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The identification of the etiologies and pathogenesis of Parkinson’s disease (PD) should play an important role in enabling the
development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous
progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in
post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known
to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this
effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress
pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are
also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction
to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence
function. The turnover of mitochondria by autophagy (mitophagy) has also become a focus of attention. This review summarises
recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.

1. Introduction

Mitochondria are ubiquitous organelles, critical for cell
survival and for correct cellular function [1]. Furthermore,
they play an important role in mediating cell death by
apoptosis and in determining their own destruction by
mitophagy. Mitochondria are recognised to play an impor-
tant role in neurodegenerative disorders. This may be a
consequence of a primary mutation of mitochondrial DNA
(mtDNA), for example, the A3243G mutation—a cause of
myopathy, encephalopathy, lactic acidosis, and stroke-like
episodes (MELAS), a mutation of a nuclear gene regulating
mtDNA, for example, the mtDNA depletion syndromes,
a nuclear gene encoding a mitochondrial protein, for
example, frataxin in Friedreich’s ataxia, secondary effects
of disordered cell metabolism, for example, free radical
stress, or environmental toxin exposure [2, 3]. This review
will focus on the contribution of mitochondrial pathology
to the pathogenesis of Parkinson’s disease (PD), and it is
notable that the mitochondrial involvement covers the entire
etiological spectrum detailed above.

The first report of a mitochondrial defect in PD identified
deficiency of complex I activity in substantia nigra compared

to age-matched controls [4] and was followed by reports
of mitochondrial defects in skeletal muscle, platelets, and
lymphoblasts in a proportion of cases (see [5] for review).
The mitochondrial deficiency within the brain appeared to
be confined to the nigra [6, 7] although other reports have
identified defects in the frontal cortex [8]. These mitochon-
drial abnormalities, identified in pathologically confirmed,
apparently sporadic PD, were seen against a background of
increased oxidative stress and elevated brain iron levels—
and emphasised the importance of interconnecting pathways
even at this early stage [9–14]. It was a fortuitous accident
of timing that these observations of abnormal mitochondrial
metabolism in PD were being made when important insights
were gained into mitochondrial diseases by identification of
mutations of mtDNA.

2. Mitochondrial Diseases and Parkinsonism

Primary mutations of mtDNA, as opposed to, for instance
mutations secondary to a nuclear housekeeping gene,
rarely manifest with parkinsonism [15, 16]. In part this
may be a result of regional distribution of the mutation
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with a relatively lower level in nigral cells (although this
has never been investigated), or alternatively, related to
better physiological compensatory mechanisms in the
younger patient, that is, those that usually manifest with
the encephalomyopathies. In any event, tissue specificity of
an ubiquitously expressed mutation remains common in
mitochondrial disorders and is poorly explained, but may
in part be related to the dependence of a tissue on high
energy demands, for example, brain and muscle. Inherited
mtDNA-mediated defects of complex I usually manifest
with encephalomyopathic features rather than parkinsonism
[17, 18], as do other inherited primary specific respiratory
chain defects, for example, affecting complex IV [19, 20].

Mutations of mtDNA polymerase gamma (POLG) are a
recognised cause of parkinsonism, usually, but not always,
preceded by ophthalmoplegia and are often associated with
a peripheral neuropathy [21–23]. These cases have multiple
deletions of mtDNA, sometimes with mtDNA depletion, and
usually exhibit ragged red fibres in muscle biopsies. They
have reduced dopamine transporter density by single photon
emission tomography scanning, respond well to levodopa,
and have Lewy bodies at postmortem. Patients with POLG
mutations can also present with other phenotypes including
childhood onset liver failure, myopathy, and renal disease
[24, 25]. Mutations of POLG in sporadic PD are rare [26, 27].

Mutations of mtDNA may be inherited or somatic.
Somatic mutations of mtDNA are known to develop with
aging and are thought to represent cumulative damage due
to excess exposure to free radicals [28]. The mitochondrial
genome resides in the matrix, probably in close proximity to
the inner mitochondrial membrane, a site of high superoxide
ion production. Initial studies did not demonstrate any
increase in deleted mtDNA genomes in pathologically proven
PD [29]. However, quantitation of deleted mtDNA molecules
in individual nigral neurons showed a significant rise with
age [30], and this appeared to be increased in parkinsonian
brains [31]. This may be the result of the enhanced oxidative
stress in the nigra in these brains. Nevertheless, the neurons
with the highest load of deleted mtDNA expressed a
mitochondrial defect in the form of cytochrome oxidase
deficiency, indicating that the deleted mtDNA population
did have a functional effect [31]. Mitochondria have an
important role in calcium homeostasis. Prominent calcium
influx occurs in nigral dopaminergic neurons via L-type
channels and is a phenomenon not shared by neighbouring
dopaminergic neuronal populations, which are much less
affected in PD [32]. In a DJ-1 knockout mouse model this
created oxidative stress and resulted in increased oxidation
of mitochondrial proteins specific to vulnerable nigral
dopaminergic neurons [33].

