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We present a time-dependent analysis of CP violation in B0 ! ���� decays based on a 140 fb�1 data
sample collected at the ��4S� resonance with the Belle detector at KEKB. We obtain the charge
asymmetry A��

CP � �0:16� 0:10�stat� � 0:02�syst�. An unbinned maximum-likelihood fit to the 
t
distributions yields C�� � 0:25� 0:17�stat��0:02�0:06�syst�, 
C�� � 0:38� 0:18�stat��0:02�0:04�syst�, S�� �
�0:28� 0:23�stat��0:10�0:08�syst�, and 
S�� � �0:30� 0:24�stat� � 0:09�syst�. The direct CP violation
parameters for B ! ���� and B ! ���� decays are A��

�� � �0:02� 0:16�stat��0:05�0:02�syst� and
A��

�� � �0:53� 0:29�stat��0:09�0:04�syst�.

DOI: 10.1103/PhysRevLett.94.121801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd
In the standard model of elementary particles, CP vio-
lation arises from the Kobayashi-Maskawa phase [1] in the
quark-mixing matrix. CP violating effects in the B meson
system can be parametrized in terms of three angles, 
1,

2, and 
3 (also written �, �, and 
, respectively).
Recently, the CP violation parameter 
2 was studied by
the Belle [2] and BABAR [3] collaborations using B !
���� decays that proceed by b ! u �ud transitions. Here
we present a study of B ! ���� time-dependent CP
asymmetry, which offers another way to constrain 
2.
Both direct and indirect CP violation can be probed in
this decay. Since B ! ���� is not a CP eigenstate decay,
four decay modes with different charge and flavor combi-
nations in the neutral B meson system must be considered.

In the decay chain ��4S� ! B0B0 ! ������ftag, one
of the B mesons decays at time t�� to ���� and the other
meson decays at time ttag to a final state ftag that distin-
guishes between B0 and B0. The decay rate for B0�B0� !
���� has a time dependence given by [4]

P ����

q �
t� � �1�A��
CP�

e�j
tj=�B0

8�B0


 f1� q��S�� �
S��� sin�
md
t�

� �C�� � 
C��� cos�
md
t�
g; (1)

where �B0 is the B0 lifetime, 
md is the mass difference
between the two B0 mass eigenstates, 
t � t�� � ttag, and
the b-flavor charge q � �1��1� when the tagging B me-
son is a B0�B0�. The time and flavor integrated charge
12180
asymmetry A��
CP is defined as

A ��
CP �

N������ � N������

N������ � N������
; (2)

where N������ and N������ are the sum of the yields
for B0 and B0 decays to ���� and ����, respectively.
The mixing-induced CP violation parameter S�� is related
to 
2, and C�� is the flavor-dependent direct CP violation
parameter. The asymmetry between the decay rates,
��B0 ! ����� � ��B0 ! ����� and ��B0 ! ������
��B0 ! �����, is described by 
C��, while the strong
phase difference between the amplitudes contributing to
B0 ! �� decays is described by 
S��. These parameters

are related to 
2 as S���
S���
����������������������������������������
1��C���
C���

2
q




sin�2
�
2eff���, where 2
�

2eff � arg��q=p�� �A�
��=A�

���
 and
� � arg�A�

��=A
�
��
; arg�q=p
 is the B0-B0 mixing phase.

The terms A�
��� �A�

��� and A�
��� �A�

��� denote the transition
amplitudes for the processes B0�B0� ! ���� and
B0�B0� ! ����, respectively. The angles 
�

2eff are equal
to 
2 if there is no penguin contribution. The effect of
direct CP violation can also be expressed in terms of
another set of parameters, A��

�� and A��
�� :

A��
�� �

N�B0 ! ����� � N�B0 ! �����

N�B0 ! ����� � N�B0 ! �����
;

� �
A��

CP � C�� �A��
CP � 
C��

1�
C�� �A��
CP � C��

(3)
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FIG. 1. 
E (top) and Mbc (bottom) projections for the result of
the 2D unbinned likelihood fit. The plots on the left are the
results for the ���� candidates, while those on the right show
the results for the ���� candidates.
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The strategy of this analysis is to reconstruct final states
in quasi-two-body decays B0 ! ����0���, which corre-
spond to distinct bands in the �����0 Dalitz plot. We
exclude the interference region where the � charge is
ambiguous, and neglect possible residual interference
effects.

