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Abstract

T he common occur rence and transpor tab i l i t y o f quar tz

sand gra ins make them useful for forens ic analys is , prov id-

ing that gra ins can be accurate ly and cons is tent ly des ig -

nated into prespecif ied types. Recent advances in the anal-

ysis of surface texture features found in scanning electron

microscopy images of such grains have advanced th is pro-

cess . However, th is requi res expert knowledge that is not

on ly t ime intens ive, but a lso rare, meaning that automat ion

is a highly att ractive prospect if it were possible to achieve

good levels ofper formance.

Ba s i c I ma g e F ea t u r e C o lu m ns ( B I F C o lu m n s ) , w h i c h

use local symmetry type to produce a high ly invar iant yet

d is t inc t ive encoding, have shown leading per formance in

standard texture recognit ion tasks used in computer vis ion.

However, the system has not previously been tested on a real

wor ld prob lem.

Here we demonstra te that the BIF Co lumn system of fers

a simple yet effective solut ion to grain classif icat ion using

surface texture. In a two class problem, where human level

performance is expected to be per fect, the system classif ies

al l but one grain from a sample of 88 correctly. In a harder

task, where exper t human performance is expected to be

s igni f icant ly less than per fec t, our sys tem achieves a cor-

rec t c lass i f icat ion rat e of over 80%, w ith c lear ind icat ions

that performance can be improved if a larger dataset were

avai lab le. Fur thermore, very l i t t le tun ing or adaptat ion has

been necessary to achieve these results giving cause for op-

t imism in the genera l appl icab i l i t y of th is sys tem to other

texture c lassi f ication prob lems in forensic analys is.
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1. Introduction

Quartz sand grains have potential importance as a trace

evidence for forensic inves t igat ions. This potent ia l is

based on two key features. F irst, the grains are ubiq-

uitous in the environment and thus their occurrence in

sources of evidence is common. Second, they have variable

yet distinctive surface characteristics determined by their

mode of formation and subsequent erosion, weathering and

transportation[4]. The ability to reach exclusionary conclu-

sions based on the provenance of quartz grains in forensic

samples with the quartz grains identified in known samples

is of value for forensic investigations.[14, 4]

The surface character ist ics of grains are vis ib le us ing

a Scanning Electron Microscope (SEM), as shown in the

images in Figures 2 and 3. With expert knowledge it is

possible to use features from such images to place a grain

within a classification tree [3], that can be used to designate

grain types. However, such expert knowledge is rare and

the manual identification of grains in this manner is time-

intensive. Automatic identif icat ion of grains would there-

fore provide significant advantages in terms of making clas-

sif ication more widely available, as well as time efficiency

and offering a standardisation of performance.

The earliest attempt[6] at a mathematical characteriza-

tion of the physical characteristics of grains used Fourier

methods to describe their shape. Since then other authors

have proposed further methods based on shape[17, 13, 1],

distribution of shape and size[16], and surface texture[20].

However, despite recent advances in texture recognit ion

systems[18, 19, 2, 21, 5] there appear to be very few ex-

amples of these being applied to problems in the earth sci-

ences. As far as we are aware, this is the first attempt to

bring any of these techniques to grain analysis for applica-
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tions in forensic analysis.
Basic Image Features (BIFs)[9, 7, 11, 10, 8] offer a

simple yet effective solution to texture recognition, having

been shown to produce state of the art results when using

standard texture datasets in computer vision[5]. However,

the system has never been tested on a real world problem.

In this work we attempt to produce a simple yet effective

method for quartz grain discrimination as well as provide a

real world validation of the BIF system.

2. Texture Recognition

2.1. Encoding Texture

In the full BIF system, each pixel in an image is clas-

sified into one of seven types based upon the type of the

approximate local symmetry. These approximate types are

f lat, dark and l ight rotat ional, dark and l ight l ine, slope and

saddle- l ike . The classification is determined from the out-

put of a bank of six derivative-of-Gaussian filters, one 0th

order, two 1st order and three 2nd order. The algorithm has

two tunable parameters. A filter scale parameter,a, and a

threshold, € , which is influential in deciding whether a lo-

cality should be classified as flat, or as one of the other six

articulated symmetry types. Larger values of € result in a

greater proportion of an image being classified as f lat. Al-

though larger values of € may be optimal for certain recog-

nition tasks, previous work involving texture has indicated

that the optimal value for € is 0[5], so for this work the flat

category is unused. The BIF calculation is given in Algo-

rithm 1.