Although the potential contribution of mtDNA to
respiratory chain deficiency in PD has received support from
cybrid studies [34–37] no abnormality of this genome has
been consistently identified in PD patients.

3. PARK Genes and Mitochondria

There remains a debate as to whether the parkinsonism
caused by these genes is phenotypically equivalent to

“idiopathic” PD or not. In many respects this is a sterile
argument given the phenotypic spectrum in idiopathic PD
itself. Furthermore, mutations of several of these genes have
been identified in patients who satisfy the Queen Square
Brain Bank criteria for PD. The real point is that these gene
mutations cause dopaminergic nigrostriatal cell death. The
proteins encoded by the PINK1, parkin, and DJ-1 genes can
translocate to mitochondria and influence function within
that organelle, although this does not exclude additional
activities in other cell compartments.

3.1. PINK1. Recessive mutations in PINK1 (Park6) were
found to be responsible for a familial form of early-
onset parkinsonism, previously mapped to chromosome
1p36 [38]. PINK1 protein has a mitochondrial target-
ing sequence at its N-terminus and has been shown to
have an intramitochondrial location, although in which
compartment(s) remains uncertain. Several reports have
demonstrated abnormal mitochondrial function in models
of PINK1 knockout and in patients with PINK1 mutations
including defective oxidative phosphorylation, increased free
radical damage and reduced mitochondrial levels [39–45].

Several of the reported mutations of PINK1 are located in
the kinase domain [38, 46–48] and altered phosphorylation
of target proteins probably represents a key pathogenic
mechanism. The phosphorylation of mitochondrial proteins
is considered pivotal to the regulation of respiratory activity
in the cell and to signalling pathways leading to apoptosis, as
well as for other vital mitochondrial processes. The genera-
tion of monoclonal antibodies to respiratory chain subunits
[49, 50] has enabled the demonstration that a number of the
subunits are phosphorylated, including several subunits of
complex I [51–54].

3.2. Parkin. Parkin (Park2) gene mutations were first iden-
tified in autosomal recessive juvenile onset parkinsonism
(ARJPD) [55]. Pathologically there is dopaminergic cell loss
in the substantia nigra pars compacta and locus ceruleus, but
Lewy bodies are rarely seen [56–58]. Patients carry deletions
or point mutations in various parts of the parkin gene [59,
60]. The relevance of parkin mutations to idiopathic PD has
been highlighted by the identification of parkin mutations
in apparently sporadic cases of PD and by the description
of Lewy bodies in parkin positive patients with later onset
disease than ARJPD [61, 62].

Parkin protein functions as an E3 ligase, ubiquitinating
proteins for destruction by the proteasome [63, 64] or
lysosome [65]. Parkin knockout mice have decreased stri-
atal mitochondrial respiratory chain function and reduced
respiratory chain activity [66]. Parkin knockout flies devel-
oped muscle pathology, mitochondrial abnormalities, and
apoptotic cell death [67]. Overexpression of parkin in PC12
cells indicated that it is associated with the mitochondrial
outer membrane [68]. Parkin mutation positive patients have
decreased lymphocyte complex I activity [69]. Fibroblasts
from parkin mutation positive patients also exhibit decreased
complex I activity and complex I-linked ATP production
[70, 71].
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3.3. DJ-1. Mutations of DJ-1 are a rare cause of familial
PD. This protein is located in the cytosol, nucleus, and
mitochondria but under conditions of oxidative stress
preferentially partitions to the mitochondrial matrix and
intermembranous space to mediate a protective effect [72].
This protection may also be an effect of mRNA regulation
and increased translation under conditions of oxidative stress
[73–75]. DJ1 knockout mice downregulated uncoupling
proteins 4 and 5, impaired calcium-induced uncoupling
and increased oxidant damage [76]. DJ-1 is thought to
have a protective role in reducing protein misfolding and
aggregation that may be a consequence of oxidative stress and
so has been reported to reduce alpha-synuclein aggregation
[77].

