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Abstract  
 

Critical size bone defects after fracture or malignant tumour resection are still a 

challenge to repair in orthopaedics. Stem cell therapy combined with cytokines and 

bone grafts has the potential to improve outcomes. However, this application has its 

drawbacks preventing it from popular clinical use. The large number of stem cells 

required for transplantation is often a limiting factor.  

 

The goal of this thesis was to make the stem cells more effective and efficient in 

bone repair thus potentially reducing the required number of cells. In this study I 

engineered stem cells by the introduction of a gene to over express stromal cell-

derived factor-1 (SDF-1), a pivotal chemokine that has been proved to regulate cell 

migration, with the hypothesis that these cells would effectively increase the 

migration of native cells to the site of the repair, thus, enhancing bone repair. In vitro 

treatment of recombinant SDF-1 to human mesenchymal stem cells induced 

significantly greater osteogenic differentiation compared with control cells (p=0.024) 

and increased the migration of non-infected cells in a trans-well migration test 

(p=0.04). In a rat femoral bone defect model, using a low number of bone marrow 

cells, resulted in no difference in bone formation compared control defects without 

cells. Interestingly, the same number of bone marrow cells overexpressing SDF-1 

showed significantly (86% increase, p=0.02) more new bone formation within the 

gap and less bone mineral loss at the area adjacent to the defect site during the early 

bone healing stage. A greater number of donor cells transfected with SDF-1 

remained in the repair site compared with the control non-transfected site. An 

additional second cell injection of cells at 3 weeks was applied to the fracture but did 

not result in increased new bone formation but did reduce bone mineral loss at this 

time point.  

 

This thesis demonstrates that by applying stem cells transfected with SDF-1, bone 

fracture healing was improved using a low cell number, which is a non-optimal 

condition for normal stem cell transplantation. This suggests that SDF-1 transfected 

cells recruited more host’s stem cells into the fracture gap or resulted in greater 

osteogenic differentiation, preventing bone loss and increasing bone formation. 
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These findings need further investigations to reveal the mechanism of SDF-1 in bone 

healing by studying the effects of down stream signaling pathway of SDF-1, the cell 

type of the recruited cells and the angiogenesis in the defect site. 
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1.1 Bone tissue 

Bone, composed of intercellular calcified material, the bone matrix, and three cell 

types: osteocytes, osteoblasts and osteoclasts, is a highly vascularised and 

metabolically active tissue which remodels throughout its life. As well as providing 

structural support and protection for vital organs, bone provides a reservoir for 

calcium, phosphate and other ions, which can be released or stored in a controlled 

fashion to maintain a constant concentration of these important ions in body fluids. It 

also harbours the bone marrow, where blood cells are formed (Junqueira and 

Carneiro 2005).   

 

In mammals, there are four main types of bone. Above the level of the collagen fibril 

and its associated mineral, there are two distinct forms: woven bone and lamellar 

bone. Woven bone is primary and usually laid down very quickly, more than 4μm a 

day, and formed in embryonic development and in the callus that is produced during 

fracture repair. It is characterised by the variable size and random disposition of fine 

collagen fibrils. Although highly mineralized, woven bone is often quite porous at 

the micron level. Lamellar bone is more precisely arranged, and is laid down much 

slower than woven bone, less than 1μm a day. The collagen fibrils and their 

associated mineral are arranged in sheets (lamellae), and tend to be oriented in one 

direction within the lamella. The final degree of mineralization of lamellar bone is 

less than that of woven bone. Lamellar bone exists in both primary and secondary 

bone structure (Currey 2002).  

 

The third type of bone, which is primary as well, is known as plexiform, or laminar, 

or fibrolamellar bone.  It is found particularly in large mammals, whose bones have 

to grow in diameter rather quickly. The fibrolamellar bone is constructed by that an 

insubstantial scaffolding of woven bone is laid down quickly to be filled in with 

lamellar bone. The blood channels are more irregularly disposed in the laminar bone 

and surrounded by more or less concentric layers of lamellar bone. The structures 

around the blood vessels are called primary osteons (Currey 2002).  

 

The fourth type of bone is called Harversian systems (secondary osteons). In long 

bones, the external and internal surfaces are covered by layers of bone-forming cells 
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and connective tissue called the periosteum and the endosteum (Figure 1-1). The 

periosteum consists of an outer layer of collagen fibers and fibroblasts, and inner 

layers of osteoprogenitor cells. The endosteum lines all internal cavities within the 

bone and is composed of a single layer of flattened osteoprogenitor cells. Between 

the periosteum and endosteum, there are outer circumferential lamellae, Haversian 

systems, and inner circumferential lamellae. Harversian systems are composed of 

collagen fibers arranged in lamellae, which are parallel to each other or 

concentrically organized around a vascular canal containing blood vessels, nerves 

and loose connective tissue. Lacunae containing osteocytes are normally found 

between lamellae. In each lamella, collagen fibers are parallel to each other 

(Junqueira and Carneiro 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Structure of long-bone diaphysis (Junqueira and Carneiro 2005).  
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1.2 Bone fracture healing 

Bone fracture normally occurs due to trauma and other diseases, such as 

osteoporosis, and congenital deficits, and the risk of fracture generally increases with 

age. In the US, there are about 8 million bone fractures associated with 5-10% 

delayed healing or non-union; while in the UK there are about 150,000 fractures due 

to osteoporosis, with an estimated healthcare cost of £17 billion per annum (Dawson 

and Oreffo 2008; Jordan and Cooper 2002).  

 

During the repair process, the pathway of normal embryonic development is 

recapitulated with the coordinated participation of several cell types. The genetic 

mechanisms regulating fetal skeletogenesis, which include indian hedgehog (ihh) and 

core binding factor 1 (cbfa1) pathways, also regulate adult skeletal regeneration 

(Ferguson et al. 1999). It can be divided into direct (primary) and indirect 

(secondary) fracture healing (Dimitriou et al. 2005). 

 

Direct fracture healing occurs only under the stable condition of fracture with rigid 

fixation and decreased intrafragmentary strain between the two fragments (McKibbin 

1978). Under this stable fixation, bone healing can occur by direct osteonal bridging 

of the fracture line with minimal or no callus formation (Mow and Huiskes 2005). 

This process involves a direct attempt to re-establish new Haversian systems by the 

formation of discrete remodelling units, known as ‘cutting cones’, in order to restore 

mechanical continuity (McKibbin 1978). In direct osteonal healing, the bone does 

not increase its diameter through lack of periosteal callus. This limits the load-

bearing capacity of the healing bone, which consequently requires a longer period of 

protection by fracture stabilisation (Mow and Huiskes 2005). 

 

Indirect fracture healing, which occurs more frequently than direct healing, involves 

the combination of intramembranous and endochondral ossification (Dimitriou et al. 

2005). After trauma and fracture, a hematoma occurs, followed by inflammation at 

the injury site which initiates the healing process (Figure 1-2A). Hard callus 

formation starts with intramembranous bone formation at the surface of periosteum 

and endosteum, in an area remote from the fracture. This progresses towards the 

fracture until the distal and proximal callus wedges unite to achieve mechanical 



 19 

stability. Meanwhile, endochondral bone formation occurs adjacent to the periosteum 

at the fracture site, and involves the recruitment, proliferation and differentiation of 

undifferentiated mesenchymal cells into cartilage (endochondral ossification) (Figure 

1-2B). The cartilage then becomes calcified and is eventually replaced by bone. 

Newly formed bone from intramembranous and endochondral bone formation is 

initially woven bone, which has an irregular array of collagen fibers, a high mineral 

content and is replaced by lamellar bone through bone remodelling (Figure 1-2C). 

Finally, after remodelling, the shape and strength of the normal bone is reconstituted 

(Figure 1-2D) (McKibbin 1978; Dimitriou et al. 2005; Junqueira and Carneiro 2005; 

Mow and Huiskes 2005; Kraus and Kirker-Head 2006).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. Procedures of indirect fracture healing. (A) Hematoma formed to 

initiate the healing processes. (B) Hard callus forming from periosteum by 

intramembranous bone formation and soft callus forming by endochondral 

bone formation. (C) Calcified cartilage is replaced by woven bone which is 

further replace by lamellar bone through remodelling. (D) Reconstituted shape 

and strength of normal bone.  

(http://www.rci.rutgers.edu/~uzwiak/AnatPhys/APFallLect8.html). 
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1.2.1 Intramembranous bone formation 

Intramembranous ossification involves the formation of bone directly, without first 

forming cartilage, from committed osteoprogenitors and undifferentiated 

mesenchymal cells that reside in the periosteum (Einhorn 1998; Dimitriou et al. 

2005). The process begins when groups of cells differentiate into osteoblasts. 

Osteoblasts produce bone matrix and calcification follows, resulting in the 

encapsulation of some osteoblasts, which then become osteocytes (Junqueira and 

Carneiro 2005). 

  

 

1.2.2 Endochondral bone formation 

In regions that are mechanically less stable, which allow a range of intrafragmentary 

motion, for example, from 5% to 15%, and immediately adjacent to the fracture site, 

endochondral bone formation occurs. During this process, mesenchymal stem cells 

(MSCs) are recruited and subsequently differentiated into chondroblasts. These cells 

synthesize and secrete cartilage-specific matrix, including type II collagen and 

proteoglycans. The cartilage then undergoes hypertrophy and mineralisation in a 

spatially organised manner. Next, the calcified cartilaginous matrix and chondrocytes 

are removed by chondroclasts and replaced by the woven bone, which is formed by 

osteoblasts differentiated from newly recruited MSCs. The woven bone then 

undergoes remodelling and is replaced by lamellar bone (Barnes et al. 1999; 

Dimitriou et al. 2005; Junqueira and Carneiro 2005). 

 

Despite the innate capacity of bone tissue to regenerate upon damage, some 

conditions still make the augmentation of fracture repair desperately required. Such 

restrictions can include non- or delayed unions, substantial loss of bone tissue from 

trauma or tumour resection, a requirement of arthrodesis or arthroplasty, or an 

inability to heal due to disease or old age (Kraus and Kirker-Head 2006). 

 

 

1.3 What is Tissue Engineering? 

Tissue engineering, as defined by Langer and Vacanti, is “an interdisciplinary field 

of research that applies the principles of engineering and life sciences towards the 
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development of biological substitutes that restore, maintain, or improve tissue 

function” (Langer and Vacanti 1993). It is based on the understanding of tissue 

formation and regeneration and aims to induce new functional tissue by combining 

knowledge from physics, chemistry, engineering, materials science, biology, and 

medicine in an integrated manner (Laurencin et al. 1999; Salgado et al. 2004).  

 

To achieve the goal of tissue engineering, researchers face challenges associated with 

imitating nature. Biologic tissues consist of cells, extracellular matrix and signalling 

systems. There are three main elements in tissue engineering that are based on the 

three basic components of biologic tissues; they are cells, scaffolds and signals 

(Lanza et al. 2000).  

 

Cells are the starting point for any attempt to engineer a tissue or organ substitute. 

Cells can be autologous, allogeneic, or xenogeneic and each has its advantages and 

disadvantages. Autologous cells, which are cells from the patient, are considered to 

be the safest cell source for tissue engineering without the issue of immune rejection. 

However, the small number of cells which are available has limited their use. 

Allogeneic cells, which are cells from other patients, can be prepared in advance. 

This makes these cells more practical in many clinical situations, but their immune 

acceptance is the main consideration. Xenogeneic cells, which are cells from other 

species, can be prepared in advance and in large numbers, but immune acceptance 

and also animal virus transmission are concerns. In addition to the source of cells, the 

type of the cells and/or engineered cells should be considered in tissue engineering 

(Lanza et al. 2007). 

 

After selecting the cell source, a three dimensional architecture is often required. 

Scaffolds for tissue engineering have to present a surface that promotes cell 

attachment, cell growth and differentiation, and matrix synthesis and maintenance, 

while providing a porous structure for tissue ingrowth, nutrients and signal exchange 

(Smith et al. 2009). Also it has to be biocompatible and biodegradable. Thus, 

scaffolds are often designed from natural biomaterials, such as collagen (Friess 

1998), fibrin (Scotti et al. 2009), or hyaluronan (HA) (Nehrer et al. 2009), to mimic 

the natural condition of extracellular matrix (ECM) (Nöth et al. 2010). 
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During morphogenesis, the behavior of individual cells within a developing tissue is 

determined by various signals from the surrounding microenvironment. In tissue 

engineering, signals are also important for regeneration and repair. The ECM 

provides biochemical and mechanical signals that can be translocated from cell 

membrane into cytoskeleton and further into nucleus to direct the cell phenotype. On 

the other hand, cells can remodel the ECM and affect the microenvironment 

(Gjorevski and Nelson 2009). 

 

 

 1.4 Bone tissue engineering  

Bone loss in large defect from trauma, neoplasia, reconstructive surgery and 

congenital defects remains a major health problem, which promotes the need for 

bone regeneration therapies. The long-term clinical goal is to reconstruct bony tissue 

in an anatomically functional, three-dimensional morphology (Soucacos et al. 2008). 

Traditionally, bone loss related to disease or trauma has been managed with bone 

grafts. Autologous bone grafts harvested from the iliac crest are osteoinductive, 

osteoconductive and non-immunogenic and are considered as the gold standard for 

bone repair. However, due to its limited supply and the morbidity associated with 

harvesting this tissue, such as infections, hematomas, vascular and neurologic 

injuries and iliac wing fractures, then they are of limited clinical use (Arrington et al. 

1996). Donor site pain is reported in ranges of 25%-49%, with 19%-27% of patients 

experiencing chronic site pain two years post-operatively (Fernyhough et al. 1992; 

Heary et al. 2002). For these reasons, allograft bone is mainly used. However, 

allograft bone lacks the osteoinductive capacities of autograft bone and, together 

with the concerns of bone allograft shortage, contamination and immunogenicity, 

this limits its implementation for orthopaedic applications (Eastlund 2006; Dawson 

and Oreffo 2008). Thus, current approaches in bone tissue engineering focus on 

creating the right biological environment in vivo to promote bone healing. Bone 

tissue engineering has been intensely studied using combinations of the three 

elements: cells, scaffolds and signals. 
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1.4.1 Cells for bone tissue engineering 

Bone formation requires the cellular machinery to create the structural components. 

Therefore, no strategy of bone regeneration should ignore the introduction of cells 

during the bone healing process (Kraus and Kirker-Head 2006).  

 

 

1.4.1.1 Osteoblasts

As the direct bone-forming cell, osteoblasts are the most obvious choice because of 

their non-immunogenicity from biopsies taken from the patients who will receive the 

osteoblasts back after ex vivo cell expansion (autologous cells) (Kwan et al. 2008). 

These cells have a relatively limited source and a low expansion rate, thus taking 

time to achieve the number of cells required to seed on scaffolds (Salgado et al. 

2004; Heath 2000). Furthermore, studies showed that osteoblasts have a decreased 

ability to respond to osteoinductive stimuli with the aging of the patient (Erdmann et 

al. 1999; Cowan et al. 2003).  

 

The difficulties of using autologous osteoblasts lead to the thought of the use of 

allogeneic or xenogeneic cells. However, the immunogenicity of these cells, the 

possibility of the transmission of infectious agents, such as animal viruses, and 

ethical problems have limited this approach (Sprangers et al. 2008). 

 

 

1.4.1.2 Stem cells 

Stem cells are undifferentiated cells with an unlimited or prolonged self-renewal 

ability and they are able to differentiate to at least one type of highly differentiated 

descendant (Watt and Hogan 2000). Researchers have used the expression of a single 

or a combination of molecular markers to describe stem cells, however, it is very 

difficult to determine a unique pattern of expression for specific types of stem cell 

(Shostak 2006). To date, there is still no universally acceptable phenotypical 

definition for the term stem cell. Although it is hard to classify stem cells 

phenotypically, they can be classified according to their potency.  The hierarchic 

order of stem cells range from totipotency to pluri- and multi-potency, to unipotency 

(Becker and Jakse 2007). Totipotent cells, for example the cells of the morula, can 
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give rise to both embryonic and extra-embryonic tissues. Pluripotent cells have the 

ability to differentiate into all three germ layers. Multipotent cells have more 

restricted potency and are only able to differentiate into the cells of one germ line. 

Unipotent cells have the least potency.  

 

 

1.4.1.2.1 Embryonic stem (ES) cells  

Embryonic stem cells are derived from pre-implantation embryos formed during 

infertility treatment of couples for in vitro fertilization (IVF).  They are donated by 

the couples, with informed consent, for research on embryonic stem cells. Human 

embryos are usually eight cells surrounded by an acellular glycoprotein shell at three 

days in culture in vitro after insemination with sperm. At the fourth day, it is known 

as a morula  which consists of 16-32 cells in a grapelike cell cluster. By the fifth to 

sixth day, the embryo becomes a hollow ball of more than 64 cells, known as a 

blastocyst, that has an outer layer of trophectoderm cells and a cluster of around 10-

30 internalised cells, which are termed the inner cell mass (ICM) (Lanza et al. 2007). 

The first human ES cell line was formed by isolation of ICM from blastocysts using 

immunosurgery followed by culture on irradiated mouse embryonic fibroblasts as a 

feeder layer (Thomson et al. 1998). More human ES cell derivations were described 

later and involved different methods for isolation of ICM and different cell lines for 

the feeder layer (Cowan et al. 2004; Hovatta et al. 2003).  

 

Undifferentiated ES cells are characterised as being nearly unlimited self-renewing, 

immortal, and able to differentiate into cells in all three embryonic germ layers, 

which are endoderm, mesoderm and ectoderm (Brignier and Gewirtz 2010). With its 

differentiation ability, ES cells have been intensely studied for use in regenerative 

medicine for the treatment of certain diseases, such as Parkinson’s disease, diabetes, 

heart disease (Fricker-Gates and Gates 2010; Calne et al. 2010; Iacobas et al. 2010).   

 

Embryonic stem cells have the ability to differentiate into all three embryonic germ 

layers and are described as pluripotent. During the in vitro culture, when human ES 

cells are permitted to overgrow in two-dimensional culture, cells begin to pile up and 

undergo spontaneous differentiation (Sathananthan et al. 2002). A wide range of 
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differentiating cell types form and all three embryonic germ layers can be found in 

these flat cultures (Conley et al. 2004; Reubinoff et al. 2000; Sathananthan and 

Trounson 2005). In addition to the spontaneous differentiation, ES cells can undergo 

specific differentiation by exposure to selected growth factors, or by co-culture of ES 

cells with cell types capable of lineage induction (Lanza et al. 2007). 

 

In bone tissue engineering, because ES cells can be expanded and manipulated in 

vitro with relative ease, they are an ideal cell source for bone repair (Waese et al. 

2008). ES cells can differentiate into osteogenic cells when cultured in the presence 

of serum and dexamethasone, ascorbic acid and -glycerophosphate, or co-cultured 

with primary bone-derived cells (Ahn et al. 2006; Maniatopoulos et al. 1988; Buttery 

et al. 2001). However, there are many issues that need to be resolved before they can 

be applied clinically. One issue is the culture conditions used for maintaining the 

undifferentiated ES cells, which is usually on mouse embryonic fibroblast (MEF) 

feeder layer culture with medium that contains non-human serum. These non-human 

components may be a source of contamination for foreign proteins and increase the 

risk of transmitting infectious disease (Waese et al. 2008). To overcome this issue, 

human fibroblasts can be used to replace the MEF, and a serum free culture 

condition has been developed from recombinant serum components (Richards et al. 

2002; Ludwig et al. 2006). 

 

Ironically another issue limiting the use of ES cells in clinical treatment is their 

dominant differentiation ability. With their pluripotency, ES cells have been shown 

to form teratomas, tumour containing tissues from the three primary germ layers, in 

vivo after injection in an immune-compromised animal 

(http://stemcells.nih.gov/info/basics/basics3.asp). This teratoma can be formed mainly by the 

differentiated ES cells and has interactions with the host tissue through the 

developing blood vessels (Gertow et al. 2004). Thus, the understanding of how to 

control the in vivo cell behavior of ES cells, and that the ES cell-derived cell type is 

free of undifferentiated cells are of paramount importance for potential clinical 

applications (Waese et al. 2008).  
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Apart from the scientific hurdles, human ES cells have also drawn much attention 

from many sectors of the public. Wide ranging debates and points of view among 

religious, historical, cultural and medical groups have arisen over the development of 

ES cell research (Leist et al. 2008). One of the issues is the definition of pregnancy. 

