
Observation of Direct CP Violation in B0 ! ���� Decays and Model-Independent Constraints
on the Quark-Mixing Angle �2

H. Ishino,45 K. Abe,7 K. Abe,42 I. Adachi,7 H. Aihara,44 D. Anipko,1 K. Arinstein,1 T. Aushev,16,12 A. M. Bakich,39

E. Barberio,19 M. Barbero,5 I. Bedny,1 U. Bitenc,13 I. Bizjak,13 S. Blyth,22 A. Bozek,25 M. Bračko,7,18,13 T. E. Browder,5
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We report a new measurement of the time-dependent CP-violating parameters in B0 ! ���� decays
with 535� 106 B �B pairs collected with the Belle detector at the KEKB asymmetric-energy e�e� collider
operating at the ��4S� resonance. We find 1464� 65 B0 ! ���� events and measure the CP-violating
parameters S�� � �0:61� 0:10�stat� � 0:04�syst� and A�� � �0:55� 0:08�stat� � 0:05�syst�. We
observe large direct CP violation with a significance greater than 5 standard deviations for any S��
value. Using isospin relations, we measure the Cabibbo-Kobayashi-Maskawa quark-mixing matrix angle
�2 � �97� 11�� for the solution consistent with the standard model and exclude the range 11� <�2 <
79� at the 95% confidence level.

DOI: 10.1103/PhysRevLett.98.211801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd

In the standard model (SM) framework, CP violation is
attributed to an irreducible complex phase in the Cabibbo-
Kobayashi-Maskawa (CKM) weak-interaction quark-
mixing matrix [1]. In the decay chain of ��4S� ! B0 �B0,
one B0 decays into ���� at time t��, while the other
decays at time ttag into a flavor specific state ftag. The time-
dependent CP violation [2] is given as

 P q
����t� �

e�j�tj=�B0

4�B0

	1� qfS�� sin��md�t�

�A�� cos��md�t�g
; (1)

where �t � t�� � ttag, �B0 is the B0 lifetime, �md is the
B0 �B0 mixing frequency [3], and q � �1 (� 1) when
ftag � B0� �B0�. S�� and A�� are the mixing-induced
and direct CP-violating parameters, respectively.

TheCP-violating parameters have been measured by the
Belle [4] and BABAR [5] collaborations. Both experiments
obtained consistent results for S��. In contrast, BABAR
measured an A�� value consistent with zero, while Belle
found evidence for large direct CP violation with a signifi-
cance of 4 standard deviations (�) using a data sample
containing 275� 106 B �B pairs. Here, we report a new
measurement with a large data sample (535� 106 B �B
pairs) and improvements to the analysis method that in-
crease its sensitivity. We confirm our earlier results and

observe direct CP violation in B0 ! ���� [6] decays at
the 5:5� level; the disagreement with the BABAR A��
measurement [5] remains.

One of the CKM angles, �2 [7], can be measured using

S�� �
���������������������
1�A2

��

p
sin�2�2 � ��, where � is determined

using isospin relations [8]. Measurements of�2 using B!
��, B! �� [9] and �� decays [10] give consistent
results; the combined �2 value, together with measure-
ments of other CKM angles and sides, is consistent with
the unitarity [11,12]. We combine our S�� and A��
measurements with the world average (W.A.) values of
other quantities to obtain a new constraint from B! ��
on �2. Multiple solutions are found; for the solution con-
sistent with other CKM measurements in the context of the
SM, the constraint is more restrictive than those obtained
from other B decay modes.

The data sample used in this analysis was collected with
the Belle detector [13] at the KEKB e�e� asymmetric-
energy (3.5 on 8 GeV) collider [14] operating at the ��4S�
resonance produced with a Lorentz boost factor of �� �
0:425 nearly along the electron beam direction (z axis).
Since the two Bmesons are produced approximately at rest
in the ��4S� center-of-mass system (c.m.s.), the decay time
difference �t is determined from the distance between the
two B meson decay vertices along the z-direction (�z):
�t � �z=c��. In the Belle detector, a silicon vertex de-
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tector and a 50-layer central drift chamber (CDC) are used
for charged particle tracking, and an array of aerogel
threshold Cherenkov counters as well as the dE=dx mea-
surements in the CDC provide the particle identification
(PID) information to distinguish charged pions and kaons.
The devices are placed inside a superconducting solenoid
coil providing a 1.5 T magnetic field.

