoretical front, concerning a combination of anal-

ysis and computation. In particular, returning to a more standard representation of the interface

between the two fluid domains as an infinitesimally thin boundary, recent years have seen a

body of theoretical work which capitalises on an assumption of a small density ratio between

the two fluids. With this assumption, the leading order velocity term in the less-dense fluid will

be zero along the boundary, with the remarkable outcome that, to a first approximation, the

interface may be treated as solid at any given time step.

This approach was first proposed by Smith, Li and Wu [60] and then more explicitly by

Smith and Purvis [63]. It has since been applied by Smith, Ovenden and Purvis [62] and Hicks

and Purvis [22], and is the method upon which the majority of this thesis is based. It is relevant
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to any two fluid system in which the density ratio is small: liquid films, free surface or attached

droplets and for any Reynolds numbers. For ease, we shall refer to our two fluids as air (A) and

water (W), where the ratio would be around 1/828.

1.2 The small density ratios approach

In a two dimensional system where the effects of compressibility are ignored, the fluid flows

are governed by the conservation of mass and the conservation of momentum. Taking u∗
A and

u∗
W as the dimensional velocities of the flow within air and water respectively, the first of these

is known as the continuity equation:

∇ · u∗
A = 0, (1.2.1)

∇ · u∗
W = 0, (1.2.2)

and the second, the momentum equation:

∂u∗
A

∂t∗
+ (u∗

A · ∇)u∗
A = − 1

ρA
∇p∗A + νA∇2u∗

A, (1.2.3)

∂u∗
W

∂t∗
+ (u∗

W · ∇)u∗
W = − 1

ρW
∇p∗W + νW∇2u∗

W . (1.2.4)

Together they make up the Navier-Stokes equations. Here, p∗A,W is the dimensional pressure

within the flow, µA,W the dynamic viscosities and ρA,W the densities upon which the method

is based.

If the region of water has length scale L and UW is a characteristic velocity of the flow

within that region, (1.2.3), (1.2.4) may be non-dimensionalised using the following scalings:

u∗
A = UW ûA, u∗

W = UW ûW , (1.2.5)

p∗A = ρWU
2
W p̂A, p∗W = ρWU

2
W p̂W , (1.2.6)

t∗ =
L

UW
t. (1.2.7)
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With the variables in this form we may define a dimensionless parameter which characterises

the flow, the Reynolds number:

ReW =
UWL

νW
. (1.2.8)

The Reynolds number provides a quantitative measure of the relative importance of inertial and

viscous forces; high Reynolds numbers relate to nominal viscosity or possibly inviscid flows,

low Reynolds numbers to slow or highly viscous flows and so on. This, and the scalings given

above, leave (1.2.3), (1.2.4) as follows,

∂ûA

∂t
+ (ûA · ∇) ûA = −

(
ρW
ρA

)
∇p̂A +

(
νA
νW

)
Re−1

W ∇2ûA, (1.2.9)

∂ûW

∂t
+ (ûW · ∇) ûW = −∇p̂W +Re−1

W ∇2ûW . (1.2.10)

The continuity equations (1.2.1), (1.2.2) remain unaltered except for the obvious change of the

velocity vector.

Defining our small density ratio parameter ϵ = ρA/ρW , and assuming ReW , t << O(1/ϵ),

µA/µW = O(ϵ), νA/νW = O(1), we may rescale the non-dimensional velocity and pressure

within the water as

(ûW , p̂W ) = ϵ(uW , pW ). (1.2.11)

Similarly in the air

(ûA, p̂A) = (uA, ϵpA). (1.2.12)

If a continuous velocity is required along the interfacial boundary between the two fluids, the

O(1) term in air, uA will be unbalanced by the O(ϵ) term in water. As a result, uA must be zero

along the boundary - equivalent to applying a no-slip condition - so that the theoretical problem

in air reduces to Navier-Stokes flow past a quasi-solid shape. Thus we have

∂uA

∂t
+ (uA · ∇)uA = −∇pA +

(
νA
νW

)
Re−1

W ∇2uA, (1.2.13)
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∇ · uA = 0. (1.2.14)

Meanwhile, the inertial terms within the water become negligible, leaving the unsteady Stokes-

flow equations to be solved in water:

∂uW

∂t
= −∇pW +Re−1

W ∇2uW , (1.2.15)

∇ · uW = 0. (1.2.16)

The two systems interact with one another via matched asymptotic expansions of the interfacial

conditions, found from the solution in the air and used to drive the flow within the water. As

such, the method may be split into three principal steps:

1. The water is replaced with a fixed solid shape and the full Navier-Stokes equations are

solved in air over the body. This solution will give the interfacial stress conditions be-

tween the fixed solid shape and the air flow.

2. With the boundary between the two fluids remaining fixed, the unsteady Stokes equations

may then be solved inside the droplet, subject to the interfacial conditions prescribed at

the boundary, and a no-slip condition along any real solid walls. This solution yields

values for the velocities uW .

3. With a solution to the flow within the water, a new interface shape at time t+δt is in effect

determined from the kinematic condition. This can be taken to act to slightly modify the

calculation in step one. The process is then repeated for subsequent time steps.

The effects of gravity and surface tension are not taken into account in this model. It would be

relatively simple to include these forces via a Youngs-Laplace pressure jump, however, as dis-

cussed by Smith and Purvis [63], for a Weber number, We = ρWUWL/σ and Froude number,

Fr = U2/gL, comparable in size to one over our small ratios parameter the effects of both of

these may be assumed to be negligible. Here σ is surface tension and g is the acceleration due

to gravity.
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Figure 1.1: A diagram of the flow regime for a modelling the deformation of an initially semi-

circular droplet.

Of course, the field of study of two fluid flows is vast (again see [27], [28], [25]). As our

title suggests, we limit our investigation to that of water droplets in a surrounding air flow

adhering to a solid flat plate or wall. The leading and trailing contact points are pinned down

in effect under the present conditions, and we may focus our attention on deformation before

rolling or sliding occurs. Far upstream from the droplet, the air flow is unidirectional and has

uniform shear, u ∼ y, for streamwise velocity u. A schematic diagram of the flow regime

is given graphically in figure (1.1). Many authors have analysed this and similar problems

in the past, notable examples including Spelt [65], Dussan V. [15] Dimitrakopoulos [14], but

theoretical papers on the present type of non-linear interaction between the two fluids which is

believed to make our study novel - as we shall demonstrate - appear to be few and far between.

A key feature of the paper by Smith and Purvis [63] is the suggestion of two temporal stages to

the problem of droplet deformation. First is the early stage where t is of O(1) and within the

calculations of the flow in air the droplet shape may be taken as steady to leading order. The

air-water interaction of this stage is predominantly one-way. Second, in the later stage, as the

O(ϵ) term in the droplet’s shape begins to have considerable influence, the interface becomes

severely distorted and the air-water interaction becomes fully non-linear. Our work does indeed
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lead to the identification of two such stages. This problem in particular - the behaviour at larger

times - turns out to be rich in fluid dynamical interest and raises a number of intriguing issues

as we shall see. Building to this conclusion brings in the analysis of many canonical problems

along the way.

1.3 Outline of the thesis

In the first part of the thesis we tackle an example of an initially semicircular droplet with ReW

of O(1), as pictured in figure (1.1). In such a case the small-ratio theory works satisfactorily

but applying (within the theory) the full stress conditions along the interface turns out to be

computationally expensive and potentially complicated. Instead we choose to take as the in-

terfacial conditions as requirements on pressure and vorticity in order to gain insight. This is

contrary to the outline in [63] and a discussion of how this relates to the problem of full stress

conditions along the boundary between the fluids is postponed until Chapter 4.

We begin in Chapter 2 by focusing on step one of the method of modelling the interface

and droplet deformation: the flow in air over a semicircular fixed solid shape. The lid-driven

cavity provides a classical test for our numerical procedure, where a vorticity-streamfunction

form of the equations is solved via an iterative finite difference procedure. This forms the basis

of the time marching algorithm which itself may be extended and applied to the polar form of

the full time dependent Navier-Stokes flow over a semicircle.

With a solution in air over the obstacle we switch our focus to step two in Chapter 3: the

unsteady Stokes flow within the droplet. To understand and explore the dynamics of the flow

within the droplet alone, we first abandon temporarily the outer solution and prescribe idealised

boundary conditions along the free surface. We examine three cases: the so-called circular seed

and a square droplet, both of which give insight into behaviour of the fluid in the full problem,

before moving to the polar form of Stokes flow within the semicircular droplet itself. Through-
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out this chapter, a pressure-vorticity form of the Stokes equations is used. For the circular seed,

the use of series solutions proves convenient and we show that the velocities within the droplet

become steady with time. A series may also be applied to the square droplet as a validation for

a steady-state iterative finite difference procedure similar to that seen in the lid driven cavity.

Extension of this to a time marching algorithm suggests that the square droplet - unlike the

circular seed - has velocities which grow linearly with time. This result is mirrored in the time

dependent solution of the semicircular droplet.

Finally the two methods are combined in Chapter 4, so that the time dependent interfacial

conditions found from the external flow field drive the solution within the droplet and deter-

mine the movement of its free surface. In such a case the early and later temporal stages are

associated with t = O(1) and t = O(ϵ−1/2) respectively and an analytical discussion of the

later stage is given, with comparisons of our results to the behaviour postulated in [63]. The

limitations of our model have origins in the interfacial conditions chosen. We present details

of the limiting case in which our results hold and discuss how they relate to a more general case.

Working with a pressure vorticity form of the Stokes equations within the droplet in Chap-

ter 3, the Cauchy-Riemann equations act to enforce a no-slip condition along a wall. This

turns out to be an interesting problem in its own right and we investigate the possible solutions

further via a simplified problem in an additional chapter at the end of the first part of the thesis.

The semicircular droplet provides some excellent insight into the problem, but the effect of

severe droplet distortion on the solution in air is difficult to investigate numerically in the later

stage, t = O(ϵ−1/2). We have found a special case however: a droplet contained within the

boundary layer of an external fluid, for which we have successfully modelled the two way

non-linear interaction between air and water associated with the second temporal stage, with

full stress conditions to leading order along the interface. This is the main motivation of the



1.3. Outline of the thesis 23

second part of the thesis.

In Chapter 6 we spend some time discussing the dynamics of the boundary layer and set-

ting up the triple-deck structure required for our problem. Alternative reviews of triple-deck

and similar theory are given by Smith and Merkin [61], Sychev et al. [70] and Sobey [64]. We

present some linear solutions of flow in air over a solid obstacle, which forms the basis of the

fully interacting model of droplet deformation of Chapter 8.

The results of Chapter 6 present an opportunity to investigate the steady shapes which an

attached droplet within a triple-deck structure may take. Applying a lubrication approximation

to the second fluid allows us to derive a Reynolds lubrication type expression, which links the

shape of the interface to gravity, surface tension and shear forces. We spend some time in

Chapter 7 analysing the families of solutions which this expression provides - results which do

not depend on a small density assumption.

Returning to the general theme in Chapter 8 we find that the results for air flow over a solid

obstacle of Chapter 6 may be extended via a numerical algorithm to provide a fully non-linear

solution. This serves to act as step one in the method of modelling the droplet deformation,

while the solution in water sees a second Reynolds lubrication type expression arise. In this

case, the properties of the flow in water are entirely eliminated from the problem, and in the

special case where the displacement function in air is zero, step two of the method is not re-

quired: the shape of the interface may be found directly from the solution in air. This approach

is valid for the later temporal stage, t = O(ϵ−1) in this case, as the interface becomes severely

distorted. Results of our simulations, and a brief discussion of the finite time break-up of the

boundary layer which they appear to suggest, are given there.
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Part I

A semicircular droplet

25





Chapter 2

Flow in air

As outlined in the previous chapter, the method of modelling droplet deformation which this

thesis employs comprises of three stages: a flow in air over a solid shape, a flow in water subject

to given interface conditions and a feedback mechanism, where the shape change in the droplet

acts to alter the flow in air.

For the current problem we focus our attention on the early stage of deformation of a wall

mounted semicircular droplet only, that is, while the shape remains semicircular to leading or-

der. Doing so allows us to neglect the final step and hence to treat the flow in air as an isolated

problem. That is the task of this chapter, to find a solution to the Navier-Stokes equations in air

(1.2.13), (1.2.14) over a solid semicircle attached to a wall. We repeat the diagram of the flow

regime here in figure (2.1).

With the origin defined at the centre of the semicircle, the equations and boundary condi-

tions are simplest in polar form. The wall of the semicircle lies along r = 1 and θ = π refers

to the leading edge of the droplet. This polar setup is given graphically in figure (2.2a).

Once in this form, the similarities between the flow over a semicircular body attached to a

wall and the model problem of a driven cavity, shown in figure (2.2b), become clear. Applying
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Figure 2.1: A schematic diagram of the flow in air over a semicircular surface mounted obstacle.

(a) The polar form of flow over a semicircle (b) The lid driven cavity

Figure 2.2: Comparison between polar form of flow over a semicircular body and the lid driven

cavity.
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(1.2.13), (1.2.14) to the flow within the cavity, the only key difference between the two systems

is the farfield velocity condition. Because of these similarities, the simplicity of the geometry

and the abundance of literature on the example, the lid driven cavity of Burggraf [10] and many

others, serves as an excellent test for our method outside of the droplet. We choose then to first

tackle the lid driven cavity problem, before extending our method to the full polar system of

flow over a semicircle. We spend some time in the following section detailing the methods used

in our numerical procedure, since they are repeated throughout the chapters in this part of the

thesis.

2.1 The lid driven cavity

The fluid here is contained within a unit square with vertices at (0, 0), (0, 1), (1, 0) and (1, 1).

Three of the walls are stationary so that the no-slip condition u = v = 0 applies. Along the

top, or lid, the flow is driven by a moving wall of velocity u = 1 in the positive x direction.

The non dimensional Navier-Stokes equations with application of the small ratios, (ûA, p̂A) =

(uA, ϵpA), govern the flow within the cavity. These may be found in the previous chapter

(1.2.13),(1.2.14), but are repeated here for clarity:

∂uA

∂t
+ (uA · ∇)uA = −∇pA +

(
νA
νW

)
Re−1

W ∇2uA. (2.1.1)

∇ · uA = 0. (2.1.2)

Equations (2.1.1) and (2.1.2) may be written as a vorticity-streamfunction system:

∇2ζ = ReW

(
νA
νW

)(
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
+
∂ζ

∂t

)
, (2.1.3)

∇2ψ = −ζ, (2.1.4)

where the vorticity ζ and the streamfunction ψ are defined as

ζ =
∂v

∂x
− ∂u

∂y
, u =

∂ψ

∂y
, v = −∂ψ

∂x
. (2.1.5)

For simplicity we rewrite

R̂e =

(
νW
νA

)
ReW , (2.1.6)
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throughout the remainder of this chapter. For a small dynamic viscosity ratio, (νA/νW ) will be

of O(1), and is around 1/55 in the case of air and water.

Figure 2.3: The grid labelling system.

The numerical method begins by discretising

the flow domain into a uniform rectangular

grid of spacing h. The labelling system for

the grid points and their immediate neigh-

bors is shown in the five-point stencil in fig-

ure (2.3), and referred to by a subscript from

now on. With this setup, we may apply a sec-

ond order accurate finite difference procedure by replacing the derivatives in the system of

equations (2.1.4), (2.1.3) and so on, with their difference quotients in the standard way. For

example,

∂ψ

∂x

∣∣∣∣
(x0,y0)

=
ψ1 − ψ3

2h
,

∂2ψ

∂x2

∣∣∣∣
(x0,y0)

=
ψ1 − 2ψ0 + ψ3

h2
(2.1.7)

∂ψ

∂y

∣∣∣∣
(x0,y0)

=
ψ2 − ψ4

2h
,

∂2ψ

∂y2

∣∣∣∣
(x0,y0)

=
ψ2 − 2ψ0 + ψ4

h2
. (2.1.8)

After some rearranging, this substitution (2.1.7), (2.1.8) leaves (2.1.4) as

ψ1 + ψ2 + ψ3 + ψ4 − 4ψ0 = −h2ζ0. (2.1.9)

The form of the expression for vorticity (2.1.3) differs for a steady-state or time dependent

problem and so is postponed until the next sections. It remains to determine the boundary

conditions in the appropriate form before (2.1.9) may be investigated.

The streamfunction is taken to be zero along the four walls, but the value of the vorticity

along the boundaries must be derived from (2.1.9) using the well known Thom’s formula.

Figure (2.4a) shows a point on the discretised grid lying along y = 0 and its four neigh-
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(a) Along y = 0 (b) Along x = 0 (c) Along y = 1

Figure 2.4: The grid points along the boundaries in the driven cavity

bors. Point 4 lies outside of the cavity, and so we aim to eliminate ψ4 from (2.1.9). We do so

by considering the finite difference form of (2.1.5) given that the no-slip condition dictates that

u = v = 0. This suggests that the shadow point ψ4 takes the value

ψ4 = ψ2 +O(h3). (2.1.10)

Further, since ψ is zero along a wall, ψ0, ψ1, ψ3 = 0 which substituted into (2.1.9) leads to the

second order accurate boundary condition for the vorticity along y = 0,

ζb = −2ψi

h2
. (2.1.11)

Here subscripts b and i refer to the grid points on the boundary and immediately interior to the

boundary respectively. Along y = 0 for example, b = 0 and i = 2. The argument and result are

the same along x = 0 and x = 1, except here ψ0, ψ2, ψ4 = 0 and ψ3 = ψ1 (see figure (2.4b)).

Along y = 1, shown in figure (2.4c), we again have ψ0, ψ1, ψ3 = 0 but now the wall is

moving with speed u = 1. The finite difference form of (2.1.5) becomes

∂ψ

∂y
=
ψ2 − ψ4

2h
= 1, (2.1.12)

which allows us to eliminate the shadow point ψ2 from (2.1.9) and makes the boundary condi-

tion for vorticity along y = 1

ζb = −2ψi

h2
− 2

h
. (2.1.13)
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2.1.1 The steady-state problem

It is believed that the driven cavity has unique steady laminar solutions for a given Reynolds

number, over some range at least. Whilst we aim to achieve a full time dependent solution,

tackling the steady-state problem separately will allow us to validate our time marching results

and method, since we expect it to converge to this unique steady-state result. The steady-

state problem has identical boundary conditions and field equations except in (2.1.3) where

the time derivative term is dropped. Using the same labelling system and difference quotients

(2.1.7)-(2.1.8) to derive the finite difference form for the field equation for ζ then, the full set of

equations and boundary conditions for the steady-state problem is as follows:

ζ0 =
1

4
(ζ1 + ζ2 + ζ3 + ζ4)−

R̂e

16
(ψ2 − ψ4)(ζ1 − ζ3) +

R̂e

16
(ψ1 − ψ3)(ζ2 − ζ4), (2.1.14)

ζb = −2ψi

h2
on x = 0, 1 y = 0, (2.1.15)

ζb = −2ψi

h2
− 2

h
on y = 1, (2.1.16)

ψ0 =
ψ1 + ψ2 + ψ3 + ψ4 + h2ζ

4
, (2.1.17)

ψ = 0 on x = 0, 1 y = 0, 1. (2.1.18)

A simple iterative process may be used to solve this coupled system: (2.1.14), with boundary

conditions (2.1.15), (2.1.16); and (2.1.17) with boundary conditions (2.1.18). First, an initial

guess of ζ = 0 everywhere is made. Based on this guess (2.1.17) is solved by sweeping across

the domain from left to right, updating the value of the streamfunction at each point in turn.

The solution ψ is then used in (2.1.15), (2.1.16), to determine the latest boundary conditions for

the vorticity, and in (2.1.14), which is solved in the same way as (2.1.17). The result ζ signifies

the beginning of the next iteration and the process is repeated until successive values of both ζ

and ψ converge. If old refers to the value of ζ at the previous iteration, the system is terminated

once

max|ζ − ζold|
|mean(ζ)|

≤ 10−5, (2.1.19)
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Figure 2.5: Comparison between our results and those from Ghia et al. for velocities u and v

through the centre of the cavity.
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likewise for ψ. We use a grid of 129x129 points and a range of Reynolds numbers from R̂e = 0

to R̂e = 400 to take advantage of the abundance of literature on the medium Reynolds number

case, while bearing in mind that our main interest is in extending the driven cavity example to

the polar form of Navier-Stokes flow over a semicircle at low Reynolds numbers. While higher

Reynolds numbers than considered here have boundary layers forming near the walls and can

cause singularities at the corner points (in particular at (x, y) = (0, 1), (1, 1) where the velocity

is discontinuous) the simple approach of a straightforward finite difference method seems to

work well for low to medium Reynolds numbers R̂e ≤ 400: the corner values themselves are

not used in the iterative process.

A particularly helpful set of data to use as a comparison is that given in Ghia, Ghia and

Shin [18], since it includes tabular results for various Reynolds numbers. Figure (2.5a) and

(2.5c) show our results for the u velocity along the vertical line through the geometric centre of

the cavity for R̂e = 100 and R̂e = 400 respectively. Ghia et al.’s data is also plotted and shown

as circles. Figures (2.5b) and (2.5d) show the same but for the v velocity through the horizontal

line through the centre. There appears to be close agreement between the two sets, particularly

in the figures for u velocity.

Also shown is a side by side comparison of our results and Ghia et al.’s for the streamfunction

and vorticity within the cavity for R̂e = 100 and R̂e = 400. These contour plots are shown in

figures (2.6) and (2.7). The contours in the streamfunction and vorticity images are taken at

ψ = (−0.11,− 0.10,−0.90,−0.07,−0.05,−0.03,

− 0.01,−10−4,−10−5, 10−6, 10−5, 5x10−5), (2.1.20)

ζ = (−4,−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3, 4, 5), (2.1.21)
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(a) Ghia et al.’s ψ for R̂e = 100
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(b) ψ for R̂e = 100
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(d) ζ for R̂e = 100

Figure 2.6: Streamfunction and vorticity results comparison for R̂e = 100.
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(a) Ghia et al.’s ψ for Re = 400
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(b) ψ for R̂e = 400

(c) Ghia et al.’s ζ for R̂e = 400
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(d) ζ for R̂e = 400

Figure 2.7: Streamfunction and vorticity results comparison for R̂e = 400.
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as in Ghia et al.’s paper. The two are not identical, but are very close and the trend seems the

same in both sets, with the primary vortex occurring near the centre of the cavity but offset

to the top right corner for R̂e = 100, and smaller recirculation zones appearing in the bottom

corners which are larger in the R̂e = 400 image. These differences may be due to graphics

interpolation effects.

For completeness, we include contour plots of the steady-state vorticity and streamfunction

for a range of smaller Reynolds numbers. These are shown in figures (2.8) and (2.9). As one

would expect, the vorticity contours and streamlines are symmetrical about the vertical centre-

line of the cavity for R̂e = 0. The two eddies in the bottom corners are similar in size. As the

Reynolds number increases to around R̂e = 50 the primary vortex moves to the top right-hand

corner, and we begin to see growth in the eddy in the right-hand corner. At higher Reynolds

numbers still, the primary vortex begins to move back toward the centre of the cavity. We

also see the concentration of the vorticity contours increasing, which indicates areas of higher

gradients. These results are found on a grid of 129x129 points using the same contours listed

above. All this agrees with others’ results and suggests our numerical algorithm is working well.

We also found that refining the grid and changing the initial guess for ζ had little or no ef-

fect on the results. Given the close agreement with Ghia et al., we did not think it necessary to

include these figures here.

2.1.2 The time dependent problem

Comparisons to Ghia et al.’s paper give us some confidence that our numerical procedure is

working well and so we switch our focus to extending the algorithm to the full time dependent

problem. The equations and boundary conditions remain the same, namely (2.1.15), (2.1.16)
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Figure 2.8: Results for ζ within the lid driven cavity for 129x129 grid points and a range of

Reynolds numbers.
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Figure 2.9: Results for ψ within the lid driven cavity for 129x129 grid points and a range of

Reynolds numbers.
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and (2.1.18), except (2.1.14) is replaced by

ζk0 =
δt
(
ζk1 + ζk2 + ζk3 + ζk4

)
4δt+ h2R̂e

+
δtR̂e

{
(ψk

1 − ψk
3 )(ζ

k
2 − ζk4 )− (ψk

2 − ψk
4 )(ζ

k
1 − ζk3 )

}
4(4δt+ h2R̂e)

+
h2R̂eζk−1

0

4δt+ h2R̂e
. (2.1.22)

Within (2.1.22) superscript k refers to the latest value at the current time step, and k − 1 to the

converged solution at the previous time step. We begin with an initial condition of ζk=0 = 0

and use the same iterative process as for the steady-state to find ψk=1 and ζk=1. From here,

we may solve for the next time step, using ζk=1 to find ζk=2, ψk=2 and so on. A time step of

δt = R̂eh2/2 was used in all calculations.

