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Abstract 

The problem of improved radar detection of targets embedded in spiky clutter is 

addressed. Two main areas where improvements may be possible are investigated, 
namely improved clutter suppression by doppler filtering, and improved Constant False 
Alarm Rate (CFAR) processing. The clutter suppression performance of several doppler 
processors is quantified under a wide range of conditions. It is shown that in spatially 
homogeneous clutter ideal optimal (Hsiao) filters offer 2 to 3 dB higher improvement 
factor than conventional techniques. Adaptive Hsiao filters are evaluated under conditions 
of spatially heterogeneous clutter, and it is shown that practical losses due to filter 

adaptivity and spectral heterogeneity will outweigh the superior performance of ideal 
Hsiao filters in homogeneous clutter. It is concluded that improved doppler filtering 

offers little scope for improving detection performance in spiky clutter, and that more 
significant benefits are to be gained through improved CFAR processing. The perfor- 
mance of three current generation CFAR processors is evaluated in spatially uncorrelated 
K-distributed clutter to quantify detection losses. It is shown that losses of in excess of 
10 dB can be expected in spiky clutter. Reducing the loss by exploitation of any spatial 
correlation of the underlying clutter power is investigated. To this end a mathematically 
rigorous model for spatially correlated K-distributed clutter is derived. An improved 
CFAR processor based on optimal weighting of reference cells is formulated and 
evaluated. It is shown that in highly correlated clutter CFAR loss can be reduced by 2 to 
5 dB compared to Cell Averaging CFAR processors. An alternative "RDT-CFAR" 

processor is formulated to eliminate reliance on spatial correlation, and this is shown to 
reduce CFAR loss by more than 10 dB in spectrally homogeneous spiky clutter. 
However, an increase in false alarm rate in clutter without constant spectrum is 
demonstrated. The RDT-CFAR processor has been modified to eliminate dependence on 
surrounding range bins. The resulting "S-CFAR" processor reduces CFAR loss by more 
than 10 dB in even moderately spiky clutter. It is also immune to extraneous targets and 
clutter edges, and its false alarm performance is insensitive to clutter spikiness. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 
Modern radars are increasingly required to detect small targets in the presence of strong 
clutter while simultaneously maintaining a low, and preferably constant, probability of false 

alarm. Two key radar subsystems for achieving this goal are the doppler filter, for 

suppressing clutter as far as possible, and the automatic detector, for deciding which of the 
filtered returns represent targets. 

Much progress has been made in the field of doppler filtering over the last two decades, 

and Pulse Doppler (PD), Moving Target Detector (MTD) and adaptive Optimal Filter (OF) 
techniques have superceded simple Moving Target Indication (MTI) filters as the state of 
the art. The performance and theory of these techniques is well understood and documented 
for the case of homogeneous clutter environments. However, their performance in spatially 
and temporally varying clutter has not been widely addressed and little clarity or consensus 
exists as to which technique offers the best performance in realistically varying clutter. In 

addition, a number of unexplored potential shortcomings of adaptive optimal filters in 

realistic clutter preclude confident quantitative comparison with other filter types. 

Complete elimination of clutter by doppler filtering is impossible, and additionally, 
detection of targets in clutter of the same ambiguous doppler velocity is often necessary. 
Target detection is therefore often clutter limited. Since the level of the clutter or clutter 
residue varies and is in general unknown, adaptive thresholding is required if an 
approximately constant or bounded false alarm rate is to be achieved. To this end, most 
radars employ Constant False Alarm Rate (CFAR) processors, which attempt to estimate 
the local mean clutter power and set the detection threshold accordingly. Current generation 
CFAR processors are optimised for operation in clutter with noise-like Rayleigh amplitude 
statistics. Under many conditions, however, the nature of radar backscatter from land and 
sea departs significantly from the Rayleigh model. In general this occurs where the number 
of significant scatterers within the radar resolution cell is not sufficient to ensure the validity 
of the central limit theorem (which leads to Rayleigh statistics of the envelope of the 
detected signal), and the clutter statistics depend instead on the scattering properties of the 
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individual scatterers constituting the clutter. This is typical of many land clutter scenarios 
containing sparse and randomly located large point scatterers, and of sea clutter at low 

grazing angles or in high resolution radar systems. The key feature of such clutter is the 
high probability of the clutter exhibiting values much larger than its mean power, or clutter 
spikes. These clutter spikes are known to cause a dramatic deterioration in the performance 
of conventional CFAR processors. Although the severity of the performance deterioration 
has not hitherto been accurately quantified, it is widely acknowledged that improved CFAR 

processing techniques are essential if good detection performance and satisfactory false 

alarm control is to be achieved in spiky clutter. 

These performance and analytic limitations of current generation doppler filters and CFAR 

processors in spatially non-homogeneous spiky clutter therefore provide the starting point 
for this research, the objectives of which can be summarised as follows: 

To quantify the performance of existing CFAR and doppler processors in spiky and 
spatially non-homogeneous clutter; to identify' shortcomings in their performance and 
implementation; and to formulate and evaluate improved techniques, with particular 
relevance to high resolution radars. 

1.2 TECHNICAL BACKGROUND 

The increased emphasis given to improved doppler filtering and detection in non-Rayleigh 
clutter is partly due to the trend in modern radars towards ever higher spatial resolution. 
This trend is motivated by the demand for more diverse, accurate and reliable information 
from the radar sensor. Progress in component technologies has facilitated the realisation of 
radars with significantly higher resolution than was previously possible. 

The advantages of high radar resolution apply to both search and tracking radar functions: 

the higher the resolution, the smaller clutter cell and hence the lower the clutter power with 
which the target must compete for detection; better angular resolution provides better 

angular accuracy for designation in search radars and better tracking accuracy in tracking 

radars, particularly with regard to low elevation tracking where multipath is best countered 

by reductions in elevation beamwidth; and high spatial resolution affords better target 
discrimination between closely spaced targets and better interclutter visibility. It is also 
generally necessary for target recognition applications and is often seen as being beneficial 

in its implications for the vulnerability of the radar to countermeasures. 
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High spatial resolution has a number of consequences for radar processing. Two of the 
most important of these are that 1) the clutter no longer tends to have Rayleigh amplitude 
statistics, resulting in poor CFAR detection performance, and 2) there are generally fewer 

pulses available per dwell, which can severely compromise doppler processing perfor- 
mance. Additionally, high spatial resolution implies more range-angle cells to be processed, 
and therefore higher radar processor throughput. This may be exacerbated by the need for 

more sophisticated processing required to cope with non-Rayleigh clutter statistics. 

1) Non-Rayleigh Clutter 
When the radar spatial resolution is large, the number of scatterers in a given resolution cell 
tends to be sufficient to ensure the validity of the central limit theorem, thus generating 
Rayleigh clutter amplitude statistics. Finer radar spatial resolution, implying fewer clutter 
scatterers per resolution cell, will cause the failure of the central limit theorem and clutter 
returns will exhibit amplitude statistics which depend on the backscatter properties of the 
individual scattering elements or sources within the resolution cell. This generally results in 

clutter which is termed "spiky", and which is mathematically characterised by the third and 
higher order moments of the clutter envelope being higher than for Rayleigh clutter, for a 
common clutter power (second moment). In addition to the clutter being non-Rayleigh, the 
time varying nature of the clutter environment may also be exacerbated by fine radar spatial 
resolution. 

The statistical nature of the high resolution radar environment has received a fair amount of 
attention in the literature over the last few years. Models now exist which are widely 
accepted to provide at least a phenomenological, if not mechanistic, description of high 

resolution radar clutter, particularly sea clutter. Although land clutter models are available 
they are less generally applicable due to the almost infinitely variable nature of terrains 
encountered. The K-distribution model in particular is now widely accepted to provide a 
good phenomenological description of sea clutter. Some physical justification for this 
model has also been proposed. The K-distribution representation of sea clutter is based on 
the assumption that the sea clutter in a given range bin exhibits Rayleigh voltage 
fluctuations (termed the "speckle"), the variance of which varies in time and space 
according to a gamma distribution. This compound form of the K-distribution has the 
particular advantage of permitting the clutter's temporal and spatial correlation properties to 
be properly modelled, including the effects of radar frequency agility. Provided the correct 
spatial ACF is used, spatially correlated K-distributed samples are not dissimilar to real 
clutter data. The K-distribution model is discussed in more detail in Chapter 2 and has been 

adopted as the primary clutter model for this thesis. 
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Target characteristics in high resolution radars are still widely accepted to conform to the 

classic Swerling models for most practical purposes, although they do break down for the 

extremely high resolutions typical of target recognition requirements. The most commonly 
adopted Swerling models, and those adopted in this thesis, are the Swerling-1 and 
Swerling-2 models (Swl and Sw2). These describe the target as having a negative 
exponential power PDF and fluctuations which either decorrelate very slowly relative to the 

radar dwell time (Swl) or decorrelate completely between successive detection 

opportunities (Sw2), which can imply between pulses, bursts or scans, depending on the 

radar processing employed. 

The performance of Constant False Alarm Rate (CFAR) detectors depends on the statistics 
of the noise or clutter background with which the target must compete for detection. Many 
CFAR processor analyses make the assumption that the background has a Rayleigh 
(voltage) or negative exponential (power) distribution. Should this assumption be violated 
an increase in false alarm probability P fa and/or a reduction in target detectability can occur. 
It is important to know the severity of these effects should radar operation in non-Rayleigh 
environments be expected. 

2) Reduction in dwell time 
A second major implication of high radar spatial resolution is the reduction in the dwell time 
available per angular resolution cell if the revisit rate is to be kept constant. The number of 
pulses available for processing per dwell, and consequently the number of pulses per 
coherent processing interval, is therefore limited, thus limiting the achievable doppler 

resolution. This conflicts with clutter suppression and target discrimination requirements, 
particularly in radars intended for detecting very small targets, in which exceptionally good 
clutter and false target suppression is required to suppress the vast numbers of false alarms 
that can be expected to occur due to birds, insects, clutter motion etc.. 

1.3 PROJECT OBJECTIVES 

We wish to improve radar detection performance in spiky clutter. Two possible areas in 

which this may be achieved are in improved doppler filtering, such that targets compete 
with less clutter residue for detection, and improved CFAR processing, to achieve more 
reliable discrimination between desired targets and whatever clutter residue cannot be 

suppressed. A third possibility is also given here for completeness, namely the use of 
difference channel information for detection in monopulse radars. The rationale of this 

technique is to avoid the usual "wastage" of the information in the difference channels 
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during detection processing. Specific objectives within each of these areas are given in the 
following subsections. 

1.3.1 Improved Clutter Suppression 
The adoption of the K-Distribution as the clutter model means that within a given Coherent 
Processing Interval (CPI) or dwell the clutter in each range bin exhibits Rayleigh amplitude 
fluctuations, and hence the signals being filtered in each range bin are complex Gaussian. 
Thus the overall non-Rayleigh nature of the clutter does not directly influence the doppler 
filtering, and well established linear filtering techniques can be used to provide optimal 
clutter suppression performance for specific optimisation criteria and subject to the validity 
of assumptions of clutter homogeneity. The wide range of techniques available for doppler- 
based clutter suppression of Rayleigh clutter are therefore directly applicable to K- 
distributed clutter, and special non-Gaussian filters do not need to be developed. At 

present, however, there is little consensus as to which technique provides the best 

performance under anything wider than specific clutter and target conditions. Although the 

relative performance of many of the techniques has been compared in the literature, no 
clear-cut conclusions can be drawn from the available papers: the data are often not directly 

comparable and sometimes contradictory, and one often gets the impression that quoted 
performance depends strongly on the specific clutter environment assumed. In this thesis 
an attempt will be made to evaluate the relative performance of many commonly proposed 
doppler processors under a wide range of conditions, with as few limiting assumptions as 
possible. The processors to be addressed include: 

1. Moving Target Indication (MTI) 
2. Adaptive MTI (AMTI) 
3. Moving Target Detector (MTD) 
4. Pulse Doppler preceded by MTI (PD&MTI) 
5. Adaptive MTD (AMTD) 
6. Optimal Filtering (OF) 
7. Linear Prediction (LP) 
8. Optimal Filtering preceded by MTI (OF&MTI) 
9. Linear Prediction preceded by MTI (LP&MTI) 
10. Adaptive MTI preceded by MU (AMTI&MTI) 

A wide range of clutter scenarios representative of typical land and sea clutter, possibly 

with weather clutter components as well, are defined. The performance of each of the 
doppler processors listed above is assessed in each clutter environment. Statistical analysis 
is then used to compare the relative performance of the various processors. 
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The abovementioned performance comparison uses the ideal Hsiao filter, which represents 
a theoretical upper bound on achievable clutter suppression, as the reference against which 
all other filters are compared. In practice, Hsiao filtering requires adaptive real time estima- 
tion of the clutter covariance matrix. This results in imperfect estimates of the clutter spec- 
trum, or its covariance matrix, which after solution for the filter weight vector yields sub- 
optimal filter performance. Practical "optimal" filters therefore suffer a loss relative to ideal 

optimal filters, even in spatially homogeneous clutter. Environments for which adaptive 
filters are specifically intended, namely temporally and spatially varying clutter, compound 
the problem further since the covariance matrix in the range bin being filtered will in general 
differ from that in the adjacent range bins used in estimating the covariance matrix. 

Under conditions of spatially homogeneous clutter the magnitude of the loss due to 
imperfect estimation of the covariance matrix has been widely investigated. The assumption 
of homogeneous clutter is, however, very restrictive and will often be violated. Despite 

this, the losses in IF under conditions of clutter heterogeneity have not been widely 
quantitatively addressed in the literature. In this thesis we therefore need to quantify the 
effects of clutter heterogeneity on adaptive doppler filtering, and investigate the use of pre- 
filter MTI as a means of reducing filter sensitivity to some forms of clutter heterogeneity. 
Three general categories of clutter heterogeneity will be investigated, namely: 

1. Clutter in which the amplitude and spectral width in each range bin are randomly 
drawn from spatially invariant parent populations of specified characteristics. 

2. Clutter edges, in which the clutter amplitude and/or spectrum exhibit a step change 
at some point in the range profile of the clutter. 

3. Clutter which is essentially homogeneous but in which a small number of range 
bins are corrupted by returns with significantly different amplitude and spectral 
characteristics, representing point clutter sources or extraneous targets. 

1.3.2 CFAR Processing in Non-Rayleigh Clutter 
The scope for improvements in detection performance through improved doppler filtering is 
limited. In many clutter environments the detection of desired targets embedded in relatively 
strong clutter residue will therefore be necessary. The influence of K-distributed clutter on 
detection and false alarm probabilities achieved by most conventional CFAR processors has 

not been widely addressed in the literature. The performance of conventional CFAR 

processors in K-distributed clutter, and K-distributed clutter plus thermal noise, therefore 
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needs to be quantitatively evaluated. Three well known CFAR processors, namely the Cell 
Averaging (CA), Cell Averaging Greatest-Of (CAGO) and Order Statistic (OS) processors, 
are chosen as the basis of the analysis. Besides being of general use in the selection and 
evaluation of conventional CFAR processors, these results are necessary to facilitate 

meaningful performance assessment of improved CFAR processors introduced in later 

chapters of this thesis. 

Severe detection losses can arise in spatially uncorrelated spiky clutter. Spatial correlation 
affects the performance of the CA, CAGO and OS processors, but more importantly, it 

offers scope for improved CFAR processors aimed specifically at exploiting spatial 
correlation with a view to improving detection performance in spiky clutter. It is not 
unreasonable to assume that the clutter modulation process will have a decorrelation 
distance of the same order of magnitude as the decorrelation distance of the sea surface. In 

some conditions this correlation distance may cover a number of range bins in the CFAR 

reference window. It can then be postulated that exploitation of such spatial correlation 
could reduce detection losses in spiky clutter. if the degree of correlation is known, then the 
CFAR threshold multiplier factor can be altered to better reflect the local clutter statistics in 
the reference window, resulting in reduced detection loss. Furthermore, weighting of 
reference cells to improve the estimate of the clutter power in the test cell is an intuitively 

obvious extension to further enhance detection performance. Three specific research 
objectives for this phase of the project can therefore be defined as: 

1) Extend current models for K-distributed clutter to enable spatially correlated clutter 
to be simulated and rigorously mathematically represented. 

2) Quantify the potential benefits of exploiting spatial correlation, by defining and 
analysing "Ideal CFAR Detection" in spatially correlated clutter. 

3) Formulate and evaluate a CFAR processor aimed at reducing detection losses in 

spatially correlated spiky clutter. 

An alternative means of improving CFAR performance in spiky clutter is to reduce the 
reliance on surrounding range bins as the sole source of information for estimating the 
background in the test cell in order to establish the threshold. Exploitation of the two other 
domains in which potential reference data are available, namely the doppler and time 
domains, should therefore be investigated. Current techniques such as post-detection 
binary integration and range-doppler CFAR processing offer modest benefits at best. 
Additionally, false alarm control downstream by Track-While-Scan processing is not an 
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ideal solution as it can cause saturation of the plot extractor and missed or corrupted true 
tracks. A research objective of this thesis was therefore stated as formulating a means of 

exploiting information from other time and/or doppler bins in the vicinity of the test cell to 

ascertain the background level in the test cell, in radars employing doppler filter banks and 
multiple bursts per dwell. The resulting Range-Doppler-Time CFAR processor must be 

evaluated and detection benefits assessed. 

The objectives of the CFAR processing research in this thesis can therefore be summarised 

as follows: 

1. To analyse the performance of several existing single pulse CFAR processor 
implementations in K-Distributed clutter, with specific emphasis on the effects of 
clutter spildness and spatial correlation. 

2) Quantify the potential benefits of exploiting spatial correlation, and formulate and 
evaluate a CFAR processor aimed at reducing detection losses in spatially correlated 
spiky clutter. 

3) Formulate and evaluate range-doppler-time CFAR processing techniques which 
reduce reliance on surrounding range bins in deriving the estimate of the clutter 
power in the test cell. 

1.3.3 The Use of the Difference Channel information for Detection 
For completeness, another possibility for achieving improved detection performance will be 

mentioned here: it is reasonable to argue that detection performance could be improved by 

the exploitation of all available information within the radar, and indeed possibly from 

other external sources. Many radars are dual- or multi-function systems, being required to 
perform both search and tracking functions. With the exception of radars with fully 

adaptive active array antennas, such radars would therefore usually incorporate Azimuth 

and Elevation Monopulse Difference channels, the outputs of which are not normally used 
during detection modes. It was reasoned that this implies the wastage of some potentially 
useful information and techniques were conceived to include such information in the 
detection procedure. These ideas were developed and analysed and the results are presented 
in the paper "The use of Difference Channel Information for Detection in Monopulse 

Radars", appended as Appendix 1.1. Some proposals for developing the techniques further 

are presented in the paper, and possible connections with detection in K-distributed clutter 

are also mentioned. This work is not central to this thesis, and a more detailed discussion 
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has therefore not been included in the body of this thesis. 

1.3.4 Scope and Limitations ' 
Some limitations on the scope of this thesis need to be noted. Firstly, the "processing" to 
which the title refers is limited primarily to processing related to automatic detection. It is 

therefore taken to include doppler filtering for clutter suppression and CFAR processing; 
track processing, specifically Track-While-Scan (TWS) processing, pulse compression 
techniques, and Synthetic Aperture Radar (SAR) processing are not covered. 

Since spiky clutter is particularly problematic in high resolution radar systems, the focus of 
this thesis is on high resolution radars and processing techniques are developed in that 
contextl. It was therefore assumed that the total number of pulses available will, in 

general, be limited due to the relatively short dwell time spent in each angular resolution 
cell, and so CFAR techniques which rely on the post detection integration of a large 

number of independent pulses or "first detections" are not considered. This is motivated by 

reasoning that in a modern radar the available pulses would be coherently filtered for 

optimal clutter suppression, with only as many CPIs being used as are necessary for blind 
velocity elimination and doppler ambiguity resolution. The output of the doppler filter in 

each range cell for each CPI then represents the independent "pulse" entering the CFAR 

processor. The number of independent "pulses" is thus the number of CPIs per dwell, 

which for low PRF radars would seldom be much more than three or four. Deviations from 

this assumption and the effect of increasing the number of bursts per dwell are addressed in 
Chapter 7. 

The CFAR processing phase of the study analyses the CFAR detection performance in 
homogeneous K-distributed clutter and homogeneous K-clutter and Noise. This limitation 

of homogeneity is not considered to be severely restrictive since the K-distribution model is 
in any'case a modulated Gaussian model, which can inherently account for some spatial 
fluctuations in mean clutter power. The assumed homogeneity of the clutter implies that the 

results of this study would be most applicable to sea clutter, and possibly extended weather 
clutter. However, broadening the definition slightly to include locally homogeneous clutter 
would additionally include many land clutter scenarios in the definition, provided some 
'Note that the term "high resolution" as used in this thesis refers to conventional radar systems with fine 
spatial resolution, with range resolution typically of the order of ten metres and angular resolution of the 
order of a degree. Although finer range resolution radars are possible, they are not considered to represent the 
"typical" radar relevant to this project. The results presented in this thesis could nevertheless be applied to 
the performance analysis of such radars provided the target models used are modified accordingly. Again, 
synthetic aperture radars are not considered in this thesis. 
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form of segmentation between clutter regions is performed. Explicitly excluded from the 
CFAR processor analyses is a quantification of the effects of clutter discretes (strong, 
largely fixed, clutter "point" sources), extraneous targets in the region of interest, birds and 
insects, and anomalous effects such as angels. Results are presented for the common cases 
of Swerling 1 and 2 fluctuating targets (Rayleigh voltage distribution), which for single 
pulse analyses are identical. Results are often calculated numerically owing to the analytic 
intractability of the analysis for the K-distribution. Empirical relationships are established to 
facilitate application of this work to cases not explicitly covered herein. 

1.4 PROJECT OUTLINE 

Chapter 2 provides a historical review of models for sea clutter, introduces the K-distri- 
bution model, and presents a summary of some clutter amplitude and spectral characteris- 
tics. Adaptive optimal filters are discussed and various adaptation algorithms are compared. 
CFAR processing techniques, including non-parametric techniques, are reviewed. 

The clutter suppression performance of doppler processors is evaluated and compared in 
Chapter 3. The relative performance of several well known doppler processors is examined 
under a wide range of clutter conditions, with particular attention being paid to the 

performance of AMID processors. A large number of clutter scenarios are considered in an 
attempt to give results which are not too dependent on specific conditions. The clutter 
parameters are chosen to reflect land and sea clutter environments, including possible 
weather clutter components. Suitable performance measures are discussed, with particular 
attention being paid to filter-bank processing and M/N detection. The improvement factor 

of each type of processor is evaluated in each clutter scenario, and the loss relative to the 
optimal filter is determined. Statistical data analysis is used to reduce the data to manageable 
proportions and allow key conclusions to be drawn. 

The performance of adaptive Hsiao-optimal filters in non-homogeneous backgrounds is 
investigated in Chapter 4. The case of practical adaptive estimation of the covariance 
matrix, and limiting cases where the estimate of the covariance matrix tends to the mean 
clutter covariance matrix, are considered. Three classes of non-homogeneous backgrounds 

are studied, namely 1) clutter in which the amplitude and spectral width in each range bin 

are randomly drawn from spatially invariant independent gamma distributed parent 

populations, 2) clutter edges, in which the range profiles of the clutter amplitude and/or 

spectrum exhibit a step change, and 3) homogeneous clutter in which some range bins are 

corrupted by returns with significantly different amplitude and spectral characteristics, 
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representing point clutter sources or extraneous targets. The use of pre-filter MTI is investi- 

gated as a means of reducing filter sensitivity to some classes of clutter non-homogeneity. 

The problem of single pulse CFAR detection of Rayleigh fluctuating targets in spatially 
uncorrelated K-distributed clutter is addressed in Chapter 5. The performance of three types 

of well known CFAR processors, namely the CA, CAGO, and OS CFAR processors, is 

examined for several cases of desired false alarm probability and the number of reference 
cells used in the CFAR processor. Curves for the detectability loss due to the "spikiness" 

of the clutter are presented and values for the additional loss due to CFAR thresholding are 
tabulated. The effects of incorrectly estimating the clutter shape parameter v are investi- 

gated. Empirical expressions are derived for ideal- and CFAR- detection losses in spiky 

clutter 

The problem of CFAR detection in clutter with spatially correlated underlying variance, or 
modulation process, is addressed in Chapter 6. The case of complete correlation of the 
modulation process is addressed first and it is shown that the potential exists for a reduction 
in detection loss of in excess of 10 dB in highly correlated clutter. The K-distribution 

model is extended to facilitate the incorporation of spatial correlation properties. The key 

advantages of this model over previous models are that the spatial correlation is introduced 
to Gaussian processes, thus enabling well established linear filtering techniques to be used, 
the resulting clutter process is strictly K-distributed, and it leads to usable expressions for 

the multivariate modulation and clutter processes. The CFAR problem is then viewed as 
one of optimal filtering in multiplicative noise. The optimal filter and the corresponding 
CFAR processor are derived. Methods of estimating the local spatial correlation in real time 
and their effects on detection loss are discussed. An analytic formulation of performance 
prediction is presented with sample results for representative processor and system 
parameters. 

The exploitation of the doppler and time domains is investigated in Chapter 7. The rationale 
behind the range-doppler-time CFAR processor, and a modification thereof, is discussed. 
The ideal case, assuming an infinite number of range reference cells and spectrally 
homogeneous clutter, is then considered to establish an upper bound on the performance of 
the RDT processor, and confirm that it is a promising area for further investigation. 
Thereafter more practical cases are examined: the statistics of the errors in the so-called 
"power normalisation terms" are determined and their effect on false alarm rate and 
detection performance is evaluated. Results are presented for a number of cases and the 

performance is compared to that of conventional processors. Deterioration in false alarm 
performance in spectrally non-homogeneous clutter is investigated. As a solution to this 
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problem the modified processor using only the test doppler in setting the threshold, termed 
the S-CFAR, is presented. An example is presented to illustrate the superiority of the 8- 

CFAR processor proposed here over conventional processors, when using realistic radar 
system parameters. 

Finally, the key results presented in this thesis are summarised in Chapter 8. Areas for 
further work are discussed and some conclusions regarding improved detection in spiky 

clutter are presented. 
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND THEORY 

2.1 A REVIEW OF SOME CLUTTER CHARACTERISTICS 

2.1.1 General Definitions 
The term "clutter" refers to unwanted backscatter from the radar environment (land, sea, 
clouds, birds, etc. ) which interferes with the primary function the radar is performing, be it 
detection or tracking. The clutter signal is comprised of the vector sum of all unwanted 
contributing sources or scatterers within the radar resolution cell. The relative movement of 
these sources with respect to each other, or changes in the phase between sources (caused 
by frequency agility), causes the clutter signal to fluctuate in time. 

Four main factors are of importance in determining the effect of clutter returns on radar 
performance, namely 1) The mean amplitude of the clutter returns, related to the average 
backscatter reflectivity, 2) The spectral characteristics of the clutter signal, 3) The amplitude 
statistics of the backscattered signal, and 4) The spatial characteristics of the clutter. The 
first of these aspects has received a great deal of attention over the years and widely 
applicable theoretical and empirical models now exist for predicting clutter reflectivity as a 
function of important parameters such as frequency, polarisation, type of clutter, grazing 
angle and so on. Although the spectral characteristics of clutter cannot always be mechanis- 
tically explained, sufficient experimental data have been published to allow reasonably 
accurate estimates of clutter spectral characteristics to be obtained in many situations. These 

will be addressed in section 2.1.4. The amplitude statistics have also received a great deal 
of attention but only recently have models been proposed which accurately describe the 
non-Gaussian nature of clutter under some conditions. The impact of these models on radar 
performance has not yet been fully analysed. Finally, the spatial characteristics of the clutter 
returns have not yet received much attention; in the case of land clutter this is probably due 

to the extreme variability of data for different environments; in the case of sea clutter and 
weather clutter, some data illustrating spatial characteristics have been reported but 

generally applicable models for spatial properties have not been proposed. 

The mean clutter reflectivity is not addressed here since for homogeneous clutter this affects 

only the mean Signal to Clutter Ratio (SCR), the implications of which are straightforward 
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and well understood. In this review of clutter characteristics and suitable clutter models, we 
will therefore concentrate on aspects relating to the amplitude and spatial characteristics of 
the clutter, and provide a brief review of spectral characteristics. The assumed homogeneity 

of the clutter in subsequent CFAR processor analyses implies that the results of this 
research would be most applicable to sea clutter, and possibly extended weather clutter. For 

this reason the emphasis in this chapter lies strongly on sea clutter characteristics and 
models. The characteristics of clutter discretes, birds and insects, and anomalous effects 
such as angels are not covered. 

2.1.2. Sea Clutter: Basic Principles 
The signal received by the radar due to sea backscatter is the vector sum of the fields caused 
at the radar by each of the individual scattering sources (waves, ripples, spray, interactions 
between simple sources, etc. ) within the spatial resolution cell in question. The largely 

random movement of the scattering sources relative to each other causes the vector sum to 
fluctuate randomly, causing in turn a random fluctuation in the received backscatter energy. 
This fluctuation in the received signal causes the clutter return to exhibit characteristics 
which are somewhat similar to radar thermal noise, the amplitude statistics of which are 
described by the Rayleigh probability density function (PDF). It is now well known, 
however, that under many operating conditions, particularly at low grazing angles and in 

radars with high spatial resolution, the clutter appears "spiky" and the amplitude statistics 
deviate from being noise-like, with a wider range of clutter amplitudes being likely. The 

clutter amplitude PDF therefore differs from that of thermal noise (Rayleigh PDF) most 
notably in having longer "tails", ie. the PDF does not roll off as steeply for high values of 
clutter amplitude. This is statistically described by the third and higher moments of the sea 
clutter PDF being higher than for Rayleigh noise, for equal powers (second moments) in 

the clutter and noise signals. Several alternative PDF's have been proposed which better 
describe the amplitude distribution of spiky sea clutter, and these are discussed later. 

The rate at which the scatterers move relative to one another determines the rate of the 
fluctuations in clutter amplitude in a given radar spatial resolution cell. The observed clutter 
amplitude may therefore be correlated from one observation to the next. It has been found 

that clutter fluctuation rates can be roughly divided into two main regimes: 1) Fast 
fluctuations (short correlation times, of the order of milliseconds), such that the clutter is 
largely decorrelated from pulse to pulse. These fluctuations arise as a result of the relative 
movement of scatterers in the resolution cell. 2. ) Slow fluctuations (long correlation time, 

of the order of hundreds of milliseconds or seconds), such that the clutter is essentially 
correlated over the period of the radar dwell time, but decorrelated from one observation to 
the next. Several mechanisms have been attributed to this phenomenon, relating to the 
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number of scatterers within a resolution cell, or the mean strength of each scatterer in the 
resolution cell. Additionally, very slow fluctuations (very long term correlation, of the 
order of minutes or hours) are sometimes also considered, such that the overall clutter 
characteristics are essentially correlated over several radar observations, but vary over all 
possible radar operating conditions. These fluctuations are caused by factors such as the 
sea state and wind conditions. Recently an additional very fast fluctuating component has 

also been reported (Helmken, 1990), with mean velocity equal to the wind velocity, which 
has been attributed to turbulence induced clear air refractive scattering. 

An alternative way of viewing slow fluctuations in sea clutter is in terms of spatial correla- 
tion. That is, the swell structure of the sea may cause the mean clutter amplitude in one 
spatial resolution cell to be related to that in adjacent cells; by some as yet unspecified 
mechanism. Different physical regions of operation, and regions of sea with different sea 
state and wind conditions, would also yield sea clutter with different statistics, relating to 
very long term correlation. Fast fluctuations, or short term temporal correlation, are not 
easily represented in terms of spatial correlation, since the mechanisms involved generally 
cover a far smaller area than the radar spatial resolution cell, implying independence of 
these mechanisms fröm cell to cell. Fast fluctuations are usually handled in the frequency 
domain through their Doppler characteristics, which are discussed in section 2.1.4. 

The clutter amplitude statistics, defined usually by the PDF, and the spatial and temporal 
correlation properties, defined either by the Autocorrelation Function (ACF), and/or the 
Doppler spectrum, jointly completely describe the statistical properties of the sea clutter, on 
which radar performance calculations must be based. This study is concerned with both 

aspects; the amplitude statistics are obviously of importance since the detection procedures 
used are based on the amplitude of the received signal relative to the estimated background 

noise or clutter level. The correlation properties of sea clutter, including the spatial 
correlation properties, are also of interest since we are concerned with doppler processors 
operating over several pulses, and CFAR processors operating over a range window of 
several range cells in length and possibly over several bursts as well. 

2.1.3 Historical Review of Models for Sea Clutter Amplitude Statistics 
The non-Rayleigh nature of sea clutter statistics under certain operating conditions has been 
known for some time. One of the earlier attempts to model this statistically was by Norton 

et al. (1955), who used a Ricean distribution (ie. the envelope of a complex Gaussian 

signal plus a constant) to model the return from a given sea patch over a time which was 
short compared to the slow fluctuation rate of the sea. Although this is effective in 

page 28 



modelling certain types of land clutter where there is an essentially fixed clutter source 
present, it is inadequate in modelling the slowly fluctuating component in sea clutter. Most 

of the work prior to the mid 1960s was, however, aimed at modelling clutter surfaces with 
a view to determining the mean clutter reflectivity, and to a lesser extent, the short time 
doppler spectrum. To this end, Katzin (1957) presented some theory for scattering from a 
smooth surface with facets of dimension of the order of a wavelength. Although he noted 
the existence of clutter spikes which were attributed to interference effects at low grazing 
angles, no detailed statistical modelling was attempted. Three years later Spetner and Katz 
(1960) published "Two Statistical Models for Radar Terrain Returns", which - despite the 
title - was useful for modelling sea clutter as well. The two models presented, namely of 
specularly reflecting facets on a continuous surface, and a large number of independent 

elementary scatterers, form the basis of many models still in use. These models, however, 

resulted in discrepancies with experimental data with regard to the wavelength dependence 

of the clutter reflectivity and some polarisation effects, and Long (1965) proposed the "two 

mechanism model". In this model the sea is taken as consisting of a wind dependent fine 

structure (which Long attributed to ripples) of elementary scatterers, modelled as randomly 
oriented dipoles, superimposed upon a larger structure of smooth facets, related to the 
swell structure. Guinard and Daley (1970) also presented a composite surface model, 
consisting of a slightly rough surface superimposed on a swell structure which gives an 
average "tilt" to the surface. These two-mechanism models provide reasonable estimates for 

clutter reflectivity as a function of frequency, grazing angle and polarisation under most 
conditions, and are of interest in later models which address the clutter amplitude statistics. 

Later in the 1960s, the importance of statistical models for clutter distributions in time, 

space, and amplitude, as well as doppler frequency, was recognised. George (1968) 

proposed the Log-Normal distribution as suitable for modelling spiky sea clutter, but it has 
been demonstrated by several authors than in general the Log-Normal distribution has tails 
which are too high: the true situation seems to lie between the Rayleigh and the Log- 
Normal distributions. Trunk (1969) and Trunk and George (1970) suggested that the so- 
called "contaminated" normal distribution, based on the I and Q components of the complex 
signal having a PDF described by the sum of two Gaussian distributions of different 

variances, was a better description of sea clutter amplitude statistics. This equates 
physically to the sea clutter consisting of a mixture of Normally distributed quantities. 
However, this model never found wide acceptance, possibly due to the lack of mechanistic 
justification for the model and its relative mathematical inconvenience. More recently 
several authors have proposed that the Weibull distribution yields a good fit with experi- 

mentally measured data, facilitated in part simply by it being a two parameter distribution. 
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While the experimental data matches are certainly quite good, there again appears to be little 
justification for this model based on physical mechanisms, and it does not enable the 
various correlation domains to be adequately handled. It does also not provide a physically 
justified means of generating simulated data of arbitrary correlation properties. 

Long (1983) summarised the state of the art at the beginning of the 1980s as follows: 
"Neither the Rayleigh, the Log-Normal, nor the Contaminated normal actually describe all 
observed distributions. The echo, it would seem, consists of rapid fluctuations (dopplers) 
that are Rayleigh distributed plus a component that is fluctuating slowly, and for which 
distributions have not yet been reported. " This modulated Rayleigh representation of sea 
clutter was in fact introduced as early as 1972 by Trunk (1972), who stated that "the non- 
Rayleigh distribution of sea clutter ... is caused by the spatial variation of the returned 
power ßo". To support this assertion he presented a "Time Varying Rayleigh" model, 
whereby the return from a patch of sea exhibits Rayleigh statistics, the power of which 
varies over some time period which is long relative to the fast (Rayleigh) fluctuations. 
Trunk did not, however, propose a PDF for the spatial or slow temporal fluctuations. In 
addition, he used statistical tests for significance to demonstrate that the short term PDF is 
not in fact exactly Rayleigh but rather approximated by the Chi- or Ricean distributions, 
with only the Ricean having any physical significance. He further proposed that such 
spatially modulated models would be useful for representing land clutter in some situations. 

Experimental observations made by workers at RSRE in the late seventies and early to mid 
eighties also indicated that irrespective of radar resolution cell size (within reasonable 
limits) and sea conditions, the clutter in a given range cell is approximately Rayleigh 
distributed over a short period (relative to the slow fluctuations). The mean value of the 
clutter amplitude, or the clutter power, however, was found to vary slowly in time and 
from range cell to range cell. This again suggested that a modulated Gaussian model should 
provide a good representation of sea clutter, and the K-distribution was proposed as such a 
model which yielded a good fit with experimental data and which was relatively mathe- 
matically tractable. An advantage with modulated Gaussian models is their inherent ability 
to represent short, medium and long term correlation of arbitrary ACF. Some physical 
justification for the K-distribution has also been presented (eg. Ward et. al (1990), 
Jakeman and Pusey (1983), Oliver (1984), and Lewinski (1976)). The properties and 
physical interpretation of the K-distribution will be dealt with in more detail in the next 
section of this chapter. The K-distribution was first proposed for sea clutter by Jakeman 

and Pusey in 1976, around which time its application to describing the scattering of 
coherent laser light was also being investigated (eg. Parry and Pusey (1979), Parry et. aL 
(1978), Parry (1981)). Since then several papers have appeared in the literature describing 
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properties of the K-distribution, presenting empirical relationships for relating distribution 

parameters to wind conditions and radar polarisation (eg. Ward and Watts, 1982,1985), 

and assessing aspects of radar performance in K-distributed clutter (eg. Watts, 1985,1987, 

Watts et. al., 1990). Chan (1990) presents quite extensive data showing the superiority of 
the K-distribution over the Rayleigh, Weibull and Log-Normal distributions under a wide 

range of conditions. 

2.1.4 Sea Clutter Doppler Spectrum 
The doppler spectrum of sea clutter has received widespread attention. A vast amount of 
data is available in the literature and a comprehensive review of sea clutter spectra is beyond 

the scope of this thesis. However, some selected papers are listed below as an entry point 
into the -field of modelling sea clutter spectra. Long (1983) provides a good summary of 

research into sea clutter spectra up to about the mid-1970s. More recently Helmken (1990) 

has presented some results of studies into L- and S-band sea clutter data. Chan (1990), 

reports on an analysis of sea clutter data at X-, S- and L- band, UHF and VHF, and shows 
that clutter spectra are strongly dependent on the radar frequency. Atanassov et. al (1990) 

separate sea clutter data into "bursts" and "pauses", and characterise the spectra of the two 

classes at X- and Q- band. Ward et. al (1990) have also reported some characteristics of 

coherent sea clutter data, noting particularly the higher order spectral characteristics. Maurer 

et. al. (1990) report on the spectrum of some anomalous returns due to ducting, which 
have been observed with high regularity. Sittrop (1985) presents empirical equations for 

the spectral width as a function of radar and environmental parameters and presents some 

plots of spectral width as a function of the angle between the wind direction and the radar 
boresight, with sea state and wind speed as parameters. 

From all these data the key features of sea clutter relevant to this study can be summarised 
as: 

1) Sea clutter generally has a bimodal spectrum. The strength of the high doppler 
frequency component reduces with increasing radar frequency. For X-band or 
higher radar frequencies this component becomes negligible, such that the clutter 
appears unimodal. 

2) The dominant component has a mean velocity of typically 0.15 to 0.25 of the wind 
velocity and a standard deviation of the order of 0.5 to 1 m/s, and is held to 

correspond to capillary wave structure (Helmken, 1990). The weaker component 
with mean velocity of the same order as the wind velocity and spread equal to or 

wider than the spread of the dominant component is variously attributed to wind 
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blown spray and droplets (Long, 1983; Atanossov, 1990), clear air scattering 
(Heimken, 1990), and high orbital velocity at breaking waves (Atanossov, 1990). 

3) The mean doppler shift of both the dominant and minor spectral components is 
dependent on the wind speed and the angle between the wind direction and the radar 
boresight. This implies that clutter suppression of non-zero mean doppler clutter is 

essential if sea clutter is to be effectively suppressed. 

4) In situations of homogeneous sea clutter it is often assumed that the doppler charac- 
teristics are constant over range. However, in many cases the spectrum varies 
considerably between range bins. This can be compounded by spatial variations in 

the underlying clutter variance, and some evidence exists to suggest that the doppler 

characteristics can be related to the mean clutter amplitude in each cell (Atanassov, 
1990). No models have been proposed for describing either the spatial spectral 
variations or the correlation between the local amplitude and spectrum. This is 

addressed further in Chapter 4. 

2.2 THE K-DISTRIBUTION MODEL FOR CLUTTER 

The K-distribution was introduced to the field of radar clutter with a view to the specific 
application of statistically modelling non-Rayleigh sea clutter, and most literature has 

concentrated in this area. Recently, however, some papers have also appeared which 
discuss the applicability of the K-distribution to land clutter under certain conditions (eg. 
Oliver, 1988). 

As already mentioned, the K-distribution is a form of modulated Gaussian distribution: a 
complex Gaussian process is modulated by a function whose PDF is chi-distributed. This 

equates to modulating the power of the Rayleigh envelope of the Gaussian signal with a 
gamma distributed variable. When applied to radar sea clutter this represents the case where 
the clutter voltage in a given resolution cell exhibits rapidl Rayleigh fluctuations, the 

mean power of which varies in time with a "slow"2 fluctuation rate, and from one 
resolution cell to the next, according to a gamma distribution. The degree of correlation of 
the modulation between resolution cells depends on the spatial correlation properties of the 
'The term "rapid" is taken here to imply that the Rayleigh fluctuations are essentially completely 
decorrelated from one detection opportunity to the next, presumably through the use of frequency agility 
qa sufficient bandwidth and/or the the use of a high radar frequency. 

e term "slow" is taken here to indicate that the clutter modulation process remains entirely correlated 
over the radar Coherent Processing Interval (CPI). 

page 32 



sea surface. In this study, since we are concerned with single dwell detection, the temporal 

and azimuthal fluctuations of the modulation are not of significance and instead we 
represent all fluctuations as occurring over range. Hence only correlation of the 

modulation process in range will be considered. The rapid Rayleigh fluctuations, usually 
termed the speckle, are entirely decorrelated from one range bin to the next. 

Before defining the K-distribution in mathematical terms and discussing some of its 

properties, the basis of the assumed gamma distributed spatial power variations and the 
locally Rayleigh fluctuating speckle will be briefly discussed. Dealing with the speckle 
first, it is assumed to have Rayleigh amplitude fluctuations for the following reasons: 

1. The Two Parameter models which form the basis of modulated Gaussian 

distributions postulate that the fine structure, which gives rise to the speckle, 

consists of small scatterers such as ripples and spray. It is reasonable to expect that 

a large number of these will be present in each resolution cell of a practical radar, 
thus causing conditions in which the central limit theorem, and hence Rayleigh 

envelope statistics, is valid. 

2. Experimental evidence published in the literature indicates that the speckle is close 
to Rayleigh, and is often statistically indistinguishable from being Rayleigh (eg. 
Ward et. al., 1990). 

3. As will become apparent in the body of this thesis, the assumed complex Gaussian 

nature of the speckle has fortuitous analytical benefits. The most important of these 
is that the since the clutter in a given range cell exhibits Rayleigh amplitude 
fluctuations, the ideal clutter suppression filter is a linear filter. The analysis of such 

a filter operating on complex Gaussian signals is much simpler than for a non-linear 
filter acting on non-Gaussian signals. 

The case for the adoption of the gamma distribution for the spatial or slow temporal 
fluctuations in clutter power is not so straightforward. As yet no conclusive mechanistic 
argument has appeared to justify the gamma distribution, and at present the main reasons 
for the rather widespread acceptance of the gamma distribution of power (giving the K- 
distribution) seem to be the good fit it provides with experimental data (Chan, 1990) and 
the relative tractability of the associated mathematics. In addition, several plausible 

mechanistic explanations have been offered, which although maybe not being conclusive 
individually, do collectively provide a somewhat persuasive argument, especially since 

neither the Weibull nor the Log-Normal Distributions are based on any mechanistic 
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explanation. These include: 

1. The gamma distribution is a single sided two-parameter distribution. It therefore has 

the correct basic properties and the flexibility required to enable it to adequately 
model the power fluctuations. 

2. As the shape parameter of the gamma distribution tends to °°, the gamma PDF tends 

to a delta function. This implies that the resulting K-distribution tends to the 
Rayleigh distribution. Thus the requirement is met that the resulting distribution 

should encompass the Rayleigh distribution as a special case. 

3. The gamma distribution has been obtained as the first term of the Laguerre 

expansion of an arbitrary one sided PDF (Lewinski, 1976). The gamma distribution 
is therefore an approximation to any PDF that may exactly represent the power 
fluctuations. 

4. The gamma distribution has been shown to be the general approximate solution for 

the intensity distribution of the sum of a number of random vectors. Terrain 

scatterers and complex cultural targets have been represented by the random vector 
model (Lewinski, 1976). 

5. It is intuitively reasonable to expect that if the power fluctuations obey a given 
distribution at one radar resolution, then they should obey the same distributions at 
other resolutions. This is experimentally and theoretically true for the gamma 
distribution, with changes in radar resolution requiring only changes in the gamma 
distribution shape parameter. 

6. The gamma distribution has been shown to represent the bunching of scatterers 
arising from a birth-death-migration process, which is a plausible representation of 
the fine structure of the sea surface (Jakeman and Pusey, 1983). 

We now proceed with a more mathematical description of the K-distribution. We define the 

exponential speckle s, the Rayleigh speckle r ='s, the gamma distributed power 
modulation process u, the voltage envelope modulation process v ='u, and the overall 

clutter voltage x, such that x= yr = usu. If the PDF of the speckle is given by : 

pr(rly) = 2v2 
exp[ 

4m2 ... (2.1a) 
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and the PDF of the voltage envelope modulation process v is given by 

Pv(v) = 2v2v v2v-1 e -b2v2 ... (2.1b) 
F(v) 

then the PDF of the clutter voltage x is found to be given by: 

px(x) = J° pr(rly) p�(v) dv = -k- (cx)" Kv_1(2cx) (0S x< co) ... (2.1c) 
r(v) 

where Kv (x) is a modified Bessel function, v is a shape parameter dependent on the 
"spikiness" of the clutter, and c is a power parameter, such that the mean clutter power Pc 

= v/c2. The value of v can vary between 0.1 for very spiky clutter to oo for Rayleigh 

clutter. The Complementary Cumulative Distribution Function (CCDF) of the K- 
distribution, ie. Prob (X; -> x), is given by: 

P(ax) =2 (cx)v Kv(2cx) (0: 5 x< oo) ... (2.2) 
r(v) 

The sum of N identical K-distributed variables cannot in general be obtained in closed 
form. However, for values of v=m+ 1/2 

,m=0,1,2, ....., closed form expressions 
have been derived, and these are given in Appendix 2.1. In particular, it can be noted that 
for v=0.5, the K-distribution reduces to the exponential distribution, the sum of N of 
which yields a gamma distribution of shape parameter v' = N. For v=1.5, the K- 
distribution reduces to a gamma distribution of shape parameter V= 2, the sum of N of 
which yields a gamma distribution of shape parameter v' = 2N. For v=m+ S/2, the K- 
distribution can be expressed as a mixture of gamma distributions, which although 
interesting does not seem to have any physical significance or analytic advantages. 

