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R. Kumar,33 C. C. Kuo,24 A. Kuzmin,1 Y.-J. Kwon,50 J. Lee,37 M. J. Lee,37 S. E. Lee,37 T. Lesiak,27 S.-W. Lin,26

D. Liventsev,13 G. Majumder,41 F. Mandl,11 T. Matsumoto,47 A. Matyja,27 S. McOnie,40 T. Medvedeva,13 W. Mitaroff,11

H. Miyake,32 H. Miyata,29 Y. Miyazaki,22 R. Mizuk,13 E. Nakano,31 M. Nakao,8 H. Nakazawa,8 Z. Natkaniec,27

S. Nishida,8 O. Nitoh,48 S. Ogawa,42 T. Ohshima,22 S. Okuno,15 S. L. Olsen,7 Y. Onuki,35 H. Ozaki,8 P. Pakhlov,13

H. Park,17 K. S. Park,39 R. Pestotnik,14 L. E. Piilonen,49 A. Poluektov,1 Y. Sakai,8 N. Satoyama,38 O. Schneider,18
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We report a measurement of the exclusive e�e� ! D����D�� cross section as a function of center-of-
mass energy near the D���

�
D�� threshold with initial-state radiation. A partial reconstruction technique is

used to increase the efficiency and to suppress background. The analysis is based on a data sample
collected with the Belle detector with an integrated luminosity of 547:8 fb�1.

DOI: 10.1103/PhysRevLett.98.092001 PACS numbers: 13.66.Bc, 13.87.Fh, 14.40.Gx

Exclusive e�e� hadronic cross sections to final states
with charm meson pairs are of special interest because they
provide information on the spectrum of JPC � 1�� char-
monium states above the open-charm threshold, which is
poorly understood [1]. The observation of the charmo-
niumlike Y�4260� state, seen only in J= ���KK� final
states [2–5], has stimulated renewed interest in this field.
Curiously, the Y�4260� peak position is close to a local
minimum of the total hadronic cross section [6]. The large
branching fraction to J= �� inferred from the total had-
ronic cross section is unexpected for a conventional char-
monium state with such a large mass and width. In a recent
measurement [7] the e�e� ! D �D cross section is de-
scribed by known charmonium states without a significant
Y�4260� contribution. A study of the production cross
section of the charmed meson pairs in this energy range
could help clarify this intriguing situation.

In this Letter we report a measurement of exclusive cross
sections for e�e� ! D��D�� and e�e� ! D�D�� [8]
using initial-state radiation (ISR). The data used for this
analysis correspond to an integrated luminosity of
547:8 fb�1 collected with the Belle detector [9] at the
��4S� resonance and nearby continuum at the KEKB
asymmetric-energy e�e� collider [10].

To measure the e�e� hadronic cross section at
���
s
p

smaller than the initial e�e� center-of-mass (c.m.) energy
(Ec:m:) at B factories, ISR can be used [11]. ISR allows a
measurement of cross sections in a broad energy range
while the high luminosity of the B factories compensates
for the suppression associated with the emission of a hard

photon. The selection of e�e� ! D����D���isr signal
events using full reconstruction of both the D���� and
D�� mesons, plus the �isr photon, suffers from low effi-
ciency due to the low D��� reconstruction efficiencies,
small branching fractions, and the low geometrical accep-
tance for the �isr, which tends to be emitted along the beam
line. Here, we use a method that achieves higher efficiency
by requiring full reconstruction of only one of the D����

mesons, the �isr, and the slow ��slow from the other D��. In
this case the spectrum of masses recoiling against the
D�����isr system:

 Mrec�D�����isr� �
�������������������������������������������������������������
�Ec:m: � ED�����isr

�2 � p2
D�����isr

q
(1)

peaks at the D�� mass. Here ED�����isr
and pD�����isr

are the

c.m. energy and momentum, respectively, of the D�����isr

combination. This peak is expected to be wide and asym-
metric due to the photon energy resolution and higher-
order corrections to ISR. From the Monte Carlo (MC)
simulation the resolution of this peak is estimated to be
	300 MeV=c2, which is not sufficient to separate the
D �D�, D� �D�, or D���

�
D��� final states. To disentangle

the contributions from these final states and to suppress
combinatorial backgrounds, we use the slow pion from the
unreconstructed D��. The difference between the mass
recoiling against D�����isr and D������slow�isr (recoil
mass difference):

 �Mrec � Mrec�D
�����isr� �Mrec�D

������slow�isr�; (2)
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has a narrow distribution (�	 1:4 MeV=c2) around the
nominal mD�� �m �D0 , since the uncertainty in �isr momen-
tum partially cancels out.