Some believe that life begins with fertilisation of the ovum, and the destruction of an 

embryo is thought to be tantamount to infanticide. On the other hand, proponents 

insist the potential benefit to humankind from this research can mitigate the concerns 

and argue that ES cells are made from unwanted fertilised ovum that will be 

destroyed in any event (Leist et al. 2008).  

 

The scientific and ethical issues associated with the ES cells means that there is 

considerable work still required if these cells are going to be used clinically to bridge 

the bench to the bed.  

1.4.1.2.2 Mesenchymal stem cells (MSCs) 

An ideal cell source for tissue engineering should fulfill the criteria, including 

availability, easy access to the source cells, capacity for extensive self-renewal or 

expansion to generate sufficient quantity, capacity to differentiate into cell lineages 

of interest, and lack of or minimal immunogenic or tumorigenic ability (Lanza et al. 

2007). Because of the issues associated with the use of ES cells that researchers need 

to address before for their clinical application, MSCs have become an alternative cell 

source in regenerative medicine with multipotent differentiation capacity and less 

ethical issues.   

 

Historical development of MSCs 

Since the 1950s, the finding that the injection of bone marrow cells into irradiated 

animals could prevent hematological insufficiency (Lorenz et al. 1951) led to many 

studies, which developed therapeutic bone marrow transplantation. However, these 

experiments demonstrated that bone marrow contained regenerative cells for the 

hematopoietic system, but did not address the source of cells for connective tissue 

regeneration. Other experiments involving the transplantation of whole bone marrow 

to ectopic sites demonstrated the osteogenic potential of cells from bone marrow 
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(Urist and McLean 1952; Tavassoli and Crosby 1968). Alexander Friedenstein and 

colleagues then isolated cells characterised as fibroblast colony-forming cells 

(FCFC) that were responsible for the osteogenic response from the bone marrow of 

guinea pig (Friedenstein et al. 1970). In the 1980s, Castro-Malaspina et al. isolated 

FCFC from human bone marrow and characterised their in vitro characteristics as 

having strong adherence properties and distinguished these cells from macrophages 

and endothelial cells (Castro-Malaspina et al. 1980). These cell characteristics 

substantiated the human bone marrow fibroblasts, also called colony forming units-

fibroblastic (CFU-F), from many of the similar findings of cells from guinea pig 

bone marrow. Following numerous studies, the term mesenchymal stem cell was first 

used by Arnold Caplan (Caplan 1991). About 1 in 100,000 nucleated cells in bone 

marrow are MSCs (Cui et al. 2007; Mirabet et al. 2008). This low number of MSCs 

in bone marrow means that cells have to be isolated and expanded in number  to be 

used for any treatment  and this requires considerable time in cell culture.   

 

Identification of MSCs 

Although there is no one single marker or a combination of markers that is unique 

and exclusive to MSCs, experimentally, MSCs express a number of surface markers, 

including STRO-1, SB-10, SH2, SH3, Thy-1 (CD90), transforming growth factor-  

(TGF- ) receptor type 3 endoglin (CD105), hyaluronic acid receptor (CD44), 

integrin 1 subunit (CD29), CD133, and activated leukocyte-cell adhesion molecules 

(ALCAM, CD166). MSCs are negative for hematopoietic markers, CD34, CD45, 

and CD14 (Table 1-1) (Baksh et al. 2004; Gregory et al. 2005).  
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Antigens positive for MSCs 

Name  Description 

STRO-1 Surface marker for immature mesenchymal cells. 

SH2 Src Homology 2 domain, a structurally conserved protein domain 

contained within many intracellular signal-transducing proteins. 

SH3 Src Homology 3 domain, a conserved sequence in several protein 

families such as PI3 Kinase and Ras GTPase activating protein. 

CD29 Receptor for vascular cell adhesion molecule-1 (VCAM-1). 

CD44 Cell surface marker involved in binding of hyaluronic acid and 

cell adhesion. 

CD90 Cell surface protein expressed in hematopoietic stem cells, MSCs 

and neurons. 

CD105 Receptor responses to TGF- 1. 

CD133 Targeted to membrane protrusions on stem cells. Function 

currently unknown. 

CD166 Cell surface marker involved in cell adhesion. 

  

Antigens negative for MSCs 

Name  Description 

CD14 Receptor for lipopolysaccharide. 

CD34 Hematopoietic stem cell marker involved in cell adhesion. 

CD45 Tyrosine phosphatase. 

Table 1-1. Antigen expression of MSCs (Baksh et al. 2004; Gregory et al. 2005). 

 

To fulfill the two major functional definitions of stem cells, MSCs can be expanded 

many fold and retain their ability to differentiate. Karyotyping of passage 12 MSCs 

that have undergone about 30 population doublings, found no chromosomal 

aberrations (Pittenger et al. 1999). Furthermore, MSCs, described as multipotent, 

have shown the capacity to differentiate into several mesenchymal lineages such as 

cartilage, bone, fat, muscle, tendon, and hematopoietic supporting marrow stroma 

(Caplan 1991; Prockop 1997; Pittenger et al. 1999). Moreover, studies showed that 

MSCs also have endodermic and neuroectodermic differentiation potential (Figure 1-

3) (Kopen et al. 1999; Petersen et al. 1999; Uccelli et al. 2008).  
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Figure 1-3. The multipotency of MSCs. MSCs has the ability to self-renew and 

differentiate towards the mesodermal lineage (solid arrows). MSCs have also 

been reported that they can transdifferentiate into other lineages (ectoderm and 

endoderm) (dashed arrows)  (Uccelli et al. 2008). 

 

Cell source and heterogeneity of MSCs 

Bone marrow is the most studied cell source of MSCs. Although bone marrow is 

relatively easily accessible, the potential donor site morbidity, pain and low 

incidence have prompted researchers to find alternative sources. MSCs have been 

isolated from different tissues including adipose, muscle, periosteum, synovium, 

immobilised peripheral blood, cord blood, and placenta (Baksh et al. 2004; Gregory 

et al. 2005; Tuan et al. 2003). However, MSCs from different tissues show a similar 

phenotypic characteristic and it is not clear if these are the same MSCs. Studies have 

shown different chondrogenic and osteogenic differentiation potentials in MSCs 
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isolated from bone marrow, synovium, periosteum, muscle, and adipose tissue 

(Sakaguchi et al. 2005). Therefore, it is important to understand the ability of each 

tissue derived MSCs for specific cell differentiation in order to obtain the best cell 

source strategy in further research.  

 

Not only do MSCs isolated from different tissues express different properties, 

individual colonies derived from single MSC exhibit a heterogeneous nature in cell 

proliferation and differentiation potentials. Gronthos et al. reported that only a minor 

proportion of colonies derived from adult human bone marrow continued to grow 

beyond 20 population doublings, while the larger number of the colonies exhibited 

early senescence  (Gronthos et al. 2003). Even derived from a single colony, 

Kuznetsov et al. demonstrated that only 58.8% of the MSCs could form bone when 

seeded on hydroxyapaptite-tricalcium phosphate ceramic scaffolds after being 

implanted into immunodeficient mice (Kuznetsov et al. 1997).  With this 

heterogenous nature of MSCs, it is challenging to select the most potent cells for 

clinical application in tissue regeneration.  

 

Immunosuppression and immunomodulation of MSCs  

From a tissue engineering’s point of view, it is always an advantage if a suitable cell 

source is available during the early treatment of wound or trauma. Autologous MSCs 

have the advantage in regenerative medicine because of their multipotent 

differentiation capacity. However, the rarity of MSCs and the reduction of the 

quantity as well as the quality of MSCs with age and disease make it more feasible to 

consider using allogeneic MSCs for repairing damaged tissue (Lanza et al. 2007). 

The first concern in using allogeneic MSCs is the immune-compatibility. Allogeneic 

cells are normally detected and deleted by the host immune system. Surprisingly, 

MSCs have shown suppressing and modulatory effects on host immune response.  

 

Innately, MSCs express low to intermediate major histocompatibility complex 

(MHC) class I molecules, and do not express MHC class II molecules on the cell 

surface (Götherström et al. 2004; Le Blanc et al. 2003). The expression of MHC 

class I molecules helps to protect MSCs from deletion by natural killer cells. The 

lack of surface MHC class II expression enables the MSCs to escape recognition by 
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alloreactive CD4
+
 T-cells. Apart from the pattern of surface molecule expression, 

MSCs have been shown to alter the immune system in two mechanisms by 1) cell-

cell interaction with immune cells and 2) secreting soluble factors to create a local 

immunosuppressive environment (Lanza et al. 2007).  

 

Under co-culture conditions, MSCs suppress T-cell proliferation and activation. This 

inhibition exists even when proliferation-inducing stimulants are present 

(Bartholomew et al. 2002; Di Nicola et al. 2002; Tse et al. 2003). In addition, MSCs 

can affect the differentiation and maturation of dendritic cells (Beyth et al. 2005; 

Zhang et al. 2004) and also alter the phenotype and suppress the proliferation, 

cytokine secretion and cytotoxicity of natural killer cells (Sotiropoulou et al. 2006). 

MSCs have also been shown to secrete factors such as hepatocyte growth factor 

(HGF), TGF- 1, IL-10, and prostaglandin E2, which affect immune cells (Aggarwal 

and Pittenger 2005; Di Nicola et al. 2002). HGF and TGF- 1 are thought to be 

related to the inhibition of T-cell proliferation (Di Nicola et al. 2002), while the IL-

10 is a cytokine for regulatory T-cells and can suppress inflammatory immune 

response (Aggarwal and Pittenger 2005). 

Due to their immunosuppresive and immunomodulatory properties, MSCs have been 

considered a potential cell source applied in vivo to prevent rejection and to promote 

transplant and patient survival.  However, recent studies have reported the possibility 

that MSCs induce an immune response in specific conditions (Natuta et al. 2006). 

Thus, before allogeneic MSCs can be applied in clinical treatments, it is necessary to 

better understand the biology and mechanism of their immunomodulation effect.   

 

MSCs in bone tissue engineering 

Under some circumstances bone fracture can be healed by applying autogenous bone 

or osteoconductive bone graft substitutes such as collagen composites and various 

ceramics, but these applications are not effective in critical-sized defects, which is a 

more challenging healing environment (Boden 2005). Numerous studies in animal 

models of critical-sized fracture healing have reported that applying MSCs with 

various kinds of delivery vehicles will improve or complete bone healing (Niemeyer 
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et al. 2010; Zhang et al. 2010). Clinical trials using autogenous bone marrow-derived 

MSCs seeded on a macroporous hydroxyapatite scaffold have been reported (Quarto 

et al. 2001) in patients with a defect size from 4 to 7cm in long bones. These defects 

were treated with autologous MSCs, which were isolated from bone marrow and 

expanded ex vivo. The results showed abundant callus and good integration at the 

interface with host bone in the second month after the surgery. It also reduced the 

healing period compared with the traditional treatment of bone defects with bone 

graft. A good integration of the implants was maintained after 6-7 years reported by 

the follow-up study (Marcacci et al. 2007).  

 

Apart from bone fracture healing, MSCs are also considered as a potential source for 

cell-based therapy for metabolic bone diseases (Undale et al. 2009). Osteogenesis 

impertecta (OI) is a genetic disorder characterised by defective type I collagen, 

which leads to osteopenia, multiple fracture, severe bone deformity and shortened 

stature (Undale et al. 2009). Horwitz et al. used allogeneic bone marrow-derived 

MSCs to treat six children with severe OI (Horwitz et al. 2002). Patients received 

two infusions of the allogeneic MSCs, and five of the six patients showed 

engraftment in one or more site, including bone, skin and marrow stroma, between 4 

and 6weeks after the second infusion. An acceleration of growth velocity during the 

first 6 months post infusion was also observed.  

 

With their innate regeneration potential and immunosuppressive features, MSCs 

show great potential in bone tissue engineering. Due to the low cell number when 

isolated from bone marrow, MSCs have to be expanded in long-term culture in order 

to acquire the appropriate cell numbers, which normally 5x10
6
 to 10x10

6
/cm

3
 of cells 

are applied (Kruyt et al. 2008). These culture conditions often use animal products 

such as serum and the potential risk of these conditions needs to be investigated, as 

well as the incidence of tumourogenesis associated with long term culture of MSCs 

(Undale et al. 2009).   
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1.4.2 Scaffolds for bone tissue engineering 

Two-dimensional tissue culture is the most popular technique to investigate cellular 

differentiation and extracellular matrix (ECM) deposition. It is now thought that this 

approach cannot perfectly reflect the situations and the interactions between cells and 

the environment in vivo, which strongly depends on the 3-dimensional environment 

in which the cells are organised (Tortelli and Cancedda 2009). Thus, scaffolds with 

3-dimensional structure are important for tissue engineering to mimic the real 

environment in the body. The essential properties for scaffolds in bone tissue 

engineering include biocompatibility, porosity, pore size, surface properties, 

osteoinductivity, mechanical properties, and biodegradability (Salgado et al. 2004).  

 

In bone, intimate interactions between osteogenic cells and ECM have been revealed 

in bone mineral maintenance and responses to various stimuli (Gjorevski and Nelson 

2009). The importance of ECM in bone led to the development of a large number of 

different types of scaffolds such as natural polymeric materials and synthetic 

polymers (Tortelli and Cancedda 2009).   

 

The advantage of natural biomaterials in bone tissue engineering is the ability to 

mimic the composition of native ECM, which provides proper biocompatibility and 

biodegradability and also facilitates cell adherence, migration, and differentiation 

(Nöth et al. 2010). Natural biomaterials such as collagen are normally more 

osteoinductive and more osteoconductive than man-made materials.  

Osteoinductivity is defined as the ability of a material or compound to induce 

osteogenesis from undifferentiated stem or progenitor cells, whilst osteoconductivity 

means that a material enhances new bone formation over the surface (Albrektsson 

and Johansson 2001). Collagen composes 30% of all vertebrate body protein and 13 

different types occur naturally. In tendon and bone, more than 90% of the 

extracellular proteins consist of collagen with a predominant proportion of type I 

collagen (Friess 1998). As used in tissue engineering, type I collagen shows good 

biocompatibility, minimal potential for antigenicity and high porosity, which gives 

space for neohistogenesis (Glowacki and Mizuno 2008). It is also osteoinductive 

(Mizuno et al. 1997). Type I collagen has been intensively investigated as a scaffold 

material and can be applied in many different forms including membranes, sponges, 
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fleeces and hydrogels (Nöth et al. 2010). With its osteoinductive property, type I 

collagen has been studied in augmentation of new bone formation (Shimoji et al. 

2009; Reichert et al. 2009).  

 

Ceramics, such as synthetic hydroxyapatite (HA), -tricalcium phosphate ( -TCP), 

and calcium phosphate, are made from an inorganic, non-metallic material that can 

form a crystalline structure (Nöth et al. 2010; Salgado et al. 2004). They are 

normally osteoinductive and osteoconductive, and have been considered for bone 

tissue engineering applications (Quarto et al. 2001; Dong et al. 2002). However, they 

have some drawbacks due to their brittle property, which provides a low mechanical 

stability. Their degradation is difficult to predict in vivo, which could compromise 

the mechanical stability. Also, if these scaffolds are degraded too quickly, an 

increased concentration of Ca and P could damage cells (Salgado et al. 2004).  

 

 

1.4.3 Signals in bone tissue engineering  

Fracture repair is performed by cellular actions, which are regulated by several 

growth factors including transforming growth factor-  (TGF- ), platelet derived 

growth factor (PDGF), insulin-like growth factor-1 (IGF-1) and bone morphogenetic 

protein (BMP). Among these growth factors, BMPs have been considered as the 

most potent regulators of osteogenic differentiation (Kwong and Harris 2008).  

 

BMP was discovered by Urist in 1965. New bone formation was found in the 

intramuscular implantations of hydrochloric acid decalcified bone matrix, which led 

to the identification of BMP in bone matrix (Urist 1965). To date, more than 16 

different human BMPs have been identified (Wozney and Rosen 1998). BMPs are 

members of the TGF-  superfamily and are identified by their ability to induce 

ectopic bone formation in adult animals (Canalis 2009). BMP-2, -4, -7 and -9 are 

considered as the most potent osteoblastic differentiation inducers for stem or 

precursor cells (Haidar et al. 2009).  

 

BMPs bind to two types of serine-threonine kinase receptors, type I and type II. Both 

type I and type II receptors are required for signal transduction. During the signal 
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transduction, BMPs bind to heterotetrameric complex of the type I and type II 

receptors, followed by the transphosphorylation of the type I receptor. The 

phosphorylated type I receptor can further phosphorylate receptor-regulated Smads 

(R-Smads), which exist in the cytoplasm through interaction with membrane 

anchoring protein. For example, Endofin and CD 44. R-Smads form complex with 

common-partner Smad (co-Smad), Smad-4, and translocate into the nucleus and 

regulate the target genes expression by interaction with transcription factors and 

transcriptional coactivators (Miyazono et al. 2010) (Figure 1-4). These target genes 

includes the runt-related transcription factor-2/core-binding factor-1 (Runx-2/Cbfa-

1), which plays a critical role in the differentiation of cells toward an osteoblastic 

pathway (Lee et al. 2000; Banerjee et al. 2001; Canalis et al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4. BMPs signaling pathway. BMPs bind to two types of receptor 

followed by the transphosphorylation of the type I receptor. The 

phosphorylated type I receptor can further phosphorylate R-Smad to form 

complex with co-Smad and translocate into the nucleus and regulate the target 

genes expression by interaction with transcription factors and transcriptional 

coactivators (Miyazono et al. 2010). 
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BMPs induce the differentiation of stem cells to osteoblastic lineages, and by 

enhancing the osteoblastogenesis, it also induces the osteoclastogenesis, which 

indicates a role of BMPs in bone remodelling (Canalis et al. 2003; Canalis 2009; 

Kaneko et al. 2000). BMP signalling has important functions throughout life. Mice 

embryos deficient in BMP-2 and 4 are non-viable (Zhang and Bradley 1996; Winnier 

et al. 1995). Naturally occurring mutations of BMPs also reflect the important 

functions of BMPs by resulting in a wide range of musculoskeletal disorders (Chen 

et al. 2004). In postnatal bone formation, blocking of BMP signals by expression of 

truncated type II receptor transgene led to a decrease in bone mineral density, bone 

volume, and dynamic bone formation rates (Zhao et al. 2002).  

 

Because of their osteoinductive property, BMPs have been intensely studied for 

therapeutic utilisation. Animal experiments in rats, rabbits, dogs, and sheep showed 

that applications of recombinant BMPs, especially BMP-2 and BMP-7, can promote 

or attain union in large segmental defect models, which would fail to heal in the 

absence of exogenous BMPs (Barnes et al. 1999; Yasko et al. 1992; Murakami et al. 

2002; Cook et al. 1994; Gerhart et al. 1993). Implantation of MSCs, infected by 

adenovirus carrying BMP-2 gene, showed bone healing in the defect site (Chang et 

al. 2003). Multiple clinical trials in trauma surgery have demonstrated that BMP-2 

and BMP-7 are safe and effective in the treatment of fracture (Ghodadra and Singh 

2008; White et al. 2007). BMP-2 and BMP-7 are approved by the Food and Drug 

Administration (FDA), US, for clinical use under certain circumstances (Axelrad and 

Einhorn 2009).  

 

 

1.4.4 Strategic genetic modification – Gene therapy 

To study the biological functions of a particular signal in vivo, the most common 

strategies are either to amplify the signal or to block the signal. These phenomena 

can be achieved by transferring genetic information, normally in the form of DNA, 

into the nucleus to modify the cell phenotype (Lanza et al. 2007).  This same 

mechanism   can be used to enhance the production of proteins or other factors from 

cells to treat diseases and is referred to as gene therapy (Verma and Weitzman 2005). 

The key to successful gene therapy is the gene delivery system, which has to be safe, 
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without causing any associated pathogenic effects, efficient, capable of transfering 

genes in a variety of tissues and easy to prepare (Verma and Weitzman 2005).  

 

The vehicles that encapsulate therapeutic genes for delivery are called vectors. 

Vectors can be categorised in non-viral and viral vectors, which will be discussed in 

chapter 3 of this thesis. The vector, with its gene cargo, can be administrated ex vivo 

or in vivo. The ex vivo strategy is performed by transferring the vectors to the 

targeted cells in vitro and returning the genetically modified cells to the patient.   In 

gene therapy, the transferred cell population can be well defined with controllable 

and predictable transfer efficiency. This is the most suitable strategy for stem cell 

gene therapy (Lanza et al. 2007). 