The results for this analysis are based on 140 fb�1 of
integrated luminosity, which corresponds to 152
 106

produced BB pairs. The data were collected with the
Belle detector at the KEKB asymmetric-energy e�e� col-
lider [5], which collides 8.0 GeV e� and 3.5 GeV e�

beams. The ��4S� is produced with a Lorentz boost of
�
 � 0:425 nearly along the electron beam line. Since the
B0 and B0 mesons are approximately at rest in the ��4S�
center-of-mass (c.m.) system, 
t can be determined from

z, the displacement in z between the ���� and ftag
decay vertices: 
t ’ �z���� � ztag�=�
c. The z axis is
antiparallel to the positron beam.

The Belle detector [6] is a large-solid-angle general
purpose spectrometer that consists of a silicon vertex de-
tector (SVD), a central drift chamber (CDC), an array of
aerogel threshold Čerenkov counters (ACC), time-of-flight
(TOF) scintillation counters, and an electromagnetic calo-
rimeter (ECL) comprised of CsI(Tl) crystals located inside
a superconducting solenoid coil that provides a 1.5 T
magnetic field. An iron flux return located outside of the
coil is instrumented to detect K0L mesons and identify
muons.

To reconstruct B0 ! ���� candidates, we combine
pairs of oppositely charged tracks with �0 candidates.
Each charged track is required to have transverse momenta
greater than 100 MeV=c in the laboratory frame with SVD
hits. Charged tracks are identified as pions by combining
information from the ACC, CDC, and TOF. Electronlike
tracks are rejected. The 
 energies for �0 candidates are
required to be greater than 50 MeV if the photon is detected
in the barrel ECL (32� <  < 129�); otherwise, the energy
is required to be larger than 100 MeV, where  denotes the
polar angle with respect to the z axis. The �0 candidates
are selected from 

 pairs with invariant masses in the
range 0:118 GeV=c2 <M

 < 0:150 GeV=c

2, and mo-
mentum larger than 200 MeV=c in the laboratory frame.
In addition, we require j cos �

0

decj< 0:95, where  �
0

dec is
defined as the angle between the photon flight direction
and the boost direction from the laboratory system in the
�0 rest frame, and we require the "2 of the �0 mass-
constrained fit to be less than 50 (this requirement is
99% efficient).
B meson candidates are reconstructed using the beam-

energy constrained mass Mbc �
������������������������
E2beam � P2B

q
and the en-

ergy difference 
E � EB � Ebeam. The variables EB and
PB are the reconstructed energy and momentum of the B
candidate in the c.m. frame, and Ebeam is the c.m. beam
energy. The selection region is defined as Mbc >
5:2 GeV=c2 and �0:3 GeV<
E< 0:2 GeV, and the sig-
12180
nal region as Mbc > 5:27 GeV=c
2 and �0:10 GeV<


E< 0:08 GeV. The B ! ���� candidates are formed
from three-body B ! �����0 decays with a ���0 in-
variant mass in the range 0:57 GeV=c2 <M���0 <
0:97 GeV=c2 and � helicity j cos �helj> 0:5, where  �hel is
defined as the angle between the charged pion direction
and the B0 direction in the � rest frame. To avoid the region
where the ���� and ���� contributions interfere, we
exclude candidates with both M���0 and M���0 smaller
than 1:22 GeV=c2. Candidates with M���� <
0:97 GeV=c2 are removed to avoid the region where the
���� or ���� bands overlap with �0�0.

To suppress the dominant e�e� ! q �q continuum back-
ground (q � u; d; s; c), we form the likelihood ratio R �

Ls=�Ls �Lbkg�, where Ls and Lbkg are likelihood func-
tions for signal and continuum events, respectively. We use
a Fisher discriminant based on five modified Fox-Wolfram
moments [7], and the c.m. flight direction of the B ( B)
with respect to the z axis to form the likelihood function.
The signal likelihood Ls is determined from a GEANT-
based Monte Carlo (MC) simulation, and Lbkg is based
on Mbc sideband data, Mbc < 5:26 GeV=c2. The contin-
uum background is reduced by requiring R to be greater
than 0.8. If there is more than one candidate in an event, we
select the candidate with the smallest sum of the "2 for the
���� vertex fit and the �0 mass-constrained fit.