For the measurement of the exclusive cross section, one
needs to determine the D����D�� mass when one of the
D�’s is not reconstructed. In the absence of higher-order
QED processes,M�D����D��� is the mass recoiling against
the �isr. However, the photon energy resolution results in a
typical Mrec��isr� resolution of 	100 MeV, which is too
wide for the study of relatively narrow D����D�� mass
states. We significantly improve the Mrec��isr� resolution
by applying a refit that constrains Mrec�D�����isr� to the
nominal D�� mass. In this way we use the well-measured
properties of the fully reconstructed D���� to correct the
energy of the �isr. As a result, the MD���

�
D�� 
� Mrec��isr��

resolution is improved by a factor of 	10 and varies from
	6 MeV=c2 around threshold to 	12 MeV=c2 at
MD����D�� � 5:0 GeV=c2. The recoil mass difference after
the refit procedure (�Mfit

rec) has a resolution improved by a
factor of 	2. Finally, the cross section is derived from the
D����D�� mass spectrum after the refit.

All charged tracks should originate from the interaction
point (IP) with the requirements dr < 2 cm and dz <
4 cm, where dr and dz are the impact parameters perpen-
dicular to and along the beam direction with respect to the
IP. Charged kaons are required to have the ratio of particle
identification likelihoods, PK � LK=�LK �L�� [12],
larger than 0.6. No identification requirements are applied
for pion candidates. K0

S candidates are reconstructed by
combining ���� pairs with an invariant mass within
10 MeV=c2 of the nominal K0

S mass. The distance between
the two pion tracks at the K0

S vertex must be less than 1 cm,
the transverse flight distance from the interaction point is
required to be greater than 0.1 cm, and the angle between
the K0

S momentum direction and the flight direction in the
x-y plane should be smaller than 0.1 rad. Photons are
reconstructed in the electromagnetic calorimeter as show-
ers with energies greater than 50 MeV that are not asso-
ciated with charged tracks. ISR photon candidates are
required to have energies greater than 2.5 GeV. Pairs of
photons are combined to form�0 candidates. If the mass of
a �� pair lies within 15 MeV=c2 of the nominal �0 mass,
the pair is fit with a �0 mass constraint and considered as a
�0 candidate. D0 candidates are reconstructed using five
decay modes: K���, K�K�, K�������, K0

S�
���,

and K����0. A �15 MeV=c2 mass window is used for
all modes except for K�������, where a �10 MeV=c2

requirement is applied (	2:5� in each case). D� candi-
dates are reconstructed using the decay modes K0

S�
�,

K�����, and K�K���. A �10 MeV=c2 mass window
is used for all D� modes. To improve the momen-
tum resolution of D meson candidates, final tracks are
fitted to a common vertex applying the nominal D0 or
D� mass as a constraint. D� candidates are selected via
D�� ! D0�� and D�0 ! D0�0 decay modes with a

�2 MeV=c2 D� �D mass-difference window. A mass-
and vertex-constrained fit is also applied to D� candidates.

The distribution of Mrec�D
���isr� in the data, without

any requirements on the slow pion, is shown in Fig. 1(a).
The excess around the D�� mass includes the e�e� !
D��D���isr signal as well as contributions from the
e�e� ! D�D���isr channel. The shoulder at higher
masses is due to e�e� ! D��D�����isr. The excess that
is evident at 	2:5 GeV=c2 corresponds to e�e� !
D��D����isr. The background from the other processes
is substantially suppressed by the inclusion of the slow
pion from the unreconstructed D�� and the tight require-
ment on �Mfit

rec; i.e., within �2 MeV=c2 of the nominal
mD�� �m �D0 , a clean peak corresponding to e�e� !
D��D�� is evident in the Mrec�D

���isr� distribution
[Fig. 1(b)]. We define the signal region by the requirement
that Mrec�D

���isr� be within �0:2 GeV=c2 of the nominal
D�� mass. This tight requirement suppresses e�e� !
D��D���0�isr events, which have a similar �Mfit

rec distri-
bution. The spectrum of �Mfit

rec for the signalMrec�D
���isr�

window after the refit procedure in data is shown in
Fig. 1(c).

