
PRL 95, 200405 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 NOVEMBER 2005
Pre- and Post-Selection Paradoxes and Contextuality in Quantum Mechanics

M. S. Leifer and Robert W. Spekkens
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

(Received 12 December 2004; published 11 November 2005)
0031-9007=
Many seemingly paradoxical effects are known in the predictions for outcomes of intermediate
measurements made on pre- and post-selected quantum systems. Despite appearances, these effects do
not demonstrate the impossibility of a noncontextual hidden variable theory, since an explanation in terms
of measurement disturbance is possible. Nonetheless, we show that for every paradoxical effect wherein
all the pre- and post-selected probabilities are 0 or 1 and the pre- and post-selected states are non-
orthogonal, there is an associated proof of the impossibility of a noncontextual hidden variable theory.
This proof is obtained by considering all the measurements involved in the paradoxical effect—the
preselection, the post-selection, and the alternative possible intermediate measurements—as alternative
possible measurements at a single time.
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The study of quantum systems that are both pre- and
post-selected was initiated by Aharonov, Bergmann, and
Lebowitz (ABL) in 1964 [1], and has led to the discovery
of many counter-intuitive results, which we refer to as pre-
and post-selection (PPS) effects [2], some of which have
recently been confirmed experimentally [3].

These results have led to a long debate about the inter-
pretation of the ABL probability rule [4]. An undercurrent
in this debate has been the connection between PPS effects
and contextuality. As first demonstrated by Albert,
Aharonov, and D’Amato [5], using an effect now known
as the ‘‘3-box paradox,’’ the probability assigned to an out-
come of a measurement given a pre- and a post-selection
can depend not only on the projector associated with that
outcome, but also on other details of the observable. This is
a sort of context dependence. As such, it seems to under-
mine the significance of the Bell-Kochen-Specker theorem
[6], which establishes the impossibility of a noncontextual
hidden variable theory (HVT), since there is no reason to
think that probabilities conditioned on the hidden variables
should be noncontextual if quantum probabilities are them-
selves contextual. Bub and Brown [7] convincingly dis-
puted this argument by giving an example for which simi-
lar reasoning would imply that quantum theory allowed
superluminal signalling. As they showed, it is a mistake to
think that a pre- and post-selected ensemble can be defined
independently of the intermediate measurement. Although
we agree that PPS paradoxes are not themselves proofs of
the contextuality of HVTs, we show that there is nonethe-
less a close connection between the two.

This connection is expected to have interesting applica-
tions in quantum foundational studies. For instance, it has
been suggested that Bell’s theorem [8] might be under-
stood within a realist and Lorentz-invariant framework if
one admits the possibility of a HVT that allows for
backward-in-time causation [9]. A simple model has
even been suggested by Kent [10]. This is closely con-
nected to the fact that Bell correlations can be simulated
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using post-selection, as shown in Ref. [7], which in turn is
the root of the detection-efficiency loophole in experimen-
tal tests of Bell’s theorem [11]. Further investigations into
the connection between proofs of nonlocality and PPS
paradoxes would shed new light on these avenues of re-
search. As nonlocality is a kind of contextuality (assuming
separability [12]), the connection between contextuality
and PPS paradoxes established in the present work is an
important contribution to this project.

Mermin [13] has already shown one connection between
PPS effects and contextuality. His investigation concerned
what is known as the ‘‘mean king’s problem’’ which is a
PPS effect that is qualitatively different from the paradoxi-
cal variety of PPS effect that we shall be considering.
Moreover, Mermin demonstrated how one can obtain a
type of mean king’s problem that is unsolvable starting
from the measurements used in a proof of the contextuality
of HVTs, whereas we demonstrate how one can obtain
proofs of contextuality starting from the measurements
used in a PPS paradox.