We employ the event selection of Ref. [4] except for the
PID requirement, which is removed. This increases the
signal detection efficiency by 23%. The PID information
is instead used in a likelihood fit in this analysis, improving
the measurement errors for the CP-violating parameters by
about 10% compared with the previous analysis. We re-
construct B0 ! ���� candidates using oppositely
charged track pairs. We select B meson candidates using
the energy difference �E � EB � E


beam and the beam

energy constrained mass Mbc �
�����������������������������������
�Ebeam�

2 � �pB�
2

q
, where

Ebeam is the c.m.s. beam energy, and EB and pB are the
c.m.s. energy and momentum of the B candidate. We
define the signal box as 5:271 GeV=c2 <Mbc <
5:287 GeV=c2 and j�Ej< 0:064 GeV.

The standard Belle algorithm identifies the flavor of ftag

using properties of its decay products, and provides q
defined in Eq. (1) and a variable r [15]. The parameter r
ranges from r � 0 (no flavor discrimination) to r � 1
(unambiguous flavor assignment). The candidate events
are categorized into six r intervals (l � 1, 6). The wrong
tag fraction in each l bin, wl, and the differences between
B0 and �B0 decays, �wl, are determined using data.

To discriminate the continuum background (e�e� !
q �q, q�u, d, s, c), we form a signal (q �q) likelihood func-
tion, LS�B�, from features of the event topology and require
r-dependent thresholds of R � LS=�LS �LB� for the
candidates, as the separation between signal and q �q back-
ground depends on r. The thresholds are determined to be
0.50, 0.45, 0.45, 0.45, 0.45, and 0.20 for each l bin by op-
timizing the expected sensitivity using signal Monte Carlo
(MC) events and events in the sideband region
5:20 GeV=c2<Mbc<5:26 GeV=c2 or �0:1 GeV<�E<
�0:5 GeV. We further divide the data sample into two
categories having R above or below 0.85 to take into
account the correlation between the �E shape of q �q back-
ground and R. We thus have 12 distinct bins of R vs r;
these bins are labeled ‘ � 1, 6 (‘ � 7, 12) for the six r
intervals with R> 0:85 (R< 0:85).

We extract signal candidates in the global area Mbc >
5:20 GeV=c2 and �0:3 GeV< �E<�0:5 GeV by ap-
plying the above requirements and the vertex reconstruc-
tion algorithm in Ref. [16]. The selected candidates include
not only signal events but also B0 ! K���, q �q, and three-
body B decay backgrounds. We estimate the signal and
background yields with an unbinned extended maximum
likelihood fit, making use of �E, Mbc, and the kaon iden-
tification probability x� � LK�=�LK� �L��� for the
positively and negatively charged tracks of the candidates,

where L�� (LK�) is the likelihood value for the pion
(kaon) hypotheses.

We use a sum of two bifurcated Gaussians and a single
Gaussian to model the �E and Mbc shapes, respectively,
for both B0 ! ���� and K���. The probability density
functions (PDF) as a function of x� for the signal andB0 !
K��� decays are obtained from a large data sample of
inclusive D� ! D0��, D0 ! K��� decays. The yields
of B0 ! K��� events are parameterized as nK��� �
nK��1�AK��=2, where AK� � �0:113� 0:020 [3] is
the direct CP asymmetry in B0 ! K��� decays. We fix
the AK� value and float the B0 ! K��� yield nK� in the
fit. For the signal and B0 ! K��� events, we use MC-
determined event fractions in each R-r bin.

The �E (Mbc) shape of the q �q background is described
by a second-order polynomial (an ARGUS function [17]).
We use qr-dependent two-dimensional (x�, x�) PDFs for
the q �q background to take into account the correlation
between positively and negatively charged tracks. These
PDFs are determined from the sideband events.

