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We have studied the Zeeman splitting in ballistic hole quantum wires formed in a �311�A quantum well
by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and
crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is
oriented perpendicular to the wire, no spin splitting is discernible up to B � 8:8 T. The observed large
Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum
confinement for spin splitting in nanostructures with strong spin-orbit coupling.
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Studying the spin degree of freedom of charge carriers in
semiconductors has become an area of significant current
interest, not only for fundamental understanding of spin,
but also for potential applications that use spin, rather than
charge, in electronic components [1]. Spin polarized cur-
rents can be created by applying magnetic fields, using
magnetic leads or ferromagnetic semiconductors. Al-
ternatively, the intrinsic coupling between spin state and
orbital motion of quantum particles opens up intriguing
possibilities for implementing a spin-electronics paradigm.
For example, it has been proposed to tune the spin splitting
by using an external electric field in systems exhibiting
strong spin-orbit coupling [2]. In such devices, a spin-
polarized current could be manipulated in a ballistic chan-
nel by only tuning a gate voltage [3]. As valence-band
states are predominantly p-like (unlike conduction-band
states which are s-like), spin-orbit effects are particularly
important in confined hole systems based on GaAs [4].
This makes holes in GaAs especially interesting for studies
of spin-controlled devices. In addition, the fact that holes
near the valence-band edge are spin-3=2 particles leads to
intriguing quantum effects such as the suppression of
Zeeman splitting for in-plane field directions in typical
two-dimensional (2D) hole systems [5]. How further con-
finement of holes moving in a narrow wire affects their
peculiar spin properties has not been investigated in detail
before, which motivates our present study. Furthermore,
Zeeman splitting of one-dimensional (1D) subband bot-
toms can be directly measured using the phenomenon of
conductance quantization [6–9].

We have performed an experimental study of the
Zeeman splitting of quantum wires in the ballistic regime,
formed by a lateral confinement of a 2D heavy-hole (HH)
system that was grown on the �311�A surface of a
GaAs=AlxGa1�xAs heterostructure. Previous works on
2D systems [4,10,11] identified an anisotropic effective
Landé g-factor g� for in-plane magnetic fields applied in

the �233� and �011� directions. In our 1D system, which is
aligned with the �233� direction, when we apply an in-
plane B we measure a much larger g� anisotropy between
parallel to the wire (Bk) and perpendicular to the wire (B?)
than is predicted (and observed) for 2D HH systems [12].
We attribute these observations to the interplay between
quantum confinement and strong spin-orbit coupling
present in the valence band. Our results show that it is
possible to engineer magnetic (Zeeman) splitting by tuning
the electric confinement in hole nanostructures.

In our experiments, we used the same 1D hole bilayer
system as described previously [13] and we have measured
the differential conductance in the top wire of the bilayer
[14]. Measurements were done in a dilution refrigerator
with a base temperature of T � 20 mK. Side gates and a
middle gate used to form the quantum wire are aligned
along the �233� direction. Electrical measurements have
been performed using standard low-frequency ac lock-in
techniques with an excitation voltage of 20 �V at 17 Hz.
We used two side gates to create the 1D channels and the
back and middle gates to control the density and the
confinement potential as described in [13].

Figure 1(a) shows the differential conductance, G �
dI=dV as a function of side gate voltage VSG for different
in-plane magnetic fields parallel to the wire Bk. Clean
conductance quantization is measured [15] and, with re-
spect to Bk, Zeeman splitting is clearly seen. We observe
the progressive evolution of the 1D subbands from the spin
degenerate steps in units of 2e2=h at Bk � 0 T (leftmost
arrow), to the complete spin-resolved quantized steps in
units of e2=h at Bk � BR � 3:6 T (middle arrow). Further
increasing B causes the 1D nondegenerate subbands to
cross, leading to conductance plateaus quantized in units
of half-odd multiple values of 2e2=h at Bk � BC � 7:6 T
(rightmost arrow). In Fig. 1(b), we plot the transconduc-
tance dG=dVSG as a function of side gate voltage and B
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(the derivative has been numerically calculated from G
corrected for a series resistance). Crossings between non-
degenerate 1D subband edges are clearly visible (white
regions of the gray scale) as well as the diamond shape
parts (in black) representing the conductance plateaus.

After thermal cycling and sample reorientation, we have
measured the differential conductance for an in-plane mag-
netic fields perpendicular to the wire B?. It is surprising to
see in Figs. 1(c) and 1(d) that the well-quantized conduc-
tance steps are not affected by B? up to 8.8 T. The trans-
conductance gray scale shown in Fig. 1(d) highlights that
no Zeeman splitting is seen when the magnetic field is
aligned perpendicular to the wire.