The resulting encoding for each pixel is invariant to ro-

tation, reflection and affine scaling of the image intensity.

By taking a histogram of the BIFs across an image and nor-

malising we can also achieve an encoding scheme that is

invariant to translation and the size of the image.

However, as there are only six BIF types in the scheme

used for texture, such a histogram is unlikely to be specific

enough for the discrimination of grain types. In order to

overcome this, whilst still maintaining the invariance prop-

erties, we stack BIFs across different scales at each point in

the image to create features called BIF Columns. [15]

Preliminary investigation suggested that the use of four

scales would be optimal, and so we chose to use this num-

ber for this work. Our final encoding is now a normalised

histogram with 64
(=1296) bins. The process is illustrated in

Figure 1.

2.2. Recognising Texture

We represent images as 1296 bin histograms. To com-

pare histograms we use the Bhattacharyya distance[12]

as a metric. To classify an unseen image, we compute its

histogram and use the metric to find the k Nearest

Neighbouring (kNN) histograms from all histograms in a

training set.

Algorithm 1 The BIF calculation

1. Measure f i l t e r responses c i , j to an ( i , j ) -order

derivative-of-Gaussian filter, and from these calculate

the scale normalised filter responses s i , j = a
i+

jc i j

\J 2. Compute ) = s20 + s02, 'y = (s20 - s02)2 + 4s2 11

3. Class i fy according to the largest of:{€s00\J01,±),('y±))//2,'y}, 2 s2 10 + s2

UP

NUP

Figure 2. Example images from UP and NUP

If the number of the k having some label is above a thresh-

old, we infer that the unseen image should have the label.

Where possible the two parameters, k and the threshold, of

our classifiers are determined using a validation set. How-

ever, in cases where the number of images per class is very

small, these values may be set in advance.

3. Datasets

We chose two problems that are representative of the

classification structure in forensic analysis, and assembled

a dataset suitable for testing performance on them. The first

of these was a two class problem, which involved detecting

the presence of a geological feature called Upturned Plates.

Individual quartz grains were impacted against each

other under aeolian conditions of known velocities under

controlled laboratory conditions. Forty seven grains were

subsequently imaged using scanning electron microscopy

(SEM) and 266 images were taken of distinct areas of each

grain which exhibited the Upturned Plates feature. This set

of images was created using expert geological knowledge

to ensure that the Upturned Plates features were present in

each image and is referred to as the UP set. In order to cre-

ate counterexamples to the UP set, 41 grains were selected

by a geological expert from a library of quartz grains which

displayed a range of alternative textures. From this set, 237

images were acquired using an SEM, none of which con-

tained Upturned Plates . This set is referred to as the NUP

set. Examples from UP and NUP are shown in Figure 2.

For the second problem the images in the UP set were

further divided, by controlling the conditions of their for-

mation, into six classes according to the Energy Level o f

F ormat ion (ELF). The 266 images were labelled as 4mps,
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Figure 1. The stages in computation of a BIF Column histogram texture descriptor

4mps 8mps 11mps 14mps 17mps 20mps

Figure 3. Example images from the set used in the Energy Level of

Fo r m a t i o n task

8mps, 11mps, 14mps, 17mps or 20mps, which relates to the

wind speed to which the grains have been exposed. There

was a minimum of 21 images from 6 grains per class. Ex-

amples from the different classes are shown in Figure 3.

Across the dataset, in addition to the textural differences

that we sought to characterise, there were grosser types of

difference that were due to imaging effects. Examples of

global differences included variation in the overall lightness

of the image, difference in the apparent focus of the image

as well as difference in the image dimensions and overall

area. Within images themselves there were variations in

the lightness of individual regions, giving the appearance

of shadows, although as the images came from the SEM

these were not actual optical shadow effects. Each aspect of

variation appeared within each class and there was no ap-

parent correlation between each non-textural aspect of vari-

ation and the class labels. We expected that the invariance

properties of BIFs would mean that these types of variation

would be ignored by our encoding as so not to lessen clas-

sification performance.