The moments of the K-distribution are given by 

X=1 r-- r (1 + w2) n 
Cn r (V) 

... (2.3) 

from which the variance is found to be X2 = v/c2 and the mean value X= 

((4n)/2c)r(v+1/2)/r(v). In general it has been shown that the moments of the K- 
distribution always lie between those of the Rayleigh and Log-Normal Distributions, for 

matched first and second moments, which agrees well with experimental data. 

When the K-distributed clutter is simultaneously present with radar thermal noise or other 
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Rayleigh distributed interference, the overall distribution is no longer K-distributed and 
cannot be expressed in closed form. However, closed form expressions can be found for 
the even moments of the overall distribution and Watts (1987) has derived an expression 
which enables the Clutter-to-Noise Ratio (CNR), the scale parameter c and the shape 
parameter v to be uniquely determined through knowledge of the first three even moments 
of the overall signal. If the presence of thermal noise is neglected then c and v can be 
determined from the first two even moments, in which case an "effective" shape parameter 
veff is determined which is related to the true value of v and the CNR by 

1 
Veff =V(, + 2 

CNR 
... (2.4) 

This expression, which will henceforth be referred to as Watts' approximation, is often 
used as a simple means of representing K-clutter plus noise. An evaluation of the effect of 
errors introduced by Watts' approximation is given in Chapter 5. Other methods of dealing 

with K-clutter plus noise based on Pade Approximations have also been proposed (Ritcey, 
1989), but these will not be covered here since they are also approximations and seem to 
offer little over Watts' simple approximation other than significantly more difficult 

mathematics. 

An important property of K-distributed clutter is its response to doppler filtering. The 

clutter in each range bin is modelled as exhibiting Rayleigh fluctuations, with the variance 
of these fluctuations remaining constant within the CPI (if not the entire dwell period). The 
quadrature components of the signal in each range bin therefore exhibit locally short term 
stationary Gaussian amplitude statistics. Filtering of these quadrature Gaussian components 
will yield a complex Gaussian signal of power multiplied by the power gain of the filter. 
For a given range bin, the envelopes of the signals in each doppler bin of a filter bank are 
therefore all Rayleigh distributed, with power given by the power gain of the 
corresponding filter. The power of these Rayleigh processes still varies from range bin to 
range bin according to the gamma distribution, exactly as if no filtering had been 
performed. The output in each doppler bin is therefore K-distributed with the same shape 
parameter as the input clutter signal, and with the power modified by the filter's power 
gain. As mentioned in Chapter 1, this enables the doppler filtering and CFAR processing to 
be analytically separated, providing linearity of the filter is assured. 

Although the K-distribution has been applied primarily to sea clutter, recent papers have 
also indicated its applicability to other types of clutter. Miller (1989) proposes the K- 
distribution for modelling weather clutter. The justification for Rayleigh fluctuations within 
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a range bin is obvious, and Miller shows that the power variation in range is well described 
by the gamma distribution, resulting in the overall weather clutter PDF being K-distributed. 
Oliver (1988) shows that the K-distribution model is capable of representing land clutter 
textures in regions of homogeneous clutter provided the spatial Autocorrelation Function 
(ACF) used is correct. Oliver's work concentrated on 2-dimensional SAR imagery, but it 

would not appear to preclude 1-dimensional (range) clutter images in conventional high 

resolution radars in certain clutter environments. Finally, another interesting feature of the 
K-distribution is that it arises from the perfect Moving Target Indicator (MTI) filtering of a 

modulated Ricean distribution in which the fixed component varies with arbitrary PDF and 

the noise component varies with gamma PDF. Such a model, though not proposed in the 
literature, can be expected to be representative of many land clutter scenarios due to the 
large number of independently variable parameters and the fact that it allows both fixed and 
fluctuating clutter sources to be modelled. The K-distribution would therefore be suitable 
for representing land clutter in radars employing practical MTI filtering or MTD processing, 

provided that the clutter suppression at zero doppler effectively suppresses the fixed clutter 

components. 

For completeness, and to give the reader unacquainted with the K-distribution a feel for the 
PDF and CDF of the K-distribution, plots of the PDF and CCDF are illustrated in Figs. 2.1 

and 2.2 respectively for different values of v. It can be noted that for v<0.5 an integrable 

singularity exists at x=0 in the PDF. This complicates analysis significantly and care must 
be taken to ensure that numerical techniques can adequately handle this singularity. 
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Fig. 2.1 K-distribution PDF for various values of v, for normalised power 

page 37 



m 
v 

X 
A 
X 

C. 

-5. 

-i0. 

-i5. 

-20. 

-25. 

-30. 

-35. 

-40. 

-45. 

-50. 

a 

a: v -O. i 
e 

b: v-0.25 
c: v-0.5 `f 

-i- d: v-1.5 
e: v-4.5 
f: -Rayleigh 

1.0 2.0 3.0 4.0 5.0 

X 

Fig. 2.2 K-distribution CCDF for various values of v, for normalised power 

2.2 A REVIEW OF ADAPTIVE DOPPLER PROCESSING TECHNIQUES 

In this brief review a summary of the performance considerations and possible limitations 

of several techniques for adaptive cancellation of clutter are discussed. A brief description 

of each technique is also provided. 

Clutter suppression filters are generally based on an autoregressive model for the time 

samples of the clutter returns, resulting in a linear Finite Impulse Response (FIR) filter for 

cancellation. Fully adaptive clutter cancellation techniques differ in the optimisation criteria 

chosen, and in the manner in which new input data is used in updating the weights of the 

cancellation filters. Two alternative optimisation criteria are usually used, namely 1) the 

maximisation of the improvement factor (Hsiao, 1974), and 2) the minimisation of the 

clutter residue (eg. Farina, 1984). Under conditions of negligible thermal noise and a uni- 
form PDF for target doppler over the radar's doppler space, the two criteria are equivalent. 

If the optimality criterion chosen is the maximisation of the Signal to Clutter-plus-Noise 
Ratio (SCNR) at the filter output (which generally equates to the maximisation of detection 

probability) then the optimum filter weight vector w= (w1, ... wN) is given by the solution 
of the matrix equation w= M-1s, where M is the clutter covariance matrix and s is the 
vector of returns from the desired target, usually chosen as a unit magnitude complex 
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vector rotating at the desired target doppler (Hsiao 1974). The resulting filter is often 
referred to as a Hsiao filter. Since the target doppler is in general unknown in practical 
situations, a bank of filters, each tuned to a particular target doppler, is required. Hsiao 
filters provide the best possible performance for non-fluctuating or slowly fluctuating 

targets provided the covariance matrix M is accurately known. 

If the filter is optimised to minimise the clutter residue (as opposed to optimising the output 
SCNR for a desired target doppler as for the Hsiao approach) a "Linear Predictor" (LP) 

filter results (Farina, 1984). In this case the filter coefficients are obtained from the solution 

of w= M'lr, where r is the correlation vector between the ith and the i+jth received clutter 

samples, with j=1... N. Linear predictors are not "tuned" to a given target doppler and 
hence a single filter is sufficient, as opposed to the bank of filters in the Hsiao approach. 
However, this implies that Linear Predictor filters do not exploit the possibility of coherent 
integration and hence their performance is generally inferior to that of Hsiao filters. 

Absolute performance again depends on the accuracy with which M can be estimated. 

The key aspect to achieving effective adaptivity is the accurate explicit or implicit estimation 

of the clutter covariance matrix M (some methods yield the weights directly without 

actually determining M). In practice M has to be estimated on-line from a number of range 

cells in the vicinity of that being filtered. This causes errors in M and hence sub-optimal 

performance. The effects of resulting errors are addressed in Chapters 3 and 4 of this 

thesis, along with other limitations of adaptive optimal filters. 

Various techniques for estimating M have been proposed, including: 
1. Least Mean Square or Minimum Square Error adaptation (LMS) 
2. Normalised LMS (NLMS) 
3. Sample Matrix Inversion (SMI) 
4. Direct Matrix Inversion (DMI) 
5. Gram Schmidt Orthogonalisation (GS) 
6. Parametric estimation (PE) 

A brief description of each of these techniques is provided in Appendix 2.2. In view of the 
fact that the SMI technique is a maximum likelihood estimator of M, is numerically 
equivalent to the Gram-Schmidt algorithm, shows good convergence properties, is compu- 
tationally feasible, and is intuitively easy to understand, it has been adopted as the method 
of estimating M in subsequent analyses in this thesis. 

page 39 



2.2.1 Performance Considerations 
The relative performance of various of the abovementioned techniques has been compared 
in several papers. However, no clear-cut conclusions can be drawn from these papers as to 
the most effective technique; the data are often not directly comparable and sometimes 
contradictory, and one often gets the impression that quoted performance depends strongly 
on the specific clutter environment assumed. Nevertheless, in this section an attempt will be 

made to draw together consistent trends in the available data. 

In general the adaptation of the filter to the local environment is performed by estimating the 
clutter spectrum, or equivalently its covariance matrix, by averaging over several range 
cells in the region of interest. The size of the range window needed for averaging equates to 
the transient response of the processor. It is clearly desirable to reduce this as far as 
possible. The difference between the steady state improvement factor achieved by an 
optimal filter in which the clutter covariance matrix is known a priori, and one in which it 
is adaptively estimated, is the steady state loss. These two performance factors - the 
transient response and the steady state loss - are the most commonly used criteria for 

comparing the performance of various adaptive techniques, along with implementation 
issues such as the computational throughput (usually measured in terms of the number of 
complex multiplications required per unit time), numeric precision, and storage 
requirements. In addition, the suitability of the techniques for staggered PRI or burst-to- 
burst frequency agile waveforms may be important. Although not widely addressed in the 
literature, the response of the processors to non-homogeneous environments, multiple or 
extraneous targets, pulsed interference, and fluctuating targets may be important. 

With regard to the choice of optimisation criteria, several authors have shown that the 
maximisation of the improvement factor (yielding the "Hsiao filter") invariably yields better 

results in terms of final detection probabilities than the minimisation of the clutter residue 
(yielding the "linear predictor") (Farina, 1988; D'Addio, 1984; Barbarossa, 1987; Hansen, 
1980). This is probably attributable to the fact that in the former situation some of the 
degrees of freedom of the filter are employed to give coherent integration of the target 
signal, rather than giving diminishing returns on clutter cancellation. However, this implies 

a bank of filters to cover all possible target dopplers, and the associated collapsing losses 
do not seem to have been included in the comparisons. The magnitude of the superior 
performance of Hsiao filters to linear predictors depends strongly on the assumed clutter 
spectra, clutter to noise ratio, and target parameters; values quoted generally lie in the range 
0-2 dB, but in some (possibly unrepresentative) situations the difference can be more than 
10 dB (Barbarossa, 1987). 
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Generally speaking, it would appear from most of the literature on the topic that steady state 
losses of the order of 2-8 dB can be achieved for "realistic" parameters (Reed, 1974; 
Farina, 1983,1984a; 1984b; Gibson, 1985). The transient response of the various 
techniques differs widely; the LMS algorithm sometimes does not converge to the optimum 
for almost infinite numbers of range bins (Reed, 1974; Nitzberg, 1986), whereas the DMI 

or SMI techniques approach steady state performance using about 20 range bins (Reed, 
1974; Farina, 1983). More stringent constraints on the transient response increase the 
steady state loss considerably: a linear predictor averaging over 6 range bins has been 

shown to exhibit a steady state loss in improvement factor of 6-9 dB, depending on the 
order of the filter and the clutter environment (Farina, 1988). Similar or worse behaviour 

can be expected from the adaptive techniques used to give the weights of Hsiao filters. 

The question then arising is whether or not adaptive techniques with stringent transient 
response constraints give any benefit compared to conventional MTI, adaptive MTI, or 
pulse doppler FFT techniques. There is little doubt that in homogeneous Gaussian clutter 
the steady state performance of optimal techniques surpasses that of conventional 
processors if the number of reference cells is large. The magnitude of the increase in 
improvement factor depends on several factors, including the assumed clutter spectral 
properties, the CNR, and the number of pulses processed. Some theoretical studies have 
indicated that, for the same total number of pulses used, Hsiao filters provide 5- 20 dB 
better improvement factor than a conventional binomially weighted MTI followed by a 
coherent integrator (Hsiao, 1974; D'Addio, 1984; Barbarossa, 1987; Schleher, 1982). 
These figures, however, are based on the clutter covariance matrix being known a priori, 
not adaptively estimated, and are derived from only a few specific clutter scenarios which 
may be particularly severe for MTI-based filters. The greatest benefits also occur under 
fairly specific conditions of high CNR (-60 dB) and broad clutter spectra. Some results 
have been published for the performance of lattice linear predictor filters in real radar 
systems (Gibson, 1985); the improvement factor has been compared to "normal" MTI 
filters under a large number of adverse conditions. The linear prediction filter was shown to 

consistently outperform the MTI by of the order of 5- 10 dB for rain and snow clutter, 
despite a dynamic range limitation of 36 dB in the radar used. It is not clear from these 

results, however, whether the adversity of the conditions was more significant for the 
linear predictor or MTI filters. For ground clutter the conventional MTI seemed to offer 
slightly better performance than the linear predictor, due no doubt to a breakdown of the 

assumption of clutter homogeneity. In general these measured results are therefore not 
inconsistent with the abovementioned theoretical results if the effects of adaptivity are borne 
in mind. 
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The limitations of adaptive techniques, discussed in the next section, have led to the 
development of the MTD processor (Anderson, 1980), and recently to the Adaptive MTD 
(AMTD) processor (D'Addio, 1985; Galati, 1985). The MTD processor assumes the most 
likely clutter suppression requirement for each possible target velocity and the optimal filter 
is accordingly implemented. This eliminates the need for real time estimation of the clutter 
spectrum and solution for the filter weights, at the expense of sub-optimal filter 
implementations in some clutter. The advantages claimed for MTD processing as opposed 
to MTI-FFI' techniques include 1) the burst length is arbitrary, 2) there is greater freedom 
in the positioning of zeroes in the frequency response, and the shaping of the associated 
rejection notches, and 3) each filter can have a different frequency response, thereby 
approaching optimal performance for that target doppler under many clutter conditions. 
This is particularly beneficial in doppler regions near zero where the minimisation of 
tangential fading motivates the narrowest possible rejection notch. Published results 
indicate that MTD processors approach optimal performance under a wide range of 
conditions (2 - 10 dB loss, depending on the clutter spectrum), and consistently outperform 
conventional techniques by several dBs (Hansen, 1980; Anderson, 1980; D'Addio, 1985). 
No direct comparison has been found in the literature comparing the performance of AMTD 

and adaptive optimal techniques. 

Further developments of the MTD processor have yielded the Adaptive MTD: the selection 
of the bank of filters is made from a library of several possible choices, the choice being 
dependent on the local clutter environment. Current techniques limit the adaptation to the 

presence or absence of significant stationary ground clutter, implemented by a clutter map. 
This clearly has limited applicability to systems in which either the platform or the clutter is 

moving, or in which an essentially infinite number of elevation positions are available, such 
as in a mechanically scanned pencil beam radar. Nevertheless, within these limitations, 

performance close to the optimum has been demonstrated (D'Addio, 1985). 

2.2.2. Limitations of Adaptive Techniques. 
In this section some of the acknowledged and potential limitations of adaptive processors 
are mentioned with a view to indicating possible areas in which they can either be made 
more practicable or should be discounted as possible solutions. 

1. Clutter heterogeneity 
A major limitation is the assumption of clutter homogeneity, both in terms of amplitude 
and spectral statistics. The impact of amplitude non-homogeneity has been addressed 
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and found to be relatively minor under some conditions (Nitzberg, 1990). However, 

that analysis assumed a constant clutter spectrum. 

2. The effect of clutter edges 
Although existing adaptive optimal techniques may yield better performance than 

conventional techniques in homogeneous clutter, they can be expected to perform 
poorly in the presence of step transitions between regions of significantly different 

clutter spectra, since the weights will not be properly adapted to either type of clutter. 
This region of poor performance can be expected to extend over a large portion of the 

reference window, thus preventing detection over a significant range window in the 

region of the edge (10 to 20 range bins could extend several hundred metres, or even a 
kilometre or two). This is particularly unattractive since it is often these regions in 

which target unmasking is likely to occur and where rapid detection therefore has the 
highest priority. .. 

3. Extraneous targets and pulsed interference 
Strong extraneous point returns and pulsed interference will corrupt the estimate of the 

covariance matrix, resulting in incorrect filter weights being derived. The magnitude of 
the resulting reduction in the steady state improvement factor has not been analysed in 

the literature, but it is reasonable to believe that this could be significant in many 

realistic situations. In view of the great lengths to which designers go to eliminate the 

effects of extraneous targets in subsequent detection stages of the radar, this would 

seem somewhat unsatisfactory and techniques should be developed to improve the 

robustness of the estimation to extraneous targets. 

4. Cancellation of point clutter 
Adaptive techniques will provide little or no cancellation of isolated point clutter such as 

clutter discretes (towers, fences etc. ) or residual chaff puffs. It is particularly important 

that these clutter sources are suppressed since they will cause false alarms if they pass 
through the doppler processor. the CFAR detector will detect them due to their point 
nature. MTI and FFT processors will at least provide substantial, even though not 
optimal, suppression of fixed clutter discretes. 

5. Multiple targets 
Multiple targets (ie. point returns with the same spectrum as the target) may reduce 
target detectability by capturing, or at least biasing, the adaptive algorithms into placing 
a null at target doppler. Again, no analyses have been found in the literature on this 
topic. 
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6. Clutter limiting 
Optimal techniques provide the most dramatic performance enhancement for high 
CNRs (50 - 60 dB). In many situations, especially in sea clutter, this seldom be a 
realistic assumption, and performance of optimal techniques will be less impressive. In 

conditions where the CNR is say 60 dB, then the clutter, due to its spiky nature, will 
regularly exceed the dynamic range of the radar. Range cells in which limiting has 

occurred will either be tagged and excluded from subsequent processing, thus reducing 
the data available to the adaptation algorithms and possibly causing problems due to 
"holes" in the data stream, or will not provide valid data to the adaptation algorithms 
and corrupt the estimate of the clutter spectrum. The effects of limiting on adaptive 
algorithms have not yet been addressed in the literature. 

7. Non-Gaussian clutter spectra 
The theoretical performance analyses of optimal techniques is based on the assumption 
that the clutter consists of spectral components with Gaussian shape. Should the clutter 
deviate from this assumption, the performance benefits may vanish for those techniques 
which assume the form of the spectrum a priori, such as parametric techniques. The 

superior performance of adaptive techniques quoted for uni- or bi-modal Gaussian 

clutter will also be diminished in environments in which the clutter spectrum is better 

matched to the fixed shape of the MTI/FFT notches. 

8. PRI stagger limitations 
It is claimed that certain adaptation techniques allow the use of a staggered PRI. This is 
based on the reasoning that the effects of the stagger on the covariance matrix and hence 

the filter coefficients are known and can therefore be compensated for in the solution 
for the filter weights. However, in Hsaio filters part of the improvement factor is 

achieved by coherent integration; in doppler ambiguous radars the unknown target 
doppler will fold down to a different "processor" doppler for each PRI used, thus 

precluding the possibility of integration gain and the use of filter banks each "tuned" to 

a different doppler frequency. Thus only linear predictors, which do not divide the 
doppler space into bins, permit the use of pulse-to-pulse PRI agility. The usual 
(relatively minor) reduction in clutter suppression can be countered, albeit at 
considerable effort, by changing the filter weights each PRI. 

The first four of these limitations are considered to be the most serious, and are addressed 
in Chapter 4 of this thesis. 
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2.2.3 Summary 
Adaptive optimal techniques provide a theoretically attractive method of achieving the best 

possible clutter suppression in a given clutter environment, giving better performance than 
conventional techniques in theoretical studies. They provide the most dramatic improve- 

ments in performance in situations of multi-modal clutter, clutter with broad spectra, and 
where the number of pulses is limited. According to the available literature there appears to 
be little to choose between the Hsiao and the linear prediction approaches: the marginally 
better performance of the Hsiao approach is balanced by other advantages of the linear 

prediction approach: only a single filter is needed, not a filter bank; no collapsing losses 

will therefore be introduced in subsequent detection processors; and linear predictors are 
compatible with staggered PRI waveforms. 

However, adaptive optimal techniques suffer from several limitations in practical situations 
which have thus far limited their progress from theoretical concepts to real radar 
processors. In particular, the limitations imposed on their performance by non- 
homogeneous clutter, extraneous and multiple targets, clutter edges, point clutter, and 
possibly clutter limiting, are of concern. In some such situations, the complete adaptivity 
available may actually yield a reduction in performance. 

The MTD processor has been proposed as an effective and efficient implementation of the 
Hsiao filter optimised for some pre-defined clutter environment. No on-line adaptivity is 
incorporated, thereby greatly reducing computational requirements and overcoming some 

of the limitations of fully adaptive techniques. Performance has been shown to consistently 
outperform MTI-FFT processors. The Adaptive MTD processor has been proposed as a 

means of enhancing the performance and flexibility of MTD processors, offering a practical 
means of achieving near optimal improvement factors under a wide range of conditions. 
Thus far, however, the degree of adaptivity reported is limited to countering fixed ground 

clutter by means of a clutter map. 

2.3 CONSTANT FALSE ALARM RATE PROCESSING 

2.3.1 Basic Theory 

Radar automatic detection requires that the detection processor performs a test to ascertain 

whether a target is present in each radar resolution cell where detection is attempted. 
Analytically this is formulated as a hypothesis test between two hypotheses representing the 

conditions of target absent (HO) and target present (H1). The absence of a priori 
information regarding the probability of a target being present, and the use of the 
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commonly chosen optimisation criteria of maximising the probability of detection for a 
fixed probability of false alarm, implies that the optimum statistical test for detection is the 
Neyman-Pearson test. This corresponds to setting a threshold in the signal amplitude 
domain and declaring that any sample which exceeds the threshold corresponds to the HI 
hypothesis, ie. target present. If the amplitude statistics of the radar thermal noise, external 
interference and/or clutter (henceforth collectively termed either the noise or background) 

with which the target must compete for detection are well known, that is if the shape and 
the variance of the noise pdf are known, then a threshold can easily be determined which 
will yield the desired probability of false alarm, Pfa. Such a situation is referred to as ideal 
detection. Unfortunately, the variance of the clutter and interference will, in practice, vary 
from one region of radar coverage to another, and even the variance of the radar thermal 

noise will vary with time. This, together with the fact that the clutter could quite commonly 
deviate from a Rayleigh amplitude PDF, necessitates the use of an adaptive threshold if a 
constant false alarm rate is to be maintained. In order to set the threshold correctly the 
CFAR processor therefore attempts to estimate the variance, and in some cases the shape of 
the PDF, of the background noise at each instant and at each position that a detection is 

attempted. This corresponds practically to estimating the variance (and possibly PDF) in 

each instrumented range bin of the radar, after each CPI (or pulse if non-coherent 
processing is used), and in some cases in several doppler bins. 

CFAR processors which assume that the background conforms to a certain PDF and 
estimate only the parameters of the distribution (typically the variance, and possibly a shape 
or correlation parameter), are termed parametric CFAR processors. The assumed noise 
PDF defines the relationship between the noise variance (and any additional parameters) 
and the required threshold. Parametric CFAR processors therefore inherently assume that 
the class of noise PDF is known, and generally only achieve their design performance if 

that assumption is valid. Most well known existing CFAR processors, such as the three 

analysed in Chapter 5, are parametric CFAR processors. CFAR processors which either 
attempt to estimate the PDF themselves, or which intrinsically yield a constant Pfa 
irrespective of the noise PDF, are termed non-parametric CFAR processors. These are 
generally based on non-parametric statistical techniques such as rank tests or sign tests. 

Parametric CFAR processors are considered first. In general these attempt to estimate the 
background noise power by forming a so-called test statistic derived from a number of 
range bins (the reference cells) surrounding the cell under test (the test cell), as illustrated in 
Fig. 2.3. The test statistic is multiplied by a threshold multiplier factor a, which determines 

the false alarm probability, and the signal in the test cell is then compared with the resulting 
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Fig 2.3. Generalised CFAR Processor Architecture 

threshold T. A detection is declared if the signal in the test cell exceeds the threshold. The 

region covered by the reference cells is termed here the CFAR window. Since the CFAR 

processor estimates the noise variance from only a limited number of surrounding range 
bins, the estimate of the noise variance will be inexact and some margin for error must be 
incorporated. This implies a threshold higher than would be necessary if the noise variance 
were known exactly, resulting in a loss in detectability relative to ideal detection, termed the 
CFAR loss. Furthermore, it is clear that if the noise power changes from one level to 

another within the CFAR window (corresponding to a clutter edge), or if some of the noise 
samples within the CFAR window contain samples which are not representative of the 

overall noise, such as large point sources (usually referred to as extraneous targets), then 
the estimate of the variance will be incorrect and CFAR performance will suffer. Two 

negative effects can occur. firstly, if the variance is estimated too high, the threshold will be 
higher than it should be and target masking will occur. Secondly, at a clutter edge, the 
threshold may be biased lower than it should be by the region of lower clutter power and 
higher false alarm rates can occur. Finally, if the noise distribution deviates from that which 
was assumed to be valid, then the relationship between the variance and the appropriate 
threshold will vary, resulting again in either an increase in the false alarm rate or a loss of 
detectability. The response of a given type of CFAR processor to these problems is often 
used as the basis for comparing CFAR processor performance and selecting the best 

processor for a given application. In brief, four commonly used performance measures are: 

1. The CFAR loss under nominal conditions of homogeneous noise of known PDF. 
2. The response of the processor to extraneous targets. 
3. The response of the processor to clutter edges. 
4. The response of the processor, either in terms of increased false alarm rate or 

increased CFAR loss, to the noise PDF deviating from the nominal PDF. 
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In some cases, instead of declaring a detection immediately, the first threshold is followed 
by a binary integrator, the output of which is fed to a second threshold which declares a 
detection if at least M out of the N pulses integrated were first threshold detections. This 
binary integration is far easier to implement than pre-detection non-coherent integration and 
gives only slightly less integration gain if the second threshold M is chosen correctly. In 

radars with coherent filter bank doppler processors the most common detection scheme 
employs single-doppler CFAR processors, with OR selection logic between doppler bins, 
followed by M/N binary integration over N bursts. The M/N binary integration does not 

provide significant benefits in terms of false alarm control, and is incorporated primarily to 

enable detection of targets in clutter occupying a large portion of the radar's doppler space. 

Post-detection binary integration following conventional CFAR detection will not be 

considered in much detail for the following reasons: 

1. Rayleigh fluctuating targets which are decorrelated from one CPI or burst to the 

next by frequency agility or inherent fluctuations will exhibit identical amplitude 

characteristics to those of clutter spikes. Thus any post detection integration 
intended to eliminate clutter spikes will also suppress target detections. 

2. Post-detection binary integration operates on the output of conventional single pulse 
CFAR detectors. Therefore improvements in the performance of the single pulse 
detector will improve overall system performance even in systems employing post- 
detection integration. 

3. In many situations the analysis is, in any case, straightforward: if the target and 

noise returns are decorrelated from pulse to pulse, the effect of binary integration is 

evaluated simply through a process of statistical cumulation. That is, if Pd and Pfa 

are independent from pulse-to-pulse, the post integrator values of detection proba- 
bility Pd and false alarm probability Pfa are obtained from the binomial distribution. 
Again, the required decorrelation between successive pulses may occur naturally in 

some cases (Swerling 2 targets in white noise), and would also arise as a result of 
frequency agility. 

4. As mentioned in Chapter 1 the number of pulses in each dwell time will invariably 

be limited in high resolution radars. Clutter suppression requirements will often 

necessitate that as many of these pulses as possible are used in each CPI, the 

number being limited only by blind speed elimination, ambiguity resolution and 
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counter-countermeasures requirements for PRF and frequency agility on either a 
burst to burst or pulse to pulse basis. The number of independent "pulses" entering 
the CFAR processor, and hence available for binary integration, will therefore be 

small, limiting the potential benefit that can be obtained from binary integration. 

5. The performance benefits associated with binary integration of detections in K- 
distributed clutter has been analysed in some detail in a number of papers (eg. Watts 
1985, Ward, 1985). These results are valid irrespective of the form of the initial 

single pulse detector used. Therefore even in situations where binary integration is 

usefully employed, further performance improvements will require improvements 
in the performance of the initial single pulse detector. 

2.3.2 Types of parametric CFAR processors and their properties 
From a conceptual point of view the different types of parametric CFAR processors differ 

primarily in the way they form the test statistic and in its resulting characteristics, 
notwithstanding the possible use of subsequent binary integration. Three types of CFAR 

processors are analysed in this thesis, namely the Cell Averaging (CA), Cell Averaging 
Greatest Of (CAGO) and Order Statistic (OS) CFAR processors. They have been selected 
since they are widely encountered, and most other parametric processors are derivatives of 
these three. The CA processor is the simplest of the three processors discussed here, 

merely calculating the average of the signals in the reference cells as the test statistic z, i. e. 

z= -L x; ... (2.5) 
N` N 

where xi is the signal in reference cell i, -Nr/2 5i5 Nr/2, i*O, and Nr is the number of 
reference cells used. For a given number of reference cells the CA processor provides 
minimum loss under conditions of homogeneous Rayleigh noise backgrounds. If the noise 
in the reference cells is corrupted by the presence of additional targets or large discrete 

clutter sources (extraneous targets); or if the CFAR window covers transitions from one 
clutter power to another, or if the clutter deviates from the Rayleigh assumption, then an 
increase in the probability of false alarm Pfa and a reduction in the detection probability Pd 

can result. Quantitative analyses of CA processor performance in the first two of the above 
situations have been widely reported, with Ghandi (1988) providing a good summary. 

The CAGO processor was introduced (Hansen, 1973) to counter the problem of clutter 

edges. This is attempted by selecting only the greater of the two values of the averages of 
the reference cells on either side of the test cell, i. e. 
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r-M, M, 

z=m l xi ;z xi ... (2.6) 
i=-1 i=1 

where Mr = Nr/2 and the test cell is assumed to lie at i=0. This gives better performance in 

non-homogeneous clutter at the expense of slightly increased loss (--0.1 dB) under ideal 

conditions. The CAGO processor is, however, extremely sensitive to extraneous targets 
due to fewer cells being used in forming the averages of the leading and lagging window 
halves. It is also about as sensitive as the CA processor to non-Rayleigh clutter. 

The OS processor was proposed by Rohling (1983) as a means of overcoming the problem 
of extraneous targets. This is attempted through ordering the signals in the N reference cells 
into ascending order and selecting the kth sample of the ordered sequence as the test 

statistic. The N-k strongest signals in the reference cells do therefore not unduly bias the 

estimate of noise power, giving improved performance in the presence of extraneous 
targets. Under ideal conditions performance is generally optimised if k is set to about 7N/8. 
However, in practice a value of k- 3N/4 provides better resilience to several extraneous 
targets while maintaining acceptable loss under ideal conditions and giving a measure of 
immunity to clutter edges (Rohling, 1983). Ritcey (1990) argues that in fact it may be better 

to use k as low as N/2, and tolerate the slightly higher loss, in order to maintain good 
detectability if target bunching or numerous extraneous targets are expected. The response 
to clutter edges differs depending on the chosen value of k: for small values of k in the 

region of N/2 to 2N/3, the OS processor performs well in detecting targets that are close to 

the clutter edge, but suffers a marked increase in false alarm rate in the region of the clutter 

edge. For large values of k, the desired false alarm rate is maintained well in the region of 
the clutter edge, at the expense of a larger masked region around the edge, where targets 

will not be detected. 

Several derivatives of these CFAR processors have been proposed. These include the 
Censored Mean Level Detector (CMLD), the Excision Mean Level Detector (EMLD) and 
the Cell Averaging Smallest Of (CASO) CFAR processor. The CMLD (Ritcey, 1986) 

attempts to overcome the problems of both clutter edges and extraneous targets, while 

maintaining low nominal loss, by excluding the a smallest samples and the b largest 

samples from the calculation of the sample mean. This corresponds to ordering the samples 
in ascending order as for the OS processor, but then taking the sample mean of the the 
(a+1)st to (b-1)st samples, ie. 
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b-1 
1: 

ri: N, ... (2.7) 
i=a+1 

where the ri: Nr are the ordered samples of the samples xi in the reference cells. Since more 
samples are used in the determination of the test statistic than in the OS processor, the 
nominal CFAR loss is lower3, while under conditions of extraneous targets and clutter 
edges the performance is roughly similar to that of the OS processor. These advantages are 
achieved at the expense of processor complexity, since both the ordering (as for the OS) 

and the averaging (as for the CA) need to be performed. The EMLD, introduced by 
Goldman and Bar-David (1988) and analysed further by Conte et. al. (1989), attempts to 

overcome the effects of several extraneous targets by censoring from the averaging 
operation all returns above some value P. However, the performance is sensitive to the 

chosen value of 0 and the false alarm rate varies depending on how many samples exceed 
this excision value. The EMLD does not seem to offer any significant benefits over the 

aforementioned techniques, but is at least not much more difficult to implement than the CA 

processor. The EMLD could possibly be useful in pulse jamming scenarios where very 
large numbers of extraneous targets exist, provided that subsequent binary integration is 

performed to prevent jamming pulses from being declared detections. The CASO processor 
was introduced by Trunk (1978) in an attempt to alleviate the problem of target masking 
caused by two closely spaced targets. It is the reverse of the CAGO processor in that it 

selects as the test statistic the smaller of the partial sums of the signals in the leading and 
lagging halves of the reference window. As would be expected the CASO processor 
suffers slightly higher loss than the CA processor in homogeneous clutter, but it has been 

shown (Trunk, 1978) that it does indeed perform well in resolving two closely spaced 
targets. Gandhi (1988) shows, however, that if an extraneous target is present on each side 
of the test cell, performance degrades rapidly due to at least one of these being included in 

the test statistic and hence raising the threshold. He also shows that the CASO processor 
exhibits very poor false alarm performance in the region of clutter edges. Several variations 
of the aforementioned processors also exist which are too numerous to address here. 

All of the abovementioned CFAR processors are sensitive to deviations from the 

assumptions of Rayleigh noise and in this thesis the degree of sensitivity to such deviations 

is analysed. To date little has been published on the performance of the CFAR processors 
described above in non-Rayleigh clutter or noise, and particularly K-distributed clutter. 
Similarly, little literature exists covering CFAR techniques designed specifically for 

operation in non-Rayleigh environments. Most of the papers that do exist in this field 

3It has been shown (Ritcey, 1986) that for a=0 and under conditions of exponentially distributed noise, 
the CMLD gives an unbiased minimum variance estimate of the noise power and therefore has the same 
loss as a CA processor using b reference cells 
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address CFAR performance in Weibull and Log-Normal clutter (eg. Goldstein, 1973; 
Weber, 1985; Schleher 1975; Levanon, 1992), which as stated in Chapter 2 do not seem to 
be the best models available for non-Rayleigh sea clutter, or indeed non-Rayleigh land 

clutter. Nevertheless, these papers are useful for comparisons with the analyses performed 
in this project. This is particularly true for the Weibull results since special cases of both the 
Weibull and K-distributions reduce to the exponential distribution. Some empirical models 
for detection performance prediction in K-distributed clutter have been presented (Watts, 
1990b), but these do not address CFAR techniques. Another paper by Watts et. al. (1990a) 
describes a specific form of multi-pulse CFAR processor, based on the CA processor, for 

operation in K-distributed clutter. The material in that paper is only relevant if a large 

number of pulses are available per dwell. 

3.3.3 Non-parametric CFAR processors 
A non-parametric CFAR processor is one which assumes no a priori knowledge of the 

clutter amplitude statistics. The term "non-parametric" derives from formal non-parametric 
statistics where it refers to the idea that the possible clutter PDFs comprise such a large set 
that they cannot be indexed by a finite number of parameters. Thus "non-parametric" 

techniques are required. In radar detection processing, the two fundamental techniques 

used for non-parametric detection are the Sign Test and the Wilcoxon test. In their basic 
form, these tests require that the signal phase is known a priori, an unrealisable condition 
for radar detection. Modifications of these techniques are therefore used to enable them to 

operate on signals of unknown phase, and the corresponding practical implementations for 

radar detection are the Generalised Sign Test (GST) processor (Hansen, 1975) and the 
Mann-Whittney Detector (MWD) (Hansen, 1972). A detailed definition of these processors 

will not be included here since, as will be shown later, they are not suitable for systems 
where a strictly limited number of pulses or bursts is available. In addition, some other 
conditions for the attainment of non-parametric CFAR are not met in K-distributed clutter. 

The GST processor essentially compares the signal in each range bin to that in the Nr 

surrounding range bins on a given pulse, and counts the number of times the test cell 

exceeds the reference cells. This count is integrated over a number of pulses Mi and the 

result is compared to a threshold. The MWD compares the test cell to the NrxM; reference 

cells over the dwell of Mi pulses and counts the number of times that the test cell exceeds 
the reference cells. This count is integrated over the Mi pulses and the result is compared to 

a threshold. Since ranking as opposed to pure sign testing is performed in the MWD, it is 

more efficient than the GST processor. For non-parametric CFAR performance to be 
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achieved, both techniques require that the NrxMi samples are statistically independent. This 
is not true in general for clutter backgrounds with narrow spectra. In particular it is not true 
for K-distributed clutter, even if its doppler spectrum is white, since the clutter power 
modulation is assumed to be approximately constant over the dwell period and this 
introduces correlation between pulses for the samples in each range bin. 

The other major restriction on the usefulness of processors based on these two techniques 
is that both require the number of pulses Mi to be quite large if acceptable detection loss is 

to be maintained. Hansen (1975) shows that for Mi > 16 and Nr > 8, and for Pfa = 10-6, the 
loss is less than 2 dB for non-fluctuating targets. For the more common case of fluctuating 

targets the loss is much higher. The loss also increases rapidly as Mi falls below 16. 

Several variations of these two basic methods have been proposed. The most widespread 
technique, as presented by Trunk (1974) and Dillard (1970), is the ranking of the test cell 
with respect to the reference cells, followed by weighted rank integration over a number of 
pulses. Performance of these techniques falls o9 rapidly as the number of pulses Mi falls 
below about 20, for Nr in the region 16 to 32. They also require the independence of all of 
the NrxM; pulses, which is, as discussed above, often not true. 

It is concluded that these non-parametric CFAR techniques are not appropriate for CFAR 
detection under the conditions applicable to this thesis. They will not therefore be 

-, considered any further. 

2.3.4 Illustrative example 
To conclude this section, a brief illustrative example of the four CFAR processor 
performance measures mentioned earlier is presented. Fig. 2.4 shows the threshold set by 
CA, CAGO and OS processors operating on K-distributed clutter with v=0.5, with the 

number of reference cells N=32. The threshold multiplier factor (% is set to achieve Pfa = 
10-4. For the OS processor k is chosen as 20. A 14.77 dB clutter edge is located at range 
bin no. 240. A number of closely spaced targets of 16 dB SCR are located between range 
bins 70 and 95, with isolated targets at range bins 150 and 230. 

Considering the resulting threshold values several points can be noted. For the CA detector 
it is apparent that the closely spaced targets raise the threshold between range bins 60 and 
110 so much that none of the targets are detected. The isolated target at range bin 150 is 

detected, but the presence of the clutter edge raises the threshold in the region of range bin 
240, thereby masking the target at range bin 230. Close examination of the figure also 
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indicates that a false alarm will occur in range bin 246, due to the threshold being biased 
down by the low region of clutter power still within the CFAR window. It is evident that 
for the CAGO processor the closely spaced targets are even more comprehensively masked 
by each other. Again the isolated target at range bin 150 is detected and the target at range 
bin 230 is masked by the clutter edge. The clutter spike at sample 246 does not, however, 

cause a false alarm in the CAGO processor. 
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Fig. 2.4. Example of Thresholds Calculated by CA, CAGO and OS Processors 

The OS processor can be seen to resolve the closely spaced targets and exhibits no 
discernable increase in the threshold in that region. The isolated target at range bin 150 is, 

of course, detected, and the target at range bin 230 is now detected and is not masked by 

the clutter edge. This is achieved at the expense of a false alarm at range bin 246 caused by 

the clutter edge, and almost another false alarm at sample 243. The choice of a higher value 

of k, of around 27 or 28, would eliminate the false alarms at the clutter edge, but would 

extend the region of target masking caused by the clutter edge to the left, causing masking 

of the target at range bin 230. It is also apparent that in regions of homogeneous clutter the 

threshold is lowest for the CA processor and highest for the OS processor, reflecting the 

nominal loss for these respective processors. 

page 54 



CHAPTER 3 

A COMPARISON OF DOPPLER PROCESSING TECHNIQUES 
FOR CLUTTER SUPPRESSION 

3.1 INTRODUCTION 

A wide range of techniques for doppler-based clutter suppression are now practicable due 

to advances in signal processing hardware and the theory of optimal filtering. At present, 
however, there is little consensus as to which technique provides the best performance 

under anything wider than specific clutter and target conditions. Although the relative 

performance of many of the techniques has been compared in the literature, no clear-cut 

conclusions can be drawn from the available papers: the data are often not directly 

comparable and sometimes contradictory, and one often gets the impression that quoted 

performance depends strongly on the specific clutter environment assumed. In this Chapter 

an attempt has been made to evaluate the relative performance of many commonly proposed 
doppler processors under a wide range of conditions, with as few limiting assumptions as 

possible. 

The processors addressed here, a brief description of which is provided in the next section, 

are: 
1. Moving Target Indication (MTI) 
2. Adaptive MTI (AMT1) 
3. Moving Target Detector (MTD) 
4. Pulse Doppler preceded by MTI (PD&MTI) 
5. Adaptive MTD (AMTD) 
6. Optimal Filtering (OF) 
7. Linear Prediction (LP) 
8. Optimal Filtering preceded by MTI (OF&MTI) 
9. Linear Prediction preceded by MTI (LP&MTI) 
10. Adaptive MTI preceded by MTI (AMTI&MTI) 

A wide range of clutter scenarios representative of typical land and sea clutter, possibly 

with weather clutter components as well, are defined. The performance of each of the 
doppler processors listed above is assessed in each clutter environment. Statistical analysis 
is then used to compare the relative performance of the various processors. 
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3.2 DESCRIPTION OF DOPPLER PROCESSORS 

3.2.1 Optimal Filtering (OF) 
Optimal filtering has been discussed in section 2.2. Note that in this Chapter ideal 

estimation of the clutter covariance matrix is assumed. This implies that the clutter must be 
homogeneous and the number of reference cells used to estimate M tends to oo. In practice 
the covariance matrix has to be estimated on-line from a number of range cells in the 
vicinity of that being filtered. This, along with possible clutter heterogeneity, causes errors 
in M and hence sub-optimal performance. The consequent losses are addressed in Chapter 
4 of this thesis. Techniques for estimating M and some other limitations of adaptive optimal 
filters have been addressed in section 2.2. 

3.2.2 Linear Prediction (LP) 
Linear predictor filters have been introduced in section 2.2. In this Chapter ideal estimation 
of the clutter covariance matrix is assumed. This implies that the clutter must be 
homogeneous and the number of reference cells used to estimate M must tend. to oo. In 

practice the covariance matrix has to be estimated on-line from a number of range cells in 

the vicinity of that being filtered. This, along with possible clutter heterogeneity, causes 

errors in M and hence sub-optimal performance. Note that linear predictors are not "tuned" 

to a given target doppler and hence a single filter is sufficient, as opposed to the bank of 
filters required by the Hsiao approach. This implies that collapsing losses associated with 
detection over a bank of several parallel filter outputs are not present in LP filters, and 
account of this must be taken in performance comparisons with Hsiao optimal filters. 

3.2.3 Moving Target Detection (MTD) 
In a Moving Target Detector a bank of FIR filters is implemented, each of which is "tuned" 

to a different desired target doppler. The sidelobe response of each filter depends on the 
design criteria and the assumed clutter environment. The MTD can be viewed as an 

approximation to a bank of optimal Hsaio filters provided the assumed clutter environment 
accurately reflects the true situation. However, absence of accurate knowledge of the true 

clutter spectrum generally results in a more arbitrary approach to MTD filter bank design, in 

which a number of filter transfer function parameters are specified and filters are designed 

accordingly, usually by interactive techniques owing to the absence of rigorous top-down 
design methods for FIR filters. The filter transfer function parameters most usually of 
interest include the main lobe width, the depth and width of the notch at zero doppler, and 
the first and average sidelobe levels. In this Chapter six MTD filter banks have been 

designed to compare the relative importance of these parameters and investigate the 
influence of the choice of parameters on overall Improvement Factor performance. The first 

three MTDs correspond to situations in which land clutter suppression is considered 
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particularly important, while the latter three place no additional emphasis on suppression of 

zero-doppler clutter and are hence more representative of sea- or weather clutter supp- 

ression filters. The design criteria and definitions of the six MTD filter banks are given in 

Appendix 3.1. 

With regard to the MTD filter designs outlined in the appendix, some additional points 

should also be noted. In some cases the number of filters could be reduced with little 

increase in collapsing loss; however, this has not been done here to simplify direct 

performance comparison. Similarly, filter 0 could be omitted from MTDs 1 to 3; it has 

again been included to facilitate direct comparison. In both cases the additional collapsing 
loss associated with the extra filters is negligible. In all cases a sidelobe level of less than 

about -60 dB relative to the noise level was not considered particularly advantageous due to 
dynamic range limitations in the radar. 

3.2.4 Pulse Doppler with MTI (PD&MTI) 

Pulse Doppler refers to processors in which a filter bank is implemented by means of a 
FFT. The FFT processor is usually preceded by a conventional 2- or 3-pulse MTI 

canceller. This is done primarily to achieve sufficient suppression of strong zero-doppler 

clutter while maintaining reasonable freedom over the selection of the window function and 

the corresponding frequency response. (In the past the preceding MTI canceller was also 

required to ease dynamic range requirements due to numerical precision constraints; this is 

no longer so significant due to advances in processing component technology. ) 

In this study a 3-pulse canceller followed by an 8-pulse FFT is used to facilitate direct 

comparison with a 10-pulse optimal or MTD processor. Four different window functions 

have been examined, namely the Hanning, Hamming, Blackman and Kaiser-Bessel 

windows, the latter with a range of values of the variable parameter b, where for even N (N 

order of the filter) and n=0... N-1 (n is the index of the nth received pulse), the window 
functions are given by: 

Hanning: w(n) = 0.5 {1 + cos[ N 
{n +2- v-)] } 

Hamming: w(n) = 0.54 + 0.46 cos[N{n +2- 2)] 

Blackman: w(n) = 0.42 + 0.5 cos[ 
Nn+2-2 )] + 0.08 cos[ 

Nn+2-2 

Kaiser. w(n) = [Io(b)]'1. Io[b 1- {--2-(n - 
U+ 

2 
)) 2] 
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The normalised overall frequency response of filters 1,2,3 and 4 obtained using a 
Hamming window are shown in Fig 2.1. Filters 5,6 and 7 are mirror images about the 
PRF of filters 3,2 and 1 respectively. The passband of the FFT and the notch of the MTI 

coincide in filter 0, which is therefore not useful and the frequency response is 

unimportant. 

Note that subsequent analyses assume unity noise gain normalisation on the MTI canceller 
and the FFT processor. This does not yield unity noise gain in each of the 8 filters; the 
filters near to 0.5 of the PRF have more than unity noise gain while others have less than 

unity noise gain. 

3.2.5 Optimal Filter with MTI and Linear Predictor with MTI (OF&MTI 

and LP&MTI) 
In many situations strong isolated point sources of clutter are present in a background of 
more homogeneous clutter of different spectral characteristics. These point clutter sources 
have two effects on adaptive filtering techniques, namely: 

1) When the point clutter is in the cell to be filtered, the covariance matrix used in 

calculating the filter coefficients is based on the homogeneous clutter background. 
The filter is therefore optimised for a different clutter spectrum and does not cancel 
the point clutter optimally. 
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Fig. 3.1: Normalised Frequency Response of PD&MTI Processor 
(Hamming window, 3-pulse MTI, 8-pulse FFT) 
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2) When the point clutter is in the reference cells it may dominate the estimate of the 
covariance matrix by virtue of the strength of its return. This results in a poor 
estimate of the covariance matrix since 1) the spectrum of the discrete is different to 
the background, and 2) essentially one dominant sample is used in estimating M, 

thereby degrading estimation accuracy. The filter therefore exhibits sub-optimal 
performance in a region around the point clutter of the extent of the reference 
window. 