The flavor of the accompanying B meson is identified
from the decay products not associated with the recon-
structed B0 ! ���� decay. We use the same method as
used for the Belle sin2
1 measurement [8,9]. Two parame-
ters q and r are used to describe the flavor tagging infor-
mation. The parameter q is defined in Eq. (1), and the
parameter r is a MC-determined quality factor that ranges
1-3
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from r � 0 for no flavor discrimination to r � 1 for un-
ambiguous flavor assignment. It is used only to sort data
into six r intervals. The vertex reconstruction algorithm is
the same as that used for the sin2
1 analysis [8].

Figure 1 shows the 
E (Mbc) distribution in the Mbc

(
E) signal region for B0 ! ���� candidates after flavor
tagging and vertex reconstruction. The ���� signal yields
are extracted from an unbinned maximum-likelihood fit to
the two-dimensional (Mbc, 
E) distribution. The back-
grounds are categorized as continuum q �q, b ! c transi-
tions (BB), B ! �K, and rare charmless decays other than
B ! �K (rare B). The distributions for ��, BB, �K, and
rare B events are obtained from MC simulations.

The �� signal probability density function (PDF) con-
tains two components: signal events reconstructed with the
correct charge (P��) and those with incorrect charge
(Pwc��). The fraction of events with incorrect charge in the
signal region due to combinations that include a random �0

is estimated to be 2.7% from MC simulations and is fixed in
the fit. The signal PDF shape is modeled by a smoothed
histogram. The 
E distributions for B ! �� signal are
parametrized separately for �0 momentum below and
above 1:2 GeV=c in the laboratory frame. The 
E widths
for �� and �K are calibrated from D�0 ! D0�K���
�0

data. The B� ! D0�K����0
�� mode is used to cali-
brate the 
E and Mbc peak positions. The Mbc and 
E
distributions for the continuum q �q background are parame-
trized by an ARGUS function [10] and a linear function,
respectively. The contributions from B ! �K [with B �
�9:0� 1:6� 
 10�6 [11] ] and from rare B decays are fixed
in the fit, while the yields for B ! �� signal, BB and
continuum backgrounds, and the shape parameters for con-
tinuum are floated. From the selection region, we obtain
483� 46 B ! ���� events, and obtain a time and flavor
integrated charge asymmetry A��

CP � �0:16� 0:10�stat�.
The estimated yields for B ! ��, B ! �K, q �q,BB, and

rare B in the signal region are 328.7, 11.2, 833.0, 23.3, and
18.8, respectively. We remove the requirements on M���0

and cos �hel and examine these distributions to verify that
the signals reconstructed as B ! �����0 are from the
two-body decay B ! ��. Figure 2 shows the signal yields
in bins of M���0 and cos �hel for data.
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The CP violation parameters are obtained from an un-
binned maximum-likelihood fit to the observed proper-
time distribution for the B ! �� candidates in the
(Mbc,
E) signal region. The likelihood function describing
the proper-time distribution is

L �
YN

i�1

ff��P���
ti� � fwc��Pwc���
ti� � f�KP�K�
ti�

� fq �qPq �q�
ti� � fBBPBB�
ti� � frare BPrare B�
ti�g;

(4)

where the weighting functions fm (m � ��, �K, q �q, BB,
and rare B) are determined on an event-by-event basis as
functions of Mbc and 
E for each flavor tagging r interval
and �0 momentum range in the laboratory system. The
time-dependent probability density functions (
t PDFs)
P���
ti� for B ! �� and P�K�
ti� for B ! �K are ob-
tained from the true PDFs convolved with the
t resolution
function used in the sin2
1 measurement [8]. The true
PDF for B ! �� is given by Eq. (1) modified to incorpo-
rate the effect of incorrect flavor tagging. The PDF for B !
�� signal reconstructed with incorrect charge, Pwc�����
ti�,

is given by P�����
ti�. For B ! �K, C � S � 
S � 0,

C � �1, and A�K � 0 is assumed. The resolution func-
tion consists of the detector resolution, the shift in vertex
position due to secondary tracks originating from charmed
particle decays, and smearing due to the approximation

t ’ �z���� � ztag�=�
c. The 
t PDFs for other back-
grounds are all parametrized as P j��1�fj���
t�*j