4. Upturned Plates

The images were encoded as 1296 bin histograms rep-

resenting the frequency with which each BIF scale column

occurred, as described in section 2.1. In order to make best

use of the relatively small dataset without over-estimating

performance by overlapping train and test sets, we used a

nested leave-one-out method for both the test set and a val-

idation set. To do this we first selected one grain as a test

grain, with all images from this grain being extracted from

the set. We then selected a single image from those left

to act as a validation set, with images from the same grain

being removed and the remainder used to build a kNN clas-

sifier. The validation image was then classified for different

values of k and threshold. We then repeated this process for

all images, except for those from the test grain, and found

the optimal value of k and threshold. Using these optimal

1

Assign each
pixel to one
of six local
symmetry

types

Image

4 Normalised Histogram

Stack BIFs
at different

scales

IF Column
gram Encoding

BIFs2

3
Count features
and normalise

BIF Scale Columns

0.008

0.006

0.004

0.002

....
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Table 1. Performance for the Up turned P la te s discrimination task

Scheme Discrimination Performance Score

Without pooling 95.0%

With pooling 98.8%

Global Histogram 98.8%

parameter values we then classified the images from the test

grain. This was then repeated with each image in the dataset

in turn acting as the test grain.

As the problem being tackled was correct classification

of a grain, and we had multiple images from each grain, we

needed a scheme for making use of the multiple images. We

evaluated three schemes for this to gain an understanding of

the problem. First, we simply looked at how well the system

performed with single images. Second, we used a simple

pooling scheme where each image from a grain was classi-

fied individually and then a single choice was made for the

grain by taking the more common classification across all

images for that grain. Finally, we made an estimate of the

global histogram encoding for the grain by taking the mean

of the individual histograms for the different images from a

grain. Results are shown in Table 1 for all three schemes,

were they are quantified as the average of the classification

rate for UP grains and for NUP grains.

For the three schemes the optimal values for the classifier

parameters were determined individually for each different

validation set and thus there were no single values that ap-

plied to the whole dataset. However, the median value of k

for the classifier in the first two schemes was 15 and for the

global histogram scheme it was 5.

5. Energy Level of Formation

Images were encoded as described previously. As the

E n e r g y L e v e l o f F o r m a t i o n task used only those images

from the UP set, which were then divided into six classes,

the number of images in each class were far fewer than in

the Upturned Plates task. As a result, there were not enough

images to provide a stable validation process to determine

the optimal classifer parameters, so the value of k was set at

3 in advance and the threshold set at the midway point.

In order to determine the general discrimination power

of the method in the ELF task, we first looked at the perfor-

mance in discriminating each possible pair of classes. The

same three schemes for grain classification were used as for

Uptur ned P lates: based on a single image; based on pooling

the classifications of individual images; and based on clas-

sifying the global histogram. Results are shown in Table

2.

From these results it was apparent that the system was

performing poorly in discriminating between the 14mps,

17mps and 20mps classes, with results across al l three

scheme being consistent with chance level performance, as

indicated in the grey boxes of Table 2. We therefore decided

to combine all images from these classes into one new class,

labelled 14mps+.

We then looked at classification using the revised set of

four classes. Using the same three schemes again, and a

kNN classifier with k set at 3, results are reported as the

mean performance per class. We report results in terms of

exact classification (i.e. the correct one of the four classes

is identified), classification to within one class, and classi-

fication to within two classes.These are shown in Table 3,

with the associated confusion matrices given in Table 4.

Table 3. Performance for the Energy Level of Formation Task

Scheme Exact Within 1

Class

Within 2

Classes

Without pooling

With poo l ing

Global Histogram

69 %

81 %

78 %

90 %

96 %

92 %

100 %

100 %

96 %

As the number of images available for each class in the

ELF task was relatively low, we also wanted to investigate

whether we might expect performance to improve if more

images were made available. To do this we looked at how

performance changed when using a subset of grains from

the 47 made available for the ELF task, using the pooling

method as, out of the three, this had produced the best re-

sults.