To be specific, we show that for every PPS paradox
wherein all the PPS probabilities are 0 or 1 and the pre-
and post-selection states are nonorthogonal, there is an
associated proof of the contextuality of HVTs. The key
to the proof is that measurements that are treated as tem-
poral successors in the PPS paradox are treated as counter-
factual alternatives in the proof of contextuality. This result
suggests the existence of a subtle conceptual connection
between the two phenomena that has yet to be fully under-
stood. Thus, the present work contributes to the project of
reducing the number of logically distinct quantum mys-
teries by revealing the connections between them.

We begin with a curious prediction of the ABL rule
known as the 3-box paradox. Consider a particle that can
be in one of three boxes. Denote the state where the particle
is in box j by jji. The particle is preselected in the state
j�i � j1i � j2i � j3i and post-selected in the state j i �
j1i � j2i � j3i (states will be left unnormalized). At an
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intermediate time, one of two possible measurements is
performed. The first possibility corresponds to the projec-
tor valued measure (PVM) [14] E1 � fP1; P?1 g, where
P1 � j1ih1j and P?1 � j2ih2j � j3ih3j. The second possi-
bility corresponds to the PVM E2 � fP2; P

?
2 g, where P2 �

j2ih2j and P?2 � j1ih1j � j3ih3j.
Now note that P?1 can also be decomposed into a sum of

the projectors onto the vectors j2i � j3i and j2i � j3i. The
first of these is orthogonal to the post-selected state, while
the second is orthogonal to the preselected state, so the
probability of the outcome P?1 occurring, given that the
pre- and post-selection were successful, must be 0. Conse-
quently, the measurement of E1 necessarily has the out-
come P1. Similarly, P?2 can be decomposed into a sum of
the projectors onto the vectors j1i�j3i and j1i�j3i, which
are also orthogonal to the post- and preselected states, re-
spectively. Consequently, the measurement of E2 neces-
sarily has the outcome P2. Thus, if one measures to see
whether or not the particle was in box 1, one finds that it
was in box 1 with certainty, and if one measures to see
whether or not it was in box 2, one finds that it was in box 2
with certainty.

This is reminiscent of the sort of conclusion that one
obtains in proofs of the impossibility of a noncontextual
hidden variable theory. Indeed, a proof presented by
Clifton [15] makes use of the same mathematical structure,
as we presently demonstrate.

Consider the eight vectors mentioned in our discussion
of the 3-box paradox, but imagine that these describe
alternative possible measurements at a single time (in
contrast to what occurs in the 3-box paradox). In a non-
contextual HVT, it is presumed that although not all of
these tests can be implemented simultaneously, their out-
comes are determined by the values of preexisting hidden
variables and are independent of the manner in which the
test is made (the context). Thus each of these vectors is
assigned a value, 1 or 0, specifying whether the associated
test would be passed or not. Clearly, the following two
rules must apply: (1) For any orthogonal pair, not both can
receive the value 1, and (2) for any orthogonal triplet,
exactly one must receive the value 1. Representing the
vectors by points and orthogonality by lines, the eight
vectors can be depicted as in Fig. 1.

Clifton’s proof is an example of a probablistic proof of
the contextuality of HVTs, since it relies on assigning the
vectors j�i; j i probability 1 a priori. This is justified as
|2 − |3 |2 + |3