For the three-body B decays, we employ a smoothed
two-dimensional �E-Mbc histogram obtained from a MC
sample. We use the same x� PDFs as those of the signal
and B0 ! K��� decays, with a �E-dependent kaon frac-
tion determined from the MC sample.

By fitting to the data in the global area, we determine the
yields of the signal and background components. Interpo-
lating to the signal box, we obtain 1464� 65 ����,
4603� 105 K���, and 10764� 33 q �q events, where the
errors are statistical only. The contribution from three-body
B decays is negligible in the signal box. From the signal
yield and the detection efficiency (53.1%), we estimate the
measured branching fraction to be �5:2� 0:2� � 10�6, in
agreement with the W.A. value [18]. Figure 1 shows the
projection plots of �E, Mbc, and x� for candidate events.

To determine S�� and A��, we apply an unbinned
maximum likelihood fit to the �t distribution of the
16 831 candidates in the signal box. The signal distribution
in Eq. (1) is modified to incorporate the effect of incorrect
flavor assignment, using wl and �wl. This distribution is
then convolved with the proper time interval resolution
function Rsig��t� [19]. The final signal PDF is given by

 

0

100

200

300

400

500

-0.2 0 0.2 0.4
∆E (GeV)

E
ve

nt
s/

bi
n

Total
π+π−
Kπ
qq

_

3-body

(a)

0
100
200
300
400
500

5.2 5.25 5.3
Mbc (GeV/c2)

(b)

102

103

0 0.25 0.5 0.75 1
x±

(c)

FIG. 1. (a) �E, (b) Mbc, and (c) x� projection plots of the
B0 ! ���� candidates having R> 0:85 in the signal box of
(a) Mbc with x� < 0:4, (b) �E with x� < 0:4, and (c) Mbc with
0 GeV< �E< 0:02 GeV. Figure (c) is the sum of x� and x�
distributions.
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Pq‘����t� � �1 � fol�P
q‘
����t� � Rsig��t� � folP ol��t�,

where the outlier PDF P ol��t� accommodates a small frac-
tion fol of events having large �t values. The �t distri-
bution for B0 ! K��� is P q‘

K�����t� � �1=4�B0� �

e�j�tj=�B0 	1� q�wl � q�1� 2wl� cos��md�t�
; the cor-
responding PDF Pq‘K�����t� is constructed in the same
manner as the signal PDF. The q �q background distribution
contains prompt and finite-lifetime components; it is con-
volved with a background resolution function modeled as a
sum of two Gaussians and combined with the outlier PDF
to give the q �q background PDFPq �q��t�.All the parameters
of Pq �q��t� are determined using sideband events.

We define a likelihood value for the i-th event, which
lies in the ‘-th bin of R vs r:

 Pi �
X
k

n‘kP
q�‘�
k � ~si�P

�q‘�
k ��ti�: (2)

Here, n‘k is the fraction of component k 2
f����; K���; K���; q �qg in R-r bin ‘; P q�‘�

k �~s� is the
event-by-event probability for component k as a function
of ~s � ��E;Mbc; x�; x��; and P�q‘�k ��t� is the event-by-
event probability for component k and flavor tag q as a
function of �t. In the fit, S�� and A�� are the only free
parameters and are determined by maximizing the like-
lihood function L �

Q
iPi.

The unbinned maximum likelihood fit yields S�� �
�0:61� 0:10�stat� � 0:04�syst� and A�� � �0:55�

0:08�stat� � 0:05�syst�. The correlation between S�� and
A�� is � � �0:15. Figures 2(a) and 2(b) show the back-
ground subtracted �t distributions of the signal events with
r > 0:5 for q � �1 and the asymmetry ACP in each �t
bin, respectively, where ACP � �N� � N��=�N� � N��
and N���� is the number of signal events with q � �1
(�1) obtained by a fit in each �t bin.