In Fig. 2(a), we present a schematic view of the effect of
an in-plane magnetic field on the spin degenerate 1D
subbands. We assume that the splitting of a 1D energy
subband is linear in magnetic field [16] and follows the
equation �EN � g�N�BB, where �EN is the Zeeman en-
ergy splitting of the Nth degenerate subband, g�N is the
effective Landé g factor of theNth degenerate subband,�B
is the Bohr magneton, and B is the applied magnetic field.
In this diagram, the lines represent the subband edges as
measured in Fig. 1(b). However, Zeeman splitting mea-

FIG. 2 (color online). (a) Schematic diagram of the Zeeman
effect in a 1D system due to an in-plane magnetic field B: solid
lines correspond to the 1D subband edges; spin orientations are
given by the arrows. The first dotted line corresponds to B at
fully resolved spin splitting BR: at this stage, conductance steps
are quantized in units of e2=h. The second dotted line corre-
sponds to 1D subband crossings at BC: at this stage, conductance
steps are quantized of half-odd multiples of 2e2=h. (b) Sche-
matic of the transconductance for different VSD: with this tech-
nique, it is possible to extract the spacing between two consecu-
tive subbands (see [17–19]). Combined with Zeeman splitting
measurement, g� can then be found.
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FIG. 1 (color online). (a) Differential conductance G, corrected for a series resistance, of the quantum wire for different in-plane
magnetic fields parallel to the wire (Bk) from 0 to 8.8 T in steps of 0.2 T (from left to right). T � 20 mK, back and middle gates are at
2.5 and �0:5 V, respectively. All curves are shifted by 0.05 V for clarity. The second thicker curve (middle arrow) corresponds to
Bk � BR when subbands are completely spin resolved; the third thicker curve (rightmost arrow) corresponds to Bk � BC when the
subbands cross. (b) Corresponding transconductance gray scale as a function of VSG; black regions correspond to low transconductance
(conductance plateaus, labeled with G in units of 2e2=h); white regions correspond to high transconductance (subband edges). (c) G of
the same quantum wire for different in-plane magnetic fields perpendicular to the wire (B?) under similar experimental conditions.
(d) Corresponding transconductance gray scale as a function of VSG and B?.
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surements, i.e., splitting of the transconductance peaks, is
given in units of �VSG�B�. It is possible to convert
�VSG�B� to �EN�B� and extract values of g�, by combin-
ing Zeeman splitting measurements and source-drain bias
VSD spectroscopy [17]. In Fig. 2(b), we present a schematic
of the transconductance as a function of the source-drain
bias VSD that allows the extraction of the subband spacings
by tuning chemical potentials of the source and drain with
respect to the 1D subbands (�EN;N	1 � eVSD at subband
crossing), according to [17–19]. Figure 3 corresponds to a
typical transconductance gray scale as a function of VSD:
clear half plateaus [17–19] (i.e., conductance plateau are
quantized in units of half-odd multiple of 2e2=h) are seen
for high values of VSD and 1D subband edges (in white) are
visible.

A common way to extract g� is to compare the crossing
of two subband edges due to Zeeman splitting with that
obtained from source-drain bias techniques [6] (if these
crossings appear for the same VSG). We can relate bias
voltage and energy: �EN;N	1 � hg�N; g

�
N	1i�BBC � eVSD,

where hg�N; g
�
N	1i is the average value of the effective

Landé g factor for degenerate subbands N and N 	 1 and
BC is the magnetic field at subband crossing [see Figs. 2(a)
and 2(b) and hg�N; g

�
N	1i values corresponding to solid

circles in Fig. 4(b)]. Another way to relate gate voltage
and energy is to combine the splittings of transconductance
gray scale lines (i.e., transconductance peaks) from both
source-drain bias and Zeeman effect [i.e., combine respec-
tively �VSG�VSD� and �VSG�B�]. We can use the basic
relation for the linear Zeeman splitting of a 1D subband
@�EN=@B � �@�EN=@VSG��@VSG=@B� � g�N�B. Indeed,
Zeeman splitting of the transconductance lines (i.e., trans-
conductance peaks) give the 1D degenerate subband split-
ting differential change with respect to B, �VSG�B� [see

Fig. 2(a)]. The slope of �VSG�B� corresponds to @VSG=@B.
VSD spectroscopy provides the conversion factor between
gate voltage and energy, given by the slope of �VSG�VSD�,
�VSG=eVSD. Finally, g� for the Nth subband is g�N�B �
�eVSD=�VSG���VSG=B� [g� values extracted from this sec-
ond technique correspond to the open circles in Fig. 4(b)].

