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Cortical thickness estimation (CTE) performed in-vivo via magnetic resonance imaging is an important technique for the diagnosis and understanding of the progression of neurodegenerative diseases. 
Currently, two different computational paradigms exist, with methods generally classified as either surface or voxel-based. This paper provides a much needed comparison of the surface-based method 
FreeSurfer with two voxel-based methods using clinical data. We demonstrate that voxel-based methods can detect similar patterns of group-wise differences as well as FreeSurfer, where the lack of 
deformable model constraints may provide more sensitivity but with a resulting trade-off in reproducibility. 
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Comparison Of 3 Methods of Cortical Thickness Estimation

FreeSurfer [1]
Extracts the inner (yellow) 
surface and outer (red) 
surface, as triangulated 
meshes, and computes the 
average of the distance from 
the inner surface to the 
closest outer surface point 
and back again.

From [2], imagine each side of 
the cortex has an electric 
potential. Solve the Laplace 
equation over the voxel grid, 
resulting in a smoothly varying 
scalar field. Cortical thickness 
is computed along the 
tangents to the equipotential 
lines [3].

Laplacian [2,3]
Register WM mask to the 
WM + GM mask [4].

The thickness is the 
distance the GM/WM 
boundary moves during 
registration.

Registration [4]

Mathematical model for thickness

The centerpiece of this paper is the application of
Laplace’s equation to compute cortical thickness in
concordance with the discussions above. Laplace’s
equation is fundamental to mathematical physics and
has applicability over a broad range of phenomena.
Examples include gravitational fields for celestial dy-
namics, electrostatic fields for particle acceleration,
thermodynamic flows, any diffusion calculation, invi-
cid incompressible fluid flow, and hydrostatics [Bland,
1965; Morse et al., 1953].

Laplace’s equation is a second-order partial differ-
ential equation for a scalar field ! that is enclosed
between boundaries S and S". Mathematically, it takes
the form

#2! !
$2!

$x2 "
$2!

$y2 "
$2!

$z2 ! 0

where ! % !1 on S and ! % !2 on S". Functions that
satisfy Laplace’s equation are called harmonic or po-
tential functions. Harmonic functions have many
beautiful mathematical properties. Included among
them is an underlying geometric structure, which ap-
plies naturally to the definition of cortical thickness.
For our example, Laplace’s equation describes a lay-
ered set of nested surfaces that make a smooth tran-
sition from S to S". This is the desired property for
computing cortical thickness as described in the pre-
vious section.

Figure 4 shows a two-dimensional example of
how Laplace’s equation determines thickness. A
“potential” ! is defined everywhere between the
two lines such that ! % 0 on S, ! % 10,000 on S", and
#2! % 0 everywhere in between. The values of 0 and
10000 can be assigned units of volts, in analogy with
electrostatic fields. Mathematically, the final pattern
of streamlines is independent of the choice of
boundary condition voltages, as long as the two
voltages are different. The resulting profile of ! is a
smooth transition from ! % 0 V on S to ! % 10,000
V on S". The significant property of Laplace’s equa-
tion is that nonintersecting intermediate lines, or
isopotentials, with constant values between 0 V and
10,000 V must exist between S and S". Examples are
indicated as dashed lines for isopotential values of
2,500, 5,000, and 7,500 V. In effect, these intermedi-
ate lines divide the volume into any desired set of
sublayers. Once the solution of ! is obtained, “field
lines” are computed using

E ! &#!

that is normalized to

N ! E/!E!

N represents a unit vector field defined everywhere
between S and S" which always points perpendicu-
larly to the sublayer on which it sits.

After computing N, “field lines” or “streamlines” are
computed by starting at any point on S and integrating
N. For example, in Figure 4, consider starting at point P1
and using a large integration step size. Integrating N
takes you from P1 to P2 to P3 to P4 to P5, with the five
points forming a “streamline.” The pathlength can be
defined as the sum of straightline distances from P1 to P2
to P3 to P4 to P5. Although this example crudely uses a
total of four steps to cross from P1 to P5, any larger
number of steps n with smaller step size could be used to
describe a curve from P1 to Pn. The larger the number of
steps, the more accurate the streamline fits an ideal
curve. Mathematically, a curve which starts at P1, ends at
Pn, and has length T is described by a vector function
C(s) parameterized by s and defined by

dC's(

ds ! N'C's((

where C(0) is point P1 and C(T) is point Pn.
As mentioned previously, the mathematical formal-