The main contributions to the systematic error come
from the vertex reconstruction (�0:03 for S�� and
�0:01 for A��) and event fractions (�0:01 for S�� and
�0:04 for A��); the latter includes a conservative uncer-
tainty for the possible q �q background flavor asymmetry of
�0:02. We include the effect of tag side interference [20]
on S�� (� 0:01) and A�� (�0:02). Other sources of
systematic error for both S�� and A�� are the uncertain-
ties in the wrong tag fraction (�0:01), physics parameters
�B0 , �md, and AK� (<0:01), resolution function (�0:02),
background �t shape (<0:01), and fit bias (�0:01). We
add each contribution in quadrature to obtain the total
systematic error.

To validate our CP-violating parameter measurement,
we check the measurement of A�� using a time-
integrated fit, and obtain A�� � �0:56� 0:10, consis-
tent with the time-dependent fit results. An unbinned ex-
tended maximum likelihood fit to the q � �1 (q � �1)
subset with R> 0:85 and r > 0:5 yields 280� 20 (169�
16) ���� signal events, in agreement with the measured
A�� value taking into account the dilution due to the
wrong tag fractions and B0 �B0 mixing. We also check the
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direct CP asymmetry in B0 ! K��� events by floating
AK� in the time-dependent fit, and we obtain a value
consistent with the W.A. [3] and the same � value as
from the nominal fit. The fit is applied to various data
subsets: a subset containing events with positive (negative)
�E in which the B0 ! K��� contamination is suppressed
(enriched), where A�� � �0:60� 0:11 ��0:51� 0:12�,
events with R> 0:85 �R< 0:85� where the q �q back-
ground fraction is suppressed (enriched), events with x� <
0:4 where the signal fraction is enhanced, and events in one
of the six r bins having different wrong tag fractions. All
fits to the subsets yield CP asymmetries consistent with the
overall fit result. No sizable asymmetry is found in a fit to
sideband events.

We determine the statistical significance of our measure-
ment using a frequentist approach [21], taking into account
both statistical and systematic uncertainties. Figure 3
shows the resulting two-dimensional confidence regions
in the S�� and A�� plane. The case of no direct CP
violation, A�� � 0, is ruled out at a confidence level
(C.L.) of 1� 4� 10�8, equivalent to a 5:5� significance
for one-dimensional Gaussian errors. We also observe
mixing-induced CP violation with a significance greater
than 5:3� for any A�� value.

To constrain�2, we use the isospin relations [8] with our
measured values of S�� and A��, the W.A. branching
ratios of B0 ! ���� (5:2� 0:2 in units of 10�6), �0�0

(1:31� 0:21) and B� ! ���0 (5:7� 0:4), and the W.A.
direct CP-asymmetry for B0 ! �0�0 (0:36� 0:33) [18].
We follow the statistical method of Ref. [11] assuming
Gaussian distributions. Figure 4 shows the difference
1-C.L. plotted for a range of �2 values. We find four

different solutions consistent with our measurement. For
the solution consistent with the expectation from other
CKM measurements, �100�5

�7�
� [11], we find �2 � �97�

11��. We exclude the�2 range 11� <�2 < 79� at the 95%
confidence level.

In summary, using a data sample containing 535�
106B �B pairs, we measure the CP-violating parameters in
B0 ! ���� decays: S�� � �0:61� 0:10�stat� �
0:04�syst� and A�� � �0:55� 0:08�stat� � 0:05�syst�.
We report the first observation of direct CP violation
with 5:5� significance. Our results as well as the evidence
for direct CP violation inB0 ! K��� decays [22] rule out
superweak models, i.e., extensions of the SM in which all
CP violation occurs through �B � 2 processes [23]. The
measured S�� and A�� values in this Letter are consistent
with those reported in Ref. [4], and supersede Belle’s ear-
lier evidence for direct CP violation. Among the four �2

solutions, the �1� range for the �2 solution consistent
with the SM is more restrictive than that from measure-
ments of B! �� [9] and B! �� decays [10].
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modes. The solid and dashed lines indicate C:L: � 68:3% and
95%, respectively.
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