The time marching results for the vorticity contours when R̂e = 100 are shown in figure

(2.10), and for the streamlines in figure (2.11). We see that the primary vortex forms near

the top right-hand corner of the cavity and moves toward the centre as time increases, where

it stays. Two smaller vortices form at the bottom corners and remain there for all time. In

both figures the steady-state results (2.10f), (2.11f) discussed previously are also shown for

comparison with the t = 16 results (2.10e), (2.11e). We see that the time marching method

does indeed converge to the steady-state solution, which increases confidence in the present

numerical procedure.

2.2 Air flow over a surface mounted semicircle

With reasonable results for our time marching algorithm and the steady-state solution matching

closely to those of Ghia et al. we now look to apply the Navier-Stokes solver to the polar form

of shear flow over a semicircular body attached to a wall. The same definition of R̂e seen

in (2.1.6) is used, and when this parameter is O(1), the setup corresponds to step one in the

method for modelling droplet deformation outlined in Chapter 1. Our interest in this problem

lies in numerically determining the pressure and vorticity along the surface of the obstacle, with

the aim of using the solution to drive the flow within the water droplet, seen in Chapter 4.
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(f) Steady-state result.

Figure 2.10: Unsteady results for ζ within the lid driven cavity for 129x129 grid points, and

R̂e = 100. The corresponding steady-state result (f) is included for comparison.
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(f) Steady-state result.

Figure 2.11: Unsteady results for ψ within the lid driven cavity for 129x129 grid points, and

R̂e = 100. The corresponding steady-state result (f) is included for comparison.
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The flow regime is given graphically in Cartesian form at the beginning of the chapter in

figure (1.1), and in polar form in figure (2.2a). The semicircular hump has centre (0, 0) and

radius 1 so that the outer wall of the body lies at r = 1. The air flows generally from left to

right and far from the body is of uniform shear u ∼ y.

Following the approach taken in the lid driven cavity problem, after application of the small

ratios scaling, we consider the Navier-Stokes equations in vorticity-streamfunction form:

∇2ζ = R̂e

(
1

r

∂ψ

∂θ

∂ζ

∂r
− 1

r

∂ψ

∂r

∂ζ

∂θ
+
∂ζ

∂t

)
, (2.2.1)

∇2ψ = −ζ, (2.2.2)

where streamfunction and vorticity are defined as

ζ =
1

r

∂

∂r
(ruθ)−

1

r

∂

∂θ
(ur) , (2.2.3)

1

r

∂ψ

∂θ
= ur,

∂ψ

∂r
= −uθ. (2.2.4)

for radial and azimuthal velocities ur, uθ.

To allow for comparisons between the previous example and this problem, we base our numer-

ical algorithm on that seen in the lid driven cavity, where a uniform discretisation was applied.

It seems sensible to do the same here also. With this approach, to ensure the numerical grid has

points which lie exactly along the solid wall at θ = 0 and θ = π, we must restrict our choice

of grid spacing to be a fraction of π. A uniform discretisation of the rectangular region (r, θ),

places an additional restriction on the value of the Reynolds number we may practically use

in our computations and this is discussed later. Despite these restrictions, applying a constant

grid spacing throughout the geometry appears to work well for our purpose as we shall see, and

has the advantage of allowing us to express the finite difference version of the equations and

boundary conditions in a simple form.
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To derive the boundary conditions we begin with the no-slip along walls where the fluid is

attached, so that ur, uθ and ψ are all zero along θ = 0, π and r = 1. For the vorticity here,

we follow an identical argument to that in the previous example: the second order accurate

finite difference form of (2.2.4) is used to eliminate the shadow points in the finite difference

form of (2.2.2). Again, subscripts b and i are used to refer to the grid points on the boundary

and immediately interior to the boundary respectively. In the present case, these boundary

conditions take the form:

ψ = 0, ζi =
−2ψi

r2bh
2

along θ = 0, π, (2.2.5)

ψ = 0, ζi =
−2ψi

h2
along r = 1. (2.2.6)

The fourth condition for both ζ and ψ as r → ∞, differs from the driven cavity, where a moving

wall at a fixed distance gave a uniform velocity. For the current problem, a uniform far field

shear u ∼ y directly yields a condition for ψ, which, when combined with (2.2.2) provides the

final condition for ζ:

ψ =
1

2
r2 sin2 θ, ζ = −1 as r → ∞. (2.2.7)

It is this far field condition (2.2.7) which causes the computational restriction on the maximum

Reynolds number we can use, a problem we did not encounter in the lid driven cavity. While the

equations assume the setup to be semi infinite in y, the computational algorithm takes a fixed

boundary at a finite r value, r∞. The choice of r∞ in the numerics must be sufficiently large

that any recirculatory motion downstream of the obstacle does not cause an upstream effect via

the r∞ boundary. As the Reynolds number increases, so too does the length of such an eddy

and so must the minimum usable value of r∞. With a uniform grid spacing, a larger choice of

r∞ greatly increases the number of grid points used and becomes computationally expensive.

If our interest lay in flows with larger Reynolds numbers this could easily be avoided by using a

multi-grid method. For our purpose however, where R̂e = O(1), this simple setup of a uniform
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grid works well for a choice of r∞ = 15 and Re <= 5.

2.2.1 The steady-state problem

In a similar way to the lid driven cavity problem, it is believed that the flow over a semicircle

may converge in time to a steady laminar solution, unique for a given Reynolds number. If this

is the case, it seems sensible to once again begin by tackling the steady-state problem, as it will

allow us later to validate our time marching algorithm.

In the steady-state problem, the time derivative term in (2.2.1) is neglected. A second or-

der accurate finite difference procedure is applied to (2.2.2) and (2.2.1) using same labelling

system outlined in the previous section. This leads to the equations which govern the numerical

algorithm:

ψ0 =

{
r0

(
r0 +

h

2

)
ψ1 + r0

(
r0 −

h

2

)
ψ3 + ψ2 + ψ4 + r20h

2ζ0

}
/2(1 + r20), (2.2.8)

ζ0 =

{
r0

(
r0 +

h

2

)
ζ1 + r0

(
r0 −

h

2

)
ζ3 + ζ2 + ζ4+

r0R̂e

4
(ψ1 − ψ3)(ζ2 − ζ4)−

r0R̂e

4
(ψ2 − ψ4)(ζ1 − ζ3)

}
/2(r20 + 1). (2.2.9)

With an initial guess of ζ = 0 everywhere, an identical iterative process as detailed in section

(2.1.1) is used to solve the two coupled systems (2.2.8) and (2.2.9) subject to the boundary con-

ditions (2.2.5), (2.2.6) and (2.2.7): the streamfunction and vorticity are solved simultaneously,

taken as known at each iteration and then updated accordingly. In all of the calculations, the

system was terminated once the error between successive iterations of ζ and ψ reach below

10−5. It was found that no relaxation was required for the Reynolds numbers considered.

Results for the streamfunction at R̂e = (0, 1, 3, 5), calculated on a grid with uniform spac-
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ing h = π/150 are shown in figure (2.12). In these images, contours are plotted at

ψ =
(
−10−4,−10−3,−10−2,−10−1, 0, 10−3, 10−2, 10−1, 0.2, 0.3, 0.5,

0.7, 0.9, 1.2, 1.6, 2, 2.3, 2.6, 3.5, 5, 6) . (2.2.10)

For clarity, it was decided to not include contour labels within the plots and instead a colour

bar is shown at the top of the figure. The images demonstrate that the streamline pattern is

symmetrical for R̂e = 0 with two small recirculation zones on either side of the obstacle.

Similar eddies were seen in the lid driven cavity example and we know from Moffatt [37] to

expect eddies to exist near a corner between two intersecting planes where the angle is less than

146.3 ◦, as it is in our problem. The length of the downstream eddy appears to almost increase

linearly with Reynolds number, which agrees with the findings of Bhattacharyya, Dennis and

Smith [6], although their work extends to much higher Reynolds numbers. We also see a

dividing streamline which separates the eddies from the main body of the flow and pinching of

the streamlines above the semicircle, both being features which are described by Higdon [23]

whose paper included some work on Stokes flow past surface mounted circular crests.

Figure (2.13) shows the results for vorticity, found using the same Reynolds numbers and

grid spacing as the streamfunction. A colour bar is also shown at the top of the figure and

contours are taken at intervals of 0.1 between ζ = −3 and ζ = 0.1. In all of the images,

ζ = −1.3 corresponds to the outermost contour in the loop immediately above the semi circle,

and ζ = −0.9 is the outermost contour both upstream and downstream to the body. To make the

image clearer, vorticity values between −1.3 and −0.9 were not plotted, although these would

lie between the two contours described above. Again, the pattern is symmetrical for R̂e = 0

and the distortion increases with Reynolds number. The general trend of the lines of constant

vorticity is consistent with Keller and Takami [29] whose results on flow past a cylinder at low

Reynolds numbers were reprinted in Batchelor’s book [4].
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Figure 2.12: Streamlines for the steady flow in air over a semicircle with h =
π

150
and a range

of Reynolds number.
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Figure 2.13: Lines of constant vorticity the steady flow in air over a semicircle with h =
π

150

and a range of Reynolds number.
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We also include figures (2.14) and (2.15) to demonstrate the effect of grid refinement on

streamfunction and vorticity respectively. In these images, R̂e = 5 and the grid spacings

π/100, π/150 and π/200 are used. Increasing the number of grid points in the computation

appears to have a minimal effect on the results for streamfunction, particularly if we compare

the two images with finer grids, (2.14c) and (2.14d). We notice that the vorticity seems much

more sensitive to grid spacing as expected, particularly downstream of the semicircle. Overall

however, the trend is the same throughout which gives us some confidence that the algorithm is

working well. It remains to extend this steady-state algorithm to the time dependent problem,

and for that purpose we conclude that a grid spacing of around π/150 is sufficient to produce

accurate results without being too computationally expensive.

2.2.2 The time dependent problem

To achieve this unsteady numerical solution, we reintroduce the time derivative term in (2.2.1).

Using the same labelling system as before, and k to refer to the value at the current time step,

we apply a second order accurate finite difference procedure in space, first order accurate back-

wards finite difference in time, to arrive at the following:

ζk0 =

{
r0

(
r0 +

h

2

)
ζk1 + r0

(
r0 −

h

2

)
ζk3 + ζk2 + ζk4 +

r0R̂e

4
(ψk

1 − ψk
3 )(ζ

k
2 − ζk4 )

−r0R̂e
4

(ψk
2 − ψk

4 )(ζ
k
1 − ζk3 ) +

r20h
2R̂e

δt
ζk−1
0

}
/

(
2r10 + 2 +

r20h
2R̂e

δt

)
(2.2.11)

This and (2.2.8) are the governing equations for time marching algorithm. The boundary con-

ditions along any solid walls (2.2.5), (2.2.6) remain the same, but impulsively starting a shear

flow along r∞ by using (2.2.7) in an initially quiescent fluid was found to cause an undesired

thin layer of vorticity which forms along r∞ and spreads through the flow field with thickness

of order t1/2. This feature, known as a Rayleigh layer, occurs when flow at rest is subjected to

shear forces along a boundary. The particles are dragged along with the boundary, generating

vorticity which diffuses through the fluid. This was also found to occur in the later work done

on the fluid within the droplet but since Rayleigh layers are not the main concern of this study,
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Figure 2.14: Grid refinement example for steady air flow over a semicircle: ψ for R̂e = 5
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Figure 2.15: Grid refinement example for steady air flow over a semicircle: ζ for R̂e = 5
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we omit any detailed analysis and refer the reader to Telionis [71], Stewartson [66] or Rayleigh

[47]. Instead, to avoid this problem and the effect it has on the convergence of the time marching

system, we chose to introduce a slowly started shear flow along r∞. This is done by replacing

(2.2.7) with

ψ =
1

2

et

1 + et
r2 sin2 θ, ζ = − et

1 + et
, on r = r∞. (2.2.12)

and starting the system at t = −5. Aside from this feature, an identical process to the time

march procedure detailed in the driven cavity is used to solve (2.2.8), (2.2.9) subject to the

boundary conditions (2.2.5), (2.2.6) and (2.2.7).

Figure (2.16) shows the results for the time marched streamfunction for t = 0.5, 1, 2, 4, 8.

The numerics are calculated using R̂e = 3 on a grid with spacing h = π/150, giving 151

points in θ and 669 in r. Contours are plotted for the values of ψ listed in (2.2.10) so that

the colour bar in figure (2.12a) also applies here. Our results suggest that by t = 0.5, a small

recirculation zone downstream to the semicircle has already begun to form, increasing in size

with time. The pinching of the streamlines is more severe for smaller values of t signifying a

larger streamfunction gradient above the obstacle. As time increases, we see that figure (2.16e)

and the corresponding steady-state result (2.12d) match well, suggesting that the flow solution

becomes virtually steady between t = 4 and t = 8.

A similar trend may be seen for the accompanying vorticity solution in figure (2.17) where

the colour bar in figure (2.13a) applies: by t = 8, a comparison between the time marched

solution and the figure showing the corresponding steady-state (2.13d) show similar trends in

both. We conclude that the unsteady solution does indeed converge in time to the steady-state

solution detailed in the previous section.

With apparently sensible results for the time marching algorithm our next step is to extract
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Figure 2.16: Unsteady results for ψ for flow in air over a semicircle and R̂e = 3
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Figure 2.17: Unsteady results for ζ for flow in air over a semicircle and R̂e = 3
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the pressure and vorticity along the wall of the obstacle, as outlined in the method description

given in Chapter 1. The vorticity along r = 1 forms part of our current solution, but the pres-

sure must be determined at each time step from the polar form of the Navier-Stokes equations.

Along the wall of the semicircle a no-slip condition applies, all velocity terms are zero and the

Navier-Stokes in pressure vorticity form become the Cauchy-Riemann-like equations:

∂p

∂r
= − 1

R̂er

∂ζ

∂θ

∂p

∂θ
=

r

R̂e

∂ζ

∂r
. (2.2.13)

The pressure may be found from the second of these:

p(r = 1, θ) =
1

R̂e

∫ θ

0

∂ζ(r, s)

∂r

∣∣∣∣
r=1

ds, (2.2.14)

where p(1, 0) = 0 is taken as a reference point. To apply this in a discrete form, we use

a Taylor’s expansion of ζ at the two points interior to the boundary ((1 + h, θ) labelled by

subscript i and (1 + 2h, θ), labelled by subscript j). A linear combination of these allows us to

find the second order accurate r derivative of ζ at r = 1 without using a shadow point:

∂ζ

∂r

∣∣∣∣
r=1

= −(ζj − 4ζi + 3ζb)

2h
, (2.2.15)

here subscript b is used to denote the line (1, θ) as before. The pressure may then be determined

by applying the trapezium rule to the result.

Figure (2.18a) shows a plot of the time dependent interface pressure. For negative t the

pressure is relatively small, slowly increasing to a maximum at around t = 0. The pressure

takes a higher value at the leading edge of the droplet, θ = π, throughout the simulation which

is as one would expect. Beyond this point, we see an area of negative pressure forming behind

the obstacle which matches well with the recirculation areas already seen in figure (2.16). As t

increases further the pressure solution indicates
∂p

∂t
→ 0 and the curve begins to flatten as the

time dependent form moves toward the steady-state solution.
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(b) The vorticity along the wall of the obstacle as time increases

Figure 2.18: The pressure and vorticity along interface for the flow in air over a semicircular

obstacle.
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The corresponding image for vorticity is given in figure (2.18b). The general trends are

similar: ζ takes small values at the intial time steps and the magnitude of ζ is at a maximum

around t = 0. Our definition of vorticity in (2.2.3) fixes a clockwise rotation as ζ negative,

thus the fluid particles along the top of the semicircle are rotating in the same direction as the

external air flow. We notice an area of positive vorticity forming at the trailing edge of the semi

circle, θ = 0 which ties in with the recirculation discussed. Finally, the image begins to flatten

along the time axis as t→ 8 and the solution to the unsteady problem becomes virtually steady.

With these results, step one of the method given in Chapter 1 is complete. We shall return

to these solutions for p and ζ when we attempt to tackle the interacting problem in Chapter 4,

but first we concern ourselves with step two of the method: the flow within the semicircular

water droplet.



Chapter 3

Flow in water

We now have an algorithm which allows us to determine the pressure and vorticity along the

curved wall of a surface mounted semicircle at any time and so we switch our focus in this

section to the flow within the droplet, corresponding to step two in the method outlined in

Chapter 1.

As discussed there, a key concern of this study is the understanding of the behaviour of the

droplet at larger times, particulary the identification of a later temporal stage when, to satisfy

the kinematic condition, the relationship between the air and water becomes non-linear. The

time at which this change in dynamics occurs is dictated by the growth of the velocities within

the droplet, as will become clear later in this chapter. If the velocities become steady the new

time scale will come into operation as t → 1/ϵ, where ϵ is our small density ratio. However, if

linear velocity growth with time is found, this later stage is as t→ 1/ϵ1/2.

It proves difficult to confirm directly the behaviour of the velocities at larger times. To better

understand this mechanism it is helpful to include the analysis of two additional canonical prob-

lems. First, we study an entirely free surface droplet, the circular seed; and second, a Cartesian

version of our aim, the square droplet. These model problems offer insight and validation for

the semicircular case, which we tackle in Section 3.3.
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As a further simplification we temporarily abandon the accurate but numerical pressure and

vorticity results from the previous chapter and instead prescribe idealised pressure and vorticity

interface conditions along the free surface of the droplet. If the fluid is initially at rest, we find

that doing so causes the undesired effect of Rayleigh layers. To avoid this, we allow for a gentle

introduction of the p and ζ interface conditions by including a slowly increasing function of

time which tends to unity, similar to that seen in (2.2.12).

Throughout this chapter, we work with the dimensionless Stokes equations, found from ap-

plying the small ratios scaling (ûW , p̂W ) = ϵ(uW , pW ) to (1.2.10), which were given in

Chapter 1 but we repeat here:

∂u

∂t
= −∂p

∂x
− Re−1 ∂ζ

∂y
, (3.0.1)

∂v

∂t
= −∂p

∂y
+Re−1 ∂ζ

∂x
, (3.0.2)

∂u

∂x
+
∂v

∂y
= 0, (3.0.3)

where subscript W is dropped for ease of notation. With the vorticity defined as

ζ =
∂v

∂x
− ∂u

∂y
, (3.0.4)

it is relatively simple to manipulate equations (3.0.1), (3.0.2) into a vorticity-pressure system:

∇2p = 0, (3.0.5)

∂ζ

∂t
= Re−1∇2ζ. (3.0.6)

Further, along a wall where a no-slip condition applies and the velocities u, v are identically zero

equations (3.0.1) and (3.0.2) become the Cauchy-Riemann equations for pressure and vorticity:

∂p

∂x
= −Re−1 ∂ζ

∂y
, (3.0.7)

∂p

∂y
= Re−1 ∂ζ

∂x
. (3.0.8)
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In the circular seed model and the semicircular droplet, the equations become simplest in polar

form. In such a case, where the Laplacian is:

∇2p =
1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂θ2
, (3.0.9)

equations (3.0.5) and (3.0.6) remain unchanged, and with vorticity defined as

ζ =
1

r

∂

∂r
(ruθ)−

1

r

∂

∂θ
(ur) , (3.0.10)

the field equations (3.0.1), (3.0.2) become

∂ur
∂t

= −∂p
∂r

− Re−1

r

∂ζ

∂θ
, (3.0.11)

∂uθ
∂t

= −1

r

∂p

∂θ
+Re−1∂ζ

∂r
. (3.0.12)

The continuity equation is

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

= 0, (3.0.13)

and a no-slip condition along a wall again yields the Cauchy-Riemann equations:

∂p

∂r
= −Re−1

r

∂ζ

∂θ
, (3.0.14)

1

r

∂p

∂θ
= Re−1∂ζ

∂r
. (3.0.15)

3.1 The circular seed

Using the system outlined above, the first model problem we consider is of the flow within a

free surface circular droplet with a solid centre, subject to a unidirectional external flow field.

The solid ‘seed’ and the droplet form two concentric circles with the given solid-liquid interface

lying at r = a as shown in figure (3.1). The droplet has symmetry about the line y = 0, and as

such, we need only model fluid contained in the half plane y > 0. The solid centre simplifies

the problem further, allowing us to use a no-slip condition at r = a, which reduces the system

to a one dimensional problem.
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Figure 3.1: A diagramatical representation of the circular seed problem.

By choosing free surface conditions

p(1, θ) =
et

1 + et
sin θ, (3.1.1)

ζ(1, θ) =
et

1 + et
sin θ, (3.1.2)

a full description of the flow is given by the coupled system (3.0.5), (3.0.6) subject to the bound-

ary conditions (3.1.1) and (3.1.2) along r = 1, and the Cauchy-Riemann equations (equivalent

to a no-slip condition) (3.0.14) and (3.0.15) along r = a.

This problem may be solved using a trigonometric series for the pressure and vorticity. It

turns out, to satisfy the momentum equations within the droplet and the no-slip conditions

along the liquid-solid boundary we need only the first term in the series. The uniqueness of this

solution is discussed later. We also know what form the coefficients for pressure must take to

ensure it satisfies Laplace’s equation, so that pressure and vorticity may be described by

p =

(
Ar +

Ã

r

)
sin θ +

(
Br +

B̃

r

)
cos θ, (3.1.3)

ζ = C(r, t) sin θ +D(r, t) cos θ, (3.1.4)

for unknown functions of t A, Ã,B, B̃ and functionsC(r, t),D(r, t). Rewriting g(t) =
et

1 + et
,

with the pressure and vorticity in this form, the choice of interface condition immediately sug-
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gests B + B̃ = 0, and A+ Ã = g(t).

Applying (3.1.3), (3.1.4) to the field equations and boundary conditions listed above leads

to two decoupled evolution equations for C and D.

For C(r, t):

Re−1

[
∂2C

∂r2
+

1

r

∂C

∂r
− 1

r2
C

]
=
∂C

∂t
, (3.1.5)

C = g(t) on r = 1, which → 1 as t→ ∞, (3.1.6)

∂C

∂r
= ReB

(
1

r2
− 1

)

C = −rReB
(
1 +

1

r2

)


on r = a. (3.1.7)

For D(r, t):

Re−1

[
∂2D

∂r2
+

1

r

∂D

∂r
− 1

r2
D

]
=
∂D

∂t
, (3.1.8)

D = 0 on r = 1, (3.1.9)

∂D

∂r
= Re

(
A+

Ã

r2

)

D = rRe

(
A− Ã

r2

)


on r = a. (3.1.10)

The constants A, Ã and B, B̃ may be eliminated from the conditions along r = a, so that rather

than (3.1.7), C(a, t) can be found from:

1

C

∂C

∂r

∣∣∣∣
r=a

=
(a2 − 1)

a(a2 + 1)
, (3.1.11)
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and, rather than (3.1.10), D(a, t) may be found from

(1− a2)D + (a2 + 1)a
∂D

∂r

∣∣∣∣
r=a

= 2ag(t)Re. (3.1.12)

3.1.1 The time dependent problem

The two sets of equations ((3.1.5), (3.1.6), (3.1.11) for C and (3.1.8), (3.1.9), (3.1.12) for D)

may be solved separately by using a semi-implicit finite difference scheme, second order accu-

rate in space and first order accurate in time, similar to that seen in the lid driven cavity problem

of the previous chapter and precise details of which we do not feel it necessary to include here.

To deal with the r derivative at r = a in (3.1.11) and (3.1.12) we use a Taylor’s expansion of

the two grid points immediately interior to the boundary and arrive at an expression identical in

form to that seen in (2.2.15).