ism of Laplace’s equation underlies the description of

Figure 4.
Two-dimensional example of Laplace’s method. Laplace’s equation
is solved between S and S", which have predetermined boundary
conditions of 10,000 V and 0 V, respectively. Three examples of
resulting intermediate equipotential surfaces are indicated for
2,500 V, and 5,000 V, and 7,500 V. Field lines connecting S to S" are
defined as being everywhere orthogonal to all equipotential sur-
faces, as exemplified by the line connecting P to P".
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computed by starting at any point on S and integrating
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defined as being everywhere orthogonal to all equipotential sur-
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A cohort consisting of 49 subjects; 33 patients with probable AD, and 16 healthy controls, was selected from a 
local clinical database. All subjects had two same-day volumetric MRI scans acquired on a single 1.5T GE 
Signa scanner (General Electric, Milwaukee, WI).  All 3 methods were run on both scans. Nine regions of 
interest were selected in advance on the FreeSurfer parcellation: the parahippocampal gyrus (PHG), fusiform 
(FUS), superior temporal gyrus (STG), precuneus (PRE), superior parietal gyrus (SPG), supramarginal gyrus 
(SMG), lateral occipital sulcus (LO), lingual (L) and the superior frontal gyrus (SFG). The standard deviation 
of the difference in the mean regional thickness was computed over all subjects.

Experiment 1: Reproducibility

Experiment 2: Cross-Sectional Disease Differentiation
A second cohort consisting of 101 subjects: 73 patients with clinically diagnosed frontotemporal dementia (FTD) 
and 28 healthy controls, was selected from a local clinical database. The FTD patients included 30 patients with 
progressive non-fluent aphasia (PNFA), 43 patients with semantic dementia (SD). All subjects had volumetric 
MRI acquired on four different 1.5T GE Signa scanners (General Electric, Milwaukee, WI).

The three thickness methods were run on all subjects, and a general linear model was used to test for 
statistically significant evidence of cortical thinning between patients and controls. Significance was 
assessed at the p=0.05 level, when corrected for multiple comparisons using the False Discovery Rate. 
Finally, a linear Support Vector Machine (SVM) was used to classify subjects where the comparison of 
interest is how well the classifier can separate the two patient groups from the control group, using the 
thickness data produced by each method. 
Results:
Expt 1: Table shows the standard deviation of the difference in mean regional thickness for 9 anatomical regions, where an asterisk or a 
dagger indicate statistical significance.

Method PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer 0.07 0.05 0.04 0.05 0.07 0.04 0.06 0.04 0.08
Laplacian 0.27* 0.39* 0.18* 0.17* 0.13* 0.16* 0.23* 0.76* 0.20*
Registration 0.16*† 0.15*† 0.15* 0.13*† 0.14* 0.16* 0.14*† 0.12*† 0.11*†

Fig. 1. A comparison of 3 methods, showing FDR corrected
p-values where p < 0.05, comparing control subjects with
SD patients (top) and PNFA patients (bottom). Red to yellow
indicates patients thinner than controls, and blue to light blue
indicates patients thicker than controls.

Table 1. SVM classification comparing control subjects with
SD and PNFA patients where CI means 95% confidence in-
terval.

Method Group Accuracy -CI +CI
(%) (%) (%)

FreeSurfer SD 95.8 88.1 99.1
Laplacian SD 97.2 90.2 99.2
Registration SD 95.8 88.1 99.1
FreeSurfer PNFA 79.3 66.6 88.8
Laplacian PNFA 84.5 72.6 92.7
Registration PNFA 75.9 62.8 86.1

4. RESULTS

Table 3 shows the standard deviation for each of the nine re-
gions and for each of the three methods, with left and right
sides averaged together. In Table 3, all Pitman’s tests com-
parisons, where the Laplacian and Registration methods were
compared with FreeSurfer were statistically significant at the
p < 0.05 level, whereas when comparing the Registration
method to the Laplacian method all comparisons were statis-
tically significant at the p < 0.05 level except for the supe-
rior temporal gyrus, superior parietal gyrus and supramarginal
gyrus.

Figure 1 shows a visual comparison of the three methods,
comparing SD and PNFA patient’s cortical thickness with

control subjects. Table 1 shows the SVM scores in terms of
classification accuracy and 95% confidence intervals. In table
1, confidence intervals overlap, indicating that we have not
found a significant difference between methods, however the
Laplacian method does show increased accuracy, and both
voxel-based methods show more widespread involvement in
Figure 1 than FreeSurfer.