|1

|2
|1 + |2 + |3 |1 + |2 − |3

|1 − |3 |1 + |3

|2〉 − |3〉 |2〉 + |3〉

|1〉

|2〉
|1〉 + |2〉 + |3〉 |1〉 + |2〉 − |3〉

|1〉 − |3〉 |1〉 + |3〉

FIG. 1. The vectors in Clifton’s proof of contextuality. White
(black) represents the value 1 (0).
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follows: the state j�i can be prepared, and if it is, then a
subsequent test for j�i will be passed with certainty. Thus,
for all valuations of the hidden variables consistent with the
preparation of j�i; j�i is assigned the value 1. Further-
more, after a preparation of j�i a test for j iwill be passed
with nonzero probability (because h j�i � 0) and conse-
quently some of the valuations of the hidden variables
consistent with the preparation of j�i also assign value 1
to j i. Let � denote a valuation that assigns 1 to both j�i
and j i. Since j1i � j3i and j2i � j3i are orthogonal to
j�i, they must be assigned value 0 by � and since j1i � j3i
and j2i � j3i are orthogonal to j i, they must also be
assigned value 0 by �. But given that j1i, j2i � j3i, and
j2i � j3i form an orthogonal triplet, by rule (2) it follows
that j1i must be assigned the value 1 by �. Similarly, given
that j2i, j1i � j3i, and j1i � j3i form an orthogonal triplet,
by rule (2) it follows that j2i must be assigned the value 1
by �. However, by rule (1) j1i and j2i cannot both receive
the value 1, since they are orthogonal. Thus, we have
derived a contradiction.

To our knowledge, the connection between Clifton’s
proof and the 3-box paradox has not previously been
recognized.

We will show that this sort of connection is generic to
PPS paradoxes. We begin with a short review of the ABL
rule, hidden variable theories, and contextuality.

We only consider quantum systems with a finite dimen-
sional Hilbert space and assume that no evolution occurs
between measurements. We restrict our attention to sharp
measurements, that is, those associated with PVMs. We
also restrict attention to measurements for which the state
updates according to �! Pj�Pj=Tr�Pj�� upon obtaining
outcome j. This is known as the Lüders rule. We call this
set of assumptions the standard framework for PPS effects.
It includes all of the PPS ‘‘paradoxes’’ discussed in the
literature to date.

Now, consider a temporal sequence of three sharp mea-
surements. The initial, intermediate, and final measure-
ments occur at times tpre, t, and tpost respectively. The
only relevant aspects of the initial and final PVMs are the
projectors associated with the outcomes specified by the
pre- and post-selection. We denote these by �pre and �post,
and we denote the PVM associated with the intermediate
measurement by E � fPjg.

Assuming that nothing is known about the system prior
to tpre, so that the initial density operator is I=Tr�I�, where I
is the identity operator, the measurement at tpre prepares
the density operator �pre � �pre=Tr��pre�. By Bayes’
theorem, we can deduce that the probability of obtaining
the outcome k in the intermediate measurement is

p�Pkj�pre;�post; E� �
Tr��postPk�prePk�
P

j
Tr��postPj�prePj�

: (1)

This is a special case of the most general version of the
ABL rule [2], and we therefore refer to such probabilities
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as ‘‘ABL probabilities.’’ In the case where �pre and �post

are rank-1 projectors onto states j�i and j i respectively,
this rule reduces to the more familiar p�Pkj�; ; E� �
jh jPkj�ij

2=
P
jjh jPjj�ij

2 which was implicitly used in
our discussion of the 3-box paradox.

A hidden variable theory is an attempt to explain the
outcomes of quantum measurements by a set of variables
that are hidden to one who knows only the preparation
procedure. We use the term ontic state to refer to a com-
plete description of the real state of affairs according to the
HVT. This includes a valuation of all the hidden variables,
and may also include the quantum state vector if this has
ontic (rather than epistemic) status in the HVT. A particu-
larly natural class of HVTs are those that satisfy the
following two assumptions [12]: measurement noncontex-
tuality, which is the assumption that the manner in which
the measurement is represented in the HVT depends only
on the PVM and not on any other details of the measure-
ment (the context); and outcome determinism for sharp
measurements, which is the assumption that the outcome of
a PVM measurement is uniquely fixed by the ontic state.
We abbreviate these as MNHVTs. It follows that in an
MNHVT, every projector is assigned a probability of 0 or 1
by an ontic state, independently of the nature of the mea-
surement in which the projector appears, for instance, of
what other projectors might be measured simultaneously
with it. In other words, projectors are associated with
unique preexisting properties that are simply revealed by
measurement [12].