Once a numerical solution to C and D has been determined at a given time step, pressure

and vorticity may be found directly, and substituted back into the momentum equation (3.0.11)

to find ur along the free surface. The kinematic condition provides the new interface shape as

discussed later. Finally, A, Ã, B, B̃ are given by,

A =
aD(a, t) + Reg(t)

Re(1 + a2)
, (3.1.13)

B = −B̃ =
−C(a, t)a
Re(a2 + 1)

, (3.1.14)

Ã =
g(t)a2 − aRe−1D(a, t)

1 + a2
. (3.1.15)

Plots are shown in figure (3.2) for C against r for increasing time. Likewise for D in figure

(3.3). In all of our numerical work the constants (a,Re, δr, δθ) = (0.6, 1, 0.005, 0.005) were

used, to give 81 grid points in r (and later, 629 points in θ). We can see from the graphs that C

and D both converge to a steady-state in effect sometime between t = 4 and t = 8 and remain
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steady at least until t = 16. The exact solutions of the steady-state are also plotted as solid lines

with black stars, and these are discussed later.

Plots are included of the pressure and vorticity induced along the solid boundary r = a

for increasing time in figures (3.4) and (3.5) respectively. Along this line the boundary con-

ditions dictate that the pressure and vorticity must satisfy the Cauchy-Riemann equations. It

appears from the graph that the vorticity is simply the pressure reflected in the line θ = π/2, so

that ζ(r, θ, t) = p(r, π − θ, t). Both graphs also become effectively steady sometime between

t = 4 and t = 8 and remain steady for larger times. In these images, θ = 0 refers to the positive

x axis and thus in a sense the trailing edge of the droplet.

Figure (3.6) shows the radial velocity produced along the free surface of the droplet. Like-

wise in figure (3.7) for the azimuthal velocity. Crucially we notice that in addition to the

pressure and vorticity becoming steady, the numerical results suggest that u becomes steady

with time also. This has a direct impact on the time scale of the later temporal stage, signifying

a non-linear interaction between air and water. We discuss this in a moment, but first briefly

present an argument for the uniqueness of this solution.

3.1.2 Uniqueness of the solution

Consider the other terms in an infinite series solution to the Laplacian,

p̂ =

∞∑
n=2

(
Anr

n − Ãn

rn

)
sinnθ +

(
Bnr

n − B̃n

rn

)
cosnθ. (3.1.16)

Likewise, the other terms in an infinite series of ζ are

ζ̂ =

∞∑
n=2

Cn(r, t) sinnθ +Dn(r, t) cosnθ. (3.1.17)

Working through the equations and boundary conditions with these extra terms, if all these

coefficients can be shown to be zero, our solution found from the first term in the series must

be unique.
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Applying the boundary conditions at r = 1 and r = a gives An = −Ãn, Bn = −B̃n,

and the following relationship for An and Dn

1

Re

∂Dn

∂r

∣∣∣∣
r=a

= nAn

(
an−1 − 1

an+1

)
, (3.1.18)

Dn

Re
= aAn

(
an−1 +

1

an+1

)
. (3.1.19)

Aside from an extra minus sign on the left-hand side in each equation, these take the same form

as the Cn, Bn set.

In the same way as before, An can be eliminated, giving an expression for Dn alone.

1

Dn

∂Dn

∂r

∣∣∣∣
r=a

=
n
(
a2n − 1

)
a (a2n + 1)

. (3.1.20)

The right-hand side of (3.1.20) is time independent, and the left contains only a derivative in

r. For this to be true, Dn must take the form Dn = Tn(t)Rn(r). We may apply this in the

decoupled evolution equation for Dn,

Re−1

[
∂2Dn

∂r2
+

1

r

∂Dn

∂r
− n2

r2
Dn

]
=
∂Dn

∂t
, (3.1.21)

to obtain a solution for Tn(t) using standard techniques,

Tn(t) = τn exp[−λ2nt], (3.1.22)

for real constants λn and τn.

If the external flow field is impulsively started, the vorticity would be initially zero within

the droplet. For this to be true, Dn = 0 at t = 0 making τn = 0. From there, T (t) is zero for

all time, as is Dn and hence An, Ãn = 0 from (3.1.19).
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Figure 3.4: The pressure p against θ along the solid boundary, r = a.
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Figure 3.5: The vorticity ζ against θ along the solid boundary, r = a.
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Figure 3.6: Radial velocity ur against θ along the two fluid interface r = 1.
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The same argument holds for Cn, Bn, so that they too must be zero for all time. All coef-

ficients for n ≥ 2 are zero and remain zero, which makes our first term only solution unique.

3.1.3 Shape analysis and the later temporal stage

Initially, the interface between the water and air is described by the circle f(θ, t) = 1. It seems

reasonable to suggest that the droplet deformation will be dependent on the small density ratios

parameter ϵ. So, we expect the shape to expand as f = f0+ ϵf1+ ϵ
2f2+ · · · in the early stage.

To derive the kinematic condition in polar form, we take the time derivative of r − f(θ, t) = 0.

Then,

∂r

∂t
− ∂f

∂θ

∂θ

∂t
− ∂f

∂t
= 0, (3.1.23)

which is equivalent to

ûr = ûθ
∂f

∂θ
+
∂f

∂t
. (3.1.24)

The scalings for velocity lead to an O(ϵ) balance of the kinematic condition of

ur = uθ
∂f0
∂θ

+
∂f1
∂t

, (3.1.25)

suggesting that the leading order shape effect f0 is time independent. Further, since f0 = 1, the

kinematic condition here just becomes

ur =
∂f1
∂t

, (3.1.26)

which yields the new droplet shape from a first order accurate finite difference procedure

fk1 = δtuk−1
r + fk−1

1 . (3.1.27)

The numerical results appear to suggest that all major variables (apart from f1) approach a

steady-state at large times and remain steady. Our argument in Section 3.1.2 indicates that

this solution is unique. For a steady ur, (3.1.26) implies that f1 will grow linearly with

time which can be seen to match our numerical results in figure (3.8), where f1 is plotted at

t = 0.5, 1, 2, 4, 8, 16.
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Figure 3.8: The shape effect, f1 of the circular seed problem at different times.

This model will hold until t approaches O(1/ϵ), and f1 becomes comparable with the leading

order term in the interface shape, f0, and the kinematic boundary condition becomes fully

non-linear. This corresponds to our second temporal stage. A rescaling of t = T/ϵ would allow

us to explore the dynamics of this stage, we do so briefly in Section 3.3 for the semicircular

droplet and numerically in Part 2 for the triple-deck droplet, but further analysis is not provided

for the current model.

3.1.4 The steady-state problem

If the vorticity does reach a steady-state (and satisfies Laplace’s equation as opposed to the heat

equation) then C and D become C(r) and D(r). The equations (3.1.5), (3.1.6), (3.1.11), and

(3.1.8), (3.1.9), (3.1.12) still hold, but with g(t) = 1. These yield an exact solution for C and
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D of

C(r) =

(
r

2
+

1

2r

)
, D(r) =

(
r

2
− 1

2r

)
. (3.1.28)

Then A, Ã, B and B̃ may be uniquely determined from this solution, which gives steady-state

results for the pressure and vorticity as

p =
1

2

(
r +

1

r

)
sin θ − 1

2

(
r − 1

r

)
cos θ, (3.1.29)

ζ =
1

2

(
r +

1

r

)
sin θ +

1

2

(
r − 1

r

)
cos θ. (3.1.30)

The steady-state solutions of C andD in (3.1.28) are plotted in figures (3.2) and (3.3) alongside

their numerically calculated time-marched results and shown as solid lines with black stars.

The numerical results closely approach the steady-state exact solution as t increases, which

suggests that a steady-state is reached and that our numerical procedure is accurate. It is worth

noting also that with this solution ζ(r, θ) = p(r, π − θ), which agrees with the results for the

pressure and vorticity shown in figures (3.4) and (3.5).

The velocity will remain steady as long as ∂tu = 0 of course. For this to be true, the mo-

mentum equations (3.0.11) and (3.0.12) dictate that the pressure and vorticity must satisfy the

Cauchy-Riemann equations everywhere. Thinking in Cartesian terms,

Re−1 ∂ζ

∂x
=
∂p

∂y
, − Re−1 ∂ζ

∂y
=
∂p

∂x
. (3.1.31)

Two functions which satisfy the Cauchy-Riemann equations must both be harmonic (satisfy

Laplace’s equation). Further, there must exist an analytic function F (z), of z = x+ iy, where

F (z) = Re−1ζ + ip, as outlined in Priestley [45]

To find such a function in the circular seed problem, we begin by rewriting (3.1.29) and
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(3.1.30) in Cartesian coordinates:

p =
1

2
(y − x) +

1

2

x+ y

x2 + y2
, (3.1.32)

ζ =
1

2
(x+ y) +

1

2

y − x

x2 + y2
. (3.1.33)

Taking Re = 1, we find an analytic function F (z) = ζ + ip as follows:

F (z) =
1

2
(x+ y) +

1

2

y − x

x2 + y2
+ i

1

2
(y − x) + i

1

2

x+ y

x2 + y2
, (3.1.34)

=
1

2
(x+ iy) +

1

2
(y − ix) +

1

2

y + ix

x2 + y2
− 1

2

x+ iy

x2 + y2
, (3.1.35)

=
z

2
− iz

2
+

iz∗

2zz∗
− z∗

2zz∗
, (3.1.36)

=
1

2
(1− i)

(
z − 1

z

)
. (3.1.37)

So, once a steady-state solution is reached, p and ζ satisfy the Cauchy-Riemann equations ev-

erywhere and the system remains steady. Equally, the reverse is generally true for any problem

of this sort; to find an analytic function F (z) independent of time implies that the velocities

remain steady, we see linear growth in f1 and the later temporal stage comes into operation as

t = O(1/ϵ).

3.2 The square droplet

The circular seed offered us some insight into the dynamics of the flow within the water droplet.

We found that along a line where a no-slip condition is present (and hence the Cauchy-Riemann

equations for p and ζ hold) the pressure and vorticity form solutions which are a reflection of

one another about the vertical line through the midpoint of the geometry. Further, once the

flow solution reaches a steady-state, so too do the velocities, implying backwards and forwards

that pressure and vorticity satisfy the Cauchy-Riemann equations everywhere and the shape of

the droplet changes linearly with time. These are potentially important results, but since the

circular seed case reduces to a one-dimensional problem we perhaps find their relevance in

applying them to the semicircular droplet is limited. For that reason we now include a second

canonical problem: the square droplet. This may be thought of as a Cartesian version of our
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semicircular droplet case, where the line y = 0 corresponds to θ = (0, π), y = 1 corresponds

to r = 1 and x = (0, 1) are the points on the border of the semicircle near r = 1, θ = (0, π)

respectively. The square droplet also has an identical geometry to the lid driven cavity outlined

earlier in this part of the thesis in Chapter 2 and a diagram of the setup may be seen in figure

(3.9). While physically, surface tension and gravitational effects limit the application of this

example to a real world problem (see Chapter 7), it does offer further insight into the dynamics

of the semicircular case, in particular into the behaviour of the velocities at large time as we

shall see.

We begin as we did in the circular seed, with the system of equations outlined at the beginning

of the chapter. Choosing a prescribed interface condition along y = 1:

p(x, 1, t) =
et

1 + et
sin2 πx, (3.2.1)

ζ(x, 1, t) =
et

1 + et
sin2 πx, (3.2.2)

and ambient pressures and zero vorticity along x = 0, 1,

p = ζ = 0 on x = 0, 1, (3.2.3)

a complete description of the problem is then given by the equations (3.0.5), (3.0.5) subject to

the boundary conditions (3.2.1), (3.2.2) on y = 1, (3.2.3) on x = 0, 1 and (3.0.8), (3.0.7) along

y = 0, equivalent to a no-slip condition.

3.2.1 The steady-state problem

In the same way as for the circular seed, we propose that the square droplet will converge in

time to a unique steady solution for pressure and vorticity. If this is the case, finding a steady

solution will allow us to later validate our time marching results. Further, if the steady-state

solutions for p and ζ may be written as an analytic function F (z) = Re−1ζ + ip, the circular

seed results suggest we expect steady velocities and linear growth in the interface f . By as-

suming that the time dependent term in (3.0.6) tends to zero as time increases, the governing
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Figure 3.9: A diagramatical representation of the square droplet problem and its boundary

conditions.

equations reduce to Laplace’s equation for both pressure and vorticity, and we may approach

a solution in two ways. The first is via a series solution and the second by using a numerical

algorithm which is extended to form the basis of our time marching method in the next section.

Comparisons between the results from the numerical algorithm and series solutions then will

give us additional confidence in our time marching procedure of later.

A series solution

With the problem in the form above (Laplace’s equation for pressure and vorticity and boundary

conditions (3.0.8), (3.0.7), (3.2.3), (3.0.1) and (3.0.2)) we notice the similarities to the Fourier

series solution of steady heat transfer in a square conducting plate. Indeed, by taking pressure

or vorticity as analogous to temperature, we may build our own solution from two such Fourier

problems, equivalent to first heating along y = 0, and second along y = 1, while keeping all

other sides of the square at zero throughout the calculations. Figure (3.10) demonstrates this

idea diagrammatically for the pressure: we solve for (a) and (b) separately, and sum together to

achieve the full series solution.

In the case of pressure then, following the method outlined in Carslaw [12], we begin by
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(a) (b)

Figure 3.10: The series solution is built from the sum of two similar problems

considering a condition along y = 0 which may be written as a sine series:

p(x, 0) =

∞∑
n=1

pn sinnπx, (3.2.4)

and fix p as zero along x = 0, 1 and y = 1 as in figure (3.10a). With Laplace’s equation (3.0.5)

governing the pressure throughout the square, this setup has solution

p =
∞∑
n=1

pn sinh [(1− y)nπ] sinnπx

sinhnπ
. (3.2.5)

Likewise, a series solution may be found from taking p as zero along x = 0, 1 and y = 0 as in

figure (3.10b), this time taking the prescribed pressure along y = 1 as of the form

p(x, 1) =
∞∑
n=1

qn sinnπx. (3.2.6)

The series which satisfies Laplace’s equation and these boundary conditions is simply

p =

∞∑
n=1

qn sinh [nπy] sinnπx

sinhnπ
. (3.2.7)

Finally, the pressure for our case (equation (3.0.5) and boundary conditions (3.2.1), (3.2.3),

(3.0.8) and (3.0.7)) is the sum of these two expressions (3.2.7) and (3.2.5):

p =

∞∑
n=1

(pn sinh [nπ(1− y)] + qn sinh [nπy]) sinnπx

sinhnπ
. (3.2.8)
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Further, since (3.2.6) implies

qn = 2

∫ 1

0
p(x, 1) sinnπx dx, (3.2.9)

qn may be determined by applying the steady-state version of our choice of prescribed pressure

(3.2.1) and integrating, giving the exact result

qn =
4 ((−1)n − 1)

π (n3 − 4n)
. (3.2.10)

An identical method may be used to find an expression for the vorticity:

ζ =
∞∑
n=1

(rn sinh [nπ(1− y)] + sn sinhnπy) sinnπx

sinhnπ
, (3.2.11)

where

rn = 2

∫ 1

0
ζ(x, 0) sinnπxdx, (3.2.12)

sn = 2

∫ 1

0
ζ(x, 1) sinnπ dx, (3.2.13)

and our choice of prescribed vorticity of earlier (3.2.2) fixes sn = qn.

It remains to determine the unknown coefficients rn and pn and we may do so by applying

the as yet unused Cauchy-Riemann equations along y = 0, (3.0.8) and (3.0.7). Using these and

the standard result

∫ 1

0
sinmπx cosnπxdx =


m (1− (−1)n+m)

π (m2 − n2)
n ̸= m,

0 n = m,

(3.2.14)

it is relatively simple to show that

pm =
1

coshmπ

qm − 2 sinhmπ

πRe

∑
n, n̸=m

nrn
(1− (−1)n+m)

m2 − n2

 , (3.2.15)

rm =
1

coshmπ

sm +
2Re sinhmπ

π

∑
n, n ̸=m

npn
(1− (−1)n+m)

m2 − n2

 . (3.2.16)
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These expressions for rm and pm may be investigated numerically, and we include some of our

results in figure (3.11). These were calculated from a first guess of rn = 0 and an iterative

procedure, with both rn and pn treated as known at each stage of the working. Figures (a),

(c) and (e) show results for the pressure for 50, 100 and 200 Fourier coefficients respectively,

likewise in (b), (d) and (f) for vorticity. In these plots (and all similar plots for p, ζ which follow

in this section) contours are taken at

[−0.1, −0.3, −0.5, −0.8, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1] , (3.2.17)

labelled as such in the figures, and a value of Re = 1 is assumed throughout the calculations.

We notice some difference between the plots for 50 and 100 coefficients, but little change

thereafter, suggesting only 100 coefficients are needed for a complete description to the flow

field. Along y = 1 the pressure and vorticity match the prescribed conditions, and the functions

diffuse as might be expected in both cases to a value of around p, ζ = 0.2 at the centre of the

square. Both pressure and vorticity are positive in the bottom corners. In the bottom left-hand

corner as x increases, we see a small area of negative pressure before it once again becomes

positive, peaking slightly to the right of the centre of the square. In the same way as we found

in the circular seed example, the figures suggest that vorticity forms a solution which is the

reflection of p about x = 1/2, and we notice an identical pattern for vorticity near x = 1 as x

decreases.

It is worth pointing out that with this coupled form of rm in (3.2.16) and pm in (3.2.15),

we have been unable to find a steady p and ζ with which we can express a function F (z)

analytically. From our work on the circular seed, this perhaps suggests that the square droplet

does not yield steady velocities. Regardless we may use this series solution in validating our

fully numerical approach and discuss the implications on velocity later. So, with results which

seem reasonable and hold up well with increasing coefficients, we switch our focus to that task:

a finite difference solution to the steady-state problem.
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(b) Vorticity for 50 coefficients
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(c) Pressure for 100 coefficients
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(d) Vorticity for 100 coefficients
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(e) Pressure for 200 coefficients
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(f) Vorticity for 200 coefficients

Figure 3.11: Series solution results for steady flow within the square droplet.
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A numerical algorithm

To solve the steady-state problem numerically, we can use an iterative method and labelling

system on pressure and vorticity similar to the one seen in Section 2.1 for the lid driven cavity.

Here p and ζ are solved simultaneously via the second order accurate finite difference form

of (3.0.5) and (3.0.6) (with the time derivative term equal to zero) and boundary conditions

(3.2.1), (3.2.2) and (3.2.3). The procedure is terminated once the relative error between suc-

cessive iterations drops below 10−5. The Cauchy-Riemann equations which act as a condition

along y = 0, and couple the two otherwise independent systems together, are dealt with in

the same way as in the boundary condition for vorticity in Section 2.1; the central difference

forms of (3.0.8), (3.0.7) are used to eliminate the shadow point from (3.0.5), (3.0.6) respectively.

With this approach, it remains to solve the following system for pressure,

p0 =
1

4
(p1 + p2 + p3 + p4) , (3.2.18)

p0 = 1 along x = 0, 1, (3.2.19)

p0 = sin2 πx along y = 1, (3.2.20)

p0 =
1

4

(
p1 + p3 + 2p2 − Re−1ζ1 +Re−1ζ3

)
along y = 0. (3.2.21)

That is coupled with the system for vorticity,

ζ0 =
1

4
(ζ1 + ζ2 + ζ3 + ζ4) , (3.2.22)

ζ0 = 1 along x = 0, 1, (3.2.23)

ζ0 = sin2 πx along y = 1, (3.2.24)

ζ0 =
1

4
(ζ1 + ζ3 + 2ζ2 +Rep1 − Rep3) along y = 0. (3.2.25)

Some results for the converged iterations of different grid spacings are shown in figure (3.12).

(a), (c) and (e) are contour plots for the pressure with 51, 101 and 201 grid points in x and y;
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(b) Vorticity for 51 grid points
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(c) Pressure for 101 grid points.
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(d) Vorticity for 101 grid points.
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(e) Pressure for 201 grid points.
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(f) Vorticity for 201 grid points.

Figure 3.12: Numerically calculated results for steady flow within the square droplet.
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Figure 3.13: Pressure and vorticity along y = 0

likewise for vorticity in (b), (d) and (f).

While the plots differ slightly from those seen in figure (3.11) for the series solution, the

trend seems the same in both sets, particularly when comparing the images with finer grid spac-

ings (3.12e), (3.12f) to those with many Fourier coefficients (3.11e) and (3.11f). It was also

found that our converged steady-state solution was independent of the initial guess for vorticity,

(ζ = 0, ζ = sinx and ζ as a computer generated random number were all tried) but we do not

feel it necessary to include these plots here. We see again the pattern of oscillating pressure

and vorticity close to the wall. Figure (3.13) which shows the converged p and ζ along y = 0

for 201 grid points illustrates this, and here at least, where (3.0.8) and (3.0.7) are satisfied, p,

ζ form a solution in which they are precisely reflections of one another about x = 1/2 as seen

in the circular seed case. The solutions to the Cauchy-Riemann equations which form along

the solid wall turn out to yield an interesting analytical problem in their own right, which we
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Figure 3.14: The Cauchy-Riemann-like quantities along y = 1 for the steady-state problem of

the square droplet.

will investigate further via a canonical example in Chapter 5 at the end of this part of the thesis.

We also include a plot of (−px − Re−1ζy) and (−py + Re−1ζx) along y = 1 in figure

(3.14) (where subscript denotes differentiation), clearly demonstrating that, unlike the circular

seed example, for the square droplet the Cauchy-Riemann-like terms do not sum to zero every-

where. The trend is similar throughout the droplet for 0 < y ≤ 1.

Taking the momentum equations (3.0.1) and (3.0.2) into account, this has the direct result

of making the velocities grow linearly with time. If our time marching procedure does converge

to the unique steady p and ζ shown here, there will not be a unique velocity field attached to
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the solution and we expect to find velocities which follow the trend

u ∼ t

(
−∂p
∂x

− Re−1 ∂ζ

∂y

)
, (3.2.26)

v ∼ t

(
−∂p
∂y

+Re−1 ∂ζ

∂x

)
, (3.2.27)

where the terms in the brackets of course are constant in time and non zero. The velocities in

this form would suggest

u = u0t+ u1 + · · · (3.2.28)

v = v0t+ v1 + · · · (3.2.29)

where u0 and v0 satisfy

∂u0
∂x

+
∂v0
∂y

= 0, (3.2.30)

∂u0
∂y

− ∂v0
∂x

= 0; (3.2.31)

indeed, the first of these is the continuity equation, and the second may also be derived from

the leading order terms in the steady vorticity. These are the Cauchy-Riemann equations for

velocity, directly implying that both u and v are harmonic functions which satisfy Laplace’s

equation and that we may define an analytic function,

F (z) = v0 + iu0. (3.2.32)

This analytic function F (z) cannot be zero along a segment of any curve however, suggesting

that to satisfy the no-slip condition, u and v are inviscid to leading order but form a boundary

layer near y = 0.

Further, applying the small ratios parameter to the shape of the droplet (initially y = 1 in

this canonical problem) so that it is described by

f = f0 + ϵf1 + · · · , (3.2.33)
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in the early stage, the kinematic condition suggests the O(1) contribution to shape f0 is time

independent and the perturbation may be found from

∂f1
∂t

= v − u
∂f0
∂x

. (3.2.34)

In our case, f0 is unity and the last term in (3.2.34) is zero. If v grows linearly with time we

expect to see f1 growing like time squared.

Thus far, our results seem to tie in well analytically and numerically but are surprising per-

haps in light of the circular seed results. To validate the above hypothesis about the velocities,

we must confirm that the full unsteady problem does converge to this solution at large times.