One means of partially overcoming these problems is to insert an MTI canceller before the 

optimal filter to largely cancel the discrete clutter, thus minimising corruption of the 

estimate of M and providing some minimum cancellation of the point clutter. In this thesis 
binomial 3-pulse cancellers followed by 8-pulse optimal and linear predictor filters have 
been examined and compared with 10-point optimal or linear predictor filters without MTI. 

The 8-pulse filters are designed in exactly the same way as previously discussed, except 
that the matrix equation used to determine the weights must reflect the clutter covariance 
matrix after MTI filtering. Assuming a constant PRI waveform this is calculated by 1) 
defining the pre-MTI clutter spectrum; 2) applying the suitably normalised MTI transfer 
function; 3) Determining the post-MTI clutter correlation vector from the magnitude of the 
inverse Fourier transform of the power spectrum; and 4) constructing the covariance matrix 
from the correlation vector r with elements m(ij) = r(Ii - ji) if i ?. j, and m(i, j) = (r(Ii - ji))* if 

i<j, where * denotes complex conjugation. 

Note that in this Chapter ideal estimation of the clutter covariance matrix is assumed. This 
implies that the clutter must be homogeneous and the number of reference cells used to 

estimate M must tend to oo. The performance data presented in this Chapter therefore 
indicate the loss introduced by the insertion of an MTI filter when the clutter is 

homogeneous and point clutter sources are not present. In Chapter 4 the performance of 
the composite MTI-optimal adaptive filter is addressed when point clutter sources are 
present, either in the test cell or the reference cells, and for a finite number of reference cells 

used in estimating the covariance matrix. 

3.2.6 Adaptive MTI (AMTI) and AMTI with MTI (AMTI&MTI) 
AMTI is a well known technique of improving MTI clutter suppression in clutter with non- 

zero mean doppler by adaptively moving the null of the MTI frequency response to 

coincide with the dominant clutter spectral components (Lewis, 1986). For clutter with a 
symmetrical spectrum about its mean the optimum location for the null is at the clutter mean 
frequency (Ekstrom, 1974). In general AMTI is applied to binomial cancellers by varying 

only the phase of the canceller coefficients. If cancellation of bimodal clutter is required, 
AMTI cancellers may be cascaded with MTI or further AMTI cancellers. 
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In this analysis a 3-pulse AMTI is considered. In addition, we consider a 3-pulse AMTI 

preceded by a conventional 3-pulse MTI for the cancellation of zero-doppler clutter, the 
idea being that the AMTI will then "clean up" the residue and any non-zero doppler 

components. In both cases the null of the AMTI response is assumed to be set to the mean 
value of the clutter or residue; no errors in the positioning of the null are accounted for and 
hence the results can be expected to be slightly optimistic. 

3.2.7 Adaptive MTD (AMTD) 

In order to improve filter performance in spatially heterogeneous clutter the concept of 
Adaptive MTD has been proposed (D'Addio, 1985; Gibson, 1985), in which a MTD filter 
bank is selected from a library of several possible choices, the choice being dependent on 
the locally applicable clutter environment. Current techniques generally limit the adaptation 
to the presence or absence of significant stationary land clutter, implemented by_a_clutter 

map. This appears to have limited applicability to systems in which th platform-clutte 

relative movement is fast compared to the radar scan rate or frame time, or in which an 

essentially infinite number of elevation positions are available, such as in a mechanically 

scanned pencil beam radar. Nevertheless, within these limitations, performance close to the 

optimum has been claimed (D'Addio, 1985). 

The performance of an AMTD system is limited by the number of filters from which the 

selection will be made, the accuracy of selection, and the performance of the chosen filter 

bank in the local clutter. In this study the filter library is assumed to consist of a subset of 
the six MTD filter banks defined above as well as PD&MTI processors with Hamming or 
Kaiser (b=6) windows. Filter selection logic is not addressed here: ideal selection of the 

appropriate filter is assumed for all clutter in all resolution cells. The results thus give an 

upper bound on AMTD performance. A lower bound could be obtained by assuming that 

the worst filter is chosen in each case. 

After a preliminary investigation the following AMTD filter libraries were selected for 

detailed analysis: 

Table 3.1 
AMTD Filter Library Definition 

AMTD No. Filters in Library 
1. M M2 M M3 
2. M M2 MTD4 

. 3. MTD2 MTD6 
4. M M2 PD&MTI1 
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Table 3.1 (cont. ) 
AMTD No. Filters in Library 

5. MTD3 MTD4 
6. MTD3 MTD6 
7. MTD3 PD&MTI1 
8. MTD4 MTD6 
9. MTD4 PD&MTII 
10. MTD2 MTD4 PD&MTI1 
11. MTD2 MTD3 MIT} 
12. MM3 MTD4 MM6 
13. MTD3 MTD4 PD&MTI1 
14. MTD4 MTD6 PD&MTTI 
15. MTD2 MTD3 MTD4 MTD6 
16. MTD3 MTD4 MTD6 PD&MTI 

1 In all cases a hamming window was used for the PD&MTI processor. 

3.3 CLUTTER SCENARIOS 

Bimodal clutter spectra were assumed in this Chapter for land and sea clutter scenarios. 
This includes unimodal clutter as a special case where the strength of one of the clutter 

components is negligible. In all cases Gaussian spectral components were assumed. 
Although this assumption may often be violated in practice, the actual shape of the 

spectrum, particularly the far out spectral tails, is not expected to have much impact on the 

relative performance of the various filters. The spatial and amplitude statistics do not affect 

most of the analyses in this study; in cases where they are important, as in Section 3.4 

following, spectrally homogeneous clutter with a Rayleigh amplitude distribution is 

assumed unless otherwise stated. 

All clutter scenarios considered here have been taken as being equally probable and 
important, with no weighting being applied in subsequent statistical analyses. 

3.3.1 Land Clutter 
For land clutter the parameters used to define the clutter environments were: 

1. CNRi, the CNR of the zero-doppler component. 
2. The spectral width of the zero-doppler component, measured in terms of the 

standard deviation al of the Gaussian spectrum. 
3. CNR2, the CNR of the second clutter component. 
4. The standard deviation a2 of the second clutter component. 
5. The centre frequency fc2 of the second clutter component. 
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It was assumed that the zero-doppler clutter component corresponds to a dominant return 
from the land, with a consequent narrow spectrum, while the second clutter component 
corresponds to weaker but spectrally broader rain, chaff or clouds (or possibly wind 
agitation of vegetation). The values of the above parameters considered appropriate for this 
study were therefore as follows: 

Table 3.2 
Definition of Land Clutter Scenarios 

Parameter Values considered 
CNR1: 20 40 60 
ßl : 0.003 0.01 0.03 
CNR2: -50 10 20 30 
a2: 0.01 0.03 0.1 
fc2: 0.0 0.125 0.25 0.375 0.5 

Units 
(dB relative to thermal noise) 
(relative to PRF) 
(dB relative to thermal noise) 
(relative to PRF) 
(relative to PRF) 

These values comprise a set of 540 clutter scenarios, of which 414 are distinct since a2 and 
fc2 are irrelevant for CNR2 = -50 dB. ' Note that fc2 S 0.5; it is not necessary to set fc2 > 0.5 

since setting fc2 = 0.625,0.75,0.875 and 1.0 would give identical results to fc2 = 0.375, 

0.25,0.125 and 0.0 respectively, due to a uniform target doppler PDF and the reverse 
symmetry of the corresponding filters in each filter bank. 450 of these scenarios, including 

all the distinct ones, are assigned an index 1- 450 as defined in Appendix 2.2. Limited 

repetition of CNR2 = -50 dB has been maintained to ensure that later statistical data 

analyses do not swamp this case. 

3.2 Sea Clutter 

Sea clutter often exhibits bimodal spectral characteristics. The dominant component with a 

mean velocity of typically 0.15 to 0.25 of the wind velocity and a standard deviation of the 

order of 0.5 to 1 m/s, while the weaker component has mean velocity of the same order as 
the wind velocity and spread equal to or wider than that of the spread of the dominant 

component. In addition to the bimodal sea clutter, rain and chaff may be present; however, 

this will have mean velocity similar to the wind velocity and spread similar to that of the 

secondary sea clutter component. The clutter spectrum is therefore still likely to be 

essentially bimodal and so limiting this study to bimodal clutter in sea scenarios does not 

necessarily preclude the possibility of simultaneous rain or chaff. [In cases where the radar 

vertical beamwidth is wide enough to illuminate the sea surface and of sufficient height to 
incorporate wind shears, a third clutter component would sometimes be necessary for 
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accurate modelling. ] 

Bimodal sea clutter is characterised in the same terms as given above for land clutter, with 
the additional parameter fcl, the centre frequency of the dominant clutter component. The 

values of the characterising parameters considered appropriate for sea clutter for this study 
were as given in Table 3.3 below. 

Table 3.3 
Definition of Sea Clutter Scenarios 

Parameter Values considered Units 
CNR1: 20 40 (dB relative to thermal noise) 
ßl : 0.01 0.1 (relative to PRF) 
fc1: 0.0 0.25 0.5 (relative to PRF) 
CNR2: -20 10 30 (dB relative to thermal noise) 
02: 1.0 2.0 (relative to al) 
fc2: 0.0 0.2 0.4 0.6 0.8 (relative to PRF) 

These values comprise a set of 360 clutter scenarios, of which several are not distinct since 
a2 and fc2 are irrelevant for CNR2 = -20 dB. 300 of these scenarios, including the 252 

distinct ones, are assigned an index 1- 300 as defined in Appendix 3.3. Limited repetition 

of CNR2 = -20 dB has been maintained to ensure that later statistical data analyses do not 

swamp this case. 

3.4. A NOTE ON PERFORMANCE MEASURES 

We wish to quantify the relative performance of various doppler processors. The quantity 

of interest is the reduction in signal power which can be achieved, compared to the 

unfiltered case, while still maintaining the required detection probabilities. We term this the 
"true Improvement Factor", defined as IFLr1e = Sdp/Sdp, where Sdp and Sdp are the signal 

powers required for detection with and without doppler processing respectively. The 

standard definition of IF which is commonly used to compare the performance of doppler 

processors is: 

IF = 
SCNRIouc 
SCNRI; n 

... (3.1) 

which for single filter systems with unstaggered PRI gives IF = IFrue. However, in multi- 
filter or staggered PRI systems modifications are necessary to achieve accurate values of 

the true improvement factor. Firstly, each filter in a filter bank will exhibit a different IF. 
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Simple averaging of the IFs is inappropriate since the radar does not average the outputs, 
but attempts independent detection on each filter output. This is approximately the same as 
selecting the filter in which the SCNR is highest, which corresponds to that with the 
highest IF. The IF of the best filter in a filter bank will therefore be taken as the IF of the 
filter bank as a whole for a given target doppler and clutter scenario. Note that the 
collapsing loss associated with detection on N independent filter outputs must be accounted 
for in comparing the performance of filter bank processors to single filter processors such 
as linear predictors or AMTI cancellersl. 

This value of the IF of the filter bank as a whole is still, however, dependent on the 

assumed target doppler, which is in general unknown. The average improvement factor 
IFay is thus often taken as the doppler dependent IF averaged over all target dopplers 
between 0 and the PRF, assuming uniform target doppler probability. This tends to give 
pessimistic results since it assumes that targets compete directly with the dominant clutter in 

some situations, whereas in reality PRF stagger is almost always employed to eliminate 
blind speeds and ensure that the target will not be obscured by narrow band clutter at least 

part of the time. In burst processing radars, Mb/Nb detection logic will generally be 

applied. Simplistically, in such cases the IF in only the best Mb out of Nb of the bursts is 

thus relevant, which is broadly equivalent to saying the IF is only relevant in the best M 
filters in the bank of N filters. (Although Mb/Nb may often be similar to M/N, this will not 

necessarily be true). It is therefore proposed that a more appropriate doppler independent 

measure of IF is IF 
, &, defined as the average of the doppler dependent IF over only the best 

A% of the doppler space. 

To validate this proposed performance measure the radar processing system illustrated in 

Fig. 3.2 has been considered. The true improvement factor has been investigated by 

determining the signal power Sdp required with doppler processing to achieve 50% 
detection probability with a false alarm probability of 10-6, and the signal power Sdp 

required without doppler processing. The losses and appropriate thresholding considering 
the collapsing of the filter banks and the Mb/Nb detection logic are addressed in Appendix 
3.4. Assumptions regarding clutter and target statistics and a brief overview of the method 

of analysis are also given in the appendix. 

I There is also a small collapsing detection gain due to finite detection probabilities in more than one 
filter in the filter bank. This is generally smaller than the collapsing loss and will not be considered in this 

study. 
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Fig. 3.2: Outline of Doppler and Detection Processing 

Results were calculated for several bimodal clutter scenarios defined by combinations of the 
following clutter parameters: 

CNR1: 40 (dB relative to thermal noise) 
ß1: 0.01 0.1 (relative to PRF) 
fcl: 0.0 0.5 (relative to PRF) 
CNR2: -20 30 (dB relative to thermal noise) 
02: 1.0 2.0 (relative to al) 
fc2: 0.0 0.2 0.4 0.6 0.8 (relative to PRF) 

The true IF was determined by calculating Pd as a function of S, and Sp, and finding those 
values which gave Pd = 50%. The approximation IFA was determined as described above 
for various values of A. Results are illustrated in Fig. 3.3a for A= 30% and Fig. 3.3b for 
A= 100%, where each dot plotted represents the IF achieved by a given type of filter in a 
given clutter scenario.. It is clear that A= 30% gives good accuracy whereas averaging over 
the whole doppler space gives results which are consistently pessimistic by 3 to 5 dB. 
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page 65 

DETECTION INWgVEWFNT FACTOR IdOI DETECTION IMPROVEMENT FACTOR (NO) 



3.5 PERFORMANCE COMPARISON 

The approximate improvement factor IF 
,& 

has been calculated for values of A= 5%, 30%, 
70% and 100% (ie. where the doppler dependent IF has been averaged over the best 5%, 
30%, 70% and 100% of the doppler space respectively) for each of the filter types 
described in Section 3.2, for each of the land and sea clutter scenarios given in Section 3.3. 

Full results of IFA for each type of filter, clutter scenario and the value of A are provided in 
Appendix 3.5. A more sensitive measure for comparing performance is the reduction in IF 
obtained by a given filter compared to the maximum possible IF, which is constrained by 
the clutter spectrum and the number of pulses processed, and is given by the IF obtained by 
the optimal filter assuming exact knowledge of M. This difference in IF represents a loss 
LIf compared to the optimum processor. The value of I, 1 f has been calculated and sample 
results for several filter types are illustrated in Fig 3.4 for land clutter and Fig. 3.5 for sea 
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clutter, which give the loss for each clutter scenario, indexed on the horizontal axis as 
defined in Appendix 3.2 and 3.3. The value of Li f is summarised in Fig. 3.6 in terms of a 
histogram of the loss suffered by each filter over the 750 land and sea clutter scenarios, for 

.A= 30%. (Note the different horizontal axis scale for the AMTI&MTI filter). Results for 

simple MTI and AMT! filters, which give substantially poorer performance, are not shown 
in Fig. 3.6. 

The single filter implementations (ie. LP, LP&MTI and AMTI&MTI) can be seen to suffer 
higher loss than the filter bank implementations. These results, however, exclude the 

collapsing losses inherent in multi-filter processors. The collapsing loss is tabulated in 

Table 3.4 for various values of P fa, N and the number of reference cells Nr used in the 
CFAR processor. 

Table 3.4 
Collapsing Loss in Multi-filter Processors 

Pfa = 10.4 Pfa = 10.6 
N=5 N=8 N=10 N=5 N=8 N=10 

Nr =8 4.17 4.52 4.68 5.48 5.78 5.92 
Nr = 16 2.39 2.66 2.78 2.84 3.05 3.15 
Nr = 32 1.55 1.78 1.89 1.64 1.81 1.89 
Nr = 64 1.15 1.36 1.46 1.06 1.21 1.28 
Ideal . 75 . 95 1.04 . 50 . 64 . 70 

These figures assume Pd = 50%, CA CFAR processing, and Rayleigh clutter amplitude 

statistics. They would increase noticeably should strongly spiky clutter amplitude statistics 
be assumed. 

The results have been further reduced to obtain simple mean values of loss for each type of 
filter. Two means have been calculated, namely the mean of the linear IF, subsequently 

expressed in dBs, and the mean of the dB value of the IF. The former is the more rigorous 

mathematically and is widely used in the literature, but is very sensitive to "rogue" clutter 

scenarios indicated by high spikes in Figs. 3.4 and 3.5, which may not warrant such 
influence on the results. The latter appears to correspond better to the mean increase in 

signal power required to achieve detection, probably due to the approximate linearity of 
detection probability with the log of signal power in the region of Pd = 50%. Both 

measures, averaged over all 750 land and sea clutter scenarios, are given in Table 3.5 for 

various values of A. 
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The performance of the AMTD processors defined in Section 3.3.6 has been evaluated in 

the same terms as above. The loss compared to the optimal filter has been calculated 
assuming ideal filter bank selection. The value of Lif achieved by some of the better AMID 
filter bank combinations is illustrated in Fig 3.7a for land clutter and Fig. 3.7b for sea 
clutter, which again give the loss for each clutter scenario, indexed on the horizontal axis, 
as defined in Appendix 3.2 and 3.3. The mean values of Ljf are tabulated for each of the 16 
AMTD filter bank combinations in Table 3.6 

Table 3.5 
Average Li f for Different Doppler Processors, 

Averaged over all Land and Sea Clutter 

Filter Type Mean(L;, IdB) 
A=5% A=30% 0=70% 

MTD 1 2.677 3.556 4.267 
MTD 2 2.572 3.135 3.702 
MTD 3 2.192 2.878 3.470 
MTD 4 3.006 3.568 4.210 
MTD 6 6.910 7.664 8.151 
PD&MTI1 2.584 3.262 3.760 
OF . 000 . 000 . 000 
PD&MTI2 5.744 6.643 7.267 
OF&MTI . 572 . 652 . 845 
LP&MTI 6.371 7.860 8.742 
LP 5.319 6.842 7.708 
AMTI&MTI 10.330 10.853 11.977 
AMTI 18.154 18.070 18.439 
MTD 5 11.698 12.168 12.265 

[Mean(Lj )]dB 
A=100% A=5% A=30% A=70% 0=100% 
4.300 4.224 4.907 5.550 5.558 
3.736 3.520 4.050 4.617 4.647 
3.506 3.046 3.737 4.396 4.426 
4.282 4.894 5.258 5.711 5.746 
8.202 17.097 17.479 17.365 17.349 
3.795 5.202 5.593 5.477 5.484 

. 000 . 000 . 000 . 000 . 000 
7.297 12.168 14.096 15.134 15.096 

. 876 1.921 1.699 1.779 1.795 
8.763 8.144 8.862 9.487 9.494 
7.721 6.518 7.373 8.043 8.049 

12.095 21.438 21.574 22.104 22.120 
18.530 27.422 27.491 27.622 27.618 
12.261 26.229 26.337 25.449 25.266 

Notes: 1 Hamming window 2 Kaiser window, b=6 

Table 3.6 
Average Lif for AMTD Processors 

AMTD No. Mean(L; 11dß) [Mean(L; f)]d]3 

a=5% a=30% a=70% a=100% a=5% a=30% a=70% a=100% 
1 2.012 2.611 3.197 3.234 2.640 3.259 3.932 3.969 

2 2.392 2.848 3.353 3.388 3.173 3.551 3.978 4.006 

3 2.160 2.759 3.293 3.328 2.925 3.452 3.952 3.983 

4 1.924 2.579 3.124 3.159 2.600 3.150 3.694 3.728 

5 1.955 2.481 2.995 3.034 2.477 2.950 3.455 3.489 

6 1.767 2.421 2.955 2.994 2.242 2.870 3.434 3.471 

7 1.809 2.465 3.002 3.039 2.241 2.851 3.443 3.481 

8 2.408 3.013 3.610 3.680 3.799 4.242 4.703 4.752 

9 1.870 2.437 2.928 2.968 2.542 2.961 3.372 3.406 

10 1.808 2.350 2.836 2.872 2.419 2.831 3.249 3.280 

11 1.839 2.329 2.851 2.891 2.219 2.659 3.180 3.218 
12 1.694 2.247 2.738 2.778 2.147 2.641 3.090 3.125 
13 1.682 2.218 2.690 2.728 2.033 2.483 2.927 2.963 
14 1.681 2.236 2.721 2.766 2.359 2.779- 3.184 3.221 
15 1.619 2.154 2.650 2.691 1.953 2.440 2.912 2.950 
16 1.522 2.060 2 . 523 2.562 1.861 2.325 2.761 2.798 
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Data corresponding to Tables 3.5 and 3.6 for individual averages of land and sea clutter are 

given in Appendix 3.5. We conclude that for land clutter: 

* PD&MTI processing with a Hamming window provides the best performance 
(I-if3o = 2.49 dB), followed by the MTD 3 processor (Lif30 = 2.62 dB). 

* Of the AMTD processors, Combination 6 is best if the library contains two filter 

banks, reducing Lif3o by - 0.3 dB/0.7 dB depending on whether dBs are taken 
before or after averaging. 

* AMTD Combination 13 is the best if the library contains three filter banks, reducing 
L1f30 by - 0.35 dB/0.75 dB depending on whether dBs are taken before or after 

averaging. 
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* AMTD Combination 16 is best if the library contains four filter banks, reducing 
Lif30 by - 0.4 dB/0.8 dB depending on whether dBs are taken before or after 
averaging. 

For sea clutter: 

* The MTD 4 processor provides the best performance (Li f30 = 2.61 dB), followed 
by MTD 2 (Li30 = 3.12 dB). 

* Of the AMTD processors, Combination 8 is best if the library contains two filter 
banks, reducing Ljf30 by - 0.6 dB/0.95 dB depending on whether dBs are taken 
before or after averaging. 

* AMTD Combination 12 is the best if the library contains three filter banks, reducing 
Lif30 by - 0.7 dB/1.05 dB depending on whether dBs are taken before or after 
averaging. 

* AMTD Combination 16 is best if the library contains four filter banks, reducing 
Ljf30 by - 0.75 dB/1.1 dB depending on whether dBs are taken before or after 
averaging. 

For an average of land and sea clutter. 

* The MTD 3 processor provides the best performance (Lif30 = 2.88 dB), followed 
byMTD2(L; f30 = 3.13 dB). 

* Of the AMTD processors, Combination 6 is best if the library contains two filter 
banks, reducing Lif3o by - 0.5 dB/0.9 dB depending on whether dBs are taken 
before or after averaging. 

* AMTD Combination 13 is the best if the library contains three filter banks, reducing 
Ljf30 by - 0.7 dB/1.4 dB depending on whether dBs are taken before or after 
averaging. 

* AMTD Combination 16 is best if the library contains four filter banks, reducing 
Ljf30 by - 0.85 dB/1.6 dB depending on whether dBs are taken before or after 
averaging. 
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3.6 DISCUSSION 

Examination of the available data indicates that an IF of typically 2 to 3 dB less than the 
optimum can be expected from MTD or PD&MTI processors. The design of such 
processors depends to some extent on the spectrum of the clutter in which the radar is 

expected to operate; however, the use of M/N detection logic combined with PRF stagger 
has the effect of emphasising the performance in those filters which are clearest of clutter. 
This motivates for reduced far out sidelobes at the expense of a broader main lobe and 
lower coherent integration gain in noise. Only if clutter occupying a high proportion of the 
doppler space and without strong narrowband components is expected does it seem 
desirable to allow the sidelobes to rise as a consequence of pursuing a narrower mainlobe. 

The choice of window function applied to PD&MTI processing can be seen to affect the 
loss quite dramatically. For both land and sea clutter a Hamming window gives the best 

performance out of the window functions considered in this study. No consistent 
superiority of MTD processors over PD&MTI processors can be identified; indeed, in 

terms of the overall mean IF of the land clutter scenarios the Hamming windowed 
PD&MTI provides the best performance. This is despite specific shaping of the MTD 

processors to cancel zero-doppler clutter and without considering the (marginally) lower 

collapsing loss of the 8-filter PD&MTI processor. MTD processing cannot therefore be 
justified in terms of clutter suppression alone. It does however have advantages in allowing 
an arbitrary number of parallel filters to be implemented; ten were assumed in this study but 
fewer could be used, allowing considerable hardware savings with minimal increase in 

straddling loss. 

The loss in IFA has been defined in relation to the IF 
,& achieved by an optimal filter. 

Practical optimal filters (both Hsiao type and linear predictor filters) also suffer some loss 

relative to the ideal optimum due to their need to adapt to the local environment. The 

magnitude of this loss is the subject of Chapter 4, but, as will be shown, for Hsiao type 
filters it is typically of the order of 2 to 4 dB in spatially homogeneous clutter 

environments. In terms of the mean loss suffered by adaptive optimal filters and MTD or 
PD&MTI filters, the results in this Chapter therefore give no justification for the 

considerable additional complexity associated with adaptive optimal filtering. Only if the 
loss "spikes" in Figs. 3.4 and 3.5 (ie. rare clutter scenarios where the loss in IF is quite 
large) can absolutely not be tolerated is there a case for employing such filters. Even then 

spatial heterogeneity of the amplitude and/or spectral statistics of the clutter, particularly the 

existence of point clutter sources, causes additional losses which may exceed the gains 
hoped for by using the adaptive optimal filter. The use of MTI cancellers to reduce the 
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problem of point clutter sources can be seen to introduce a mean loss of only 0.2 to 1.2 dB 
in homogeneous clutter, and would therefore appear to be a viable option. 

The results presented in Section 3.5 indicate that linear predictor type filters, optimal in 

terms of clutter residue minimisation, provide inferior performance to a bank of Hsiao 

optimal filters, even after accounting for collapsing losses. This is because the coherent 
integration gain of "tuned" Hsaio filters exceeds the collapsing loss, yielding substantial net 

gain compared "untuned" linear predictor filters. Some results to the contrary have 

appeared in the literature (D'Addio, 1984; Barbarossa, 1987; Farina, 1988). However, 

these have generally not considered the use of PRF stagger which empasises the 

performance of filters in the more clutter free regions of doppler space. Judicious selection 

of clutter spectra also occasionally yields LP performance almost as good as OF 

performance before subtracting collapsing losses, and hence better overall performance, but 

only in very few of the clutter scenarios considered in this study was that the case. The 

superior performance of Hsiao optimal filters under the conditions assumed in this study 

can therefore be stated with some confidence. However, if the target is assumed to be fast 

fluctuating with effectively white doppler spectrum, then coherent integration is not feasible 

and LP filtering would be more appropriate. Also, if the clutter is very spiky, collapsing 
losses may increase substantially depending on the type of CFAR processor employed, and 
LP filtering may again be more efficient. 

The use of AMTD does not appear to provide dramatic benefits compared to conventional 
MTD: where two filter banks are available to choose from the loss can be reduced by about 
0.5 dB; a choice of three filter banks reduces the loss by 0.7 dB; and selection from four 

filter banks reduces the loss by about 0.85 dB. Comparison of Figs. 3.4 with 3.7a and 
Figs. 3.5 with 3.7b also indicates that little reduction of loss "spikes" associated with 
"rogue" clutter scenarios is achieved. In addition, non-ideal filter bank selection will reduce 
the benefits of AMTD from their already meagre levels. Justification of AMTD processing 

on the grounds of clutter suppression therefore seems very dubious. 

The above discussions are based solely on clutter suppression considerations. They must 
be qualified with regard to true velocity estimation: narrow and uniformly shaped 

mainlobes ease the problem of resolving doppler ambiguities and generally yield more 

accurate estimates of true target velocity. Should high emphasis be placed on these 
functions, filter design will be accordingly affected. In processors where true velocity 
information is utilised for false alarm rejection, thereby permitting lower thresholds to be 

used, a balance will be needed between clutter suppression and mainlobe width. Exact 

optimisation of filter design will be strongly dependent on specific algorithms and assumed 

clutter spectra, and is a topic which is not widely addressed in the literature. It may well be 
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that this is the only real justification for AMTD processing, but this has not yet been 

convincingly demonstrated. 

In this study N, the number of pulses coherently processed, has been chosen as 10. Higher 

values would further enhance the performance of the filter bank processors compared to the 
single filter processors, but is unlikely to noticeably affect the performance of the filter 
bank processors relative to each other. Smaller values of N (say N=5, allowing 2-pulse 
MTI with a 4-pulse FFT in the case of PD&MTI processing) would reduce the difference 
between the filter bank and single filter processors. In either case the reduction in IF 

relative to the optimum does not change very dramatically. 

3.7 CONCLUSIONS 

The conclusions of this Chapter are summarised as follows: 

1. The IF averaged over all doppler is not an appropriate measure for expressing filter 

performance in cases where a filter bank is used, where PRF stagger is used, and 
where targets are assumed to fluctuate much slower than the PRF. A more 
appropriate measure is IFS, the doppler dependent IF averaged over the best 0% 

of the doppler space. 

2. The MTD filter designated MTD3 gives the best performance averaged over all the 
clutter scenarios considered in this study. 

3. PD&MTI processors achieved the best performance using a Hamming window, in 

which case the mean loss was only -about 0.4 dB greater than that for MTD3. 

averaged over all the clutter scenarios considered. 

4. Adaptive optimal techniques do not seem justifiable, since the loss associated with 
adaptive estimation of the clutter covariance matrix can be expected to be as large as 
or greater than the loss suffered by MTD or PD&MTI techniques. 

5. Notwithstanding point 4 above, consistently superior performance of adaptive 
Hsiao type optimal filters over linear predictor filters has been demonstrated. 

6. Adaptive MTD processing only seems to reduce the mean loss in IF by less than 1 
dB with minimal improvement of "rogue" cases. It does not seem to be justifiable in 

terms of clutter suppression alone. 
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7. The role of true velocity estimation in false alarm elimination (possibly as a 
consequence of track initiation) needs to be examined further, and may provide the 

only real justification for AMTD processing. 

8. With the exception of work related to point 7 above, improved doppler processing 
techniques would not appear to be a fruitful area of research aimed at improving 
detection performance in high resolution radars. 
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CHAPTER 4 

PERFORMANCE OF ADAPTIVE OPTIMAL DOPPLER 
PROCESSORS IN HETEROGENEOUS CLUTTER 

4.1 INTRODUCTION 

4.1.1 Background 
In the previous Chapter it has been shown that ideal optimal (Hsiao) filtering techniques 

offer superior improvement factor (IF) performance compared to conventional MTD and 
Pulse Doppler filtering techniques. The mean magnitude of this improvement in IF, 

averaged over a wide range of clutter conditions, is in the region of 2 to 3 dB. In practice, 
however, "ideal" optimal filtering is not possible due to the absence of accurate a priori 
knowledge of the local clutter spectral characteristics, which therefore have to be esti- 

mated on-line. This results in imperfect estimates of the clutter spectrum, or its covariance 

matrix M, which after solution for the filter weight vector yields sub-optimal filter 

performance. Practical "optimal" filters therefore suffer a loss relative to ideal optimal 
filters, even in spatially homogeneous clutter. Environments for which adaptive filters are 

specifically intended, namely temporally and spatially varying clutter, compound the 

problem further since the covariance matrix in the range bin being filtered will in general 
differ from that in the adjacent range bins used in estimating the covariance matrix. 

Under conditions of spatially homogeneous clutter the magnitude of the loss due to 
imperfect estimation of the covariance matrix has been widely investigated. It has been 

shown (Reed et al, 1974) that the relative reduction in IF depends only on the number of 

reference cells K used in estimating M (provided KzN, the order of the filter), and 
closed form expressions for losses in IF have been published for this case. The 

assumption of homogeneous clutter is, however, very restrictive and will often be 

violated. Despite this, the losses in IF under conditions of clutter heterogeneity have not 
been widely quantitatively addressed in the literature. In this Chapter we therefore 

address the effects of clutter heterogeneity on adaptive doppler filtering, and investigate 

the use of pre-filter MTI as a means of reducing filter sensitivity to some forms of clutter 
heterogeneity. 
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Three general categories of clutter heterogeneity are investigated, namely: 

1. Clutter in which the amplitude and spectral width in each range bin are randomly 
drawn from spatially invariant parent populations of specified characteristics. This 

could represent, for example, high resolution sea clutter, sea clutter plus weather 
clutter, or land clutter due to windblown fields or trees. For this chapter we limit 

our attention to unimodal clutter. 

2. Clutter edges, in which the clutter amplitude and/or spectrum exhibit a step 
change at some point in the range profile of the clutter. This typically represents 

cases of transition between land and sea clutter, shadowed and illuminated surface 

clutter, or dominant sea and weather clutter etc. 

3. Clutter which is essentially homogeneous but in which a small number of range 
bins are corrupted by returns with significantly different amplitude and spectral 
characteristics, representing point clutter sources or extraneous targets. The 

strength, spectral characteristics and the number of extraneous targets will be 

varied. 

In this Chapter we restrict the order of the filter to the range 5SN5 20. It was felt that 

this represents the most fruitful region for the application of adaptive optimal filters. 

Practical implementation of higher order filters poses computational difficulties, primarily 
due to the required matrix inversion of NxN matrices, but also estimation of the 

covariance matrix. Lower order filters have too few degrees of freedom to yield 

significant benefits from full adaptivity. 

Only non-concurrent processing has been addressed, ie. the test cell is not considered to 
be included as one of the reference cells. This yields marginally inferior performance 

against targets with known spectrum, but, unlike concurrent processing, is not 

susceptible to self-masking by targets with spectra different to that assumed in solving the 
filter weight equation. It is also a necessary assumption for many analytic results in the 
literature which assume independence between the estimate of the covariance matrix and 

the test cell covariance matrix. 

4.1.2 Review of Relevant Literature 

Reed at. al (1974) investigated the convergence rate in adaptive arrays under conditions 

of homogeneous Gaussian backgrounds, for Sample Matrix Inversion (SMI) estimation 
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of the filter weights. They derive a simple analytic expression for the loss suffered by 

adaptive filters when the number of range bins K used in estimating the covariance matrix 
is finite but larger than the filter order N. They also show that the ratio between the 
improvement factor achieved with adaptive estimation of the covariance matrix, and that 
achieved with a priori knowledge of the covariance matrix, is beta distributed. 
Unfortunately, they do not present expressions for the PDF of the clutter residue power, 
which would provide useful insight into the effect on detection performance of adaptive 
weight estimation. 

Farina and Protopapa (1988) give some results for the detection loss introduced by 

adaptive estimation of the covariance matrix in Linear Predictor adaptive filters, including 

some results for cases of K<N. The loss is shown to be in the region of 5 to 10 dB for 

their cases analysed. These results are, however, restricted to very specific clutter and 
filter parameters and are therefore not of wide general usefulness. 

Nitzberg (1990) has addressed the reduction in IF suffered by SMI algorithms when the 

clutter amplitude is heterogeneous, specifically gamma-modulated Gaussian speckle (ie. 
K-distributed clutter) with homogeneous spectrum. He shows that in most cases the loss 
is relatively small, but does not explicitly consider cases of very spiky clutter (v<0.5). He 

also neglects possible second order effects of increased variance (and spikiness) of the 

clutter residue due to amplitude heterogeneity. 
I 

Gerlach and Kretschmer (1990,1991) investigate convergence properties of Gram- 
Schmidt and SMI adaptive algorithms. They show that the two algorithms are equivalent 
for infinite numerical accuracy. Concurrent and non-concurrent processors are addressed 
and expressions for the loss in IF due to adaptive estimation of the covariance matrix are 
presented for Gaussian and non-Gaussian inputs. Nevertheless, amplitude and spectral 
spatial homogeneity are assumed and no non-homogeneous effects are considered. 

The lack of research into non-homogeneous effects in adaptive filters appears to be 

mainly due to analytic difficulties associated with the joint PDF of the estimated 
covariance matrix. Under conditions of homogeneous and stationary inputs this is 
described by the complex Wishart distribution (Goodman, 1963); no equivalent 
expression has been found in the literature for non-homogeneous inputs. Furthermore, 

the complex Wishart distribution (and indeed the real Wishart distribution) are only non- 
singular for KEN, and theorems regarding addition of Wishart matrices are only valid for 

all matrices having equal covariance matrices. This precludes the possibility of 
constructing non-homogeneous Wishart matrices as the sum of dissimilar homogeneous 
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covariance matrices. These analytic difficulties have necessitated the use of simulations as 
a means of evaluating performance in non-homogeneous clutter. 

4.1.3 Some Theory and Definitions 

In view of the superior performance of Hsiao optimal filters compared to Linear predictor 
filter, we concentrate on the former in this Chapter. The filter weights are determined by 

solving the matrix equation 

W= µM-iS ... (4.1) 

where W is the desired filter weight vector 
M-1 is the matrix inverse of the covariance matrix of the clutter on which the 

filter operates 
S is the vector of target returns, which is generally taken as a constant power 

complex vector rotating at the appropriate target doppler frequencyl 

µ is an arbitrary constant. 

The improvement factor (IF) is then calculated as: 

IF. _ 
s/Cour 

= 
WHSSTW 

S/Cin WHMW .,, (4.2) 

where T represents transpose and H conjugate transpose. This corresponds to the ideal 

adaptive optimal filter since the filter weights are based on exact knowledge of M. 
Adaptive filters generally obtain an estimate M of the local clutter covariance matrix by 

estimating its elements m(i, j) according to the expression: 

K 
m(i+j) =K XikXjk 

k=1 ... (4.3) 

where xik is the ith received sample in the kth range bin, * represents complex conjuga- 

tion, and K is the number of reference range bins used in the region of the bin being 

filtered. The spatial resolution cell to which the filter is applied is termed the test cell, the 

resolution cells used in estimating the covariance matrix are termed the reference cells, 
IIf targets with broader spectra are envisaged, S must be replaced by the target correlation vector. 
Absolute Hsiao filter performance will deteriorate if the target spectrum occupies a significant portion of 
the doppler space; relative performance is not expected to be dramatically affected. 
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and the region covered by the reference cells is called the reference window. 

Eqn. (4.3) represents a maximum likelihood estimator of M for K>N (Reed, 1974). 
Since for K<oo, M0M, and W= tM'1S, we have that W#W, with the estimated 
weights yielding a lower improvement factor than the ideal weights. This represents a 
loss which will be termed here the IF loss, Lif, and is defined as the ratio between the IF 

achieved by the adaptive filter being analysed under test conditions and the IF achieved 
by the reference filter under the reference conditions, ie.: 

WHSSTW 

Li f= 
WHMcW 4.4) ýf = IFref 

fSSTWref ref 

WH 
refMrefWref 

where W are the weights derived from the estimated covariance matrix 
Mt is the true local covariance matrix of the clutter in the test cell 
Mref is the true covariance matrix of the reference clutter 
Wref are the weights derived from Mref 

Note that in clutter with spatially varying amplitude and/or spectrum, Mt # Mref" In this 

study Mref is taken as the covariance matrix of clutter with spectral width equal to the 

mean of the spatially varying spectral width and power equal to the mean of the spatially 

varying power. In spatially invariant clutter, Mt= M1ef, and Reed et. al. (1974) have 

obtained the following closed form expression for the IF loss for K; -> N: 

L; f= K+1 ... (4.5) 

This is independent of the covariance matrix and the desired target vector. For K<N, the 
M joint PDF of M is singular and a closed form expression is not available. The loss also 

becomes strongly dependent on the clutter covariance matrix and the target vector. 

An alternative definition of loss, which is arguably more relevant to radar performance 

studies, particularly if the filter introduces random modulation to the clutter residue 

power, is to define the loss as the mean increase in signal power required to achieve a 

specified expected detection probability when using the test filter, under test conditions, 

compared to the signal power required when using the reference filter under reference 

conditions. This definition of loss will be termed the detection loss, Lpd. Due to the non- 
linearity of the expression for detection probability, L; c and Lpd will differ, and as will be 
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seen later, the difference can be considerable. The precise magnitude of Lpd will depend 

on the detection processing employed. For comparative purposes, in the absence of more 
specific information and in an attempt to ensure that results here are as general as 
possible, ideal adaptive threshold detection has been assumed for this study, ie. the 
threshold in each range-doppler bin is set to achieve the specified false alarm probability 
in that bin. This implies that the detector can somehow precisely determine the mean 
clutter residue power in each range doppler bin. For adaptive filtering in non- 
homogeneous clutter, the instantaneous signal-to-residue ration in each range doppler bin 
is a random variable, denoted here S/R. Then on the assumption of ideal adaptive 
threshold detection the expected detection probability is: 

Pd =E 
[exp[ "ln(Pfa) jl 

1+S/R1 ... (4.6) 

which cannot usually be calculated analytically since the PDF of S/R is not known, and 
for this study has been obtained by arithmetic averaging of simulation data. Denoting by 

S50Ildeal the signal power required to achieve Pd = 50% when using ideal weights, under 

reference clutter conditions, and by S50Icest the signal power required to achieve Pd = 
50% when using adaptive weights in the required non-homogeneous clutter conditions, 
the detection loss is defined as 

5501 ideal 
... 

(4.7) Lpd = 
5501 test 

In calculating improvement factors it was shown in the previous Chapter that it is 

necessary to consider the portion of the radar's doppler space over which the IF is 

calculated and averaged. Most studies in the literature (eg. Nitzberg) deal only with the 

case of a single filter tuned to a specific desired doppler. As was shown in Chapter 3 this 
is not a suitable performance measure in a radar systems context and the IF needs instead 

to be averaged over a finite portion of the doppler space. The percentage of the doppler 

space over which averaging must be performed depends on radar waveform and 

processing parameters and is typically in the region 30% to 70%. In this Chapter IF and 
loss figures have been calculated for different percentages of the doppler space over 

which the IF has been averaged, and results are quoted with respect to these percentages. 
As will be shown later, the loss can vary considerably depending on the doppler space 

percentages averaged. 

In all cases here the clutter is assumed to have Gaussian spectrum. This is the most 
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common assumption for clutter suppression studies and is a good first approximation to 

many clutter conditions. The spectral width parameter adopted for this study is therefore 
the standard deviation ßo of the Gaussian clutter spectrum, so that the spectrum is defined 
by: 

H(f) =I exp[-(f-fß)2/2aö] 
2no2o 

(4.8) 

Multi-modal and more complicated clutter spectral shapes can be constructed by the linear 

superposition of a number of Gaussian clutter sources. The element m(i, j) of the clutter 
covariance matrix M of a single clutter source with Gaussian spectrum defined by eqn. 
(4.8) is given by: 

m(i, j) = pp p(i-i)2 exp[-127t(i-j)f. T] ... (4.9) 

where p=e . 2(nOT)2 is the clutter correlation coefficient 
fc is the centre frequency of the clutter 
T is the inter-pulse period 
Pc is the mean clutter power 
ao is the standard deviation of the clutter spectrum. 

The covariance matrix of multimodal clutter is obtained merely through the addition of the 

contributions of each of the spectral components. 

4.2 EFFECT OF CLUTTER HETEROGENEITY ON FILTER 
PERFORMANCE 

4.2.1 Introduction 

As previously mentioned, adaptive filter performance is generally analysed by assuming 
that the clutter has the same amplitude and spectrum over the extent of the reference 
window. This assumption is, of course, an idealisation of reality, as both the amplitude 

and spectrum can in fact vary considerably in space. A great deal has been published 

regarding the nature of the amplitude fluctuations, and a number of models exist for 

various types of non-Rayleigh clutter. In this Chapter the K-distribution model has been 

adopted to describe the amplitude fluctuations for the following reasons: 

1. It is widely regarded as the best model for high resolution and/or low grazing 

angle sea clutter. Although not primarily intended for land clutter scenarios, the 
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K-distribution seems to be adequate for many such situations, where other 
models do not seem to offer any advantages in terms of statistical accuracy or 
physical justifiability. 

2. The compound form of the K-clutter model makes it particularly suitable for 

modelling clutter with arbitrary and fluctuating doppler spectrum, since the 
spectral characteristics do not affect the amplitude statistics. 

In accordance with the K-distribution model, we therefore assume in this thesis that the 
local clutter power in each range bin is independently drawn from a Gamma distribution 

of expected value equal to the mean clutter power Pc and shape parameter v. Negligible 

spatial correlation is assumed here due to the absence of spatial correlation data or 
models. It is shown in Chapter 6 that high degrees of spatial correlation are required to 

significantly affect CFAR processor detection performance; since SMI covariance matrix 
estimation is analogous to CA-CFAR processing, it is likely that high spatial correlation 
would be required to appreciably influence the results presented here. 

The choice of model for spectral fluctuations is more arbitrary: very little has appeared in 

the literature on this topic. Although some authors have reported certain features of 
spectral fluctuations of sea clutter (eg. Chan 1990, Attanasov 1990, Helmken 1990, 
Nohara 1991), no model seems to have been proposed, let alone accepted, for these 
fluctuations. In the absence of any more concrete data on which to base a model for the 

spectral fluctuations, it is therefore proposed that, as a first approximation, the local 

spectral width of the clutter is drawn from a gamma distribution with width parameter bi 

' defined as 

bi _ 
std. deviation of spectral width 

,,, (4.10) 
mean spectral width 

Thus the higher bl, the greater the variation in spectral width; b1= 0 yields a Kronecker 

delta at the mean spectral width; b1=1 yields an exponential distribution with mean value 

equal to the mean spectral width. For this study values of bl in the range 0S bl S 0.8 

have been considered. Wider variation seems improbable and for computational reasons 
is more difficult to analyse. The gamma distribution has been adopted since 1) it yields an 

analytically tractable model which is also easy to simulate, 2) it satisfies the requirement 
of being a two parameter single-sided distribution, 3) it has been obtained as the first term 
in a Laguerre series expansion of any one-sided distribution and therefore represents an 

approximation to whatever the true distribution may be, and 4) it contains as a special 
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case the necessary limiting form where the standard deviation of the spectral fluctuations 

tends to zero ( the gamma shape parameter tends to co). 

The spectral width is assumed to be independent of the local clutter amplitude. Although 

some evidence exists to suggest there may be some correlation between the two para- 
meters, it is insufficient to define the nature of such correlation. The local spectral width 
in each range bin is assumed to be independently drawn from the parent distribution. 

Four clutter scenarios have been used in the performance analyses which follow. These 

are defined as: 
Case 1 PC = 30 dB ao = 0.02 
Case 2 PC =60dB ßo=0.02 
Case 3 PC =30dB oo=0.05 
Case 4 Pc = 60 dB ßp = 0.05 

In all cases the clutter power is expressed relative to radar thermal noise and the spectral 

width relative to the PRF. The clutter centre frequency fc is taken as zero in all cases. 
This is not restrictive since the target doppler is assumed to vary over the remainder of the 
doppler space. 

4.2.2 Limiting Cases 

In homogeneous clutter, as K- -, M tends to an exact description of covariance matrix 

of the clutter in test cell and so W-W; however, in heterogeneous clutter, as K-º 0.0, M 

tends to the expected value of the clutter covariance matrix which would in general differ 
W from that in the test cell. Thus W#W and this introduces a reduction in the improvement 

factor achieved in each cell, and hence in the mean IF and target detectability. 

In this section limiting cases are examined to illustrate the effect of clutter heterogeneity 

only on the loss in improvement factor and target detectability, excluding additional 
losses caused by K<co. These results thus indicate an upper bound on performance in 

heterogeneous clutter. A particular advantage of examining limiting cases is that they 

yield semi-analytic expressions which require only simple numerical integration to 

produce quantitative results; for finite K, performance evaluation in non-homogeneous 
clutter requires extensive and time-consuming Monte-Carlo simulation. 
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4.2.2.1 Amplitude Heterogeneity 

In this section it is assumed that the power of the clutter in each range bin is 

independently drawn from a Gamma distribution of mean value Pc (ie, the mean clutter 

power) and shape parameter v. Within each range bin the clutter is assumed to exhibit 
Rayleigh speckle with pulse-to-pulse correlation defined by the covariance matrix M, 

which is assumed to remain constant over all range bins notwithstanding the varying 

amplitude scaling factor. The clutter thus conforms to the K-distribution model. 