Suppose we denote by s the proposition that asserts that
the property associated with projector P is possessed. In an
MNHVT the negation of s, denoted :s, is associated with
I � P. Now consider a projector Q that commutes with P,
and denote the proposition associated with Q by t. In an
MNHVT the conjunction of s and t, denoted s ^ t, is
associated with PQ and the disjunction of s and t, denoted
s _ t, is associated with P�Q� PQ (the latter follows
from the fact that s _ t � :�:s ^ :t��.

Let p�s� denote the probability that the proposition s is
true. Classical probability theory dictates that 0 � p�s� �
1, p�:s� � 1� p�s�, p�s _ :s� � 1, p�s ^ :s� � 0,
p�s ^ t� � p�s�, p�s ^ t� � p�t�, and p�s _ t� �
p�s� � p�t� � p�s ^ t�. We therefore obtain the following
constraints on an MNHVT.

Algebraic conditions.—For projectors P;Q such that
�P;Q� � 0, we have 0 � p�P� � 1, p�I � P� �
1� p�P�, p�I� � 1, p�0� � 0, p�PQ� � p�P�, p�PQ� �
p�Q�, and p�P�Q� PQ� � p�P� � p�Q� � p�PQ�.

The Bell-Kochen-Specker theorem shows that there are
sets of projectors to which no assignment of probabilities 0
or 1 consistent with the algebraic conditions is possible.
This demonstrates the impossibility of an MNHVT, or
equivalently, the contextuality of HVTs of quantum me-
chanics [16].

A connection to PPS paradoxes is suggested by the fact
that there exist sets of projectors for which an ABL proba-
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bility assignment violates the algebraic constraints, while
every projector receives probability 0 or 1. We call such a
scenario a logical PPS paradox. The 3-box paradox is an
example of this [17].

Now, define � to be the set (or ensemble) of ontic states
that can obtain prior to the intermediate measurement
given the pre- and post-selection. If � were independent
of the nature of the intermediate measurement, then the
probability assigned by the ABL rule to a projector could
also be interpreted as the probability assigned to it by ontic
states in �. But since the latter probabilities are required to
satisfy the algebraic conditions in an MNHVT, the viola-
tion of these conditions would be a proof of the impossi-
bility of an MNHVT. However, a measurement in an HVT
need not be modeled simply by a Bayesian updating of
one’s information, but may also lead to a disturbance of the
ontic state. Thus, to determine � we need to work back-
wards from the post-selection, asking what is the set � of
ontic states that could obtain after the intermediate mea-
surement given the post-selection, and then what ontic
states could obtain prior to the intermediate measurement
given � and given the nature of the disturbance. Since the
disturbance may depend on the nature of the intermediate
measurement, so too may �. Thus, the possibility of
measurement disturbance blocks the conclusion that a
PPS paradox is itself a proof of the contextuality of
HVTs. This is discussed in more detail in Ref. [20].

Despite these considerations, the main aim of this letter
is to show that there is a connection between PPS para-
doxes and contextuality, but it is significantly more subtle
than one might have thought.

Theorem.—For every logical PPS paradox within the
standard framework for which the pre- and post-selection
projectors are nonorthogonal, there is an associated proof
of the impossibility of an MNHVT that is obtained by
considering all the measurements defined by the PPS para-
dox—the preselection, the post-selection, and the alterna-
tive possible intermediate measurements—as alternative
possible measurements at a single time.

Our proof of this theorem generalizes the argument
presented for the 3-box paradox. We begin with two lem-
mas and a corollary.

Lemma 1.—If �pre, �post, P are projectors satisfying
�post�I � P��pre � 0, then there exists a pair of orthogo-
nal projectors Q and R such that I � P � Q� R where
�preR � 0 and �postQ � 0.