3.2.2 The time dependent problem

The algorithm we use for our time marching procedure is similar to those seen earlier in the

thesis (lid driven cavity, circular seed and so on). We apply a first order accurate backwards

finite difference scheme in time and a second order accurate central difference scheme in space

to the full form of (3.0.5), (3.0.6) and boundary conditions (3.2.1) (3.2.2). The final condition

along y = 0 is the same as that used in the steady-state problem. With this approach, we aim to

numerically solve the following system for pressure

p0 =
1

4
(p1 + p2 + p3 + p4) , (3.2.35)

p0 = 1 along x = 0, 1, (3.2.36)

p0 = g(t) sin2 πx along y = 1, (3.2.37)

p0 =
1

4

(
p1 + p3 + 2p3 − Re−1ζ1 +Re−1ζ3

)
. (3.2.38)
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Coupled with the system for vorticity

ζ0 =
δt

Reh2 + 4δt
(ζ1 + ζ2 + ζ3 + ζ4) +

Reh2

Reh2 + 4δt
ζOLD
0 , (3.2.39)

ζ0 = 1 along x = 0, 1, (3.2.40)

ζ0 = g(t) sin2 πx along y = 1, (3.2.41)

ζ0 =
δt

Reh2 + 4δt
(ζ1 + ζ3 + 2ζ2 +Rep1 − Rep3) +

Reh2

Reh2 + 4δt
ζOLD
0 , (3.2.42)

where the subscript refers to the 5 point stencil labelling seen earlier and OLD is the value of

ζ at the previous time step. Starting with an initial condition of ζ = p = 0 everywhere, we use

an iterative procedure identical to that in the steady case to solve for the first time step. Once

this solution has converged, we update ζOLD, find the velocities from (3.0.1), (3.0.2) and the

shape effect f1 from the kinematic condition (3.2.34). The iterative process is then repeated for

subsequent time steps.

It was found that no relaxation or negative initial time (see Section 3.1) were required. Some

results at times t = 0.5, 1, 2, 4, 8, 16, for a grid with h = 1/200, 201 points in both x and y

and a time step of δt = h2/2, are shown in figure (3.15) for pressure and (3.16) for vorticity.

We see from the plots that the pattern of oscillating pressure and vorticity values along y = 0

appears early in the simulation, increasing in magnitude and diffusing through the droplet as

time increases. The system appears to become virtually steady by around t = 8 with little

change between (e) and (f) in both figures. Crucially, we also notice the similarities between

the steady-state images found from the time marching algorithm, (3.15f) and (3.16 f), and those

from the steady-state problem (3.12e) and (3.12f). All contour values and general trends match

well.

We also include plots of the time marched velocities along y = 1 in figure (3.17), found

from the integration of (3.0.1) and (3.0.2) at each time step. We notice, as suggested in the pre-

vious section, and contrary to the circular seed case, that the velocities do indeed grow linearly
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Figure 3.15: Time marched results for pressure p
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Figure 3.16: Time marched results for vorticity ζ
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with time, at least at relatively large times. For instance u(t = 16) has a maximum value of

around 45, while max(u(t = 8)) ≈ 23. The story is the same in the image for v. Importantly,

the shape of solutions matches exactly those seen in figure (3.14): u and v at any given large t

do indeed turn out to be a constant multiple of −(px + Re−1ζy) and (−py + Re−1ζx) respec-

tively, as in (3.2.26), (3.2.27).

Finally, we examine the shape effect f1 described in (3.2.33). Plots at different times are

shown in figure (3.18). At each time step f1 is found from the kinematic condition (3.2.34).

The fluid within the droplet fills the area of low pressure at the left-hand side of the interface

and is then forced downwards as pressure increases to its maximum. Considering the movement

seen in real droplets, this perhaps may not seem reasonable, but we bear in mind that neither

our interface condition nor the droplet geometry are designed to be realistic yet. The main

conclusion may still be drawn from this image: that the shape effect grows like time squared.

It is worth noting that a series solution for the time dependent problem could be achieved

to validate these results further, but our earlier choice of prescribed condition, (3.2.1) and

(3.2.2), makes this a non-trivial task. A different choice (say the sum of a steady and exponen-

tially decaying time dependent term) would simplify the process, but since our motivations lie

only in the insight the square droplet offers us for the semicircular one, and our time marching

algorithm is already validated by its similarities to the steady-state problem, we choose not to

explore this avenue.

With two examples contradicting in terms of their large time behaviour, we move on to the

main focus of this chapter: flow within a semicircular droplet.
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Figure 3.17: The time marched velocities along the top of the droplet
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Figure 3.18: The shape effect f1 of the square droplet plotted against x for different times

3.3 The semicircular droplet

Our work in the previous sections of this chapter has been motivated by this semicircular

droplet problem, corresponding to step two of our method for modelling droplet deformation.

An overview of the method may be found in Chapter 1 along with a diagram of the flow regime,

figure (1.1), and the system of equations which govern the flow (1.2.15), (1.2.16).

The problem of Stokes or creeping flow within a semicircle has been tackled analytically

by other authors. Melesko and Gomilko [34], for example, present an exact solution for motion

induced by a constant tangential velocity along the boundary. Our wider aim however is to

connect a solution within the droplet to the numerical, time dependent results for pressure and

vorticity which were found in Chapter 2. As such, rather than approach the problem analyti-

cally, we require a general numerical algorithm to solve for flow within the semicircle.
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To do so, we begin as we did in the earlier sections of this chapter by prescribing idealised

p and ζ along the free surface of the droplet:

p(1, θ) = − et

1 + et
sin2 θ, (3.3.1)

ζ(1, θ) =
et

1 + et
sin θ. (3.3.2)

so that a complete description to the problem is given in pressure-vorticity form by (3.0.5) and

(3.0.6) subject to (3.3.1), (3.3.2) along the interface and a no-slip condition - equivalent to the

Cauchy-Riemann equations - along y = 0, (3.0.14) and (3.0.15).

As in previous sections, the inclusion of a time dependent term in (3.3.1), (3.3.2) allows

for a gentle introduction of the interface conditions, avoiding Rayleigh layers and the numerical

difficulties associated with them.

The Stokes equations in this form might cause a singularity in both pressure and vorticity

at r = 0, despite the fact the points (δr, 0) and (δr, π) are adjacent to one another in a Cartesian

sense. This issue was avoided in the circular seed example due to the solid centre for 0 ≤ r ≤ a.

To avoid this problem here, we rewrite the governing equations in terms of two new variables:

q = rp, z = rζ, (3.3.3)

and fix q = z = 0 along r = 0. With this approach, it remains to solve the following system

for q:

r2
∂2q

∂r2
− r

∂q

∂r
+ q +

∂2q

∂θ2
= 0, (3.3.4)

q = 0 along r = 0, (3.3.5)

q = − et

1 + et
sin2 θ along r = 1, (3.3.6)

∂q

∂θ
= Re−1

(
r
∂z

∂r
− z

)
along θ = 0, π (3.3.7)
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coupled with the system for z:

r2
∂z

∂t
= Re−1

(
r2
∂2z

∂r2
− r

∂z

∂r
+ z +

∂2z

∂θ2

)
, (3.3.8)

z = 0 along r = 0, (3.3.9)

z = − et

1 + et
sin θ along r = 1, (3.3.10)

∂z

∂θ
= Re

(
q − r

∂q

∂r

)
along θ = 0, π. (3.3.11)

The full form of p and ζ may then be found once the numerical procedure is complete, us-

ing (3.3.3) and applying a linear interpolation between the two adjacent points p(δr, π) and

p(δr, 0), to reconstruct the true value of pressure at r = 0. An identical method finds ζ(0, θ).

The algorithm appears to handle this method well as may be seen in our later plots.

An additional difficulty arose in achieving finer grid spacings in the radial direction.

We suspect this may be due to the singularity avoidance at r = 0 and our use of

(3.3.3). However, given the time restraints of the project, and that the values of δr for

which the time dependent solution did converge appear to capture the dynamics of the

droplet well, we did not think it necessary to adapt our numerical procedure to con-

sider this matter further. Our simulations did not highlight any such problem in the az-

imuthal direction, so, in order to retain resolution in θ we define our grid spacings with

δr ̸= δθ and set Nr and Nθ as the number of grid points in r and θ respectively.

1

2

3

4

0

0

2

4

Figure 3.19: Labelling system along θ = 0.

Despite their different large time behaviour,

the flow simulations in both the circular seed

and the square droplet achieved a steady-state

pressure and vorticity by approximately t =

8. We suggest, or anticipate that the semicir-

cular droplet will also and so, since the time

marching algorithm turns out to be computa-
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tionally expensive, choose to terminate our calculations at this time point. To help further, we

choose to apply the Taylor’s expansion of the two points immediately interior to the boundary

(as in (2.2.15)) rather than the shadow point elimination seen in this context previously. We

include in figure (3.19) an example of our labelling system for this method at the boundary

θ = 0. With the points referenced in this way, the finite difference form of
∂q

∂θ
along θ = 0 is

written:

∂q

∂θ

∣∣∣∣
θ=0

= −(q2̄ − 4q0̄ + 3q4̄)

2δθ
, (3.3.12)

and the same approach is used along θ = π.

Aside from these features, the labelling system and difference quotients for (3.3.4) to (3.3.11)

are the same as those outlined in the lid driven cavity example in section (2.1), leading us to the

system which governs our numerical algorithm. Equations (3.3.7) and (3.3.4) are replaced by:

q4̄ =
4q0̄
3

− q2̄
3

+
2δθ

3Re
z0 +

r0δθ

3Reδr
z3 −

r0δθ

3Reδr
z1 along θ = 0, (3.3.13)

q2̄ =
4q0̄
3

− q4̄
3

− 2δθ

3Re
z0 −

r0δθ

3Reδr
z3 +

r0δθ

3Reδr
z1 along θ = π, (3.3.14)

q0 =

{
r0
2
(2r0 − δr) q1 + (2r0 + δr) q3 +

δr2

δθ2
(q2 + q4)

}
/

(
2r20 +

2δr2

δθ2
− δr2

)
,

(3.3.15)

and (3.3.11), (3.3.8) by:

z4̄ =
4z0̄
3

− z2̄
3

− 2δθ

3Re
q0 −

r0δθ

3Reδr
q3 +

r0δθ

3Reδr
q1 along θ = 0, (3.3.16)

z2̄ =
4z0̄
3

− z4̄
3

+
2δθ

3Re
q0 +

r0δθ

3Reδr
q3 −

r0δθ

3Reδr
q1 along θ = π, (3.3.17)

z0 =
{r0
2
(2r0 − δr) z1 +(2r0 + δr) z3 +

δr2

δθ2
(z2 + z4)

+
r20Reδr

2

δt
zold0

}
/

(
2r20 +

2δr2

δθ2
+
r20Reδr

2

δt
− δr2

)
. (3.3.18)

The method used to solve equations (3.3.13) to (3.3.18) (alongside equivalent forms for (3.3.5),

(3.3.6), (3.3.9), (3.3.10) of course) is identical to those used repeatedly throughout the chapter,

details of which we do not think necessary to include here.
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As mentioned, we expect the unsteady problem to converge in time to a steady-state. This

steady-state may be modelled separately by considering (3.3.4) to (3.3.11) with all time deriva-

tive terms set to zero and
et

1 + et
taken as unity. We present the results for the pressure and

vorticity along y = 0 found via the two separate methods together in figure (3.20). The left-

hand column in the figure shows solutions obtained from the steady-state algorithm for grids

with (Nr, Nθ) = (41, 151), (51, 201), (61, 251). Those in the right-hand column are snapshots

of the time marched p, ζ taken at t = 8.

The plots demonstrate good agreement between the two sets suggesting we do indeed see

p and ζ becoming steady at large times. Here it becomes clear that a linear interpolation be-

tween the two Cartesian-adjacent points determines the finite values of q/r and z/r at r = 0

well, with no discontinuity or jump near this point. The trend of p and ζ along the wall, where

the Cauchy-Riemann equations apply, matches well to the analogous results for the square

droplet seen in figure (3.13). In the current model, p is no longer an exact reflection of ζ about

x = 0 or θ = π/2, but this is due to the difference between (3.3.1) and (3.3.2): the chosen

interface conditions for p and ζ were identical in the square droplet example.

We notice the magnitude of p and ζ along y = 0 seems somewhat sensitive to grid spac-

ing for these values of δr and to investigate this further we include contour plots of both at

different grid spacings and a range of times. Those for pressure may be seen in figure (3.21) and

for vorticity in (3.22). In the left-hand column of both figures, the solution is found from a grid

of (Nr, Nθ) = (51, 201) and plots are shown at t = 0.5, 1, 2, 4, 8. To allow a comparison, the

right-hand column shows the same but with (Nr, Nθ) = (61, 251). In both figures, contours for

pressure and vorticity respectively are plotted at the same values given in (3.2.17), and labelled

as such in the figures.
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Figure 3.20: The pressure and vorticity against x along y = 0 found via the time marching

algorithm (plotted at t = 8) and the steady-state problem. Various grid spacings are included.
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At smaller times and close to the origin r = 0, we notice some difference between the so-

lutions calculated on the two grids. However, as r → 1 in all images, and throughout the flow

geometry as t becomes larger, the two sets generally agree. The overall trend is the same and

the contour labels match well.

While the restrictions in δr limit the accuracy of our results, we conclude that the treatment is

still able to capture the heart of the solution and we move on to investigate the behaviour of the

velocities once p and ζ have reached a steady-state.

If the velocities also become steady, as they did in the example of the circular seed, the

steady-state p, ζ will form solutions to the Cauchy-Riemann equations everywhere and a func-

tion F (z) = Re−1ζ + ip will be analytic in z.

On the other hand, a finding of velocities growing linearly with time, as seen in the square

droplet, implies that p, ζ will satisfy the Cauchy-Riemann equations only along y = 0. Instead,

ur, uθ become harmonic.

Figure (3.23), a plot of the Cauchy-Riemann type terms along r = 1 gives us the answer.

These results are calculated on a grid with (Nr, Nθ) = (61, 251), and the curve is drawn at

t = 8, clearly demonstrating that (3.0.14) and (3.0.15) are not satisfied here: the velocities

within the semicircular droplet form solutions of the type seen in the square droplet and will

grow linearly with time. Included in the figure, and shown as circles, are the same terms found

from the steady-state algorithm, demonstrating that by t = 8 the solution has indeed reached a

steady-state and suggesting the steady-state solution is independent of path.
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Figure 3.21: Grid refinement example for lines of constant pressure within the semicircular

droplet.
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Figure 3.22: Grid refinement example for lines of constant vorticity within the semicircular

droplet.
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3.3. The semicircular droplet 100

The results displayed in figure (3.23) also form the basis of the velocities ur and uθ:

ur ∼ t

(
−∂p
∂r

− Re−1

r

∂ζ

∂θ

)
, (3.3.19)

uθ ∼ t

(
−1

r

∂p

∂θ
+Re−1∂ζ

∂r

)
, (3.3.20)

and can be seen to be true in figures (3.24a) and (3.24b), showing ur and uθ against θ respec-

tively along r = 1 for t = 0.5, 1, 2, 4, 8, where curves match the trend of those seen in (3.23).

We notice here that the velocities do indeed present linear growth in time. For example, the

radial velocity has a maximum interface value of around ur = 1.9 at t = 4 compared to a

maximum of ur = 3.9 at t = 8.

Returning to the O(ϵ) balance of the kinematic condition in polar form, (3.1.25), where the

droplet shape is taken as

f(θ, t) = f0(θ) + ϵf1(θ, t) + · · · , (3.3.21)

and f0 = 1 in our example, we expect f1 to evolve as

∂f1
∂t

= ur, (3.3.22)

and hence f1 will grow like time squared in this model. We include a plot of f1 in figure (3.25a)

which demonstrates that this is indeed the case.

For clarity and completeness, we also include a Cartesian plot of the droplet shape change

in figure (3.25b). Here, the solid black line is the original shape and the free surface of the

droplet is drawn at t = 8 for ϵ = 1/100, 1/200, 1/400. Considering our initial interface condi-

tions (3.3.1), (3.3.2), these results appear to make intuitive sense. The fluid within the droplet

moves into the area of low pressure near the central station x = 0 and is offset to the right by

the shear flow in air. Similar droplet shapes may be seen in the next part of the thesis for static

droplets contained within a triple-deck structure.
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To achieve more realistic results, we must abandon our idealised interface conditions and

return to those found in the previous chapter: combining the two algorithms to achieve an

interacting system. This is our task for the next chapter, where we also include a discussion of

the limitations of our model, an explanation of the anomalous results for the circular seed case

and some analysis of the later temporal stage, when the two fluid interaction becomes fully

non-linear.
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Chapter 4

The interacting system

By isolating the flows of air and water, we have been able to create two numerical algorithms

which separately describe the flow over a semicircular object (Chapter 2) and the flow within a

semicircular droplet (Chapter 3). The focus of this chapter then, is to combine these two algo-

rithms to achieve an interacting description of droplet deformation as outlined in the overview

of the method in Chapter 1. A description of the flow regime and a diagram of the geometry is

also given there.

Combining the two algorithms is relatively straightforward. Since the model describes the

early temporal stage - while ϵf1 << O(1) and the droplet shape is semicircular to leading or-

der - the flow in the air remains as before in Chapter 2 and the system interacts in one direction

only. Taking the surface of the droplet as quasi-steady, the solution in the air is used to drive

the flow in the water at each time step, but the procedure to determine the flow within the water

droplet of Chapter 3 is otherwise unchanged.

To allow for the interaction, a matrix of discrete time dependent pressure and vorticity val-

ues along r = 1 is extracted from the numerical procedure in the air. Since a no-slip condition

applies in the air, the pressure may be found from the second order accurate discrete form of

p = Re−1

∫ θ

0

∂ζ(r, s)

∂r

∣∣∣∣
r=1

ds, (4.0.1)
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by manipulating the Taylor expansions of ζ about r = 1 of the two points immediately interior

to the boundary (in air) and applying the trapezium rule to the result, using p(1, 0) = 0 as a

reference point. This matrix then replaces the idealised interface conditions (3.3.1) and (3.3.2)

in the model for the flow within the water droplet.

This approach dictates (or at least suggests initially) that the discretised grids in air and water

must match along the boundary between the two fluids and, in our case, raises a potential

restriction on the resolution of any solution. In the flow in air model of Chapter 2 we demon-

strated that the wall at r = r∞, finite in a numerical sense, has to be far enough from the

semicircle so as to not cause an upstream effect. This and our choice to apply a uniform grid

discretisation made fine resolutions computationally expensive. Since our grid in water must

match that in air, we find the same problem here also.

It would be possible of course to return to our flow in air model, define δr ̸= δθ and apply a

multi grid method to increase the number of points along the air-water boundary. However, it

appears that instead extending the model of Chapter 2 with 151 grid points along the boundary

to one of 201 points using linear interpolation works well and provides apparently reliable

results.

Aside from the restrictions surrounding resolution and computational expense, this chapter

also discusses some of the fundamental limitations in the model: the break down at the later

temporal stage (Section 4.2) and the effect of not including the full stress conditions along the

interface (Section 4.3).

While these limitations restrict the application of this particular model to a real world droplet,

we have found a special case: a droplet contained within a triple-deck structure, for which

we have successfully modelled the two way non-linear interaction between air and water as-
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sociated with the second temporal stage, with full stress conditions to leading order along the

interface. This is the main motivation of the second part of the thesis and numerical results and

simulations are given there.

As the triple-deck droplet captures so well the two-way dynamics of a real world droplet

deformation we choose to focus our time and attention there, rather than in refining the inter-

acting version of the current model. Despite this, the results which follow match closely to

those found earlier in the present part of the thesis and provide a good sense of the underlying

dynamics. No further adaptations to the procedures already described were required and so we

progress directly to our results.

4.1 Results

To allow for comparison, we present the same set of figures for the current solution as we did

in the case of the idealised interface problem in Chapter 3. Of course, since this interaction is

based on an unchanged simulation of flow in air, we do not include those figures here, although

they may be seen in Chapter 2. All calculations are based on a grid (Nr, Nθ) = (51, 201),

Re = R̂e = 3 and an initial time of t = −5 to avoid Rayleigh layers in both fluids.

The pressure and vorticity contours are shown in figure (4.1). The left and right-hand columns

show the results for p and ζ respectively. The system, initially at rest, yields fairly large values

as time increases and for that reason, a fixed set of contours did not seem appropriate. Instead

a range of values is plotted: between (−20, 20) for p and (−100, 30) for ζ. All contours are

labelled accordingly in the figures.

We notice that the pressure appears largely independent of y in the early stages, aside from a

small area of high pressure near r = 1, θ = π and an area of low pressure near r = 1, θ = 0.

As time increases, both areas strengthen and we see an increase in pressure magnitude, whilst
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Figure 4.1: Pressure and vorticity contours for t = 0.5, 1, 2, 4, 8 in the interacting semicircular

droplet.
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Figure 4.2: Results of the interacting case for comparison with the idealised interface condition

case.
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elsewhere the pressure diffuses through the core of the droplet. At t = 4 we notice a third area

begin to increase in size near θ = 0, as the low pressure region of earlier is pushed to the left

- similar to the results seen in the idealised interface conditions example. As time increases

further, the number of contour lines near y = 0 does also, suggesting a high pressure gradient

along the wall by t = 8.

The vorticity appears weak and well mixed in the early stages. Two areas corresponding

spatially to the high and low pressure regions are present near θ = 0, π. As time increases

so too does the magnitude of vorticity and a pattern emerges similar to that seen in the ideal

interface example.

We notice also the difference between the images at t = 4, figures (4.1g), (4.1h), and those at

t = 8, figures (4.1i), (4.1j). While the system may well be steady in p, ζ by t = 8, it is certainly

not by t = 4. This is unlike our previous examples. Here, while p and ζ remain functions of

time, ur and uθ (governed by (3.0.11) and (3.0.12) respectively) will not yet have settled in to

a pattern of linear growth with time.

As we did in Chapter 2.2 we include plots of the interface values in figure (4.2) where curves are

drawn at t = 1/2, 1, 2, 4, 8. In the current problem, these figures serve an illustrative purpose

only: if p, ζ are not steady at t = 4, any comparison to the state at t = 8 will not be conclusive.

However, the images for ur, figure (4.2a), and uθ, figure (4.2b), along r = 1 show that u

increases by a little more than double over that time period. Comparison of the velocities to

the Cauchy-Riemann like terms displayed in figure (4.2c) show that the general shapes are the

same. A plot of f1 in figure (4.2d) suggests the shape effect grows a little faster than t2 - all as

one would expect with linear velocity growth in time in a system which has not yet reached a

steady-state in p, ζ.
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It is figure (4.3) however which gives us confidence in suggesting that ur, uθ ∼ t and f1 ∼ t2.

In (4.3a) a plot of ur and uθ at the top of the droplet (r, θ) = (1, π/2) is plotted against time.

The curve begins to settle by about t = 4 and becomes straight - showing linear velocity growth

- between t = 4 and t = 6. Figure (4.3b) shows a plot of f1/21 against t. The two terms begin

to show a linear relationship at around t = 2 matching to those results seen in the idealised

interface conditions example of the previous chapter.

For visualisation purposes, we also include a Cartesian plot of droplet movement for dif-

ferent values of ϵ in figure (4.4), similar to that seen in figure (3.25b) of the previous chapter.

The movement appears realistic, with fluid moving into the area of low pressure which is offset

to the right by shear forces.

4.2 The later temporal stage

Clearly, once ϵf1 = O(1), and the shape of the droplet is no longer a semicircle, the current

results for flow in air over a semicircle will no longer hold. Finding a numerical solution to the

flow over an obstacle with non-linear shape for Re = O(1) is a non trivial task and beyond the

scope of this thesis.

We may however provide some brief analysis of the later stage: as t → 1/ϵ1/2 in this case,

where f1 ∼ t2. To do so, we rescale t as t = ϵ−1/2T , bearing in mind that the original

water velocities were O(ϵ), and apply the following expansions to the nondimensionalised

Navier-Stokes equations for the flow in water (1.2.10)

ûW = ϵ1/2U0 + ϵU1 + · · · , (4.2.1)

ζ̂W = ϵ1/2Z0 + ϵZ1 + · · · , (4.2.2)

p̂W = ϵPW + · · · . (4.2.3)
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Figure 4.4: The shape effect in Cartesian geometry of the interacting semicircular droplet.

Doing so yields an O(ϵ1/2) balance of

∇2U0 = 0, (4.2.4)

so that to leading order, the velocities within the droplet are harmonic.