 

The in vivo strategy administers the vector directly to the target organ or via the 

vascular system into vessels feeding that organ (Lanza et al. 2007). This strategy can 

avoid the tedious in vitro processes, such as harvesting cells form the patient, in vitro 

cell culture and returning the genetic modified cells to the patient. Challenges of this 

strategy includes the induction of immune responses caused by the vector and the 

uncertain transfer efficiency of the target cell/organ (Lanza et al. 2007). 

 

Gene therapy for bone healing has been reported. Use of BMP-2, BMP-4 and BMP-

7, with non-viral and viral vectors via ex vivo or in vivo delivery strategies, has given 

convincing results in small-animal models (Evans 2010). Although gene therapy has 

the potential to improve recovery in many diseases, a few failed clinical trails have 

been reported, which caused death of the patient due to the severe immune responses 

(Wilson 2009). Before it can be applied in clinical trials, reliable methods and 

detailed pharmacological and toxicological studies need to be carried out (Evans 

2010). 

 

 

1.5 Chemokines in cell recruitment — stromal cell-derived factor-1   

Both organogenesis during development and tissue regeneration in tissue repairing 

mainly rely on the cellular activity and responses of cells to the extracellular stimuli. 

Cellular movement and localisation are among the crucial events, which are strongly 
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regulated by chemokines.  Chemokines are a group of small proteins (8-14 kDa) 

characterised as being able to direct the movement of receptor-presenting cells 

towards higher concentrations of the chemokine in the environment (Luster 1998), 

which is termed chemotaxis. This property is shared by practically all members of 

the chemokine super-family. Depending on the presence and the position of 

conserved cysteine residues, chemokines are categorised into four subgroups: C, CC, 

CXC, and CX3C (X can be replaced by any amino acid). The chemokines interact 

with G-protein-coupled seven-transmembrane receptors (DeVries et al. 2006). 

Among the chemokines, stromal cell-derived factor-1 (SDF-1, also named CXCL12), 

and its receptor CXCR4 have been found to play crucial roles in a wide range of 

development processes and tissue repair.   

 

In bone marrow, SDF-1 is constitutively expressed by endothelial and endosteal bone 

lining stromal cells and osteoblasts (Imai et al. 1999; Peled et al. 1999a; Jung et al. 

2006). The amino acid sequence of SDF-1 is highly conserved during evolution and 

SDF-1 is cross-reactive between humans and mice (Peled et al. 1999b). This feature 

indicates its biological importance.  

 

 

1.5.1 Controlled cell migration in development 

The in vivo chemotactic effects of chemokines were first found in the immune 

system by investigating the accumulation of lymphocytes at sites of immune and 

inflammatory reactions (Baggiolini 1998). A simple example of chemokine-guided 

single-cell migration is the migration of the primordial germ cell (PGC). In 

Zebrafish, the CXCR4-expressing PGCs will arrive at the target location where 

expression of SDF-1 occurs and the gonad develops in an SDF-1/CXCR4 regulated 

manner (Doitsidou et al. 2002). This SDF-1/CXCR4 regulated PGCs migration is 

also found in other organisms, including mouse and chick (Molyneaux et al. 2003; 

Stebler et al. 2004). 

 

In zebrafish embryonic development, SDF-1/CXCR4 interaction plays a role in the 

co-ordinated movement between mesodermal and endodermal layers, which controls 

the proper location and morphology of the tissues and organs that develop from these 
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germ layers (Raz and Mahabaleshwar 2009). In the absence of SDF-1/CXCR4 

signalling, severe failure in endodermal organ development occurs, including defects 

in the pancreas, liver and intestine duplications (Nair and Schilling 2008).   

 

This SDF-1/CXCR4 regulated cell migration is also revealed in the development of 

the nervous system (Tiveron and Cremer 2008). In the developing cortex, SDF-1 

expression has been described in meninges, which is constant during the entire 

corticogenic process, and in the sub-ventricular zone, which is highly dynamic in a 

spatiotemporal pattern (Tiveron and Cremer 2008). Two cell populations during 

corticogenesis, Cajal-Retzius (CR) cells and GABAergic interneurons, are also a 

demonstration of CXCR4 expression throughout the cell migration (Borrell and 

Marín  2006; Stumm et al. 2003). It has been shown that SDF-1/CXCR4 interaction 

plays a crucial part in the tangential migration of these cells during corticogenesis 

(Borrell and Marín  2006; Tiveron and Cremer 2006), and interruption of the SDF-

1/CXCR4 signalling leads to striking changes in the distribution of inter-neurons (Li 

et al. 2008). 

 

Apart from guided cell migration, SDF-1/CXCR4 interaction is also involved in the 

maintenance of cells in specific regions of the brain. During cerebellar development, 

SDF-1/ CXCR4 knock out mice showed a premature migration of granule cells from 

the external granular layer (EGL, an external cell layer of the cerebellum) into more 

internal layers of the cerebellum (Ma et al. 1998). This phenomenon has been further 

analysed and it has been shown that the SDF-1 produced by the meningeal cells, 

located at external parts of the cerebellum, acts as an attractant to anchor the granule 

cells close to the brain surface, preventing early premature migration. In later 

development (postnatal), these cells migrate away from the EGL and this is 

correlated with the loss of CXCR4 expression from the surface (Reiss et al. 2002; 

Zhu et al. 2002). This anchoring role of SDF-1/CXCR4 interaction is also 

demonstrated in the CR cell migration during corticogenesis. A chemical inhibition 

of CXCR4 after the tangential migration of CR cells led to a substantial displacement 

of the cells towards the deeper cortical layers (Paredes et al. 2006).  
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1.5.2 Controlled stem cells maintenance and mobilisation in adult life 

In addition to development, SDF-1/CXCR4 interaction plays important roles in 

adulthood. Apart from bone marrow, SDF-1 expression is also found in the heart, 

skeletal muscle, liver, brain, and kidney parenchymal cells playing roles related to 

cell recruitment and maintenance (Askari et al. 2003; Ratajczak et al. 2003; Kollet et 

al. 2003, Tachibana et al. 1998; Schrader et al. 2002). In bone marrow, reciprocal 

interactions between hematopoietic cells and stromal cells have been widely studied. 

SDF-1/CXCR4 interaction has been involved in the homing, retention, and 

mobilisation of hematopoietic stem cells (HSCs) (Dar et al. 2006). Over-expression 

of CXCR4 in human hematopoietic progenitors resulted in increased homing and 

engraftment in murine bone marrow and spleen by the chemoattractive interaction of 

SDF-1/CXCR4 (Kahn et al. 2004). Inhibition of SDF-1 or CXCR4 by the use of 

antibodies led to a significant reduction of human CD34+ cells engraftment in 

murine bone marrow (Peled et al. 1999b; Kollet et al. 2001). These studies 

demonstrate the important role of SDF-1/CXCR4 interaction in stem cell homing. 

 

SDF-1/CXCR4 interaction is also important for the retention of stem cells in bone 

marrow. Normally most HSCs were found in contact with SDF-1 highly expressing 

cells located near the endosteum. However, an inducible deletion of CXCR4 in a 

mouse model resulted in severe reduction of HSC numbers in bone marrow, and 

increased HSC number in the blood stream (Sugiyama et al. 2006). This stem cell 

maintaining property of SDF-1/CXCR4 interaction is further utilised for therapeutic 

purposes. Drug AMD3100 is a CXCR4 antagonist which selectively blocks the 

binding of SDF-1 to CXCR4 and is used to mobilise the HSCs from bone marrow 

into the peripheral blood in order to collect HSCs for transplantation. This method 

will also lead to an increased number of MSCs in peripheral blood too. (Miller et al. 

2008; Pusic and Dipersio 2010).  

 

Accumulating evidence shows that SDF-1/CXCR4 interaction plays an important 

role in granulocyte colony-stimulating factor (G-CSF)-induced HSC mobilisation, 

which is normally used together with AMD3100 in the collection of HSCs for 

clinical use (Pusic and Dipersio 2010). Five day consecutive daily treatment of G-

CSF resulted in a severely reduced SDF-1 protein level in bone marrow (Petit et al. 
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2002), which could be attributed to the increased secretion of proteolytic enzymes 

that cleaved SDF-1 protein or to the sharply reduced SDF-1 mRNA expression in 

osteoblasts, the major source of SDF-1 in bone marrow (Petit et al. 2002; Semerad et 

al. 2005; Nervi et al. 2006). This reduced protein level of SDF-1 in bone marrow, 

together with the normal SDF-1 level found in the peripheral blood (Petit et al. 

2002), resulted in a gradient of SDF-1 concentration between the bone marrow and 

peripheral blood and mobilised the HSCs towards the peripheral circulation. This 

HSC mobilisation caused by the imbalance of SDF-1 concentration between the bone 

marrow and circulation, can be also achieved by enhancing the SDF-1 level in the 

circulation by intravenous injection of an adenoviral vector expressing SDF-1 

(Hattori et al. 2001).  

 

In addition to HSCs in bone marrow, other types of stem cell were isolated from 

bone marrow including MSCs, tissue committed stem cells (TCSC) and side 

population (SP) cells (Kucia et al. 2005; Challen and Little 2006). Bone marrow 

derived MSCs have demonstrated the expression of CXCR4 and the ability to 

respond to the chemotaxis of SDF-1 (Sordi et al. 2005).  Also, it is well known that 

stem cells are retained in many adult tissues, where the microenvironment is called 

stem cell niche, and can be expanded in order to cope with stressful situations such 

as damage or infection (Miller et al. 2008). The maintenance and migration of these 

stem cells in non-hematopoietic niche may also be regulated in a similar SDF-

1/CXCR4 chemotaxis manner. So, for example, the niche of stellate cells within rat 

liver is composed of sinusoidal endothelial cells, which release SDF-1 to attract 

stellate cells via CXCR4 (Sawitza et al. 2009).  

 

 

1.5.3 SDF-1 controlled stem cells migration responses to injury  

During injury and tissue repair, migration of the repairing cells from the surrounding 

and remote locations plays an important role in the process. Studies have reported 

that this cell migration can be initiated by chemokines and receptor interactions (Fox 

et al. 2007). An increased secretion of SDF-1 protein at the wound site is found 

following many different kinds of tissue damage, which forms an immediate gradient 

of SDF-1 concentration between the injured site and the peripheral area (Wang et al. 
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2006). For example, an increased protein level of SDF-1 in rat liver was found 24 

hours after sub-lethal irradiation, which led to increased HSCs migration to the liver. 

This phenomenon was diminished by neutralising anti-CXCR4 antibodies (Kollet et 

al. 2003; Dalakas et al. 2005). Similar findings were also reported in injuries in the 

heart (myocardial infarction), retina, brain, and in vascular repair. By an enhanced 

SDF-1 level, improved cell migration, including myoblasts, MSCs or endothelial 

progenitor cells, towards the injured sites was demonstrated (Askari et al. 2003; 

Abbott et al. 2004; Lai et al. 2008; Ji et al. 2004; Stellos and Gawaz 2007). 

 

One major difference between initiation of bone formation in developmental 

skeletogenesis and in regenerative skeletogenesis is the significant role of 

inflammation in the healing process (Sundelacruz and Kaplan 2009). Kitaori et al. 

recently reported the importance of SDF-1/CXCR4 interaction in fracture healing. In 

a murine femoral defect model with autologous bone graft, increased expression of 

SDF-1 mRNA and protein were found in periosteum two days postoperatively. 

Intravenous injection of pre-labelled bone marrow stromal cells demonstrated the 

cell migration towards the fracture site was regulated by SDF-1/CXCR4 interaction, 

while the cell migration was significantly reduced when CXCR4 antagonist was 

applied (TF14016). New bone formation was also reduced after treatment with SDF-

1 neutralising antibody or TF14016 (Kitaori et al. 2009).  These results indicate the 

crucial role of SDF-1/CXCR4 interaction in fracture healing by the recruitment of 

MSCs to the fracture site. 

 

 

1.6 Study design  

Presently, autologous stem cells are the recommended source for stem cell therapy in 

tissue engineering. An adequate number of cells is an important factor. However, it is 

often difficult to derive the required number of cells in a short period of time, 

especially when large defects are to be treated. For example, critical-sized bone 

defect healing is still a challenge in orthopaedics. Long-term ex vivo expansion of 

stem cells is time consuming, and timing for applying cells in the therapeutic process 

may be crucial. Increased culture time also raises the risk of contamination and 

mutagenesis. Therefore, in this thesis, I focus on increasing the efficiency of MSCs 
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used in bone tissue engineering by utilising SDF-1, which due to its stem cell 

recruiting property may compliment the cells which have been introduced from the 

recipient’s stem cell pool.  

 

Before applying SDF-1 in bone tissue engineering, an understanding of the effect of 

SDF-1 in stem cell osteogenic differentiation is necessary. In chapter 2, I 

demonstrate the role of SDF-1 in stem cell osteogenic differentiation in vitro. Before 

the in vivo study, the establishment of functionally SDF-1 over-expressing rat bone 

marrow cells is described in chapter 3. Chapter 4 then assesses the bone healing 

effect of these SDF-1 over-expressing cells in a rat femoral defect model with a 

relatively low cell number applied. Chapter 5 investigates the effect of double 

injection of the SDF-1 over-expressing cells in bone fracture healing.  

 

 

Aim 

The aim of this study is to improve fracture healing by using a small number of cells, 

which enhances the local SDF-1 protein level in the fracture site. 

 

 

General hypothesis 

The hypothesis of this thesis is that bone healing will be enhanced by 

transplanting low amount of SDF-1 overexpressing bone marrow cells, which 

would not be achieved by the same amount of normal bone marrow cells.   
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Chapter Two 

Enhanced Osteoblastic Differentiation by Stromal 

Cell-Derived Factor-1 in Human Mesenchymal Stem 

Cells 
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2.1 INRODUCTION 

By studying the mechanism of cell migration during embryonic development, the 

interaction between SDF-1 and CXCR4 has been implicated in many developmental 

procedures. Abnormal phenotypes have been observed in the SDF-1/CXCR4 gene 

deletion models, of which all can be explained by abnormal cell migration during 

development (Miller et al. 2008). It has been also reported that SDF-1 and CXCR4 

play roles in stem cell homing and are related to short-term and long-term 

engraftments of stem cells (Lapiodot et al. 2005).  

 

Although a number of studies focus on the character of SDF-1/CXCR4 in cell 

migration and growth, the understanding of SDF-1/CXCR4 in osteogenic 

differentiation of stem cells is unclear. In bone tissue engineering, the number of 

studies that indicate a role for SDF-1/CXCR4 interaction on osteogenic 

differentiation or new bone formation is limited. Retroviral transduced bone marrow 

stromal stem cell lines secreting high SDF-1 levels displayed an enhanced ability to 

form ectopic bone in vivo when mixed with hydroxyapatite/tricalcium phosphate 

ceramic particles and implanted into subcutaneous pockets on the dorsal surface of 

nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (Kortesidis 

et al. 2005). Furthermore, blocking SDF-1/CXCR4 signalling strongly inhibited bone 

morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of ST2 bone 

marrow stromal cells (Zhu et al. 2007). On the other hand, SDF-1 promotes the 

development and survival of human osteoclast and the osteoclastogenesis of human 

oral cancer cells (Wright et al. 2005; Tang et al. 2008a). According to the above 

studies, it is likely that SDF-1/CXCR4 effects osteogenic differentiation. The 

purpose of this study is to investigate the possible role of SDF-1 in osteogenic 

differentiation of human mesenchymal stem cells (hMSCs). Will SDF-1 induce or 

enhance the osteogenic differentiation in hMSCs? The hypothesis of this study is that 

SDF-1 will improve the osteogenic differentiation of hMSCs. 

 

 

 

 

 



 46 

2.2 MATERIALS AND METHODS 

2.2.1 Cell isolation and culture 

Human mesenchymal stem cells (hMSCs) were a gift from Professor Oscar Lee 

(National Yang-Ming University, Taiwan) and obtained from the iliac crest of one of 

the healthy donors (n=14) with informed consent. The phenotypes of these cells were 

previously described by flow cytometry and the multipotentcy of the cells was also 

tested (Lee et al. 2004). Briefly, the cells are negative of: CD13, CD34, CD45, 

CD133 and positive of: CD29, CD44, CD71, CD73, CD90, CD105, SH-2 and SH-3. 

hMSCs were cultured in growth medium, which consists of Iscove’s modified 

Dulbecco’s medium (IMDM) (Sigma-Aldrich, MO) and 10% fetal bovine serum 

(HyClone, UT) supplemented with 10 ng/mL fibroblast growth factor-basic (bFGF), 

100 units of penicillin, 1000 units of streptomycin, and 2 mmol/L L-glutamine 

(Sigma-Aldrich, MO).  Medium was changed twice per week during cell culture.  

 

2.2.2 In vitro osteogenic differentiation 

To investigate whether SDF-1 has an effect on osteogenic differentiation, four 

groups were included in my study with 3 repeats in each group (Table 2-1).  

Group Description Condition 

1 Positive control 

Cells were treated with osteogenic 

medium consisting of Iscove’s 

modified Dulbecco’s medium (IMDM) 

supplemented with 0.1 M 

dexamethasone, 10mM -glycerol 

phosphate, and 0.2 mM ascorbic acid 

(Sigma-Aldrich, MO) 

2 Negative control Cells were treated with IMDM only 

3 SDF-1 group 

Cells were treated with IMDM plus 

30ng/ml human recombinant SDF-1 

(R&D system, MN) 

4 
Positive control plus SDF-1 

group 

Cells were treated with osteogenic 

medium plus 30ng/ml human 

recombinant SDF-1 

Table 2-1. Experimental group layout.  
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Seventh- to ninth-passage hMSCs were used and seeded at 5000 cells/cm
2
 density 

which is a compromise between better calcium deposit formation and cell 

detachment during osteogenic differentiation (Jaiswal et al. 1997). Medium was 

changed twice per week and cells were harvested and analysed after 1, 2, 3 and 4 

weeks treatment. 

 

2.2.3 Morphological observation  

To observe the morphological changes of the cells during the osteogenic 

differentiation, cells seeded at 5000 cells/cm
2
 density in 6-well plates in different 

groups were photographed under the light microscope at weekly intervals.   

  

2.2.4 Alkaline phosphatase activity assay  

Alkaline phosphatase (ALP) is a membrane-bound ectoenzyme that hydrolyses 

monophosphate esters. It is expressed on the cell membrane of hypertrophic 

chondrocytes, osteoblasts and odontoblasts. By hydrolysing its substrates, which are 

inhibitors of hydroxyapatite formation during extracellular matrix mineralization, 

ALP is considered to be an early marker for osteogenic differentiation of osteoblast 

precursors (Orimo 2010; Hoemann et al. 2009).  

 

Total cell proteins were extracted from cell lysates, which were lysed by using 

radioimmuno precipitation assay (RIPA) buffer (150mM sodium chloride, 50mM 

Tris, 0.5% (w/v) DOC, 0.1% (w/v) sodium dodecyl sulfate, 1% (w/v) NP-40) 

(Sigma-Aldrich, MO). hMSCs seeded in 25T flask were scraped off the surface using 

a cell scraper with 500μl phosphate buffered saline (PBS). The cells were collected 

by 2000rpm centrifugation for 5 minutes at room temperature. One hundred μl RIPA 

buffer was used to lyse the cells for 30 minutes on ice. Proteins were collected by 

harvesting the supernatant after 14000rpm centrifugation for 15 minutes at 4°C. 

Protein quantification was performed using a commercial protein assay kit (PIERCE, 

IL). Ten μg total proteins were combined with distilled water to approach 50 μl 

protein samples and then mixed with 50μl ALP assay reagent (5mg p-nitrophenyl 

phosphate dissolved in the solution which consists of 95% (v/v) 2M Diethanolamin 

and 5% (v/v) 20mM Magnesium Chloride) (Sigma-Aldrich, MO). Absorbance at 
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405nm wavelength was read at 5 minutes using a microplate reader (Bio-Rad Model 

3550, CA). There were three replicates at each time point in each group.   