Proof.—Let R 	 �I � P� ^ �I ��pre�, where P ^Q
denotes the projector onto the intersection of the subspaces
associated with P and Q. This clearly satisfies �preR � 0.
Moreover, since R is a subspace of I � P, the projector
Q 	 �I � P� � R is orthogonal to R and satisfies I � P �
Q� R. Finally, �post�I � P��pre � 0 entails that �post is
orthogonal to the projector onto ran��I � P��pre�, where
ran�X� denotes the range of X. But this projector is simply
�I � P� � �I � P� ^ �I ��pre� � Q. Thus, �postQ � 0 is
satisfied. �
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Lemma 2.—If under a preselection of �pre and a post-
selection of �post, the projector P receives probability 1 in
a measurement of a PVM E � fP;P?1 ; P

?
2 ; . . .g that appears

in a logical PPS paradox, then in an MNHVT, if �pre and
�post are assigned probability 1 by some ontic state �, P is
also assigned probability 1 by the ontic state �. Succinctly,
if p�Pj�pre;�post; E� � 1 and p��prej�� � p��postj�� �
1, then p�Pj�� � 1.

Proof.—If p�Pj�pre;�post; E� � 1, it follows from the
ABL rule that Tr��preP?k �postP?k � � 0 for all k. Since
Tr�AyA� � 0 implies that A � 0; it follows that
�postP

?
k �pre � 0 for all k and consequently that �post�I �

P��pre � 0. It then follows from lemma 1 that I � P can
be decomposed into a sum of projectors R andQ which are
orthogonal to �pre and �post respectively. Given this or-
thogonality, for any � in an MNHVT yielding p��prej�� �
p��postj�� � 1, we have p�Qj�� � p�Rj�� � 0. The al-
gebraic conditions then imply that p�Pj�� � 1�
p�I � Pj�� � 1� p�Q� Rj�� � 1. �

Corollary.—If p�Pj�pre;�post; E� � 0 and p��prej�� �
p��postj�� � 1, then p�Pj�� � 0.

Proof.—Given that each of the projectors P;P?1 ;
P?2 ; . . . must receive value 0 or 1 in a logical PPS
paradox, p�Pj�pre;�post; E� � 0 implies that
p�P?k j�pre;�post; E� � 1 for some k, which by lemma 2
implies that p�P?k j�� � 1 for some k. It then follows from
the algebraic constraints that p�Pj�� � 0. �

Proof of theorem.—By the assumption that �pre and
�post are nonorthogonal, there exist ontic states � such
that p��prej�� � p��postj�� � 1. This, together with
Lemma 2 and its corollary, implies that whatever proba-
bility assignments to fPg arise from the ABL rule also arise
in any MNHVT as the probability assignment to fPg for
such �. Since, by the assumption of a logical PPS paradox,
the ABL probabilities violate the algebraic conditions, it
follows that the probabilities conditioned on such � in an
MNHVT also violate the algebraic conditions. However,
probability assignments in an MNHVT must satisfy these
conditions, therefore an MNHVT is ruled out. �

A question that has not been addressed in the present
work is whether, in an arbitrary statistical theory (not just
quantum theory), the existence of logical PPS paradoxes
implies that this theory cannot be modeled by a noncon-
textual HVT. To answer this question, one must character-
ize PPS paradoxes and contextuality in a theory-
independent manner. For an attempt to generalize the
notion of contextuality to HVTs for arbitrary statistical
theories, see Ref. [12]. No attempt at providing an opera-
tional characterization of logical PPS paradoxes has yet
20040
been made; however, the surprising features of the 3-box
paradox have been reproduced within two simple toy
theories, described in Refs. [20,21], and these toy theories
can be understood in terms of a HVT that is noncontextual
by the definition of Ref. [12]. Thus it seems that the
existence of logical PPS paradoxes does not imply the
impossibility of a noncontextual HVT. Nonetheless, there
may be additional natural constraints that a general class of
theories including quantum mechanics satisfy, under which
this implication holds true. Further investigations into
these issues are required.
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