The scalings in air remain as before and a solution to the quasi-steady air flow over the

non-linear shape will provide the interface conditions:

ζ̂W =
µA
µW

ζA, (4.2.5)

pW = pA. (4.2.6)

Given that µA/µW = O(ϵ) (see Chapter 1 ) and ζA = O(1), (4.2.5) suggests we must also

have Z0 = 0.

Extending these results to higher order accuracy, an O(ϵ) balance of the Navier-Stokes equa-
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tions sees the inertial terms re-enter the dynamics:

∂U0

∂t
+ (U0 · ∇)U0 = −∇PW +Re

(
−1

r

∂Z1

∂θ
,
∂Z1

∂r

)
, (4.2.7)

and the governing system takes the form of a forced Euler equation for U0, with the forcing term

written as a vector. It is relatively simple to show that (4.2.7) also implies that Z1 is harmonic

∇2Z1 = 0, (4.2.8)

so that the forcing in (4.2.7), −1

r

∂Z1

∂θ
radially and

∂Z1

∂r
azimuthally, can be determined numer-

ically using (4.2.5) and the Cauchy-Riemann equations for Z1 and PW along θ = 0, π.

The equations in this form leave the kinematic condition as

U0r =
∂f

∂t
+ U0θ

∂f

∂θ
, (4.2.9)

and we can begin to see how this would work numerically if a solution to the flow over an

obstacle of shape f were known. Such an investigation is not attempted for this model.

4.3 Comparison to Smith and Purvis

One key question remains: for shape f = f0 + ϵf1, why does the circular seed have f1 ∼ t, as

predicted by Smith and Purvis [63], while the square droplet and the semicircular droplet both

have f1 ∼ t2?

The circular seed, which demonstrated steady velocities, reduces to a one-dimensional problem

and as such, we cannot expect the model to tell us everything about a two-dimensional problem,

just perhaps to enlighten us about some of its features (which it does). We suggest however that

the explanation for f1 ∼ t2 in both square and semicircular droplets lies in our decision to take

the interfacial conditions as continuous pressure and vorticity, as becomes clear if we consider

the full stress conditions.
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For the square droplet (after suitable non-dimensionalisation and application of the small

density ratios approximation) the tangential stress condition dictates:

ζW + 2
∂uW
∂y

=
νA
νW

∂uA
∂y

(since
∂vA
∂x

= 0 along y = 1). (4.3.1)

Likewise, the normal stress condition gives:

−pW + 2Re−1∂uW
∂y

= −pA (since
∂vA
∂y

=
∂uA
∂x

= 0 along y = 1). (4.3.2)

We see here that, while sufficient to consider pressure and vorticity as interface conditions in

air, additional terms need to be included in the model for the water droplet. As uW and vW

both were found to grow linearly with time, these terms,
∂uW
∂y

in (4.3.1) and
∂vW
∂y

in (4.3.2),

will begin to dominate the stress conditions as time increases. The pressure and vorticity in

air will remain O(1), so that these velocity gradients will be unbalanced. Hence, they must

saturate with time and become O(1) also. Without linear velocity growth in time, the interface

cannot follow f1 ∼ t2. Instead we would expect to see f1 = O(t) and the later stage coming

into operation as t→ 1/ϵ.

The story is similar for the semicircular droplet where tangential to the interface the stress

condition is:

ζW − 2
∂uθW
∂r

=
νA
νW

∂uθA
∂r

, (4.3.3)

and normal to the interface

−pW + 2Re−1∂urW
∂r

= −pA. (4.3.4)

The velocity derivatives are again unbalanced in the stress conditions and must saturate to O(1)

with time, leaving f1 ∼ t for the semicircular droplet too.

It would be possible to test this hypothesis by repeating the simulation of Section 4.1 with

the full stress conditions in place. However, since doing so would greatly increase the numer-

ical complexity of the problem and given the validity restriction of the outer flow as t → ∞
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and the resolution restriction from the flow in air, we chose instead to focus on the special case

mentioned earlier: the triple-deck droplet. In that model which follows in Chapter 8, the full

stress conditions are applied to leading order and we do indeed see f1 ∼ t emerge. The semicir-

cular droplet still stands as a neat first-go central model and has led us to the resolution of our

first problem (the behaviour of the velocities at larger times) but would require the extensions

discussed here to represent a full working model of droplet deformation.

Before moving on to the triple-deck example, we present an additional investigation, aris-

ing from matters raised in the present model, but separate to droplet deformation. The so called

dry-wet-dry problem concerns a no-slip condition in a fluid governed by Stokes flow, equivalent

to the problem associated with the Cauchy-Riemann equations for pressure and vorticity. We

explore possible solutions to these equations, looking particularly at the region near a point of

contact between solid, liquid and gas.



Chapter 5

Stokes equations near a wall; solutions to the

Cauchy-Riemann equations for pressure and

vorticity

Figure 5.1: A droplet attached to a wall.

As we have seen earlier in this part of the

thesis, along a wall where a no-slip condi-

tion applies in fluid which is governed by

the Stokes equations, pressure and vorticity

must satisfy the Cauchy-Riemann equations.

A derivation of this may also be found in

Pozrikidis [43]. Such a result allows us to

study the 2D Stokes equations in the context of complex functions as in Langlois [30]. The

solutions to these equations turn out to be an intriguing analytical problem, as explored by

Mikhlin [36], with similarities to integro differential equations found in the theory of aircraft

wings of finite span, Muskhelishvili [38] and the inhomogeneous Fredholm equations seen in

signal processing or, for example, Fermo and Russo [17].

The behaviour of solutions for pressure and vorticity near a contact point between air, wa-

ter and solid are particularly interesting. To investigate this relationship, we consider a model
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problem of droplet resting with a tiny part of its surface in contact with a solid wall, as shown

in figure (5.1). Local to the point of contact, this is equivalent to a liquid layer resting on a part

hydrophillic, part hydrophobic wall, so that the wall is wet on the hydrophillic section, and dry

on the hydrophobic section. For this reason, we name the model the dry-wet-dry problem.

5.1 The dry wet dry problem

Scaling the velocity and pressure within the droplet via the small ratios method (û, p̂) = ϵ(u, p)

leads directly to the unsteady Stokes equations as we have seen before in Chapter 1. If we

assume the air film between the droplet and the hydrophobic section of the wall to be infinites-

imally thin, the system reduces to a one dimensional problem as shown in figure (5.2). Along

Figure 5.2: A graphical representation of the dry-wet-dry problem.

the hydrophillic section, between x = −1 and x = 1 the droplet is attached, thus the velocities

must satisfy the no-slip and no penetration conditions u = v = 0, and the Cauchy-Riemann

equations hold for pressure and vorticity. A direct result of which suggests the existence an

analytic function F (z) with real part equivalent to the vorticity and imaginary part equal to the

pressure:

∂p

∂x
= −∂ζ

∂y
, (5.1.1)

∂p

∂y
=
∂ζ

∂x
, (5.1.2)

with F (z) = ζ + ip

where the Reynolds number is taken as unity throughout this chapter.

Since this analytic function F (z) is defined in the upper half-plane, Im [z] > 0, a Cauchy-

Hilbert transform describes the relationship between the surface pressure and surface vorticity
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of the system. That is along y = 0, for vorticity ζ(x) = Re [F (z)] the pressure will be given as

p(x) = Im [F (z)] up to an additive constant:

p(x) =
1

π

∫ ∞

−∞

ζ(s)

x− s
ds, (5.1.3)

ζ(x) = − 1

π

∫ ∞

−∞

p(s)

x− s
ds. (5.1.4)

An overview of the transform may be found in Carrier [11] or Ablowitz [1].

It is worth noting that taking the x derivative of the mixed boundary conditions, (5.1.1) and

(5.1.2), suggest that ζ ′(x) and p′(x) also satisfy the Cauchy-Riemann equations, where prime

denotes differentiation with respect to x. This would imply that

F̃ (z) =
∂ζ

∂x
+ i

∂p

∂x
, (5.1.5)

is also analytic, and the form of the relationship between p and ζ holds for ζ ′(x) and p′(x) also.

As long as ζ ′(x), p′(x) → 0 as |x| → ∞, our solution to equations (5.1.3), (5.1.4) can only be

out by an additive constant regardless of the pressure and vorticity contribution at infinity.

Our main interest lies in the section of the real axis in which the droplet is attached to the

wall; x ∈ (−1, 1). For such an investigation we take ζ and p as known for x ∈ (−∞,−1]

and x ∈ [1,∞). Considering the expression for vorticity, (5.1.4), it is possible to eliminate the

unknown pressure by splitting the integral,

ζ(x) = − 1

π

{∫ −1

−∞
+

∫ ∞

1

}
p(s)

x− s
ds− 1

π

∫ 1

−1

p(s)

x− s
ds, (5.1.6)

the first part of which is known. Some of the second part is also known in a sense from (5.1.3),

and we indeed use (5.1.3) to split (5.1.6) again, giving

ζ(x) = − 1

π

{∫ −1

−∞
+

∫ ∞

1

}
p(s)

x− s
ds− 1

π2

∫ 1

−1

{∫ −1

−∞
+

∫ ∞

1

}
ζ(t)

(s− t)(x− s)
dt ds

(5.1.7)

− 1

π2

∫ 1

−1

∫ 1

−1

ζ(t)

(s− t)(x− s)
dt ds.
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All of this, but for the last term, is known. It seems sensible to group the known part together

as k(x) (later, in the numerical calculations we choose to take k(x) = x2). Hence

ζ(x) = k(x)− 1

π2

∫ 1

−1
ζ(t)

∫ 1

−1

1

(s− t)(x− s)
ds dt. (5.1.8)

Using partial fractions on the integral with respect to ds in (5.1.8) yields an exact integration,

to give the full equation left to investigate in terms of vorticity only,

ζ(x) = k(x)− 1

π2

∫ 1

−1

ζ(t)

x− t
ln

∣∣∣∣(1− t)

(1 + t)

(1 + x)

(1− x)

∣∣∣∣ dt. (5.1.9)

The next task then, is to solve this equation (5.1.9) for the unknown vorticity ζ(x) in (−1, 1).

Since ζ is effectively expressed as a function of itself, it is convenient to define x and t on the

same grid when computing a numerical solution. Doing this does not cause difficulties at x = t

despite the inverse (x− t) term, as the ln 1 term dictates a zero contribution to the integral. At

x = −1, 1, and t = −1, 1 however, the logarithmic term becomes infinite. To deal with this in

a satisfactory way numerically, in particular when examining the behaviour x → 1, we instead

consider the expression to be

ζ(x) = k(x)− 1

π2

∫ 1−ϵ̂

−1+ϵ̂

ζ(t)

x− t
ln

∣∣∣∣(1− t)

(1 + t)

(1 + x)

(1− x)

∣∣∣∣ dt, (5.1.10)

where x ∈ (−1 + ϵ̂, 1− ϵ̂) in the limit as ϵ̂→ 0.

It is simple to solve this using an iterative process for ζ, by applying a discretisation method,

identifying i as the counter for x and j as the counter for t. We make an initial guess for ζ of

zero everywhere, and continue until successive iterations of the equation

ζi = ki −
1

π2

∑
j

ζj
xi − tj

ln

∣∣∣∣(1− tj)

(1 + tj)

(1 + xi)

(1− xi)

∣∣∣∣ δt, (5.1.11)

satisfy our convergence condition,

max|ζi − ζoldi |
| mean (ζ) |

< 10−5, (5.1.12)

where old refers to the vorticity ζ at the previous iteration, and mean is the average value of
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Figure 5.3: Plot of ζ against x for 40, 400 and 4000 grid points.
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ζ across all discretized grid points. The right-hand side of (5.1.11) is treated as known at each

iteration of course, and then updated. This iterative process, in particular with no ζ contribution

at the end points, means that we do not need to fix any boundary values.

The results for ζ against x are given in figure (5.3). The plots are made with ϵ̂ = 5x10−4

and the grids have Nx = 40, 400 and 4000 points, so that

δx = δt =
2− 2ϵ̂

Nx − 1
. (5.1.13)

Also, to fix the problem, k(x) = x2 is taken here. The numerical process converges after

around 10 to 15 iterations, and the main point overall seems clear from the graph, namely that

the solution settles in well with grid refinement. The vorticity is symmetrical in shape and dips

below zero at x = 0, peaking near x = −1 and x = 1, before it appears to again become

negative at the edges. This comes as a surprise, since the logarithmic term in (5.1.9) is infinite

near x = 1. A good first guess would be to expect the vorticity to become zero at the edges,

to avoid an infinite contribution from the log term and allow a balance in the equation but the

numerical results do not seem to support this.

Repeating the procedure with a different initial guess seems to have little effect on the re-

sult. Plots are shown in figure (5.4) of a converged vorticity from initial guesses of zero, one,

and a computer generated random number X̃ everywhere. We see from the graph that the

results appear to be identical and, crucially, all drop below zero as the graph approaches x = 1

and x = −1. To investigate further, we switch our focus exclusively to what happens in the

neighborhood of these two points.

5.2 Behaviour as x → −1 and x → 1

Since the system is symmetrical about x = 0, we focus on what happens near x = 1. The

unknown value of the vorticity makes it perhaps a little difficult to examine the behaviour of the
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5.3. The first term in R 123

integral near this point, so it seems sensible to first consider the integral alone with the vorticity

term set to one. For ease of notation, we refer to this integral as R(x) from now on:

R(x) = − 1

π2

∫ 1

−1

1

x− t
ln

∣∣∣∣(1− t)

(1 + t)

(1 + x)

(1− x)

∣∣∣∣ dt. (5.2.1)

Plots of R close to x = 1, where x, t ∈ (−1 + ϵ̂, 1 − ϵ̂) and ϵ̂ = 6x10−5 can be seen in figure

(5.5). Taking care near x = t, R can be split into three parts, the last of which has an exact

solution.

R(x) = − 1

π2

{
p.v.

∫ 1

−1

ln |1− t|
x− t

dt−p.v.

∫ 1

−1

ln |1 + t|
x− t

dt + ln

∣∣∣∣1 + x

1− x

∣∣∣∣p.v.∫ 1

−1

1

x− t
dt

}
.

(5.2.2)

Examining each term individually in R we can compare a numerical and analytical solution

near x = 1, the latter found by considering each term as the real part of a complex problem.

5.3 The first term in R

First, address the numerical solution. Our motivation is to understand the bigger problem with

a vorticity contribution where it is necessary to define x and t as equivalent, we do so here also,

despite the singularity at x = t. At these points, we use Cauchy Principal Value, so that the first

term in R is found from the following,

− 1

π2

{∫ x−δx

−1+ϵ̂

ln |1− t|
x− t

dt+

∫ 1−ϵ̂

x+δx

ln |1− t|
x− t

dt

}
, (5.3.1)

using Nx = 4000, 8000, 16000, 32000, with ϵ̂ = 6x10−5.

To find a local asymptote we take advantage of the similarities between our integral and

the Cauchy-Hilbert transform by considering the following,

X = − 1

π
p.v.

∫ 1

−1

(
ln |1− t|

π

)
1

x− t
dt, Y =

ln |1− x|
π

, (5.3.2)



5.4. The last term in R 124

and seek G(z) = X + iY which is an analytic function of z. Given Y , G(z) and X will be

unique, up to an additive constant. One form which works is

G(z) =
1

2π2
(ln z)2 , (5.3.3)

=

(
(ln r)2

2π2
− 1

2

)
+ i

(
ln r

π

)
, (5.3.4)

with r defined as zero on x = 1. Suggesting that

− 1

π2
p.v.

∫ 1

−1

ln |1− t|
x− t

dt ∼ (ln |1− x|)2

2π2
− 1

2
near x = 1. (5.3.5)

Plots of both solutions, numerical and analytic are shown in figure (5.6), where the solid line

with black squares is the asymptote. The graph shows that both tend to infinity, and the analytic

solution provides a good leading order approximation to the integral local to x = 1.

5.4 The last term in R

The final term in R, shown in (5.2.1), has an exact solution of

− 1

π2

(
ln

∣∣∣∣1 + x

1− x

∣∣∣∣)2

, (5.4.1)

which allows us to test our numerical method of Section 5.1. Results are shown in figure

(5.7) of the numerically calculated integral (found in the same way as the first in R), and the

exact solution (solid line with black squares). The third term then has a negative and infinite

contribution to R as x→ 1 which does not cancel with the first term shown in figure (5.6).

5.5 An approximation to R

The second term of R behaves as ln |1− x| near x = 1, so that with these ln |1− x|2 terms, we

can neglect the second integral to leading order. Combining the log terms from the first and last

integrals in R, we have

1

2π2
(ln |1− x|)2 − 1

π2

(
ln

∣∣∣∣1 + x

1− x

∣∣∣∣)2

∼ − 1

2π2
(ln |1− x|)2 , (5.5.1)

suggesting that we would expect, to leading order,

R ∼ − 1

2π2
(ln |1− x|)2 near x = 1. (5.5.2)
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Figure 5.6: Plot of the numerically calculated first integral term in R where ζ = 1, against x

for finer grid sizes and its asymptote near x = 1.
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For this to be the case, a plot of x against

1− exp
[
−
√

−2π2R
]
, (5.5.3)

will give a straight line. (The negative square root is taken since ln |1 − x| < 0). This plot is

shown in figure (5.8). As the numerical computations do give straight lines near x = 1, we can

have some confidence that R does indeed take the form in (5.5.2).

5.6 Extension to the full problem

It remains to determine the value which ζ takes at x = 1. For ease of notation, we refer to the

the integral term with a vorticity contribution as S(x), as opposed to R in (5.2.1) which was

without the ζ term.

S(x) = − 1

π2

∫ 1

−1

ζ(t)

x− t
ln

∣∣∣∣(1− t)

(1 + t)

(1 + x)

(1− x)

∣∣∣∣ dt, (5.6.1)

making the full equation (5.1.9) simply ζ = k + S. A plot of each of these three terms, found

numerically in the same way as in the method in Section 5.1, close to x = 1 is shown in figure
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Figure 5.9: Plot of ζ, in the case k = x2, and the integral term S(x) against x for 128000 grid

points. The governing equation is (5.1.9).

(5.9) for Nx = 128000 and ϵ̂ = 1.5x10−5.

Our work of Sections 5.2 - 5.5, in the case where ζ = 1 everywhere suggests that the nu-

merics are fairly accurate and that we expect

S = O(ζ(ln r)2). (5.6.2)

However, the plot shows that even though ζ(x) is non zero near x = 1, S(x) does not appear to

behave logarithmically, and the equation balances well with

S = O(ζ). (5.6.3)

Putting (5.6.2) and (5.6.3) together, S must take the form

S = A(ln r)2 +B ln r + C + · · · (5.6.4)
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A,B and C are constants dependant on the size of ζ. For both (5.6.2) and (5.6.3) to hold,

A = B = 0.

This allows us to find a rough form for ζ, as we can write down an expression for the leading

order term in S and solve it, knowing it must turn out to be zero;

S ∼ −(ln r)2

π

∫
ζ(t)

x− t
dt. (5.6.5)

Using the same technique as before, we take advantage of the similarities between this and the

Cauchy-Hilbert transform by considering

X =
−1

π

∫
ζ(t)

x− t
dt, Y = ζ(t), (5.6.6)

and seek the function H(z) = X + iY , which is analytic in z. Figure (5.9) suggests that

H(z) = zn, which would make X and Y ,

X = rn cosnθ, Y = rn sinnθ, (5.6.7)

and S and ζ on θ = π,

S ∼ rn(ln r)2 cosnπ, ζ ∼ rn sinnπ. (5.6.8)

A value of n = ±1/2 would then make A = 0 in (5.6.4). Based on our system, we assume that

other values of n which give the leading order term in S as zero, such as n = ±3/2,±5/2, do

not form an admissible part of the solution. Our numerics show ζ < 0 near x = 1 suggesting

that n = −1/2 and ζ ∼ −r−1/2. To test this, figure (5.10) shows a plot of 1/ζ2 for increasing

grid refinement. The curve becomes straighter and appears to be possibly approaching the point

1/ζ2 = 0 as x→ 1 which tends to support our argument, although the exact form of ζ may not

be entirely clear.

The same type of analysis can be performed on the other leading terms in S, but we ex-

pect that S will have an asymptote similar to r−1/2 also. Figure (5.11) is a plot of 1/S(x)2
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against x for increasing grid refinement. This is not inconsistent with the present suggestion of

n = −1/2, accompanied by the logarithmic squared term in (5.6.8).

These results, if true are intriguing. Vorticity which behaves like −r−1/2 near x = 1 − r = 1

suggests a small region near the solid-liquid-gas interface of clockwise particle rotation. More

work is required to confirm these findings and to understand their effect on the 2D droplet, but

the main feature of this chapter remains the one made earlier in figures (5.3) and (5.4), that the

solution appears to tie together well for the present dry-wet-dry problem.



Part II

A droplet within a boundary layer
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Chapter 6

Boundary layer flow over a surface mounted

obstacle

The investigation into droplet deformation which began in the previous part of the thesis has

given us some insight into the dynamics of the two-fluid system, particularly in terms of the

expected behaviour at large times. However, the highly idealised nature of the models and

boundary conditions makes it difficult perhaps to draw many firm conclusions, or to study the

deformation of the droplet at large times.

In this part of the thesis we look at a practically important special case: the high Reynolds

number flow of a surface mounted water droplet completely contained within the boundary

layer of the external air flow. With this formulation it is possible to include the full interfacial

stress conditions (to leading order) and to extend the time dependent simulation to the later

temporal stage, where the interaction becomes non-linear and the shape of the droplet becomes

severely distorted. To our knowledge a model of this later temporal stage has not yet been

attempted by other authors.

The general approach to modelling the deformation of the droplet follows that outlined of

Part I but with one additional feature, as outlined in Chapter 1. Here, the solution for the
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external air flow is determined at each time step from the current interface shape. It is this

feature which allows us to simulate the later temporal stage - in the previous part of the thesis

the shape of the droplet did not feed back into the air flow solution.

To incorporate this two-way interaction of the fluids, we must obtain a general solution in

air for flow over any hump, well or surface disturbance. The triple-deck structure applied to a

surface mounted obstacle contained within a boundary layer provides an opportunity to derive

such an algorithm. That is the task of this chapter: to formulate the boundary layer flow in air

over an obstacle and to present some example linear solutions.

A diagram of the flow regime is given in (6.1), where the obstacle pictured is solid (for

now at least) and the air flow is subject to a no-slip condition along its boundary. Since the

second fluid, water, does not feature in this problem, we apply a more general approach by

nondimensionalising the Navier-Stokes system (1.2.1) and (1.2.3) based on the characteristics

of the flow in air (and not in the water as before) by using the scalings:

u∗
A = UAuA, p

∗
A = ρAU

2
ApA, t∗ =

L

UA
t. (6.0.1)

Here, the asterisk denotes the dimensional quantities, ρA is the density of the air and UA, L are

a characteristic velocity and lengthscale associated with the air flow. This serves to make the

governing equations of this investigation as follows:

∂uA

∂t
+ (uA · ∇)uA = −∇pA +Re−1

A ∇2uA, (6.0.2)

∇ · uA = 0. (6.0.3)

Later in Chapter 8, the solution to the triple-deck flow over an obstacle which is presented in

the following sections, coupled with the small density ratios assumption, will be used as the

basis for the flow-in-air algorithm of our method of modelling droplet deformation.
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Figure 6.1: A schematic diagram of the triple-deck flow over a surface mounted obstacle or

droplet contained within a boundary layer.

In this more general form however the obstacle may be replaced by a second immiscible

fluid and by adjusting the no-slip condition along the boundary, a lubrication approximation

may be applied to yield a Reynolds lubrication-type expression describing a steady two fluid

interface as a function of x only. This result does not depend on a small density ratio assump-

tion. By investigating the families of solutions which this equation yields we may explore the

effects of surface tension, gravity and shear stresses on the range of static droplet shapes and

contact angles of a droplet contained in a triple-deck flow. This is the focus of Chapter 7.

These two models, steady droplet shapes and unsteady droplet deformation, which follow

later in the thesis are both based on the same problem in the air. That is our present task: to

model the boundary layer flow over a surface mounted obstacle, like that in figure (6.1).
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6.1 The triple-deck structure

The wall upon which the obstacle is attached lies along the x axis and y is taken to be normal

to the wall, we work in two spatial dimensions and the effects of compressibility are ignored

throughout the flow geometry. The governing equations for the air flow are (6.0.2) and (6.0.3).