3.4. Alpha-Synuclein. Point mutations in the alpha-synuclein
(Park1) gene [78, 79] and more recently multiplications
of the wild-type gene have been described as causes of
familial PD. A triplication of the gene was identified in
a large autosomal dominant kindred with PD and tremor
[80] and duplication of the gene was found in one of 42
familial probands of early onset PD [81]. A further alpha-
synuclein point mutation (E46K) has been reported in an
autosomal dominant family with parkinsonism and Lewy
body dementia [82]. Alpha-synuclein is a major component
of Lewy bodies in idiopathic, apparently sporadic PD [83].

Alpha-synuclein protein is predominantly cytosolic, but
a fraction has been identified in mitochondria [84], appears
to interact directly with mitochondrial membranes, includ-
ing at the neuronal synapse [85], and to inhibit complex
I in a dose dependent manner that reflects the brain
regional expression of alpha-synuclein [86, 87]. Alpha-
synuclein has also been shown to reduce ATP synthesis and
mitochondrial membrane potential, although in one study
alpha-synuclein did not affect respiratory chain activity or
membrane potential [88, 89]. Mitochondrial abnormalities
of structure and function have been observed in transgenic
mice over-expressing mutant alpha-synuclein [90]. Alpha-
synuclein undergoes an important posttranslational modifi-
cation with phosphorylation at serine 129 [91], and it would
be interesting to determine whether this might influence the
effect of the protein on mitochondrial function.

4. Mitochondrial Dynamics and Mitophagy

Abnormal mitochondrial morphology and changes in mito-
chondrial dynamics have been reported for PINK1, parkin,
DJ-1, and alpha-synuclein in a variety of cell and animal
models [70, 89, 92–98]. These events could be due to direct
effects on mitochondrial fission and fusion [89, 94, 97, 98],
be secondary to deficiencies in oxidative phosphorylation
[86], and/or be related to impaired mitochondrial turnover
[99].

Recent studies have demonstrated that PINK1 together
with parkin play a vital role in the turnover of mitochondria
mitophagy [96, 98, 100, 101]. Parkin translocates from the
cytosol to the mitochondrion in response to a fall in mito-
chondrial membrane potential [102]. Recent data suggest

that this is preceded by phosphorylation of parkin by PINK1
[103]. Parkin translocation to depolarised mitochondria is
abolished in PINK1 knockout mouse embryonic fibroblasts
(MEFS). Transfection of these MEFS with wild-type PINK1
restored parkin translocation [104]. However, transfection of
kinase-dead PINK1 could not restore mitophagy suggesting
that PINK1 recruits parkin to mitochondria by a kinase
pathway. Parkin and PINK1 involvement in mitophagy
includes the ubiquitination of mitofusin 1 and 2 (mfn 1
and 2) by parkin [105, 106]. Recently DJ-1 has also been
implicated in mitophagy [92, 107]. The increased oxidative
stress as a result of DJ-1 deficiency has been suggested as
a cause. Data also suggests that DJ-1 works in a parallel
pathway to PINK1 and parkin [107, 108].

HtrA2 is a mitochondrial protease thought to be involved
in the turnover of mitochondrial proteins. The phosphoryla-
tion of HtrA2 is dependent on PINK1, probably via a kinase
cascade, rather than as a direct substrate [109]. Mutations in
the HtrA2 gene are a possible rare cause of PD [110, 111].
The mitochondrial chaperone TRAP1 has been shown to be
a direct substrate of PINK1 [112]. These data suggest that
PINK1 might be involved in the regulation of mitochondrial
proteins as well as mitochondria as a whole.

Thus, quality control of mitochondria may play an
important role in PD pathogenesis if the essential clear-
ance of defective mitochondria is impaired and damaged
mitochondria accumulate, utilising substrate and generating
excess superoxide radicals. The recent description of reduced
autophagy protein expression in PD nigra and amygdala
may mirror defects of mitophagy [113]. Defective trafficking
of mitochondria between cell compartments may be an
additional consequence of impaired fission fusion and in
turn may contribute to regional cellular dysfunction such as
at the synapse.

5. Conclusion

Since the discovery of mitochondrial dysfunction in PD, a
very large body of evidence has accrued to confirm that this
organelle plays an important part in pathogenesis. Mito-
chondrial toxins have been used to induce dopaminergic cell
death [114–116] and environmental exposure to toxins can
increase the risk for parkinsonism [117]. The familial causes
of parkinsonism/PD function in pathways that influence
mitochondrial function directly or indirectly. This is not
to aver that mitochondrial dysfunction is the cause of PD,
but rather to suggest that it is a critical feature and one
worthy of further investigation, particularly in relation to
the development of interventions to modify the course of
PD. Indeed, several studies have been performed using agents
that influence mitochondrial function [118–120].
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