Two grains were first randomly selected from each class

to ensure the minimum size necessary to get results for the

classification performance for each class. Then for each in-

crement between this minimum of 8 grains and the full set

of 47 grains, further grains were randomly selected and the

classification performance determined for both exact and

within one class classification. This process was repeated

400 times for each possible number of grains and the mean

performance for each class over all trials is plotted in Figure

4. The mean performance over all classes is plotted as the

black line, showing the overall performance as 81% when

all grains are used, as previously shown in Table 3. This

line has a steady gradient of 0.5% increase in performance

for each grain added.

6. Summary and Conclusions

In the Upturned P lates task, where expert human level

performance is expected to be perfect, the best perform-

ing scheme within the BIF system achieves 98.8%, which

equates to classifying all but one grain correctly.

There is a clear improvement in the performance of the

system when multiple images from a single grain are com-

bined in some way. However, in this task there is no appar-
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Table 2. Performance of the BIF system in the fifteen pairwise problems
WITHOUT POOLING WITH POOLING GLOBAL HISTOGRAM

4mps
8mps

7 1 % 7 9 %

4 7 % 4 6 %

55 % 17 mps
WITHOUT POOLING

Classified As

4mps 71 % 0% 29 % 0%

8mps 12% 55% 24% 9%

11mps 3 % 12 % 55 % 30 %

14mps+ 1 % 0 % 6 % 94 %

EXACT

4 mps

100 %

100%

76%

41%

56%

WITH POOLING

Classified As

4mps 83 % 0% 17 % 0 %

8mps 0 % 67 % 33 % 0 %

11mps 0% 0% 78% 22%

14mps+ 0% 0% 4% 96%

Score

100 % 100
%

76 %

53 %

56 %

GLOBAL HISTOGRAM

Classified As

4mps 81 % 0% 19 % 0%

8mps 11% 68% 21% 0%

11mps 0 % 0% 88% 12%

14mps+ 15 % 0 % 0 % 85 %

0 10 2 0 3 0 40

Figure 4. Performance with varying dataset sizes for each test class

ent advantage of one method of combining images over the
other.

The Energy Level of Formation task represents a greater

challenge. Expert human level performance, although not

yet quantified, is expected to be significantly less than per-

fect, especially in discriminating the grains with higher

ELFs. This is reflected in the results, where the BIF Col-

umn system is incapable of separating the 14mps, 17mps

and 20mps classes from each other.

When these three classes are combined into one, discrim-

ination performance between the four new classes is encour-

aging with the top performing scheme achieving a rate 81%

exact classification and 96% within an error of one class .

As before, there is a clear advantage in combining the im-

ages from a single grain. In this task our results indicate a

slight superiority of pooling image classifications over us-

ing the global histogram, but our dataset is not large enough

to claim this is significant.

Our results indicate that improved performance could

be expected with a larger training dataset, in particular for

exact-class classification of grains in the three lower speed

ELF classes. For the faster speed classes, and for within-

one-class classification a dataset of 47 grains seems suffi-

cient.

6 7 % 7 9 % 8 8 % 9 8 % 99 % 83 % 87 % 86 % 100 % 100% 6 7 % 7 3 9 3 % 1 0 0 100 % 4 mps
5 3 % 9 3 %

Table 4. The confusion matrices for the ELF task

WITHIN ONE CLASS

8 mps

11 mps

14 mps

17 mps

5 7 % 7 9 % 9 4 % 9 0 %

77 % 11 mps

14 mps
•

Score

80 % 86 % 8 mps
89% 83% 11 mps

71% 14 mps
17 mps

89 % 83 %

59 %

0 10 2 0 3 0 4 0

80

60

20

0

100

80

60

40

20

G r a i n s i n D a t a s e t 0

4mps

8mps 1

1mps

14mps+

mean

Gr ai n si n Da t as e t



From the results as a whole it is evident that the BIF

Column system can be used to provide an effective solu-

tion to the problem of grain discrimination using surface

texture. We note that since the BIF column approach for

encoding texture was applied without alteration or tuning

from its previously presented formulation, its prospects for

successful application to similar problems in forensic anal-

ysis are good.
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