Far from the wall we assume the flow to be inviscid and unidirectional and the Reynolds num-

ber ReA is assumed to be large.

Close to the wall and upstream and downstream of the obstacle, an order of magnitude analysis

may be applied in the standard way to (6.0.2). The geometry of the flat plate and a uniform free

stream velocity would also suggest a zero streamwise pressure gradient applies and thus the

flow in air here is governed by the boundary layer equations of Prandtl [44]. In these regions,

beyond the boundaries of the obstacle’s influence, a Blasius similarity solution [8] may be used

to satisfy the boundary layer equations, a good overview of which may be seen in White [75].

The obstacle itself has an influence on the boundary layer of lengthscaleO(Re
−3/8
A ) shown first

by Lighthill [32] both parallel and perpendicular to the plate. Within this region of influence, a

viscous-inviscid interaction occurs causing a pressure perturbation and fluid displacement. The

velocity profile becomes non-linear and Prandtl’s boundary layer equations no longer hold. To

achieve a solution in the vicinity of the obstacle a triple-deck structure must be applied.

The triple-deck is based on the pressure-displacement mechanism described by Lighthill [32].

It was extended by Stewartson [67] and Messiter [35] who applied a three-tier structure in order

to resolve the flow over the trailing edge of a flat plate as a remedy to the Goldstein near wake

singularity [19]. Since then, the method has been used across many different problems where

a disturbance within a boundary layer is large enough to cause a non-linear velocity profile.

Flow over surface roughness, Smith and Burggraf [59], flow past corners, Rizzetta, Burggraf
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and Jenson [50] and flow separation, Smith [55] are some such examples.

A diagram of the triple-deck structure applied to our model is also shown in figure (6.1).

The region of flow which the obstacle influences is split into three subdomains or decks: an

inner viscous sublayer or inner deck, a middle deck in which viscous effects are secondary, and

an inviscid outer deck. The flow solutions to each deck are only valid within their respective

regions and must all merge with the two layer Blasius flow both upstream and downstream. The

decks are connected by the pressure perturbation and displacement function which Lighthill

described for a supersonic flow and interact with one another in the form of matched asymptotic

expansions.

As with Lighthill’s work, the structure has a streamwise lengthscale of x = Re
−3/8
A X cen-

tred about the midpoint of the obstacle, while y is rescaled accordingly within each deck.

Within the middle deck the transverse coordinate is rescaled as y = Re
−1/2
A Ȳ . Assuming

that any change in velocity profile due to viscous effects is restricted to the inner deck, the mid-

dle deck sees the inertial terms balanced by the pressure gradient. Due to the viscosity in the

deck below, the middle deck does notice a change in the lateral displacement of the oncoming

fluid - known as the displacement function A(X) - which it passes to the upper deck. If uB is

the oncoming Blasius flow to which the triple-deck must match, a solution to (6.0.2) within the

middle deck will take the form:

uA = uB(Ȳ ) + Re
−1/8
A u′B(Ȳ )A(X) + · · · , (6.1.1)

vA = −Re
−1/4
A A′(X)uB(Ȳ ) + · · · , (6.1.2)

pA = Re
−1/4
A p̃A(X) + · · · , (6.1.3)

In the outer deck, where y = Re
−3/8
A Ŷ , the dynamics is controlled by the free-stream inter-

action and the flow must match to the unidirectional, inviscid flow above and the Blasius flow
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up and downstream. Here, any fluid displacement caused by the obstacle is small and may be

linked to the deviation in pressure from the flat plate problem by a Hilbert integral. A solution

to (6.0.2) will take the form:

uA = 1 + Re
−1/4
A ûA(X, Ŷ ) + · · · , (6.1.4)

vA = −Re
−1/4
A v̂A(X, Ŷ ) + · · · , (6.1.5)

pA = Re
−1/4
A p̂A(X, Ŷ ) + · · · , (6.1.6)

p̂A(X, 0) = p̃A(X) (6.1.7)

while matching to the middle deck yields the pressure-displacement law:

p̃A(X) =
1

π

∫ ∞

−∞

A′(s)

X − s
ds, (6.1.8)

where the integral is interpreted as Cauchy principle value. Finally, within the inner deck, where

y = Re
−5/8
A Y a boundary layer type disturbance occurs and a solution to (6.0.2) will take the

form:

uA = Re
−1/8
A ũA(X,Y ) + · · · , (6.1.9)

vA = Re
−3/8
A ṽA(X,Y ) + · · · , (6.1.10)

pA = Re
−1/4
A p̃A(X) + · · · , (6.1.11)

Application of (6.1.9) to (6.1.11) to the momentum and continuity equations (6.0.2) and (6.0.3)

yields the inner deck equations:

ũA
∂ũA
∂X

+ ṽA
∂ũA
∂Y

= −dp̃A
dX

+
∂2ũA
∂Y 2

, (6.1.12)

∂ũA
∂X

+
∂ṽA
∂Y

= 0. (6.1.13)



6.2. Linearised triple-deck flow over a solid obstacle 139

These will be subject to a no-slip condition along Y = f(X), and must match to the middle

deck above and the Blasius flow both upstream and downstream:

ũA = ṽA = 0 along Y = f(x), (6.1.14)

ũA → Y as X → ±∞, (6.1.15)

ũA ∼ λ(Y +A(x)) as Y → ∞, (6.1.16)

Here, λ is the value of ∂uB/∂Ȳ at Ȳ = 0. With suitable transformation, details of which we

did not think it necessary to include, it is sufficient to take the value of the constant λ as unity.

The pressure-displacement law also applies here so that it remains to solve (6.1.12) and (6.1.13)

in conjunction with (6.1.14), (6.1.15) (6.1.16) (with λ = 1 ) and (6.1.8) to obtain a complete

description of the flow field.

6.2 Linearised triple-deck flow over a solid obstacle

To solve the system of inner deck equations and boundary conditions outlined above in the case

of flow over a surface mounted solid shape, we begin by mapping theX axis in (6.1.12)-(6.1.16)

to the surface of the obstacle using a Prandtl transposition or shift:

(X, Y, ũA, ṽA, p̃A) →
(
x, y + f(x), uA, vA + uA f

′(x), pA
)
. (6.2.1)

The symbols given in (6.2.1) for the transposed variables are chosen for easier notation and

should not be confused with those of the previous section. Here, prime denotes differentiation

with respect to x. Application of this shift leaves the governing equations (6.1.12)-(6.1.16)

unchanged, aside from the wall condition which becomes uA = vA = 0 at y = 0 and the

condition as y tends to infinity (6.1.16) which now includes the hump shape,

uA ∼ y + f(x) +A(x). (6.2.2)

We notice that if f(x) = 0 an exact solution of uA = y, pA = vA = A = 0 exists. We may use

this result as the basis of a perturbation by considering a hump shape of f(x) = δF (x) in the
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limit as δ → 0. An approximate solution may be found using this approach with δ quantifying

the deviation from the flat plate flow. In such a case, the velocities, pressure and displacement

function will take the form of a series expansion in δ:

uA = y + δUA + · · · , (6.2.3)

vA = δVA + · · · , (6.2.4)

pA = δPA + · · · , (6.2.5)

A = δA+ · · · . (6.2.6)

Later, in Chapter 8 where a non-linear solution to the inner deck equations is sought, we remove

the dependence of the air flow on the size of the obstacle, in effect, by taking δ = 1. For the

current purpose however, an O(δ) balance in the equations and boundary conditions yields a

linearised system:

y
∂UA

∂x
+ VA = −dPA

dx
+
∂2UA

∂y2
, (6.2.7)

∂UA

∂x
+
∂VA
∂y

= 0, (6.2.8)

UA = VA = 0 on y = 0, (6.2.9)

UA → 0 as x→ ±∞, (6.2.10)

UA → A(x) + F (x) as y → ∞, (6.2.11)

while the form of the pressure-displacement relationship remains unchanged:

PA(X) =
1

π

∫ ∞

−∞

A′(s)

X − s
ds, (6.2.12)

This formulation, (6.2.7) to (6.2.12), has been used widely as a standard approach to obtain

solutions of the triple-deck, Smith and Merkhin [61], Stewartson [68] and Jobe and Burggraf

[26] being some such examples.

The advantage of this formulation becomes clear after application of the Fourier transform,
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the forward and inverse transforms of which we define as

ÛA(k, y) =

∫ ∞

−∞
UA(x, y)e

−ikx dx, (6.2.13)

UA(x, y) =
1

2π

∫ ∞

−∞
ÛA(k, y)e

ikx dk, (6.2.14)

respectively, where a hat denotes Fourier Transformed variables. By taking the Fourier trans-

form of the y derivative of (6.2.7) then, it proves convenient to define and apply a new variable

ξ = (ik)1/3y, the result of which is to transform (6.2.7) into Airy’s equation for
∂ÛA

∂ξ
:

∂3ÛA

∂ξ3
= ξ

∂ÛA

∂ξ
, (6.2.15)

The solutions of Airy’s equations are commonly taken to be of the form

∂ÛA

∂ξ
= B(k)Ai(ξ) + C(k)Bi(ξ), (6.2.16)

for Airy functionsAi andBi. In this case,
∂ÛA

∂ξ
is analogous to the perturbation of shear stress,

the magnitude of which we expect to decrease as we move away from the surface of the hump.

Since ξ is complex and Bi(ξ) increases with |ξ|, C(k) must be identically zero.

Integrating (6.2.16) with C(k) = 0 gives an expression for the Fourier transformed veloc-

ity

ÛA = B(k)

∫ ξ

0
Ai(s) ds, (6.2.17)

where the no-slip condition (6.2.9) leads to a zero constant of integration. It is possible to

eliminate the unknown function B(k) by applying the Fourier transformed versions of the as

yet unused boundary conditions: first, the integral of the Airy function Ai from zero to infinity

is equal to one third which couples with the boundary condition (6.2.11) to give

Â(k) + F̂ (k) =
B(k)

3
; (6.2.18)

second, the Fourier transform of the pressure displacement law (6.2.12) implies that

P̂A = |k|Â; (6.2.19)
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and finally, the Fourier transform of the momentum equation along y = 0 (6.2.7) equated with

the derivative in ξ of (6.2.16) gives

B(k) =
(ik)1/3P̂A

Ai′(0)
, (6.2.20)

where Ai′(0) has a known value of Ai′(0) = − 1

31/3Γ(13)
for gamma function Γ [2].

With these three, (6.2.18), (6.2.19) and (6.2.20), it is relatively simple to eliminate B(k)

and derive expressions linking the hump shape to the perturbed pressure, displacement and

velocity:

P̂A(k) =
3|k|Ai′(0)

|k|(ik)1/3 − 3Ai′(0)
F̂ (k), (6.2.21)

Â(k) =
3Ai′(0)

|k|(ik)1/3 − 3Ai′(0)
F̂ (k), (6.2.22)

ÛA(k, ξ) =
3|k|(ik)1/3

|k|(ik)1/3 − 3Ai′(0)
F̂ (k)

∫ ξ

0
Ai(s) ds. (6.2.23)

This form of solution (6.2.21) to (6.2.23) suggests that the deviation from the flat plate flow

is characterised exclusively by the shape of the obstacle which the fluid passes over - as one

would expect.

It is fairly straightforward to investigate these expressions numerically, although an infinite

x range is computationally expensive to achieve. Given that the boundary conditions (6.2.10)

already dictate that the flow must merge with the Blasius flow upstream and downstream, ap-

plying a simplifying assumption of periodic flow seems reasonable. Provided the period 2L is

chosen as sufficiently large, there will be no upstream influence from other obstacles.

We look then to use a discrete Fourier series in place in place of (6.2.13), although of course,
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in the limit L→ ∞, the Fourier series and Fourier transform are equivalent.

We have an advantage in deriving a discrete form of (6.2.13) as we know that the inverse

transform of (6.2.21) to (6.2.23) must yield a real result: PA,A, UA all correspond to physical

quantities. If UA is real, it must be that

ÛA(−k, ξ) =
∫ ∞

−∞
UA(x, ξ)e

ikx dx = c.c
[
ÛA(k, ξ)

]
, (6.2.24)

where here, c.c denotes the complex conjugate. Likewise, the reverse is true. Any real quantity

g say, will have a transformed variable which satisfies

c.c [ĝ(k, ξ)] = ĝ(−k, ξ). (6.2.25)

This holds for F̂ , since F is real, and is also true for |k|, (ik)1/3 and all other terms in the

quotient of (6.2.21). Thus, the form of (6.2.21) will yield a real solution for PA as required.

A similar argument holds for A, although the equivalent for UA is a little trickier due to the

integral of the Airy function.

It is this condition (6.2.25) which allows us to derive a shortcut. By manipulating the in-

verse form of the Fourier transform (6.2.14):

UA(x, ξ) =
1

2π

[∫ 0

−∞
ÛA(k, ξ)e

ikx dk +

∫ ∞

0
ÛA(k, ξ)e

ikx dk

]
, (6.2.26)

=
1

2π

[
−
∫ 0

∞
ÛA(−k̂, ξ)e−ik̂x dk̂ +

∫ ∞

0
ÛA(k, ξ)e

ikx dk

]
, (6.2.27)

where k = −k̂, we may apply (6.2.25)

UA(x, ξ) =
1

2π

[∫ ∞

0
c.c
[
ÛA(k̂, ξ)

]
e−ik̂x dk̂ +

∫ ∞

0
ÛA(k, ξ)e

ikx dk

]
, (6.2.28)

=
1

2π

∫ ∞

0

[
ÛA(k, ξ)e

ikx + c.c
[
ÛA(k, ξ)

]
(k, ξ)e−ikx

]
dk, (6.2.29)

=
1

π

∫ ∞

0
Re
[
ÛA(k, ξ)e

ikx
]
dk. (6.2.30)
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Here Re denotes the real part. By putting k =
πn

L
for n ∈ Z, n ≤ Nk into this expression

(6.2.30) and taking dn = 1, Nk >> 1, the integral may be replaced with a discrete sum over

n:

UA(x, ξ) =
1

L

N∑
0

Re
[
ÛA(kn, ξ)exp

[
inπx

L

]]
. (6.2.31)

Notice that although the sum is from 0 to Nk, the derivation means that all negative values of n

are also considered here - reducing computational time compared to a standard Fourier series.

This expression (6.2.31) replaces (6.2.14) as the inverse Fourier transform in any calculations,

while (6.2.13) remains as the forward transform.

To apply this scheme to any obstacle is fairly straightforward. With a known interface F (x),

the relevant form of forward Fourier transform (6.2.13) can be applied to determine F̂ . For each

integer value n, k =
nπ

L
is used in (6.2.21) and (6.2.23) and all results are summed together

using (6.2.31) to find the real space pressure and velocities.

6.2.1 Results

We have looked at two examples. First, the flow over a Witch of Agnesi shaped obstacle in

figure (6.2). We also present for comparison results from a similar computation featured in

a paper by Smith, Brighton, Jackson and Hunt [58] in figure (6.3). In both simulations the

obstacle shape has equation

F =
1

1 + x2
, (6.2.32)

which is particularly favorable for this type of calculation as the lack of corners reduces the

number of Fourier modes we need to consider to achieve reliable results. In both figures, (6.2)

and (6.3), the top image is a plot of the perturbation to wall shear,
∂UA

∂y
in our case, against the

triple-deck scaled x. The middle image on both pages displays results for the perturbation to

pressure along the solid boundary, in our case PA, against x, and finally the last image on each

page shows the shape of the obstacle considered, plotted on the same x scale as those figures

above.
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Our results are calculated on a grid with spacing δx = 10−3 and δy =
δx1/2

4
. The Fourier

modes are summed from n = 0 to Nk = 256 and the period 2L is varied from 2L = 4π to

2L = 32π. We notice in both the images for the pressure and shear, for periods longer than

L = 4π there is little difference in the solution, while even the shortest period L = 2π appears

to capture the overall trend well.

Comparison of our results to those of Smith et al. in figure (6.3) show close agreement

overall. In the images for the pressure perturbations, we see the area of lowest pressure is near

x = 0 but offset to the right from the centre by the oncoming shear. The pressure does not quite

return to ambient levels by x = 4, although this is more pronounced in Smith et al.’s example.

The trends appear to match for the shear stress perturbations too. Both sets peak to the

left of x = 0 before becoming negative. Our results show a steep shear gradient after the

minimum which is a feature not mirrored by Smith et al.

Our second example included is that of a parabolic hump. Results may be seen in figure

(6.4). We also include results for comparison from another of Smith’s papers [54] in figure

(6.5)

Here the obstacle has shape described by

F = max
{
x(1− θx)

θ
, 0

}
, (6.2.33)

where θ = (−3Ai′(0))3/4 as it is in [54]. Our results are again calculated on a grid of

δx = 10−3 and δy =
δx1/2

4
, although on this occasion, L is fixed at L = 6π and Nk is varied

from 16 to 512. To match the order of Smith’s results, in this example the images in (6.4)

and (6.5) show (from top to bottom) perturbation to pressure along the wall of the obstacle,
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Figure 6.2: Pressure and wall shear results for boundary layer flow over a Witch of Agnesi

shaped obstacle
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Figure 6.3: Results shown in [58] for the triple-deck flow over a Witch of Agnesi hump. (a) is

the perturbation to wall shear, (b) the perturbation to pressure and (c) the hump shape.
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perturbation to wall shear, and the obstacle shape, all against x.

The corners on the parabolic hump mean much higher Fourier modes must be considered

to capture the solution. This can be seen in figure (6.4) where even by Nk = 64, the solution

has not yet settled. By Nk = 512 however, the sharp spike in pressure on the leading edge of

the obstacle seen in (6.4a) has good definition and matches that seen in the dashed line of the

Smith figure (6.5a). As in the previous example, the minimum pressure occurs to the right of

the centre of the obstacle and then slowly increases to just below ambient pressure.

The spikes in the plot for wall shear are well defined by Nk = 512 also. Again, the maxi-

mum occurs to the left of the centre of the obstacle and we see here as in our results of the

previous example a pronounced minimum shear point followed by a steep positive gradient on

the trailing edge of the obstacle, matching Smith’s results (6.5b) on this occasion.

Overall, the solutions behave sensibly with increased period and Fourier modes and we con-

clude that the method captures the solution well.

In Chapter 8 we apply the small-density-ratios assumption to the result shown here and ex-

tend the solution to include the non-linear terms. For now however, we pause briefly on the

overall aim of the thesis of modelling unsteady droplet deformation and use (6.2.7) - (6.2.12) to

explore the steady shapes which a droplet can take in the presence of shear, gravity and surface

tension.
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Figure 6.4: Pressure and wall shear results for boundary layer flow over a parabolic shaped

obstacle
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Figure 6.5: Results shown in [54] for the triple-deck flow over a parabolic hump. (a) the

perturbation to pressure, (b) is the perturbation to wall shear and (c) the hump shape.



Chapter 7

The effect of surface tension, gravity and shear

stresses on a droplet within a boundary layer

In the previous chapter we outlined a linear solution for flow over a shallow surface mounted

obstacle. Replacing this obstacle with a second fluid presents an opportunity to study the steady

shapes of an attached droplet within a boundary layer. This side investigation is the focus of

this chapter, where we adjust the solution of Chapter 6 to account for the second fluid, apply

a lubrication approximation to the droplet and derive a Reynolds lubrication type expression,

relating the shape of the two fluid interface to gravity, surface tension and shear forces.

A diagram of the flow regime is given in figure (6.1). In this case, the hump within the

triple-deck structure is a droplet, formed from a second immiscible fluid. For ease, we shall

continue to refer to the second fluid as water although it should be noted that, unlike all other

two fluid systems in the thesis, the results of this chapter do not rely on a small density ratio

between the two fluids. To distinguish this example, we rename the interface of the two fluids

here as h(x).

To allow for interaction between the two fluids, the flow in water is nondimensionalised

based on the characteristics of the flow in air, in a reverse process to that seen in Chapter 1,
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details of which we do not think it necessary to include. The droplet, like the flow in air, is

subject to the inner deck scalings of Chapter 6 and considered steady. Prandtl’s transposition is

not applied and so we name the transverse coordinate here as y; related to that of the previous

chapter by y = y + h(x). Before any assumptions are made on the depth of the droplet then,

the dimensionless triple-deck flow in water is governed by:

uW
∂uW
∂x

+ vW
∂uW
∂y

= −
(
ρA
ρW

)
dpW
dx

+

(
νW
νA

)
∂2uW
∂y2

, (7.0.1)

∂uW
∂x

+
∂vW
∂y

= 0, (7.0.2)

The lubrication approximation enters the formulation via a perturbation approach on (7.0.1) and

(7.0.2), identical to that in Chapter 6. We rescale y = δY and h(x) = δH(x), for δ << 1 and

H,Y = O(1) and expect the solution in water to take the form of a power series in δ:

uW = δUW (x, Y ) + · · · , (7.0.3)

vW = δ2VW (x, Y ) + · · · , (7.0.4)

pW =
1

δ
PW (x) + · · · . (7.0.5)

The flow in air reacts to the presence of the second fluid with a non zero velocity along h(x).

Before progressing further with our analysis of the droplet, the solution of the previous chapter

must be adjusted to incorporate this change.

7.1 Triple-deck flow over a surface mounted droplet.

At the boundary between the two fluids a continuous velocity is required and (6.2.3) must equal

(7.0.3), giving the u perturbation to the external fluid along the interface,

UA(x, 0) = UW (x,H(x) ). (7.1.1)

The no-slip condition along y = 0 (6.2.9) which was used in (6.2.17) must also be adjusted to

include (7.1.1): the constant of integration is replaced by ÛA(k, 0), which changes (6.2.18) to

B(k) = 3
(
Â(k) + Ĥ(k)− ÛW (k, Ĥ)

)
, (7.1.2)
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Recalculating the expressions for pressure, displacement and velocity based on (7.1.2), we find

the solution for flow over a liquid droplet as

p̂(k) =
3|k|Ai′(0)

|k|(ik)1/3 − 3Ai′(0)

(
Ĥ(k)− ÛW (k, Ĥ)

)
, (7.1.3)

Â(k) =
3Ai′(0)

|k|(ik)1/3 − 3Ai′(0)

(
Ĥ(k)− ÛW (k, Ĥ)

)
, (7.1.4)

ÛA =
3|k|(ik)1/3

|k|(ik)1/3 − 3Ai′(0)

(
Ĥ(k)− ÛW (k, Ĥ)

)∫ ξ

0
Ai(s) ds+ ÛW (k, Ĥ). (7.1.5)

In the following section we demonstrate that ÛW (k, Ĥ) may be written entirely in terms of

H(x), so that it is still the droplet’s shape which uniquely determines the perturbation to the

flat plate problem.

This solution (7.1.3) to (7.1.5) could also be analysed numerically, an investigation we chose

not to pursue for the current problem. Instead we switch our focus to the dynamics within the

water droplet: first deriving an expression for the shape of the interface and then exploring the

families of solutions it yields in the final sections of this chapter.

7.2 Steady shapes of surface mounted droplets in a triple-deck

flow.