As K-º oo, for each element m(i, j) of the estimated covariance matrix we have: 

E[mk(ij)] = 
0u 

p(' i)2 exp[ J(27tTff)2] Pu(u) du = P-m(i, J) ... (4.11) 

from which the filter weights are derived using (4.1). 

The IF loss and detection loss have been calculated for this limiting case for various 
values of N, v, and the four clutter scenarios defined in the previous section. Figs. 4.1a 

to 4.1d illustrate the IF loss and Detection loss as a function of v for clutter cases 1 to 4 

respectively, for N= 10 and 0= 10% and 0 =90%. More complete data for N=5,10, 

20 and A= 10%, 30%, 50%, 70% and 90% are tabulated in Appendix 4.1. The following 

main points can be noted with reference to the data presented: 

1. The Detection loss is negative and therefore represents a detection gain. This is, 
in fact, not surprising since an ideal detector has been assumed in calculating 
detection probabilities. In spatially modulated clutter, the ideal detector assump- 
tion is known to yield reductions in the SNR required for detection, as discussed 
in some detail in Chapters 6 and 7. A more realistic CFAR detector assumption 
would undoubtedly reverse these apparent gains. 

2. The percentage of the doppler space A over which the IF or detection probability 
is averaged can be seen to have significant impact on the loss. 90% averaging 
yields losses which are in general about double the single tuned filter case (10% 

averaging), and in some instances the difference is considerably higher. 

3. The magnitude of the loss is significant but cannot be considered dramatic: even 
for moderately spiky clutter (v = 0.5), the loss is generally only of the order of a 
few tenths of a dB. These figures are notably lower than those presented by 
Nitzberg for the non-limiting case. This is addressed further in subsection 4.2.4. 
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4. The magnitude of the loss depends only slightly on the clutter parameters: 90% 

averaging can be seen to exhibit slight variation in loss between clutter scenarios 
(in general, the more severe the clutter, ie. the stronger the clutter and the wider 
its spectrum, the higher the loss will be), whereas for 10% averaging the 
difference in loss in different clutter scenarios is negligible. 

1.0 

5. Examination of the tabulated data in Appendix 4.1 indicates that the order of the 
filter has only a minor impact on the magnitude of the loss (although the absolute 
IF varies considerably), and that the preceding general points are also valid for N 

=5 and N= 20. The loss is about 30% worse for N=5 than for N= 10, which 
is in turn about 20% worse than for N= 20. 

A discussion of these observations, and some conclusions that can be drawn from them, 
is deferred until the discussion of all results in Section 4.5. 
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Fig. 4.1: IF Loss and Detection Loss forAmplitude Heterogeneous Clutter (N=10) 

a)Pc=30dB; ao =0.02b)Pc=60dB; ao =0.02 
c)Pc=30 dB; a0= 0.05 d) Pc=60 dB; ao=0.05 
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422.2 Spectral Heterogeneity 
It is assumed here that the clutter amplitude is non-fluctuating whereas the spectrum in 

each range bin is independently drawn from a gamma distribution of mean equal to the 
mean standard deviation of the clutter spectrum. Under these conditions, as K- oo, the 
elements of the estimated covariance matrix are given by: 

m(ij) -+ E[m(i. l)] = Pc [e -2(na)<<-j)2 exp[ j(2itTfc)2] p0(a) da 
0 

= 
Pc 

te'(r)2 ax 1 exp[- ¢-2{ (i-j)ndT} 2] da ... (4.12) 
c1(K) 

fo 

e 

where 0= bloö and x=b, 2. This yields a covariance matrix which is not only different 

to the instantaneous covariance matrix of the clutter in any range bin, but is also different 

to that of spectrally Gaussian clutter with width co and power Pc. Thus Mref and Mt in 

eqn. (4.4) are not equal, and the loss introduced therefore has two components, namely 
1) a loss arising from the fact that M ;& Mref, ie. the expected estimated covariance matrix 
differs from the covariance matrix of spectrally homogeneous clutter with the same mean 
width and power, and 2) a loss arising since Mref * Mt, ie. the spectrally varying clutter 
in the test cell has a different instantaneous covariance matrix to that in the reference cells. 

The IF, IF loss and detection loss have been calculated for the four clutter cases defined 
in section 4.2.1 for values of bl in the range 0S b1 S 0.8, for N=5; 10; 20, and for 
differing degrees of averaging over the doppler space. Figs. 4.2a to 4.2d illustrate the IF 
loss and Detection loss as a function of bl for clutter cases 1 to 4 respectively, for N= 10 

and 0=10% and i=90%. More complete data for N=5,10,20 and 0= 10%, 30%, 
50%, 70% and 90% are tabulated in Appendix 4.2. 

The following main points can be noted with reference to the data presented: 

1. In this case the magnitude of the loss depends strongly on the clutter parameters. 
In general, the more severe the clutter, the higher the loss will be. 

2. The percentage of the doppler space over which the IF or detection probability is 

averaged can be seen to have significant impact on the loss. With the exception of 
the worst clutter case (case 4), 90% averaging yields losses which are in general 
about 2 to 5 times the single tuned filter case (10% averaging). The loss in the 
worst case clutter scenario does not exhibit the same strong dependence on the 
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extent of doppler averaging since even the central filters are stressed by the 

severity of the clutter and suffer rapid deterioration in performance with the 
introduction of spectral fluctuations. 

4. The loss is very large in very severe clutter (case 4), even for low values of bI. 
For less severe clutter, the loss only becomes dramatic for bl > 0.2 to 0.5, which 
may be higher than practical spectral fluctuations often encountered. 

5. Examination of the tabulated data in Appendix 4.2 indicates that the order of the 

filter does not have dramatic impact on the magnitude of the loss. 
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4223 Amplitude and Spectral Heterogeneity 
In this case the amplitude and spectral width fluctuations defined in the previous two 
subsections are considered to occur simultaneously and independently. Expressions for 
the elements of the estimated covariance matrix follow immediately from eqns. (4.11) and 
(4.12). Results have been computed for the four clutter cases defined in section 4.2.1, 
for v=0.5; 1.0; 2.0; 4.0; oo; for 0Sb1S0.8; and for differing degrees of doppler space 
averaging. They are illustrated for N= 10 in Figs. 4.3 and 4.4: Figs. 4.3a to 4.3d show 
the IF loss as a function of b 1, with v as a parameter, for clutter cases 1 to 4 respectively; 
Figs. 4.4a to 4d show the detection loss as a function of bl, with v as a parameter, for 

clutter cases 1 to 4 respectively. It can be seen that the detection and IF losses follow the 

same trends as those noted in the previous two subsections for either amplitude or 
spectral fluctuations. The key point to note here is that the losses due to amplitude and 
spectral fluctuations are, in general separable. This has obvious benefits with regard to 

analysis of adaptive filters in heterogeneous clutter. 
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4.2.3 Amplitude and Spectral Heterogeneity with Finite K 

Despite the utility of limiting cases for giving insight into the losses introduced by non- 
homogeneous clutter, it is important to examine whether those results are representative 
of the more realistic case where K<oo. In this section we therefore present simulation 

results for finite K. 

The simulation technique is fairly straightforward, if computationally demanding, and 

will not be discussed here. Due to the time taken to run the programs, simulations have 

only been performed for N= 10. It is felt, however, that the key conclusions listed later 

will remain valid for other values of N. Results are presented for clutter cases 2,3 and 4 

defined in section 4.2.1, for v=0.5 and v =0, for the spectral spread parameter bi in 
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range 050.6, for K= 10,20,40,80, oo. Figs. 4.5a and 4.5b show the IF loss for v= 
0.5 and v =oo respectively, for clutter case 4, and 10% doppler averaging. Fig. 4.6 
shows similar data for clutter case 3. Full data for clutter cases 2,3, and 4, and for A= 
10%, 30%, 50%, 70%, and 90%, are tabulated in Appendix 4.3. 

Upon examination of Figs. 4.5 and 4.6 and the data in Appendix 4.3 it can be noted that: 

1) The simulated results tend to the limiting case results of the previous subsections 
as K- oo. 

2) For bi =0 and v-º oo, the simulated data give very good agreement (to within 
about 0.1 dB) with Reed's closed form expression for homogeneous 

environments. This and point (1) above testify to the integrity of the simulation. 

3) In agreement with Nitzberg's results, these simulations show that reducing K 
increases the IF loss due to amplitude heterogeneity, which can become 

considerable. The difference between the IF loss for v -- oo and v =0.5 is about 
0.2 dB for K -º co, 2 dB for K=40,3 dB for K= 20 and 3.5 dB for K= 10. This 

can be explained by the fact that amplitude heterogeneity reduces the effective 
number of samples from which the estimate of the covariance matrix is derived. 

4) Reducing K can be seen (somewhat surprisingly) to reduce the losses due to 
spectral heterogeneity. This is a consequence of the arithmetic averaging of IF, 

where the greater variation in NI occasionally yields negligible error with Mt, 

thereby yielding high improvement factors which bias the arithmetic average 
upwards. The significance of this observation is discussed further in Section 4.5. 

5) In less severe clutter (cases 1,2 and 3) the IF loss caused by finite K is far larger 

than that caused by spectral heterogeneity. 

6) The IF loss due to amplitude fluctuations is roughly separable from the IF loss 
due to spectral heterogeneity. 
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4.3 EDGE EFFECTS 

In this section we examine the performance of adaptive optimal filters in the region of 
clutter edges. The edges considered consist of amplitude and/or spectral step changes in 

range. Sliding window processing, as opposed to block processing, has been assumed 
for the estimation of the clutter covariance matrix. (Sliding window processing does, of 
course, include block processing as a special case where the block is centred at the 
instantaneous centre of the sliding window). 

The clutter on either side of the edge is assumed to be homogeneous with unimodal 
Gaussian spectrum. The edge scenario is therefore completely defined by the parameters 
P1, ßl and fcl of the clutter comprising one side of the edge; and P2, a2 and fC2 of the 

clutter comprising the other side of the edge. In order to keep the study within 
manageable limits, eight different edge scenarios have been defined. These are defined in 

Table 4.1, in which the power P is expressed in dB relative to thermal noise, and the 

spectral spread 6 and clutter centre frequency fc are expressed relative to the PRF. 

Table 4.1 
Edge Scenario Definition 

Edge Scenario P1 al fei P2 a2 fc2 
1 50 0.02 0 30 0.1 0.2 
2 50 0.02 0 30 0.1 0.0 
3 50 0.02 0 30 0.1 0.5 
4 30 0.02 0 40 0.1 0.2 
5 30 0.02 0 40 0.1 0.0 
6 30 0.02 0 40 0.1 0.5 
7 60 0.02 0 30 0.1 0.0 
8 50 0.02 0 30 0.05 0.0 

The IF loss averaged over the entire doppler space has been evaluated by simulation for 

these edge scenarios for N=10. Results are plotted in Figs. 4.7a to 4.7h. The horizontal 

axis represents range, with the edge being located at range = 0. The number of reference 
bins used is K=10 (ie. 10 x 20m range bins for this illustration), K=20 (ie. 20 x lOm 

range bins), and K-º co (ie. an essentially infinite number of infinitesimal range bins). 

The latter case corresponds to the limiting cases of the previous section, and is useful in 

that it enables analytic expressions for the estimated covariance matrix and hence IF loss 

to be used. The estimated covariance matrix M is obtained as: 

M=1M1+(1-i)M2 
... (4.13) 
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where Ml and M2 are the covariance matrices of the clutter on either side of the edge, and 

rl and rZ are the proportions of "clutter 1" and "clutter 2" covered by the reference 
window respectively. Note that in Fig. 4.7 the the IF loss to the left of range =0 assumes 
the the test cell contains clutter 1; to the right of range =0 the test cell contains clutter 2. 

The following observations are worth noting: 

1) There can be a fairly severe loss in IF (often 5 dB and occasionally more than 10 

dB) in the region of clutter edges, over and above the loss due to finite-size 

reference windows. This loss is worst at the clutter edge and in general, for finite 

K, tapers off smoothly as the test cell moves away from the edge. A step increase 

in loss as the reference window encompasses the edge is not evident for finite K. 

2) The limiting case can give a useful indication of the order of magnitude of the loss 

that can be expected at a clutter edge, notwithstanding the additional loss due to 
finite K. The limiting case tends to give a more immediate increase in loss as the 

reference window starts encompassing the clutter edge (from ±100m to ± 90m in 

Fig. 4.7). 

3) The IF loss due to clutter edges depends primarily on the difference in centre 
frequencies of the clutter on either side of the edge; the results presented here do 

not show consistent trends in the loss as a function of the difference in spectral 

width or power of the clutter on either side of the edge. 

4.4. THE USE OF PRE-FILTER MTI TO REDUCE IF LOSS 

Often clutter edges or point sources will contain one clutter component that is stationary. 
In such situations one possibility for reducing the increased IF loss in the region of clutter 

edges or point clutter sources is the insertion of an MTI filter before the adaptive filter. 

This is intended to 1) remove zero doppler components from the test cell irrespective of 
whether or not these are present in the reference windows, with the adaptive filter only 

suppressing any remaining clutter residue, and 2) remove zero doppler components 

which may dominate the reference cells but which are not present in the test cell. 

For a fair comparison of filter performance it is necessary to keep the total number of 

pulses used by the composite MTI-adaptive` filter equal to the number of pulses used by 
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normal adaptive filter alone. For this analysis the total number of pulses has been set as 
N=10, for reasons discussed earlier. Thus since a 3-pulse binomially weighed MTI filter 
is assumed, the cascaded optimal filter must be an eight pulse filter. The estimated 
covariance matrix for the adaptive filter is obtained through the usual SMI method, but 

operating on data that have already been filtered by the MTI. The N-3 adaptive weights 
are then calculated from eqn. (4.1), and the composite filter weights are obtained from the 
convolution of the MTI weights and the adaptive filter weights. Normalisation to ensure 
unity noise gain is analytically desirable. 

The effectiveness of pre-filter MTI against point clutter sources and clutter edges is 

evaluated in the following subsections. 

4.4.1 Effectiveness of Pre-filter MTI against point clutter sources 
The reduction in IF caused by point clutter sources or extraneous targets has two facets, 

namely: 

1. The reduction in IF on the clutter background when one or more point clutter 
sources are present in the reference window. Term this loss Lbg. 

2. The reduction in improvement factor on the point clutter itself, when the reference 
window contains mainly the clutter background, but also possibly a limited 

number of other point clutter sources. Term this loss L. pc. 

These two losses have been evaluated by simulation for a range of clutter parameters. The 

point clutter is assumed to be strong, spectrally narrow, and stationary; its parameters 
have accordingly been set as fcpc = 0, apc = 0.02 relative to the PRF, and Pp = 30,45, 

or 60 dB relative to thermal noise. The parameters of the background clutter, which 
(excluding the point clutter sources) is considered to be homogeneous, have been varied 
more widely, with 12 distinct parameters sets defined by the combinations of: 

fcbg = 0.; 0.25; 0.5 
Qbg = 0.05; 0.1 
Pbg = 30; 50 

relavite to the PRF 
relative to the PRF 
dB relative to thermal noise 

Thus 36 different background/point-clutter scenarios have been investigated. In each case 
either 0,1,2 or 4 point clutter sources were taken as being present in the 20 range bin 

reference window. The IF losses Lbg and Lpc have been estimated for these 144 
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parameter combinations using 500-trial simulations. An overview of the results is given 
in Fig. 4.8, which plots the IF achieved with MTI against that achieved without MTI, for 
both background and point clutter in the test cell. Points plotted above the y=x line thus 
indicate superior IF of the MIT-adaptive composite filter. 

It is apparent from Fig. 4.8 (data points in circle (1)) that the use of pre-filter MTI 

provides a certain minimum IF (-20 dB) against stationary point clutter sources, which 

under some background conditions are not suppressed at all. However, if the background 

clutter has a mean doppler frequency of about half the PRF (data points in circle (2)), the 
incorporation of a pre-filter MTI can cause a very low IF against the background, as 

would be expected. In general, however, it can be seen from the majority of the data 

points in Fig. 4.8 that the use of pre-filter MTI improves the IF more against the point 

clutter sources than it reduces the IF against the background. 

A more quantitative comparison of performance is given in Fig. 4.9: the difference 

between the IF achieved with pre-filter MTI and that achieved without MTl is plotted as a 
function of the clutter scenario, with the number Ni of interfering point clutter sources in 

the reference window as a parameter (Ni - 0,1,2,4). The clutter scenario index is 

defined in Appendix 4.4. 
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The following points can be noted with regard to Fig. 4.9: 

1) It is interesting to note that the use of pre-filter MTI actually gives a slightly better 
IF against the background clutter than the filter without MTI, which is supposedly 
optimised for the background clutter. This seemingly impossible result can be 

explained by noting that when MTI is employed an eight pulse adaptive filter is 

employed. From eqn. (4.5) this will suffer lower loss in IF due to K <a. * than will 
a 10 pulse adaptive filter. Setting K= 20 gives a difference in loss of . 67 dB 
between N= 10 and N' = 8, which agrees well with Fig. 4.9. 

2) Only when fcbg = 0.5 does the pre-filter MTI cause noticeable reductions in IF 

against the background. This is as expected since under these conditions the MTI 
filter would suppress targets in the clutter free regions of the doppler space (ie. 

around zero doppler). Even if fcbg=0.5, the IF reduction to be can quite minor 
(53 dB) if more than one point clutter source is present in the reference cells or if 

the background clutter is relatively weak and narrow (ßbg = 0.05; Pbg = 30 dB). 

3) The use of pre-filter MTI gives large improvements in IF against the stationary 
point clutter, particularly if no point clutters fall in the reference window. This 

confums intuitive predictions. The improvement in IF is of the order of 10 dB for 

the "average" clutter scenario. The only case where no significant improvement in 
IF against the point clutter is achieved is when the point clutter is weak (30 dB) 

and the background is also stationary. 

4.4.2 Effectiveness of Pre-filter MTI against clutter edges 
The performance of a 10-pulse composite filter (3-pulse MTI cascaded with an 8-point 

adaptive filter) has been evaluated for the same eight clutter edge scenarios defined in 

section 3. Results are illustrated in Fig. 4.10a to 4.10h, for scenarios 1 to 8 respectively. 

The IF loss due to finite K is smaller when using pre-filter MTI than for the adaptive filter 

without MTI, as mentioned in the previous subsection. This lower IF loss is maintained, 
and sometimes increased, in the composite filter as the test cell approaches the clutter 
edge, giving a 0.5 to 2 dB reduction in IF loss. This is true for all edge scenarios for 

clutter to the left of the clutter edge, ie. when the clutter has zero centre frequency, 
irrespective of the parameters of the clutter to the right of the edge. It is also true for the 

clutter to the right of the edge for all cases except where the clutter centre frequency is 
0.5, in which case pre-filter MTI introduces quite a large loss (-10 dB) which converges 
with the loss of the adaptive filter without MTI as the test cell approaches the clutter edge. 
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4.5. DISCUSSION 

In section 4.1.3 the detection loss was proposed as a more representative measure of 
filter performance in terms of the filter's effect on overall radar performance. Provided 

the detection processing assumed in calculating the detection loss reflects that employed 
in the radar being analysed, this should indeed be the case. Unfortunately, the assump- 
tion of ideal detection used here yields results which are often very optimistic compared 
to practical CFAR processors. This is exemplified by the apparent detection gain given 
by adaptive filters in clutter with amplitude heterogeneity, when the IF is reduced and the 
detection loss by practical CFAR processors is known to increase severely. This 

questions the credibility of the detection loss based on the assumption of ideal detection, 

which has therefore not been calculated for non-limiting cases. 

This does not alter the fact that the IF is not an ideal measure of adaptive filter 

performance in the context of the radar system as a whole. For example, the reduced IF 

loss in spectrally heterogeneous clutter for K<oo compared to the limiting case is 

misleading: this IF loss represents the arithmetic mean of the IF obtained on the n trials; 

very low values of IF on some trials do not pull the mean IF down noticeably, whereas 
the clutter residue spikes corresponding to those low IF trials would have dramatic impact 

on detection performance. In general, the smaller K and the more widely fluctuating (in 

amplitude and spectrum) the clutter, the higher the variance in the IF, and hence the IF 
loss, and the worse the detection performance achieved by practical detectors. This 
indicates that higher order moments of the IF than simply the mean need to be known if 

the effect of filter performance on detection performance is to be assessed with any 
confidence. Unfortunately accurate estimation of higher order moments requires far more 
simulation trials than estimation of the mean; this is likely to limit the scope of evaluations 
of filter performance to specific filter and clutter parameters. 

Despite the lack of quantitative descriptions of the higher order moments, it can be noted 
that the mean IF represents an upper bound on filter performance. Any increases in the 

variance or higher order moments of the IF can only cause a deterioration in detection 

performance. This allows some conclusions to be drawn from the data presented in 

previous sections of this Chapter. Amplitude heterogeneity introduces significant IF 
losses, in the region of 1 to 5 dB for most conditions of interest; spectral heterogeneity 
introduces significant IF losses, in the region of 1 to 15 dB for most conditions of 
interest; and the loss introduced by adaptive estimation of the covariance matrix with 
finite K is also notable, generally in the region of 2 to 8 dB. It is therefore evident that 
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practical adaptive optimal filters will suffer losses of several dB relative to ideal optimal 
filters in many clutter environments. Comparison to other doppler processors analysed in 
the previous Chapter then shows that adaptive filters will, in general, offer poorer 
performance than conventional MTD and PD processors, even excluding further losses 

which can be expected due to increased higher order moments, which do not apply to 
MTD and PD processors. 

The loss introduced by adaptive estimation of the covariance matrix with finite K is the 
only of the losses mentioned above over which the radar designer has any control. There 
is, however, little scope for its reduction since K cannot be increased arbitrarily due to 
processing constraints and, more importantly, the larger the reference window, the higher 
the probability of it encompassing clutter edges and/or point clutter sources, and the 
further the effects of edges and extraneous targets will be extended. These effects include 
increased clutter residue and increased IF loss in the region of clutter edges or in the 
presence of point clutter sources or extraneous targets. For many edge scenarios the 
magnitude of the increase in IF loss is often about 5 dB and occasionally more than 
10dB, over and above the loss due to finite-size reference windows. This loss is worst at 
the clutter edge and in general, for finite K, tapers off smoothly as the test cell moves 
away from the edge. 

The incorporation of a standard MTI filter before the adaptive filter has been shown to 
offer significant performance benefits in situations where a few stationary point clutter 
sources are present in a homogeneous clutter background with a different spectrum. It 

also provides some benefits on both sides of clutter edges in which clutter on one side of 
the edge has a dominant stationary component. Even in homogeneous clutter the use of 
pre-filter MTI reduces the loss due to adaptive estimation of the covariance matrix with 
finite K, by of the order of 1 dB. From Chapter 3 it can be seen that this is approximately 
equivalent to the mean loss suffered by MTI-optimal composite filters relative to ideal 

adaptive processors over a wide range of clutter scenarios. It can therefore be concluded 
that pre-filter MTI will significantly enhance filter performance in many non- 
homogeneous clutter scenarios, with negligible loss on average in homogeneous clutter. 

The use of pre-filter MTl only introduces significant losses when the clutter background, 

or the clutter on one side of a clutter edge, has a wide spectrum centred at about half the 
PRF. This could be countered by employing more than one MTI, with the notch of each 
at a different doppler. This idea can be expanded to a more general composite filter, 

comprising say a 5-pulse MTD filter bank, each of which is cascaded with a 6-pulse 

adaptive optimal filter. The rationale is that the adaptive filter would improve the 
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performance against the "rogue" clutter scenarios mentioned in Chapter 3, which are the 
main shortcoming of MTD filters, while the MTD filter would maintain good perfor- 
mance (or at least an acceptable minimum) in non-homogeneous clutter. The steady state 
loss due to adaptive estimation of the covariance matrix would also be significantly 
reduced for K held constant. 

Limiting cases (ie. for K- co) have been analysed in this Chapter in an attempt to obtain 
analytic solutions to the IF loss in non-homogeneous environments, thereby eliminating 
the need for tedious simulations. It is evident that the limiting cases do not, in general, 
reflect the loss for practical values of K with great accuracy. Nevertheless, they can give 
an indication of the order of magnitude of losses due to non-homogeneous clutter. The 

error is expected to be not incomparable to the error in detection loss due to neglecting the 
higher order moments of the IF and clutter residue, and limiting cases may therefore be 

useful for giving first order estimates of filter performance in heterogeneous clutter. 

4.6 CONCLUSIONS 

The performance of adaptive Hsiao-optimal filters in non-homogeneous backgrounds has 
been examined, for practical adaptive estimation of the covariance matrix, and for limiting 

cases where the estimate of the covariance matrix tends to the mean clutter covariance 
matrix. Three classes of non-homogeneous backgrounds have been studied, namely: 

1. Clutter in which the amplitude and spectral width in each range bin are randomly 
drawn from spatially invariant independent gamma distributed parent populations. 

2. Clutter edges, in which the clutter amplitude and/or spectrum exhibit a step 
change at some point in the range profile of the clutter. 

3. Clutter which is essentially homogeneous but in which a small number of range 
bins are corrupted by returns with significantly different amplitude and spectral 
characteristics, representing point clutter sources or extraneous targets. 

The use of pre-filter MTI has been investigated as a means of reducing filter sensitivity to 

some classes of clutter non-homogeneity. 
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The following conclusions can be drawn from this study: 

1) Adaptive filters suffer significant reductions in IF in non-homogeneous clutter 
environments. 

2) These losses are generally greater than the benefit afforded by ideal adaptive 
processors over other conventional (MTD, PD) doppler processors. Practical 

adaptive optimal filters are therefore not as effective as MTD or PD processors in 

suppressing clutter, and particularly non-homogeneous clutter. 

3) Careful consideration needs to be given to the choice of performance measures for 

assessing filter performance. The mean IF loss is an optimistic performance 
measure in adaptive doppler processors. The true impact on radar detection 

performance will be increased by higher order moments of the IF loss and clutter 

residue. More accurate analysis requires higher order moments to be quantified, 
with strong implications on the number of simulation trails necessary for 

acceptable error. 

4) More accurate performance analysis will, however, only be meaningful if the 

models of clutter heterogeneity used in this study, particularly for spectral hetero- 

geneity, are validated. Further research into the characterisation of heterogeneous 

clutter is essential before models can be used with any confidence to assess radar 

performance in heterogeneous clutter environments. 

5) The most promising means of achieving improved clutter suppression in hetero- 

geneous clutter while maintaining near-optimal performance in homogeneous 

clutter appears to be the use of MTD-adaptive filter hybrid processors. Research 

. to quantify the benefits of such techniques is necessary. 

6) It is the author's opinion that adaptive optimal filtering alone does not provide a 

means of significantly improving radar detection performance in non- 
homogeneous clutter. It is felt that more significant gains in detection performance 
are most likely to be achieved by improved post-filter detection techniques. 
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CHAPTER 5 

CONVENTIONAL CFAR DETECTION IN SPATIALLY 
UNCORRELATED K-DISTRIBUTED CLUTTER 

It has been shown in the previous Chapters that scope for improvements in clutter 
suppression through doppler filtering is limited. In many clutter environments the detection 

of desired targets embedded in relatively strong clutter residue will therefore be necessary. 
If the unfiltered clutter returns are spiky, then so too will be the residue, the spikiness of 
which may in fact be compounded if adaptive doppler processors are used. Discrimination 

of targets from the spiky clutter residue based on amplitude thresholding alone can result in 

severe detection losses and increases in false alarm rate. 

The influence of K-distributed clutter on detection and false alarm probabilities achieved by 

most conventional CFAR processors has not been widely addressed in the literature. In this 
Chapter the performance of the CA, CAGO and OS processors is therefore quantitatively 
evaluated for K-distributed clutter backgrounds, and K-distributed clutter plus thermal 
noise. Empirical expressions for the CFAR loss are derived. Besides being of general use 
in the selection and evaluation of conventional CFAR processors, the results derived in this 
Chapter are necessary to facilitate meaningful performance assessment of improved CFAR 

processors introduced in later Chapters of this thesis. 

The analysis presented here is limited to single "pulse" detection of Rayleigh (voltage) 
fluctuating targets, where the term "pulse" in fact relates here to a single detection oppor- 
tunity. This may arise from a true single pulse or from a batch processed burst of pulses. 
The effects of post detection integration of several pulses have been addressed in some 
detail by Watts (1985) and Ward (1985), and their results can be used in conjunction with 
the single pulse results presented in this Chapter to assess the performance of CFAR 

processors employing post detection integration. 

The entire analysis can be performed on power signals if it is assumed that the processor 
operates on the output of a square law detector. This allows Rayleigh voltage distributions 

to be transformed into exponential power distributions, greatly simplifying the analysis. 
This mathematical expediency, to which we resort in later Chapters of this thesis, is widely 
adopted in CFAR analyses presented in the literature and is generally justified by the 
assertion that square law envelope detection is slightly more optimal than linear envelope 
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detection, and the results do not differ greatly in any case. In spiky clutter, however, 
dynamic range considerations would generally argue for linear detection to be used. 
Indeed, the K-distribution as defined in eqn. (2.1) in Chapter 2 of this thesis is explicitly a 
voltage distribution when applied to radar sea clutter. It was therefore decided to perform 
all analyses in this Chapter based on linear envelope detection. 

5.1 DETECTION IN UNCORRELATED K-CLUTTER ONLY 

This section addresses the detection performance of various types of CFAR detectors in 
homogeneous K-distributed clutter only, i. e. the noise level is assumed to be sufficiently 
low in comparison to the clutter signal as to be negligible. This is true for CNRs of greater 
than 15 to 20 dB, depending on the shape parameter v. It is also assumed in this section 
that the clutter modulation process is completely decorrelated from one range bin to the 
next. Detection performance is evaluated in terms of the SCR required for achieving a 
specified probability of detection, for a specified false alarm probability Pfa. A detectability 
loss, that is the additional SCR required to achieve Pd with given Pfa, over and above that 
for ideal detection in Rayleigh noise or clutter, is then calculated. Strictly speaking the 
detectability loss is a function of the required Pd, but for most CFAR implementations and 
Pd 's of interest the loss varies negligibly with Pd in the range 30%: 9 Pd :5 90%1. For this 
Chapter all losses are based on Pd=50%. It is also initially assumed that the threshold 
multiplier factor used to yield the required false alarm probability is based on correct 
knowledge of the clutter shape parameter v. Deviations from this assumption are analysed 
in section 5.1.5. 

In general the analysis is performed as follows: the pdf pz(z) of the test statistic is found as 
described in subsequent paragraphs of this section. Having obtained pz(z), the false alarm 
rate is obtained from: 

Pfa ={ -2rß ((xz)"Kv(2caz) I pz(z) dz 
J° 

r( v) ... (5.1) 

where the term in the brackets () is merely the complementary CDF at ctz of the K- 

distributed clutter. Inversion of the solution of this expression yields the threshold 

multiplier factor a required for a specified false alarm rate. In general this must be 

numerically calculated; with v=0.5 giving a simple analytic expression which can be used 

t The effect of the required detection probability on the detection loss is discussed in more detail in 

section 4.1.6. 
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for verification of numerical accuracy. Examples of the required value of a are given as a 
function of Pfa and v in Fig. 5.4 later in section 5.2.5. 

The probability of detecting a target of signal-to-clutter ratio So is given by: 

Pd(SO) =^ P1(x>az) PZ (z) dz z 
fo 

.,. (5.2) 

where P, (X>az) is the complementary CDF at az of the target plus clutter voltage, given 
by: 

P(x>az) = J' u2v-1 ex 
Pt + 4u2/ß - (bu)2 du ... (5.3) 

O 

where b=s(4/n). c and Pt is the absolute target power, given by Spy/c2. Unfortunately no 
closed form expression has been found for eqn. (5.3). However, for moderate to large 

signal-to-noise ratios (>10 dB), as are of interest here since we assume that detection 

probabilities of better than about 50% are required, we can simplify this expression to that 
of the complementary CDF of a Rayleigh target, of signal strength equal to the combined 
clutter plus target power. This is possible since the tails of the distribution are not of great 
significance for the evaluation of detection probability once the threshold multiplier factor a 
has been set, since they effect the resulting detection probability only very slightly. Only 

the "bell shaped" central region of the target plus clutter PDF is of significance, and the 
presence of a small clutter component (-10 dB relative to the target signal) affects only the 
far out tails of the power-normalised target plus clutter PDF to any noticeable extent. The 

magnitude of the error introduced by this approximation is discussed in section 5.1.6. The 

approximate complementary CDF of the target plus clutter is then: 

Pt(x>az) - exp '(az)2 
(1+So)v/Cz ... (5.4) 

5.1.1 Cell Averaging CFAR Processor 
On the assumption of completely uncorrelated homogeneous clutter in each of the reference 
cells, the PDF of the test statistic of the CA CFAR detector is obtained from the N-fold 

convolution of the clutter PDF with itself, where N is the number of reference cells used in 

estimating the background clutter or noise level. In the case of the clutter being K- 
distributed, this result cannot in general be represented in closed form. For the special case 
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of the clutter shape parameter v=m+ 1/2, m=0,1,2..., closed form expressions are 
indeed possible, and these are given in Appendix 2.1 (eqn. 2.1.13). The very simple form 
for v=0.5 (eqn. 2.1.4) is particularly useful as a check for numerical techniques. Instead 

of calculating the N-fold convolution a numerical alternative is to take the FFT of the PDF 

of the K-Distributed reference noise, raise the resulting complex characteristic function to 
the power of N, take the inverse FFT, and take the real part of the resulting complex PDF 

as the PDF of the sum of N K-distributed variables. This is computationally more efficient 
than N-fold convolution but care must be taken to ensure that the numerical precision of the 
FFT is sufficient, as well as that the array size is sufficiently long to prevent aliasing of the 

characteristic function or the final PDF, since the mean of the output PDF is N times that of 
the input PDF. 

It should be noted that for v<0.5 the clutter PDF tends to infinity as x tends to 0. This 

complicates the numerical evaluation of the test statistic of the CA processor since both 

numerical convolution and Fourier transformation of data containing singularities is 

unreliable. This has been handled in this study by introducing quantisation to the clutter 
PDF, making it a discrete PDF, which is finite for all x. Provided the quantisation spacing 
is sufficiently fine (-1/200 of the clutter variance) accuracy is not significantly degraded. 
(In studies into the effects of quantisation, deviations from the continuous case only 
became significant for quantisation of 1/16 to 1/32 of the clutter variance). 

The detection performance of CA CFAR detectors has been analysed for sample values of v 
(0.1,0.25 , 0.5 , 1.5 , 2.5 , 4.5 , 9.5 , co), for various false alarm rates and numbers of 
reference cells N. Results are shown in Fig. 5.1, which plots the CFAR loss relative to 
ideal detection in Rayleigh noise as a function of the shape parameter v. It is evident that the 
detection loss is strongly dependent on v, and is also fairly strongly dependent on the 

number of reference cells used and the desired false alarm rate. For spiky clutter (v - 0.5) a 
detection loss of about 20 dB is possible. The smaller the number of reference cells, and 
the higher the desired value of Pfa, the more sensitive the processor becomes to increasing 

clutter spikiness, i. e. lower values of Y. 

" 
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Fig. 5.1. Detection loss vs v for the CA detector. 

5.1.2 Cell Averaging Greatest Of CFAR Processor 
In the case of the CAGO detector the test statistic is obtained from the selection of the 

greatest value of the sums of the reference cells on either side of the test cell, as described 
in Chapter 2. The PDF of these sums is obtained as before by the N/2-fold convolution 
of the clutter PDF with itself, as for the CA processor, merely replacing the term N with 
N/2. The PDF of the greatest of two such signals, each with PDF f(z), is then given by: 

Pz(Z) =2 f(z) F(z) ... (5.5) 

where F(z) is the CDF of f(z). This then represents the PDF of the test statistic to be 

substituted into eqns. (5.1) and (5.2), with the detection performance subsequently being 

calculated in the identical manner to that for the CA CFAR processor. 
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Detection performance has been numerically evaluated for the same sample values of v 
used for the CA CFAR processor, for various false alarm rates and numbers of reference 
cells. Results are shown in Fig. 5.2, which plots the CFAR loss relative to ideal detection 
in Rayleigh noise as a function of the shape parameter v. Again it is evident that the 
detection loss is strongly dependent on v, and is also fairly strongly dependent on the 
number of reference cells used and the desired false alarm rate. For spiky clutter (v - 0.5) 

a detection loss of about 20 dB is again possible. The smaller the number of reference 
cells, and the higher the desired value of Pfa, the-more sensitive the processor becomes to 
increasing clutter spikiness. Comparison of Figs. 5.1 and 5.2 indicates that the CAGO 

processor suffers slightly higher loss than the CA processor. This is to be expected since 
the clutter conditions, although non-Rayleigh, are nevertheless assumed to be 
homogeneous, and the superior performance of the CA processor in homogeneous 
backgrounds is well known. The CAGO processor can also be seen to be slightly more 
sensitive to reductions in N than the CA processor. 
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Fig. 5.2. Detection loss vs V for the CAGO detector. 
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5.1.3 Order Statistic CFAR Processor 
In the OS-CFAR processor the test statistic is taken as the kth cell of the N ordered 
reference cells, as described in Chapter 2. If the PDF of the clutter in each reference cell is a 
continuous function p(X), with CDF P(x), the PDF of the test statistic is (Rohling, 1983): 

P(z) =k 
(k) 

P(x) P(x)k-I [1-P(x)]N-1c ... (5.6) 

Substituting the PDF and CDF for K-distributed clutter, the PDF of the test statistic is 

given by: 

Pz(z) = 2ck ( 
kN 

) 2(cz)v N-k+l 
Kv_1(2cz) [Kv(2cz)] N-k 1- 

2(Cz)v Kv(2cz) 
k-1 

... (5.7) 
r(v) r(v) 

which can be simplified for v=m+ 1/2, m=0,1 , 2, .... For example for v=0.5 and v 

=1.5, the PDF's of the test statistic can be simplified to: 

v=0.5: pz(z) = 2ck (k) 
e-2c(N-k+1)41 - e-2sz ] k-1 

v=1.5: pz(z) = 4c2k (k) 
z (1+2cz)N'k e-zerr-k+i)j 1- (1 + 2xz)e'2SZ ] k-1 

... (5.8) 

These expressions are substituted into eqns. (5.1) and (5.2), following which detection 

performance is calculated in the same manner as in section 5.1. 

Detection performance has been numerically evaluated for the same sample values of v used 
for the CA and CAGO CFAR detectors, for various false alarm rates and numbers of 
reference cells N. The rank k of the sample to be used in the formation of the test statistic is 
taken as 3N/4, a compromise between optimal performance and good resilience to 
interfering targets and clutter edges (Rohling, 1983). Since the clutter is assumed to be 
homogeneous the choice of k in the region N/25 k: 5 7N/8 is not expected to make much 
difference to the performance of the OS processor. Results are shown in Fig. 5.3, which 
plots the CFAR loss relative to ideal detection in Rayleigh noise as a function of the shape 
parameter v. Again it is evident that the detection loss is strongly dependent on v, and is 

also fairly strongly dependent on the number of reference cells used and the desired false 

alarm rate. For spiky clutter (V - 0.5) a detection loss of about 20 dB is again possible. The 

smaller the number of reference cells, and the higher the desired value of P fa, the more 
sensitive the processor becomes to increasing clutter spikiness. Comparison of Fig. 5.3 

with Figs. 5.1 and 5.2 indicates that the OS processor suffers notably higher loss than the 
CA and CAGO processors, particularly for small values of v. The OS processor can also 
be seen to be more sensitive to reductions in N than the CA processor. 
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Fig. 5.3. Detection loss vs v for the OS detector. 

5.1.4 Loss Associated with CFAR Thresholding 
The loss curves presented in the preceding three subsections have shown the overall 
detection loss including the dominant effect of the loss associated with the fact that the 
background against which the target must compete for detection is spiky K-Distributed 

clutter instead of Rayleigh clutter or noise. In order to determine the detection loss 

associated purely with the use of CFAR thresholding, specifically excluding the direct 

effects of clutter spikiness, it is necessary to determine the loss that an ideal linear 

detector would suffer in the same spiky clutter environment and subtract this from the 

overall loss. This ideal detector loss can be obtained by using the method given by Watts 

(1985) for ideal fixed threshold detection in uncorrelated K-distributed clutter. In this 
ideal situation it is assumed that the threshold is set using explicit knowledge of both the 

clutter power and the shape parameter, ie. knowledge of both v and c, instead of just v as 
has been previously assumed in the preceding three subsections. 

Having calculated the ideal detection loss Li(v, Pfa), the loss associated purely with 
CFAR thresholding, referred to as the CFAR loss Lc, is obtained from: 
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Lc (v, Pfa, N) = Lt (v, Pfa, N) - Li (v, Pfa) ... (5.9) 

where Lt(v, Pfa, N) is the total loss as illustrated in Figs. 5.1 to 5.3. The CFAR loss will 
differ according to the type of CFAR processor used. It can be noted again that strictly 
speaking the required detection probability affects all three factors in eqn. (5.9) above. 
However, the influence of varying Pd in the range 30%: 5 Pd :5 90% is practically negligible 
and has been omitted from this analysis. 

The CFAR loss for each of the CFAR processors under consideration here has been 

calculated for the same sample values of v, N and Pfa used in the preceding three 
subsections . Full results are tabulated in Table A5.1.1 in Appendix 5.1. Table 5.1 below 

provides a sample of these data, giving the CFAR loss for the three CFAR processors 
discussed for N= 16 and N= 32, at sample values of v, for a false alarm probability of 10- 
6. The first column labelled L; (v, 10-6) gives the loss associated with ideal fixed threshold 
detection in spiky clutter of clutter of shape parameter v for Pfa = 10-6 and Pd = 50%. It can 
be seen from the table that a CFAR loss of greater than 2 dB can commonly be expected in 

spiky clutter, with much greater losses of up to tens of dBs being possible in extreme cases 
of very spiky clutter and small N. The superior performance of the CA processor is again 
evident. The advantages of using a large number of reference cells can also be seen to be 

more pronounced for low values of v, where the use of only 16 as opposed to 32 reference 
cells can introduce an additional loss of 2 dB to 5 dB under most reasonable conditions, 
and more in extreme cases. 

Table 5.1 
CFAR Loss for Sample Values of v (dB) 

L; (v, 10-6) CA CAGO Os 
N=16 N=32 N= 16 N=32 N= 16 N=32 

0.10 13.95 19.49 8.20 19.73 10.00 34.78 17.33 
0.25 10.83 7.43 3.52 7.73 3.87 11.68 5.48 
0.50 8.59 4.24 2.07 4.67 2.38 6.10 3.02 
1.5 5.42 2.50 1.24 2.80 1.45 3.50 1.77 

v=9.5 1.83 2.13 1.05 2.37 1.22 2.95 1.45 
v= 00 0 2.12 1.04 2.35 120 2.93 1.44 

5.1.5 Effect of Incorrect Estimation of the Shape Parameter v 
The preceding discussions have assumed that the value of the shape parameter v is 

explicitly known, presumably through real time analysis of clutter data. Assumed 
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knowledge of the shape parameter enters the analysis through the PDF of the test statistic 
and the CDF of the clutter in the test cell under conditions of no target being present, both 

of which depend on the clutter PDF, and hence v. The main effect of changing the value of 
v is to change the threshold multiplier factor a needed to achieve a specified false alarm 
probability. Errors in estimating v will thus result in an incorrect value of a being used, 
causing a degradation in detector performance. If the threshold is set too high (v is 

estimated too low), the consequence will be increased detection loss; if the threshold is set 
too low (v is estimated too high), the consequence will be increased false alarm probability. 
The approximate magnitude of the loss associated with the former error, that is v being 

estimated too low and hence the threshold being set too high, is obtained simply from the 
detection loss curves of the previous sections: the difference between the detection loss at 
the estimated value of v and at the true value of v is the approximate2 additional loss due 

to incorrect estimation of v. Under most operating conditions the performance degradation 
due to v being estimated too high and the threshold being set too low, will, however, be of 
more interest in that it may cause a notable increase in Pfa. To examine the severity of this 
increase in Pfa, as a function of the size of the error in the estimate of v, the false alarm 
probability is now evaluated as a function of v and a. 

For a given value of v, the false alarm probability is calculated as a function of a from eqn 
(5.1). This takes account of the CFAR detector implementation and the number of reference 
cells N in the form of the PDF of the test statistic pz(z). Eqn (5.1) has been evaluated as a 
function of a for several sample values of v, for the CA, CAGO and OS CFAR 

processors, for various numbers of reference cells N. Manipulation of the resulting data 

yields plots of the form shown in Figs. 5.4a, 5.4b and 5.4c for the CA, CAGO and OS 

processors respectively, for processors using 32 reference cells. These graphs represent 
contours of constant false alarm rate over the v-a plane, i. e. the threshold required for a 
given false alarm rate as a function of v. To determine the increase in P fa due to errors in 

estimating v, simply note the difference between P fa at the estimated and true values of v, 
based on a threshold appropriate for the desired false alarm rate at the estimated value of v. 
The horizontal spacing between contours in Fig. 5.4 gives a measure of the sensitivity of 
the false alarm probability to errors in the estimated value of v. 

2 Although this is not exactly accurate, due to the incorrect pdf of the test statistic under this scenario 
being used in analysing the loss at the estimated value of v, the results given by this simplification differ 

negligibly from the true situation. 
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Fig. 5.4. Contours of constant Pfa in the v -T plane 
a) CA b) OS c) CAGO (N=32). 

Similar plots to those illustrated in Fig. 5.4 have been generated for other values of N for 

the CA, CAGO and OS CFAR processors. The results have not been included here for 

reasons of brevity and are instead given in Appendix 5.2. Some general trends are evident 
from examination of all this data, namely : 

1) All three types of processor are approximately equally sensitive to errors in the 
estimated value of v. This is to be expected since v has a direct effect on the PDF of 
the test cell, whereas it has a substantially less noticeable effect the PDF of the test 
statistic. Therefore, since the use of the test cell and the PDF of the signal in the test 
cell is identical for all three types of CFAR processor, the effect of changing v is 

similar for all three CFAR processors. 

2) The number of reference cells used in forming the test statistic does not significantly 
influence the sensitivity of the CFAR processors to errors in the estimated value of 
v. This is again to be expected, with the same reasoning as for point (1) above. 
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3) All three CFAR processors are somewhat (±50%) more sensitive to errors in the 
estimated value of v for low false alarm rates (_10'8) than for higher false alarm 
rates (-10-4), as evidenced by the closer horizontal spacing between contours in 
Fig. 5.4 for the higher false alarm probabilities. 

4) The three types of CFAR processors are all notably more sensitive to errors in the 
estimated value of v for small values of the clutter shape parameter than for large 

values. The effect of increasing clutter spikiness is therefore again to compound any 
problems which may exist in the detection processing. 

Table 5.2 gives approximate values for the increased false alarm probability as a function of 
the true and estimated values of v, for a nominal false alarm probability of 10-6 for a CA 

processor using 32 reference cells. For other types of processors using different N the 
results are not notably different. In the extreme case of a detector being designed for opera- 
tion in a Rayleigh environment with the threshold determined on that basis, but having to 
operate in a spiky K-distributed clutter environment, the false alarm probability will vary as 
a function of v. Examination of Fig. 5.4 indicates that under these circumstances, for a 
design p fa of 10-6 under Rayleigh noise conditions, a false alarm probability of worse than 
10-2 is possible in even moderately spiky (v S 2) clutter. This example illustrates the 
importance of accounting for the true clutter amplitude statistics in the design of the CFAR 

processor. 