In Fig. 4(a) we show the splitting of the transconduc-
tance peaks, i.e., the splitting of the 1D subband edges,
represented by �VSG as a function of B for the first five 1D
subbands. The spin splitting can be considered to be linear
in B for the four first subbands. The fifth 1D subband
clearly shows a deviation from a purely linear Zeeman
splitting as the 1D system is becoming more 2D.
Figure 4(b) displays g� as a function of the degenerate
1D subbands index N: Remarkably, values and behavior of
g�
k
�N� for Bk parallel to the wire are similar as found in

previous results for electron quantum wires [6–8]. Because
no sign of the beginning of spin splitting is detected for B
applied perpendicular to the wire up to B? � 8:8 T, we
can provide only maximum values of g�? in this orienta-
tion; the minimum g� ratio g�

k
=g�? can be estimated at least

to be 4.5. This anisotropy is significantly stronger than in
2D HH systems [4,10,11]. Here, we provide an explanation
with detailed calculations to be presented elsewhere [20].

In a quantum-confined structure, Zeeman splitting of
HH states is suppressed unless the magnetic field is applied
parallel to the natural quantization axis for total angular
momentum Ĵ [4]. This is a result of strong spin-orbit
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FIG. 4 (color online). (a) �VSG vs Bk for the five first sub-
bands; (b) g� as a function of the subband index N extracted
from the Zeeman splitting measurement and the VSD spectros-
copy: Solid circles are the average effective Landé g factor in the
direction parallel to the wire, between two consecutive sub-
bands hg�N; g

�
N	1i given by subband-edge crossing measurements

[6]. Open circles are extracted from the slope of the subband-
edge splitting differential change technique for the Bk point-
ing along the wire. The upper line of the striped part represents
an upper bound of g� for B? perpendicular to the wire: this
limit is determined by comparing the starting point of the 1D
subband splittings (Bk � 1:9 T) and the maximum value of B?
(�8:8 T). The arrows define the absolute values of g� calculated
for a 20 nm quantum well of HH grown on �311�A surface
[4,11]: the upper and lower arrows mark g� for B pointing along
��233� and �01�1�, respectively.

FIG. 3. Nonlinear transconductance gray scale at T � 20 mK,
back and middle gates are at 2.5 and �0:5 V, respectively, and
B � 0 T as a function of VSD [22]. The black parts correspond to
low transconductance (plateaus). Quantized plateaus in units of
2e2=h at zero VSD and extra plateaus for half-odd multiple values
of 2e2=h at nonzero VSD are labeled. Crossings of 1D subband
edges are the white parts.
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coupling in the valence band. For a 2D system, this axis is
perpendicular to the plane in which the holes are confined.
As a result, g� for the field direction perpendicular to the
plane is typically at least an order of magnitude larger than
that for magnetic fields applied in the plane. Also, the cubic
crystal anisotropy gives rise to an anisotropy of g� for
orthogonal in-plane field directions [11]. In our 1D hole
system, in addition to the large anisotropy of g� for Bk and
B?, we also measured a considerably larger value of g�

k
for

the lowest 1D subbands than was predicted theoretically
[4] for the 20 nm wide quantum well as used in our sample.
These findings can be explained by the fact that a 1D
confinement tends to favor a quantization axis of Ĵ parallel
to the wire, i.e., perpendicular to the directions in which
hole motion is quantized. Hence a large Zeeman splitting
results when B is applied in the same direction. For B
applied perpendicular to the wire, no direct Zeeman cou-
pling between HH states exists, and their spin splitting
arises only as a second-order effect from the HH-light
holes (LH) couplings that are due to B and confinement.
It is therefore suppressed by the confinement-induced en-
ergy splitting between the HH and LH 1D subbands. For
our hole quantum wires, the confinement in the �311�
direction given by the quantum well can still be expected
to be stronger than the confinement in the lateral direction,
i.e., �01�1�. Nevertheless, the monotonic increase of g�

k
over

the 2D value of 0.6 [4,11], which is exhibited in Fig. 4, as
the wire is made narrower (i.e., for smaller subband index
N) clearly indicates the expected trend. Note also that the
direct HH Zeeman splitting for fields parallel to the wire
could be enhanced by exchange effects, whereas the pe-
culiar nature of spin-3=2 states usually prevents exchange
enhancement of in-plane HH spin splittings in the 2D case
[21]. However, both the Zeeman splitting and its exchange
enhancement remain suppressed for directions perpendicu-
lar to the wire, due to the same reasons causing this
suppression for in-plane field directions in a 2D HH sys-
tem. This is in clear contrast to the electron systems where
exchange enhancement of Zeeman splitting is isotropic [7].

In conclusion, we have studied the Zeeman splitting of
hole quantum wires in the ballistic regime. We uncovered a
very strong anisotropy of the effective Landé g factor for B
parallel and perpendicular to the quantum wire. The 1D
confinement significantly increases the anisotropy existing
in the 2D HH system, known as a consequence of the SO
coupling. This result opens a new way to engineer spin
splitting in 1D nanostructures.
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