The fluid within the droplet has density and dynamic viscosity ρW and µW respectively, both

of O(1), while we assume, without loss of generality, the value of these in the outer flow to be

unity. Using (7.0.3) to (7.0.5), a balance in the governing equations for fluid within the droplet

(7.0.1), (7.0.2) yields the following:

∂2UW

∂Y 2
=

1

µW

∂PW

∂x
, (7.2.1)

∂UW

∂x
+
∂VW
∂Y

= 0. (7.2.2)
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These are as in lubrication theory. The momentum equation (7.2.1) may be integrated directly

to give an exact expression for the velocity perturbations within the droplet. A no-slip condition

along the solid wall, Y = 0, sets the second constant of integration to zero, while the other is

found from the continuous shear stress across the two fluid interface Y = H(x) by comparing

the y derivatives of (6.2.3) and (7.0.3):

∂UW

∂Y
=

1

µW
along Y = H(x). (7.2.3)

This leads to a velocity described by

UW =
1

2µW
PWx

(
Y 2 − 2Y H

)
+

Y

µW
. (7.2.4)

We may use this solution to derive two equivalent expressions for VW , where equating leads to

a Reynolds-lubrication type description of droplet shape. For the first, we apply the form of UW

in (7.2.4) to the continuity equation (7.2.2): by differentiating with respect to x and integrating

with respect to Y between Y = 0 and Y = H(x). This gives us the velocity in the y direction

along the interface,

VW =
PWxxH

3

3µW
+
PWxH

2Hx

2µW
, (7.2.5)

=
H3/2

3µW

[
PWxH

3/2
]
x
. (7.2.6)

The second form for VW may be found from the kinematic condition for a steady two fluid

interface,

VA = δVW = δHxUW along Y = H(x). (7.2.7)

We may simplify these two equivalent expressions (7.2.6) and (7.2.7), by considering the pres-

sure jump in terms of the curvature of the surface and the surface tension across it. Adding a

gravitational term, the Youngs-Laplace equation we require is

p− pW = γκ+ (1− ρW )gh, (7.2.8)

for surface tension γ and curvature

κ = ∇ · n̂ =
hxx

(1 + h2x)
3/2

. (7.2.9)
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Working under the assumption that the interface is smooth and relatively flat which is in agree-

ment with our lubrication approximation of earlier, we may approximate the curvature κ by the

leading order term in the binomial expansion of (7.2.9): κ = hxx = δHxx. Taking (7.0.5) into

account, to include both surface tension and gravity we require γ, g = O(1/δ2), and so rescale

as γ = γW /δ
2, g = gW /δ

2. This leads to an O(1/δ) balance of the equation as

PW = (ρW − 1)gWH − γWHxx. (7.2.10)

Using (7.2.10) to eliminate the pressure in our two equivalent expressions for VW , (7.2.6) and

(7.2.7), we find an equation for the shape of the droplet as a function of x only,

γW
[
H3Hxxx

]
x
− (ρW − 1)gW

[
H3Hx

]
x
+

[
3H2

2

]
x

= 0. (7.2.11)

This fourth order non-linear differential equation (7.2.11) includes the effects on the droplet of

surface tension (first term), gravity (second term) and drag forces exerted by the shear (third

term). The family of solutions produced are fixed only by the characteristics of the droplet: its

size, density and surface tension coefficient. If H and x are both of O(1), the last two of these

characteristics are of particular interest since they dictate the balance of terms and hence forces

in (7.2.11). To single out the effect of these parameters, ρW and γW , we restrict the range of

droplets considered in our solution by prescribing the leading and trailing contact points and

applying a volume constraint. This makes the boundary conditions simply

H(0) = 0, H(L) = 0, (7.2.12)

∫ L

0
H(x) dx = V0, (7.2.13)

with V0 and L constants. Of course, no assumption limits this study to droplets, liquid films

too could be analysed using this formulation. The boundary conditions are chosen to tie in with

other work in the thesis.

The first condition in (7.2.12) allows us to integrate (7.2.11) once yielding a zero constant
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γ >> 1

ω << 1
Case 1: Surface tension only

ω = O(1)

ω = O(γ) Case 2: Surface tension and gravity balance

ω >> O(γ) Hx = 0, No solution

γ = O(1)

ω << 1 Case 4: Surface tension and shear forces balance

ω = O(1) Case 3: Surface tension, gravity and shear forces balance

ω >> 1 Hx = 0, No solution

γ =<< 1

ω << 1 No solution

ω = O(1) Case 5: Gravity and shear forces balance

ω >> 1 Hx = 0, No solution

Table 7.1: Force balance of (7.2.15) for values of the parameters γ and ω.

of integration. For easier notation, we rewrite the difference in densities of the two fluids times

the gravity as

ω = (ρW − 1)gW , (7.2.14)

a measure of the relative weight of the droplet, and drop the subscript W from γ. This serves

to make our governing equation

γHHxxx − ωHHx +
3

2
= 0. (7.2.15)

This expression (7.2.15) has similarities to the generalised fourth order differential equation

which describes thin film flows such as those reviewed by Myers [39] and studied by Pugh

[46]. Exploring the possible solutions to (7.2.15), subject to the boundary conditions (7.2.12)

and (7.2.13) is the focus of the remainder of this chapter. Working within the framework of this

problem it is useful to consider values of γ and ω both larger and smaller than theO(1) assump-

tion upon which (7.2.15) was derived. Although the density and surface tension coefficient are

fixed for any given fluid and setup of the liquid geometry (foam, bubble, flat surface etc), the
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two properties share a complex relationship, Macleod [33]. The subtleties of this relationship

are not the main concern of our study and so we assume γ and ω to be independent. This allows

us to analyse the effect which each term (or force) has on the solution, offering insight into the

nature of the problem. Doing so is valid if we consider, for example, small values of γ which

are still large compared to the lubrication parameter δ.

Using γ as a guide, table (7.1) details the form of equation (7.2.15) which corresponds to

the magnitude of ω. The cases refer to the forces which balance in each problem, and detailed

solutions for each case follow.

It is worth pointing out at this stage that with this formulation, we may also investigate how

the forces on the droplet affect the leading and trailing contact angles. Our model is based on

a lubrication approximation, so that we require the angle the droplet makes with the wall to

be small. Returning to our triple-deck coordinate system then, we expect h′(0) = tan θ ≈ θ

for θ << 1, where values of θ < 0.4 keep the error in neglecting subsequent terms of the

expansion below 5%. Scaling the angle at the leading contact point by θ = δα and likewise

with β at the trailing contact point, we find we may determine the contact angles from our

solution using

H ′(0) = α and H ′(L) = −β. (7.2.16)

where α, β are of O(1).

7.2.1 Case 1 : Surface tension only.

When γ >> 1 and ω = O(1), shear forces and gravity have a negligible influence on droplet

shape and our equation (7.2.15) reduces to

H3Hxxx = 0. (7.2.17)



7.2. Steady shapes of surface mounted droplets in a triple-deck flow. 158

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

H(x)

V0 =1/4
V0 =1/2
V0 =3/4
V0 =1

(a) Family of solutions for the surface tension only case.

−1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

x

y

(b) Solutions to the surface tension only case form sections of a circle when considered in

triple-deck coordinates.

Figure 7.1: Case 1 : Surface tension only.
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Application of the boundary conditions (7.2.12) and (7.2.13) lead to an exact solution:

H(x) =
6V0
L3

(
Lx− x2

)
. (7.2.18)

Since the surface tension coefficient and fluid density play no part in the trends for this case,

by fixing the contact points and droplet volume we find a unique solution, symmetric about

L/2 and with α = β. This seems reasonable, since the external flow produces no net drag force

upon the droplet. The contact angles may be determined by using (7.2.16), which yields a linear

relationship with volume

α =
6V0
L2

. (7.2.19)

Example solutions may be seen in figure (7.1a). Numerically we choose to take L = 1 and the

results show a range of droplets with volumes V0 = 0.25, 0.5, 0.75, 1, corresponding to leading

contact angles α = 1.5, 2, 4.5, 2.

Taking our scaling of y = δY into account, we see from the figure that the droplets would

appear to have a uniform curvature if considered in triple-deck coordinates. This is as one

would expect, since in the presence of surface tension the cohesive forces act to pull the droplet

into a cylindrical shape, minimising surface area for a given volume. Indeed, it can be shown

that when rescaled back into the triple-deck coordinates for small values of θ the solutions

approximately form a section of a circle with equation

(x− L

2
)2 + (y − 9δ2V 2

0 − L4

12LδV0
)2 =

(
L2

2

)2

+

(
9δ2V 2

0 − L4

12LδV0

)2

. (7.2.20)

An example of this may be seen in figure (7.1b) where θ = 0.4.

7.2.2 Case 2 : Surface tension and gravity.

When γ >> 1 and ω = O(γ), surface tension is balanced by gravitational forces and (7.2.15)

is reduced to

Hxxx =
ω

γ
Hx. (7.2.21)
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It is convenient to define a ratio between the two parameters

λ =

(
ω

γ

)1/2

, (7.2.22)

and consider only droplets whose density is larger than that of the surrounding fluid, so that λ

is real. Considering the form of ω in (7.2.14), λ2 may be considered analogous to the Eötvös or

Bond number which characterises the shape of sitting droplets as described in Rosenhead [51].

As in the surface tension only case, an exact solution may be determined by application of

the boundary conditions (7.2.12) and (7.2.13):

H(x) =
V0λ (tanh[λL/2] sinh [λx]− cosh [λx] + 1)

λL− 2 tanh [λL/2]
, (7.2.23)

The families of curves which this produces are unique for a given λ and symmetrical about the

centre of the droplet as in Case 1, which makes physical sense since there are still no shear

forces. Equation (7.2.16) again allows us to determine the linear relationship between α and V0

for a given L and λ. Specifically, this is given by

α =
V λ2 tanh[λL/2]

λL− 2 tanh[λL/2]
. (7.2.24)

Picking the first example used in figure (7.1a) as a starting point, we fix V0 = 0.25, L = 1 and

vary λ to explore the effect it has on H and α. Figure (7.2a) shows plots of typical solutions

for H and figure (7.2b) is the relationship between α and λ.

For smaller values of λ surface tension dominates and the droplet shape deviates little from the

trend seen in Case 1. (Indeed, λ = 0 is Case 1). It appears from figure (7.2b) that for values

up to λ = 2, or rather ω = 4γ, the difference in leading contact angle compared to the surface

tension only case is slight. Beyond this point, the weight of the droplet dominates and the

droplet begins to flatten since the gravitational force acts downwards. Increasing the ratio of ω

to γ further suggests we approach a linear relationship between α and λ, reflected in the form

of (7.2.24).
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7.2.3 Case 3: Surface tension, gravity and shear forces.

When γ, ω = O(1) we return to the full form of (7.2.15) and reintroduce the shear term:

γHHxxx − ωHHx +
3

2
= 0. (7.2.25)

This non-linear equation must be solved numerically, but satisfying the boundary conditions of

pinned contact points (7.2.12) and fixed volume (7.2.13) cause some restrictions on the methods

we may use to do so. The nature of the equation ( Hxxx becomes infinite as x→ 0, 1 ) suggests

that any iterative algorithm will be particulary sensitive to initial guesses for H . Our early

computational attempts confirmed that this is indeed the case. For that reason, we propose an

alternative approach, by considering the similarities to the linear form of the problem (that seen

in Case 2). We suggest that the solution to (7.2.25) deviates from the linear problem by some

non-linear amount A(x), so that H(x) may be written as the sum of the two:

H(x) = H̃(x) +A(x), (7.2.26)

where H̃(x) is the known solution to the surface tension and gravity only problem (7.2.23),

satisfying the boundary conditions (7.2.12), (7.2.13) and the equation (7.2.21).

Using (7.2.26) as a substitution in (7.2.25) leaves the equation to be solved as

γAxxx − ωAx +
3

2(H̃(x) +A(x))
= 0. (7.2.27)

This form contains first and third order derivatives which can be numerically sensitive. To ease

this problem, we put

∂A

∂x
= B, (7.2.28)

so that (7.2.27) becomes

Bxx −
ω

γ
B +

3

2γ(H̃ +A)
= 0, (7.2.29)

which has the additional benefit of allowing us to express the boundary conditions in the form

of two integrals, helping the sensitivity and convergence of any iterative algorithm. The droplet
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remains pinned at x = (0, L) and so any deviation from the shear case, A(x), must also be zero

at these points. Considering (7.2.28), this translates to the first integral condition on B:

∫ L

0
B(x) dx = 0. (7.2.30)

Finally, the volume constraint (7.2.13) will already be satisfied by H̃ , so that the integral of

A(x) across the length of the droplet must also be zero,

∫ L

0
A(x) dx = 0. (7.2.31)

Equations (7.2.30) and (7.2.31) serve as our boundary conditions for the pair of equations

(7.2.28) and (7.2.29). This closed system for A and B, with H̃ known, may be solved for a

given ω and γ with the application of an iterative algorithm similar to those seen in Part I of the

thesis.

B is calculated on a first guess of A using (7.2.29) and (7.2.30). The result then serves to

update the values of A using (7.2.28) and (7.2.31). The process is then repeated until succes-

sive iterative values of both A and B converge.

As we saw in Case 2, a fixed ratio between γ and ω implies a fixed balance between the

surface tension and gravitational forces. To understand the effect of shear forces on a given

droplet then, we choose to fix this ratio λ, and vary γ, so that 1/γ quantifies the comparative

magnitude of the shear force. Figure (7.3a) shows a plot of A(x) for γ = 1, 2, 4, 8 and three

different grid spacings, δx = 1/50, 1/100, 1/200. All plots have a choice of λ = 8, L = 1 and

V0 = 0.25, equivalent to applying shear to the droplet which was shown as a solid black line in

figure (7.2a).

For large values of γ the trend for the non-linear deviation A(x) is approximately odd about

L/2. As 1/γ increases, so too does the magnitude of A(x), and it appears that the point at
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which A(x) = 0 moves to the left of L/2. In all examples, the droplet height is decreased

at the leading edge and increased at the trailing edge compared to the no shear case. This

seems reasonable, since the outer fluid which causes the shear stresses is moving from left to

right and matches the results of Li and Pozrikidis [31], Gupta and Basu [20] and Schliezer and

Bonnecaze[52].

We notice also that the numerical algorithm holds well with grid refinement. For clarity,

we include figure (7.3b) which shows solutions for H . In this image, the shift of the droplet to

the right with increasing shear becomes clear. As γ → ∞, A → 0 we approach the solution

outlined in Case 2 of H = H̃ , shown in the figure as a solid black line.

Despite the non-linear nature of this case, it appears that we may derive an exact expres-

sion for the leading contact angle by considering the integral of (7.2.25). Since (7.2.25) may be

rewritten

γ [HHxx]x −
γ

2

[
H2

x

]
x
− ω

2

[
H2
]
x
+

3

2
= 0, (7.2.32)

the value of the integral of (7.2.32) at x = 0,

−γH
2
x(0)

2
= C, (7.2.33)

combined with that at x = L,

−γH
2
x(L)

2
+

3L

2
= C (7.2.34)

for some constant C, yields an equality.

Hx(L)
2 −Hx(0)

2 =
3L

γ
. (7.2.35)
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Figure 7.3: Case 4 : Surface tension, gravity and shear balance.
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Rewriting (7.2.35) in terms of H = H̃ +A and, since H̃ is the solution to the problem with no

shear, H̃x(0) = −H̃x(L), we find

(
Ax(L)

2 −Ax(0)
2
)
− 2H̃x(0) (Ax(L) +Ax(0)) =

3L

γ
. (7.2.36)

It appears from figure (7.3a) that the gradients of A(x) as x→ 0 and x→ L are similar. If they

were equal, Ax(0) = Ax(L), (7.2.36) would suggest that

Ax(0) = Ax(L) = − 3L

4γH̃x(0)
. (7.2.37)

An exact solution for H̃x(0) is known and given in (7.2.24) (which we shall refer to as α0 from

now on) so that if (7.2.37) is true, we may write down an expression for the leading and trailing

contact angles

α = Hx(0) = H̃x(0) +Ax(0) = α0 −
3L

4γα0
, (7.2.38)

β = Hx(0) = H̃x(L) +Ax(L) = −α0 −
3L

4γα0
. (7.2.39)

We may compare these expressions (7.2.39) to our numerical solution. Results may be seen

in figure (7.4), an extension of our earlier plot, figure (7.2b) of leading contact angle α against

λ. Each solid black curve shows the leading contact angle for a fixed γ and a range of λ,

calculated using (7.2.38). We also include the computational results in the figure as black cir-

cles, found from (7.2.28) - (7.2.31), where the angle is calculated from the first three grid points.

The figure (7.4) demonstrates that (7.2.39) matches well to the numerical results, aside from

values of λ < 4 for γ = 1 where it was found relaxation was required to arrive at a solution.

This corresponds to small values of ω on which we suspect there may be some restriction hid-

den within the non-linearity of the system. In Case 5 which follows we find a similar restriction

and demonstrate that the magnitude of ω acts to resist a shear force. Since these anomalies refer

to droplets which have a low gravitational force and are subjected to moderately high shears,

it seems reasonable to propose we see the beginning, or limit, of the droplet sliding or rolling.
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Figure 7.5: Case 4 : Family of solutions for the case of surface tension and shear balance.

We therefore have some confidence in suggesting that Ax(0) does indeed equal Ax(L) and

conclude that while the leading and trailing contact angles differ, their deviation from the no

shear case does not. The droplet is not symmetrical in the main however; the shape as x → 0

and x→ L is tilted by the same degree for a given shear.

7.2.4 Case 4 : Surface tension and shear forces.

When ω << 1 and γ = O(1) shear forces are balanced by surface tension and (7.2.15) becomes

γHHxxx = −3

2
. (7.2.40)

We may think of this as a special example of the non-linear equation seen in Case 3, and apply

the same numerical algorithm with ω = 0 to solve it. Results for γ = 1, 2, 4, 8 are shown

in figure (7.5), where values of δx = 1/200 , L = 1, V0 = 0.25 are taken throughout the

calculations. We notice a similar trend to that seen in figure (7.3b) with the droplet shifting

to the right as 1/γ increases. As γ → ∞ the limit of this droplet is the surface tension only
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Figure 7.6: A diagram of the droplet core 0 < x < L for the case of a gravity and shear force

balance. End layers arise near x = 0, L.

problem seen in Case 1.

It was found to be difficult to obtain results for γ < 1 which supports our earlier sugges-

tion that gravity must be present for the droplet to resist large drag forces exerted by the shear

and remain attached to the wall.

7.2.5 Case 5: Gravity and shear forces.

When γ << 1 and ω = O(1) the equation for droplet shape (7.2.15) reduces to

ωHHx =
3

2
. (7.2.41)

This equation may be integrated directly, but cannot satisfy the boundary conditions at x = 0

and x = L without the influence of surface tension near these points. As we have seen in

Case 2, gravity acts to flatten the droplet. With γ = 0 everywhere, there would be no force

acting to pull the droplet into a cylindrical shape and fix the contact points. To solve for this

case analytically, we must consider three parts to the solution: the core problem governed by

(7.2.41) and two end layers, a description of which is given below. A diagram of this setup

is given in figure (7.6). H1 and H2 are the droplet heights at x = 0 and x = L which the

core solution provides. The end layers must match to these values as x increases from zero and

decreases from L respectively. If the droplet has height H0 at x = L/2 we find the expression

for the droplet’s shape in the core:

H =

(
3

2ω
(2x− L) +H2

0

)1/2

, (7.2.42)



7.2. Steady shapes of surface mounted droplets in a triple-deck flow. 170

where the value of H0 is fixed by the volume constraint (7.2.13) and must satisfy(
H2

0 +
3

2ω
L

)3/2

−
(
H2

0 − 3

2ω
L

)3/2

=
9V0
2ω

, (7.2.43)

clearly suggesting a restriction on the values of ω

ω ≥ 3L

2H2
0

. (7.2.44)

Plots of (7.2.43) may be seen in figure (7.7a). The curves correspond to lines of constant H0

and demonstrate the relationship between ω (x axis) and V0 (y axis) with L taken to be unity

throughout. To tie in to other cases, we require a choice of H0 and ω which yields V0 = 0.25,

shown on our figure as a dashed line. We may pick anyH0, ω pair which intersects with this line

and so choose A,B and C as labelled in the figure . Of course, there will be an infinite number

of pairs which will yield such a result for V0, but all will lie within the range 0.25 < H0 < 0.27

and hence ω > 20. Perhaps this is a surprisingly high minimum value for ω, suggesting that

only fluids which are very dense compared to the surrounding flow can form this type of droplet

and resist a shear force without surface tension in the core.

For these choices A,B and C we also include figure (7.7b), showing plots of the corresponding

solutions to (7.2.41) which demonstrate the effect which ω has on the core of the droplet. As

suggested by the equations, the size of ω is inversely related to H0: a droplet with a smaller

gravitational force ratio will result in a higher curvature as x → 0 and a greater difference

between H1 and H2.

For the end layer at the leading edge of the droplet we return to the full form of (7.2.15)

and assume expressions for x and H as

x = γ1/2x̄, (7.2.45)

H = H̄ + · · · . (7.2.46)

This serves to enforce a surface tension-gravity balance at the leading contact point. Applying
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Figure 7.7: Case 5: Gravity and shear balance
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(7.2.12) and matching to H1 as x̄→ ∞ we find the solution to be

H̄ = H1

(
1− exp

[
−ω1/2x̄

])
. (7.2.47)

A similar procedure may be applied at x = L, where the expression for x takes the form

x = L− γ1/2x̂+ · · · , (7.2.48)

and the solution for H is given by

Ĥ = H2

(
1− exp

[
−ω1/2x̂

])
. (7.2.49)

Since surface tension is required to satisfy the boundary conditions we can return to our com-

putational algorithm used in Case 4 and compare numerical results for small γ, and the values

of ω in A,B and C already discussed, with this analytical solution. Figure (7.7b) may then be

thought of as the limit of these solutions as γ → 0.

Plots of the results for γ = 0.3 and γ = 0.1 are shown in figures (7.8a) and (7.8b) re-

spectively. The line styles in the figures correspond to those in figure (7.7b) (A represented by

a solid line and so on). We see that the trend is the same as before: the heavier droplets have the

ability to resist high shear forces and appear flatter and more symmetrical. The effect of γ (and

hence surface tension) is to increase the curvature throughout, demonstrated by the differences

between figure (7.8a) and figure (7.8b).

By considering the problem in this manner (γ small rather than γ → 0) the restrictions on

ω found earlier perhaps become clearer. To withstand high shears and remain steady a droplet

must have a medium to large gravitational force or there is nothing to prevent the droplet from

sliding.

This also sheds light on the findings of Case 3, where results for small gravitational forces
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Figure 7.8: Case 5: Dominant Gravity and shear
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ω in the presence of shear were difficult to find. If the numerical method converged, it required

relaxation to do so.

This approach then, while offering insight into the effects of surface tension, gravity and

shear forces breaks down with the onset of rolling, sliding or spreading and if a steady-state

does not exist.

To better understand the physical behaviour of a droplet within a boundary layer, and par-

ticularly its movement over time, we must return to the small density ratios approach and

tackle our final task: the two-way interacting problem of a liquid droplet deforming within the

boundary layer of an external air flow.



Chapter 8

Droplet deformation within a boundary layer

Although several complementary problems have also been included, the main focus of this

thesis has been in modelling the time dependent distortion of the interface between a surface

mounted droplet and an external flow field. In this chapter we return to that goal with our final

example problem: the non-linear interaction of air and water contained within a triple-deck

structure, a schematic diagram of which may be seen in figure (6.1).

To examine the deformation of the water droplet, we work under the assumption of a small den-

sity ratio, details of which may be seen in Chapter 1. It is the small density ratio which allows

us to treat the droplet as quasi solid and apply a no-slip condition in the air along the boundary

between the two fluids. This is the basis of the method for modelling droplet deformation, also

outlined in Chapter 1, which remains unchanged for the current problem.

With this approach, the two fluids, air (A) and water (W), are governed by the non-dimensional

equations (1.2.13)- (1.2.16), which we repeat here for clarity:

∂uA

∂t
+ (uA · ∇)uA = −∇pA +

(
νA
νW

)
Re−1

W ∇2uA, (8.0.1)

∇ · uA = 0, (8.0.2)

∂uW

∂t
= −∇pW +Re−1

W ∇2uW , (8.0.3)
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∇ · uW = 0. (8.0.4)

We notice the similarities between the governing equations of air in the small ratios problem

(8.0.1), (8.0.2), and those of air, nondimensionalised using the properties of its own flow in

Chapter 6 , equations (6.0.2), (6.0.3), where a solution to the air flow over a solid obstacle was

derived. Indeed, by rewriting

R̂e =

(
νW
νA

)
ReW , (8.0.5)

the two sets are identical except that in the present case ReA is replaced below by R̂e. Assum-

ing that R̂e is large, all steady-state findings and triple-deck scalings of Chapter 6 will apply

here also.

As with the example in Part I of the thesis, the deformation of a droplet within a boundary

layer occurs across two temporal scales. In the early stage, while t = O(1) the unsteady flow

within the water droplet is driven by the unsteady flow in air. As t increases, both flows become

steady and the droplet begins to grow linearly with time. While t < O(1/ϵ) the droplet retains

its initial shape to leading order and the interaction is considered one way.