Table 5.2 
Increased P fa due to Errors in v 
(Nominal P fa = 10'6; N= 32; CA processor) 

Vest Vtrue 

0.75 vest 0.50 Vest 0.25 Vest 
10 10-5.5 10-5.0 104.2 
2 10-5.2 10-4.5 10-3.3 
0.5 10-5.0 10-4.0 10-2.5 

5.1.6 Errors due to Numerical Approximations 
In this section the magnitude of errors introduced by two approximations mentioned in the 
preceding subsections of this Chapter are analysed: the simplification of the expression for 

the CDF of the Signal plus Clutter (eqns. (5.3) and (5.4)) is discussed first, with the 
influence of the required value of Pd on the loss being addressed later. 
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As mentioned at the beginning of section 5.1 no closed form expression has been found for 

the complementary CDF of the target-plus-clutter voltage given by eqn. (5.3), which has 

therefore been simplified to that of the complementary CDF of a Rayleigh target, of power 
equal to the combined target-plus-clutter power, given by eqn. (5.4). This approximation 
will cause an error in the value of Pd obtained for a given SCR, resulting in an error in the 

estimated detection loss. This error in the detection loss is the quantity that will be used 
here for quantifying the approximation error. 

Clearly the accuracy of the approximation will improve for increasing SCR's. Therefore the 

approximation will be least accurate for those situations requiring the lowest SCR to 

achieve the desired value of Pd, for a given value of v. From the preceding sections it is 

evident that this corresponds to low Pfa and Pd and high N, and for the range of parameters 
considered in this Chapter the worst approximation accuracy will therefore occur for Pd = 
50%, N= 32 and P fa = 10-4. The approximation error has been calculated for these 

parameters over a range of values of v. The results are as follows: 

Table 5.3 
Error due to Approximation for Pt(X>tx) 

v Approximation error (dB) 
0.5 0.00084 
1.5 0.00124 
2.5 0.00122 
4.5 0.00107 

For larger v, the CCDF's of the clutter and target become increasingly similar causing the 
approximation to become increasingly accurate. For smaller v, the increase in SCR required 
to achieve the specified Pd easily negates the increasing difference between the clutter and 
target CCDF's. It is therefore concluded that this approximation for the form of the target 
plus clutter CCDF introduces a worst case error of only -0.001 dB, which can be ignored. 

The effect of the required value of Pd on the detection loss has been investigated by 

calculating the results presented in sections 5.1.1 to 5.1.3 for Pd = 50% and Pd = 90%, and 
calculating the difference between the two sets of results. Full results are tabulated in 
Appendix 5.3. Suffice to note here that in general the difference in the detection loss is 

substantially less than 0.1 dB and is often only 0.01 dB. Note that this is true for the 
detection loss, not the absolute SCR or SNR required to achieve a specified value of Pd, 

which is indeed a function of Pd. 
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5.2. DETECTION IN UNCORRELATED CLUTTER PLUS NOISE. 

5.2.1 Numerical Analysis 
In practical situations the clutter signal is added to radar thermal noise. The preceding 
sections have assumed that the CNR is sufficiently high to allow the presence of the noise 
to be neglected. However, when the CNR lies in the region -10 dB < CNR < 20 dB, the 

noise will reduce the effects of more spiky clutter, and the detection performance cannot be 

predicted with confidence merely through knowledge of the detection performance in K- 

clutter or thermal noise alone. As mentioned in Chapter 2 of this report, Watts (1987) gives 
an approximation for representing a clutter plus noise signal as a K-distribution of higher 

order. [specifically, Veff =V [(1 +1/CNR)2]. In this section we perform an exact numerical 

analysis of detection in the clutter plus noise signal and determine the effect of additive 

noise on detection performance. The results are compared to Watts' approximation. 

Unfortunately the PDF of K-distributed clutter plus Rayleigh noise cannot be expressed in 

closed form, and is instead given by: 

P(x) = 
r(v) 
ý Y2v-1 ex -2- (by)21 dy ... (5.10) 

o a2,, + 4Y2/7[ L2ý + 4y2/n J 

where b is as defined for eqn. (5.3) and 2an2 is the noise power. The CCDF of the K- 
distributed clutter plus noise is as given by eqn. (5.3), but replacing the term Pt with 2o'n2. 
For v<0.5 these becomes an improper integrals. A better form for numerical evaluation is 

obtained by the simple substitution w= y2v, giving the PDF as: 

2Q2 ý. 4W1N - b2 w1N dw ... (5.11) Px(x) = 
vb2 a2 + 4w1h' ex 

on 
/7, 

n 
/n 

Once the PDF of the signal in the CFAR detector reference cells has been obtained from 
(5.11) above, the analysis of CFAR detector performance is identical to that for K-clutter 

only as described in sections 5.1.1 to 5.1.3. Note that since we assume a Rayleigh 
fluctuating target, i. e. Swerling 1 or 2, the exact expression for the complementary CDF of 
the target plus clutter plus noise signal is identical to that given in eqn. (5.3), provided that 
the quantity P, is modified to reflect the target to clutter-plus-noise power. The approxi- 

mation described in sections 5.1 and 5.1.6 is still valid, however, and is in fact more 

accurate due to the clutter plus noise signal being closer to Rayleigh than the clutter alone. 
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Detection performance of the CA and OS CFAR detectors has been calculated for various 
values of Pfa, Pd and N, for the same sample values of v used in the previous section, and 
for a range of values of CNR. Presentation of these results is difficult due to the large 

number of parameters which affect the results: v, CNR, N, Pfa, and the type of CFAR 

processor all influence the absolute detection loss. One way of presenting these data is in 

terms of the percentage variation in detectability loss as a function of clutter-to-noise ratio, 
relative to the loss for noise only and clutter only of specified shape parameter v, i. e. for 

noise only the relative loss is 0%, for clutter only the relative loss is 100%. Sample results 
are illustrated in Figs. 5.5a and 5.5b for CA processor for 32 and 16 reference cells 
respectively. The precise results depend on the parameters mentioned above, and the form 

of the curves of the type given in Fig. 5.5 thus differ for each set of parameters. However, 

examination of these figures and other data not reproduced here allows some general trends 
to be noted. The value of P fa affects the percentage loss relative to clutter only by only 
about 10% to 15% over the range of Pfa from 10-4 to 10-8, with the higher value applying 
at Pfa = 10-8. The number of reference cells used does not significantly affect the 

percentage loss for the CA and CAGO detectors, whereas for the OS processor the number 
of reference cells does affect the percentage loss: fewer reference cells reduce the 

percentage loss, with a variation of 10% to 20% (depending on the CNR) between N= 32 

and N=8. This is explained by the greater sensitivity of the OS processor to the form of 
the lower regions of the PDF of the background signal. As would be expected, the 
presence of noise affects the detection performance over a wider range of CNR's for low 

values of v than for high values. For v=0.1, a CNR of -10 dB still yields a relative loss of 
15% to 25% (depending on N and Pfa) of the clutter only loss, whereas for v>1.5 this 
figure is less than 5%. Similarly, for a CNR of 20 dB, v=0.1 suffers only 70% to 85% of 
the clutter only loss, whereas for v>1.5 this figure is greater than 95%. 

5.2.2 Error Analysis of Watts' Approximation 
It is clear that the preceding results only enable accurate prediction of performance in 

clutter-plus-noise for the specific cases that are numerically evaluated; too much variation in 

results is evident to allow for reasonably accurate interpolation of results between 

parameters affecting the analysis. The method that has been proposed by Watts (1987) 
facilitates simpler analysis by approximating the K-clutter plus noise simply as K- 
distributed clutter of higher order, with Veff =v [(1 +1/CNR)2], where Veff is the shape 
parameter of the approximating K-distributed clutter. This approximation is based on 
determining v from the second and fourth moments of the clutter-plus-noise voltage, but 

assuming that no noise is present. It gives a reasonable fit to the tails of the distribution, 

notwithstanding a slight lowering of the far out tails, but gives a poor fit in the region of the 
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Fig. S. S. Relative loss vs CNR for a CA processor: a) N= 32 b) N= 16. 

peak of the PDF, ie. for low amplitudes. Both of these regions affect CFAR detection 

performance and hence the errors in the detection loss arising as a result of the use of this 

approximation have been examined. 

The main quantity of interest is the signal to clutter-plus-noise ratio required to achieve a 
desired Pd for a specified Pfa. The true values have been calculated numerically using the 

method outlined earlier in this section. The approximate values based on Watts' approxi- 
mation have been evaluated by calculating Veff as described and then determining the 

corresponding loss from the data represented in Figs. 5.1 to 5.3 of section 5.1. The error 
arising as a result of the approximation is then obtained from the difference between the 

two sets of results. This has been calculated for N=8,16,24,32; for Pfa = 10-4,10-6, 

10.8; for Pd = 25%, 50%, 70%, 90%; and for the CA and OS processors. The results are 
tabulated in Appendix 5.4. The mean error over all of these parameters has been calculated 
and the results are shown in Table 5.4 for 0.25: 5 v< 10 and for -6 dB S CNR S 21 dB. It 
is evident that in general the approximation is most accurate for moderate to high values of 
CNR (> -3 dB), with resulting errors being of the order of only 0.1 to 1 dB, depending on 
the value of v (or about 0.5 % to 5% of the detection loss). For lower values of CNR 

larger errors are apparent, due primarily to the incorrect approximation of the distribution 

tails which determine the required threshold multiplier factor a. Nevertheless errors are still 
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quite small (-20 %) compared to the magnitude of the detection loss. It is therefore felt that 
Watts' approximation is an adequately accurate, simple means of addressing the issue of 
additive thermal noise when analysing detection performance in K-distributed clutter. 

Table 5.4 
Mean Error in Required SNR due to Watts' Approximation (dB) 

CNR (dB) v 
0.25 0.5 1.5 2.5 4.5 9.5 

-6 1.59 **** **** **** **** **** 
-3 1.52 1.13 **** **** **** **** 
0 0.86 0.83 0.49 0.25 **** **** 
3 0.15 0.40 0.34 0.23 0.10 **** 
6 0.72 0.07 0.18 0.16 0.08 **** 
9 1.08 0.17 0.08 0.04 0.40 **** 

12 1.12 0.23 0.02 0.02 0.01 0.04 
15 1.01 0.20 0.01 0.05 0.02 0.04 
18 0.82 0.16 0.01 0.06 0.02 0.03 
21 0.62 0.11 0.01 0.07 0.03 0.03 

Note: **** denotes veff out of range of analysis (. 25 5 Veff 510) 

5.3 EMPIRICAL FORMULAE FOR ESTIMATING DETECTION LOSS 

The results presented in the previous sections of this Chapter only give the detection loss 
for specific parameter values, and tractable analytic expressions are not available which 
give the detection loss as a function of the relevant variable parameters (i. e. v, Pfa. Pd, 
CNR, N, the type of CFAR processor). In this section empirical relationships of the form 

L= f(xi; X2; ... X) ... (5.12) 

where L is the Loss, and xl; x2; ... xn are detector and clutter parameters, are therefore 
derived to facilitate simple and reasonably accurate prediction of detection loss without 
resorting to a full numerical analysis. Expressions are derived for the ideal fixed threshold 
loss L; and the CFAR loss Lc as defined in section 5.1.4, from which the total detection 
loss Lt can be immediately determined. The CFAR loss is different for each of the three 
CFAR processors analysed and hence a separate expression has been derived for Lc each 
CFAR processor. Although both Li and Lc are, strictly speaking, functions of Pd, variation 
of Pd in the region 30% < Pd < 90% has insignificant effect on the loss and consequently Pd 
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is not included as a variable parameter in the empirical expressions. Furthermore, the CNR 
has not been included as a parameter since it has been shown in Section 5.2.2 that this can 
be handled by Watts' approximation, providing that the resulting value of veff is used in the 

expressions derived here instead of v. The ideal fixed threshold loss Li is therefore a 
function of Pfa and v, while the CFAR loss Lc for each type of CFAR processor is a 
function of P fa, v and N. The accuracy of the empirical relationships is analysed to illustrate 

their applicability. 

5.3.1 Approximation for Li 
The following expression has been found to approximate the ideal fixed threshold detection 

loss L;: 

In(Li) = alw3 + a2& + a30) + a4 ... 
(5.13) 

where (o =1n(v) 
a4 = 1.5047 [-log(Pga) - 2.39]0.1711 

a3 = 0.08741n [-1og(Pga) - 0.33] - 0.5850 

a2 = 0.01691n [-log(Pfa) + 1.0 ]-0.0850 

al = 0.00181n [-log(Pga) + 3.0 ]-0.0010 

This expression. is valid for 0.1 5v5 10 and 10-45 Pfa 5 10-8. The error arising due to 

the use of this approximation has been evaluated for sample values of v and Pfa and the 

results are given in Table 5.5 below. Since the expression was derived as a least squares fit 

to the natural log of the loss, the error is roughly proportional to the magnitude of the loss, 

thereby maintaining approximately constant relative error over all V. 

Table 5.5 
Approximation Error for Li 

(Absolute error in dB) 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 
Pfa = 10.4 0.745 0.115 0.010 0.003 -0.012 
Pfa = 10.6 0.998 0.164 0.015 0.002 -0.020 
Pfa = 10.8 1.149 0.200 0.024 -0.015 -0.020 

v=4.5 v=9.5 

-0.038 -0.072 
-0.059 -0.122 
-0.078 -0.173 
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A higher order polynomial in ln(v) would reduce the error further at the expense greater 
complexity. This was not considered necessary since in most practical situations errors in 

the assumed value of v will introduce larger errors than those due to the approximation. 

5.3.2 Approximation for Lc 
The following expression has been found to approximate the CFAR detection loss Lc: 

ln(Lc) _ -(p + 0.5) [blw4 + b2w3 + b3w2 + bow + b5] exp[cl. ln(N) - c2] ... (5.14) 

where co =1n(v) 
p =1og(Pfa) 

and the coefficients bl, b2, b3, b4, b5, cl and c2 are given for the three CFAR processors 
in Table 5.6 below. 

Table 5.6 
Coefficients for Expression for Lc 

bl b2 b3 b4 b5 cl C2 
CA 0.006763 -0.005184 0.172136 -0.419457 0.353335 -1.03831 1.9005 
CAGO -0.001957 -0.010293 0.126950 -0.403245 0.519645 -0.99116 1.7380 
OS 0.001526 -0.020672 0.176920 -0.429784 0.715318 -1.03080 . 

1.8697 

This expression and the coefficients given above are valid for 0.1 5 v: 5 10; 8: 5 N5 32; 

and 10-4 5p fa 5 10-8. The error arising due to the use of this approximation has been 

evaluated for sample values of N, v and Pfa and the full results are given in Appendix 5.5. 
The full results have been averaged over Pfa and N (for Nz 16) for each of the three CFAR 

processors and these summarised results are shown in Table 5.7 below. Since the 

expression was derived as a least squares fit to the natural log of the loss, the error is 

roughly proportional to the magnitude of the loss, thereby maintaining approximately 
constant relative error over all v. 
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Table 5.7 
Approximation Error for Lc 

(Absolute error in dB) 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 
CA 1.553 0.179 0.021 0.026 0.037 0.044 0.030 
CAGO 1.238 0.099 0.078 0.074 0.060 0.049 0.059 
OS 1.559 0.324 0.025 0.053 0.057 0.056 0.030 

It can be seen that in general the error is less than 0.1 dB, except for very small v where the 
error relative to the CFAR loss is still small, - 5%. Higher order polynomials in ln(v) and 
ln(N) would reduce the error further at the expense greater complexity. This was again not 
considered necessary since in most practical situations errors in the assumed value of v will 
introduce far larger errors than those due to the approximation. above. 

5.4 DISCUSSION OF RESULTS 

The performance of the CA, CAGO and OS CFAR processors has been analysed under 
conditions of no correlation of the underlying clutter modulation between adjacent range 
bins. It has been shown that a rather large (-10 dB) detectability loss occurs in spiky 
clutter. The magnitude of this loss is dependent on v (the lower the value of v, the higher 
the loss), the number of reference cells used by the CFAR processor, and the desired false 

alarm probability. Detection probability does not have a noticeable effect on the loss. 

The loss associated with CFAR thresholding has been evaluated. It has been shown that the 
CFAR loss increases with increasing clutter spikiness, and can be in excess of 10 dB for 

very spiky clutter. It is also evident that the OS processor suffers the worst increase in 
CFAR loss due to spiky clutter, which can be several dBs higher than for the CA 

processor. For all CFAR processors considered in this report it is apparent that reducing 
the number of reference cells compounds the increase in loss caused by spiky clutter. 
Empirical formulae have been derived which give the loss for ideal fixed threshold 
detection and the loss associated with CFAR thresholding in K-distributed clutter 
environments. These formulae have v, N and Pfa as parameters. It has been shown that in 

general the error associated with these empirical relationships is better than 0.1 dB. 

The variation in false alarm probability due to errors in estimating v has been analysed. It 
has been shown that all three CFAR processors are roughly equally sensitive to errors in 
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the estimated value of v, and that the number of reference cells does not have a strong 
influence on the sensitivity to errors in v. The lower the required false alarm probability and 
the lower the value of v, the more sensitive the CFAR processors become to errors in v. 
Operation in K-Distributed clutter with v-0.5 but with the CFAR threshold set for a 
Rayleigh environment can result in a 1000 to 10000 fold increase in false alarm probability. 

The effects of additive thermal noise on detection performance have been investigated and 
errors introduced by Watts' approximation have been determined. It is concluded that this 

approximation provides an adequately accurate, simple means of including the effects of 
thermal noise in detection performance analyses. 

With regard to the selection of the most suitable type of CFAR processor it has been shown 
that the OS processor is the most susceptible of the three processors analysed here to the 

effects of spiky clutter: the loss increases more rapidly with increasing clutter spikiness 
(decreasing v) and decreasing N. It is realised, however, that the ultimate choice of the type 

of CFAR processor to be used will depend on other factors as well, such as the 

susceptibility to clutter edges and extraneous targets, for which the superior performance of 
the OS processor is well known (Rohling, 1983; Ghandi, 1987). 

One possible solution to the contradictory requirements of minimising CFAR loss in spiky 
clutter while maintaining tolerance to interfering targets and clutter edges could be offered 
by the CMLD processor mentioned in Chapter 2: this processor has been shown (Ritcey, 
1986) to provide the same performance in exponential clutter (ie. v=0.5) as a CA pro- 
cessor using the same number of reference cells as are summed in the CMLD processor. 
For other v#0.5 analytic or numerical analysis has not been attempted since the 

mathematical manipulations used by Ritcey are not valid and the ordering of the reference 
cells prior to summation in the CMLD processor means that the cells being summed are no 
longer statistically independent, thereby precluding the determination of the PDF of the test 

statistic by the usual means. However, it is not unreasonable to argue that if the 

performance is the same for the fairly spiky case of v=0.5 then it will not be significantly 
different for other values of v. The CFAR loss and quantisation loss in general spiky clutter 
can then be assumed to be about the same as that for a CA processor using the same 
number of reference cells as are summed in the CMLD processor. This would minimise 
CFAR loss while maintaining resilience to extraneous targets and clutter edges. 

It is clear from the work presented in this Chapter that two main problem areas exist with 

regard to detection in non-Rayleigh clutter, and specifically K-Distributed clutter. These are 
1) how to maintain a constant false alarm probability, and 2) how to minimise the detection 

page 126 



loss due to spiky clutter. The former of these problems has hitherto been addressed by 

non-parametric techniques as discussed in Chapter 2 (if a reasonably large number of 
pulses is available), or by the use of CFAR processors which effectively estimate the shape 
and scale parameters of the clutter, such as Ravid and Levanon's Maximum Likelihood OS 

processor (Ravid, 1992). Both of these options are susceptible not only to the severe ideal 
detection losses quoted earlier in this chapter, but also to significantly increased CFAR 
loss, of the order of 5- 10 dB. This implies an overall loss relative to ideal detection in 
Rayleigh clutter of in excess of 20 dB in spiky clutter. The minimisation of detection loss in 

spiky clutter has been addressed to some extent by using post detection binary integration, 

which only gives significant benefits if the modulation process can be decorrelated from 

pulse to pulse. This is generally improbable. 

If we aim to maintain the desired P fa in spiky clutter and simultaneously keep the detection 
loss to approximately the level suffered in thermal noise, then additional information must 
be used in the detection procedure. The only sources of additional information are the 

various correlation domains of the clutter and target signals. The correlation properties of 
relevance here are the range correlation and short- and medium-term temporal correlation 
properties. Other temporal and spatial correlation properties are not useful since we 
preclude the possibilities of scan-scan averaging and clutter mapping, as mentioned in 
Chapter 1. The exploitation of these correlation domains in order to improve detection 

performance is the subject of the following chapters of this thesis. 
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CHAPTER 6 

CFAR DETECTION IN SPATIALLY CORRELATED 
K-DISTRIBUTED CLUTTER 

6.1 INTRODUCTION 

It has been shown in the previous chapter that severe detection losses can arise in spatially 
uncorrelated spiky clutter. This loss consists of two components, namely 1) the "ideal 
detection loss", defined as the detection loss in non-Rayleigh clutter relative to detection in 
Rayleigh clutter, assuming exact knowledge of the mean clutter power, and 2) the CFAR 
loss, defined as the additional loss due to CFAR thresholding. The scope for reducing the 
overall detection loss with range-acting amplitude-thresholding CFAR processors is, of 
course, limited by the ideal detection loss: improved processing cannot hope to improve on 
ideal detection. This lower bound on detection loss is only valid, however, if the clutter is 

spatially uncorrelated. Spatial correlation will affect the performance of the CA, CAGO and 
OS processors, but more importantly, it offers scope for improved CFAR processors 
aimed specifically at exploiting spatial correlation with a view to improving detection 

performance in spiky clutter. 

Recall that the K-distribution arises from the assumption that the clutter consists of 
Rayleigh speckle, the variance of which is modulated by a gamma distributed modulation 
process. In analysing the detection performance of range-acting CFAR processors, the 
variation of the clutter signal over range, instead of over time, is of importance. Hence the 
gamma distributed modulation process is considered as fluctuating with range, and in some 
practical situations the underlying clutter modulation will not be completely uncorrelated 
from one range bin to the next as has been assumed in the preceding chapter. (The speckle 
is always completely decorrelated from range bin to range bin). The clutter modulation 
process can be related to the surface profile of the sea and has been mechanistically 
explained in terms of bunching of contributing scatterers and local tilting of the mean 
surface slope (see Chapter 2). If there is indeed close correlation between the sea surface 
profile and the modulation process - and experimental evidence suggests there is (eg. Long, 
1981) - then it is reasonable to assume that the clutter modulation process will have a 
decorrelation distance of the same order of magnitude as the decorrelation distance of the 

sea. In well developed swell conditions a periodic component of period equal to the swell 
length projected along the radar boresight should be present in the range autocorrelation 
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function, and experimental evidence in the literature tends to support this supposition. 
Under extreme conditions of a long decorrelation distance of the modulation process and a 

short reference window of the CFAR detector (in terms of physical distance), the clutter 

modulation process may be essentially completely correlated over the reference cells 

covered by the CFAR processor. In more realistic conditions, the modulation process will 

exhibit partial correlation between range bins in the reference window. 

Both of these situations will affect the detection performance of the CFAR processors. If 

the degree of correlation is known, then the threshold multiplier factor can be altered to 
better reflect the local clutter statistics in the reference window, resulting in reduced detec- 

tion loss. The simple if unrealistic situation of the clutter modulation process being com- 

pletely correlated over the CFAR reference window is addressed first, in section 6.2. The 

more general situation of a partially correlated modulation process is addressed next. This 

requires extension of the K-distribution model to cover partially correlated modulation 

processes, and this is addressed in section 6.3. An "Ideal CFAR detector" for partially 

correlated clutter is defined and evaluated in section 6.4 to establish an upper bound on 
detection performance in spatially correlated K-distributed clutter. The development and 

evaluation of a practical CFAR processor designed to exploit spatial correlation is presented 
in section 6.4. The analyses for both complete and partial spatial correlation assume that 

there is negligible thermal noise and that the clutter shape parameter v is correctly known. 

6.2 COMPLETELY CORRELATED CLUTTER MODULATION 

If the clutter modulation process is assumed to be completely correlated over the range 
extent of the CFAR reference window, then the clutter within the CFAR reference window 
at a given position is Rayleigh distributed. The clutter is still assumed to be K-distributed, 
however, through the mean power of the locally Rayleigh clutter being modulated by a 

gamma distributed variable over an extended area. Since the clutter in the reference window 
is now Rayleigh distributed, the CFAR detectors will perform as expected for Rayleigh 

noise, except that an additional source of fluctuation in the signal-to-clutter ratio is 

introduced by the modulation of the clutter power. 

Mathematically we represent this as follows: for a given CFAR detector and specified false 

alarm rate the detection probability in clutter with a Rayleigh voltage PDF is denoted by 

Pd(SIC), a function of the instantaneous signal-to-clutter power ratio S conditioned on the 

clutter power C. The probability pc(C) of the clutter power taking on a value C is gamma 
distributed with shape parameter v, ie. 
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p(C) =1 C"'1 exp(-C/X) ... (6.1) 
?. I'(v) 

where ? is a power parameter. The overall probability of detection is given by: 

Pd = Pd(SIC) p (C) dC ... (6.2) 
0 

The average detection probability Pd is therefore dependent on the form of Pd(SIC), which 
is in theory dependent on the type of CFAR detector and the number of reference cells 

used. In practice, however, for conditions of Rayleigh noise the form of Pd(SIC) is so 

similar for all situations considered here that the resulting curves are indistinguishable from 

each other, notwithstanding a shift between curves dependent on the different CFAR loss 

for different processors, numbers of reference cells and false alarm probabilities. It turns 

out in fact that the form of Pd(SIC) is well approximated by the expression for ideal 

detection of Sw2 targets in Rayleigh noise, i. e. 

Pd(SIC) - ex 
ln(Pfj 41+ 

(SIC) ... (6.3) 

provided the appropriate CFAR loss is included in the value of S. It can then be shown that 

substitution of this expression into eqn. (6.2) with a little manipulation yields the following 

expression for Pd: 

(b2So)v 1_ -[- b2So 
_ 

ln(Pfa)Pd 
= ex -T+-x71 dx ... (6.4) 

r(v) 0xv+l 
x 

where So is the mean signal-to-clutter ratio. This expression has been evaluated over a 
range of values of v and the results are illustrated in Fig. 6.1. These curves represent the 
difference in SCR required for a given probability of detection between range correlated K- 

clutter of shape parameter v and Rayleigh noise, under the assumed conditions of complete 

correlation of the clutter modulation function. The absolute SCR required is obtained by 

adding this loss (gain) to the CFAR loss of the detector in question for Rayleigh noise 
(obtained from Figs. 5.1 to 5.3 of Chapter 5), which is added to the value of SNR required 
for ideal detection, given by (6.2) above. It is evident from Fig. 6.1 that under conditions 

of complete correlation of the modulation process, for a given CFAR processor implemen- 

tation and parameters, a significant detection gain can result from spiky clutter, relative to 
detection in Rayleigh clutter. This is particularly notable for moderate to low values of Pd. 

It must be stressed, however, that the assumption of complete correlation of the modulation 

process over the CFAR processor's reference window is somewhat unrealistic. 
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Fig 6.1: Detection Loss for Completely Correlated Clutter 

6.3 A MODEL FOR SPATIALLY CORRELATED K-DISTRIBUTED 
CLUTTER 

Before the performance of existing and improved CFAR processors can be evaluated in 

spatially correlated clutter, it is necessary to derive a mathematical representation of the 

partially correlated modulation process. Oliver and Tough (1984) have described a method 

of generating spatially correlated clutter based on linear filtering of an uncorrelated gamma 

process. This yields the correct modulation process ACF, but the resulting clutter is not 

exactly K-distributed and consequently has incorrect higher order moments, which may be 

of particular significance for false alarm rate analyses for low values of Pfa. Convenient 

mathematical representations of the correlated modulation and clutter processes are also not 

available using this technique. In this section a procedure is presented which yields 

precisely K-distributed samples of arbitrary spatial ACF, and which provides in addition 
the analytic description of the multivariate PDFs of the modulation process and potentially 
the K-clutter. 
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In this section we concentrate on a description of the correlated modulation process, which 
provides the basis for detection performance analyses and from which spatially correlated 
clutter can be generated. The correlation properties of the speckle are not considered here 

since a) the speckle is invariably modelled as being independent in adjacent range bins, and 
b) the rapid temporal (Doppler) fluctuations of the speckle are easily modelled owing to its 

complex Gaussian nature. It is also usually assumed that the modulation process exhibits 
negligible temporal fluctuations within the radar coherent processing interval or dwell. We 

therefore limit development of the theory to the 1-dimensional (range) modulation process; 
extension to the 2-dimensional case is straightforward using identical techniques provided a 
2-D filter is used on the constituent Gaussian processes. 

Recall that we define the K-distributed clutter x, the voltage modulation process v, the 

power modulation process u, and the Rayleigh speckle r, such that x= rv =r �u. Since 

u is gamma distributed, for v= (m+l)/2; m=0,1,2... , it reduces to the chi-square 
distribution. This can be generated as the sum of the squares of n= 2v independent zero 
mean Gaussian (ZMG) processes gi. Correlation of the modulation process can then be 
introduced on the constituent Gaussian processes by well established linear filtering 

techniques. A non-linear transformation, defined later in this section, is used to transform a 
modulation process of order parameter v' =m+1 /2 into one of arbitrary v>0. This 

technique for modelling correlated K-clutter is illustrated in Fig. 6.2. 

Power 
ZWAIGN Modulation 

g, LPF (I2 Process 

2 g2 LPF II 

Non-linear 
Transformation 

-ab. -D 

gn LPF ( I2 

Voltage 
Modulation 

Spatial Process 
Filters 

Rayleigh K-distributed 
Speckle Clutter 

Fig. 6.2: Method of simulating spatially correlated clutter 
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6.3.1 Bivariate pdf of the modulation process 
Consider a sample of n independent unit variance ZMG vectors Gi = (gil, gi2} with 
E(gil"gi2) = p2. Then define the random variables: 

(j=1,2) uff= 91] 
i=1 ... (6.5) 

each of which is X2(n), ie. chi-squared with n degrees of freedom. Then, given all the gig, 
the gii can be represented as gii = pgii -1- zi. 'i(1"p2), where the zi are iid. N(0,1) random 
variables. Substituting this into eqn. (6.5) we find that the conditional PDF of ui, given u2, 
has a non-central chi-square distribution with variance parameter a2 = (1-p2) and non- 

central parameter 

U2 ... 
(6.6) %1. = p2g 2= p2 

which gives p(u11u2) as: 

P(u1Iu2) _-1 (ul )n4 exp[-(ul+p2u2p 
ulu2) 

... (6.7) 
2(1-p2) p2u2 2(1 - p2) 21- P2 

The bivariate gamma PDF of the modulation process is then obtained as: 

Puiu2(U1 U2) = Pu, Iu2(ulIu2)Pu2(u2) 

=1 (ulu2) 21 exp[-( 
ul + U2 ]"Iv-t(p UIU2 ) 

2v+lpv-l(1- p2)r(v) 2(i - p2)" 1- p2 

... (6.8) 

where pu2(u2) is X2(n) distributed, and v= n/2 is the usual K-distribution shape parameter. 
It is not difficult to verify that the marginal PDFs of ul and 112 are in fact the correct 

univariate gamma distributions, ie. gamma distributions with shape parameter v and scale 

parameter 2. The expected value is therefore 2v, and generation of clutter with mean power 
Pc therefore requires multiplication of either the unit-mean exponential speckle, the 

modulation process , or the compound clutter, by a factor Pc/2v. 

The bivariate chi- distribution of the voltage modulation process is obtained by setting v1= 
+'Iui and v2 = +'1u2, from which: 
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i+v 
PvL; v2(vi, v2) _ (viv2)v exp[- ( vi2 pvlv2 () 

2v-lpv-1(1 - p2)r(V) 
2(1 - p2) 

77 

... (6.9) 

It is worth noting that the effects of pre-detection integration are easily incorporated into the 
above model merely through modifying the square law speckle PDF to be gamma 
distributed with shape parameter ic = Ni, the number of pulses non-coherently integrated. 
This is possible due to the assumption that the modulation process remains constant in each 
range-angle bin during the radar dwell period. 

6.3.2 ACF of the modulation process 
The correlation between ul and u2 and between vl and v2 is obtained from E(ul. u2) and 
E(vl. v2) = E[4(ul. u2))] respectively, where E(. ) denotes expectation, such that: 

E[(ulu2)m] _ (ulu2)mPui; 
ui(ul, u2) duldu2 ... (6.10) 

0o 

where m= 1/2 for the voltage modulation process and m=1 for the power modulation 
process. Substituting eqn. (6.8) into eqn. (6.10), with some manipulation gives: 

E[(uiu2)m] = 
22m(1_p2f+2m 

p2i[r(v+i+m)]2 ; 0< p<1... (6.11) 
r(v) ;o r(i+1)r(v+i) 

This gives the correlation coefficient between two samples of the modulation process in 

terms of the correlation coefficient p between corresponding samples of the constituent 
Gaussian process. The extreme values of p=0; 1 are easily calculated from the marginal 
PDFs of the modulation process; for p=0 we have E(ui. u2) = [E(u)12 = 4v2 and E(vl. v2) 

= [E(v)]2 = 2[r(v + 1/2)/T(v)]2; for p=1 we have E(ul. u2) = [E(u2)] = 4v(v + 1) and 
E(vl. v2) = [E(u)] = 2v. 

If we vary p as a function of of the lag k= Ii - jl between the samples g; l and g; 2 (and hence 
between ul and u2), then eqn. (6.11) can be used to describe the ACF of u in terms of that 

of the g;. The reverse operation requires inversion of eqn. (6.11) which in general does 

not appear to be analytically possible but can be numerically performed if necessary. 
Setting m=1, eqn. (6.11) can be manipulated to give a simplified (and easily invertable) 

expression for the ACF of the power modulation process u as: 

Ruu(k) = 4v[(Rgg(k))2 + v] ... (6.12) 
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where Rgg(k) is the ACF of the gi. For m= 1/2 (ie. for the ACF of the voltage modulation 
process v) a simplification R�"(k) is only possible for v= 1/2, for which: 

Rv, (k) = (2/n)[cos4 + 4sinc] ... (6.13) 

where 0= arcsin[Rgg(k)]. 

6.3.3 Transformation for arbitrary v 
Just as the univariate gamma distribution is a generalisation of the chi-squared distribution, 

so too can the preceding derivations be generalised by letting v take on arbitrary positive 
values v* (m+l)/2. It has been shown (Griffiths, 1970) that eqn. (6.8) is infinitely 
divisible, and is therefore valid for arbitrary real v>0. Practically, however, simulation of 
the modulation process requires further consideration since it is impossible to have a non- 
integer number of constituent Gaussian processes, which for the reasoning outlined in 

section 6.3.1 would be necessary for v# (m+l)/2. Therefore a memoryless non-linear 
transformation is required to transform a X2(n) process u into a gamma distributed process 
u" of shape parameter v, ie. u" is r(O, v), where 0 is any desired scale parameter. This is 

achieved as follows: it is known from probability theory that if u' = fl (u), where fl(. ) is 

given by the CDF of u, then u' is uniformly distributed over the interval (0,1), ie. 
UNIF(0,1); Similarly, u' = f2(u") is UNIF(0,1) if f2(. ) is the CDF of u". We therefore 
have f2(u") = fl(u), ie.: 

r- 
y v; e) =r y(n -u) 

2 
... (6.14) 

where'Y(.;. ) is the incomplete gamma function (as defined by Gradshteyn, 1980) and 0 is 

the scale parameter of the transformed gamma distribution, which can be selected to give 
the required mean value of the modulation process. Eqn. (6.14) must be solved for u" in 

terms of u to give the required transformation u" = f2 [f, (u)], for which no analytic solution 
has been found. Choosing n=2 for convenience, so that the CDF Pu(u) =1- e- = fl(u), 

we obtain 

u= -21n[ 1-: i77(v; )] 
r(v) 0 ... (6.15) 

which is easily numerically inverted to give the required transformation, yielding a 

correlated gamma process of arbitrary positive real v. Although analytic proof will not be 

provided, it has been found using numerical techniques that eqns. (6.8) and (6.11) are still 

valid for this generalisation. A similar transformation can be derived for the voltage 

modulation process. 
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6.3.4 Some properties of the correlated K-clutter model 
Although most of the following properties will not be used in this thesis, they are included 
here for completeness: 

a) Characteristic function of the power modulation process: 
From Griffiths (1970), the characteristic function of the power modulation process u is: 

(Du(ttvt2v..., tp) =II- iPT I 'nI2 ... (6.16) 

where p is the order of the multivariate process, I is the identity matrix, P is the correlation 
matrix of the constituent Gaussian processes, and T is a diagonal matrix with elements 
(t1, t2,..., tm). 

b) Trivariate PDF of the modulation process 
Some manipulation of a result by Jensen (1970) gives the trivariate PDF of a process with 
characteristic function defined by eqn. (6.16) as: 

66 
Pu(U19U2, U3) ='P(ul, v)'P(u2, v)'P(u2, V) 

E b1 B(k) Lh1(U1, v) Lh2(u2, V) Lh3(u3, V) 
k=0 [k) 

... (6.17) 

where 'P(u, v) _I uv-1 e-u are the marginal gamma PDFs 
r(v) 

B(k) - 
lr(v)J 

3 hl' h2' h3' 
i 

kt 
k3! 

2k` Pii`+k. pi3=+w P2 3'+w 
r(v+hl) r(v+h2) r(v+h3) k1! k2! k3! k4i . 

r(v+k) bk = k! r(v) 

Lh(u, V) = (-1)h Lh 1(u); where Lh 1(u) is the usual Laguerre polynomial 
h1=k-k3; h2=k-k2; h3=k-k1 

P12 a E(Si1 gi2) P13 = E(gi, g, 3) P23 = E(8i2 g0) 

and the summation over [k] indicates the summation over all combinations of kj, k2, k3 

and k4, such that kl+k2+k3+k4 = k. Note that in the above the ui have been defined as: 

N 

ui =. L 
G+g 

which conforms to the model for the correlated gamma modulation process provided the 

scale factor 1/2 is taken into account. 
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c) Markov property 
It has been shown (Griffiths, 1970) that if the constituent Gaussian processes gi are 
Markov processes , then so too is the gamma modulation a Markov process of the same 
order. This property enables relatively simple expressions for the pth order multivariate 
PDFs to be obtained for modulation processes with exponential ACFs (first order Markov 

process), ie. p(ul... un) = p(ullu2)P(u2lu3).... p(un-1Iun)P(un). 

d) Bivariate K-distribution 
Compounding the bivariate voltage modulation process (with pdf given by eqn. 6.9) with 
the Rayleigh speckle gives the bivariate K-distribution, which can be shown to be: 

(XIX2)(2-v)12 p2 P(Xl+X2) = 
v-312 µ v+3/ 2 r(v) i-o 

(2p2)µ 

XX 2z 
x -- Ki+v. in( 

2x1 ) K+v-, n( 
2x2 ) 

.. (6.18) 
i! r(v+i) 2µ(1-p2) 2µ(l-p2) 

where t is the scale parameter of the compounded speckle such that the overall clutter 

power is Pc = 2vµ. 

e) ACF of compound K-distributed clutter 
We seek E[(yiyj)m], where y is the square law detected compound clutter and m=1 for the 
ACF of the power process (which will be termed K2-distributed) and m=1/2 for the K- 

distributed voltage process. Since y=us, and u and s are independent and si and sj are 
independent, we have E[(y; yj)m] = E[(uisiujsj)m] = E[(uluj)m] E[(s; sj)m]. Therefore: 

E[(Yiyj)m] = E[(s)m]2 E[(uiuj)m] for it-j ... (6.19) 

where E[(s)m] is merely the the mean value of the speckles and E[(u; uj)m] is the 

correlation between samples of the modulation process given by eqn (6.10). [Note that for 

i =j in the above E[(y; yi)m] merely becomes the 2mth moment about 0 of the compound 

clutter. For m=1, E[(y)2m] =4 t2v(v+1); for m=1/2, E[(y)2m] = E[y] = 2µv. ] 

6.4 IDEAL CFAR DETECTION IN SPATIALLY CORRELATED CLUTTER 

In order to establish the potential benefits to be gained by exploiting spatial correlation 

properties of the clutter, we first determine the limitations imposed by the clutter model 
itself, excluding detection losses caused by processor implementation and real time 

1 Specially E(s) =µ and E[(s)'R] = d(2µ) 
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adaptation requirements. Ideal detection performance in K-clutter has hitherto been 

addressed (Watts, 1985) for the extreme cases where the modulation process is completely 
decorrelated between adjacent range bins (p = 0), and where it is constant over the region 
covered by the detector (ie. p-1, such that p(unlun-1) tends to a8 function at un. 1). We 

now evaluate the ideal detection performance for intermediate values of p. 

In range-acting detection processing the test cell itself cannot be used to establish the 
threshold. We therefore define "ideal" detection to imply that the value of the modulation 
process is exactly known in the two range bins adjacent the test cell (one on either side). 
[This assumes that the modulation process is first order Markov and that the speckle is lid. 
in adjacent range bins. If these assumptions are violated knowledge of the modulation 
process in additional range bins is needed for detection to be ideal. ] In addition the values 
of v, µ and p are assumed to be explicitly known. Then, given v, µ and p, the ideal 
detector sets the detection threshold based only on the known values of ul and 113 (where 

range bin 2 is the test cell). No improvement is possible through knowledge of the values 
of the speckle process or any other samples of the modulation process. We can then write 
the threshold as T(ul; u3), with the expected value of the false alarm probability being: 

pea (ul, u3) = 
fo- 

exPL 
T9ü2 3)l P(u2Iui, u3) due ... (6.20) 

where p(u2iul, u3) = p(ul, u2, u3)/p(ul, u3), where p(ul, u2, u3) and p(ul, u3) are given by 

eqns. (6.18) and (6.8) respectively. Inversion of the solution to (6.20) gives the function 
T(ul; u3). The detection probability on a target with power Pt and signal to clutter ratio 
(SCR) So = Pr/2µv is obtained from: 

T(ui, us) Pa = exp[µu2 
+ Pt 

l p(u21ui, u3)P(ul, u3) dug dul dui 

0o0 
9M 

exP[ 
T(ul, u3) 1 P(ul, u3) dul dui 

2vµ(1 + So) 
0 

fo- 

where p(ul, u3) = p(ullu3)p(u3); p(ujIu3) is obtained from eqn. (6.7); p(u3) is gamma 
distributed with shape parameter v and scale parameter 0=2, and p 13 = p? 2. 

Eqns. (6.20) and (6.21) have been evaluated for sample values of v and Pfa and results are 
illustrated in Fig. 6.3 for Pd = 50 % and Pfa =10-6 and Pfa =10-4. It is evident that several 
dBs of gain relative to the case for an uncorrelated modulation process are achievable for 
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moderate to high values of p. 
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Fig. 6.3: Ideal detection loss in spatially correlated clutter 
a) p fa = 10-6 b) P fa = 10-4 (Pd = 50%; V=0.5) 

6.5 CFAR DETECTION IN SPATIALLY CORRELATED CLUTTER 

For ideal detection it was assumed that the values of the modulation process in the cells on 

either side of the test cell (ie. ul and u3), the overall scale parameter µ, and the values of p 

and v are precisely known. In a CFAR processor, some or all of these quantities have to be 

adaptively estimated from a limited number of samples. This is optimally achieved through 
deriving implementations of classic estimation techniques such as Minimum Mean Square 

Error (MMSE) or Maximum Likelihood (ML) estimators to estimate the values of the 

modulation process in the cells adjacent to the test cell. One analytically tractable solution is 

to impose a linear constraint on the structure of an MMSE estimator. This yields an optimal 
filter for a correlated stochastic process in multiplicative Rayleigh or exponential noise. The 

coefficients of the resulting filter depend on the value of p; in this thesis we first assume 

that p is explicitly known, and thereafter assume that it is estimated from a finite number of 
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samples, with the effects of the consequent error being discussed. The estimation of v is 

not considered here; it is assumed to be provided from an external source. The effects of 
errors in the assumed value of v have been addressed in the previous chapter. 

6.5.1 Derivation of the Weights for the Linear MMSE Filter for 
Multiplicative Noise. 

Adaptive CFAR processors attempt to estimate the mean value of the Rayleigh (or 

exponentially) distributed signal in the test cell, which is multiplied by a threshold factor a 
to give the desired Pfa. This is a simple matter if the signals in the reference cells have the 
same mean as in the test cell, or if a few reference cells are corrupted by non-representative 
samples, as assumed in the previous chapter. If, however, the mean value of the back- 

ground signal is a random variable with arbitrary ACF, these methods suffer performance 
degradation. In situations where the spatially correlated K-clutter model applies, the mean 
value of the clutter is a correlated stochastic process, ie. the modulation process, corrupted 
by multiplicative speckle. We therefore need to derive an "optimal" filter for estimating a 
random quantity when the observations are corrupted by multiplicative exponential or 
Rayleigh noise. 

We derive, from classic Wiener filter theory, the linear MMSE filter for the clutter power 
process, since this yields a simpler detection performance analysis than the voltage case. 
Identical principles would, however, apply if filtering of the clutter voltage process was 
required. For a clutter power return y= us, we wish to obtain an estimate ü of u through a 
weighted linear combination of N adjacent samples y; of y, ie.: 

N/2 

ui= hjyi-i ho=0 
j- -Nn 

-1 N/2 
_ hj yi+j+ hjyi+j 

j=-NR j=1 
... (6.22) 

Since h_j = hj we only need find the required weights hj for j=1 to N/2. These are 
determined through through differentiating the expected value of the mean square error with 
respect to hi, equating the result to 0, and solving for the hi in terms of the ACFs of u and s 
ie. if c=u-ü is the estimation error, then we solve E(e. y;. k) = 0, ie.: 

a[E(E2)1 
_ 

a(E2) 
=r 

aE1 Nn 

ah ah 2E[ e ah ]= 2E[eyi-kl =2(ý hjyi j- ui)yi-j =U 
kk`k j_' 
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N/2 
hj Y 

Yi-j Yi-k- Ui = Ejui-j Ui-k Si-k] 
j=1 

and since y=us, exploiting the independence between u and s gives N/2 equations of the 
form: 

N 
hj RSS(j - k). R,, uG - k) = NRuu(k) k =1... N/2 

... 
(6.23) 

j=t 

This can be written in matrix form as: 

h Rss©Ruu=µg ... (6.24a) 

which is solved using the usual matrix methods, where 0 represents an element-by- 

element product and 

h= [hl, h2, .... hN/2]T 

g= [Rýu(1), Ruý(2), .... Rýu(N/2)]T 

2p2 µ2 ... µ2 
Ru= µ2 2g2 

µ2 
2 ... µ2 2g2 

Ruu(O) Ruu(l) ... Ruu(N/2-1) 
Ruu = Ruu(1) Ruu(O) 

Ruu(1) 

Ruu(N/2-1) ... Ruu(l) Ruu(N/2-1) ... (6.24b) 
?G 

The resulting CFAR processor for detection in spatially correlated K-distributed clutter has 

the structure illustrated in Fig. 6.4. For want of a better name it is termed the Optimal 

Linear Filter (OLF) CFAR processor. The block labelled "estimate p" is described later in 

section 6.5.3. Note that for r=O and r=1 eqn. (6.24a) gives all the weights as equal, as 

would be expected, and the processor is equivalent to the CA processor. 
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ON$ 

Fig. 6.4: OLF-CFAR Processor Block Diagram 

6.5.2 Determination of Threshold Settings. 

We wish to determine the value of the threshold multiplier a required to achieve the desired 

mean Pfa. Given uo, the value of the modulation process in the test cell, and ü, as defined 
by eqn. (6.22), then: 

Pfa(uo, ü) = exp[-(aü)/(µuo)] 

Since äIµ is a random variable, we have: 

... (6.25) 

= Pfa(uo, a) = exp[- (xu ]. pý/µ(üý. dü = N/µ(-) ... (6.26) 
fo- 

where My/µ(- -) is the MGF of ü/µµ at ''OVuo. Noting that the exponential speckle si can be 

written as si = µs';, where s' is a unit mean negative exponential variate, ü/µ can be written 
as: 

0% N2 
IL 

_ 
ý- 

±2 
hi µs'i ui = hi sei ui 

µ9i= 
-N! 2 i= -N/2 

... (6.27) 

where hp = 0. So ü/µ is the sum of N independent weighted exponential variables, with 

weights h; ui, which can be shown to have MGF given by 
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N/2 
M(t)=1 Jn [ hut] 

... (6.28) 
N 

from which 

N/2 
Mü(--)_ [1]... (6.29) 

P. U0 i= -Nn 
1- hlui a 

Then, exploiting the Markov property of u, recalling that the marginal PDFs of u are 
gamma distributed with shape parameter v and scale parameter 0=2, and using eqn. (6.7), 

the expected value of Pfa over all ui and uo is: 

Pea = 
fo- f. 

jyßµ( ) pu 1,4, (u luo) Pu,, (uo) du duo 

jr [e(uo; a)12 exp[ -uo(1 p2)] duo ... (6.30) 2 -a i)P wý2v+Nr(v) 1-p (1- P 
where u represents the vector (ul, u2... uNn}, du represents duldu2... duNn, and 

O(uo, a) = exp[=1{uNa + (1+p2)(ul+... +uN/2))] 
fu 

2(1-p) 

IV-l( ) 
11 [ 1-Au? 

