Balanced sensitivity and specificity on unbalanced data
using support vector machine re-thresholding
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Summary

Support vector machine (SVM) classifiers use multivariate patterns
to separate two groups by a hyperplane with maximal margin, as
shown in Figure 1. This strategy tends to obtain good generalisa-
tion accuracy on even very high dimensional applications. However,
SVMs are not well suited to unbalanced data with very different num-
bers of cases in each group. In this work we implement a properly
cross-validated method for altering the SVM threshold (also known
as the bias or cut-point) to re-balance the sensitivity and specificity.

Feature 2 Hyperplane and
t limits of
NB: SVMs can handle
° non-Gaussian data,
] and outliers do not
influence hyperplane
S O
O
o O
O
O
O ° ° Group A | Group B Key
O O Normal point
Normalto hyperplane N Support vector
= weight vector w
O Misclassified
» Feature 1

Figure 1: lllustration of the SVM for a two-dimensional exam-
ple. The features could be things like mean cortical thickness
over two regions of interest, or the values at two vertices on the
triangulated surface. The hyperplane can be defined by w'!x +
b = 0, which generalises to arbitrary length feature vectors x =
| Feature, Feature,, . ..|. For linear SVMs, the weight vector w has
the same dimension as the feature vector, and hence can be visu-
alised as an image, as in the graphic behind the UCL logo.

Introduction

Machine learning approaches for classifying individuals into disease
groups on the basis of neuroimaging data are increasingly popular,
and often use SVMs to handle dimensionalities much larger than
the number of cases. SVMs have been applied to discriminate AD
from healthy ageing, and predict MCI progression to AD. Their key
motivation is that characterisation of multivariate patterns in the data
should be more powerful than simpler mass-univariate analyses.

However, SVMs are intended for balanced data-sets with roughly
equal numbers of positive and negative cases, aiming to maximise
accuracy. With unbalanced data, sensitivity and specificity can be
strongly biased in opposite directions. Consideration of receiver
operating characteristics (ROC) can be used to estimate balanced
sensitivity and specificity, but these may be upwardly biased due
to their post-hoc nature. Unfortunately, many data-sets are unbal-
anced, for example from natural imbalances in prevalence of dis-
eases or genetic variants, or low proportions of MCI subjects pro-
gressing over short periods.

Methods

We use nested leave-one-out cross-validation (CV), in which the
SVM'’s parameters (including the soft-margin misclassification cost
C) are trained within the inner CV loop. Here, the SVM'’s threshold
or bias b can also be altered to re-balance sensitivity and specificity,
by considering the ROC on the inner CV loop. Various criteria could
be used to define the optimal threshold, such as highest Youden in-
dex (the sum of sensitivity and specificity); experiments suggest the
best performance is obtained by directly minimising the difference
between sensitivity and specificity, which is the criterion used here.

We evaluate the method by revisiting an unbalanced data-set of
34 subjects who presented clinically with frontotemporal dementia,
of whom 23 exhibited frontotemporal lobar degeneration pathology
(FTLD-FTD) and 11 had underlying AD pathology (AD-FTD) at post
mortem (Lehmann et al., 2010). The small number of subjects here
reflects the rarity of subjects who have both in vivo MRI scans and
post mortem histopathology. The smaller number of unusual AD-
FTD subjects is also practically unavoidabile.

The features used in the SVM are the cortical thickness measure-
ments (obtained from FreeSurfer, version 4.03, http://surfer.
nmr .mgh . harvard.edu) at every vertex across both hemispheres of
the cortex, with a dimensionality of 327,684.
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Figure 2: A posteriori receiver operating characteristic (ROC) curve
for the original SVM, showing the sensitivity to the 11 AD-FTD sub-
jects and the specificity to the 23 FTLD-FTD subjects. The red circle
indicates the a priori operating point as learnt by the SVM, which
has very poor sensitivity to the minority class. The square indicates
the highest a posteriori accuracy, which in this case also achieves
nearly equal sensitivity and specificity. However, simulations using
random data show that the a posteriori accuracy is upwardly biased.

Results

In Lehmann et al. (2010), an SVM applied to the same data yielded
an ROC curve encompassing a large area, but whose a priori sen-
sitivity to the smaller AD-FTD group was near chance (see Figure 2
and Table 1). The new re-thresholded SVM attained high sensitivity
and specificity without post-hoc modification (shown in Figure 3 and
the second row of Table 1).
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Figure 3: ROC curve for the modified (re-thresholded) SVM, show-
Ing that the a priori operating point (red circle) is now near optimal.

Method | Accuracy % (Cl) | Sensitivity % (Cl) | Specificity % (CI)

Original |79.4 (62.1-91.3) 54.5 (23.4-83.3) | 91.3 (72.0-98.9)
Modified | 82.4 (65.5-93.2) 81.8 (48.2-97.7) 82.6 (61.2-95.0)

Table 1: Classification performance metrics, without post-hoc alter-
ation of cut-points. Binomial (exact) 95% confidence intervals are
given in parentheses for each measure. The accuracy is not signifi-
cantly different, but the sensitivity has been substantially increased
(by over 25 percentage points) at a relatively small cost in specificity
(less than 10 percentage points).
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Figure 4: The modified SVM scores; accuracy with varying cut-point.

Conclusion

We have proposed a novel procedure to retrain the SVM threshold
inside the CV loop, which can simultaneously achieve high sensitiv-
ity and specificity on unbalanced data, without compromising accu-
racy. Software will be made openly available as a toolbox for SPM:
http://www.fil.ion.ucl.ac.uk/spm/ext/#CLASS
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