When t becomes of O(1/ϵ), the time dependent term begins to dominate the shape of the

interface and the droplet becomes severely distorted, causing the kinematic condition to be-

come non-linear. This corresponds to the later temporal stage, where a rescaling of t = T/ϵ for

T = O(1) is required. During this phase, the shape change of the droplet acts to modify the

dynamics within the air and the interaction is considered two-way.

The early stage was studied in the first part of the thesis in the case of a semicircular droplet,

where the unsteady flows in both air and water were found separately. For the current problem,

we do not provide a solution for the unsteady flow in air, focusing instead on analytical solu-

tions for the flow within the droplet, subject to some known interfacial stress conditions. This
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early stage solution is presented in Section 8.1.

As t becomes large, the flow in both fluids becomes steady. To determine the steady flow

in air, the solution of Chapter 6 may be adapted include a small ratios approach rather than a

lubrication approximation. This adapted algorithm is the task of Section 8.2.1, whose results

are valid for large t in the early stage, and in the later stage itself.

By considering the solution in the air as the quasi-steady solution over the latest interface

shape at every time step we may tackle the two-way non-linear interacting problem of the

later temporal stage. In Section 8.2.2 we derive a Reynolds lubrication type equation which

describes the shape of the interface in terms of the properties of the air flow. Finally, in Section

8.2.3 some numerical simulations are presented for the flow over various initial droplet shapes.

8.1 The early temporal stage

The flow in water is governed by the Stokes equations at the beginning of the chapter in equa-

tions (8.0.3) and (8.0.4). Since the droplet is contained within the viscous sublayer of the

triple-deck structure, the inner deck scalings R̂e
−3/8

in the horizontal coordinate and R̂e
−5/8

in

the vertical will apply along with

uW = R̂e
−1/8

ũW (X,Y ) + · · · , (8.1.1)

vW = R̂e
−3/8

ṽW (X,Y ) + · · · , (8.1.2)

pW = R̂e
−1/4

p̃W (X) + · · · . (8.1.3)

To include the effects of time, t is scaled as t = R̂e
−2/8

t̃. The tildes are dropped for ease of

notation and since Prandtl’s shift is not used for the droplet, we name the scaled transverse co-

ordinate here as y, related to that in air by y = y+f(x) (where f(x) is the obstacle’s boundary) .

By applying these scalings to the momentum equation (8.0.3), the govening equations for
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the flow within the water droplet reduce to:

∂u

∂t
= −∂p

∂x
+

(
νA
νW

)
∂2u

∂y2
, (8.1.4)

∂u

∂x
+
∂v

∂y
= 0. (8.1.5)

As briefly discussed, we will assume for the purposes of the analysis within this section, that a

time dependent solution in air over an obstacle is known and concern ourselves solely with the

flow in water.

This problem corresponds to the work of Chapter 2. In this example however, unlike that

of the semicircle in Chapter 2, the leading order stress conditions are equivalent to the leading

order pressure and vorticity terms. Our results appear to suggest that here, any linear growth in

velocities will saturate, as postulated in Chapter 4. In the calculations which follow we see the

velocities becoming steady with time.

In the early stage, the interface shape takes the form

y = f0(x) + ϵf1(x, t), (8.1.6)

and we take the stress conditions along the boundary of the two fluids as

∂u

∂y
= σ0, p = p0 on y = f0, (8.1.7)

to leading order, for some known values σ0, p0. A no-slip condition, u = 0 on y= 0 completes

the problem description.

The solution is relatively straightforward; the momentum equation within the droplet may

be differentiated with respect to y to yield the one-dimensional heat equation for the leading

order vorticity terms: (
νA
νW

)
∂2ζ

∂y2
=
∂ζ

∂t
. (8.1.8)
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Assume that the vorticity and its boundary conditions decay exponentially to a steady-state, so

that they take the form:

ζ(x, y, t) = z0(x, y) + z1(x, y, t) (8.1.9)

ζ(x, f, t) = g(x) + h(x, t), (8.1.10)

∂ζ(x, 0, t)

∂y
= q(x) + r(x, t), (8.1.11)

where g, h, q, r are known from (8.1.7), with (8.1.11) replacing the condition on pressure, and

z1, h, r decay exponentially with time.

The steady-state problem ((8.1.8 - (8.1.11)) with z1, h, r = 0) may be solved directly to

give

z0 = q(x) (y − f(x)) + g(x). (8.1.12)

By applying (8.1.12) to the unsteady problem, (8.1.8 - (8.1.11), it remains to solve for z1:(
νA
νW

)
∂2z1
∂y2

=
∂z1
∂t

, (8.1.13)

z1(x, f, t) = h(x, t), (8.1.14)

∂z1(x, 0, t)

∂y
= r(x, t). (8.1.15)

If h(x, t) and r(x, t) may be written as in terms of a sine series,

h(x, t) =

∞∑
n=1

hn exp[−
(
νAn

2π2t

νW

)
] sinnπx, (8.1.16)

r(x, t) =

∞∑
n=1

rn exp[−
(
νAn

2π2t

νW

)
] sinnπx. (8.1.17)

then z1 will have solution

z1 =
∞∑
n=1

exp[−
(
νAn

2π2t

νW

)
] sinnπx (an sinnπy + bn cosnπy) . (8.1.18)

Finally, applying (8.1.16), (8.1.17) yields the values of an and bn.

an =
hn

sinnπf
+
rn
nπ

, (8.1.19)

bn = − rn
nπ

tannπf. (8.1.20)
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The expressions (8.1.12), (8.1.18), (8.1.19) (8.1.20) together form an exact solution for the

vorticity within the droplet,

ζ = q(x) (y − f(x)) + g(x)+ (8.1.21)

+
∞∑
n=1

e
−

νAn2π2t
νW


sinnπx

{(
hn

sinnπf
+
rn
nπ

)
sinnπy − rn

π
tannπf cosnπy

}
.

Since ζ =
∂u

∂y
, a solution for the velocities may also be found. All terms become steady and

this example sees no unbounded linear growth of velocity with time.

Coupling this expression for vorticity (8.1.21) with a time dependent solution in air over a

quasi-solid obstacle would provide a complete description of the early stage of droplet de-

formation, as we had in Chapter 4. (The non-linear evolving air flow alone can itself lead to

short-scale instability and transition as described in Smith and Bodonyi [57] and Bowles et al

[9] and related studies, depending on the particular obstacle and flow configuration, but that

represents a solution path different from the one considered here). We do not attempt this for

the current problem however, choosing instead to focus our attention on the later stage and

non-linear two-way interaction, where our first task is to adapt the flow in air algorithm of

Chapter 6

8.2 The later temporal stage

8.2.1 Flow in air

Although in the later stage, the triple-deck scaled shape f will have a relatively slow depen-

dence on time, the present setting of droplet deformation allows us to treat the flow in air as

quasi steady. We would like to extend the solution of Chapter 6 however (the setup of which

is valid here with ReA replaced by R̂e) before applying it as the first step in modelling droplet

deformation, by outlining a non-linear solution and removing the shallow droplet assumption.
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We do so by replacing the perturbation approach, which was used to derive (6.2.3) - (6.2.6),

and instead consider the following expansion:

uA = y + UA, (8.2.1)

vA = VA, (8.2.2)

pA = PA, (8.2.3)

where UA, VA, PA are all O(1). Application of the new expansion (8.2.1) - (8.2.3) to the rele-

vant form of the steady inner deck equation (6.1.12) leaves

y
∂UA

∂x
+ VA +

dPA

dx
− ∂2UA

∂y2
= −UA

∂UA

∂x
− VA

∂UA

∂y
, (8.2.4)

where x, y are as defined in the inner deck equations, after Prandtl’s transposition: see Section

6.2.

By replacing the droplet with an obstacle, the continuity equation and boundary conditions

(6.2.8) - (6.2.12) also apply here, except that of course UA, VA, PA are now as defined in (8.2.1)

- (8.2.3).

The non-linear terms in (8.2.4) have been grouped on the right-hand side of the equality.

By setting them to zero we return to a linear solution identical in form to that seen in (6.2.21) -

(6.2.23), which we rename here with a superscript 0:

P̂ 0
A(k) =

3|k|Ai′(0)
|k|(ik)1/3 − 3Ai′(0)

f̂(k), (8.2.5)

Â0(k) =
3Ai′(0)

|k|(ik)1/3 − 3Ai′(0)
f̂(k), (8.2.6)

Û0
A(k, ξ) =

3|k|(ik)1/3

|k|(ik)1/3 − 3Ai′(0)
f̂(k)

∫ ξ

0
Ai(s) ds. (8.2.7)
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For a given obstacle shape f(x), f̂(k) may be found using the forward Fourier transform given

in (6.2.13). The inverse transform of (8.2.5), (8.2.7) is then easily found numerically using the

discrete sum (6.2.31), yielding real solutions which we call (U0
A, P

0
A).

We feed this linear solution back into the momentum equation (8.2.4) and iterate into the

non-linearity. For ease of notation, we rename the (now known) non-linear terms as

g0(x, y) = −U0
A

∂U0
A

∂x
− V 0

A

∂U0
A

∂y
(8.2.8)

where V 0
A is found from the continuity equation.

In general, we may find the next solution for the velocity Un+1
A by knowing the latest gn,

y
∂Un+1

A

∂x
+ V n+1

A +
dPn+1

A

dx
−
∂2Un+1

A

∂y2
= gn. (8.2.9)

The solution follows the method in Chapter 6, differentiating (8.2.9) with respect to y, taking

the forward Fourier transform and putting ξ = (ik)1/3y, so that in this case, it remains to solve

the inhomogenous Airy equation, with a known forcing:

ξ
∂Ûn+1

A

∂ξ
−
∂2Ûn+1

A

∂ξ2
= (ik)−2/3∂ĝ

n

∂ξ
. (8.2.10)

This partial differential equation (8.2.10) suggests a form for Ûn+1
A which is a combination of

the linear solution and an inhomogeneous contribution, and we seek a solution which follows:

∂Ûn+1
A

∂ξ
=
∂Û0

A

∂ξ
+Ai(ξ)αn(ξ). (8.2.11)

Applying this to (8.2.10) suggests it remains to solve

∂

∂ξ

(
∂αn

∂ξ
Ai(ξ)2

)
= (ik)−2/3Ai(ξ)

∂ĝn

∂ξ
, (8.2.12)

αn(ξ) = 0 at ξ = 0, (8.2.13)

Ai(ξ)αn(ξ) → 0 as ξ → ∞, (8.2.14)
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where (8.2.12) can be integrated directly:

αn(ξ) =

∫ ξ

0
Ai(t)−2

∫ t

∞
(ik)−2/3Ai(s)

∂ĝn

∂s
dsdt. (8.2.15)

The limits on the second integral are set to ensure that (8.2.14) is met. When gn is known then,

(8.2.15) allows us to numerically calculate αn, which in turn provides the solution for Ûn+1
A :

Ûn+1
A = Û0

A +

∫ ζ

0
Ai(s)αn(s) ds. (8.2.16)

Finally, the derivative of (8.2.11), matched to the Fourier transform of the momentum equation

(8.2.4) along y = 0 gives the solution for the pressure:

P̂n+1
A = (ik)−1/3

 ∂2Û0
A

∂ξ2

∣∣∣∣∣
ξ=0

+Ai(0)
∂αn

∂ξ

∣∣∣∣
ξ=0

+Ai′(0)αn(0)

 . (8.2.17)

So, from g0, U1
A and P 1

A may be found via α1, subsequently yielding g1 and so on. This

procedure may be repeated until successive calculated values of UA and PA converge.

To demonstrate the method, we return to the Witch of Agnesi and parabolic shaped obstacles

which were used as examples in Chapter 6. Figure (8.1) has the non-linear pressure and wall

shear results for the parabolic hump, calculated on the same x grid, δx = 10−3, δy =
δx1/2

4
,

and period L = 6π as the linear solution in figure (6.5). Again, the number of Fourier modes

considered, Nk, is varied from 16 to 512. We notice improvement as Nk increases, although

in this non-linear example, the solution has not yet settled completely by Nk = 512, showing

some sinusoidal behaviour upstream of the droplet in the wall shear image.

In figure (8.2) we show a comparison between the linear solution for pressure and wall shear,

found in Chapter 6, and the non-linear solution outlined here for the case of the Witch of Agnesi

obstacle. We see that in general linear theory holds well for this example, deviating from the

non-linear solution only at the extremal values of pressure and shear.
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Figure 8.1: Non-linear results for the parabolic hump
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8.2.2 Flow in water

As the later stage comes into operation, t is rescaled as t = T/ϵ with T = O(1). Application

of this rescaling to (8.1.4) leaves the governing equation in water as

∂2uW
∂y2

=

(
νW
νA

)
∂pW
∂x

. (8.2.18)

As in Section 8.1, (8.2.18) is solved subject to the full stress conditions, which, when non-

dimensionalised on the characteristics of the water and scaled according to both small ratios

assumption and inner deck parameters simplify to a requirement of continuous pressure per-

pendicular to the interface,

PA = pW along y = f(x, t), y = 0, (8.2.19)

while tangential to the interface,

∂uW
∂y

=

(
νA
νW

)(
1 +

∂UA

∂y

)
along y = f(x, t), y = 0, (8.2.20)

must be satisfied. These correspond to p0 and σ0 of Section 8.1 respectively. Both (8.2.19) and

(8.2.20) are known from the flow solution in air of the previous section.

Renaming the shear term in (8.2.20):

σ =

(
1 +

∂UA

∂y

)
, (8.2.21)

applying a no-slip condition along y = 0 and the interface conditions (8.2.19) and (8.2.20), the

momentum equation (8.2.18) may be solved exactly to yield a solution for the velocity within

the droplet,

uW =

(
νW
νA

)
1

2

∂pW
∂x

(
y2 − 2yf(x, t)

)
+

(
νA
νW

)
σy. (8.2.22)

Using the same approach as that which derived (7.2.11) in Chapter 7, we may use (8.2.22) to find

two equivalent expressions for vW along the interface, the first from the continuity equation:

vW =
νW
νA

(
f3

3

∂2p

∂x2
+
f2

2

∂p

∂x

∂f

∂x

)
−
(
νA
νW

)
f2

2

∂σ

∂x
(8.2.23)
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and the second from the kinematic condition:

vW = u
∂f

∂x
+
∂f

∂t
=

(
νW
νA

)
f2

2

∂pW
∂x

∂f

∂x
+

(
νA
νW

)
σf

∂f

∂x
+
∂f

∂t
. (8.2.24)

Equating the two (8.2.23) and (8.2.24) allows us to derive a Reynolds lubrication type expres-

sion of the shape of the interface in terms of the external pressure and shear forces only:

∂f

∂t
=

(
νW
3νA

)[
f3px

]
x
−
(
νA
2νW

)[
f2σ

]
x
, (8.2.25)

where subscript x denotes differentiation with respect to x.

This result is very neat. From a model of steady flow within the droplet we have achieved

a description of the non-linear evolution of the interface, where the properties of the flow in

water do not feature explicitly. No assumptions on the shape of the interface have been made

and (8.2.25) applies for the later temporal stage, as the droplet becomes severely distorted.

Indeed, by combining (8.2.25) with the non-linear solution for flow in the previous section, we

may bypass the flow in water altogether and obtain a two way interacting description of droplet

deformation.

8.2.3 The interacting system

The algorithm for the two way interacting model of droplet deformation follows exactly that of

Section 8.2.1, except that in this case, the shear along the interface between the fluids (8.2.21)

and pressure gradient are determined explicitly the end of each time step. These results, px and

σ are used in the finite difference version of (8.2.25) to yield the new interface shape:

fnew = δt

((
νW
3νA

)[
f3px

]
x
−
(
νA
2νW

)[
f2σ

]
x

)
+ f. (8.2.26)

To test the algorithm we first apply it to the Witch of Agnesi hump previously studied in Section

8.2.1 and Chapter 6. Results may be seen in figure (8.3), where the numerics were calculated

using νA/νW = 1, δx = 10−2, δt = 10−4 and 128 Fourier coefficients. It is worth noting that

the results are displayed in triple-deck coordinates, in reality the droplet would be stretched in
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Figure 8.3: Time dependent deformation results for a Witch of Agnesi droplet.
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the x direction compared to what is shown here. We see from the figure that the droplet begins

to move into the area of low pressure shown in figure (8.2a) and is offset to the right by the

shear forces shown in (8.2b). In figure (8.3b) we also include a graph of the values of f(−0.5)

and f(0.5) against t, clearly demonstrating that, as expected, the shape of the droplet changes

linearly with time.

We notice however in figure (8.3a) that the simulation appears to hold only for a short time

(although, of course, the time scale is generally shorter in the triple-deck scaling) before

a peak appears at the top of the droplet and the solution blows up. Although not shown, this

peak continues to grow until around t = 1.2, after which no solution may be found numerically.

To test the algorithm further, we also include in figure (8.4a) an example of the method applied

to the parabolic hump seen in Section 8.2.1 and Chapter 6. In this case 512 Fourier coefficients

were used, although all other constants remain as before. Again, the droplet begins to move

into the area of low pressure shown in (8.1a), as one would expect. Figure (8.4b), a plot of the

interface at x = 0.5 against t also demonstrates the linear growth of f in time. After t = 2

however, this solution also breaks down, showing a similar peak as that in the Witch of Agnesi

example.

It could be that this breakdown of solution is occurring because too few Fourier coefficients are

considered. The parabolic hump has sharp corners and with 512 coefficients, a small amount

of sinusoidal disturbance was demonstrated upstream of the droplet in the wall shear in figure

(8.1b). To confirm that the Fourier coefficients are not the cause of the blowup, we include a

final test case: a droplet with initial shape

f =


(1− x2)4

10
|x| < 1,

0 otherwise,
(8.2.27)
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where 512 Fourier coefficients are used. This example has a gently increasing droplet height so

that reliable results should be possible for lower Nk than considered. The results for the shape

deformation are shown in figure (8.5) and a plot of the interface shape at f(x = 0), f(x = 0.2)

against time is included in figure (8.5). We also show the time dependent results for shear along

the interface, figure (8.6a), and pressure figure (8.6).

The simulations for this case appear to hold for a longer time scale than the previous two

examples - up to around t = 5 as opposed to t = 1.2 or t = 2. Once again, we notice the

linear relationship of movement of the interface with time across the majority of the period

considered. However, between t = 4 and t = 5, the shear along the interface between the two

fluids begins to distort causing a necking in the droplet shape. Running the algorithm to larger

times causes the droplet to form a similar peak to that in both the parabolic and the Witch of

Agnesi droplets.

In all the examples studied, the later stage model appears to break down at a finite time. Figure

(8.6a) in particular demonstrates that an increasing number of Fourier modes are required to

describe the system as time increases, suggesting the break-down of the series solution. We

suspect this break-down may caused by a non-linear localised singularity, possibly a singular

pressure gradient or pressure discontinuity such as those described in Smith [56]. If this is the

case, a shorter time scale would be required for further analysis. This shorter time scale would

have t = T0/ϵ + O(q) say, where q << 1/ϵ, T0 = O(1). Unfortunately, due to the time

constraints of the project, analysis of this kind was not attempted for the current problem and is

left as further work which we hope to attempt in future.

Despite this, we believe that the main point still stands overall: that the small ratios ap-

proximation may be applied within a triple-deck structure to model the non-linear deformation

of a liquid droplet or film.
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Chapter 9

Conclusions and further work

The work of this thesis has mainly been concerned with modelling the time-dependent distor-

tion of an attached liquid droplet in the presence of an external flow field.

As described in Chapter 1, with an assumption of a small ratio between the densities of

the two fluids (on which much of this work is based) the leading order velocity term in the less

dense fluid will be zero along the boundary allowing us to treat the interface as solid at any

given time step.

The first part of the thesis explored the application of this assumption to a wall mounted

semicircular droplet in a surrounding air flow of Re = O(1). The model focused on the early

temporal stage - while the droplet remains semicircular to leading order - allowing us to treat

the flow in air as an isolated problem.

Using the lid driven cavity as a test for our numerical procedure, in Chapter 2 we derived

an algorithm to numerically determine the time-dependent solution for flow in air over a sur-

face mounted semicircular obstacle. The results showed the length of the downstream eddy

increasing with Reynolds number and provided a matrix of time-dependent pressure and vortic-

ity values along the curved wall of the semicircle for use in the interacting problem of Chapter 4.
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The focus of Chapter 3 was the Stokes or creeping flow within the water droplet subject to

idealised boundary conditions along the free surface. To better understand the dynamics,

two model problems were considered. In the first, the circular seed, the velocities within the

droplet became steady with time and the kinematic condition was found to become non-linear

at t = O(ϵ−1). The square droplet was analysed second and, while limited in its application

to a real world problem, served well as a Cartesian version of the semicircular droplet. A

series solution, steady-state simulation and time dependent algorithm for the square droplet all

pointed towards linear velocity growth with time and a later temporal stage which came into

effect at t = O(ϵ−1/2). This result was mirrored in the semicircular droplet case examined

towards the end of Chapter 3.

In Chapter 4 the results of the previous two chapters were combined to achieve a one-way

interacting model of droplet deformation. In this example the velocities also demonstrated a

linear growth with time causing, via the kinematic condition, an interface which grew like t2. It

was proposed that this result was due to the choice to take continuous pressure and vorticity as

interfacial conditions and that applying the full stress conditions would instead see these large

velocities saturate over time. Aside from including the full interface conditions, the method

itself appears to be promising. An algorithm which solved for air flow over any interface shape

would allow the model to simulate the later temporal stage and, perhaps, the onset of sliding

rolling and droplet break-up.

A side investigation into Stokes flow near a wall, theoretically relevant to the semicircular

droplet deformation model of Chapters 2 - 4 was the focus of Chapter 5, where the behaviour

of the vorticity near a contact point of air, water and solid was explored. In the context of the

model studied the vorticity was seen to act like −(1 − x)−1/2 near x = 1 suggesting a small

region of rapid clockwise rotation close to the point of contact. Extending this result to a more
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general form and studying the effect which the large negative vorticity has on the rest of the

droplet would be an interesting problem for future work.

In the second part of the thesis we switched our attention to a droplet contained within the

boundary layer of an external air flow. Chapter 6 outlines an algorithm to numerically deter-

mine the linear flow over any shaped obstacle or wall disturbance, while Chapter 8 extends this

result into a non-linear solution.

The work of Chapter 6 presented an opportunity to derive an expression for the interface

between the two fluids, based on a lubrication approximation rather than the small ratios as-

sumption. Deriving and exploring this expression was the focus of Chapter 7 where the effects

of gravity, surface tension and shear forces were singled out and examined. For a droplet with

pinned contact points and fixed volume, a combination of analytical and numerical techniques

demonstrated the influence of the surface tension coefficient in pulling the droplet into a cylin-

drical shape and minimising the length of the free surface (in a two-dimensional sense). We

also showed that gravity acts to flatten the droplet and that shear forces cause the droplet to

deform into an asymmetrical shape offset in the same direction as the external flow field. A

droplet could not satisfy the boundary conditions without the presence of surface tension (at

least in end layers close to the contact points) and a restriction on the minimum gravitational

force for which a droplet can withstand a shear force was found. In the case of no surface

tension within the core, this was shown to be ω ≥ 3L/2H2
0 for a droplet of length L and height

H0 at x = L/2. The exact nature of this restriction for the full system however appears to be

hidden within the non-linearity of the system. This method too seems promising, in particular

its ability to model liquid films. An extension to include time dependency would be the natural

next step for this problem.

Replacing the obstacle in Chapter 6 with a second fluid and applying the small ratios as-
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sumption allowed us to achieve a two-way interacting model of droplet deformation in Chapter

8 which holds for the later temporal stage. This model takes the full stress conditions (to lead-

ing order) into account and demonstrates an interface shape which grows like t, as predicted in

Chapter 4. More work is required to understand the cause of the instabilities which the results

suggested, however, the generalised nature of the algorithm, in that it can handle liquid films

or droplets of any initial shape within a boundary layer, is an exciting prospect with much

potential. Building in the effects of surface tension and gravity to the model would appear to

be possible, as would including surface roughness, humps or wells along the wall to which the

droplet is attached. These additional features would make the model directly applicable to both

aircraft icing and the treatment of aneurysms, as described in Chapter 1, along with many other

industrial and medical applications.
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