 

2.2.5 Cell proliferation assay 

Cell proliferation was estimated by using a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt; MTS] (CellTiter 96  AQueous One Cell Proliferation Assay, 

Promega, WI), which is a colorimetric method based on the production of coloured 

formazan. To prevent cell confluence and overgrowth, hMSCs were seeded at a 

lower cell density of 4000 cells/cm
2
 in each well of 24-well plates. Three hundred μl 

basal medium (IMDM) and 60μl MTS reagent were mixed and added into each well, 

after removing the culture medium. Cells were incubated in the dark at 37  for 90 

minutes. One hundred μl of the supernatant of each sample were removed and the 

absorbance was measured at 490nm wavelength by a microplate reader. There were 

three replicates at each time point in each group. 

 

2.2.6 Von Kossa staining  

Calcium phosphate deposition is considered a functional in vitro endpoint of 

osteogenic differentiation. By utilising silver nitrate, Von Kossa staining can 

visualise the phosphate within the deposited mineral (Hoemann et al. 2009).  

 

hMSCs were seeded at 5000 cells/cm
2
 density in 6-well plates for each time point. 

Culture medium was removed before washing the cells twice by PBS and fixing with 

4% formaldehyde for 20 minutes, followed by washing twice with water before 

covering the cells with 1% silver nitrate and incubating under UV light for 45 

minutes. After washing out the silver nitrate solution, calcium deposits were 

observed under the light microscope. 

 

2.2.7 Statistics  

Results were first analysed by Kruskal-Wallis test with the level of significance of 

p<0.05. Significantly different results were further analysed by Mann-Whitney U test 

with the significant level of p<0.05. 

 



 49 

2.3 RESULTS 

2.3.1 Cell morphology  

Cell morphology of hMSCs became more flattened and had less space between cells 

in Group 1 and Group 4 after 7 days of culture (Figure 2-1). In Group 3, cell 

morphology was still spindle and fibroblastic-like, and these were similar to the cell 

shape in Group 2, suggesting that SDF-1 alone had no effect. 

 

 

Figure 2-1. Cell morphology after 7 days. Both Group1 and Group 4 showed an 

osteoblast-like cell shape from the first week of osteoinductive treatment while 

Group 2 and Group 3 remained in a fibroblastic-like cell shape during the 

whole time points. Scale bars, 100μm. 
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2.3.2 ALP activity after SDF-1 treatment 

Figure 2-2 showed ALP activities of all study groups at all time points. There were 

no differences between Groups, 2 and 3. However, the ALP activity of hMSCs in 

Group 4 was significantly higher than Group1 up to the third week (p=0.024). After 

4 weeks treatment, there was no significant difference between Group 1 and Group 

4.  

 

 

Figure 2-2. ALP activity of hMSCs was measured in weekly intervals during 

osteoinductive treatment. The absorbance at 405nm wavelength of each group is 

shown. Data points has different letter (a, b, c, d) are significantly different to 

each other (p < 0.05). 
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2.3.3 hMSCs Von Kossa staining 

Both osteo-induction groups, Group 1 and Group 4, were calcium positive for Von 

Kossa staining after 4 weeks (Figure 2-3). hMSCs in Group 4 had more calcium 

deposits than Group 1. There was no calcium deposited in Group 2 or Group 3.  

 

 

Figure 2-3. Von Kossa staining after 4 weeks osteoinductive treatment. Only 

Group 1 and Group 4 showed calcium deposits while Group 2 and Group 3 had 

no calcium deposit. Scale bars, 100μm.  

 

 

 

 

 

 

 

 

 

 



 52 

2.3.4 Cell proliferation 

Figure 2-4 showed that the cell proliferation in Group 1 and Group 4 had almost 

doubled when compared with Group 2 and Group 3. The differences were significant 

at all time points except the third week. There was no significant difference between 

Group 1 and Group 4 nor between Group 2 and Group 3.  

 

 

Figure 2-4. Cell proliferation was measured by MTS assay in weekly intervals 

during the osteoinductive treatment. The absorbance at 490nm wavelength of 

each group is shown. Data points has different letter (a, b, c, d) are significantly 

different to each other (p < 0.05). Only in data (21 days), there was no 

significant difference between each two continuing letters (p > 0.05). 
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2.4 DISCUSSION 

The chemo attractive effect of SDF-1 to the cells, which express its receptor CXCR4 

on the surface, is well known. However, the effects of SDF-1 on osteogenic 

differentiation in stem cells remain unknown. In my study, hMSCs were cultured 

with SDF-1 or with a combination of osteoinductive medium and SDF-1, to 

investigate the effect of SDF-1 on stem cell osteogenic differentiation. 

Morphologically, cells cultured in osteoinductive medium (Group 1 and Group 4) 

showed a flattened more iso- diametrical cell shape with greater cell contact, which 

are common signs of osteogenic differentiation (Declercq et al. 2005). In contrast, 

cells cultured with SDF-1 alone (Group 3) remained in a spindle and fibroblast-like 

shape during the whole treatment, as in the negative control (Group 2). In the ALP 

assay, cells grown in SDF-1 alone (Group 3) remained at the same level of the 

negative control (Group 2) during the whole experiment. The groups containing 

osteoinductive medium showed an expected up-regulated ALP activity. According to 

the morphology and ALP activity assay, SDF-1 on its own showed no effect in 

hMSCs osteogenic differentiation. This was also consistent with the result of Von 

Kossa assay for calcium deposits.  

 

Although it did not show any effect of SDF-1 alone on stem cell osteogenic 

differentiation, the most interesting finding in this study is that SDF-1 can enhance 

differentiation under specific conditions. When cells were cultured with SDF-1 and 

osteoinductive medium (Group 4), they showed a significantly higher ALP activity 

than the positive group (Group 1) during the first three weeks, indicating an 

enhanced early osteogenic differentiation. Calcium deposits were only found in 

Group 1 and Group 4 at the fourth week. Larger amounts of calcium deposits in 

Group 4 may also be due to the enhanced effect of SDF-1. Because of the cell 

proliferation pattern was similar between Group 1 and Group 4 (Figure 2-4, no 

significant difference), it suggests that there are more calcium deposits per cell in 

Group 4, which may due to a more mature osteogenic differentiation. These results 

may indicate an enhanced role of SDF-1 in osteogenic differentiation. 

 

One possible explanation of the observation in this study is that SDF-1 can affect 

osteogenic differentiation through signal transduction. SDF-1 has been shown to 
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stimulate cell proliferation and recruit CXCR4 expressing cells in a dose dependant 

manner. Studies in human meningioma cells and pre-B cells showed that SDF-1 

enhanced cell proliferation via the activation of the extracellular signal regulated 

kinase1/2 (ERK-1/2) signalling pathway (Acharya et al. 2009; Barbieri et al. 2006). 

Activation of the ERK-1/2 pathway also leads to nuclear translocation of nuclear 

factor- B (NF- B) in prostate cancer cells and osteosarcoma cells, which increases 

the cell migration (Ganju et al. 1998; Kukreja et al. 2005; Huang et al. 2009). The 

ERK-1/2 pathway is one of the mitogen-activated protein kinase (MAPK) cascades, 

which are important signalling pathways that convert extracellular signals into 

cellular responses and regulate proliferation, differentiation, cell activation and 

immune responses (Pearson et al. 2001; Pleschka 2008). The activation of ERK-1/2 

signalling also contributes to osteoblast differentiation by the phosphorylation of 

Runx2, a crucial transcription factor for osteoblast differentiation (Raucci et al. 

2008; Franceschi et al. 2007).  

 

Runx2 can up-regulate osteocalcin gene expression by binding to the osteoblast-

specific element 2 (OSE2) in the osteocalcin promoter. Moreover, OSE2-like 

elements are also present in the promoter of many osteoblast genes, such as collagen 

type I, osteopontin (Ducy et al. 1997). Over expression of Runx2 up-regulated the 

gene expression of collagen type I and osteocalcin, and enhanced ALP activity 

(Byers and García 2004). The regulation of Runx2 can be affected by many different 

signalling pathways (Franceschi and Xiao 2003). Bone morphogenetic proteins 

(BMPs), which are the best described inducers of osteoblast and chondrocyte 

differentiation, by binding to its type I and type II BMP receptors, will up-regulate 

Runx2 gene expression through the Smads signalling pathway (Ducy et al. 1997; 

Javed et al. 2008). On the other hand, post-tanslational modification and protein-

protein interactions can also regulate this factor. As mentioned above, the ERK-1/2 

signalling pathway can activate Runx2 by phosphorylation. Transgenic expression of 

constitutively active MEK1, the up stream MAPK kinase of ERK-1/2, in osteoblasts 

also accelerated skeletal development (Franceschi et al. 2007).  

 

In this study, the osteoinductive medium, which consists of dexamethasone, -

glycerol phosphate and ascorbic acid, has been applied to induce osteogenic 
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differentiation in many types of cells by increasing Runx2 gene expression (Bielby et 

al. 2004; Justesen et al. 2004; Mimori et al. 2007). Therefore, the up-regulated ALP 

activity in Group 4 may be due to the synergy between the increased gene expression 

of Runx2, induced by the osteoinductive medium, and the activation of the Runx2 by 

SDF-1 through the activated ERK-1/2 pathway. Interestingly, Franceschi et al. 

showed a similar increased ALP activity when co-transducting osteoblasts with BMP 

and Runx2 viruses compared with either virus alone (Franceschi and Xiao 2003). 

Mimori et al. showed that an ERK-1/2 inhibitor suppressed ascorbic acid-induced 

ALP gene expression, whereas Runx2 was not affected (Mimori et al. 2007). All 

these findings indicate that SDF-1 can enhance the osteogenic differentiation through 

the ERK-1/2 pathway. However, the result of the Group 3 suggests that SDF-1 will 

have this enhancing effect only in a Runx2 induced environment (Figure 2-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. An overview of BMP and SDF-1 signal transduction pathway. 

Arrows stand for activating effect (graph modified from Franceschi RT 2003). 
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According to this Runx2 dependant enhancing effect of SDF-1 in osteogenic 

differentiation, it is interesting to investigate whether combining BMPs and SDF-1 

will have synergistic effects in stem cell osteogenic differentiation. BMP signalling 

through the Smads cascade can increase the transcription and translation of Runx2. 

Therefore, by the ability of SDF-1 to activate Runx2 through the ERK1/2 pathway, 

the combination of BMPs and SDF-1 may further enhance stem cell osteogenic 

differentiation. 

 

Both osteoinductive groups showed increased cell proliferation, which may be due to 

the transient amplified cells during the osteogenic differentiation. In Group 3, SDF-1 

alone didn’t show effects in cell proliferation, and this is in contrast to other studies, 

which showed enhanced cell proliferation in SDF-1 overexpressing cells (Kortesidis 

et al. 2005; Hwang et al. 2006). This may indicate that a constantly high SDF-1 level 

is necessary to enhance cell proliferation.  

 

From the results in this chapter, it has shown that SDF-1 has the ability not only to 

recruit the CXCR4 expressing cells, as been well reported by literatures, but also to 

enhance stem cell osteogenic differentiation. These two properties of SDF-1’s 

multicharacters have inspired the applications of SDF-1 in bone tissue engineering. 

One concept of this is whether the locally enhanced level of SDF-1 in bone injured 

sites can improve the bone healing by recruiting more stem cells into the sites and 

enhancing osteogenic differentiation. To answer this question, a reliable SDF-1 

overexpressing system needs to be established.   
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Chapter Three 

SDF-1 Gene Incorporation into MSCs using the Adenoviral 

Delivery System of SDF-1 
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3.1 INTRODUCTION 

For bone regeneration, direct delivery of growth factors, for instance BMP-2, 4 and 

7, to the site of repair has disadvantages such as a short half-life and instability of the 

proteins, which result in low efficacy with the need of repeated administration (Hao 

et al. 2009). It is also not financially feasible. Thus, gene therapy has been focused 

on transfection of autologous cells with therapeutic genes in vitro before in vivo 

transplantation, which leads to consistent expression of target genes (Hao et al. 

2009). 

 

Gene therapy involves the transfer of genes to and into cells and either modulates the 

expression of the target genes or directly affects production of proteins. In 

orthopaedic research, gene therapy has resulted in progress of the treatment of 

chronic and acute genetic and non-genetic disorders. Gene therapy relies on delivery 

mechanisms to enable the genes of interest to enter the target cells and in some cases, 

the nucleus. The vehicles that encapsulate therapeutic genes for delivery are called 

vectors. To achieve most clinical applications, the vectors must be non-toxic, induce 

the minimal immunogenic response and be able to have high transfer efficiency in a 

wide range of cell types (Nixon et al. 2007).  

 

According to the delivery methods, there are viral and non-viral vectors for gene 

delivery. Viruses are potent vectors because of their ability to invade cells and to 

deliver genetic material to the nucleus for incorporation into the genome. The most 

common viruses used in gene therapy are adenovirus, retrovirus, lentivirus and 

adeno-associated virus (AAV), and each has various advantages and disadvantages 

(Lind and Bünger 2005). Non-viral delivery systems can be physical, mechanical or 

chemical. Electroporation can increase cell membrane permeability to facilitate DNA 

intracellular flux by the electrical energy. Lipofection is a method where DNA 

material is coated with cationic lipids, which are readily taken up by cells due to their 

electrochemical properties. Non-viral delivery systems are generally less efficient 

than viral techniques due to the poor incorporation of the desired DNA material into 

the genome (Lind and Bünger 2005). 
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Among the viruses in gene therapy, adenoviruses are DNA-containing, non-

enveloped viruses. The adenovirus genome consists of a single piece of linear double 

stranded DNA, approximately 36 kb long and flanked by two short-inverted terminal 

repeats. Adenoviruses enter cells by receptor-mediated endocytosis. Once the virus 

genome is released into the nucleus, the viral early genes are transcribed, leading to 

DNA replication, late transcription, synthesis of viral structural proteins and virus 

assembly (Seth 2000, 2005; Witlox et al. 2007). By replacing viral sequences in 

adenovirus DNA by foreign cDNA, recombinant adenoviruses, which carry genes of 

interest, can be generated (Figure 3-1) (Imperiale and Kochanek 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. A concept of adenoviral infection. A new gene is injected into an 

adenovirus vector, which is used to introduce the modified DNA into a human 

cell. The adenovirus enters the human cell by receptor-mediated endocytosis. 

The endocytosed vector will then enter the nucleus by binding to nuclear pore 

complex and release the genetic materials to make the cell produce the new 

protein, for example, the eNOS. CAR, coxsackie virus-adenovirus receptor; IR, 

integrin receptor; eNOS, nitric oxide synthase. (Khurana and Meyer 2003). 
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Adenovirus is the most popular viral gene delivery system.  Unlike retrovirus, which 

will only infect the dividing cells and randomly insert the genetic material into the 

genome, adenovirus will infect both dividing and non-dividing cells and does not 

incorporate genes into host DNA. Therefore, adenovirus gene transfer gives higher 

infection rates and, in term of safety, less risk of mutagenesis (Lind and Bünger 

2005). In bone tissue engineering, adenovirus carrying bone morphogenetic protein-2 

gene (Ad-BMP-2) has been used in fracture healing by increasing new bone 

formation. A locally increased level of BMP-2, which resulted from in vivo 

transduction by Ad-BMP-2, showed significantly improved healing of segmental 

bone defects (Betz et al. 2006). Either direct delivery of adenovirus carrying BMP-7 

(Ad-BMP-7) or implantation of dermal fibroblasts transduced ex vivo with Ad-BMP-

7 to subcutaneous sites, led to a robust osteogenic response (Franceschi et al. 2000, 

2004).  

 

Therefore, in the studies of this thesis, adenovirus will be a useful and feasible gene 

delivery vector to investigate whether increased local levels of SDF-1 improve 

fracture healing in vivo. Before the in vivo study, a reliable viral system of Ad-SDF-1 

transfer needs to be established and tested. In this chapter, I focus on the infection 

ability of the adenovirus and the optimal multiplicity of infection (MOI) for rat bone 

marrow cells and hMSCs. Whether the Ad-SDF-1 infected cells can over-express 

and secrete functional SDF-1 was also tested.  
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3.2 MATERIALS AND METHODS

3.2.1 Cell isolation and culture 

Rat bone marrow cells (rBMCs) were harvested from young adult male Wistar rats, a 

general multipurpose rat model. Rats were killed by cervical dislocation. The skin 

covering the thigh area was shaved and then disinfected using Hydrex. Under aseptic 

conditions, an incision was made in the skin to expose the muscles overlying the 

femur, which were dissected away. The femurs were removed and soaked in culture 

medium which was composed of Dulbecco's Modified Eagle Medium (DMEM), 

10% fetal calf serum, 100 unit/ml Penicillin, 100 mg/ml Streptomycin (Sigma-

Aldrich, MO). Under a tissue culture hood, the femora were removed from the 

medium and both ends of the bone were resected using a sterile scalpel. The marrow 

was flushed out with 5 ml culture medium by using a 10 ml syringe with a 20 gauge 

needle. The flushing was repeated several times to obtain the maximum amount of 

bone marrow cells. The cells were collected in a 25 cm
2
 flask after been pumped 

through a cell strainer. The flask was then placed into an incubator at 37°C, 95% air 

and 5% CO2. The media was changed after 4 days and non-adherent cells were 

removed, together with the media (Figure 3-2). The media was changed twice a week 

thereafter. After 10-14 days of primary culture, the cells reached confluence and 

were passaged using Trypsin-EDTA (Sigma-Aldrich, MO). Cells were then passaged 

about every 7-8 days. Passage 4 and passage 5 cells were used for studies (Figure 3-

3). 
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Figure 3-2. Cell morphology of rBMCs of passage 0 (arrow). Cells harvested 

from bone marrow show a spindle cell shape when they attached to the surface 

of the culture plate. White spots are hematopoietic cells. Scale bar, 100μm.  

 

 

Figure 3-3. Cell morphology of rBMCs of passage 4 (arrow). Cells show a 

flattened cell shape after cell passage. Scale bar, 100μm.  
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3.2.2 Adenovirus preparation and infection  

The concept for preparing the adenovirus carrying SDF-1 gene and the procedures in 

this chapter are shown in Figure 3-4. Human SDF-1 gene is first combined with the 

adenoviral vector and transfected into the packaging cell line to produce the 

adenovirus. Viral particles were then collected. The infection efficiency of the 

adenovirus to hMSCs and rBMCs was tested in vitro. The SDF-1 overexpressing 

rBMCs were transplanted into a rat model, described in Chapters 4 and 5.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4. A concept of adenovirus preparation and infection in this chapter.  
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Human SDF-1 cDNA were obtained from National Yang-Ming University VYM 

Genome Research Center, Taiwan. The production of adenovirus encoding human 

SDF-1 gene (Ad-SDF-1) was carried out using AdEasyTM XL Adenoviral Vector 

System (Stratagene, CA). Human SDF-1 gene and the pShuttle-CMV vector were 

both cut by restriction endonucleases Not  and Xho  to form two types of specific 

sticky end. Human SDF-1 cDNA was then cloned into the pShuttle-CMV vector 

through the matches of Not  and Xho  cutting sides by using Thermos aquaticus 

(Taq) DNA ligase. The incorporated shuttle vector was then linearised with Pme  

restriction endonuclease and transformed into BJ5183-AD-1 competent cells, which 

is a prokaryotic host strain. Transformants are selected for kanamycin resistance, and 

recombinants were subsequently identified by restriction digestion. After a 

recombinant was identified, its copies were largely expended in bulk using the 

recombination-deficient XL 10-Gold strain. Purified recombinant plasmid DNA was 

digested with Pac  restriction endonuclease to expose its inverted terminal repeats 

(ITRs), and was then used to transfect AD-293 cells, a cell line modified from human 

embryonic kidney cells, where deleted viral assembly genes, which are the E1 and 

E3 genes, are complemented in vivo (Figure 3-5).  
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Figure 3-5. Production of recombinant adenovirus using the AdEasy XL 

adenoviral vector system (Stratagene, Catalog No. 240010). 
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After showing serious cytopathic effect, normally 2 to 3 days after transfection, the 

cells were collected by flushing with PBS. The cell suspension was transferred to 

centrifuge tubes and subjected to four rounds of freeze/thaw by alternating the tubes 

between liquid-nitrogen and a 37°C water bath. After centrifugation of the cellular 

debris, Ad-SDF-1 was collected by harvesting the supernatant. The Ad-SDF-1 was 

then mixed with an equal volume of 2-times virus stock solution (20mM Tris, 4mM 

magnesium chloride and 8% sucrose; Sigma-Aldrich MO) and stored in -70°C. The 

virus titer was measured by plaque assay (see Appendix I).  Cell infection was 

performed by adding a targeted amount of virus within 200μl serum-free medium to 

the cells in a 24-well plate. The plate was then incubated at 37°C for 2 hours, and the 

medium was then changed back to growth medium. 