In case of multiple entries, the D��� candidate with
the minimum value of �2

tot � �2
M�D0�

� �2
M�D��� � �

2
�Mfit

rec
is

chosen, where each �2 is defined as the squared ratio of the
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FIG. 1 (color online). The Mrec�D
�����isr� distribution for the

data: (a),(d) without requirement of slow pion; (b),(e) with
�Mfit

rec requirement. Histograms show the normalized MD����

sidebands contributions. (c),(f ) The distribution of �Mfit
rec in

the data after the refit procedure. The selected signal windows
are indicated by the vertical lines.
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deviation of the measured parameter from the expected
signal value and the corresponding resolution.

The following sources of background are considered:
(1) combinatorial background under the reconstructed D��

peak; (2) real D�� mesons coming from the signal or other
processes combined with a combinatorial slow pion;
(3) both the D�� and slow pion are combinatorial; (4) the
reflection from the process e�e� ! D��D���0

miss�isr with
an extra �0 in the final state; (5) the contribution of
e�e� ! D��D���0 when an energetic �0 is misidentified
as a single �isr. The contributions of backgrounds (1) and
(2) are extracted using D�� and �Mfit

rec sidebands, which
have twice the area of the signal region. The latter sideband
is shifted by 10 MeV=c2 from the signal region to avoid
signal oversubtraction due to the higher-order ISR tail.
Background (3) is present in both the M�D��� and �Mfit

rec

sidebands and is, thus, subtracted twice. To account for this
oversubtraction we use a two-dimensional sideband region,
where events are selected from both theD�� and the �Mfit

rec

sidebands. The total fraction of backgrounds (1)–(3),
found to be as large as 	10%, is subtracted from the
signal-region D��D�� mass spectrum. Process (4) pro-
duces a broad peak in the �Mfit

rec distribution around the
nominal mD�� �m �D0 value and, thus, is not contained in
the �Mfit

rec sidebands. The dominant part of this background
is suppressed by the tight requirement on Mrec�D

���isr�.
The remaining part is estimated by applying a similar
partial reconstruction method to the isospin-conjugate pro-
cess e�e� ! D�0D����miss�isr: a D�0 is fully recon-
structed and the slow pion from a D�� is used for the
�Mfit

rec requirement. Since there is a charge imbalance in
this final state, only events with a missing extra ��miss can
contribute to the �Mfit

rec peak. To extract the level of
background (4), this spectrum is rescaled according to
the ratio of D�0 and D�� reconstruction efficiencies and
an isospin factor of 1

2 . The contribution from background
(4) is found to be consistent with zero. Uncertainties in this
estimate are included in the systematic error. The contri-
bution of background (5) is determined from reconstructed
e�e� ! D��D���0 events using a similar partial recon-
struction technique but with an energetic �0 replacing the
�isr. The contribution of this background is found to be
negligibly small; uncertainties in this estimate are also
included in the systematic error.

The analysis of the e�e� ! D�D�� cross section is
identical to that described above for e�e� ! D��D��

with the fully reconstructed D�� meson replaced by a fully
reconstructed D� meson. The distribution of Mrec�D��isr�
with no requirements on the slow pion from the D�� is
shown in Fig. 1(d). The excess around the nominal D��

mass corresponds to the e�e� ! D�D���isr signal plus
overlaps from the e�e� ! D��D���isr channel. The
shoulder at higher masses is due to e�e� !
D����D����isr. The requirement of a detected slow pion
from the unreconstructed D�� and a tight requirement on

�Mfit
rec provides the clean e�e� ! D�D�� signal peak in

the distribution of Mrec�D
��isr� that is shown in Fig. 1(e).

The �Mfit
rec distribution for the signalMrec�D��isr�window

is shown in Fig. 1(f). In the case of multiple entries, we
apply a single candidate selection procedure similar to that
used for D��D�� to all the distributions shown below.