]du 
... (6.31) 

ial 1 

where Ai = h; a/uo. O(uo, a) can be solved numerically by decomposing it into N/2 nested 
single integrals rather than a single multiple integral, as follows: 

e(uo, (x) =+ 
Iv-t(C uout exp[(1+p2)2 t. 

Iwt(o utu2 exp[(1+p2)Z 
U2, 

.. 1+Atut 2(1-p) 

fo 

1+A2u2 2(1-p) o 0 
w 

0 

Iv-1(C um-gum-1 
eX [(1+p2) um. 11 

1+Am-lum-1 p 
2(1-p2) 

X0 Iv-1(e um-lum u(m-1)/2 exp[ý ] dumdum. l ... 
du2dul 

1+Amum 2(1_p2) 

... (6.32) 

where c=p (1-p2)-' and m =N/2. 

Thus eqn. (6.30) gives Pfa as a function of a, from which the required value of a can be 
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determined as a function of the correlation of the modulation process. Having determined 

the required value of a, detection probabilities are calculated as follows: for a target of 
power Pt and mean SCNR So = Pt/2µv, given uo and ü, the detection probability is 

Taking expected values over uo and ü, the overall detection probability is obtained in 

exactly the same manner as Pfa above, except that Ai in eqn. (6.31) is instead given by : 

6.5.3 Estimation of the Correlation Coefficient. 

The value of p affects the required value of a and the consequent false alarm and detection 

probabilities. Absence of a priori knowledge of p and spatial variations in p therefore 

necessitate real time estimation of the its local value. If the estimate p is distributed 
. ft 

according to a pdf pP(p), then the overall value of Ppa is given by: 

Pfa = Pfa[ai"a(P)]"P"p(P) dp 
fo 

where P fa[al. a(p)] is the false alarm probability given a (which is in turn a function of the 

estimated value of p), and al, an additional multiplier factor used to maintain the desired 

Pfa. The lower the variance of p, the lower al and the additional loss will be. Since 
E(xi. xi+l) and E(yi. yi+l) are monotonically increasing functions of p, we can instead 

estimate either of these quantities and then deterministically relate that estimate to p. 
Mathematically rigorous minimum variance or maximum likelihood estimators of p have 

not been successfully formulated. Several intuitively derived estimators of p have been 
investigated, in which p in range bin i and on pulse j is derived from estimates of either 
E(xixi+j) or E(yiyi+i), ie.: 

Pd(uo; *u'*) = exp[ -au ]= exp[ -cc (i-)] ... (6.33) 
µuo + Pt uo + 2vSo µ 

Ai = ah' 
... (6.34) 

uo + 2vS0 

... (6.35) 

Pi., j =. fx (E(xixi+l)) 

or 
Pi. i =fy (E(YiYiti)) 

... (6.36) 

where fx(. ) is the inverse of eqn (6.19) with m=1/2 (for which a numerical solution is 

required), and fy(. ) is the inverse of eqn (6.19) with m=1, which is analytically simple. It 

has been found by simulation that the estimator which yields the lowest value of at and 
hence the lowest eventual detection loss is: 
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Nr 
N; -1 Xi+m, j-k"Xi+m+l, j-k 

B(XX) _L 
[m=. Nr 

Nr ... (6.37) 
k =O XI mj-k 

m-N, 

where L[z] =z zmin :5Z:! 5 zmax 

= zmm z< zmin 

... (6.38) =zz> zmax 

where zmax and zm; n are the maximum and minimum values of z for Nr-º 0, given by: 

E(x; xj)Ip=1 E(u2)E(s)2 E(s)2 it Zrnax = E(x2) = E(x2) ° E(s2) =4 

E(xcx_)_P_o 
__ 

E(x)2 n[r(v+1/z)]2 Zmin = E(x2) E(x2) 4v[r(v)]2 ... (6.39) 

and xi j is the sample in the ith range bin on the jth pulse 
Nr is the number of reference cells used for estimating p (which need not be the 

same as N, the number of reference cells used for estimating u) 
Ni is the number of pulses available for estimating p 

A functional block diagram of a practical implementation of the estimator of p defined 

above is illustrated in Fig. 6.5. 

A closed form expression for the PDF of p has not been found. It has therefore been 

obtained by simulation for selected values of p, Nr and Ni. The number of trials necessary 
was determined by running the simulation 5 times for each set of parameters, with 
sufficient trials per simulation to ensure that the loss results did not differ by more than 0.1 
dB. The average of the 5 simulations was then used for the calculation of final results 
illustrated in the next section. 

Detection performance was calculated by substituting the simulated PDF of p into eqn. 
(6.35) for a range of values of al, determining the value of al required to maintain the 
desired value of Pfa, and substituting the compound threshold multiplier aal for a in eqns. 
(6.33) and (6.34) for detection performance analysis. The additional fluctuation introduced 

to the test statistic by estimation of p has negligible effect on detection performance and has 

therefore been neglected. Results are presented in the next section. 
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Fig. 6.5: Block diagram of Estimator of Spatial Correlation 

6.5.4 Detection Performance Results 

We define CFAR loss as the difference between the SCR required for a given probability of 
detection using the CFAR detector, including the effects of estimating p, and the SCR 

required for ideal detection (discussed in section 6.3) in clutter with the same spatial 
correlation and shape parameter, as given in Fig. 6.3. Sample results are illustrated in Fig. 
6.6 for v =0.5, N=16, and Pd = 50%, for various values of Ni and Nr. The curve 
representing the CA detector represents the case where the threshold is not adapted 
according to the local value of p. 

It can be seen from Fig. 6.6 that CFAR loss can be reduced by about 2 to 4 dB for 

moderate to high spatial correlation. It is evident that on-line estimation of p does not 
dramatically increase the CFAR loss even for N; =1 and Nr=50. Also note that despite the 
fact that CFAR loss increases with increasing p, the SCR required for detection decreases: 

the loss illustrated above is relative to the ideal detector which has SCR decrease faster than 

the loss increases for increasing p. The reduction in the SCR required for Pd=50% and 
Pfa=10-6 achieved by the OLF-CFAR processor relative to CA-CFAR detection in 

uncorrelated clutter is tabulated in Table 6.1. 
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Table 6.1 

OLF-CFAR Processor Gain Relative to CA Processor 
in uncorrelated clutter 

(N=16, Pd = 50%; P fa = 10-6, V=0.5) 
Ni=1; Nr=50 Ni=4; Nr=50 N; =8; Nr=100 p known 

pß. 3 0000 
pß. 6 0.9 1.0 1.2 1.3 
pß. 8 2.0 2.2 2.5 2.7 
pß. 9 3.1 3.4 3.6 3.8 
P=0.95 3.6 4.2 4.8 5.0 

1A . 

9. 

6. 

N 7. 
0 J 6. 
z 0 
H- U 
w 4. 
w 
0 

3. 

2. 

1. 

0. 

OLF 
1+ . +----+----+ CA ' 

a 
b 

Pfa - i. e- 

Pfa - i. e- 

.1 .2 .3 .4 .5 .6 .7 .8 .91. 
CORRELATION COEFFICIENT p 

0 

Fig. 6.6: CFAR Loss as a function of p for CA and OLF processors 
(N=16, Pd = 50%; Pia = 10-6, v=0.5) 

a) N, =1; N, =50 b) Ni=4; N1=50 c) Ni=8; Nr=100 i$ p known exactly 

6.5.5 Discussion 
It is evident that moderate gains can be achieved by the OLF processor if the clutter exhibits 

significant spatial correlation. These results are based on the assumption of an exponential 

spatial ACF of the clutter; this represents a fairly pessimistic case (possibly representative 

of choppy seas) and other ACFs, such as Gaussian, are expected to enhance the relative 

performance of the OLF Processor. Unfortunately analytic or numerical evaluation of 
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performance in clutter with spatial ACFs other than exponential is not possible since they 
cannot be represented by first order Markov models, and the multiple integral O(uo, a) in 

eqns. (6.30) and (6.31) cannot be decomposed into N/2 nested integrals. Exploitation of 
other ACFs would also require estimation of more correlation terms than simply pi, i+1" 
Formulation and analysis of appropriate estimators is difficult. In practice either multiple 
lookup tables or real-time filter weight calculation would be required. 

It is evident from fig. 6.6 that there is relatively high CFAR loss for high values of p, 
indicating the potential for a further saving of several dBs for high p. The high CFAR loss 
is probably a consequence of the linear constraint on the estimator of the modulation 
process. Non-linear techniques based on Bayesian estimation of the modulation process, 
given the clutter samples and the modulation and speckle conditional pdfs, appear to offer a 
promising means of reducing the CFAR loss. 

It is worth noting that the main contribution to the improved performance of the OLF- 

processor is due to estimating p and adapting the threshold accordingly; this accounts for 

about 75% of the dB value of the improvement. The use of an optimally weighted rather 
than an unweighted estimate only accounts for about 25% of the reduction in CFAR loss. 
Again, other ACFs than exponential are likely to increase the effect of optimal weighting. 

Methods of reducing the sensitivity of the processor to extraneous targets need to be 

addressed. This applies to both the estimator of p and the optimally weighted estimator of 
the modulation process in the test cell. If censoring of the largest samples, as in the CMLD 

processor, is used in the optimally weighted estimator of uo, a different set of weights 
would, theoretically, be required for each permutation of censored samples. Simplifications 

are not immediately obvious and it is unclear how optimally weighted estimators will 
behave if some samples are censored and the weights are not correctly modified. It can be 

noted that increases in Pfa due to non-stationary clutter are expected to be somewhat 
counteracted by the fact that clutter edges will effectively reduce the estimate of the local 

spatial correlation, thereby increasing the threshold in the region of the clutter edge. 

6.6 CONCLUSIONS 

The performance of conventional CFAR processors has been examined in completely 
spatially correlated clutter. It has been shown that under these conditions a reduction in 
detection loss of more than 10 dB is possible relative to the spatially uncorrelated case, in 

even moderately spiky clutter. This indicates that spatial correlation may offer the basis for 
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reducing CFAR loss in more realistic conditions of partial spatial correlation. 

A model for spatially correlated K-distributed clutter of arbitrary spatial ACF has been 

presented. The modulation process is generated as the sum of the squares of a number of 
independent ZMG processes, followed by a non-linear transformation to obtain a gamma 
distributed process of arbitrary v. A key advantage of this intuitively simple model over 
previous models is that the spatial correlation is introduced to Gaussian processes, thus 
enabling any required ACF to be obtained by well established linear filtering techniques, 
while simultaneously maintaining a gamma distribution for the resulting process. The 

strictly K-distributed clutter is obtained by multiplying the spatially correlated modulation 
with the speckle, onto which the desired doppler spectrum has been imposed. The model 
has particular analytic benefits in that leads to usable expressions for the multivariate PDFs 

and ACFs of the modulation and clutter processes. 

Based on this model ideal detection performance in spatially correlated clutter has been 

analysed to ascertain an upper bound on CFAR detection performance in spatially 
correlated clutter. It is apparent that a potential benefit of several dBs is possible if the 
CFAR processor is designed to exploit the spatial correlation and if improved estimates of 
the modulation process can be obtained. 

A CFAR processor has been formulated and analysed in which spatial correlation is 

exploited through real time estimation of the local value of the spatial correlation coefficient 
p with corresponding adaptation of the threshold multiplier factor a. In order to improve 

the estimate of the modulation process in the test cell a linear MMSE estimator of the 
modulation process has been derived, with weights dependent on the clutter's spatial ACF. 
It has been shown that under conditions of moderate to high spatial correlation with 
exponential ACF, a reduction of 1 to 5 dB is possible in the SCR required for a specified 
Pd and Pfa. More dramatic reductions are predicted for clutter with a Gaussian spatial ACF. 

It is concluded that the OLF-CFAR processor represents a promising technique for 
improving detection performance in spiky sea clutter, subject to the requirements that the 
spatial extent of targets of interest is less than the correlation distance of the clutter, and that 
the radar has sufficiently fine range resolution to exploit whatever spatial correlation may be 

present. Should these conditions not be met, improved detection performance in spiky 
clutter will require other processing techniques in which the modulation process in the 

range-reference window does not form the sole basis of the detection hypothesis test. 
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CHAPTER 7 

MULTI-BURST RANGE-DOPPLER CFAR PROCESSING 
IN SPATIALLY UNCORRELATED K-DISTRIBUTED 

CLUTTER 

7.1 RATIONALE 

The CFAR processors examined thus far in this thesis have all relied on the assumption 
that the mean background level in the test range bin can to some extent be determined 
from that in a number of surrounding range bins. The collapse of this assumption in 

spiky clutter results in the severe losses noted in previous Chapters, even if the spikiness 
is homogeneous. Non-homogeneous clutter, such as partially shadowed land clutter or 
urban clutter, could cause even more catastrophic deteriorations in performance. The key 

weakness in conventional CFAR processors can therefore be identified as the reliance on 
surrounding range bins as the sole source of information for estimating the background in 

the test cell in order to establish the threshold. Exploitation of the two other domains in 

which potential reference data is available, namely the doppler and time domains, is 

therefore investigated in this Chapter. 

Consider first the time domain: post-detection binary integration of conventionally 
detected signals in K-clutter has been shown to offer modest benefits at best (eg. Watts, 
1985). Clutter maps (eg. Lops, 1989), updated every scan of the radar, offer a form of 
range-referenceless CFAR processing, and are indeed probably the best option in many 
static radars in slowly changing environments. However, the inherently low update rate 
of threshold data largely precludes their use in mobile systems, in environments where 
the local clutter amplitude fluctuates at a rate faster than the radar scan rate or frame time 
(such as with sea clutter for typical search and acquisition radars), or in many types of 
radar which cannot afford long clutter map settling times after activation, such as tracking 

radars during auto-acquisition phases. More optimal utilisation of multiple bursts by pre- 
detection non-coherent integration is also not an attractive solution since 1) this precludes 
the possibility of subsequent velocity ambiguity resolution, and 2) targets, which fall in a 
different doppler bin on each burst, will not be integrated. False alarm control 
downstream by Track While Scan processing is not an ideal solution as it can cause 
saturation of the plot extractor and missed or corrupted true tracks. 
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The doppler domain only appears to have been exploited to date in simple range-doppler 
CFAR processors, essentially 2-dimensional versions of the standard CA processor. It is 
immediately evident that such processors are only effective in environments in which the 
spectrum of the background is essentially flat over the doppler space or partitions thereof, 
otherwise strong doppler components cause masking of smaller targets in adjacent 
dopplers in which the targets would normally be visible. This limitation precludes simple 
range-doppler CA techniques from being used in most practical radar systems. 

The objective of this Chapter was therefore to formulate a means of exploiting informa- 

tion from other time and/or doppler bins in the vicinity of the test cell to ascertain the 
background level in the test cell, in radars employing doppler filter banks and multiple 
bursts per dwell. Current radars often comprise single-doppler CFAR processors, 
followed by OR selection logic between dopplers on each burst, followed by MIN binary 
integration over the N bursts. In this Chapter a variation of this architecture is presented. 
We take as a point of departure that: 

1) In order to reduce susceptibility of the processor to spiky clutter, the test statistic 
must be derived primarily from samples in the same range cell as the test sample. 

2) Several doppler bins are available in each range cell, and on each burst. The type 

of filter implemented is unimportant provided several essentially non-overlapping 
doppler bins are created. The CFAR processor presented in this Chapter is 

therefore not applicable to systems employing MTI or AMTI doppler processors. 
3) Each detection opportunity (ie. the radar dwell) consists of more than one burst, 

typically three to eight. It is assumed that the target and clutter speckle are 
decorrelated between bursts by frequency agility. 

4) The underlying clutter modulation is assumed to remain constant over all bursts 

within a dwell. This requires that 1) the radar is range-unambiguous or employs a 
constant PRF waveform if range-ambiguous clutter is present, and 2) the decorre- 
lation time of the clutter modulation process is longer than the radar dwell. This 
latter assumption is reasonable for most radars and clutter environments. 

Two main observations can then be made in formulating a Range-Doppler-Time CFAR 

processor. Firstly, the reference samples are now drawn from other burst and doppler 

bins in the same range bin as the test cell (and in fact including the test cell, as will be 

shown later). If a target is present it will cause returns in one doppler on each burst, and a 
simple average of the reference samples over doppler and bursts would include some 
target returns, which would increase the threshold and prevent a detection of the target 

return in the test cell. Measures therefore need to be taken to prevent target self-masking. 
This is attempted here by the use of order statistics in setting the threshold, the rationale 
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being that the relative immunity of order statistic filters to outliers will provide the 
required threshold robustness against the relatively small number of target returns. 

Secondly, to overcome the problem of doppler bins containing strong clutter from 

masking weaker targets in other doppler bins, the samples in each doppler bin need to be 

normalised such that all reference samples used to generate the threshold have the same 

. 
power, irrespective of the actual clutter power in each doppler. The appropriate power 
normalisation terms need to be adaptively estimated; they could either be estimated from 

surrounding range bins, or from scan-scan estimation as in a clutter map. Ideally the 

errors involved in adaptive power normalisation should not depend on clutter spikiness. 
In this Chapter an implementation of the former range-acting approach is proposed and 
evaluated. Scan-scan derived estimation has not been investigated further here since it 

could be achieved by translation of the range-acting algorithm, with minor modification, 
into the scan-scan domain. Furthermore, from a performance point of view, only the 

statistics of the errors in the power normalisation terms are of interest, not the source of 
the estimate. 

The functional block diagram of a CFAR processor conforming to the abovementioned 
requirements is outlined in Fig. 7.1. This processor will be termed a Range-Doppler- 
Time (RDT) CFAR processor. It can be seen that the range-acting aspect of the processor 
affects the threshold only in a secondary manner, via the estimated power normalisation 
terms. In addition, the estimation accuracy of the power normalisation terms is shown 
later in this Chapter to be independent of the clutter modulation process. These two 
features provide the RDT processor with a large measure of immunity to clutter 
spikiness. However, as with any range-acting estimator, the power normalisation section 
of the processor relies on spatial stationarity of the parameter being estimated - in this 
case the clutter spectrum - and would suffer a deterioration in performance in spectrally 
fluctuating clutter. A variant of this range-doppler-time processor is therefore presented in 

section 7.4; this processor derives the threshold from samples only in the same doppler 
bin as the test cell, thereby obviating assumptions of spectral stationarity, at the expense 
of increased loss in thermal noise and subject to not unreasonable lower limits on the 

number of bursts employed. 
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The rest of this Chapter is organised as follows: The ideal case assuming perfect power 
normalisation is considered next in section 7.2 to establish an upper bound on the perfor- 
mance of the RDT processor, and confirm that it is a promising area for further investi- 

gation. Thereafter the more practical case of adaptive power normalisation is examined in 

section 7.3: the statistics of the errors in the power normalisation terms are determined 

and their effect on false alarm rate and detection performance is evaluated. Results are 
presented for a number of cases and the performance is compared to that of conventional 
processors. Deterioration in false alarm performance in spectrally non-homogeneous 
clutter is investigated. As a solution to this problem the modified processor using only the 
test doppler in setting the threshold, termed the S-CFAR, is presented in the following 

section, ie. section 7.4. An example is presented to illustrate the superiority of the 8- 
CFAR processor proposed here over conventional processors, when using realistic radar 
system parameters. A Summary and some conclusions are presented in section 7.5. 

7.2 IDEAL CASE: PERFECT POWER NORMALISATION 

In this section we assume perfect power normalisation of each doppler in order to 
determine an upper limit on the performance achievable by a RDT-CFAR processor. That 
is, we assume that there is no error between the outputs of the power normalisation 
estimator of Fig 7.1 and the true background power in each doppler. This represents the 
situation where the number of range reference cells covered by the RDT processor tends 
to infinity and the uncorrupted background is spectrally homogeneous. 

The assumption that all dopplers have been perfectly gain normalised implies that the 
background in each of the doppler bins on each burst is iid. unit mean exponential noise. 
We take as the estimator of the background power the roth largest of the NK burst- 
doppler samples in the test range cell. This sample will be termed the test statistic, and 
the detection threshold is set at a constant a times the test statistic. Under the target absent 
hypothesis a false alarm will occur if at least one of the doppler bins in a burst exceeds 
the threshold, on at least M out of the N bursts. That is, we perform a logical OR 

operation over doppler followed by conventional M/N detection over the bursts. 

The performance analysis comprises four main parts, namely: 
1) Determining the probability that some of the burst-doppler samples in the test 

range cell will exceed the threshold and cause or contribute to a false alarm. 
2) Given a certain number of exceedances, calculating the probability of a false alarm 

following ORing over doppler and M/N binary integration over N bursts. 
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3) Combination of parts (1) and (2) above to yield the expected Pfa alarm given the 

threshold multiplier factor a, and inversion of the resulting relationship to give 
the value of a required for the desired Pfa. 

4) Calculating the detection probability as a function of SCNR using the the value of 

a obtained above. Solution of the inverse function for Pd = 50% can then yield 
the detection loss relative to the ideal detector. 

These four components of the analysis are described in the following subsections. 

7.2.1 Probability of an exceedance 
The overall probability of false alarm depends on the probability of a number q of the NK 

reference samples exceeding the threshold. The probability of having q samples which 

exceed the threshold, or exceedances, is derived from the joint order statistic xro; xs (ro < 

s) of the ordered reference samples. If xs z ctxro, then at least NK-s+1 of the reference 

samples exceed the threshold, ie. given s, we have prob[q ; -> NK-s+l] = prob[xg 2 ctxrJ. 
For samples independently drawn from a parent population with common PDF p(x) and 
CDF P(x), the joint PDF of the order statistics xro and xs is given by (David, 1981): 

P(xr; Xs) _ (r-1)! (s-r 
lj! 

(NK-s)! 
[P(Xr)]r-1P(Xr)[P(Xs) - P(Xr)]s-r-tp(Xs)[1- P(xs)]NK-s 

... (7.1) 

Then setting p(x) = e-x, P(x) =1- e-x, eqn. (7.1) becomes: 

P(Xr; Xs) = kl (1 - e-xr)r-1 [e-x. - e-x1]s-r-1 e-xr - x. (1 + NK - s) ... (7.2) 

where kl = 
NK 

(r-1)! (s-r-1)! (NK-s)! 

Setting z= xr/xs gives pz(z) = k1 Jo xr Pr, s(xr: ZXr) dxr, and so: 

rr 
(z) dz prob(z > (x) = p, 

= kl 

J fo, Xe-x(s-r) - xz(1+NK-s) [1-e-x]r-1 [1-e-zx+x]s-r-1 dx dz (%. 3) 

a 

Changing the order of integration and substituting w= e-z, after some manipulation we 

get: 
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s-r-1 
p(z>a) = k1 (_1)i (s-r-1 

exp[-x(s-r-i+(x(1+NK-s+i))] [1 - e-X]r-1 dx i 1+NK-s+i o i_ ol 
.. (7.4) 

Making the substitution y= e-x, and manipulating into a form suitable for using 
Gradshteyn identity 3.191.3 (Gradshteyn, 1980) finally gives: 

s-r-1 

... (7.5) p(z>a) = k1 (_1)i ( s-r-1 )I ns-r-i + a(1+NK-s+i)) IF(r) 

01i 1+NK-s+i r(s-i + a(1+NK-s+i)) 

The probability of 0 exceedances is then 
p(q=0) =1- p(zza)Is=NK 

and 
P(Z; ->a)Is=NK = P(q? 1) 

= probability of at least one exceedance 
= P(q=1) or p(q=2) or p(q=3) ... 
= P(q=1) + p(q=2) + p(q=3) +... 

P(zý-'a)is=NK-1 = P(qý2) 

+ ... = P(9=2) + p(q=3) + p(q=4) 

and so on. Solving for p(q=1), p(q=2) etc. then gives: 

... (7.6a) 

P(q=1) = P(Z? a)Is=NK P( a)Is=NK-1 

p(q=2) = P(z>a)Is=NK-1- P(z? a)Is=NK-2 

- ... (7.6b) 
p(q=NK-r) = p(zz(x)Is=r+1 

The desired PDF pq(q) for the number of exceedances is therefore obtained from eqns. 
(7.6a) and (7.6b), which are in turn obtained from (7.5). Due to the processor 
architecture it is apparent that the location of each exceedance is independent and 
uniformly random over N and K. 

7.2.2 Probability of a false alarm, given q exceedances 
Given pq(q) it is now necessary to derive Pfa over the K doppler bins and N bursts. The 
key question now is how many bursts have at least one exceedance among the K 
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dopplers? To solve this problem we resort to occupancy theory, in whose terms the 
problem is one of drawing "balls" (the exceedances) from a population in an urn 
containing K balls of each of the N colours (the NK doppler- burst reference cells). If q 
balls are randomly drawn from the urn we wish to know how many balls of each colour 
have been drawn (ie. how many exceedances in each burst). Note that this represents 
sampling without replacement since each burst-doppler cell can contain only one 
exceedance. 

From discrete probability theory it is known that if nj, n2, n3 .. nN are the numbers of 
balls of each colour drawn from the urn, then the distribution of n1, n2, n3 .. nN is a 
multivariate hypergeometric distribution (Johnson, 1969). 

We are interested in the number of bursts containing at least one exceedance, ie. the 
number of colours of balls of which at least one is drawn from the urn. Equivalently we 
can seek the number of colours of balls of which no samples are drawn from the urn. 
This can be obtained from the multivariate hypergeometric class size distribution (Patil, 
1968), described by: 

Ný 
(K(Kyl... (K)nq 

P(no; nl; n2;...; nq) = 
nl! ... nq! NK ... (7.7) 

[no! q1 where no - the number of colours of which no balls were drawn 
ie. the number of bursts without exceedances 

nl the number of colours of which one ball was drawn 
ie. the number of bursts with one exceedance 

etc. 
and 

i 

n; = 0,1, ... S min(q/i; N) 

ni =N 

lni =q 

Then the PDF of the number of bursts with no exceedances is given by the marginal 
distribution of no, i. e. 

P(no) = P(no; nl; n2;...; nq) ... (7.8) 
nl. nz .. ny 
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where the summation is over all permutations of n1, n2, .. nq such that nl+n2+ .. +nq = 
N-n0 and n1+2n2+ .. qnq = q. Finally for M/N detection, the probability of false alarm 
given q is obtained as: 

Pfa(q) = probability that M or more of the N bursts contain an exceedance 
= probability that N-M or less bursts do not contain an exceedance 

N-M 
_I p(no J) ... (7.9) 

j=o 

7.2.3 Expected probability of false alarm 
Eqns. (7.8) and (7.9) are functions of q, the total number of exceedances, which is a 
random variable with PDF pq(q) defined by eqn. (7.5) earlier. Therefore, the expectation 
of false alarm probability is obtained from: 

NK-r 

p(no =j) = p(no =jlq) Pq(q) 
q=O 

... (7.10) 

and, noting that pq(q) is in fact a function of the threshold multiplier a, we finally get: 

N-M NK-r 
Pfa(a) =Y p(no jlq) Pq(gta) 

j =O q=o 
... (7.11) 

where p(no=jlq) is given by eqn. (7.8) and pq(gla) is given by eqns. (7.6) and (7.8). 

7.2.4 Probability of Detection 
Under the target-present hypothesis, namely Hl, assume that 1) only a single target is 

present in the test range bin, 2) the target spans only one cell in doppler, and 3) the target 
doppler varies randomly between bursts. Then the target return falls in exactly N of the 
NK burst-doppler bins, so that N bins contain exponential noise with PDF: 

Pax) =I 1+S ... (7.12a) 

where S is the instantaneous SCNR, and N(K-1) bins contain background with PDF: 

Px(x) = e"X ... (7.12b) 

Under these conditions the CDF of the rth order statistic is (Ghandi, 1988): 
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min(i, NK-N) 
(NK-N)(, 

--(N-i+L)xJl+s (1-e)L(1-e-xI1+s)ii=r 
L=ma(O; i-N) 

Px, (Xr)-j I 
L `' 

... (7.13) 

Ideally we should now derive the bivariate PDF Xs/xr. Unfortunately the analysis 
becomes intractable due to the form of p(xr; xs) under the two-class model, and more 
importantly the non-random selection of the burst doppler bin in which the target falls, 

since there is one target return in every burst. Therefore make the simplifying 
approximation that the value of xr is independent of the actual target samples received. 
Provided NK »N this will not introduce serious errors. We then note that the 
probability of an exceedance in any burst is given by the probability that the largest of the 
K doppler bins' samples in the burst will exceed the threshold. The PDF of the maximum 
sample of K samples, each with different PDF Pk(x) and CDF Pk(x), is given by (David, 
1981) as: 

K 
PK: K(X) = 

j] Pk(X) Pk(X) 

kk=1 k=1 
Pk(X) 

_ (1-e-X)K'2 [(K+1)(1-e-ýl+s)e-X 
+ (1"e-') el... (7.14) 

I+s 

Evaluation of the above indicates that for Sz 10 dB, there is negligible difference 
between (7.14) and the target PDF (7.12a) in the regions of interest. This allows the 
detection performance, given the threshold z= axr, to be approximated as: 

Pd(z) =Jz1e x/i+s dx ... (?. 15) 

Substituting axr = z, taking expectation with respect to xr, and changing the order of 
integration, then yields: 

Pd = Px, (xr) 1 C-ax, /1+s dxr 
... 

(7.16) 

0 

Substituting eqn. (7.13) for Pxr(xr) and setting e-xr =u gives: 

_ 
NK II 

1 

Pd = !, 
( N-r t(r) 

uN-r-Gl+ -1+S (1-u)L (1-u1/1+S)i-L du ... (7.17) 
i=r L`L)1. L 

I 1+S 

fo 

which is a function of S. Expanding the second binomial and using Gradshteyn relation 
3.191.3 then gives: 
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_ 
r(L+1)I'(N-r-Li r-i+ 

Pd(S) 
( N-r r l1ý i- 

_p 

ý i-L) I +S ý 11: 
i=r LL1 i-L J"j r-i+L+a+j F(N-r+1+ 

1+S 
) 

... (7.18) 

where the limits for L are as in eqn. (7.13). This is much simpler than the expression 
given by Ghandi (1988) which is a 4-fold summation, the inner two summations of 
which have more terms than the innermost summation in (7.18). 

Of major interest here is performance in spiky clutter. Note that eqn. (7.18) is a function 

of S, the instantaneous signal to clutter-plus-noise ratio. Since the clutter power is 

randomly modulated by a gamma distributed modulation process, S is also a random 
variable, defined by S= Sp/uo, where So is the target power and uo is the instantaneous 

value of the modulation process in the test range bin. If, without loss of generality, we let 
E(uo) = 1, then So represents the mean SCNR. The final result, namely the expected 
value of Pd as a function of So, is then obtained by substituting So/uo =S into (7.18) and 
integrating over the PDF of uo, ie: 

Pd(SO) = 
J0 

PP(üä) Puo(uo) duo ... (7.19) 

where puo(uo) is GAM(1/v; v) for negligible thermal noise. 

To summarise the performance analysis of the ideal case of perfect power normalisation: 
1) Pfa is obtained as a function of the threshold multiplier a, and the parameters M, 

N, K and rp, from eqn. (7.11), which is in turn obtained from eqns. (7.5) and 
(7.6) 

2) Inversion of the result prescribes the value of a required for the specified Pfa. 
3) The detection probability as a function of the instantaneous SCNR is obtained 

from eqn. (7.18). The expected detection probability in spiky clutter is obtained 
as a function of mean SCNR So from eqn. (7.19). 

4) The detection performance relative to an ideal detector is best examined by 

comparing the value of Sp required to achieve Pd = 50%. This is obtained by 

numerically inverting eqn (7.19). 

Sample results have been calculated for Pfa = 10-4 and the following system parameters: 
1) M=1 N=3 K=16 ro=32 
2) M=2 N=5 K=16 rp=53 
3) M=3 N=8 K=16 rp=86 
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4) M=1 N=3 K=8 rp=16 
5) M=2 N=5 K=8 rp=27 
6) M=3 N=8 K=8 ro=43 

They have been included in Fig. 7.2 along with results for non-ideal cases, and will be 
discussed in Section 7.3.5. 

7.3 ESTIMATION OF THE POWER NORMALISATION TERMS 

In this section the estimator of the power normalisation terms is described and the 
influence on detection performance of adaptive power normalisation is assessed. 

The normalisation processor is based on the assumption that the relative powers between 

the dopplers remains constant over the processor's range reference window. We 

therefore seek an estimator of the power in each doppler with which to normalise the 
samples in the dopplers in the test range cell. Two alternatives have been examined, 
namely: 

1) A standard Order Statistic mean level estimator acting independently on each 
doppler. 

2) An estimator based only the power ratios between dopplers 

The false alarm probability performance of the former approach was found to be sensitive 
to the degree of clutter spikiness (ie. the shape parameter v), albeit less dramatically than 
conventional CFAR processors. For this reason detection performance was not evaluated 
in any detail and the analysis of the former approach will not be included in this thesis. 

Some notation and the structure of the estimator of the power normalisation terms is 
defined in the next subsection. Thereafter the performance analysis follows similar 
principles to the ideal case, except that additional approximations are required. The 

performance analysis can be outlined as follows: 
1) Determining the PDF of the power normalisation terms. 
2) Determining the PDF of the power normalised samples in the test range bin. 
3) Determining the PDF of the test statistic 
4) Determining the PDF of the maximum sample in a burst under the target absent 

hypothesis 
5) Determining the probability that the maximum sample within a burst will exceed 

the threshold and cause or contribute to a false alarm, as a function of the 
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threshold multiplier a. 
6) Calculating the probability of a false alarm following M/N detection over N bursts 

as a function of a, and inversion of the result to give the necessary value of a for 

the prescribed Pfa. 
7) Determining the PDF of the maximum sample in a burst under the target present 

hypothesis 
8) Calculating the detection probability on each burst, and after MIN detection, as a 

function of instantaneous SCNR, using the the value of a obtained above. 
9) Calculating the expected detection probability as a function of the expected 

SCNR. Solution of the inverse function for Pd = 50% can then yield the detection 
loss relative to the ideal detector. 

7.3.1. Some notation and a description of the power normalisation 
processor 

The square-law detector output of the received sample in range bin m (1 S m:! 5 R), in 
doppler bin k (1 S k: 5 K), and on burst n (1 <_ n: 5 N) is denoted xmkn, which can be 

written as: 

Xmkn = UmYksmkn 

where 

... (7.20) 

smkn is the speckle in range-doppler-burst bin (m, k, n), and is iid. unit mean 
exponential noise for all m, k, n on the assumption of essentially non- 
overlapping doppler filters. 

yk is the mean power in the kth doppler bin, which is assumed invariant with 
range, and depends on the clutter spectrum and the filter response. 

UM is the modulation process (ie. the local clutter RCS) in the mth range bin. 
It is invariant with doppler (a property of K-clutter) and time (on the 

assumption that the correlation time of the modulation process is much 
longer than the radar dwell time), and is gamma distributed with mean 

value 1 and shape parameter v. 

Define the power ratio between doppler bins i and j as rij, ie. 

rij = T' 
Yj 

and define ym(i, j) as: 

... (?. 21) 
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N N 
I 

Xmin Ti Smin 

Ym(1, J) = n-1 = n=l (7.22) N N 
I 

Xmjn yj1: Smjn 

n=1 n=1 

Thus ym(i, j) can be seen to be an estimator of rij and is independent of um. The statistics 
of the modulation process, and hence the clutter spikiness, would therefore not affect an 
estimator of the power normalisation terms based on the ym(i, j). We therefore seek an 
estimator of the power normalisation term 1/ for each doppler k, based only on the 
Ym(1, J)" 

In order to determine the structure of the estimator, assume initially that the power ratios 
rij are known. Then define: 

K 

P=Y1+Y2+ ---- +YK= I Yk 
k=1 

... (7.23) 

[P as defined above represents the total power, however, its actual value does not in fact 

need to be determined since it appears in the result only as a scaling factor operating 
equally on all dopplers. Its value is therefore arbitrary and can be chosen to suit 
processing requirements and limitations. ] Dividing eqn. (7.23) by Pyj and substituting 
eqn. (7.21) gives: 

K 
rik 

Yk P 
i=1 

where, by definition, rü=1. 

... (7.24) 

It is now necessary to investigate the form of an estimator of the rij. We seek an estimator 
which has the following properties: - 

1) It should use all the available reference cell samples x, . 
2) It must be unbiased (ie. ECrij) = rij) 
3) It should be robust against contamination by non-representative samples in the 

reference window. 
4) It should have "minimum" variance. 

Rigorous Maximum Likelihood or Minimum Variance estimators are intractable for this 

problem and also are highly unlikely to provide any measure of immunity against non- 
representative samples in the reference window. Drawing on OS-CFAR knowledge of 
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previous Chapters, it is therefore proposed to use an estimator of the form: 

rij = aYrt: R (i, j) ... 
(7.25) 

That is, the estimate i; j is taken as the rlth largest sample of the R ordered values of 
ym(i, j). Such an estimator meets the requirements above, subject to the following notes: 

1) The choice of rl affects the variance of the estimate: higher values of rl tend to 

yield smaller estimation variance at the expense of reduced immunity to 

extraneous targets. In general rl is chosen in the range R/2: 5- rl <_ 3R/4. 
2) The constant term a in (7.25) is defined by a= E[yrl: R (i, j)I, =l] and ensures that 

the estimator is unbiased. It depends only on rl, R and N, and is therefore a 
priori known. 

3) ym(i, j) is defined as above in (7.22) in order to achieve minimum variance. It is 

easy to verify that the variance of the iii based on ym(i, j) as defined above in 
(7.22) is lower than would be achieved if averaging over the N bursts was 
performed after division between dopplers. 

Finally, substituting the estimator Ty for rij in (7.24) gives the estimator for the power 
normalisation terms 1/7k as: 

I° 
rik =I Pa Yri: R(l'k) Pa i_1 i_1 ... (7.26) 

A functional block diagram of the RDT processor illustrating the power normalisation 
estimator defined above is illustrated in Fig. 7.1. The notation and dimension of data at 
various points in the processor is included in the diagram. 

7.3.2. Statistics of the power normalisation terms 
The PDF of the power normalisation terms 1/yk obtained from eqn. (7.26) is now 
derived. The PDF of xmkn is negative exponential with mean umYk" The PDF of 

bmk = In Xmkn is therefore gamma distributed with shape parameter N and scale 
parameter umyk. It therefore follows that ym(i, j) is F-distributed (Johnson, 1969), ie.: 

Pym(i. i)(Y) = 
r(2N) yj 2 yN"1 (y; ý 

r 2x r(N)2 [1 + 
ýy] 

... (7.27) 

To get the PDF of the order statistic yrl: m(i; j) we first need the CDF of ym(i; j), simple 
expressions for which have not been found in the literature. By definition: 
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P(YmSy) = Iuw(N; N) 
... (7.28) 

where 

w_-YTJr 1+yYjj, 

and Iw(N; N) is an incomplete Beta function. But from David (1981) p. 8: 

n 
IP(y)(r, n-r+l) =I (i )[P(Y)] [1-P(Y)]n-i 

... (7.29) 
i=r 

and setting P(y) = Y/l+y; r=N; and n= N+N-1 = 2N-1, we then get: 

Y 1G 2N-1-i 
2N-1 

P(ym<y) _ 
(2N-1) 1-y 

i=N ' [1+! Lyj[ is Yi 

_-2N-1 

'ü 2N-1-i 

Y 
(2N-1) y)i 

[][i 

_ ... (7.30) 
('+) i=N i lY y lV 

From eqn. (7.25) arij is defined as the r1th out of R order statistic of the ym(i; j). Its PDF 

can be obtained as :- 

P.; q(r) =r( 
R) { 1-Py;; (r)]R-r [py;; ()]r. l Py;; n r 
r 

=r(R) 
I'(2N) Y' 

1N. 1 [ 1+Y'rj 1-R(2-1) 
r r(N)2 

I? 

i 

X 
N-1 2N-1 YL 

r 
R-r 2N"1 2N-1 Y j- r-1 

7.31) 
p lYi^1 =n 1p/ 

(Yiý 

=0 P 

This describes the marginal PDFs of each of the yri: R(i; j) terms in eqn. (7.26). Strictly 

speaking these terms are not independent, due to the same data series being used in the 
denominator in calculating the ym(i; j) m= L. R. The multivariate PDF is, unfortunately, 
not tractable. However, the resulting dependence is weak and can generally be ignored in 

analyses (David, 1981), even when averaging of the ym(i; j) is used as opposed to using 
order statistics. The use of order statistics to estimate E(ym(i; j)) will further reduce 
dependence between the yrl: R(i; j) (i; j=1... k) since the rth order statistic may correspond 
to a different range bin for each i and j. We therefore approximate the yr; R(i; j) as being 

independent with PDF as defined by eqn. (7.31). 
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To obtain the PDF of the power normalisation terms 1/yy recall from eqn. (7.26) that they 

are obtained as the summation over i of the yri: R(i; k). Hence the PDF of a'/ is obtained 
through convolution of the PDFs of yri: R(i; k) i=1 to K, given by eqn. (7.31); or through 

multiplication of their K characteristic functions followed by inverse fourier transfor- 

mation. Neither approach is feasible analytically. For reasons of computational efficiency 
the FFT approach has been used here. 

It can now be noted that the PDF of 1%yk, will vary according to the values of the yk's (ie. 

the clutter spectrum), since large rid in (7.26) will dominate the the summation and hence 

the estimate 1/yk. It is evident that the PDFs of the 1/yk are bounded by two extreme 

cases, namely where 1) all the Ws are equal, yielding the lowest estimation variance, and 
2) where one of the Ws is much greater than all the others and thus dominates the others 
in the summation of (7.26). This yields one 1/yk (corresponding to the the large yk) with 
low variance, while the other 1/yk's have higher variance. These two cases are considered 

separately below. 

a) all the yk's are equal 
As usual the characteristic function of yrj: R(i; j) is defined as 

(DrnRU)(t) = 
Jý Prn: a(i. k)(Y) eery dy ... (7.32) 

Then by eqn. (7.26) and the properties of characteristic functions, the characteristic 
function of aP/ is: 

K 
cD. p/n(t) _rj (D,,, Rc. k)(t) ... 

(7.33) 

i=1 

and the PDF of 1/y& is therefore: 

P1 "() =- (D ý k(t) e-JWa dt ... (7.34) X 2iaP- 

This is analytically intractable but has been implemented using fourier transforms. For 

practical reasons the characteristic function of the partial sum of eqn. (7.26) excluding ijj 

was computed and inverse fourier transformed, whereafter the PDF of ikk (a delta 

function at aP) was included by convolution. 

b) A single dominant yk. 
Arbitrarily choose doppler bin 1 as the dominant doppler, ie. y1 >> 7k, k=2,3�.. K. 
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Then, from eqn. (7.26): 

K 

_ ril 
Yl Pa i=1 

and 

... (7.35a) 

K 
1-' = 1rik Yri: R(l, k) 

2Sk5K 
P Pa .. (7.35b) 

Yk i=1 

The PDF of 1/yl is therefore calculated in exactly the same manner as when all the yk are 
equal. The PDF of 1/yk (k#l) is merely the PDF of yri: R(1, k) scaled by 1/Pa, given by 

eqn. (7.31). 

7.3.3. PDF of the test statistic and maxima within a burst 
We have thus far derived expressions for the PDF of the power normalisation terms. It is 

now necessary to determine the PDF of the threshold, and the probability of the power- 
normalised samples exceeding the threshold, thereby causing or contributing to a false 

alarm. 

The rigorous analysis used for calculating false alarm probability in the ideal case of 
perfect power normalisation relies on two assumptions, namely that: 

1) the samples in the NK burst-doppler bins in the test range cell are lid. 
2) they are exponentially distributed (this is enables the derivation of the closed form 

expression of eqn. (7.5)). 

For non-ideal cases the first assumption is violated since 1) the same 1/yk is used to 
normalise over all N bursts in each doppler, and 2) the PDFs of the 1/yk will not be 
identical if the yk are not equal. In such cases the bivariate PDF of two joint order 
statistics of the samples in the test range cell can only be expressed in terms of 
permanents (Vaughan, 1972; Minc, 1978); these are neither numerically nor analytically 
tractable for anything other than the two-class situation addressed by Ritcey (1986), 

which is of no use for the K-class situation of interest here. Furthermore, the exponential 
background in each cell is multiplied by a random variable with finite variance (in 

violation of the second assumption above for the ideal case), and so the expectation of the 

permanent expression with respect to the power normalisation terms would need to be 

calculated. This does not appear to be possible. 

In view of the intractability of the bivariate order statistic PDF of a K-class population, in 
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which the mean of each class is a (non-identically distributed) random variable, 
simplifying approximations are necessary. Two options have been investigated, namely: 

1) Assume that the 1/y are iid. (which is true if all yk are equal) and that the value of 
1/ within doppler k is independently drawn for each burst n=1... N. Then all 
the samples in the test range bin are iid and the ideal analysis can be used. 
Although this approximation has minimal effect on the threshold statistics, the 

exceedance probabilities are noticeably affected since the tails of the distribution 

are modified by the approximation. 

2) A reasonable approximation allowing the derivation of the bivariate PDF to be 
bypassed is to assume that the threshold estimator ( the rpth out of the NK ordered 
samples) is independent of the few largest samples, or exceedances, which cause 

a false alarm. Provided ro is not too large (say in the region NK/2 5 to 5 2NK/3) 

this approximation should not introduce significant inaccuracies due to the relative 
immunity of median processors and OS processors to outliers. The analysis of the 

threshold statistics and the exceedance statistics can now be separated, with more 

acceptable approximations being used: the PDF of the test statistic is based on 

approximation (1) given above, which is sufficiently accurate here since the tails 

of the distribution do not have strong influence on the test statistic PDF. The PDF 

of the exceedances in any burst can be calculated exactly with no further 

simplifications necessary, thus preserving the tails of the exceedance PDF. 

In view of the exact representation of the exceedance PDF the latter option was adopted 
for this analysis. The effects of the approximations are expected to be as follows: 

1) Approximation of independence of the test statistic and the exceedances: 
The effect is expected to be minor in view of the robustness of median filters in 

the presence of outliers. Nevertheless, there is a slight positive correlation 
between the exceedances and the threshold. Thus in cases where a few very large 

samples - potential exceedances - are present, the threshold will also be raised, 
thereby reducing the probability of false alarm, and allowing a lower threshold 

multiplier factor to be used. The true P fa would therefore be lower than predicted 
using this approximation, and the approximation can be considered to introduce a 

pessimistic bias to the analysis. 

2) Approximation of independence of the 1/ on each burst within a doppler. 
This assumption is made only in the calculation of the test statistic PDF. In effect 
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it reduces the variance of the test statistic since the effective number of 
independent samples from which the test statistic is derived is increased. The 

magnitude of errors introduced by this approximation are difficult to predict, but 

since the variance of the power normalisation terms is much less than that of the 
iid. exponential noise within a doppler with which it is multiplied, errors should 
not be very large. The approximation will, however, introduce an optimistic bias 

to the analysis since the assumed independence reduces the threshold variance, 
thus allowing a lower threshold multiplier to be used or yielding a lower Pfa than 
would actually be the case. 