 

In this study, the adenovirus carrying the LacZ gene (Ad-LacZ), which encodes -

galactosidase in E. coli, with a similar producing procedure from Professor Yu Sue’s 

Laboratory, National Yang-Ming University, was also used to determine the optimal 

multiplicity of infection for different cell types.  

 

3.2.3 Optimal multiplicity of infection (MOI) for hMSCs and rBMCs 

Thirty thousand hMSCs (passage 9) or rBMCs (passage 5) were seeded in each well 

of 24-well plates and cultured at 37°C in an incubator overnight. Cells were then 

infected by Ad-LacZ with different MOI from 0 to 500 (6 replicates for each MOI 

group). After infection, cells were cultured for two days before testing the activity of 

-galactosidase. To detect the expression of -galactosidase, an assay was used 

which digests X-gal (5-bromo-4-chloro-3-indolyl- -D-galactopyranoside) into 

galactose and an insoluble blue product (5,5’-dibromo-4,4’-dichloro-indigo). Cells 

with -galactosidase activity appear blue and can be easily distinguished. 

 

To do this, cells were gently washed with cold phosphate buffered saline (PBS) twice 

for 5 minutes each time. Two hundred and fifty μl of fix solution (2% formaldehyde 

and 0.2% glutaraldehyde; Sigma-Aldrich, MO) was than added into each well for 5 

minutes at room temperature. After two more cold PBS washes, 250 μl of staining 

solution (20mM potassium ferricyanide, 20mM potassium ferrocyanide, 2mM 
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magnesium chloride and 0.5 mg/ml X-gal; Sigma-Aldrich, MO) was added into each 

well. The cells were kept in the dark at 37 °C overnight. Blue cells were counted 

under the light microscope.   

 

3.2.4 SDF-1 expression measurement  

Thirty thousand hMSCs (passage 11) or rBMCs (passage 5) were seeded in each well 

of 24-well plates and cultured at 37°C in an incubator overnight. Cells were then 

infected by Ad-SDF-1 with different MOI from 0 to 500 (6 replicates for each MOI 

group). After two days in normal culture medium, the medium was changed to 

serum-free DMEM for 3 days. The concentration of secreted SDF-1 in the medium 

was detected by enzyme-linked immunosorbent assay (ELISA) of SDF-1, which was 

determined by the absorbance at 450nm wavelength (R&D systems, MN) (see 

Appendix I).   

  

3.2.5 In vitro cell migration assay 

Thirty thousand hMSCs (passage 9) or rBMCs (passage 4) were seeded in 24-well 

plates and cultured at 37°C in an incubator overnight. Cells were then infected by 

various MOI of Ad-SDF-1 according to the optimal MOI assay for each cell type (for 

hMSC: 0, 125 and 250; for rBMCs: 0, 250 and 500; 6 replicates for each MOI group) 

and cultured in normal medium. On the fourth day after infection, another 4,500 cells 

were seeded on the upper surface of a polycarbonate membrane with 0.8μm porosity 

in a trans-well chamber (Corning, Fisher Scientific, UK) (Figure 3-6) and cultured at 

37°C in an incubator overnight. After 5 days, the chamber was combined with 

infected cells for 6 hours. Before combination, the cells that had spontaneously 

migrated to the opposite side of the membrane were removed using cotton buds. 

Cells that migrated to the opposite site of the membrane after 6 hours were fixed and 

stained with Toluidine blue (see Appendix I), and cell counted.  
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Figure 3-6. Corning Transwell (http://www.ub.es/biocel/wbc/images/cultivo/transwell.jpg). 

 

3.2.6 Statistics 

Results were analysed with one-way analysis of variance (ANOVA) test at the level 

of significance of p  0.05. For ANOVAs with significant F tests, a Tukey’s post-hoc 

procedure was performed to compare the significance between the two groups. 
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3.3 RESULTS 

3.3.1 Virus production and optimal MOI for hMSCs and rBMCs 

A cytopathic effect is one of the easiest and earliest signs of adenovirus production. 

After the linearised recombinant adenovirus plasmid had been transfected into 

AD293 cells, a cytopathic effect was observed. The original AD293 cells, which 

were modified human embryonic kidney 293 cells, showed a flattened and polygonal 

cell shape. These cells could be cultured at high cell density and were fully 

congruent. Once the cytopathic effect appeared, cells became swollen and cylinder-

like in shape. Cell contact was highly reduced (Figure 3-7 and Figure 3-8). This 

indicates the production of the Ad-SDF-1 in the AD293 cells.  

 
Figure 3-7. Normal cell morphology of AD293. Cells can be cultured at high cell 

density. Scale bar, 100μm. 

 
Figure 3-8. Cytopathic effect of AD293 cells after Ad-SDF-1 infection. Cells 

become swollen and cylinder-like in shape (arrows). Cell contact is reduced. 

Scale bar, 100μm. 
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To test the tolerance of different cells for adenovirus infection and the most efficient 

MOI, Ad-LacZ was used. hMSCs and rBMCs were infected by different MOI and 

the cell’s -galactosidase activity was tested (Figure 3-9 and Figure 3-10).  Both 

hMSCs and rBMCs showed positively stained cells. From very low MOI, an 

increased amount of blue cells in MOI groups higher than 175 was shown. Seventy 

per cent of these cells were infected at MOI 500.  
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Figure 3-9. Infection efficiency of adenovirus to hMSCs detected by X-gal 

staining of hMSCs -galactosidase activity (numbers represent the MOI used). 

Scale bar on the bottom right, 100μm. 
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Figure 3-10. Infection efficiency of adenovirus to rBMCs detected by X-gal 

staining of hMSCs -galactosidase activity (numbers represent the MOI used). 

Scale bar on the bottom right, 100μm. 
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3.3.2 SDF-1 expression in hMSC and rBMCs after infection by Ad-SDF-1 

SDF-1 expression in hMSCs and rBMCs was estimated at the fifth day after the 

infection by Ad-SDF-1 of various MOI (Figure 3-11). SDF-1 expression of hMSCs 

was up-regulated with MOI 25 and reached maximum expression at MOI 250. 

Severe cell damage, which led to cell death, was observed from MOI 250 to 500. In 

rBMCs, the expression of SDF-1 was up-regulated using MOI 125 and reached the 

maximum at MOI 500. Severe cell damage was not observed for all different MOI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11. SDF-1 expression of hMSCs and rBMCs 5 days after Ad-SDF-1 

infection with different MOI (mean ±  S.D.). Data points have different letters 

are significantly different to each other (p < 0.05). 
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3.3.3 In vitro cell migration 

Both hMSCs and rBMCs showed significant and dose-dependent chemoattractive 

activity to higher SDF-1 concentration, which was secreted by the Ad-SDF-1 

infected stem cells (Figure 3-12). In hMSCs, there were twice as many cells in the 

infected group compared with the non-infected group (MOI 0). The MOI 125 group 

and the MOI 250 group secreted the same level of SDF-1 and showed the same level 

of response in hMSCs migration. Furthermore, 2- 3 times more rBMCs migrated to 

the opposite side of the membrane in the MOI 250 group and the MOI 500 group 

compared with the non-infected group.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12. Cell migration of the non-infected (normal) hMSCs and rBMCs 

due to the secreted SDF-1 in Ad-SDF-1 infected hMSCs and rBMCs after 6 

hours (mean ±  S.D.). Both hMSCs and rBMCs show a dose-dependent response 

to higher SDF-1 concentration secreted in higher MOI groups. Data points have 

different letters are significantly different to each other (p < 0.05). 
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3.4 DISCUSSION 

The purpose of this chapter is to establish a reliable system for modifying hMSCs 

and rBMCs in order to make these cells overexpress SDF-1. Adenovirus, because of 

its high infection efficiency for a wide range of cell types and its non-integrating 

character, is an optimal system for this purpose.  

 

The cytopathic effect of AD293 cells during the production procedure of Ad-SDF-1, 

indicated the assembly of virus particles within the cells. In order to amplify the 

amount of Ad-SDF-1, serial infections were performed by collecting the viruses from 

small amounts of AD293 cells and then infecting a larger amount of AD293. For 

example, the viruses collected from one 25T flask of AD293 cells were then added 

into another 75T flask with confluent AD293 cells. During this amplifying 

procedure, the cytopathic effect was the sign of a successful infection, which 

represents functional adenoviruses were produced. 

 

Adenovirus infects cells by the attachment of Coxsackie adenovirus receptor (CAR) 

on the cell surface. The expression pattern of CAR varies, not only at different 

developmental stages and with different tissues, but also between species (Tallone et 

al. 2001). Thus, the sensitivity of the target cell to adenoviral infection will vary 

according to the cell type and the condition of the cell. It is necessary to test the 

optimal MOI for hMSCs and rMBCs to obtain the balance between the infection rate 

and cell damage. The infection rate of each cell was dose dependant and reached 

about 70% rate at MOI 500. However, cell damage in hMSCs appeared using an 

MOI 250 but was not seen in rBMCs, which showed a higher tolerance to adenoviral 

infection of rat cells. 

 

After confirming the adenovirus’ infection ability on both types of cell, we next 

quantified the expression of SDF-1 of the infected cells and, also, tested the function 

of the secreted SDF-1 in vitro. The expression of SDF-1 in both types of cell showed 

a dose dependant effect, respectively. In rBMCs, SDF-1 expression kept arising after 

MOI 125, however, enhanced SDF-1 expression halted after MOI 125 in hMSCs. 

Severe cell damage, was again observed after MOI 250 in hMSCs, which reflects the 

nature of SDF-1 expression. In the functional test, the secreted SDF-1 can 
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successfully increase cell migration towards the infected cells in a dose dependant 

manner. The reduced cell migration at MOI 250 in hMSCs may be due to the cell 

damage, which resulted in a similar concentration of secreted SDF-1 in the medium 

(Figure 3-11). 

 

Comparing the tolerance to adenovirus, the expression of SDF-1 and the activated 

cell migration, hMSCs started expressing SDF-1 with less virus particles and had 

more cell migration at the same MOI 250 compared with rBMCs. This indicates that 

hMSCs are more sensitive to adenoviral infection. However, hMSCs are less infected 

at high MOI due to induced cell death and, therefore, are unable to secrete a high 

level of SDF-1. rMBCs, by contrast, are more tolerant of the high MOI and have the 

ability to cause more cell migration.  

 

In this chapter, a reliable adenoviral gene modifying system has been established.  

The effect of SDF-1 in bone tissue engineering in vivo will then be tested by 

transplantation of cells, which are infected by Ad-SDF-1. Because of the higher 

tolerance to adenoviral infection and higher expression of SDF-1, and also, to avoid 

the possibility of varying results due to different species, rBMCs will be used for the 

following chapters. 
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Chapter Four 

 The in vivo Effect of SDF-1 in Bone Healing  
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4.1 INTRODUCTION 

Stem cell migration plays a crucial role during development and repair processes. 

Studies have revealed that the SDF-1/CXCR4 interaction is one of the important 

factors that mediate cell migrations. SDF-1, which belongs to the CXC chemokine 

family, and its G protein coupled receptor CXCR4 are widely expressed during the 

development in the embryo (Miller et al. 2008). Deletion of the SDF-1/CXCR4 

genes causes many different phenotypical deficits included in -lymphopoiesis and 

myelopoiesis (Nagasawa 2007; Zou et al. 1998), cardiogenesis (Zou et al. 1998), 

angiogenesis (Tachibana et al. 1998) and neurogenesis (Tran et al. 2007). These 

conditions are all related to the abnormality of the stem/progenitor cell migration 

during development. SDF-1/CXCR4 interaction is also critical in repair and 

regeneration. SDF-1 is expressed by bone marrow endothelium cells and enhances 

the retention of CXCR4 expressing hematopoietic stem cells (HSCs) and 

mesenchymal stem cells (MSCs) in the stoma (Kaplan et al. 2007). Many studies 

have shown that during tissue repair, local SDF-1 expression is up regulated and acts 

as a signal to recruit the CXCR4 expressing cells from circulation and/or bone 

marrow. Up-regulated SDF-1 expression level was also observed in human heart 

transplantation in response to ischemic injury and more recipient’s cells were 

recruited into the injury site (Yamani et al. 2005) indicating that SDF-1 leads to the 

recruitment of stem cells to the site of expression. 

 

Many clinical conditions require regeneration and implantation of bone. In the past 

few years, gene- and stem cell-based therapy have been extensively studied for use in 

the regeneration of massive bone defects as an alternative to current solutions, such 

as bone grafting and protein-based therapy (Kimelman et al. 2007). For instance, the 

use of autologous bone graft is considered as the gold standard for use in repairing 

bone defects, but the use of autogenic bone may cause donor site morbidity which 

may lead to infection, bleeding and pain. It is also only successful with relatively 

small bone defects (Mastrogiacomo et al. 2005). Direct delivery of osteoinductive 

factors, such as bone morphogenetic proteins, has shown improved results in bone 

healing, but the need of expensive doses of the factors to achieve the improvement is 

the drawback for its general application (Kimelman et al. 2007). MSCs have been 

considered to be a potential cell source for bone tissue engineering due to their 
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proliferation, differentiation and immunosuppression properties (Salgado et al. 

2004). The clinical application of bone tissue engineering is often limited by the cell 

number and immune response of implanted cells. For example, the combination of 

MSCs and allograft has shown improved bone formation around revision hip 

replacements (Korda et al. 2008). However, a 100x10
6
 cell dose was applied. For 

clinical situations, the relatively small number of MSCs isolated from bone marrow 

aspirates means that the time taken to achieve the expansion required for re-

implantation may be excessive. A high passage number may also affect the ability of 

the cells to differentiate.  

 

This chapter will focus on using the homing abilities of the native stem cells, which 

are strongly mediated by SDF-1/CXCR4 interaction, to enhance bone repair. The 

idea is that by making stem cells more efficient then a smaller number of cells may 

be used.  An SDF-1 over-expressing rat bone marrow cells (rBMCs) model has been 

established and reported in chapters 3 of this thesis. An amplified local SDF-1 

concentration was formed by implantation of SDF-1 overexpressing rBMCs in a rat 

femoral defect model.  

 

The hypothesis of this study is that the locally increased level of SDF-1 in fracture 

sites will improve the bone healing in vivo through better bone formation and 

mineralisation in the fracture site. 
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4.2 MATERIALS AND METHODS  

4.2.1 Cell culture and adenoviral infection 

rBMCs were harvested from femora of young male Wistar rats. rBMCs were 

expanded ex vivo, and cells of passage 3 were used in the experiment. SDF-1 over-

expressing rBMCs (rBMC-SDF-1) were engineered by infection of adenovirus 

carrying human SDF-1 gene at the multiplicity of infection (MOI) 500. Procedures 

of primary rat cell culture and adenoviral infection are as described in chapter 3 of 

this thesis. 

 

4.2.2 General experimental design  

In this study, all the operations were performed in the standard animal operation 

theatre in the Royal Veterinary College. A project license for the use of experimental 

animals was obtained from the Home Office (PPL 70/6964). It has been reported that 

the healing of a small osteotomy gap (1.5mm) on rat femora will take about 6 weeks 

(Strube et al. 2009). Thus, to investigate the short and long-term effect of SDF-1 in 

vivo, two time points were used at 3 weeks and 6 weeks. For the 3 weeks 

investigation, eighteen adult female Wistar rats were divided into three groups with 6 

rats in each group: (1) rBMC-SDF-1, (2) rBMCs and (3) control. A three millimeters 

gap in the middle of the femur was created during surgery and stabilised by an 

external fixator. In two groups, 2.4 x 10
5
 male rBMCs or rBMC-SDF-1 were 

suspended in 200μl medium and seeded on a collagen sponge (4mm x 4mm x 7mm) 

(Helistat, COLLA-TEC, NJ) and transplanted into the gap. For the control group, 

sponges soaked in 200μl medium without cells were used.  

 

For the 6 weeks experiment and also to study the direct effect of injection of the Ad-

SDF-1, a fourth Ad-SDF-1 group was added. In the Ad-SDF-1 group, 1.2 x 10
8
 Ad-

SDF-1 virus particles suspended in 200μl culture medium were seeded onto the 

collagen sponge. All of the other three groups were in the same condition as the three 

groups in the 3 weeks short-term experiment. Rats were sacrificed at 3 and 6 weeks 

after operation and the femora were harvested.  

 

X-rays of the bone defect site were taken after rats were sacrificed. Bone mineral 

content (BMC) within the gap and bone mineral density (BMD) of the original bone 
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area adjacent to the gap were measured by dual-energy X-ray absorptiometry (DXA) 

scanning. The area of new bone formation was measured using histomorphometery 

on Hematoxylin and Eosin stained sections longitudinally made from the middle of 

the femur, which can show nuclei in blue and collegen (represents bone) in pink, and 

quantified by imaging analysis system. The preparation of harvested samples is 

described in section 4.2.6 of this chapter. To test the maintenance of the donor cells 

in the early stage of the bone healing, and to avoid varying results caused between 

different species or by artificial cell labelling, detection of specific chromosomal 

DNA sequences was performed. This method has been widely used and can 

distinguish particular cells from admixtures of karyotypically different cell lines 

(Devilee et al.1988). In this study, transplantation of male rat bone marrow cells into 

female rats was performed. By the genetic difference of the sexual chromosome 

between the XY male chromosome pair and XX female chromosome pair, and by 

detecting the male specific Y chromosome from female double X chromosome using 

rat Y chromosome specific DNA probe around the osteotomy site, the positively 

detected cells will reflect the donor cell maintenance and distribution. This method 

has been widely used in in vivo studies for donor cell tracing after allogenic cell 

transplantation (Kassmer and Krause 2010). Also, this natural difference between the 

two genders reduces the possibility of biologic diversities of the donor cells due to 

artificial cell labelling, which is normally approached by using gene inserting viral 

transduction to obtain long-term performance, for example, retrovirus carrying green 

fluorescent protein. In this chapter, fluorescence in situ hybridization (FISH) of male 

rat Y chromosome was performed in the 3 week groups.  

 

4.2.3 Cell distribution and viability on collagen sponge 

To test the compatibility of collagen sponge for cell delivery in this study, cell 

morphology on collagen sponge was observed by scanning electron microscopy 

(SEM) (JEOL JSM-5500LV). Two hundred and forty thousand rBMCs were seeded 

on the same size of collagen sponge and SEM was performed at day 3. Collagen 

sponge with rBMCs was fixed, washed, serially dehydrated and dried. The sponge 

was cut into two pieces and the inner surface was faced up when the sponge was 

mounted onto SEM stubs. It was then sputter coated with an 8nm coating and earthed 

with silver dagganite. Images of the inner sponge were then taken. 
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4.2.4 Rat femoral defect model  

Rats were first anesthetised by inhalation of isoflurane. The anesthetised rats were 

weighed (weight between 200 and 250 grams) and the left femur was shaved. The 

skin over the left hind leg was disinfected and draped (Figure 4-1). A three-

centimeter skin incision was made positioned 0.5 cm laterally behind and parallel to 

the femur to expose the muscles. The muscles covering the femur were then gently 

separated to expose to femur. The femur was held firmly in place by clamps during 

the surgery. After adjusting the position between the femur and the drill platform, 

four holes were drilled with a 1.2mm drill. The 1.5mm pins were then screwed into 

the pre-drilled holes (Figure 4-2). After the pins were inserted into the bone, four tiny 

holes on the skin were made, allowing the pins passed through the skin. The pins 

were then capped and fixed by an external fixator, and the clamps were released. A 

three-millimeter osteotomy was made between the second and the third pin (Figure 

4-3) by a small diamond handsaw.  Male donor cells were seeded on collagen sponge 

(method as described above) and incubated at 37°C one day before the operation. 

Cell distribution and viability was observed by SEM photography as described 

above. After the collagen sponge with/without cells seeded on was inserted into the 

gap, the wound was then closed layer by layer (Figure 4-4). Antibiotics (Ceporea 

0.1ml) and analgesics (Vetergesic 0.05mi) were given after the operation and the 

following day.  