Similar sources of background (1)–(5) are considered
for the e�e� ! D�D�� study. The contributions of back-
grounds (1)–(3) are determined using D� and �Mfit

rec side-
bands with twice the area of the signal region. Here again,
background (3) is present in both M�D�� and �Mfit

rec side-
bands and thus subtracted twice. To account for this over-
subtraction we use a two-dimensional sideband region that
contains pure background (3) events. The level of contami-
nation from background (4) is determined from isospin-
conjugate events, e�e� ! D0D����miss�isr, in the data.
The D�D�� analysis is repeated with the fully recon-
structed D�’s replaced by fully reconstructed D0’s. The
D0D�� mass distribution, after combinatorial background
subtraction, is rescaled according to the ratio ofD� andD0

reconstruction efficiencies and an isospin factor of 1
2 . By

chance, the contamination from the process e�e� !
D��D��, followed by D�� ! D��0 is also included in
our estimate with correct scaling because B�D�� !
D��0�=B�D�� ! D0��� is also 	 1

2 . The contribution
from background (5) determined from reconstructed
e�e� ! D�D���0 events in the data is found to be negli-
gibly small and taken into account in the systematic error.
The total background level is	20% or less of the signal for
all values of M�D�D���.

The e�e� ! D����D�� cross sections are extracted
from the D����D�� mass distributions [13]

 ��e�e� ! D����D��� �
dN=dm

�totdL=dm
; (3)

where m � M�D����D���, dN=dm is the mass spectra
obtained before corrections for resolution and higher-order
radiation, while �tot is the total efficiency. The factor
dL=dm is the differential ISR luminosity

 dL=dm �
�
�x

�
�2� 2x� x2� ln

1� C
1� C

� x2C
�

2mL

E2
c:m:

;

(4)

where x � 1�m2=E2
c:m:, L is the total integrated lumi-

nosity, and C � cos�0, where �0 defines the polar angle
range for �isr in the e�e� c.m. frame: �0 < ��isr

< 180�
�0. The reconstruction efficiencies, determined as a func-
tion of M�D����D��� by MC simulation, are found to be
independent of M�D����D��� for both processes and are
equal to ��D��D��� � 4:3
 10�3 and ��D�D��� �
3:9
 10�3. The resulting exclusive e�e� ! D����D��

cross sections are shown in Fig. 2 with statistical uncer-
tainties only. Since the bin width is much larger than the
resolution, no correction for resolution is applied. Since a
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reliable fit to the cross sections obtained above requires a
solution to a nontrivial and model-dependent problem of
coupled channels and threshold effects, we do not report
results here.

The systematic errors for the ��e�e� ! D����D���
measurements are summarized in Table I. The systematic
errors associated with the background (1)–(3) subtraction
are estimated to be 3% from the uncertainty in the scaling
factors for the sideband subtractions using fits to the
M�D����� and �Mfit

rec distributions in the data with different
signal and background parametrization. Uncertainties in
backgrounds (4)–(5) are estimated conservatively to be
smaller than 2% of the signal in the case of D��D��; these
two sources are added linearly to give 5% in total. In the
case of the D�D��, backgrounds (4)–(5) are subtracted
using the data and only the uncertainty in the scaling factor
for the subtracted distribution is taken into account. A
second source of systematic error is due to the unknown
helicity angle composition of theD��D�� final state which

can be a mixture ofD��T D��T D��T D��L and D��L D��L , where
the subscripts L and T refer to longitudinally and trans-
versely polarized D�’s. For the efficiency calculation, we
assume equal fractions of these helicity states and consider
the extreme cases (pureD��T D��T and pureD��L D��L ) for the
efficiency uncertainty. There is no corresponding uncer-
tainty in the case of the D�D�� final state, where the D��

polarization is fixed by angular momentum and parity
conservation. A third source of systematic error comes
from the uncertainties in track and photon reconstruction
efficiencies, which are 1% per track, 2% per slow pion, and
1.5% per photon, respectively. The systematic error as-
cribed to the cross-section calculation is estimated from a
study of the C dependence of the final result and includes a
1.5% error on the total luminosity. Other contributions
come from the uncertainty in the identification efficiency
and the absolute D0 and D���� branching fractions [14].

In summary, we report the first measurements of exclu-
sive e�e� ! D��D�� and e�e� ! D�D�� cross sections
at

���
s
p

around the D��D�� and D�D�� thresholds with
initial-state radiation. The shape of the e�e� ! D��D��

cross section is complicated with several local maxima and
minima. The minimum near 4:25 GeV=c2 —in the
Y�4260� region—could be due to D�sD�s (DD��) threshold
effects described in [15–17] or due to destructive interfer-
ence of this state with other  �nS� states. Aside from a
prominent excess near the  �4040�, the e�e� ! D�D��

cross section is relatively featureless. The measured cross
sections are compatible [18] within errors with the D��� �D�

exclusive cross section in the energy region up to
4.260 GeV measured by CLEO-c [19].
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