3) Approximation that all the 1/yk are iid.: 
This assumption is also made only in the calculation of the test statistic PDF. 
Under conditions of all yk equal, the 1/yk are iid. and no approximation is 

required. When yl » y, 1/yl has lower variance than the other 1/Yk, (k = 
2... K). Therefore we approximate 1/yl as having the same PDF of the other 1/yk, 
(k = 2... K). This will introduce a slight pessimistic bias to the analysis when 71 
>>, &, since the variance of the test statistic will in fact be lower than predicted 
using this approximation. The error is expected to be small since only one of the 
K PDFs is modified by the approximation, and in the true situation the K-1 

estimates l/yk with broader PDF (the ones unmodified by the approximation) 
would dominate the PDF of the test statistic. 

Therefore the expected major approximation error will to some extent be counteracted by 

the other two approximation errors. Based on these approximations, the PDF of the test 
statistic and the exceedances can now be calculated. 

a) PDF of the test statistic. 
The received samples in the test range bin on each burst are normalised with the power 
normalisation terms 1/ corresponding to the doppler bin in question. The samples in 

the test range bin tkn (k indexes doppler, n indexes burst number) are therefore obtained 
as: 

tkn = 
X4ký 

= UO 
Z 

SOkn 
Yk Yk ... (7.36) 

The modulation process term up can henceforth be neglected for the false alarm rate 
analysis since it applies to all samples in the test range bin. Now define Ck =; for all 
W equal, all the Ek are iid. with E(ek) =1 and PDF defined by eqn. (7.34) scaled by y&. 
For. 'yj », the PDF of e1 is approximated by that of the other Ek, following which all 
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ek are iid. with E(Ek) =1 and PDF defined by (7.35), scaled by 'yk. Using the 
approximation that ek is independent for each burst n within a doppler, and dropping the 
k subscript on e, since all c are now assumed iid., the PDF of the samples in the test 
range cell is: 

Pc(t) = Jo ce-tp (E) de ... (7.37) 

which is easily solved numerically. If Pt(t) denotes the CDF of t, then the test statistic, 
taken as the rpth order statistic of the NK samples in the test range cell, has PDF given 
by: 

Pz(Z) = ro (t1) p (z) [Pt(Z)]ro-i [1 - Pt(Z)]NK-TO ... (7.38) 

b) PDF of the Maxima in any burst. 
The probability of having at least one exceedance in any burst is equivalent to the 
probability that the largest of the K dopplers' samples within that burst exceeds the 
threshold. The PDF of the maximum sample tmax of K samples tk, each with different 
PDF Pk(t) and CDF Pk(t), is given by (David, 1981): 

P6.0) = CJJ Pk(t)] Pk(`) 
... (7.39) 

k=1 k=1 k( ) 

Noting that tkn = £kuOsOkn, and dropping the n subscript (since we are now working 
within a single burst) and the modulation process teen uo (which applies to all samples in 

the test range cell), the PDFs Pk(t) and CDFs Pk(t) are given by: 

Pk(t) = Eke-ekc 

Pk(t) =1 e-ekt ... (7.40) 

Therefore 

Pt, . 
(t) =JJ. . 

I. p"(tIF-1, e2,... E k)Pei(el)Pe2(£2)""Pek(ek) delds2... dek ... (7.41) 

Substituting eqn. (7.40) into (7.39), and (7.34) or (7.35) and (7.39) into (7.40), 

changing the order of summation and integration, and some manipulation yields: 

KK 

Pm(t) _ [1a cke-Ekc p (ek)dCk] II Jo (1-e- t) Pe; (c )dj ... (?. 42) 
k=1 j=1 

j*k 
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and since all the c are üd. we get: 

(1-e ýh pe(g) de]Ký1 ... (7.43) pcm., ý(t) = K[JJ Ee-Et pe(e)de] [J. 

which is easily solved by numerical techniques. 

7.3.4. Probability of false alarm 
Having obtained the PDF of the test statistic pz(z) from eqn. (7.38) and the PDF of the 
maxima within a burst ptma, x(t) from eqn. (7.43), the probability of false alarm on any 
one burst is calculated as a function of the threshold multiplier factor a as: 

Ptal(a) = Prob [tmax > az] = prob 
[2L> 

z] = Jo pz(z) 
Ji 

a pmax(at) dt dz... (7.44) 

Perforating M/N detection over N bursts, the final output Pfd is: 

N 
Pfao(a) = 

(n )[pfai(a)]hl{1. Pfat(a)ý-n 
... 

(7.45) 

n=M 

The required threshold a is obtained through (numerical) inversion of eqn. (7.45). 

7.3.5. Detection probability 
Under the target present hypothesis it is again impossible to find the bivariate PDF of the 
ordered sample since, as in the false alarm analysis, the Ek are still not iid. Furthermore, 

target returns are also now present which introduce another N classes to the reference 
samples, since each target return may be multiplied by a different Ek. The assumption of 
independence between the burst maxima and the test statistic made in the false alarm 
analysis is not suitable here since for strong target signals N of the burst doppler samples 
will contain large returns, which will bias the test statistic upwards. In order to avoid this 

assumption we therefore determine the PDF of test statistic z for two limiting cases: 

1) when the target signal is very weak, in which case the target presence does not 
influence E(z) and pz(z) is as for the target absent case. 

2) when the target signal is very strong, in which case target returns occupy the N 
largest of the NK ordered samples. The test statistic can then be considered as the 

ro: NK-N order statistic when the NK-N reference samples contain only clutter 
and/or noise. The test statistic PDF is then given by eqn. (7.38), except replacing 
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NK with (NK-N). 

The PDF of the maximum of the samples in the K dopplers within a burst n is again 
given by eqn. (7.39). Under conditions of a target being present (in say doppler 1), the 
PDF and CDF of the single sample in the burst containing the target return is given by: 

Pi(t) =(1- e. eýt/(t+s) 

P1(t) =1- e-E'c/(1+s) ... (7.46) 

where S is the instantaneous SCNR and cj is as defined in section 7.3.3. The PDF and 
CDF of the other K-1 samples in the burst which do not contain target returns are given 
by eqn. (7.40). Substituting eqns. (7.46) and (7.40) into eqn. (7.39), and rearranging 
terms, gives: 

Pý,. x(t) =1 e- Eßt/t+sfJ (1-e- Eil) + (1-e- e'`/1+s) 
I 

ehe- fit 
11 

(1-e- cP`/t+s) 

P*i 
... (7.47) 

term 1 terms 2,3, ... K 

which as indicated is a summation of K terms. Since the Ek are lid. random variables with 
PDF pCk(Ck) equation (7.41) must be used again here to give the the PDF of the maxima 
in each burst. Substituting eqn. (7.47) into (7.41), noting that pe i(ei) = pe j(ej) for all i, j 

z 2, and some rearranging gives: 

rr ý 

1+S 

K"1 

Term 1=J-- e- £t/1+spe(e)de (1 -e' Fit) pL(e)de ... (7.48a) 
0o 

K-2 
Cie] Terms 2,3... K = (K-1) (1-e' ec/l+s)p (e) de ee- etpe(e) de (1-e'EhPF(e) 

000 

... (7.48b) 

Then defining 

I1 = e- t'11 +s pe(e) de 
1+S 

fo' 

12 =I (1-e-F1) Pe(e) de 
0 

13 =J (1-eF'c/l+s)Pe(e) de 
0 
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14 = fo ee- Lt PE(E) dc ... (7.49) 

each of which can be evaluated numerically, gives a final expression for the PDF of the 

maximum sample in each burst as: 

Pk,,. x(t) = 1K) -2 [Ii 12+13143 ... (7.50) 

The probability that the maximum sample on each burst will exceed the threshold is given 

as a function of the threshold multiplier factor a and the instantaneous SCNR by: 

Pdl(a; S) = Prob[tmax(S)IH, >az] = Prob (ä > z) 

= 
fo J 

pz(z) 
:a 

p6�, 1(atlS) 
dt dz 

l 
(7.51) 

where a is obtained as described in Section 7.3.3; pý. $ 
(atiS) is defined in eqns. (7.49) 

and (7.50), and pz(z) is defined by eqn. (7.38), with either NK or (NK-1) as the number 

of reference samples, depending on which of the limiting cases defined at the beginning 

of this subsection is adopted. Then, for M/N detection: 

Pdo(a; S) = 
(N)[p(S)]fl 

a, (X; [1-Pdl(a; S)]N-n 

n=M n ... (7.52) 

Since uo is a GAM(1/v; v) random variable, the expected detection probability is obtained 
by substituting eqn. (7.52) above into eqn (7.19). 

Notes: 
1) Using v=, ru and py(v) in eqn. (7.19) yields an integral which does not tend to ca 

as v-->O (for v z'/2) and is hence easier to integrate numerically. 
2) The implicitly assumed independence between Pd1 on different bursts in eqn. 

(7.52) is true for the limiting cases considered here, since the test statistic is 

unaffected by the target returns under the limiting assumptions. 
3) The limiting cases using either NK or NK-N as the number of reference samples 

in eqn. (7.38) indicates bounds on detection probability. The true value of Pd lies 

between these extremes. As an approximation to the true value, noting that for 

small SCNRs Nref -INK whereas for high SCNRs Nref -*NK-N, the detection 

probability for non-limiting cases can be averaged as: 

Pdo = Pdot - Pdohvtc-N[PP. t - Pact N] ... (7.53) 
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7.3.6. Sample Results 

The preceding analysis has been carried out for Pfa = 10-4 and the following system 
parameters: 

a) M=1 N=3 K=16 ro=32 
b) M=2 N=5 K= 16 ro=53 
c) M=3 N=8 K= 16 rp=86 
d) M=1 N=3 K=8 rp=16 
e) M=2 N=5 K=8 ro=27 
f) M=3 N=8 K=8 rp=43 

In all cases R= 32 (the number of range reference bins used in calculating the power 
normalisation terms) and rl = 25, a compromise between minimising the variance of the 
1/yk and immunity to extraneous targets. Results are illustrated in Fig. 7.2, where the 
graphs (a) to (f) correspond to the parameter combinations (a) to (f) given above. Each 

graph shows the post-filter single pulse SCNR required to achieve Pd = 50%, as a 
function of the clutter spikiness. Note that the horizontal axis represents IN, where v is 

the usual K-distribution shape parameter, as this yields curves which are easier to 
interpolate and have better resolution in the regions of v of interest. 

Each graph illustrates the post-filter single pulse SCNR required for Pd = 50% for the 
following detectors and assumptions: 

1) The "ideal" detector, in which the background power in each burst-doppler bin is 

assumed explicitly known, and the threshold set accordingly. No CFAR losses 

are present and this detector represents an absolute upper bound on achievable 
detection performance. 

2) The "Ideal RDT" CFAR processor discussed in section 7.2, in which perfect 
power normalisation between dopplers was assumed. This processor gives an 
upper bound on the performance that can be achieved by RDT processors with 
adaptive power normalisation. 

3) The adaptively normalised RDT CFAR processor discussed in the previous 
subsection, with the assumptions of a) all -M equal, and b) y »'. In both cases 
the weighted average (defined by eqn. (7.53)) of detection probability between 

the two limiting cases mentioned in section 7.3.5 has been used. 
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4) A conventional OS CFAR processor with N=32, K=25, assuming v is explicitly 
known. Adaptive estimation of v, as would be necessary in practice, would 
introduce further losses of the order of 5- 10 dB. 

The following observations can be made with respect to Fig. 7.2: 

1) The CFAR loss of the RDT processor, that is the difference between the curves 
for the ideal detector and the various RDT -processors, is independent of the 
clutter spikiness parameter v. The detection loss, however, that is the difference 
between the SCNR required for Pd = 50% by an ideal detector in Rayleigh 
backgrounds (ie. exponential square law outputs) and the RDT processor in spiky 
backgrounds, can actually be negative. This therefore represents a gain which 
arises due to the non-linear nature of the detection characteristic since in spiky 
clutter, for the same mean clutter power, more range cells have underlying 
modulation below the mean value (which is biased high by the few spikes), in 

which a high detection probability is achieved. 

2) The magnitude of the CFAR loss is in the region of 1 to 2 dB, depending on the 
parameters K and N. The larger K and N the lower the loss, with the dependence 

on K being stronger than the dependence on N. 

3) The RDT-processor gives in excess of 10 dB improvement in detectability over 
the conventional OS-CFAR processor in even moderately spiky clutter (v - 0.7). 
In Rayleigh clutter the RDT-processor suffers a loss relative to the OS-CFAR 

processor of only about 1 dB for N=8, and about 0 dB for N= 16. Note, 
however, that the OS processor performance illustrated is based on the assump- 
tion of a-priori knowledge of the clutter shape parameter v. In practice v will 
have to be estimated on line. This will introduce further loss to the OS processor 
of the order of 5- 10 dB (Ravid, 1992). 

4) For adaptive power normalisation under the assumption of all the 7k equal, and 
for N=5 and N=8, the weighted average (between the limiting cases using NK 
and NK-N reference samples in eqn. (7.38)) yields a value of S50 which is about 
0.1 dB lower than that for perfect power normalisation. This is clearly impossible 

A 

and can be explained by 1) the assumption of independence of the 1A& within a 
doppler in calculating the PDF of the test statistic introduces an optimistic bias to 
the analysis, as discussed in section 7.3.3, and 2) the weighting applied in eqn. 
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(7.53) may not give sufficient weight to the NK-N limiting case of detection 

probability. Nevertheless the NK and NK-N limiting cases differ by only about 
0.6 dB for K=16 and 1.2 dB for K=8, implying an error of less than 0.3 dB and 
0.6 dB respectively. 

5) As would be expected from the analysis, the RDT processor suffers a slight loss 
if all the )tc are not equal. This situation is bounded by the case where one doppler 
dominates (ie. yl » r; k=2... K), where a loss of only 1.3,0.3 and 0.2 dB 

respectively for N=3, N=5 and N=8 is evident. The loss is largely 
independent of K and arises as a result of less averaging between the rjk of eqn. 
(7.26). 

The RDT-CFAR processor requires that the underlying clutter power remains constant 
over all N bursts. This implies that a constant PRF be used if range-ambiguous clutter is 

present, in which case blind speed elimination would still be achieved by burst-burst 
frequency agility. Alternatively, interleaving the pulses for each transmit frequency, 
instead of using successive contiguous bursts could extend the unambiguous range to N 

times the instrumented range, thereby all but eliminating the effect of range-ambiguous 

clutter. 

7.3.7. Performance deterioration in spectrally heterogeneous backgrounds 
The preceding analysis has assumed that the clutter spectrum is constant over range and is 
independent of clutter amplitude. This is the same idealisation that is made in most 
adaptive doppler filtering analyses, and will similarly break down under some conditions. 
Even if the spectrum of the clutter is constant, amplitude-fluctuating clutter in the 

presence of background thermal noise will cause a composite spectrum which is not 
constant owing to the fluctuating level of the noise floor. This causes sub-optimal 

performance in the RDT-CFAR processor since the level of the noise relative to the clutter 
in the test range bin may differ from the mean. Thus the power normalisation terms, 

approximately equal to the inverse of the mean spectrum, may not reflect the 
instantaneous spectrum in the test cell. Therefore after power normalisation some 
dopplers may have mean level significantly higher than the overall reference sample 

mean, and samples in those dopplers have higher probability of exceeding the threshold 

and causing a false alarm. 

This situation has been examined by simulation since, as previously mentioned, analytic 

expressions for the test statistic are not available in multi-class reference sample 

page 177 



populations. The false alarm probability has been simulated for K= 16; M/N = 1/3 and K 

= 8; M/N = 3/8. In each case ro was set at the nearest integer to 2NK/3; NK-2N; and 
NK-N. (The rationale for the use of higher ro is that the test statistic will be drawn from 
dopplers with high mean level, thereby reducing the possibility of samples in the poorly 

normalised dopplers exceeding the threshold. ) In addition, the use of increased threshold 

multiplier factors a' was investigated by setting a' = a; 1.5a; 2a; and 4a. The clutter 

spectrum was assumed to be Gaussian with one-sided half-power bandwidth of 0.03 

PRF, 0.1 PRF and 0.25 PRF and mean CNR = 0,10,20,30,40,50,60 dB. The clutter 

power was assumed to be gamma distributed with v=0.5. For each of combination of 
these parameters, the probability of false alarm was estimated by performing 10000 trials. 
Each trial consisted of generating the NK burst-doppler samples, performing power 

normalisation by the mean spectrum, ordering the samples and selecting the test statistic, 

comparing each sample to the threshold, logically ORing over doppler, and performing 
M/N detection over the bursts. The number of non-zero outcomes were counted and 

averaged to give an estimate of Pfa. The use of only 10000 trials was necessitated by 

computing limitations and gives poor accuracy for Pfa -10-4; however, it is sufficient to 

quantify significant increases in Pfa above this level. 

Results for a clutter spectral width of 0.1 of the PRF are illustrated in Fig. 7.3 for K=16 

and M/N=1/3; and in Fig. 7.4 for K=8 and MIN=3/8. The following points can be noted: 

1) There is a significant increase in P fa for many values of CNR of practical interest. 

2) The increase in Pfa is less severe for high values of ro. 
3) The increase in P fa can be greatly reduced by moderate increases in the threshold 

multiplier factor, particularly for high values of ro. 
4) There is not a notable difference in the increase in Pfa between K=16; M/N=1/3 

and K=8; M/N=3/8. 

Similar results for clutter spectral widths of 0.03 and 0.25 of the PRF are tabulated in 

Appendix 7.1. Although these results are a little erratic due to the low false alarm counts, 
they show that for these spectral widths the increase in P fa is not as severe as that 
illustrated in Figs. 7.3 and 7.4. Analysis of the value of up used during trials giving a 
false alarm indicated that false alarms are generally associated with very low values of up, 

where the power normalisation terms underestimate the level of the noise relative to the 

clutter, so that dopplers in which the noise dominates the clutter are in fact amplified by 

power normalisation. For very wide and very narrow clutter spectra this affects several 
dopplers, thereby enabling the threshold to "track" incorrectly normalised dopplers more 

closely. For intermediate spectral widths, however, only a few doppler bins furthest 
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away from the peak of the clutter spectrum are "amplified" by incorrect power 
normalisation. These few doppler bins thus regularly exceed the threshold, causing the 

observed increase in Pfa. 

Despite the fact that the results presented in Figs. 7.3 and 7.4 are worst case results, it is 

evident that under certain practical conditions the RDT processor suffers an increase in 

Pfa which can only be partially counteracted by the use of a higher value of ro and/or an 
increased threshold multiplier factor (at the expense of increased loss). The false alarm 

probability is also not constant under conditions of spectrally varying clutter or finite 

CNRs. These problems, although shared by conventional CFAR processors and in fact 

less severe than for the OS processor, may limit the practical applications of the RDT- 

CFAR processor. 

7.4 MULTI-BURST CFAR PROCESSOR WITHOUT RANGE 

REFERENCING 

7.4.1 Rationale and Processor Description 

The deterioration in performance suffered by the RDT processor in spectrally hetero- 

geneous backgrounds arises due to the fact that the power normalisation terms, derived 

from surrounding range bins, are not necessarily representative of the spectrum in the test 

range bin. It is reasonable to argue, therefore, that a solution to this problem lies in 

formulating a processor which does not require power normalisation, and thereby avoids 

any use of data from range bins other than the test range bin. Such a processor is 

presented in this section. 

Functionally the processor can be described as follows: 

* For each doppler, sort the returns from the N bursts into ascending order. 
* Select the rpth ordered sample in each doppler as the test statistic for that doppler, 

* Multiply the K test statistics by the threshold multiplier factor a, to obtain the 
threshold for each doppler. 

* Compare each of the N received samples in each doppler to the corresponding 
threshold. 

* Logically OR the NK threshold decisions over doppler, and perform MIN 
detection over the N bursts. 

It is evident that the threshold in each doppler is derived only from samples in the test 
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range bin in that same doppler. No power normalisation terms are required, and therefore 
no other range bins are used either for estimation of the power normalisation terms or for 

conventional background power estimation in each doppler. The impulse response of the 

processor in range is thus a S-function, and accordingly the processor outlined above will 
henceforth be termed the S-CFAR processor. 

7.4.2 False Alarm Probability 
The probability of false alarm can be examined by the following argument: in each 
doppler the samples exceeding the threshold can be viewed as balls drawn from an urn 
containing N balls of N colours. The number of balls drawn from the urn is a random 
number yl with probability function p(yr). This trial is independently repeated in each 
doppler, ie. K times. A false alarm occurs if at least M of the N balls are represented at 
least once in the K trials. This argument implies that the joint probability of the nth burst 

being represented i times among the K trials is described by the multivariate binomial 
distribution (Krishnamoorthy, 1951; Johnson, 1969), conditioned on yr. This has a rela- 
tively simple probability generating function but an analytically awkward probability 
function, apparently only expressible as K-fold nested loops of Krawtchouk polynomials 
(Krishnamoorthy, 195 1), Obtaining the distribution compounded over all possible values 
of ter is difficult. Furthermore, the occupancy distribution of the resulting compound 
distribution is ultimately required, and this has defied analytic and numerical analysis. 
Analysis of Pfa based on existing discrete distribution theory does therefore not appear to 
be feasible. 

An alternative approach is now presented. Assume initially that at most two exceedances 
can occur in each doppler, ie. p(W) =0 for V>2. Let the number of dopplers containing 
two exceedances (henceforth termed doubles) be ic2, the number of dopplers containing 

one exceedance (termed singles) be icl, and the number of dopplers containing no 
exceedances (termed zeroes) be xp. Clearly xp+ 1cl+x2 = K. The probability of having a 

zero, single or double in any one doppler is denoted P0, pl and P2 respectively. These 

values are obtained from: 

PO =1- P(Z>a)Is=N 
P1= P(Z>a)IS=N 
P2 = P(Z>(X)ls=N-1 ... (7. s4) 

where p(Z>cc) is obtained from eqn. (7.5), substituting N for NK. Then the probability 
of having 1c2 doubles amongst the K dopplers is given by the binomial distribution, 
BIN(K; 1(2; P2) , ie. 
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P(K2) ° 
(IC K) p22 (1- P2)K-x2 ... (7.55) 

2 

For a given value of tc2, the doubles will occupy n2 bursts, with n2 being a random 
variable. No general formula for the distribution of n2 has been found in the literature or 

obtained by the author. However, noting that the exceedances from any one double 

cannot occupy the same burst, but that exceedances from different doubles can occupy 
the same burst, tedious but moderately simple combinatoric analysis has yielded the 
following expressions for the probability function of n2: 

for x2 = 0: p(n2 = 0) =1 
p(n2 * 0) =0 

for x2 = 1: p(n2 = 2) =1 
P(n2 * 2) =0 

for x2=2: p(n2S 1)=0 

p(n2 = 2) = 1/N 

p(n2 = 3) = 2/N 

p(n2 = 4) = (N-3)/N 

p(n2 > 4) =0 

for ic2 = 3: p(n2 S 1) =0 
p(n2=2)= 1/N2 

p(n2 = 3) = 8/N2 

p(n2 = 4) = (3N-5)/N2 

p(n2 = 5) = 6(N-4)/N2 

p(n2 = 6) = (N-4)(N-5)1N2 

p(n2 > 6) =0... (7.56) 

Fortunately, for values of a, N, M, K and ro applicable to this analysis, p(x2) -º 0 for x2 
>_4, thus sparing us from deriving p(n2) for x2 z 4. Given x2, then the number of singles 
xl in the K-1c2 dopplers not containing doubles is BIN(K-x2; icl; pl). A number 71 of 
these singles will fall in the same bursts as those occupied by the doubles. It is easy to 

show that tl is a BIN(K-K2; TI; n2/N) random integer. The remaining xi-n singles will be 

multinomially distributed (Johnson, 1969) amongst the N-n2 bursts not occupied by 
doubles. The number of bursts occupied by the singles not falling in a burst occupied by 

a double is therefore given by the occupancy distribution (Johnson, 1969), ie.: 
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P(i) 
(N_fl2) 

-1)J 
i=o 

) 
n21 ... (7.57) 

The probability of false alarm, given n2, x1 and 71, is then the probability that at least M-n2 

of the the N-n2 bursts unoccupied by doubles will be occupied by singles, ie. 

Pfa(ij, n2) = probability that at least M-n2 of the N-n2 bursts are occupied 
= prob(j >_ M-n2) 

N-n2 

_I pG) j=M-n2 

Summing over all possible values of il, changing the order of summation, noting that the 
innermost summation over i then represents a binomial expansion, and some re- 
arranging, gives: 

N-n2 j 
1ý Pfaln2; 1C1= N (N-n2 (-1)i 

(i) [n2 +j- i) l(1 ... (7.58) 
j=M-n2 i=0 

Then, since n2 and Kl are random variables, and n2 depends in turn on the random 
variable 1c2, the overall probability of false alarm is given by: 

3 2x2 K-x2 
Pfa = P(K2) 

F 
P(n2IK2) P(KI) Pfaln2; 1C1 

K2=0 n2=0 x1=0 
... (7.59) 

For M5 2 and/or ro Z N-2 this represents the exact final answer. For M'? - 3 and ro < N-2 
it is necessary to consider the probability of triple exceedances; for M Z. - 4 and ro < N-3 it 
is necessary to consider the probability of quadruple and triple exceedances, etc. The 

probability of having a triple, quadruple quintuple etc. exceedance in any one doppler is 

P3, P4, P5 etc. respectively, and is obtained in the same way as in eqn. (7.54) with s= 
N-2; N-3; N-4; ... etc. The probability of having ic3 triple exceedances amongst the K 
dopplers is then BIN(K; x3; P3), the probability of having x4 quadruple exceedances 
amongst the K dopplers is BIN(K; x4; P4), etc. Fortunately the probability of more than 

one triple, quadruple etc. occurring amongst the K dopplers is negligible and so com- 
binatoric analysis as for doubles and singles is avoided. We can then note that ; 

ForM52orrrSN-2 
Pfa = Probability of false alarm due to singles and doubles in the K dopplers. 

= Pfa(2's; l's) ... (7.60a) 
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ForM=3 and r0: 5 N-3 
Pfa = Probability of a triple in any doppler 

or 
Probability of false alarm due to singles and doubles in the K dopplers. 

= P3 + Pfa(2's; l's) ... (7.60b) 

ForM=4 and r0: 5 N-4 
Pfa = Probability of a quadruple 

or 
Prob. of a triple in any doppler and P fa due to singles and doubles in 

the other K"1 dopplers 

or 
Probability of false alarm due to singles and doubles in the K dopplers 

= P4 + P3 Pfa(2's; I's) +P fa(2's; l's) 
= p4 +P fa(3's; 2's; l's) +P fa(2's; l's) ... (7.60c) 

ForM=5 and r0: 5 N-5 
Pfa = Probability of a quintuple 

or 
Probability of a quadruple in any doppler and Pfa due to singles, 
doubles and triples in the other K-1 dopplers and N-4 bursts 

or 
Probability of a triple in any doppler and Pfa due to singles and doubles 
in the other K-1 dopplers and N-3 bursts 

or 
Probability of false alarm due to singles and doubles in the K dopplers 

= P5 + P4 Pfa(3's, 2's; l's) + P3 Pfa(2's; l's) + Pfa(2'S; l's)... (7.60d) 

etc. 

where: 
Pfa(2's; 1's) is obtained from eqn. (7.59) 
Pfa(2's; 1's) is obtained from eqn. (7.59) except setting N'=N-3; K`=K-1; and 

noting that p(tc2) is now defined by an occupancy distribution since 

some of the doubles may fall in bursts occupied by the triple 
Pfa(3's, 2's; l's) = p3 Pfa(2's; l's) is obtained from Pfa(2's; 1"s) except setting 

N"=N-4 and K"=K-1 and noting that p' reflects the probability that the 

triple may fall partially in bursts occupied by the quadruple 
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This reasoning can be extended to cover cases of Mz6 and ro 5 N-6. It becomes 
increasingly complex and will seldom be necessary, since, as shown later, a value of ro 
of approximately 3N/4 tends to give optimal performance. Eqn. (7.60), and eqn. (7.59) 

can then be used to calculate Pfa as a function of a, following which numerical inversion 

of the result yields the value of a required for the desired value of Pfa. This has been 

performed for several sample parameters. A discussion of the results is deferred until the 

comparison between the performance of conventional and S-CFAR processors presented 
in section 7.4.4. 

7.4.3 Detection probability 
An analytic evaluation of detection probability of the S-CFAR processor has not been 

successfully completed. This is due to the lack of convenient expressions for the bivariate 

PDF of the joint order statistic xro; xs under the two-class sample model, when the 

number of samples nk of one of the classes (the target returns) is a random number. 

Detection probability has therefore been evaluated as a function of S, the instantaneous 

SCNR, by Monte-Carlo simulation. For each set of parameters N, K, ro, M, and Pfa of 
interest, and for S= -2, -1,.... 23 dB, 2000 detection trials were performed to provide 
Pd(S) data equivalent to that obtained for the ideal RDT-processor from eqn. (7.18). 
Since in spiky clutter S is itself a random variable, the expected detection probability is 

obtained by numerical substitution of the simulated data for Pd(S) into eqn. (7.19) 

A discussion of the results is deferred until the comparison between the performance of 
conventional and S-CFAR processors presented in section 7.4.4. 

7.4.4 A Comparative example between conventional and S-CFAR 

processors. 
Clearly the more pulses available per dwell the better the detection performance that will 
be achieved, irrespective of the processing employed. It is also intuitively obvious, and 
confirmed by results presented later in this subsection, that the loss suffered by the S- 

CFAR processor will reduce with increasing number of bursts N available per dwell. 
However, the number of bursts is a direct function of the number of pulses available per 
dwell, Nd, and the number of pulses per burst required by the doppler filter, Nf, ie. N= 

Nd/NI, and so N is constrained by other systems requirements and cannot be increased 

arbitrarily. A meaningful comparison of detection performance is therefore only achieved 
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if Nd is kept constant for all processors examined. For a given number of pulses per 
dwell, increasing N to reduce S-CFAR loss would also imply lower N f, and hence lower 

coherent integration gain and often worse clutter leak-through into nominally clutter-free 
doppler bins. 

For this comparison the total number of pulses available per dwell has therefore been 
fixed for all processors considered. The comparison is made subject to the following 

assumptions: 
* 100 pulses are available per dwell, and these can be divided into an arbitrary 

number of CPIs. 
* No pulses are used for clutter stabilisation. 
* The number of filters in the bank is the same as the number of pulses per CPI. ie. K 

= Nf. Therefore NK S 100. 
* The design false alarm probability per range bin per dwell is taken as 10-4. 

The conventional processor used as the basis of the comparison operates on 3 bursts, 

each of 32 pulses, using 1/3 detection for elimination of blind speeds. The rationale of 
this selection is that 1) the CFAR processor does not operate over multiple bursts and so 
there is no processing benefit to be gained from arbitrary increases in the number of 
bursts N, 2) coherent integration gain and clutter suppression should be maximised by 

maximising the number of pulses per burst, equivalent to K, and 3) N=3 is taken as the 

minimum number of bursts with which satisfactory doppler response will be achieved, in 

which case M=1 is necessary for satisfactory doppler visibility. This dictates that the 
number of pulses per burst must be - 100/3, from which we set K= 32. These 32 filters 

are taken as the output of a 32-point Hamming weighted FFT. The CFAR processor is 

taken as either a 32 or 16 range-bin OS processor, with the reference sample (denoted k 
in Chapter 5) set as ri = 12 or rl = 24 respectively. A-priori knowledge of the clutter 
shape parameter v is assumed. In practice v will have to be estimated on line. This will. 
introduce an additional loss of the order of 5-10 dB (Ravid, 1992) to the detectability 

results presented below. The false alarm probability per range bin per dwell of 104 

requires Pfa = 10-5.98 =10-6 for each burst-doppler bin; thus Pd vs. SCNR curves for 

each burst can be obtained using threshold data used in section 5.2.3 of this thesis for OS 

processors with P fa =10-6. The overall probability of detection after 1/3 binary 
integration is then Pd =I- (1-Pd)3. 

The 3-CFAR processor has been examined for three sets of parameters utilising about 
100 pulses per dwell, namely: 

1) N=8; K=12; M=3 
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2) N=10; K=10; M=4 
3) N=12; K=8; M=5 

In each case a number of values of ro have been used to investigate its effect on 
performance. The K filters are taken as being implemented by a K-point Hamming 

weighted FFI'. 

The values of a required for Pfa = 10-4 using a S-CFAR processor have been calculated 
for each of the three sets of parameters listed above, for various values of ro. Results are 
tabulated in Table 7.1. 

Table 7.1 
Threshold Multiplier Factor a for S-CFAR processor, Pfa = 10-4 

M/N=3/8; K=12 

ro=4: a=32.44 
ro=5: a= 16.84 

rp=6: a= 9.60 

rp=7: a= 5.15 

M/N=4/10; K=10 

ro=5: a=18.75 
rp=6: a=11.89 
rp=7: a= 7.96 
rp=8: a= 5.37 

M/N=5/12; K=8 

rp = 7: a=9.28 
ro=8: a=6.84 
ro=9: a=5.07 
ro = 10: a=3.67 

The detection probability has been calculated as a function of the mean SCNR using the 

simulated data discussed in the previous subsection and taking expectation with respect to 
the modulation process up as in sections 7.2.4 and 7.3.5, for the clutter shape parameter 
v=0.25,0.333,0.5,1.0,2.0,4.0,8.0, and co. The S-CFAR loss (relative to ideal 

threshold setting for corresponding values of P fa, M, N and K) has been calculated for 

each value of ro and its corresponding threshold, tabulated above. The results for CFAR 
loss are tabulated in Table 7.2 below. 

Table 7.2 
CFAR Loss (in dB) for S-CFAR Processor, Pfa = 10-4 

M/N=3/8; K=12 
ro=4: Lc=6.32 

rp=5: Lc=5.20 
ro=6: Lc=4.77 

ro=7: Lc =5.90 

M/N=4/10; K=10 

ro=5: Lc=4.55 

ro=6: Lc=4.06 

rp=7: Lc=3.78 

rp=8: Lc=4.01 

M/N=5/12; K=8 

ro=7: Lc=3.53 

rp = 8: 4=3.43 

ro=9: Lc=3.50 

ro=10: Lc=4.52 
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As expected, the loss increases with decreasing N, and is minimum for ro - 3N/4. For 
higher values of ro target self masking becomes significant since the roth order statistic 
will more often contain a target return. This implies that the target must compete with 
itself for detection, yielding effectively Pd =0 in bursts containing about N-r0+1 or more 
target returns. Clearly, the higher ro, the more often this will occur. For values of ro 
lower than 3N/4 the probability of triple, quadruple etc. exceedances rises sharply, which 
must be counteracted by steep increases in the threshold multiplier a, at the expense of 
increased loss, to maintain the desired Pfa. 

Since the number of pulses per burst, and hence the achievable integration gain, differs 
for each of the S-CFAR implementations and the conventional OS processor, comparison 
between processors is best achieved based on the pre-filter SCNR required to achieve the 
desired Pd and Pfa. This requires calculation of the coherent integration gain G; achieved 
by the doppler filter in each implementation, which for Hamming weighting has been 

found to be: 

K=Nf =32: G; = 13.7 dB 
K=Nf =12: G; =9.45 dB 
K=Nf =10: Gi=8.66 dB 
K=Nf =8 : Gi=7.69 dB 

The pre-filter SCNR required by each processor implementation for Pd = 50% and a flat 

clutter-plus-noise spectrum has been calculated. This is illustrated in Fig. 7.5. It is 
immediately evident that the S-CFAR processors offer dramatically superior performance 
to conventional OS processors is spiky clutter. The S-CFAR curves illustrated 

correspond to the value of rp which gives minimum loss, as indicated in Table 7.2. 

The following points can be emphasised: 

1) The S-CFAR processor does not use reference range bins and is therefore entirely 
immune to clutter edges, interfering targets etc. This also implies that the false 

alarm performance is completely independent of the PDF of the modulation 
process. Furthermore, the S-function range impulse response of S-CFAR 

processors will greatly enhance interclutter visibility, thereby yielding additional 
detection benefits to those indicated by Fig. 7.5. 

page 189 



20. 

15. 

i0. 
Z] 

uni 5.0 

cc w 

F. 0.0 

w 
a 

-5.0 

-10. 
.04.0 

CLUTTER SPIKINESS (i/v) 

Fig 7.5: Pre filter SCNR for Pd=50% for S-CFAR and conventional OS 

processors (Pfa=104; NK =100) 
OS proccssor; Nrcf=16 (top curve) and Nref=32 (lower curve) 

--------- S-CFAR processor; N= 12; K=8 ; M=5 
--- S-CFAR processor; N=10; K=10; M=4 

--- S-CFAR processor; N=8 ; K=12; M=3 

2) The performance of none of the processors illustrated depends on the clutter 
spectrum per se, and hence the relative performance of the various processors is 

not expected to differ in non-white clutter spectra, notwithstanding different 

achievable clutter residue, and hence different target detectability, in the K doppler 
bins. 

3) Note that for the OS-CFAR processors the on-line estimation of the clutter shape 
parameter v will introduce further losses of the order of 5- 10 dB. 

4) For lower values of Pd the superiority of the S-CFAR processors is even more 
marked; for higher values it is slightly diminished. This is because the gamma 
distributed modulation process introduces fluctuation into the instantaneous 
SCNR, yielding higher Pd at low mean SCNRs and lower Pd at very high 
SCNRs than in unmodulated clutter. Thus for Pd < 50% the S-CFAR curves in 
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would fall off more steeply with increasing 1/v; for Pd > 50% they would fall off 
more slowly. 

5) K= 10 yields the best S-CFAR performance in flat spectra. However, larger K 
(ie. lower N) may be beneficial in some clutter environments, where the increased 
6-CFAR loss is counteracted by reduced clutter residue in some dopplers. 

6) Another feature of the S-CFAR processor is that if all target returns fall in the 

same doppler, target self-masking is certain, yielding Pd = 0. This situation will 
only arise, however, for targets in the first doppler ambiguity. In high frequency 

radars with low to moderate PRFs often targets of interest will fall in higher 
doppler ambiguities, whereas unwanted "targets", such as birds or clutter 
breakthrough, will be doppler unambiguous. This inherent rejection of velocity- 
unambiguous targets may often be desirable. 

The 5-CFAR processor requires that the underlying clutter power remains constant over 

all N bursts. As with the RDT-CFAR processor, this implies that a constant PRF be used 
if range-ambiguous clutter is present, in which case blind speed elimination would still be 

achieved by the burst-burst frequency agility necessary for decorrelation of clutter speckle 

and target returns. 

It is worth briefly considering some processing implications. The OS processor requires 
Nref (usually > 16) reference cells to be sorted into ascending order, for each range bin 

tested in each doppler on each burst; ie. for each range bin, Nref samples need to be 

sorted NK times. For the 6-CFAR processor, each range bin requires N samples to be 

sorted K times. Thus only 1/K as many sorting operations, each of which is N/Nref as 
long, need to be performed by the S-CFAR processor. This represents a dramatic 

reduction in computing requirements. 

As a final comment it can be noted that the CFAR loss could be reduced, with only slight 
increase in complexity, by using a censored mean level estimator for the test statistic, as 
described in section 2.3, instead of a single order statistic. Analysis of such a processor 

would, however, be significantly more difficult. 
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7.5 SUMMARY 

Current CFAR processors have been shown to perform poorly in non-homogeneous or 
spiky clutter. Two alternative CFAR processors applicable to radars employing multiple 
bursts per dwell and filter bank doppler processors have been presented. These have been 

termed the RDT (Range-Doppler-Time) CFAR processor and the S-CFAR processor. 

One of the key features of the RDT-CFAR processor is the use of power normalisation 
between dopplers. Exact analytic expressions for the false alarm probability and detection 

probability have been derived for the case of ideal estimation of the power normalisation 
terms. For adaptive estimation of the power normalisation terms approximate expressions 
for the false alarm probability and detection probability, requiring simple numerical 
integration, have been derived. It has been shown that for flat clutter-plus-noise spectra, 
or very large CNR, the RDT processor offers greatly enhanced performance in spiky 
clutter relative to conventional processors. In addition, performance is independent of the 

clutter spikiness. Order statistics have been used in the range-based estimation of the 

power normalisation terms to maximise immunity to extraneous targets and clutter edges. 

However, it has been shown that the RDT-CFAR processor suffers a fairly severe 
increase in Pfa in clutter with a spatially varying spectrum, which includes moderately 
narrowband clutter with finite CNR and a randomly varying modulation process. This 

cannot be completely countered by using a higher choice of ro or threshold multiplier 
factor. This may limit the practical applicability of the RDT-CFAR processor. 

The S-CFAR processor has been proposed as a means of overcoming the shortcomings 
of the RDT and conventional CFAR processors. A analytic expression for false alarm 
probability has been derived and detection probability has been evaluated by Monte-Carlo 

simulation. Comparison to conventional OS processors has shown that dramatic 

performance improvements (-10 to 20 dB) can be achieved in spiky clutter, with minimal 
loss (-3dB) in thermal noise. This loss (relative to the OS processor) in thermal noise 
would be eliminated if real time estimation of the clutter shape parameter is required in the 
OS processor. In addition to greatly reduced CFAR loss, the main features of the S- 

CFAR processor are: 

1) It is completely immune to extraneous targets and clutter edges, and will thus 

offer enhanced multiple target discrimination and interclutter visibility. 
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2) Its false alarm performance is entirely independent of the clutter amplitude 
statistics (provided the speckle is exponential). 

3) It provides inherent rejection of doppler-unambiguous (ie. slow moving) targets. 

4) It is computationally far less demanding than the RDT or conventional CFAR 

processors. 
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CHAPTER 8. 

CONCLUSIONS 

8.1 SUMMARY 

This thesis has investigated ways of improving radar detection performance in spiky 
clutter. Following a literature review to ascertain appropriate clutter models and establish 
the state of the art, two main areas were examined, namely: 

1) Quantitatively evaluating the clutter suppression of several types of doppler filters 
in homogeneous and non-homogeneous clutter environments, and investigating 

the use of adaptive and hybrid filters to achieve improved target detection. 

2) Investigating current and improved CFAR processing techniques to minimise 
detection losses in spiky clutter or spiky clutter residue. 

8.1.1 Improved clutter suppression by Doppler filtering 

The relative performance of several well known doppler processors has been examined 

under a wide range of clutter conditions, with particular attention being paid to the 

performance of AMTD processors. A large number of clutter scenarios were considered 
in an attempt to give results which are not too dependent on specific conditions. The 

clutter parameters were chosen to reflect land and sea clutter environments, including 

possible weather clutter components. Suitable performance measures were discussed, 

with particular attention being paid to filter-bank processing and MIN detection. The 
improvement factor of each type of processor was evaluated in each clutter scenario, and 
the loss relative to the optimal filter (with a priori knowledge of the covariance matrix) 

was determined. The insertion of MTI cancellers before Linear Predictor or Hsaio optimal 
filters for dealing with point clutter was investigated. Statistical data analysis was used to 

reduce the data to manageable proportions and allow key conclusions to be drawn. It was 

shown that AMTD offers only a slightly higher improvement factor than conventional 
MTD or Pulse Doppler processing, of which MTD processing has the marginally better 

performance. Linear Predictor processors were shown to be inferior to Hsiao optimal 
filters, and pre-filter MTI cancellers inserted before Hsiao filters or Linear Predictors 

page 194 



were shown to introduce an average loss of the order of 1 dB in homogeneous clutter. 
Conventional AMTI and MTI filters are shown to provide dramatically inferior 

performance under many clutter environments. 

This doppler filter performance comparison indicated that techniques such as PD, MTD 

and AMTD suffer a loss of about 2 to 3 dB relative to Hsiao filtering in which exact 
knowledge of the covariance matrix of the (homogeneous) clutter was assumed. Realistic 

assessment of the merits of optimal filtering, however, necessitated the evaluation of 
adaptive optimal filter performance under more realistic conditions. The performance of 
adaptive Hsiao-optimal filters operating in spatially and time-varying clutter backgrounds 

was therefore investigated. The case of practical adaptive estimation of the covariance 
matrix, and limiting cases where the estimate of the covariance matrix tends to the mean 
clutter covariance matrix, were considered. Three classes of non-homogeneous back- 

grounds were studied, namely 1) clutter in which the amplitude and spectral width in each 
range bin are randomly drawn from spatially invariant independent gamma distributed 

parent populations, 2) clutter edges, in which the range profiles of the clutter amplitude 
and/or spectrum exhibit a step change, and 3) homogeneous clutter in which some range 
bins are corrupted by returns with significantly different amplitude and spectral 
characteristics, representing point clutter sources or extraneous targets. The use of pre- 
filter MTI was investigated as a means of reducing IF losses in some classes of clutter 
non-homogeneity. It was shown that adaptive filters suffer significant reductions in IF in 

non-homogeneous clutter environments. These losses are generally greater than the 
benefit afforded by ideal adaptive processors over other conventional doppler processors. 
It has been noted that the mean IF loss is an optimistic performance measure in adaptive 
doppler processors. The true impact on radar detection performance will be increased by 
higher order moments of the IF loss and clutter residue. Better characterisation of hetero- 

geneous clutter is necessary before radar performance in heterogeneous clutter environ- 
ments can be assessed with confidence. It was concluded that adaptive optimal filtering 

alone does not provide a means of significantly improving radar detection performance 
over MTD or AMTD processors, and hybrid MTD-adaptive filters were proposed as the 
most promising doppler filtering technique for heterogeneous clutter. It was felt that more 
significant gains in detection performance are most likely to be achieved by improved 

post-filter CFAR processing. 
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8.1.2 Improved CFAR processing 
The following papers relevant to the work summarised in this subsection have been 

published: 

* Armstrong, B. C., and Griffiths, H. D., "CFAR detection of fluctuating targets in 

spatially correlated K-distributed clutter, fEE Proceedings, Part F, Volume 138, 
Number 2, April 1991, pp. 139-152. 

* Armstrong, B. C., and Griffiths, H. D., "Modelling spatially correlated K- 
distributed clutter", IEE Electronics Letters, Volume 27, Number 15,18th July 
1991, pp. 1355 - 1356. 

* Armstrong, B. C., and Griffiths, H. D., "Improved CFAR detection in spatially 
correlated K-distributed clutter", Proceedings of the CIE Radar Conference, 1991, 

pp. 415-418. 

* Armstrong, B. C., and Griffiths, H. D., "False alarm control in spiky clutter by 

multi-burst range-doppler processing", Proceedings of the IEE 1992 Radar 
Conference. 

Single pulse CFAR detection of Rayleigh fluctuating targets in spatially uncorrelated K- 
distributed clutter was investigated to establish a baseline from which to formulate and 
assess improved CFAR processors. The performance of three types of well known 
CFAR processors, namely the CA, CAGO, and OS CFAR processors, was examined, 
and curves for the detectability loss due to clutter spikiness were presented along with 
values for the additional loss due to CFAR thresholding. The effects of incorrectly 

estimating the clutter shape parameter v were investigated. Empirical expressions were 
derived for the ideal- and CFAR- detection losses in spiky clutter 

The possibility of exploiting spatial correlation in the clutter in order to reduce detection 
losses was investigated. The extreme case where the modulation process is essentially 
completely correlated within the CFAR reference window was addressed first and it was 
shown that the potential exists for a reduction in detection loss of in excess of 10 dB in 

highly correlated clutter. The K-distribution model was then extended to facilitate the 
incorporation of spatial correlation properties. Based on this model "ideal" CFAR 

detection performance in spatially correlated clutter has been analysed. It is apparent that a 

potential benefit of several dBs is possible if the CFAR processor is designed to exploit 
the spatial correlation and if improved estimates of the modulation process can be 
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obtained. The former is achieved through real time estimation of the local value of the 
spatial correlation; the latter is achieved in this thesis through obtaining a linear MMSE 

estimate of the modulation process instead of the usual unweighted average: the CFAR 

problem was viewed as one of optimal filtering in multiplicative noise, and the optimal 
filter and the corresponding OLF-CFAR processor were derived. Methods of estimating 
the local spatial correlation in real time and their effects on detection loss were 
investigated. A semi-analytic formulation of performance prediction was presented with 
sample results for representative processor and system parameters. It was shown that the 
OLF-CFAR processor, with estimation of the local value of the clutter correlation 
coefficient, can yield a gain of 1 to 3 dB relative to a CA processor. Further benefits can 
be expected in clutter with other than exponential spatial ACFs. It was concluded that the 
OLF-CFAR processor represents a promising technique for improving detection 

performance in spiky sea clutter, subject to the requirements that the spatial extent of 
targets of interest is less than the correlation distance of the clutter, and that the radar has 

sufficiently fine range resolution to exploit whatever spatial correlation may be present. 
Should these conditions not be met, improved detection performance in spiky clutter will 

require other processing techniques in which the modulation process in the range- 

reference window does not form the sole basis of the detection hypothesis test. 