 

Figure 4-1. The surgery started 

from shaving of the area around the femur. The area was then disinfected by 

using Hydrex. 
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Figure 4-2. The femur was drilled 

by a drill with 1.2mm in diameter, and the pins with 1.5mm in diameter were 

screwed into the pre-drilled holes.  

 

Figure 4-3. A three millimeter gap 

was made.  

 

Figure 4-4. The wound was closed.  
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4.2.5 Measurement of bone mineral content and bone mineral density 

Bone mineral content (BMC) and bone mineral density (BMD) were measured by 

dual-energy X-ray absorptiometry (DXA) scan (QDR-1000, Hologic, USA) at the 

first, third and sixth week after operation. DXA scan, by sending X-rays from two 

different sources with different engery levels to the sample and calculating the 

amount of X-ray gets through to detector, can accurately measure the bone density of 

the sample. Inhalation anaesthesia was given to the rats prior to and during scanning. 

The left leg of the rats was fixed by a clamp, which held the external fixator, in the 

same position during DXA scanning at each time point. Calibration of the DXA 

scanning was performed using a phantom before the scanning of the rats. The 

phantom was composed of anthropomorphic spine and the scanner was calibrated 

based on the known density of the phantom. To make sure the accuracy of the DXA 

machine, the measurement of BMD of the phantom has to be within the limit lines, 

which is ±1.5% of mean of the database recorded by the same phantom, before 

measuring the rats. To measure the BMC and BMD of the rat femora, the extra high-

resolution programme was used. A constant region area was analysed which included 

the osteotomy gap with parts of the original bone for BMC (red boxes) and 

peripheral bone formed adjacent to the gap for BMD (yellow boxes) (Figure 4-5). 

The results are shown in sum of the measurements from proximal and distal 

analysing boxes. Measurements were performed every 3 weeks.

 

Figure 4-5. Analysing box for BMC and BMD measurement. 
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4.2.6 Sample collection and histology procedures  

After the rats were sacrificed, the left femur was retrieved. The specimens were fixed 

in 10% formal saline, then dehydrated by a series of alcohol and decalcified by 

ethylenediaminetetraacetic acid (EDTA), which acts as a hexadentate ligand and 

chelating agent that can sequester metal ions such as Ca
2+

. Decalcification was 

confirmed by radiography. After decalcification, specimens were dehydrated, treated 

with chloroform to de-fat the tissues and then embedded in wax. Samples were 

labeled on the longitudinal middle line of the femur before embedded in wax to 

indicate the location of the sectioning area. Sections measuring 7μm thick were made 

using a sledge microtome.  

 

4.2.6.1 Haematoxylin and Eosin (H&E) staining 

Samples were de-waxed in two changes of xylene and placed in two changes of 

100% alcohol and then hydrated in serial dilutions of alcohol. After the hydration, 

samples were immersed in the nuclear stain, haematoxylin, for 5-10 minutes. The 

excess stain was washed off by immersing the slides in tap water for 5 minutes. 

Samples were then differentiated in 0.5% acid (HCl)-70% alcohol and washed by 

water. After removing the acid-alcohol, samples were counterstained by immersing 

in 1% eosin for 3-4 minutes and then washed by water and dehydrated by serial 

dilutions of alcohol. Finally, samples were cleaned by xylene and mounted under 

coverslips using Pertex Mounting Medium (CellPath plc, UK). Samples were 

observed under the light microscope and the area of new bone was measured by 

image analysis system (KS-300, Zeiss, UK).  

    

4.2.6.2 Fluorescence in Situ Hybridisation staining  

Fluorescence in Situ Hybridisation (FISH) staining of rat Y chromosome was 

performed using a commercial kit (Cambio, Cambridge, UK), which will co-stain by 

DAPI. Probe of rat Y chromosome was denatured in 65°C water bath for 10 minutes 

and held at 37°C. Sample slides were de-waxed by xylene, dehydrated by 100% 

ethanol and dried out at room temperature. Pepsin solution was then added to the 

sample for 5 minutes and washed away by buffer saline. Samples were rinsed with 

distilled water and dehydrated by ethanol. Pre-warmed denaturation solution was 

added to cover the sample in a 65°C oven for 2 minutes. After the denaturation, 
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samples were soaked in ice-cold 70% ethanol for 4 minutes and dehydrated by 

ethanol. Five microlitres of pre-warmed probe was added to the samples, which were 

then covered with coverslips and sealed using rubber cement. The sealed slides were 

incubated in a 37°C humidified chamber overnight. The rubber cement and the 

coverslips were then taken off, and the samples were washed using buffer saline and 

stringency wash solution and detergent wash solution at 45°C. One hundred and fifty 

microlitres of detection solution was added to the sample, which was then incubated 

at 37°C for 20 minutes. Samples were washed using detergent wash solution, 

covered by storage solution and sealed with coverslips using nail varnish. Sample 

slides were then observed under the fluorescence microscope (KS-300, Zeiss, UK).    

4.2.7 Statistics 

Results were analysed with one-way analysis of variance (ANOVA) test at the level 

of significance of p  0.05. For ANOVAs with significant F tests, a Tukey’s post-hoc 

procedure was performed to compare the significance between two groups. 
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4.3 RESULTS 

4.3.1 Cell distribution and viability on collagen sponge 

The cell distribution of the rBMCs on the collagen sponge was observed before the 

operation by SEM scanning. After 3 days culture on the collagen sponge, cells 

adhered to the collagen sponge and migrated into the inner of the sponge. Cells 

showed a flattened and elongated shape (Figure 4-6). 

  

Figure 4-6. Cell morphology in the inner of the collagen sponge (arrow). 

  

 

 

 

4.3.2 Three weeks short-term effect of SDF-1 in vivo 

4.3.2.1 Radiographs of the osteotomy   

Radiographs of each group were taken three weeks after surgery (Figure 4-7). All 

groups showed new bone formation within the osteotomy gap. Both rBMCs and 

rBMC-SDF-1 groups showed more bone formation in the radiographs.  

 

Figure 4-7. Radiographs of osteotomy gap after three weeks. New bone was 

fromed within the osteotomy gap (arrows). Scale bar, 5mm. 
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4.3.2.2 Bone mineralisation after three weeks  

BMC change of the osteotomy area was measured by DXA scanning. The rBMC-

SDF-1 group showed significantly increased BMC compared to both the control and 

rBMCs groups (p=0.003 with the control group and p=0.0029 with the rBMCs 

group) (Figure 4-8). BMD around the osteotomy gap was also measured to show the 

effects of the different treatments on the original bone. All groups showed reduced 

BMD after three weeks with no significant difference among the groups (Figure 4-9). 

 

Figure 4-8. Total BMC change within the osteotomy gap after three weeks 

(mean ±  S.D.). Groups with different letters are significantly different to each 

other (p 0.05).  

 

Figure 4-9. BMD change of the original bone area adjacent to the osteotomy gap 

after three weeks (mean ±  S.D.).  
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4.3.2.3 New bone formation  

Histology of the osteotomy site after three weeks showed new bone formation in all 

three groups with the rBMC-SDF-1 group showing greater bone formation (Figure 4-

10). The rBMC-SDF-1 group produced significantly more new bone than the rBMC 

group (p=0.02), but no difference with the control group (p=0.08). There was no 

significant difference between the control group and the rBMC group (p=0.8) (Figure 

4-11). The new bone formation in most samples of the control group was only found 

on one side of the fracture, whilst in the other two groups bone formation was more 

uniform (Figure 4-10). 

 

 

 

Figure 4-10. H&E staining of new bone formation after three weeks (arrows). 

Scale bars, 400μm. 

 

 

Figure 4-11. New bone area in the osteotomy gap after three weeks (mean ±  

S.D.). Groups have * are significantly different to each other (p 0.05). 
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4.3.2.4 Maintenance of the SDF-1 expressing rBMCs 

The maintenance of the donor cells in the osteotomy gap after 3 weeks was detected 

by FISH. The rBMC-SDF-1 group showed more donor cells in the fracture site than 

the rBMCs group (about 2.5 fold) (Figure 4-12). Interestingly, most of the donor 

cells in the rBMC-SDF-1 group were found in more osteocyte-like shaped cells 

embedded in new bone. However, donor cells in the rBMCs group were found 

mainly in regions with less compact bone structure and remained in a round shape 

within cell clusters. 

 

 

Figure 4-12. FISH staining of donor cells (400x). Male rat Y chromosome 

staining are shown in red with nuclei shown in blue.  
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4.3.3 Six weeks long-term effect of SDF-1 in vivo 

4.3.3.1 Radiographs of the osteotomy 

Radiographs of each group were taken six weeks after surgery (Figure 4-13). All 

groups showed new bone formation within the osteotomy gap. 

 

 

 

Figure 4-13. Radiographs of osteotomy gap after six weeks. Scale bars, 5mm. 
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4.3.3.2 Bone mineralisation during the six weeks  

BMC and BMD were measured every three weeks during the experiment. The BMC 

in the first three weeks showed a similar trend to the results reported in 4.3.2.2. The 

rBMC-SDF-1 group showed almost four times significantly more BMC increase than 

the control group (p=0.008), and also a higher increase than in the rBMCs group 

(p=0.088) (Figure 4-14). The BMC of the rBMCs group and the Ad-SDF-1 group 

had a higher increase than the control group but without significant difference. 

During the second three weeks (from the fourth week to the sixth week), all groups 

showed a decrease of BMC (Figure 4-15). However, the rBMC-SDF-1 group had the 

least decrease compared with the control group (p=0.08). The overall BMC change 

after six weeks showed that only the rBMC-SDF-1 group had an increased BMC 

compared with the control group (p=0.003) (Figure 4-16). 

 

BMD change of the peripheral bone adjacent to the osteotomy gap was also 

measured at the same time points. Both the rBMC-SDF-1 and Ad-SDF-1 groups 

showed increased BMD in the first three weeks, while the control and rBMCs groups 

showed reduced density (Figure 4-17). During the second three weeks, all groups had 

further BMD loss (Figure 4-18). Although there is no significant difference in bone 

mineral density change among all groups after six weeks (Figure 4-19), the rBMC-

SDF-1 group had the least BMD loss compared with the control group (p=0.167) and 

the rBMCs group (p=0.140). 
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Figure 4-14. Total BMC change within the osteotomy gap from the first week to 

the third week (mean ± S.D.). Groups have * are significantly different to each 

other (p 0.05). 

 

 

 

 

 

 

Figure 4-15. Total BMC change within the osteotomy gap from the fourth week 

to the sixth week (mean ± S.D.). 
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Figure 4-16. Total BMC change within the osteotomy gap after six weeks (mean 

±  S.D.). Groups have * are significantly different to each other (p 0.05). 

 

 

 

 

 

 

Figure 4-17. BMD change of the original bone area adjacent to the osteotomy 

gap from the first week to the third week (mean ±  S.D.). 
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Figure 4-18. BMD change of the original bone area adjacent to the osteotomy 

gap from the fourth week to the sixth week (mean ± S.D.). 

 

 

 

 

 

 

Figure 4-19. BMD change of the original bone area adjacent to the osteotomy 

gap after six weeks (mean ± S.D.). 
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4.3.3.3 New bone formation 

Staining for new bone formation after six weeks showed a similar trend to the new 

bone formation in the three week experiment (Figure 4-20). The rBMC-SDF-1 group 

had the most new bone formed among all the groups (p=0.029 when compared with 

the control group) (Figure 4-21).  
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Figure 4-20. H&E staining of new bone formation after six weeks (arrows). 

Scale bars, 200μm. 
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Figure 4-21. New bone area in the osteotomy gap after six weeks (mean ±  S.D.). 

Groups have * are significantly different to each other (p 0.05). 
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4.4 DISCUSSION 

In this study, according to the new bone formation of the control group 6 weeks after 

the operation, which is 0.4mm
2
 on average in the 9mm

2
 defect area on the histology 

slide (3mm in length of the gap times 3mm in diameter of the femur), the 3mm 

osteotomy model fits the definition of a critical size bone defect. This is defined as 

an osseous defect showing less than 10% healing of bone during the lifetime of an 

animal when under an untreated condition (Hollinger and Kleinschmidt 1990; 

Lindsey et al. 1998). Thus, implantation of bone marrow cells over expressing SDF-

1 leads to improved new bone formation in the early bone repair in a critical size 

defect model. Also, SDF-1 improves the retention of the donor cells in the fracture 

area in the first three weeks and prevents bone loss in the peripheral bone area. 

 

Many scientists have successfully used stem cells to regenerate bone in animal 

models, but its clinical application is limited because of the restriction of laboratory 

facilities and the timeframe required to obtain large numbers of stem cells. In tissue 

engineering and bone healing, the stem cell number is a crucial factor (Salgado et al. 

2004; Kwong and Harris 2008). Others use SDF-1/CXCR4 interaction to mediate 

cell migration so that a large quantity of stem cells can be recruited in the repair site 

(Badillo et al. 2007). By blocking the SDF-1/CXCR4 interaction in the mice bone 

graft models, the recruitment of bone marrow stromal cells and the new bone 

formation were significantly reduced, indicating an important role of SDF-1/CXCR4 

interaction in bone repair (Kitaori et al. 2009). In this rat fracture model, a relatively 

small number of cells was used, and it showed that the rBMC-SDF-1 group produced 

more new bone than the rBMCs group, indicating that the enhanced level of local 

SDF-1 can improve the bone healing. Also, the enhanced level of SDF-1 may be 

correlated to the prevention of bone loss in the adjacent bone area from the fracture 

healing processes.  

 

Previous studies have suggested that immediate local expression of endogenous 

SDF-1 around the injured area was transiently up-regulated after myocardial 

infarction (MI) (Abbott et al. 2004; Askari et al. 2003), lung injury (Petty et al. 

2007), retinal ischemia-reperfusion injury and inflamed human dental pulp (Lai et al. 

2008; Jiang et al. 2008). Therefore, in this study, it is proposed that the femoral 
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defect model caused a transiently increased endogenous SDF-1 level, which 

facilitated the healing process in all groups. According to the six weeks experiment, 

all groups showed an increase in BMC during the first three weeks and a reduction 

during the second three weeks, which is in contrast with a typical bone healing 

procedure in a critical size bone defect model. By enhancing the local SDF-1 level, 

the rBMC-SDF-1 group showed significantly increased BMC and more new bone 

formation than the control and rBMCs groups at both three weeks and six weeks 

postoperatively. Interestingly, although control animals gained BMC at 3 weeks and 

lost that gain at 6 weeks, the rBMC-SDF-1 group gained the most and lost the least 

amount of BMC. Animals in the rBMCs group always showed intermediate gains 

and losses in BMC. This reflects a synergistic effect in the combination bone marrow 

cells and SDF-1 in improving bone mineral formation in the osteotomy gap. The 

rBMC-SDF-1 group also showed more new bone formation at both time points. 

Considering the results, I have shown in chapter 2 that SDF-1 plays an enhanced role 

when MSCs are cultured in the osteoinductive media. It has been reported that bone 

morphogenetic protein-2 (BMP-2), a dominant inducer of stem cell osteogenic 

differentiation, is elevated at the fracture site within 24 hours after fracture (Ai-Aql 

et al. 2008; Tsuji et al. 2006; Kidd et al. 2010). In another study, it has been shown 

that rat bone marrow-derived osteoblast progenitor cells (MOPCs) were mobilised 

from bone marrow to the BMP-2-pellet implantation site through the circulation 

system by chemo attraction of SDF-1 expressed in vascular endothelial cells and the 

de novo osteoblasts of the region (Otsuru et al. 2008). Thus, in my study, the 

increased bone healing may be due to the enhanced local SDF-1/CXCR4 interaction 

that led to the recruitment of larger numbers of the host’s stem cells from peripheral 

regions and distant sources through systemic circulation into the fracture site, 

combined with the enhanced osteoblastic differentiation of the osteoblastic 

progenitors by SDF-1. Moreover, FISH staining showed more donor cells in the 

compact new bone in the rBMC-SDF-1 group after three weeks, indicating higher 

stem cell maintenance which could be explained by the ability of SDF-1 to reduce 

the incidence of apoptosis  (Otsuru et al. 2008; Tang et al. 2008b).  

 

Significant reduction of BMD of the peripheral bone adjacent to a fracture site is a 

common finding after fracture or osteotomy treated with immobilisation (Eyres and 
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Kanis 1995; Karlsson et al. 2000; Schäfer et al. 2008). Eyres et al. reported up to an 

50% BMD loss in the distal site to a tibial fracture at three months which persisted at 

six months, observed in five patients (Eyres and Kanis 1995). A similar observation 

was reported by Karlsson et al. that 35% of bone loss in the mid-diaphysis of the 

tibia took place at 9 months following osteotomy in 26 patients with localised medial 

arthritis of the knee (Karlsson et al. 2000). Reduction in BMD in patients with 

fracture also increases the risk for further fractures. In my study, the control group 

showed a rapidly decreased BMD in the peripheral bone from the first 3 weeks and 

reached a 30% decrease in six weeks time, which is consistent with the normal 

clinical observations.  The rBMCs group showed a similar trend of bone loss to the 

control group and indicated no effect of donor cell in the bone loss after osteotomy. 

However, in both my short-term and long-term experiments, the rBMC-SDF-1 group 

showed a gain of BMD in the first 3 weeks. All groups in the long-term experiment 

showed a similar reduction of BMD during the second 3weeks. After 6 weeks, a 20% 

less BMD decrease in the rBMC-SDF-1 group compared with the control and 

rBMCs groups was seen. Interestingly, the Ad-SDF-1 group had a similar trend to 

the rBMC-SDF-1 group during the 6 weeks, indicating that SDF-1 has some effect 

on preventing the bone loss when compared with the rBMCs group.  

 

Bone mineral loss in the bone adjacent to the osteotomy site has been attributed to 

increased bone remodelling (Augat and Claes 2008). After immobilisation, disuse or 

injury, bone turnover is increased, but the amount of new bone laid down in erosion 

cavities is less than normal (Minaire et al. 1974). Bone remodelling is controlled by 

the dynamically balanced regulation between bone forming osteoblasts and bone 

resorbing osteoclasts. It is well known that osteoblasts can induce and activate the 

osteoclastogenesis by producing receptor activator of NF- B ligand (RANKL) and 

macrophage-colony stimulating factor-1 (M-CSF), while mature osteoclasts secret 

bone morphogenetic proteins (BMPs) to induce osteoblastogenesis (Matsuo 2009). 

Osteoblasts can also inhibit osteoclast differentiation by secreting a decoy receptor 

for RANKL, known as osteoprotegerin (OPG). OPG blocks the interaction of 

RANKL and its receptor RANK on the surface of osteoclasts (Simonet et al. 1997). 

Therefore, through modulation of RANKL and OPG expression, osteoblasts can 

precisely regulate the formation of osteoclasts (Sims and Gooi 2008). Although the 
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predominant role of SDF-1 is to recruit CXCR4 positive hematopoietic cells, which 

are precursors of osteoclasts and, thus, may increase the bone remodelling and lead 

to more bone loss, SDF-1 has also been show to recruit MSCs (Sordi et al. 2004). 

Earlier in this thesis (chapters 2 and 3), it showed that SDF-1 does affect both the 

migration and differentiation of MSCs. However, in this study, because the bone 

resorption is much faster than the bone formation during remodelling, the reduced 

bone loss in my results is less likely to be an improved osteoblastic differentiation of 

the stem cells but more as a negative effect on osteoclastogenesis, since less bone 

loss was observed from the early stages of healing. Thus, less bone loss in the SDF-1 

experimental groups indicates that SDF-1, apart from the recruiting stem cells, may 

affect bone remodelling by other mechanisms. The signalling pathways of SDF-1 

may be one of the possible explanations.   