5. DISCUSSION AND CONCLUSIONS

In this paper we have compared the surface-based cortical
thickness method FreeSurfer with two voxel-based methods.
This is a challenging task as the methodologies are signifi-
cantly different, and we must err on the side of caution in
the interpretation of the results. FreeSurfer was shown to
have a significantly lower standard deviation of regional cor-
tical thickness for same-day scans, and hence be more repro-
ducible than both the Laplacian and Registration based meth-
ods (Table 3). The FreeSurfer surface-based method creates
a WM segmentation, then a tessellated surface mesh, and de-
forms that mesh to find both surfaces. This means that repro-
ducibility will be affected by the consistency of the segmen-
tation, but the deformable model process will have a good
opportunity to correct for any segmentation differences. Fur-
thermore, the use of bending energy constraints should con-
strict the movement of the mesh. While this can cause part of
the segmentation to be incorrect, such as in thin gyral stalks,
or buried sulci, at least the results will be consistent. It is
interesting to note the difference in reproducibility between
the Laplacian and Registration methods, as these had identi-
cal segmentations. The Registration method warps the WM
segmentation outwards to match the GM+WM segmentation.
This means that the thickness calculation should cope better
than the Laplacian method with situations where folds in the
GM touch [5], and with variations in the GM segmentation.
If there was a few voxels difference, on two same day scans,
the Laplacian method might measure this variability, whereas
if the Registration method converges to much the same regis-
tration, it will appear to be more consistent.

We compared the three algorithms in terms of the abil-
ity to detect group-wise differences. This is an application
found frequently in the literature, with conclusions usually
drawn based on visual inspection. Figure 1 shows an average
brain, colour coded with regions where there is statistically
significant evidence (p < 0.05), when corrected for multi-
ple comparisons using the FDR method [10], of SD patients
(top) or PNFA patients (bottom) having thicker (blue to light
blue) or thinner (red to yellow) cortical thickness than con-
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Registration 0.16*† 0.15*† 0.15* 0.13*† 0.14* 0.16* 0.14*† 0.12*† 0.11*†

Fig. 1. A comparison of 3 methods, showing FDR corrected
p-values where p < 0.05, comparing control subjects with
SD patients (top) and PNFA patients (bottom). Red to yellow
indicates patients thinner than controls, and blue to light blue
indicates patients thicker than controls.

Table 1. SVM classification comparing control subjects with
SD and PNFA patients where CI means 95% confidence in-
terval.

Method Group Accuracy -CI +CI
(%) (%) (%)

FreeSurfer SD 95.8 88.1 99.1
Laplacian SD 97.2 90.2 99.2
Registration SD 95.8 88.1 99.1
FreeSurfer PNFA 79.3 66.6 88.8
Laplacian PNFA 84.5 72.6 92.7
Registration PNFA 75.9 62.8 86.1

4. RESULTS

Table 3 shows the standard deviation for each of the nine re-
gions and for each of the three methods, with left and right
sides averaged together. In Table 3, all Pitman’s tests com-
parisons, where the Laplacian and Registration methods were
compared with FreeSurfer were statistically significant at the
p < 0.05 level, whereas when comparing the Registration
method to the Laplacian method all comparisons were statis-
tically significant at the p < 0.05 level except for the supe-
rior temporal gyrus, superior parietal gyrus and supramarginal
gyrus.

Figure 1 shows a visual comparison of the three methods,
comparing SD and PNFA patient’s cortical thickness with

control subjects. Table 1 shows the SVM scores in terms of
classification accuracy and 95% confidence intervals. In table
1, confidence intervals overlap, indicating that we have not
found a significant difference between methods, however the
Laplacian method does show increased accuracy, and both
voxel-based methods show more widespread involvement in
Figure 1 than FreeSurfer.

5. DISCUSSION AND CONCLUSIONS

In this paper we have compared the surface-based cortical
thickness method FreeSurfer with two voxel-based methods.
This is a challenging task as the methodologies are signifi-
cantly different, and we must err on the side of caution in
the interpretation of the results. FreeSurfer was shown to
have a significantly lower standard deviation of regional cor-
tical thickness for same-day scans, and hence be more repro-
ducible than both the Laplacian and Registration based meth-
ods (Table 3). The FreeSurfer surface-based method creates
a WM segmentation, then a tessellated surface mesh, and de-
forms that mesh to find both surfaces. This means that repro-
ducibility will be affected by the consistency of the segmen-
tation, but the deformable model process will have a good
opportunity to correct for any segmentation differences. Fur-
thermore, the use of bending energy constraints should con-
strict the movement of the mesh. While this can cause part of
the segmentation to be incorrect, such as in thin gyral stalks,
or buried sulci, at least the results will be consistent. It is
interesting to note the difference in reproducibility between
the Laplacian and Registration methods, as these had identi-
cal segmentations. The Registration method warps the WM
segmentation outwards to match the GM+WM segmentation.
This means that the thickness calculation should cope better
than the Laplacian method with situations where folds in the
GM touch [5], and with variations in the GM segmentation.
If there was a few voxels difference, on two same day scans,
the Laplacian method might measure this variability, whereas
if the Registration method converges to much the same regis-
tration, it will appear to be more consistent.