���

fjexp��
j
t�*j

�j
�j

� convolved with Rj (j � q �q, BB, and rare

B), where fj is the fraction of the background with effec-
tive lifetime �j. The resolutionlike function Rj for back-
ground is given by two Gaussians. The parameters of the

t PDF for q �q background are obtained from a fit to
sideband data (5:2 GeV=c2 <Mbc < 5:26 GeV=c

2 and

E>�0:15 GeV). The parameters of the 
t PDFs for
BB and rare B are obtained from a fit to MC simulations.

The maximum-likelihood fit to the 1215 �� candidates
gives C�� � 0:25� 0:17�0:02�0:06, 
C�� � 0:38� 0:18�0:02�0:04,
S�� � �0:28� 0:23�0:10�0:08, and 
S�� � �0:30� 0:24�
0:09, where the first (second) errors are statistical (system-
atic). The correlation between C�� and 
C�� is 0.271 and
that between S�� and 
S�� is 0.284, while correlations
between other variables are smaller. The data and fit result
are shown in Fig. 3.

The systematic error in A��
CP includes a possible back-

ground asymmetry (�0:010) and charge asymmetry in the
tracking (�0:012). The charge dependence of tracking
efficiency is studied using D0 ! K��� decays from in-
clusive D�� ! D0�� and selecting the momentum region
corresponding to B0 ! ���� decays. The systematic er-
rors for time-dependent measurements include the uncer-
tainties in the vertex reconstruction, background fraction,
1-4
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background 
t PDF, wrong-tag fractions, �� and �K 
t
resolution functions, physics parameters (�B, 
md [12],
A�K [13]), and fitting bias. The fitting bias is estimated
from MC pseudoexperiments. All other systematic uncer-
tainties are obtained by varying parameters within their
errors and repeating the fit. The dominant source of sys-
tematic error is the vertex reconstruction (�0:012�0:055 for C��,
�0:011
�0:038 for 
C��, �0:094

�0:073 for S��, and �0:089
�0:092 for 
S��).

We perform various consistency checks. We examine the
stability of the results as the R selection criterion is varied
and the asymmetry of the 
t distributions for events in the
sideband region. No significant variation or asymmetry is
observed. We measure the B0 lifetime with the B0 !
���� candidates and find �B0 � 1:56�0:13�0:12 ps, which is
consistent with the world average value [12].

The extraction of 
2 from measurements of time-
dependent CP violation parameters in B ! ���� decays
has been studied in several theoretical approaches
[4,14,15]. A Grossman-Quinn type bound [16] based on
isospin [SU(2) symmetry] does not significantly limit the
penguin diagram contribution due to the large branching
fraction for B0 ! �0�0 [17]. Since the number of measur-
able quantities [six including B�B0 ! �����] are not
sufficient to completely describe the amplitudes for B0 !
���� decay (8 free parameters), either specific models
or additional assumptions are involved, such as QCD
factorization [14] or SU(3) flavor symmetry [4]. A re-
cent approach using broken flavor SU(3) implies 
2 �
�102� 13� 15�� using our results [15]. The first error is
experimental, while the second is the uncertainty due to
12180
SU(3) breaking effects. Since there are two possible 
2
solutions that correspond to a sin�2
2� measurement, this
result is based on choosing the 
2 solution that is consis-
tent with the established 
1 measurement [8,18].

In summary, using 152
 106 BB pairs, we have mea-
sured CP violation parameters for B0 ! ���� decays.
We obtain A��

CP � �0:16� 0:10� 0:02, C�� � 0:25�
0:17�0:02�0:06, 
C�� � 0:38� 0:18�0:02�0:04, S�� � �0:28�
0:23�0:10�0:08, and 
S�� � �0:30� 0:24� 0:09. These give
the direct CP violation parameters A��

�� � �0:02�
0:16�0:05�0:02 and A��

�� � �0:53� 0:29�0:09�0:04. These results
are consistent with a previous measurement [13]. We find
no significant mixing-induced or direct CP violation in
B0 ! ����.
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