 

Many molecules and signalling pathways have been studied in the regulation of bone 

remodelling. Glass et al. reported the control of osteoclast differentiation by 

canonical Wnt signalling in differentiated osteoblasts (Glass et al. 2005). Wnt 

signalling pathway, by inactivating the glycogen synthase kinase 3  (GSK3 ), 

prevents the cytoplasmic -catenin from its ubiquitination and the following 

degradation, which leads to the interactions of -catenin and down stream 

transcription factors and further regulations in cell adhesion, migration and 

transcription. In Glass et al.’s study, stabilisation of -catenin in differentiated 

osteoblasts results in high bone mass in the gain-of-function mutant, while deletion 

of the -catenin in differentiated osteoblasts leads to osteopenia.  They further 

revealed that the stabilised -catenin, together with T cell-specific transcription 

factor (TCF) proteins, raises the expression of OPG in osteoblasts, which inhibits the 

osteoclast differentiation. Thus, it indicates a negative regulation of Wnt signalling in 

osteoclastogenesis. Interestingly, there are several studies that revealed the 

interactions between SDF-1/CXCR4 and Wnt signalling pathways. Luo et al. 

reported that SDF-1/CXCR4 signalling activates -catenin/TCF transcriptional 

activity in embryonic rat spinal cord neural progenitors (Luo et al. 2006). Liu et al. 

further reported that SDF-1 promotes the stabilisation of -catenin by the activation 

of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling 
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cascade, resulting in the inhibition of GSK3  in pancreatic beta cells (Liu and 

Habener 2009). According to the studies above, high levels of SDF-1 at the 

osteotomy site in this experiment may promote the stabilised -catenin in osteoblasts 

and further inhibit the osteoclastogenesis by enhanced OPG expression, thus 

reducing BMD loss in the adjacent bone. Apart from the improvement of new bone 

formation by SDF-1, this bone loss preventing effect of SDF-1 in fracture repair is 

also important to prevent the refracture, which normally happens due to the weaker 

bone structure caused by bone loss during fracture healing (Utrilla et al. 2005).

 

In this study, the rBMCs group did not show an improved bone healing effect, which 

indicates the possibility of an optimal cell number in the fracture site to initiate the 

improvement of bone healing. Kruyt et al. revealed the optimum of 8x10
6
 bone 

marrow stromal cells (BMSCs)/cm
3
 and the minimum of 8x10

4
 BMSCs/cm

3
 for new 

bone formation in a porous biphasic calcium phosphate scaffold implanted in goat 

muscle (Kruyt et al. 2008). This finding validates previous empirically derived 

seeding densities of 5x10
6
 to 10x10

6
/cm

3
 in the majority of in vivo studies. In this 

study, the cell density used was about 1.2x10
6
/cm

3
, which is about five times less 

than the normal applied density. Although the cell density in this study was higher 

than the minimum density in Kruyt’s study, it indicates that a higher minimum cell 

density for bone defect healing is required than for ectopic bone formation, and, 

furthermore, it could be varied according to different defect sizes and the animal 

models applied. However, in a non-efficient cell density condition, the rBMC-SDF-1 

group could still show significant improvements. This approves the attenuation of the 

minimum cell density required in bone fracture healing. 

 

There is one more interesting finding in this study: at 6 weeks the effects of the 

rBMC-SDF-1 group and the Ad-SDF-1 group seemed to be dominant only during the 

first three weeks, and declined in the following three weeks. Considering that 

expression of adenoviral vector normally lasts for three to four weeks (Lanza et al. 

2000) and the cell recruitment occurs in the early stage of injury repair, it is 

interesting to know whether a longer expression of SDF-1 in the fracture site will 

improve bone healing. To answer this question, in the next chapter I investigated the 

effect of a second injection of rBMC-SDF-1 at the third week in this model. 
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To summarise the results have been shown in this study, genetically modified 

rBMCs that overexpress SDF-1 appear to be more effective than the normal rBMCs 

to improve new bone formation and cell maintenance in the fracture site in the early 

bone healing stage and bone loss after the osteotomy. For this reason, it may be 

possible to utilise few cells to effect bone repair and regeneration in fracture.   
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Chapter Five 

Application of Second Cell Transplantation in Rat Femoral 

Defect Model 
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5.1 INTRODUCTION 

Transplantation of hematopoietic and mesenchymal stem cells has been giving 

promising outcomes. For instance, by destruction of the defective marrow and 

replacement with normal bone marrow, hematopoietic stem cells (HSCs) can reverse 

fetal diseases caused by congenitally defective stem cells, including severe combined 

immune deficiency (SCID), a disorder of the lymphoid stem cells, and osteopetrosis 

(Lanza et al. 2000). Mesenchymal stem cells (MSCs) have been used in bone repair  

(Lee et al. 2005), cartilage (Koga et al. 2009), heart (Paul et al. 2009), kidney (Imai 

et al. 2009). Stem cells have been shown to be a potential source of cells for tissue 

engineering of various connective tissues. However, most in vivo studies are based 

on the transplantation of single or multiple doses of cells in the early stages (Omori 

et al. 2008). The effect of multiple cell transplantations in a long-term interval has 

been rarely reported.  

 

According to the results in chapter 4, I have shown that rat bone marrow cells over-

expressing SDF-1 can improve bone healing. This may be important in a tissue 

engineering context as healing by MSCs maybe more efficient, which means that 

either the time required for the defect may be reduced or the number of the cells may 

be less due to the increased efficiency. One of the limiting factors is producing 

enough cells in a timely manner to repair bone defects. Considering the expression 

and survival time of the adenoviral vector and the results that indicated the effects 

only appeared in the early stages of bone healing soon after the addition of MSCs, it 

leads to the question, will multiple cell transplantations have further and additive 

improvement in the femoral defect model. To answer this question, a second cell 

injection was applied in this study. The hypotheis of this study is that a second 

injection of bone marrow cells over-expressing SDF-1 will improve further bone 

healing.  

 

 

 

 

 

 



 107 

5.2 MATERIALS AND METHODS 

5.2.1 Cell culture and adenoviral infection  

Young male Wistar rat bone marrow cells (rBMCs) were harvested and cultured as 

described previously in chapter 3. Passage 5 rBMCs were used in this study. rBMCs 

over-expressing SDF-1 (rBMC-SDF-1) were engineered by infection of Ad-SDF-1 at 

MOI 500. Procedures of infection were as described in chapter 3.  

 

5.2.2 Experiment design 

To investigate whether multi-implantation of rBMCs and rBMC-SDF-1 will further 

improve bone healing, a second injection of the cells was applied in this study. All 

experimental conditions are the same as the conditions in chapter 4. Briefly, 18 adult 

female Wistar rats were equally separated into three groups: (1) rBMC-SDF-1, (2) 

rBMCs and (3) control. Femoral defect model with a 3mm gap was performed as 

described previously. Two hundred and forty thousand rBMC-SDF-1 or rBMCs were 

suspended in 200 μl culture medium and seeded on the collagen sponge (4mm x 

4mm x 7mm) (Helistat, COLLA-TEC, NJ) and transplanted into the gap. For the 

control group, sponges soaked in 200μl culture medium without cells were used. 

Considering that the expression of adenoviral vectors normally lasts for 3 to 4 weeks 

and the early effects of SDF-1 in bone healing shown in chapter 4, a second injection 

of cells was applied three weeks after the operation. The same amount of 2.4 x 10
5
 

rBMC-SDF-1 or rBMCs was suspended in 100μl culture medium and injected in the 

middle of the osteotomy gap by using a 23 gauge needle. During the operation, the 

pins and the needles were previously marked at the location, which was equally 

distant away from their points, to ensure the right position of the needle point in the 

middle of the osteotomy gap when the two marks were lined up to each other during 

performing of the second injection. Radiographs of the osteotomy site were taken six 

weeks postoperatively. Bone mineral content (BMC) in the osteotomy gap and bone 

mineral density (BMD) of the bone adjacent to the gap were measured by dual-

energy X-ray absorptiometry (DXA) scanning at the first, third, and sixth week after 

operation. Rats were sacrificed at the sixth week. The area of new bone formation 

was then measured using histomorphometery on Hematoxylin and Eosin stained 
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sections and quantified using an imaging analysis system. All protocols of the 

measurements were the same as described in chapter 4.  

 

5.2.3 Statistics 

Results were analysed using a one-way analysis of variance (ANOVA) test at the 

level of significance of p  0.05. For ANOVAs with significant F tests, a Tukey’s 

post-hoc procedure was performed to compare the significance between two groups. 
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5.3 RESULTS 

5.3.1 Radiographs of the osteotomy 

Radiographs of the osteotomy site at the sixth week showed new bone in all three 

groups (Figure 5-1). rBMC-SDF-1 group had more new bone formation within the 

gap.  

 

Figure 5-1. Radiographs of osteotomy gap after six weeks. Scale bars, 5mm. 

 

 

 

5.3.2 Bone mineralization during the six weeks 

BMC in the gap and BMD in the adjacent bone were measured every three weeks 

during the experiment. In the first three weeks, the rBMC-SDF-1 group showed more 

increased BMC than the control and the rBMCs group without significant difference 

(Figure 5-2). During the second three weeks, although all groups showed decreased 

BMC, the rBMC-SDF-1 group had significantly less BMC decrease than the control 

group (p= 0.009), while the rBMCs group was in between (Figure 5-3). A 

significantly higher BMC level was recorded in the rBMC-SDF-1 group compared to 

the control group (p= 0.006) six weeks after the operation (Figure 5-4).  

 

BMD change in the first three weeks showed no difference in any of the groups 

(Figure 5-5). After the second injection of the cells (for both rBMCs and rBMC-

SDF-1) at the third week, the rBMCs and rBMC-SDF-1 groups showed an increased 

density in the adjacent bone area during the second three weeks, while the control 

group had a decreased BMD, respectively (p= 0.008 for rBMCs and control groups) 

(Figure 5-6). The overall BMD change after six weeks showed that the rBMCs group 

had significantly less BMD loss than the control group (p= 0.0035) while the rBMC-

SDF-1 group had less decreased BMD compared with the control group (p= 0.089) 

(Figure 5-7).



 110 

 

Figure 5-2. Total BMC change within the osteotomy gap from the first week to 

the third week (mean ±  S.D.). 

 

 

 

Figure 5-3. Total BMC change within the osteotomy gap from the fourth week 

to the sixth week (mean ±  S.D.). Groups have * are significantly different to 

each other (p 0.05). 

 

* *



 111 

 

Figure 5-4. Total BMC change within the osteotomy gap from the first week to 

the sixth week (mean ±  S.D.). Groups have * are significantly different to each 

other (p 0.05). 

 

 

 

 

Figure 5-5. BMD change of the original bone area adjacent to the osteotomy gap 

from the first week to the third week (mean ± S.D.). 

*

*
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Figure 5-6. BMD change of the original bone area adjacent to the osteotomy gap 

from the fourth week to the sixth week (mean ±  S.D.). Groups have * are 

significantly different to each other (p 0.05). 

 

 

 

Figure 5-7. BMD change of the original bone area adjacent to the osteotomy gap 

from the first week to the sixth week (mean ±  S.D.). Groups have * are 

significantly different to each other (p 0.05). 

*

*

*

*
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5.3.3 New bone formation 

Hematoxylin and Eosin staining of the osteotomy gap showed the new bone formed 

after six weeks (Figure 5-8). The rBMC-SDF-1 group had more new bone formation 

than the other two groups on average without significant difference (Figure 5-9).  

 

Figure 5-8. H&E staining of new bone formation after six weeks (arrows). Scale 

bars, 200μm. 
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Figure 5-9. New bone area in the osteotomy gap after six weeks (mean ±  S.D.). 
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5.4 DISCUSSION 

In this study, a second injection of rBMCs and rBMC-SDF-1 was applied at the third 

week. The rBMC-SDF-1 group showed an improved new bone formation in the 

osteotomy site and less BMD loss in the adjacent bone area after the six weeks 

experiment, which is similar to the trend shown in chapter 4.  

 

Although the rBMC-SDF-1 group in this study showed significantly improved BMC 

than the control group six weeks postoperatively, when compared with the results of 

a single injection in chapter 4, both the second injection of rBMCs and rBMC-SDF-1 

did not enhance the BMC from the third week to the sixth week (Figure 5-10). This 

result indicates that the second injection of cells did not have a further enhancing 

effect in fracture healing in this study. The possible explanation is the engraftment of 

the secondary implanted cells, which may fail to maintain the donor cells within the 

fracture site. Scaffolds in tissue engineering provide several characters to facilitate 

the clinical usage of cells, including allowing cell attachment, proliferation, and 

differentiation (Hutmacher 2000). The second cell injection, in which cells were 

suspended in culture medium, therefore, may spread out from the oseotomy gap and 

result in less cells within the gap compared to the way the cells were introduced 

during the first application.  Non-attachment of the cells to a suitable scaffold may 

also effect the SDF-1 expression of the rBMC-SDF-1 group. However, use of a 

suitable scaffold such as fibrin glue to retain the cells at the site at the osteotomy site 

may have a detrimental affect as it may displace the repairing tissue. 

 

Another possible explanation is the changes of the mircoenvironment in the 

osteotomy site during the fracture healing. The pattern of molecules expressed in 

different stages in fracture healing is varying. Many of the osteoinductive factors, 

including transforming growth factor-beta (TGF- ) and bone morphogenetic proteins 

(BMPs), were up-regulated during early fracture healing and were found to be 

reduced after three weeks (Bostrom et al. 1995; Cho et al. 2002; Gerstenfeld et al. 

2003; Dimitriou et al. 2005). This reduced expression of osteoinductive factors, for 

example, BMP-2, could attenuate the enhancing effect of SDF-1, which relies on the 

activated osteogenic differentiation reported in chapter 2.  
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Figure 5-10. Comparison of BMC change within the osteotomy gap from the 

third week to the sixth week between the single and double injection of cells 

(mean ±  S.D.). Data were analysed by Student t-test within the same group.  

 

Interestingly, the second injection of cells made a significant improvement in 

preventing bone loss in the bone area adjacent to the osteotomy site from the third 

week to the sixth week compared with the result of a single injection of cells in 

chapter 4 (Figure 5-11).  All groups of the single injection showed about 15% 

decreased BMD during the second three weeks, while the rBMCs and rBMC-SDF-1 

groups of the double injection increased the BMD (p=0.020 for rBMCs and p=0.074 

for rBMC-SDF-1), which indicates that the second implantation of cells can still 

effect bone loss in the adjacent bone area. The increased BMD could also be related 

to lodging of the diffused cells from the osteotomy gap. In the control groups, the 

second injection of the culture medium made a slight increase in BMD when 

compared with the single injection. This difference may be due to the performance of 

the injection that gave the repairing site physical information or due to the fresh 
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culture medium. Further study is needed to investigate the effect of physical 

information in bone fracture healing.   

 

Figure 5-11. Comparison of BMD change of the original bone area adjacent to 

the osteotomy gap from the third week to the sixth week between the single and 

double injection of cells (mean ±  S.D.). Data were analysed by Student t-test 

within the same group. Data have * are significantly different to each other 

(p 0.05).  

 

There have only been a few studies reported about multiple stem cell transplantation 

in cell therapy (Omori et al. 2008; Abdelkefi et al. 2008). Omori et al. reported that a 

single high dose of stem cell transplanted intravenously gave better results than a 

multiple low dose stem cell transplantation in a rat cerebral ischemia model. 

Considering the transient increase of the local chemo-attractive cytokines, for 

example SDF-1, in the early stage after injury, the results of the multiple low cell 

transplantation could be affected by the weakened recruitment of the transplanted 

cells. In my study, although the second injection of cells did not further improve the 

new bone formation and BMC in the osteotomy gap, it still improved the bone loss in 

*

*
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the adjacent bone area. Therefore, to optimise the protocol of second cell 

transplantation in the bone defect model, an alternative cell delivery system which 

can keep the cells in the gap and improve the cell attachment, should be studied. 

Also, the time point for secondary cell injection should be considered.  
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Chapter Six 

General Discussion 
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The aim of this thesis is to improve bone healing treated with bone marrow cells 

over-expressing SDF-1. The general hypothesis of this work was that fracture 

healing will be improved by transplanting SDF-1 over-expressing bone marrow cells 

using a low cell number. 

 

In bone tissue engineering, osteoinductive factors play key roles in bone healing to 

stimulate osteoprogenitor cell differentiation and synthetic activity (Reddi 2001; 

Chen et al. 2004; Lind 1998). Many studies have revealed the multiple function of 

SDF-1/CXCR4 interaction in the development and regeneration of tissues (Claps et 

al.  2005), stem cell homing (Chavakis et al. 2008), angiogenesis (Salcedo and 

Oppenheim 2003), cancer cell metathesis (Gelmini et al. 2008) and tissue repairing 

(Zaruba and Franz 2010). Most of the studies focus on the effect of SDF-1/CXCR4 

interaction on cell recruitment, but the effects on cell differentiation have rarely been 

reported. Chapter 2 of this thesis demonstrated that SDF-1 could enhance the early 

osteogenic differentiation of stem cells under osteoinductive conditions. This finding 

is consistent with another study (Hosogane et al. 2010), which revealed that blocking 

of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly 

affected BMP-2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) 

synthesis in mature osteoblasts. It has shown that the effect of SDF-1 is to intensify 

ostegenic differentiation and discussed the possible signalling pathway (Figure 2-5 

and Figure 6-1) in chapter 2. This conditional enhancing effect of SDF-1 relies on 

the presence of an osteoinductive environment, which leads to the enhanced level of 

Runx2 and may further result in the activation of inactivated Runx2 by SDF-1. 

Therefore SDF-1 expressing cells may enhance bone repair by recruiting more stem 

cells and may also enhance osteogenic differentiation of the recruited cells. Because 

of the effect of SDF-1 in osteogenic differentiation, one interesting question is 

whether SDF-1 is involved in other types of stem cell differentiation under different 

conditions. Understanding if SDF-1 can play a role in other types of differentiation 

under particular conditions may be helpful for the use of stem cells in different 

clinical applications.  
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Figure 6-1. An overview of BMP and SDF-1 signal transduction pathway. 

Arrows indicate activating pathways (graph modified from Franceschi et al. 

2003). 

 

Critical size bone defects caused by trauma or cancer are the greatest clinical 

challenge in bone tissue engineering (Pelled et al. 2010). The most common tissue 

engineering concept of treating a bone defect is to combine a scaffold-matrix, living 

cells and/or biologically active molecules into an implantable construct (Lee et al. 

2009). Many studies utilized the transplantation of mesenchymal stem cells (MSCs) 

or genetically modified MSC (for example, expressing of BMP-2) and these have 

shown promising outcomes (Niemeyer et al. 2010; Zhang et al. 2010; Kumar et al. 

2010).  In applying stem cell transplantation, it is critical to attain a population of 

cells that is large enough to seed on/into a scaffold which can effectively contribute 

to repair and healing of the major defect (Zaky and Cancedda 2009). With the low 
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cell numbers of MSCs isolated from bone marrow, where about 1 in 100,000 cells 

are progenitors (Cui et al. 2007; Mirabet et al. 2008), it is laborious and time-

consuming to achieve the required cell number after cell sorting and ex vivo 

expansion of the stem cell. This limitation also weakens the feasibility of stem cell 

transplantation in clinical therapy. In chapter 4, transplantation of rBMC-SDF-1 

improved bone healing even when the cell number was five times less than the 

normal applied cell density, which is 5x10
6
 to 10x10

6
/cm

3
 (Kruyt et al. 2008).  These 

results support the hypothesis that the number of SDF-1 expressing cells required to 

effect repair of the defect can be lower than if none genetically modified cells were 

used. Although these SDF-1 expressing cells are more efficient than normal cells in 

the bone healing processes, further investigation is still needed to establish whether 

bone healing can be improved when a normal cell density is applied (for example, 

5x10
6
/cm

3
) and also to establish the optimal cell density for these SDF-1 expressing 

cells applied in bone repair therapy. A similar concept, which applies the cell 

recruitment ability of SDF-1, was used in treatments for myocardial infarction (Tang 

et al. 2009), heart transplantation (Zhao et al. 2009) and wound healing (Rabbany et 

al. 2009). In bone tissue engineering, the role of SDF-1/CXCR4 interaction in bone 

healing has only recently been investigated (Kitaori et al. 2009). According to the 

results presented in my thesis, increased new bone formation and bone mineral 

content, together with the effect on osteogenic differentiation under osteoinductive 

conditions, SDF-1 administration could be a potential strategy in musculoskeletal 

tissue healing.  