We compared the three algorithms in terms of the abil-
ity to detect group-wise differences. This is an application
found frequently in the literature, with conclusions usually
drawn based on visual inspection. Figure 1 shows an average
brain, colour coded with regions where there is statistically
significant evidence (p < 0.05), when corrected for multi-
ple comparisons using the FDR method [10], of SD patients
(top) or PNFA patients (bottom) having thicker (blue to light
blue) or thinner (red to yellow) cortical thickness than con-

Expt 2: Methods detect similar patterns of cortical thinning for both patient groups, and the SVM experiment found no significant difference 
between them.

Method PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer 0.07 0.05 0.04 0.05 0.07 0.04 0.06 0.04 0.08
Laplacian 0.27* 0.39* 0.18* 0.17* 0.13* 0.16* 0.23* 0.76* 0.20*
Registration 0.16*† 0.15*† 0.15* 0.13*† 0.14* 0.16* 0.14*† 0.12*† 0.11*†

Fig. 1. A comparison of 3 methods, showing FDR corrected
p-values where p < 0.05, comparing control subjects with
SD patients (top) and PNFA patients (bottom). Red to yellow
indicates patients thinner than controls, and blue to light blue
indicates patients thicker than controls.

Table 1. SVM classification comparing control subjects with
SD and PNFA patients where CI means 95% confidence in-
terval.

Method Group Accuracy -CI +CI
(%) (%) (%)

FreeSurfer SD 95.8 88.1 99.1
Laplacian SD 97.2 90.2 99.2
Registration SD 95.8 88.1 99.1
FreeSurfer PNFA 79.3 66.6 88.8
Laplacian PNFA 84.5 72.6 92.7
Registration PNFA 75.9 62.8 86.1

4. RESULTS

Table 3 shows the standard deviation for each of the nine re-
gions and for each of the three methods, with left and right
sides averaged together. In Table 3, all Pitman’s tests com-
parisons, where the Laplacian and Registration methods were
compared with FreeSurfer were statistically significant at the
p < 0.05 level, whereas when comparing the Registration
method to the Laplacian method all comparisons were statis-
tically significant at the p < 0.05 level except for the supe-
rior temporal gyrus, superior parietal gyrus and supramarginal
gyrus.

Figure 1 shows a visual comparison of the three methods,
comparing SD and PNFA patient’s cortical thickness with

control subjects. Table 1 shows the SVM scores in terms of
classification accuracy and 95% confidence intervals. In table
1, confidence intervals overlap, indicating that we have not
found a significant difference between methods, however the
Laplacian method does show increased accuracy, and both
voxel-based methods show more widespread involvement in
Figure 1 than FreeSurfer.

5. DISCUSSION AND CONCLUSIONS

In this paper we have compared the surface-based cortical
thickness method FreeSurfer with two voxel-based methods.
This is a challenging task as the methodologies are signifi-
cantly different, and we must err on the side of caution in
the interpretation of the results. FreeSurfer was shown to
have a significantly lower standard deviation of regional cor-
tical thickness for same-day scans, and hence be more repro-
ducible than both the Laplacian and Registration based meth-
ods (Table 3). The FreeSurfer surface-based method creates
a WM segmentation, then a tessellated surface mesh, and de-
forms that mesh to find both surfaces. This means that repro-
ducibility will be affected by the consistency of the segmen-
tation, but the deformable model process will have a good
opportunity to correct for any segmentation differences. Fur-
thermore, the use of bending energy constraints should con-
strict the movement of the mesh. While this can cause part of
the segmentation to be incorrect, such as in thin gyral stalks,
or buried sulci, at least the results will be consistent. It is
interesting to note the difference in reproducibility between
the Laplacian and Registration methods, as these had identi-
cal segmentations. The Registration method warps the WM
segmentation outwards to match the GM+WM segmentation.
This means that the thickness calculation should cope better
than the Laplacian method with situations where folds in the
GM touch [5], and with variations in the GM segmentation.
If there was a few voxels difference, on two same day scans,
the Laplacian method might measure this variability, whereas
if the Registration method converges to much the same regis-
tration, it will appear to be more consistent.

We compared the three algorithms in terms of the abil-
ity to detect group-wise differences. This is an application
found frequently in the literature, with conclusions usually
drawn based on visual inspection. Figure 1 shows an average
brain, colour coded with regions where there is statistically
significant evidence (p < 0.05), when corrected for multi-
ple comparisons using the FDR method [10], of SD patients
(top) or PNFA patients (bottom) having thicker (blue to light
blue) or thinner (red to yellow) cortical thickness than con-

Conclusion
FreeSurfer was shown to have a significantly lower standard deviation of regional cortical thickness for 
same-day scans. All 3 methods are suitable for detecting group-wise differences, displaying qualitatively 
similar results and more atrophy on the left than on the right side for SD and PNFA. We did not find any 
statistically significant evidence of a difference between methods when using an SVM to classify controls 
from SD patients or controls from PNFA patients. However, the SVM results indicate that the Laplacian 
method may be able to provide improved classification accuracy. 
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