 

Interestingly, in chapter 4, SDF-1 showed prevented bone loss in the bone area 

adjacent to the osteotomy site. Post-traumatic osteopenia around a fracture has been 

reported and it has been shown that it can amount to almost 30% loss in the same 

bone (Findlay et al. 2002; Veitch et al. 2006) and bone mass reduction may persist 

for many years (Eyres and Kanis 1995; Karlsson et al. 1993). This bone loss in the 

area adjacent to the fracture site, which is indicative of high bone remodelling 

activity (Augat and Claes 2008), will increase the risk of re-fracture of the affected 

bone and could reduce the holding power of bone screws, which would impair 

implant fixation and cause migration, cutout and deformity (Utrilla et al. 2005; 

Goldhahn et al. 2005, 2008). For example, this type of bone loss may have been the 
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cause of aseptic loosening of the implant in total hip replacement (THR), which led 

to a 70-94% revision rate in a particular design of THR (Choplin et al. 2008). Thus, 

the administration of SDF-1 could be used to prevent bone loss. In revision THR, the 

interaction between the implant, graft and original bone is one of the most important 

parameters. New bone ingrowth from the surrounding bone area into the graft and to 

the surface of the implant is the ultimate goal to achieve the best incorporation. 

Many studies using modified bone graft, for example, supplemented with BMP-7 

(Tägil et al. 2000) or seeded by MSCs (Korda et al. 2010), achieved improved new 

bone formation within the graft.  The application of MSCs expressing SDF-1 in bone 

graft may not only enhance ingrowth of the new bone, but also reduce the bone loss 

in the surrounding area, which may lead to a better and faster bone incorporation. On 

the other hand, SDF-1/CXCR4 interaction may also play a role in osteoporosis, 

which is caused by the imbalance of bone resorption and formation during 

remodelling (Galliera et al. 2008).  A recent study where intravenous injection of 

mice MSCs, which over-express CXCR4 and Runx2, in an osteoporotic mouse 

model, has reported a return to normal bone stiffness and strength (Lien et al. 2009). 

This study, together with the finding of the potential regulatory role of SDF-1 in 

bone remodelling in my thesis, indicates the possibility of using augmented SDF-

1/CXCR4 interaction and osteoinductive factors in the therapy for osteoporosis. 

 

Chapter 5 considers the strategy of a secondary injection of rBMC-SDF-1. Although 

this did not improve further new bone formation within the osteotomy gap, it did 

have an effect on preventing bone loss or increasing bone mass in the adjacent bone 

area. This result indicates that SDF-1 may have a role in bone remodelling, and it is 

interesting to study the possibility of SDF-1 as a long-term gene therapy to prevent 

bone loss from the area around the implant. Considering the expression period of 

adenoviral vector, which is about three to four weeks (Lanza et al. 2000), long-term 

expression of SDF-1 can be achieved by applying either multiple administrations of 

adenovirally infected MSCs or a single dose of retrovirally infected MSCs. The 

former offers a predictable and controllable gene expression over time and could be 

suitable for a temporary treatment such as fracture healing. The latter, by its 

permanent gene expression, could benefit the long-term treatment of chronic diseases 

such as osteoporosis. However, retroviral vectors may randomly incorporate into the 
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host’s genome and at the present time should be considered as risky as this could 

promote mutagenesis in a long-term treatment.     

 

Results in this thesis revealed the potential of SDF-1 application in bone tissue 

engineering in vivo and also indicate the requirement to further elucidate the strategy 

of SDF-1 usage.  One alteration that could improve the outcome reported in chapter 

5 is to change the scaffold. Although the collagen sponge used for primary cell 

transplantation provides good support for cell attachment, proliferation and 

migration, the secondary cell injection, where the cells were suspended in culture 

medium, could not provide proper cell attachment. It is likely that these suspended 

cells flowed out of the osteotomy gap and led to an attenuated cell density in the 

healing area. Thus, to avoid invasive cell transplantation, an injectable hydrogel of 

collagen, which also permits homogeneous cell distribution throughout the scaffold, 

should be considered (Nöth et al. 2010).    

 

It would also be interesting to know whether there is a dose dependant effect of the 

SDF-1 on the improved bone healing. Kruyt et al. had reported the dose dependant 

effect on transplanted cell number in new bone formation (Kruyt et al. 2008). 

Identifying the best combination for the expression of SDF-1, which involves 

optimisation of the MOI of the infection, may be important.  

 

To extend the idea based on my findings, where it is necessary to use an 

osteoinductive environment for optimisation of the SDF-1 effect, a combination of 

SDF-1 with osteoinductive factors may be beneficial. Among the various 

osteoinductive factors that have been studied, BMP-2 has been the most promising 

and widely used factor. Healing of long bone critical-sized defects by BMP-2 has 

been demonstrated in species including rats, rabbits, dogs, sheep and non-human 

primates (Murakami et al. 2002). Adenoviral infected MSCs expressing BMP-2 also 

improved the healing ability in bone defects (Chang et al. 2003). To date, BMP-2 has 

been approved by the United States Food and Drug Administration (FDA) for use in 

open long-bone fracture and for use inside titanium cages for anterior spinal fusion 

(Lee et al. 2009). Encouragingly, BMP-2 together with SDF-1 has demonstrated a 

synergistic effect on C2C12 cell in vitro osteogenic differentiation compared with 
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BMP-2 alone (Hosogane et al. 2010). This finding further confirms the potential of 

the combination of BMP-2 and SDF-1 to achieve better results in fracture healing 

than when each is used separately.  

 

During the fracture healing process, inflammatory cytokines involved in fracture 

repair, for example, interleukins-1 and -6 (IL-1 and IL-6), are believed to play a role 

in initiating the repair cascade following injury (Al-Aql et al. 2008). BMP-2 with an 

early expression pattern during fracture healing (Cho et al. 2002; Gerstenfeld et al. 

2003; Dimitriou et al. 2005) has been revealed as a necessary component of the 

signalling cascade that governs and initiates fracture repair (Tsuji et al. 2006). As the 

expression of BMP-2 reduced after early inflammation in fracture repair, a second 

cell transplantation with expression of SDF-1 and BMP-2 may re-initiate the 

repairing process, leading to further improvement. 

 

In summary, this thesis has shown that SDF-1 can enhance early stage stem cell 

osteogenic differentiation when in osteoinductive conditions. Transplantation of 

genetically modified rat bone marrow cells, which overexpress SDF-1, can improve 

new bone formation and prevent bone loss at the early stage of fracture healing. 

Moreover, second transplantation of the SDF-1 expressing cells can further improve 

bone loss of the adjacent bone area of the fracture. 
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Appendix I 

 

Adenovirus titer measurement  Plague assay (Stratagene, Catalog 

No. 240010) 

The following protocol may be used to determine the titer (pfu/ml) of a viral stock.  

 

Preparing Viral Stock Dilutions 

1. Plate AD-293 cells at a density of 5 x10
5
 per well of 6-well tissue culture plates. 

2. Incubate overnight at 37°C. 

3. Dilute viral stocks in 1-ml volumes over a 10-fold series from 10
–5

 to 10
–9

 in 

growth medium. Carry dilutions in duplicate. 

4. Add 1 ml of each dilution to a separate well of the 6-well plate. Leave one well 

“medium only” (no virus added) as a control. 

5. Incubate at 37°C for 2 hours. Gentle rocking during the incubation is beneficial 

but not required. 

6. Proceed to Overlaying the Infected Cells with Agarose. 

 

Overlaying the Infected Cells with Agarose 

The agarose overlay should be applied so that it spreads fast enough to cover the 

plate before solidifying but not so fast that the cells are disrupted. It may be 

necessary to practice the overlaying technique on uninfected cells prior to 

performing the plaque assay. Prior to the addition of the agarose overlay, inspect the 

plates containing the cells to ensure adequate adherence. 

 

1. Prepare a solution of 5% SeaPlaque® agarose (Stratagene, CA) in sterile PBS, 

autoclave, and store in 10-ml aliquots at 4°C in 50-ml sterile conical tubes. 

2. Prior to use, melt the agarose by placing the tube in a beaker of boiling water. Do 

not microwave the tube of agarose. 

3. Once melted, cool the agarose to 45°C. 

4. Add 30 ml of growth medium previously equilibrated to 37°C and mix. This 

makes the final agarose concentration 1.25%. Proceed immediately to the next 

step. 
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5. Completely remove the growth medium from the wells that will receive the 

overlay. 

6. Gently pipet 3 ml of agarose/growth medium mix very gently along the side of the 

well and allow it to completely cover the bottom of the well. 

7. Incubate the plate at 37°C. Plaques, having the appearance of small white spots, 

should be visible to the naked eye within 12–21 days. During that time, if the 

agarose/growth medium overlay becomes yellow, pour additional overlays at a 

volume of 1.5 ml per addition. 

8. To determine titer, count plaques from wells where isolated plaques are clearly 

visible and countable. Average the counts from duplicate wells and multiply that 

number by the dilution factor to estimate pfu/ml. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 152 

SDF-1 ELISA assay (R&D systems, Catalog No. DSA00) 

Reagent preparation 

(Bring all reagents to room temperature before use) 

Wash Buffer - If crystals have formed in the concentrate, warm to room temperature 

and mix gently until the crystals have completely dissolved. Dilute 20 mL of Wash 

Buffer Concentrate into deionized or distilled water to prepare 500 mL of Wash 

Buffer. 

Substrate Solution - Color Reagents A and B should be mixed together in equal 

volumes within 15 minutes of use. Protect from light. 200 μL of the resultant mixture 

is required per well. 

SDF-1_ Standard - Reconstitute the SDF-1  Standard with 1.0 mL of deionized or 

distilled water. This reconstitution produces a stock solution of 100,000 pg/mL. Mix 

the standard gently to ensure complete reconstitution and allow the standard to sit for 

a minimum of 30 minutes with gentle agitation prior to making dilutions. 

Use polypropylene tubes. Pipette 900 μL of Calibrator Diluent RD6Q into the 

10,000 pg/mL tube. Pipette 500 μL of Calibrator Diluent RD6Q into the remaining 

tubes. Use the stock solution to produce a dilution series (below). Mix each tube 

thoroughly before the next transfer. The 10,000 pg/mL standard serves as the high 

standard. Calibrator Diluent RD6Q serves as the zero standard (0 pg/mL). 

 

Assay procedure 

(Bring all reagents and samples to room temperature before use. It is recommended 

that all samples, standards, and controls be assayed in duplicate) 

1. Prepare all reagents, working standards, and samples as directed in the previous 

sections. 

2. Remove excess microplate strips from the plate frame, return them to the foil 

pouch containing the desiccant pack, and reseal. 

3. Add 100 μL Assay Diluent RD1-55 to each well. 

4. Add 100 μL of Standard, sample*, or control per well. Cover with the adhesive 

strip provided. Incubate for 2 hours at room temperature on a horizontal orbital 

microplate shaker (0.12” orbit) set at 500 rpm. A plate layout is provided to 

record standards and samples assayed. 
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5. Aspirate each well and wash, repeating the process three times for a total of four 

washes. Wash by filling each well with Wash Buffer (400 μL) using a squirt 

bottle, manifold dispenser, or autowasher. Complete removal of liquid at each 

step is essential to good performance. After the last wash, remove any remaining 

Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean 

paper towels. 

6. Add 200 μL of SDF-1  Conjugate to each well. Cover with a new adhesive strip. 

Incubate for 2 hours at room temperature on the shaker. 

7. Repeat the aspiration/wash as in step 5. 

8. Add 200 μL of Substrate Solution to each well. Incubate for 30 minutes at room 

temperature on the benchtop. Protect from light. 

9. Add 50 μL of Stop Solution to each well. The color in the wells should change 

from blue to yellow. If the color in the wells is green or the color change does not 

appear uniform, gently tap the plate to ensure thorough mixing. 

10. Determine the optical density of each well within 30 minutes, using a microplate 

reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 

nm. If wavelength correction is not available, subtract readings at 540 nm or 570 

nm from the readings at 450 nm. This subtraction will correct for optical 

imperfections in the plate. Readings made directly at 450 nm without correction 

may be higher and less accurate. 
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Cell staining Tolidine blue 

Reagent preparation 

1. Toluidine blue stock solution  Mix 1 gm of Toluidine blue with 100 ml 

70% alcohol.  

2. 1% Sodium chloride  Mix 0.5 gm sodium chloride with 50 ml distilled 

water. 

3. Toluidine blue working solution  Mix 5 ml Toluidine blue stock solution 

with 1% Sodium chloride.  

 

Assay procedure  

1. Fix the cells remained on the trans-well membrane with 4% formaldehyde for 

10 minutes at room temperature. 

2. Gently scratch off the cells on the inner trans-well membrane (the site that the 

cells were seeded on) by using cotton bud.  

3. Stain the cells with Toluidine blue working solution for 1-2 minutes. 

4. Rinse in distilled water. 

5. Count the cell number remained on the trans-well membrane under light 

microscope.   
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Appendix II  

 

Numerical data of the figures in the thesis 
 

Figure 2-2. ALP activity of hMSCs was measured in weekly intervals during 

osteoinductive treatment. 

Groups Absorbance at 405nm (medium)  

7 days Group 1 0.416 

7 days Group 2 0.172 

7 days Group 3 0.13 

7 days Group 4 0.504 

14 days Group 1 0.645 

14 days Group 2 0.329 

14 days Group 3 0.271 

14 days Group 4 0.954 

21 days Group 1 0.449 

21 days Group 2 0.075 

21 days Group 3 0.032 

21 days Group 4 1.379 

28 days Group 1 0.844 

28 days Group 2 0.184 

28 days Group 3 0.155 

28 days Group 4 1.008 

 

 

 

Figure 2-4. Cell proliferation was measured by MTS assay in weekly intervals 

during the osteoinductive treatment. 

Groups Absorbance at 490nm (medium)  

7 days Group 1 0.748 

7 days Group 2 0.436 

7 days Group 3 0.412 

7 days Group 4 0.752 

14 days Group 1 0.862 

14 days Group 2 0.412 

14 days Group 3 0.391 

14 days Group 4 0.877 

21 days Group 1 0.492 

21 days Group 2 0.338 

21 days Group 3 0.398 

21 days Group 4 0.511 

28 days Group 1 0.443 

28 days Group 2 0.165 

28 days Group 3 0.232 

28 days Group 4 0.495 
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Figure 3-11. SDF-1 expression of hMSCs and rBMCs 5 days after Ad-SDF-1 

infection with different MOI. 

Groups SDF-1 expression (pg/ml) (mean ± S.D.) 

hMSCs MOI 0 2384 ± 734 

hMSCs MOI 25 7170 ± 1480 

hMSCs MOI 50 10570 ± 823 

hMSCs MOI 125 14530 ± 1647 

hMSCs MOI 250 17090 ± 976 

hMSCs MOI 500 16837 ± 1344 

rBMCs MOI 0 6993 ± 3924 

rBMCs MOI 25 4893 ± 1563 

rBMCs MOI 50 5693 ± 1601 

rBMCs MOI 125 12560 ± 1743 

rBMCs MOI 250 24660 ± 1900 

rBMCs MOI 500 36293 ± 1159 

 

Figure 3-12. Cell migration of the non-infected (normal) hMSCs and rBMCs due 

to the secreted SDF-1 in Ad-SDF-1 infected hMSCs and rBMCs after 6 hours. 

Groups Cell number (mean ±  S.D.) 

hMSCs MOI 0 26.2 ± 6.51 

hMSCs MOI 125 48.4 ± 11.42 

hMSCs MOI 250 54.1 ± 4.52 

rBMCs MOI 0 16.2 ± 9.02 

rBMCs MOI 250 41.6 ± 9.40 

rBMCs MOI 500 57.7 ± 14.86 

 

Figure 4-8. Total BMC change within the osteotomy gap after three weeks.  

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control 0.00136 ± 0.00137 

rBMCs 0.00252 ± 0.00058 

rBMC-SDF-1 0.00425 ± 0.00096 

  

Figure 4-9. BMD change of the original bone area adjacent to the osteotomy gap 

after three weeks. 

Groups Total BMD change (%) (mean ±  S.D.) 

Control -9.966 ± 9.384 

rBMCs -1.873 ± 18.293 

rBMC-SDF-1 -1.344 ± 9.407 

  

Figure 4-11. New bone area in the osteotomy gap after three weeks. 

Groups New bone formation (mm
2
) (mean ± 

S.D.) 

Control 0.445 ± 0.15 

rBMCs 0.44 ± 0.095 

rBMC-SDF-1 0.823 ± 0.354 
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Figure 4-12. FiSH staining of donor cells. 

Groups Ratio of cell number 

Control 0 

rBMCs 1 

rBMC-SDF-1 2.625 

 

Figure 4-14. Total BMC change within the osteotomy gap from the first week to 

the third week. 

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control 0.00146 ± 0.00077 

rBMCs 0.00246 ± 0.0003 

rBMC-SDF-1 0.00435 ± 0.00098 

Ad-SDF-1 0.0031 ± 0.00110 

 

Figure 4-15. Total BMC change within the osteotomy gap from the fourth week 

to the sixth week. 

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control -0.0061 ± 0.00199 

rBMCs -0.003 ± 0.0016 

rBMC-SDF-1 -0.00212 ± 0.0008 

Ad-SDF-1 -0.00408 ± 0.00243 

 

Figure 4-16. Total BMC change within the osteotomy gap after six weeks. 

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control -0.00463 ± 0.00276 

rBMCs -0.00053 ± 0.0017 

rBMC-SDF-1 0.00222 ± 0.00029 

Ad-SDF-1 -0.00098 ± 0.00221 

 

Figure 4-17. BMD change of the original bone area adjacent to the osteotomy 

gap from the first week to the third week. 

Groups BMD change (%) (mean ± S.D.) 

Control -17.745 ± 19.835 

rBMCs -19.212 ± 14.188 

rBMC-SDF-1 7.975 ± 14.614 

Ad-SDF-1 5.100 ± 16.113 
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Figure 4-18. BMD change of the original bone area adjacent to the osteotomy 

gap from the fourth week to the sixth week. 

Groups BMD change (%) (mean ± S.D.) 

Control -14.777 ± 18.994 

rBMCs -13.959 ± 15.324 

rBMC-SDF-1 -17.181 ± 15.03 

Ad-SDF-1 -23.569 ± 11.475 

 

Figure 4-19. BMD change of the original bone area adjacent to the osteotomy 

gap after six weeks. 

Groups BMD change (%) (mean ± S.D.) 

Control -32.41 ± 3.414 

rBMCs -31.592 ± 7.590 

rBMC-SDF-1 -12.073 ± 6.065 

Ad-SDF-1 -19.240 ± 18.206 

 

Figure 4-21. New bone area in the osteotomy gap after six weeks. 

Groups New bone formation (mm
2
) (mean ± 

S.D.) 

Control 0.393 ± 0.15 

rBMCs 0.645 ± 0.39 

rBMC-SDF-1 1.041 ± 0.167 

Ad-SDF-1 0.558 ± 0.27 

 

Figure 5-2. Total BMC change within the osteotomy gap from the first week to 

the third week. 

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control 0.0018 ± 0.00073 

rBMCs 0.00178 ± 0.00033 

rBMC-SDF-1 0.00263 ± 0.00084 

 

Figure 5-3. Total BMC change within the osteotomy gap from the fourth week 

to the sixth week. 

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control -0.00582 ± 0.00122 

rBMCs -0.00264 ± 0.00302 

rBMC-SDF-1 -0.00081 ± 0.00169 

 

Figure 5-4. Total BMC change within the osteotomy gap after six weeks. 

Groups Total BMC change (grames) (mean ± 

S.D.) 

Control -0.00402 ± 0.00106 

rBMCs -0.00086 ± 0.00306 

rBMC-SDF-1 0.00181 ± 0.00218 
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Figure 5-5. BMD change of the original bone area adjacent to the osteotomy gap 

from the first week to the third week. 

Groups BMD change (%) (mean ± S.D.) 

Control -34.85 ± 8.283 

rBMCs -38.354 ± 8.363 

rBMC-SDF-1 -28.562 ± 10.458 

 

Figure 5-6. BMD change of the original bone area adjacent to the osteotomy gap 

from the fourth week to the sixth week. 

Groups BMD change (%) (mean ± S.D.) 

Control -10.424 ± 11.77 

rBMCs 26.328 ± 13.52 

rBMC-SDF-1 3.454 ± 15.212 

 

Figure 5-7. BMD change of the original bone area adjacent to the osteotomy gap 

after six weeks. 

Groups BMD change (%) (mean ± S.D.) 

Control -42.045 ± 6.563 

rBMCs -22.57 ± 9.253 

rBMC-SDF-1 -26.843 ± 10.465 

 

Figure 5-9. New bone area in the osteotomy gap after six weeks. 

Groups New bone formation (mm
2
) (mean ± 

S.D.) 

Control 0.67 ± 0.254 

rBMCs 0.705 ± 0.112 

rBMC-SDF-1 1.067 ± 0.505 

 