CFAR techniques aimed at reducing the reliance on surrounding range bins for estimating 
the background in the test cell in order to establish the threshold were therefore 
investigated. This was achieved by exploiting the two other domains in which potential 

reference data is available, namely the doppler and time domains. Two alternative CFAR 

processors applicable to radars employing multiple bursts per dwell and filter bank 
doppler processors were formulated, and these have been termed the RDT (Range- 

Doppler-Time) CFAR processor and the S-CFAR processor. 

It has been shown that for flat clutter-plus-noise spectra or large CNR the RDT processor 

offers greatly enhanced performance in spiky clutter relative to conventional processors. 
In addition, performance is independent of the clutter spikiness. Order statistics have 
been used in the range-based estimation of the power normalisation terms to maximise 
immunity to extraneous targets and clutter edges. However, it has been shown that RDT- 
CFAR processors suffer a severe increase in P fa in clutter with a spatially varying spec- 
trum, which cannot be completely countered by using a higher reference sample rank or 

multiplier factor. This may limit the practical applicability of the RDT-CFAR processor. 

The S-CFAR processor was proposed as a means of overcoming the shortcomings of the 
RDT and conventional CFAR processors. A analytic expression for false alarm 
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probability has been derived and detection probability has been evaluated by Monte-Carlo 

simulation. Comparison with conventional OS processors has shown that dramatic 

performance improvements (-10 to 20 dB) can be achieved in spiky clutter, with minimal 
loss (-3dB) in thermal noise. This loss (relative to the OS processor) in thermal noise 
would be eliminated if real time estimation of the clutter shape parameter is required in the 
OS processor. In addition to greatly reduced CFAR loss, the S-CFAR processor offers 
complete immunity to extraneous targets and clutter edges, has false alarm performance 
which is independent of the clutter amplitude statistics, provides inherent rejection of 
doppler-unambiguous targets, and is computationally far less demanding than the RDT or 
conventional CFAR processors. 

8.1.3 The use of the difference channels for detection in monopulse radar 
For completeness the key conclusions regarding the use of monopulse difference channel 
information for detection are now summarised. Further discussion of these results can be 
found in the paper on this topics which is reproduced in Appendix 1.1 of this thesis. It 
has been shown that certain linear combinations of the Sum channel with the Difference 

channels can give a detection gain relative detection using the Sum channel only. The 

magnitude of this gain varies between 2 dB and 6 dB, depending on the radar scenario 
assumed and the required detection parameters. The results illustrated in the paper have 

concentrated on single pulse detection of SwO and Swl targets. In general the gain 
associated with the use of the combination patterns for detection is about 0.5 dB higher 
for SwO targets than for Swl targets. The difference in performance between the 

combination patterns and the use of the Sum beam only for other Swerling models can be 

expected to be between that for the SwO and Swl targets, although the absolute detection 

probabilities for a given SNR may differ. 

The angle detector operating on only one angular dimension has been analysed for sample 
parameters and has been shown to be capable of providing CFAR performance in 

uncorrelated Rayleigh noise environments with moderate loss in detection performance, 
compared to ideal detection of coherently integrated pulses. An upper bound on detection 

performance has been found for an angle detector operating on both angular dimensions, 

and this has been shown to reduce the detection loss in uncorrelated Rayleigh noise to 

about 0.5 dB. The angle detector has only been evaluated for SwO point targets on 
boresight of the Sum beam at reasonably high SNRs and has neglected straddling losses 

and radar imperfections such as imbalances between channels. 
I Armstrong, B. C., and Griffiths, H. D., "The use of difference channel information for detection in 
monopulse radars". IEE proc. Pt. F, vol. 138, No. 3, June 1991, pp. 199-210. 
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The angle detector technique discussed is at this stage only a rough outline of a detector 

which could be based on this technique. Further refinements are possible in the choice of 
the size and shape of bins, the use of matched bins and non-binary integration, and 
optimal combination of information derived from both angular dimensions and the range 
dimension in a detector based on correlation in the indicated 3-D position of the received 
signal. The incorporation of some pre-processing on the complex indicated angle could 
also be used to improve the robustness of the angle detector, giving better CFAR perfor- 
mance under a wider range of conditions of external interference, noise and clutter. The 

angle detector could also potentially provide some information regarding the nature of the 
object being illuminated, for instance whether it is a point or distributed scatterer, and on 
the physical position of the scatterer. This latter information could possibly be used as the 
basis for reducing the effect of large clutter discretes through recognising that they are on 
the surface. (The accuracy of the estimated position of such clutter discretes would 
invariably be high owing to their large RCS). The angle detector could also be used in 

conjunction with conventional detection techniques to provide additional independent 
decision opportunities per observation. 

To conclude, it has been shown that the use of information in the Difference channels can 
be used to provide a significant improvement in the detection capability of monopulse 
radars. This can be realised either through the formation of so-called composite beams or 
the use of the Complex Indicated Angle for detection. The former realisation essentially 
achieves this improvement through recovery of the information normally discarded at the 
outputs of the monopulse comparator and through creating multiple independent decision 

opportunities per observation. The benefits which can be obtained, of the order of 3 to 5 
dB detection gain, are achieved at the expense of hardware complexity: full range 
processing is required on the Difference channels to be used, and combination techniques 

require four full parallel detectors and some combinational logic. The angle detector has 
been shown to provide CFAR performance under noise conditions with moderate CFAR 
loss even with very few pulses per observation. This CFAR performance is also achieved 
without reference to adjacent range cells, a potentially useful characteristic. The 

processing implications of the angle detector are not yet clear but the lack of the need for 

comparisons with adjacent range cells and the small number of bins required should make 
it relatively efficient compared to some conventional CFAR techniques. 
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8.2 KEY CONCLUSIONS 

A few general conclusions can be drawn from the specific conclusions given at the end of 
each Chapter. 

The scope for improving detection performance by improved doppler filtering techniques 
is limited (if doppler space and burst length constraints are held constant): Adaptive MTD 

processors offer less than 1 dB better performance on average than current generation 
doppler processors such as MTD and Pulse Doppler, even if ideal filter bank selection is 

assumed. AMTD filtering cannot therefore be justified by clutter suppression 
considerations alone. Hsiao optimal filtering -a theoretical upper bound on achievable 
improvement factor - offers on average only 2 to 3 dB better IF than MTD and Pulse 
Doppler processors. Incorporation of adaptivity into the optimal filter (in this thesis by 

means of the SMI algorithm) eliminates this apparent superiority of optimal filters, even 
in homogeneous clutter, if a realistic sample size is assumed in the estimation of the 

covariance matrix. Performance deteriorates further in non-homogeneous clutter where 
the estimated covariance matrix does not tend to that in the test cell, yielding significantly 
sub-optimal performance. The deleterious effects of non-homogeneous clutter can to 

some extent be countered by the insertion of a conventional MTI canceller before the 

optimal filter; this reduces loss in non-homogeneous clutter with negligible increase in 
loss in homogeneous clutter. Extending this concept of hybrid processors, MTD/ 

adaptive-optimal hybrid filters appear to offer the best prospect of achieving filter 

performance significantly better than current generation doppler processors. However, 

since ideal Hsiao filtering represents an upper bound on the achievable improvement 
factor, at most 2 to 3 dB benefit can be obtained. 

It is more profitable to pursue improved CFAR processor performance as a means of 
attaining the desired improvement in overall radar detection performance. Current 

generation CFAR processors, even those like Ravid's Maximum Likelihood ML-OS 

processor which estimate the local clutter spikiness to maintain constant Pfa, have been 

shown to suffer severe losses (often in excess of 10 or even 20 dB) in spiky clutter 
because they take signal amplitude as the only defining characteristic of a target: targets 
are only detected by virtue of the fact that they are larger than the threshold, which is set 
larger than the clutter to prevent false alarms. This is also true of the OLF-CFAR 

processor for spatially correlated clutter presented in Chapter 6. CFAR detection losses in 

spiky clutter can only be reduced if detections are based on features other than amplitude 
which unambiguously characterise targets as opposed to clutter. The RDT-CFAR 
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processor presented in Chapter 7 essentially uses the target spectrum, as well as 
amplitude, to discriminate between targets and clutter: any deviation in the spectrum in the 
test range cell, compared to that in reference range cells, causes incorrect power 
normalisation between dopplers and consequent detection of the target. This gives 
dramatic benefits (in excess of 10 dB gain relative to conventional processors) provided 
the clutter spectrum does not itself deviate from the mean in the test range bin, thereby 
appearing target-like and causing the noted increases in P fa. The S-CFAR processor uses 
as the defining characteristic of targets that they are velocity (ie. doppler) ambiguous, 
whereas clutter is velocity unambiguous. Subject to this condition being met, robust 
performance only a few dBs worse than the ideal is achieved. 

The defining target characteristics on which detection can be based will differ for different 

radars and applications: a high frequency (X-band or higher) radar intended for detecting 
fast closing targets in spiky sea clutter would meet the condition of target velocity 
ambiguity, whereas say an S-band radar for detecting small boats in spiky sea clutter 
would not. In the latter case, if target amplitude cannot provide the required detection 

performance, spectral width, polarisation etc. could be possibly be exploited and 
appropriate CFAR processors defined. It is concluded that the form of CFAR processor 
to be used depends strongly on radar, clutter and target parameters; the reliance on 
amplitude discrimination alone yields wholly unsatisfactory performance in spiky clutter 
and other defining characteristics need to be identified and exploited if detection 

performance is to be improved. 

The main contributions of this thesis are considered to be: 

1) Evaluation of adaptive optimal filter performance in non-homogeneous clutter, 
and proposing and evaluating the use of pre-filter MTI to reduce IF losses. 

2) The formulation of the model for spatially correlated K-distributed clutter. 

3) The formulation and analysis of the "ideal-" and OLF-CFAR processors for 

spatially correlated K-distributed clutter. 

4) The formulation and analysis of the RDT-CFAR processor and S-CFAR 

processor. 

In addition, the doppler filter performance comparison of Chapter 3 is far more extensive 
than anything previously found in the literature, allowing some general conclusions to be 
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drawn regarding filter selection. In particular, quantitative evaluations of AMTD 

performance have not previously appeared. Similarly, the evaluation in Chapter 5 of 
CFAR processor performance in K-distributed clutter has not appeared elsewhere in the 

relevant mainstream literature. The use of difference channel information is a novel 
technique for improving detection performance in monopulse radars, and it is felt that the 

research described in the appended paper lays the foundation for more thorough 
investigations in this field. 

8.3 FURTHER WORK 

It is felt that the following areas require further research: 

1) Hybrid MTD/adaptive-optimal filters need to be evaluated in both homogeneous 

and non-homogeneous clutter. The optimal division of pulses between the MTD 

and adaptive-optimal filter stages, and the number of parallel optimal filters 

attached to each MTD filter, need to be investigated. 

2) The precise impact of deteriorations in adaptive optimal filter performance in 

homogeneous clutter on radar detection performance needs further consideration; 
the simple arithmetic mean of the IF gives optimistic results which are in reality 
degraded by increased higher order moments of the IF loss and clutter residue. 
Ideally the PDF of the IF and clutter residue needs to be determined to enable 
realistic assessment of detection performance, in conjunction with the actual 
detection processing employed by the radar. 

3) The performance of the "ideal" and OLF-CFAR processors in spatially correlated 
clutter with other than exponential spatial ACF needs to be quantified. Although 

the solution for the optimal weights is valid for non-exponential ACFs, estimation 

of multiple correlation coefficients and the subsequent selection of threshold 

multiplier factors needs to be addressed. 

4) The detection performance of systems employing S-CFAR processors needs to be 

evaluated as a function of absolute target velocity, for representative clutter 
spectra and PRF stagger patterns, and for various radar frequencies and PRFs. 
This is necessary in order to establish practical limitations to S-CFAR 

applicability. 
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5) The techniques of exploiting the difference channel information in monopulse 
radars have thus far only been evaluated in detail for the case of radar thermal 
noise. External noise (uncorrelated) and clutter (correlated) may cause deviations 
from the predicted performance, particularly for correlated clutter in the angle 
detector. The evaluation of the performance of these techniques taking account of 
the abovementioned factors is the first priority should further work on this topic 
be performed. 
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THE USE OF DIFFERENCE CHANNEL INFORMATION FOR 
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APPENDIX 2.1 

CLOSED FORM EXPRESSIONS FOR THE SUM OF N 
K-DISTRIBUTED VARIABLES 

The K-distribution is: 

P(x) = (cx)v Kv-1(2cx) 
r(v) 

... (A2.1.1) 

For v= m+1/2; m=0,1,2 , ...., we can write Kv_1(2cx) as: 

- 
2 

e2cx m (m+i)! (2cx)-' 
Km+1rý(2cx) = 2cx i- Oi! (m-i)! 2i 

... (A2.1.2) 

For v= 1/2, substituting eqn (A2.1.2) into (A2.1.1) yields an exponential distribution 

such that: 

p(x) = 2ce 2cx 
... (A2.1.3) 

from which the sum of N such variables is easily shown to have a PDF given by: 

PN(X) = 
2c 

(2cx)N-1 e 
2cx 

r(N) 
... (A2.1.4) 

For v= 3/2, eqn. (A2.1.1) reduces to: 

p(x) = 4c2x e 
2cx 

... (A2.1.5) 

from which the PDF of the sum of N such variables is easily shown to be: 

PNýXý _ 
ý2cý2N 2N-1 e 2cx 

r(2N) 
x 

... (A2.16) 
For v>m+ 3/2, the PDF of the sum of N variables is calculated as follows. For 

notational simplicity let y= 2cx; y= can / ((2m1'(v)) and a; = (m+i)! / (2i i! (m-i)! ). Thus 
(A2.1.1) can be rewritten as: 
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m 

p (Y/2d =y e-y 
ýa1 

Ym+l -1 
i°O 

... (A2.1.7) 

The moment generating function of this PDF is thus: 

m 
M(e) =JP(Y) Joy dy 

0 

M 

yZa 
(M+1-i) ! 

i-o (1 +6)m+2-i 
,,, (A2.1.8) 

Addition of N independent variables with the characteristic function (A2.1.8) implies that 

the characteristic function of the sum, denoted MN(O), is given by: 

MN(O) = [M(O)] N ... (A2.1.9) 

Letting 1/(1+0) = 4, and a; (m+1-i)! = bi = [(m+i)! (m+1-i)] / (2i i! ), eqn (A2.1.9) can 
be expanded using eqn (A2.1.8) as follows: 

N 
m 

MN(ý =YN l2N ß1 em-i 
i-o 

... (A2.1.10) 

Separating the mth term of the summation and performing a binomial expansion allows 
(A2.1.10) to be rewritten as: 

N m-1 lo N MN(e) _ 'y e2N ßN 
ý(o) 

ßmo ß, Om-i 
j0-0 40 

Repeating this step (m-1) times and re-ordering terms gives: 

... (A2.1.11) 
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N 10 1l lrn2 

MN (0) =7 
111 

...... 
Z 

i0) ýjo) (ii) 
.... 

(gym-2) 
.. 10.0 11'o 12=0 1rni 012 m-t 

N-jo jöli 1Ij2 Jm2-1ml jmi 

... ßm ßm-1 ßm-2 ........ ß1 ßo 
... (A2.1.12) 

The inverse Laplace Transform of (A2.1.12) then gives the PDF of the sum of N 

variables, i. e. 

N 1o 1I ill N-10 10 it m -1 
PN(Y) =Ye joý 

ý1) 
... 

ýým-2) ßm. 1 a N-yýýý N, 

10-0 i, -o i2-o im-, o Jm. l I'(2N+ jo+ jl + ... +lm-1) 

ai -t+ jp+ jl + ... + im-, 

... (A2.1.13) 
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APPENDIX 2.2 

SUMMARY OF DIFFERENT ADAPTATION TECHNIQUES 
FOR ADAPTIVE DOPPLER FILTERING 

1. Least Mean Square (LMS) / Minimum Square Error (MSE) 
These two equivalent formulations yield a simple recursive estimator of the covariance 
matrix of the N samples. It is characterised by a long (sometimes infinite) convergence time 
which is strongly dependent on the clutter environment. About Nx the number of loops 
(which can be large) complex multiplications are required to arrive at the filter weights. It 
has the advantages of requiring only low numerical precision in the multipliers and it 

suffers insignificant weight noise in thermal noise environments, rising to a few dBs of 
weight noise in some clutter environments. 

2. Normalised LMS (NLMS) 
A modification of the LMS routine to provide rapid convergence. Initial analyses indicated 

that it generally yields a3 to 10 fold reduction in transient response and sometimes more, 
and is less affected by the form of clutter spectrum than the LMS. The increase in steady 
state loss was thought to be negligible. However, later analyses which included the effects 
of weight noise showed that the weight noise is quite large (-4 dB) even in thermal noise 
environments, and rising quite rapidly in clutter environments. In addition, weight noise 
effectively increases the convergence time to about that of the LMS algorithm. The NLMS 

would therefore seem not to provide any real benefits over the LMS algorithm. 

3. Sample Matrix Inversion (SMI) 
A Maximum Likelihood estimate of the clutter covariance matrix M is obtained simply as 
the arithmetic average of the corresponding elements of the covariance matrix in each of the 
range bins over which the covariance matrix is estimated. This is followed by matrix 
inversion and solution for the filter weights. The convergence time is reduced by an order 
of magnitude compared to the LMS algorithm, and is insensitive to the clutter parameters, 
with the number of cells averaged K- 2N for steady state loss 53 dB (where N is the 
order of the canceller). The technique is applicable to any clutter spectrum since no 
assumptions are made regarding a priori knowledge of the spectrum. (7/6)N3 complex 
multiplications are required to arrive at the filter weights; however, these only need to be 

calculated at most every N pulses, änd often less frequently, thereby reducing the 
computation rate. High numerical accuracy (z 10 bits) is required to avoid excessive 
weight noise. 
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4. Direct Matrix Inversion (DMI) 
In this technique the inverse M-1 of the clutter covariance matrix is recursively estimated 
directly from the clutter samples. The identity matrix is usually taken as the initialisation 

condition; the N range bins in the region of the bin being filtered are then used to 
successively refine the estimate of M-1. The rate of convergence is controlled by a 
"smoothing parameter" cc, the value of which determines the balance between transient 
response and steady state error. It appears as though suitable selection of a gives k- 10 to 
20 for a steady state error of 2-3 dB (this is quoted for N=4; more comprehensive 
performance analyses including the effects of other values of N have not been reported). 
Again, no a priori assumptions are made as to the form of M-1 so the technique is 
insensitive to specific clutter parameters. Computationally 3N2 +N complex multiplications 
are involved in deriving the filter weights; high numerical accuracy (z 10 bits) is required to 
maintain a steady state loss in the region of 2 dB. The technique appears to have no simple 
parallel processing implementation, but in some applications the recursive structure 
(operating over range) may have some advantages over the block averaging structure of 
other techniques. It may have particular benefits in reducing masking on one side of clutter 
edges, at the expense of worse masking on the other side. 

5. Gram Schmidt Orthogonalisation (GS) 
The GS technique derives directly from optimal processing theory; it involves the 
successive decorrelation of one sample with the next until all samples in a processing 
interval are uncorrelated with each other to achieve whitening of the clutter returns, 
followed by a filter matched to the expected target doppler. No a priori assumptions are 
made regarding the clutter spectrum and hence performance is independent of the clutter 
actually present (within the limitations of N). Low steady state loss is achieved with 
moderately rapid convergence rates: for N: 5 6, we need K- ION for steady state loss of 
0.5 dB in thermal noise, -1dB with a single clutter source present, and -- 2dB with 2 

spectrally different clutter sources present. The technique has the advantages of a parallel 
and modular implementation, the clutter signal is whitened, preventing re-integration 
downstream, and no feedback is involved in the estimation of the coefficients and hence the 
filter is always stable. About 3N2 - 2N complex multiplications are required with high 

numerical accuracy. 

6. Parametric Estimation (PE) 
In this technique the form of the overall clutter spectrum (eg. two Gaussian components of 
different widths, mean frequencies and amplitudes, in white noise) is assumed a -priori, 
with the parameters of the model then being estimated in real time. The corresponding 
optimal filter coefficients are calculated off-line and selected according to the estimated 
spectral parameters. This can yield significant computational savings and allows lower 
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numerical accuracy to be used. It has also been shown that provided the model chosen is 

correct and the parameter estimation is accurate, performance is essentially not degraded by 

the discretisation of parameters relative to the optimal filter for a specified N. However, the 
performance of the technique depends strongly on the validity of the clutter model, with 
good performance only being achieved under the assumed conditions. Furthermore, the 
steady state loss, transient response and efficiency will be directly limited by the algorithms 
used to estimate the clutter parameters. Although some results indicate that K- 10 gives 
good estimates of parameters for a single Gaussian component clutter spectrum, the 
estimation of parameters in other clutter environments is not well documented and 
questions remain as to the form, efficiency, accuracy and transient response of parameter 
estimation algorithms. 

7. Kalman Filtering 
Although Kalman filter techniques have been described for clutter cancellation (Farina, 
1984), they achieve adaptivity by updating the state vectors over successive pulses, thereby 
precluding their use in systems where a limited number of pulses is available per dwell or 
where even relatively low rate frequency and PRI agility is required. They will therefore 
not be covered any further in this thesis. 
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APPENDIX 3.1 

DESCRIPTION OF MTD FILTER BANKS 

The design goals for the MTD filter banks were as follows: 

MTD 1: Intended for particularly severe land clutter. Therefore: 

* Maximise the width and depth of the zero doppler notch in all filters. 
* Sidelobe levels and main lobe width not too important. 

The normalised frequency response of filters 1,2,3, and 5 are illustrtaed in Fig. 
A3.1.1. Filters 9,8, and 7 are mirror images of filters 1,2 and 3 respectively. 
Filters 4 and 6 are frequency translated versions of filter 5 to centre frequencies of 
0.4 and 0.6 respectively. Filter 0 is arbitrarily chosen as a frequency shifted (to a 
centre frequency of 0) version of filter 5. 

MTD 2: Gives some emphasis to land clutter suppresion, but assumes that cancellation of 
rain/chaff is also important. Therefore: 

* Minimise the sidelobe level while maintaining a zero doppler notch. 
* Accept reductions in the width and depth of the zero doppler notch. 

The normalised frequency response of filters 1,2, and 5 are illustrated in Fig. 
A3.1.2. Filters 9 and 8 are mirror images of filters 1 and 2 respectively. Filters 3, 
4,6 and 7 are frequency shifted versions of filter 5 to centre frequencies of 0.3, 
0.4,0.6 and 0.7 respectively. Filter 0 is arbitrarily chosen as a frequency shifted 
(to a centre frequency of 0) version of filter 5. 

MTD 3: A compromise between MTD 1 and MTD 2, ie. some moving clutter suppresion 
is required, while maintaining strong emphasis on land clutter suppression. The 

normalised frequency response of filters 1,2,3, and 4 are illustrtaed in Fig. 
A3.1.3. Filters 9,8,7 and 6 are mirror images of filters 1,2,3 and 4 respec- 
tively. Filter 5 is identical to that in MTD 1. Filter 0 is arbitrarily chosen as a 
frequency shifted (to a centre frequency of 0) version of filter 5. 

MTD 4: No particular emphasis is given to zero doppler clutter suppression. However, 

very good out-of-band rejection is required. Therefore: 

* Minimise sidelobe level. 
* Accept increase in main lobe width. 
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The normalised frequency reponse of filter 5 of MTD 4 is shown in Fig. A3.1.4a. 
Other filters are frequency shifted versions of this response to frequencies of 0, 
0.1, ... 0.9. 

MTD 5: No emphasis is given to zero doppler clutter suppression, and no very strong 
clutter is expected; this would be applicable if the primary concern is the accurate 
estimation of true target doppler. Therefore: 

* Minimise the main lobe width for a specified RMS sidelobe level, in this 
case -30 dB relative to the peak of the passband. 

The frequency reponse of filter 5 of MTD 5 is shown in Fig. A3.1.4b. Other 
filters are frequency shifted versions of this response to frequencies of 0,0.1, 

... 0.9. 

MTD 6: A compromise between MTD 4 and MTD 6, in which the specified RMS sidelobe 
level is -40 dB. The normalised frequency reponse of filter 5 of MTD 6 is shown 
in Fig. A3.1.4c. Other filters are frequency shifted versions of this response to 
frequencies of 0,0.1, ... 0.9. 

In all analyses in this study the gain of all filters has been normalised to give unity gain for 
white noise inputs (note that in Figs Al to A4 different normalisation relative to the peak 
gain has been used). In noise limited detection scenarios the peak filter gain has a direct 
effect on detection performance; the peak gains of each of the filters in the six MTD banks 
is therefore given in Table Al. 1 for completeness 

Table A1.1 
Peak Gain of Filters in MTD Filter Banks 

(dB relative to thermal noise) 

Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter 
0 1 2 3 4 5 6 7 8 9 

MTD 1 8.11 8.10 9.28 8.45 8.11 8.11 8.11 8.45 9.28 8.10 
MTD 2 8.11 9.65 8.78 8.11 8.11 8.11 8.11 8.11 8.78 9.65 
MTD 3 8.11 9.65 9.09 8.45 8.33 8.11 8.33 8.45 9.09 9.65' 
MTD 4 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 9.11 
MTD 5 9.44 9.44 9.44 9.44 9.44 9.44 9.44 9.44 9.44 9.44 
MTD 6 8.93 8.93 8.93 8.93 8.93 8.93 8.93 8.93 8.93 8.93 
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APPENDIX 3.2 

DEFINITION OF LAND CLUTTER SCENARIOS 
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Index CNR1 ai CNR2 a2 fc2 

1 20.000 . 003 -50.000 . 010 . 000 
Z 70.130143 . 003 -'50.1300 . 010 . 125 
3 70.000 . 003 -50.000 . 010 . 250 
4 213.1330 . 0133 -50.000 . 010 . 375 
5 20.000 . 003 -50.000 . 010 . 500 
-6 70.300 . 003 1-0. '000 . 010 . '000 
7 410.000 UO3 . 10.000 . 010 . 175 
8 70.1300 . 1303 10.000 . 0113 . 4150 
5 20.000 . 003 10.000 . 010 . 375 

113 30.010143 . 13133 10.1300 . 13113 . 300 
if 213.000 . 003 10.000 . 1030 . 000 
17 410.130-0 . 003 MOW . 1300 . 14330 . 175 
13 70.000 . 003 10.000 . 030 . 250 
14 '2'0. '000 . 003 10.000 . 030 . 375 
15 210.000 . 003 10.000 . 030 . 500 
1-6 20.000 . 003 10.000 . 100 . 000 
17 20.000 . 003 10.000 . 100 . 125 
113 7.0.100 . 203 10.000 . 100 . 250 
1S 20.000 . 003 10.000 . 100 . 375 

410 410.000 . U03 10.000 . 100 . 500 
21 20.000 . 14303 20.1300 . 010 . 000 
77 20.000 . "0'03 213.1300 . '0 10 . 175 
73 20.000 . 003 22.000 . 0110 . 250 
414 70.3013 . 143'03 7Z13.13130 . 010 . 375 
Z5 70.000 . 003 22.1000 . 011 . 500 
75 70.1300 . 10'03 20.1330 . 1330 . 13E0 
Z7 70.000 . 003 70.000 . 030 . 125 
7B '20. '000 . 0133 70., 010 0 . 030 . 750 
78 20.000 . 003 20.000 . 030 . 375 
30 70.000 . 14303 20.1300 . 030 . 300 
31 20.000 . 003 20.000 . 100 . 000 
32 713.00"0 . 083 20.000 . 100 . 125 
33 20.1000 . 003 20.000 . 100 . 250 
34 70.1000 . 203 20.000 . 100 . 375 
35 70.000 . 003 70.000 . 100 . 500 
36 70 ., 000 . 003 30.000 . 010 . 1000 
'37 70.000 . 003 30.000 . 010 . 125 
38 20.000 . 1303 30.000 . 010 . 750 
39 20.000 . 003 30.000 . 010 . 375 
40 70. '000 . '003 30.000 . 0113 . 500 
41 20.000 . 003 30.000 . 030 . 000 
441 70.1300 . 303 30.000 . 14330 . 125 
43 20.0000 . 003 30.000 . 030 . 250 
44 20. '000 . 4303 30.3 00 . 030 . 375 
45 20.000 . 003 30.000 . 030 . 500 
46 20.1000 . 003 30.000 . 100 . 000 
47 20.000 . 003 30.000 . 100 . 125 
48 30.0130 . 003 30.000 . 100 . 250 
49 20.000 . 003 30.000 . 100 . 375 
-50 20.000 . 003 30.000 . 100 . 500 
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Index CNR1 al CNR2 a2 fc2 

5'T 20.1000 . 010 -50.000 . 010 
. 000 

57 1 20.000 . 010 -50.000 . 010 . 125 
53 20.000 . 010 -50.000 . 010 . 250 
S4 70.000 . 010 -30.000 . 010 . 375 
-55 70.000 . 010 -50.000 . 010 . 500 
56 70.000 . 010 10.000 

. 010 . 000 
57 20.000 . 010 10.000 . 010 . 125 
-98 20.000 . 010 10.000 . 010 . 250 
'59 70.00-0 . 010 10.000 . 010 . 375 
'90 70.800 . '01'0 1-0.000 . 010 . 300 
51 20.000 . 010 10.000 . 030 . 000 
32 70.0'00 . 010 10.000 

.1 30 
. 135 

E3 20.000 . 810 10.000 
. 030 

. 250 
'64 70.00 0 . 010 10.000 . 1030 . 375 
E5 20.000 . 010 10.000 . 030 . 500 
55 70.000 . 010 10.000 . 100 . 000 
57 20.000 . 010 10.000 

. 100 . 125 
58 20.000 . 010 10.000 . 100 250 
59 20.000 . 010 10.000 . 100 . 375 
70 70.00-0 . 010 10.000 . 100 . 500 
71 20.000 . 010 20.000 . 010 . 000 
72 70.000 . 010 20.000 . 010 . 125 
73 20.000 . 010 20.000 . 010 . 250 
74 20.000 . 910 20.000 . 010 . 375 
75 20.000 . 010 20.000 

. 010 . 500 
76 20.000 . 010 20.000 . 030 . 000 
77 2'0.000 . 018 20.000 . 030 . 125 
78 20.000 . 01E -20.000 

. 030 . 2550 
79 20.000 . 010 20.000 . 030 . 375 
50 70.000 . 010 20.000 . 030 . 500 
81 20.000 . 010 20.000 . 100 . 000 
52 20.000 . 010 20.000 . 100 . 125 
83 20.000 . 010 20.000 

. 100 . 250 
84 20.000 . 010 Z 0.090 

. 100 
. 37S 

85 20.000 . 010 20.000 
. 100 . 500 

55 Z'0.0'00 . 010 30.000 . 010 . 000 
87 20.000 . 010 30.000 . 010 . 125 
58 20.000 . 010 30.000 . 010 . 250 
89 20.000 . 010 30.000 . 010 . 375 
50 20.5000 . 010 30.000 . 010 . 500 
91 70.000 . 010 30.000 

. 030 
. 000 

'92 20.000 . 010 30.000 . 030 . 125 
53 20.000 . 010 30.000 . 030 . 250 
'94 20.000 . 010 30.000 . 030 . 375 
, is 20.000 . 010 30.000 

. 030 . 500 
55 30.000 . 010 30.000 

. 100 . 000 
97 20.000 . 010 30.000 . 100 . 125 
98 20.000 . 010 30.000 . 100 . 250 
99 70.000 . 010 30.000 

. 100 . 375 
100 20.000 . 010 30.000 

. 100 . 500 
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Index CNR1 ai CNR2 a2 fc2 
101 20.000 . 030 -50.000 . 010 . 000 
102 20.000 . 030 -50.000 . 010 . 125 
103 20.0100 . 030 -50.000 . 010 . 250 
104 20.000 . 1030 -50.000 . 010 . 375 
105 20.000 . 030 -50.000 . 010 . 500 
1,06 2'0.000 . 030 10.000 . 010 . 000 
107 20.000 . 030 10.000 . 010 . 125 
1108 20.000 . 030 10.000 . 010 . 250 
10-9 20.000 . 030 10.000 

. 010 . 375 
111 20.000 . 030 10.000 

. 010 . 500 
111 20.000 . 030 10.000 

. 030 . 000 
112 70.000 . 330 10.000 . 030 . 175 
113 2-0.000 . 030 10.000 . 030 . 250 
114 --'0. '00-0 . U30 V0.0,00 . V30 . 375 
115 20.000 . 1030 10.000 . 030 . 500 
II-5 70.000 . 030 10.000 

. 100 Zoo 
117 20.000 . 030 10.000 . 100 . 125 
1113 20.1000 . 130 110. BOB . 100 . 750 
119 Z 0.000 . 1030 110.000 . 1000 . 375 
1210 70.000 . 1ä31a I V., 000 . 1150 . 75140 
171 -1-10.100`0 . 030 20.000 . 010 . 101jo 
i ZZ 70 . lä10 . 030 70.1300 . '0 1"0 . 175 
123 20.000 . 030 20.000 . 01,0 . 3510 

12 4 20.000 . 930 70.0200 . 010 . 375 
125 20.000 . 030 2-0.1000 . 010 . 500 
176 2-0 ., 000 . 1030 70.1000 

. 100 . 10200 
127 '170. OU0 . 03E 20.000 

. 103fä .I -ZS 
175 70.0150 . 10314 70 . t0201ä . 030 . z50 
213 ZID . 0010 . 030 '20.000 . 030 . 375 
130 70.1500 .M 20.000 . 030 . 500 
131' 0.0100 . 030 70.000 . 100 . 000 
ßZ 20.151 0 . 030 20.000 

. 100 . 17S 
133 00.000 . 030 20.000 . 100 . 250 
1-34 20.000 . 030 20.000 . 1010 . 375 
135 ZO. 000 . 030 0.000 . 100 . 500 
1'30 20.000 . 030 30.000 . 010 . 000 
137 20.000 . 030 30.000 . 010 . 125 
139 0.000 . 030 30.000 

. 010 . ". ISO 
133 20.000 . 030 30.000 

. 010 . 375 
140 20.000 . 030 '30.000 . 010 . 500 
141 20.000 . 030 30.000 . 030 . 000 
142 70.000 . 030 30.000 

. 030 . 125 
143 20.000 . 030 30.000 

. 030 . 250 
144 20.000 . 030 30.000 

. 030 . 375 
145 70.000 . 030 30.000 . 030 . 500 
146 70.000 . 030 30.000 . 100 . 000 
147 20.000 . 030 30.000 

. 100 . 125 
149 00.000 . 030 30.000 

. 100 . 250 
149 0.000 . 030 30.000 

. 100 . 375 
150 20.000, . 030 30.000 . 100 . 500 
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Index CNR1 ßi CNR2 62 fC2 
1'51 40.000 . 003 -50.000 . 010 . 000 
152 40.0160 . 003 -SO. 000 . 010 .T ZS 
1'53 40.000 . 003 -50.000 . 010 . Z50 
154 40.1Ö00 . 00`3 -513.000 . 010 . 3775 
155 40.000 . 003 -50.000 .0T0 . 500 
I5b' 40.000 . 003 T O. 000 . 010 . 000 
157 40.000 . 003 10.000 . 010 125 
1513 40.000 . 003 10.000 . 010 . Z50 
1513 40.000 . 003 10.000 . 010 . 375 
Tb'O 40.000 . 003 10.000 . 010 . 500 
161' 40.000 . 003 10.000 . 030 . 000 
1 bZ 40.1 00 . 003 10.000 

. 030 . 125 
1,115 40.000 . 003 10.000 

. 030 . 250 
164 40.000 . 003 10.000 . 030 

. 375 
165 40.000 . 003 10.000 . 030 . 500 
166 40.090 . 003 10.000 . 100 . 000 
1137 40.000 . 003 10.000 . 100 . 125 
11513 40.000 . 003 T O. 000 . 1130 . Z50 
1b 40.000 . 003 10.000 . 11310 . 675 
1 '! {0 40.000 . 006 10.000 . 100 . boo 
1 *11 40.000 . 00.5 '10.000 . 010 . 000 
17 40.000 . 00.5 i. 0.0100 . 010 . 11b 
1 '! 3 40.000 . 003 Z0.000 . 010 . 'LSfd 
1 *14 40.000 . 003 '10.000 . 010 . 3'/5 
1 '(5 40.000 00J 10.000 . 010 . 500 
1,116 40.000 . 006 20.000 . 1060 . 000 
171 40.000 . 006 Z0.000 . 050 . 125 
1 *18 40.000 . 006 :! 0. woo . 0.50 . 250 
179 40.000 . 003 20.000 . 0310 . 375 
l 130 40.000 . 006 20.000 . 060 . boo 
11 40.000 . 006 20.000 . 100 . 000 
T öV 40.000 . 003 20.000 . 100 . 125 
183 40.000 . 003 20.000 

. 100 . 250 
164 40.000 . 003 20.000 . 100 . 37S 
1135 40.000 . 003 20.000 

.T 00 . S1ä0 
186 40.000 . 003 50.000 . 010 . 000 
187 40.000 . 003 30.000 . 010 .I Zs 
11313 40.000 . 003 30.000 

. 010 . 250 
189 40.000 . 003 30.000 

. 010 . 375 
190 40.000 . 003 30.000 

. 010 . 500 
I 9l 40.000 . 003 30.000 

. 030 . 000 
192 40.000 . 003 50.000 

. 030 125 
193 40.000 . 003 30.000 

. 030 . 250 
194 40.000 . 003 30.000 

. 030 . 375 
195 40.000 . 003 30.000 . 030 . 500 
1915 40.000 . 003 30.000 

. 100 . 000 
19'7 40.000 . 003 30.000 

. 100 .I Zs 
198 40.000 . 003 30.000 

. 100 . 250 
1133 40.000 . 003 30.000 

. 100 . 375 
200 40.000 . 003 30.000 

. 100 . 500 
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Index CNR1 ai CNR2 a2 fc2 
201 40.000 . 010 -50.000 . 010 . 000 
202 40.000 . 010 -50.000 . 010 

. 125 
203 40.000 . 010 -50.000 . 010 . 250 
Z04 40.000 . 010 -50.000 . 010 

. 375 
Z05 40.000 . 010 -50.000 . 010 . 500 
705 40.000 . 010 10.000 . 010 . 000 
207 40.000 . 010 10.000 . 010 125 
Z08 40.000 . 010 10.000 . 010 . 250 
ZOS 40.000 . 010 10.000 . 010 . 375 
210 40.000 . 010 10.000 . 010 . 500 
711 40.000 .0TO 10.000 . 030 . 000 
ZTZ 40.000 . 010 10.000 . 030 . 125 
213 40.000 . 010 T O. 000 . 030 . 250 
Z 14 40.000 OTO 10.000 . 030 . 375 
215 40.000 . 010 10.000 . 030 . 500 
ZTb 40.000 . 010 10.000 . 100 . 000 
2 17 40.000 . 010 10.000 . 100 . 125 
213 40.000 . 010 10.000 . 100 . 250 
219 40.000 . 010 10.000 . 100 . 375 
220 40.000 . 010 10.000 . 100 . 500 
221 40.000 . 010 20.000 . 010 . 000 
ZZZ 40.000 .0T0 20.000 . 010 . 125 
IZ3 40.000 .0T0 20.000 . 010 . 250 
ZZ4 40.000 . 010 20.000 . 010 . 375 
ZZ5 40.000 . 010 20.000 . 010 . 500 
226 40.000 . 010 20.000 . 030 . 000 
227 40.000 . 010 20.000 . 030 . 125 
ZZS 40.000 . 010 20.000 . 030 . 250 
ZZ9 40.000 . 010 20.000 . 030 . 375 
Z30 40.000 . 010 20.000 . 030 . 500 
231 40.000 . 010 20.000 . 100 . 000 
232 40.000 . 010 20.000 . 100 . 125 
235 40.000 . 010 20.000 . 100 . 250 
Z34 40.000 . 010 20.000 . 100 . 375 
235 40.000 . 010 20.000 . 100 . 500 
236 40.000 . 010 30.000 . 010 . 000 
237 40.000 . 010 30.000 . 010 . 125 
Z55 40.000 . 010 30.000 . 010 . 250 
239 40.000 . 010 S0.000 . 010 . 375 
240 40.000 . 010 30.000 . 010 . 500 
Z41 40.000 .0T0 30.000 . 030 . 000 
Z42 40.000 . 010 30.000 . 030 . 125 
Z45 40.000 . 010 30.000 . 030 . 250 
Z44 40.000 . 010 30.000 . 030 . 375 
245 40.000 . 010 30.000 

. 030 . 500 
245 40.000 . 010 30.000 . TOO . 000 
747 40.000 . 010 50.000 . 100 .l ZS 
Z45 40.000 . 010 30.000 . 100 . ZSO 
Z41 40.000 . 010 50.000 . 100 . 375 
250 - 40.000 . 010 30.000 . 100 . 500 

Page 236 



Index CNR1 ßi CNR2 02 fc2 

Z51 40.000 . 050 -50.000 . 010 . 000 
ZSZ 40.000 . 030 -50.000 . 010 . 115 
Z53 40.000 . 030 -50.000 . 01 Id . ß'50 
254 40.000 . 030 -50.000 . 010 . 575 
ZSS 40.000 . 030 -50.000 . 010 b-00 

756 40.00 . -030 10 . -000 .0T0 . 000 
257 40.000 . 030 10.000 . 010 . 125 
cö 40. '000 . 030 To :1 00 . 01'0 : ZS0 
759 40.000 . 030 10.100 . 010 . 375 
750 4'0.1130 . 1x30 10.100 . 010 . 500 
7E1 40.000 . 030 10.000 . 030 . 000 
762 40.800 . 030 10.000 . 030 . 125 
Z93 40.000 . 0310 10.000 . 030 . 250 
764 413. WOO . 1330 10.1000 . 030 . 375 
265 40.000 . 030 10.000 . 030 . 500 
7556 40.13013 . 100 10.000 . 100 . 000 
267 40.0100 . 030 10.000 . 100 . 125 
758 413.000 . 030 10.000 . 100 . 250 
769 40.000 . 030 10.000 . 100 . 375 
470 40.100 . 030 10.000 . 100 . 500 
271 40.0010 . 030 20.000 . 010 . 000 
272 40. '00 . 030 213.000 . 010 . 125 
273 40.000 . 030 20.000 . 010 . 250 
774 413.300 . 030 20.000 . 010 . 375 
275 40.1300 . 030 20.000 . 010 . 500 
276 40.800 . 030 710.000 . 030 . 000 
277 40.000 . 030 40.000 . 030 . 125 
778 40.13102 . 030 210.000 . 030 . 250 
279 40.000 . 030 20.000 . 030 . 375 

780 40.13100 . 0310 20.000 . 030 . 500 
281 40.000 . 030 20.000 . 100 . 000 
782 40.101013 . 030 20.000 . 100 . 1115 
Z83 40.000 . 030 20.000 . 100 . 250 
284 40.10-00 . 1030 20.1000 . 1010 . 375 

285 40.000 . 030 20.000 . 100 . 500 
256 40.1300 . 030 30.100 . 010 . 000 
287 40.000 . 030 30.000 . 010 . 125 
788 40.1300 . 030 30.000 . 010 . 250 
289 40.000 . 030 30.000 . 010 . 375 
-7910 4 0.130 0 . 930 -50.1000 . 010 . 'SO O 
291 40.000 . 030 30.000 . 030 . 000 
Z 9Z 4 0.13030 . 030 30.1000 . 1330 . 175 
253 40.000 . 030 30.000 . 030 . 250 
794 4 0. '0130 . 1030 30.000 . 030 . 375 
155 40.000 . 030 30.000 . 030 . 500 
7156 40 . '0 00 . 00 30.000 . 1100 . 1000 
297 40.000 . 030 30.000 . 100 . 121 5 
298 W. '000 . 030 30.13 00 . 100 . 25.0 
299 40.000 . 030 30.000 . 100 . 375 
3140 4'0.1300 Me '30.000 . 100 . 500 
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301 60.0010 . 003 -50.000 . 010 . 000 
302 '610.000 . 003 X0.1000 . 010 . 175 
303 '60.000 . 003 -50.000 . 010 250 
304 50.000 . 003 -30.000 . 010 . 375 
305 50.000 . 003 -50.000 . 010 . 500 
306 50.00 0 . 003 1'0. '000 . 010 . 1000 
307 60.000 . 003 10.000 . 010 125 
308 30.00 0 . 003 10.000 . 010 . 750 
309 50.000 . 0133 10.000 . 010 . 375 
31,0 b 0. '000 . 003 10.7000 . 010 . 500 
311 50.000 . 003 10.000 . 030 . 000 
312 50.000 . 1003 10.020 . 030 .l ZS 
'313 -60.000 . 003 10.000 . 030 . 250 
314 50.000 . 103 10.002 . '030 . 375 
315 50.000 . 003 10.000 . 030 . 500 
316 '90. '000 AM 110.000 . 100 . 000 
317 60.000 . 003 10.002 . 100 . 1Z5 
318 '6'0. '000 . 003 10.00 0 . 100 . -7s0 
319 60.0010 . '003 10.000 . 100 . 375 
3213 b'0.130 . 093 110.000 . 1100 . 500 

321 60.000 . 003 20.000 . 010 . 000 
32Z F0 . '000 . 003 70.000 . 010 . 125 
313 -60.000 . 1003 '213 . 10,010 . 010 . 250 
-324 50.0010 . 003 20.000 . 010 . 315 
325 60.0010 . 003 20.000 . 010 . 500 
376 -50.000 . 1303 20.0132 . 830 . 0100 
327 60.000 . 003 20.000 . 030 . 125 

328 E0.0,00 . 003 Zla . 000 . 038 . 250 
329 '60.0010 . 003 20.000 . 030 . 375 
330 "60.000 . 023 20.0000 . 10-50 . 300 
331 90.000 . 003 20.000 . 100 . 000 

332 610.00 0 AM 2 0.10010 . 10 0 . 125 
333 610.000 . 003 20.000 . 100 . 250 
334 60. -000 . 003 20.000 . 100 . 375 
33S 60.000 . 003 20.000 . 100 . 500 
336 50.000 . 023 30.000 . 010 . 000 
337 60.000 . 003 30.000 . 010 . 125 
338 50.000 . 003 30.000 . 010 . 2,90 

339 60.000 . 003 30.000 . 010 . 375 
34'0 '60.1000 . 003 30.000 . 010 . 500 
341 60.000 . 003 30.000 . 030 . 000 
342 60. "000 . 003 30.000 . 030 . 135 
'343 60.000 . 003 30.000 . 030 . 250 

-344 '90. '000 . 10133 "30. '000 . 030 . 375 
345 50.000 . 003 30.000 . 030 . 500 
346 30. '000 . 1003 30.000 . 100 . 000 
347 60.000 . 003 30.000 . 100 . 125 
3413 '50.000 . 013 30.000 . 100 . 250 
349 "60.000 . 003 30.000 . 100 . 375 
390 50.000 . 003 30.000 . 100 . 300 
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351 60.000 . 010 -50.000 . 010 . 000 
352 613. '0100 . 010 -50.1000 . 010 . 125 
353 60.000 . 010 -50.000 . 010 . 250 
354 60. '000 . 0113 -50.000 . 010 . 375 
355 '60.000 . 010 -50.000 . 010 . 500 
356 '90. '0'00 . 0110 10.0,00 . 1010 . 000 
357 510.000 . 010 10.000 . 010 . 125 
358 50.100 . 010 110.000 . 010 . 250 
359 130.000 . 010 10.000 . 010 . 375 
350 b'0.1a1ä0 . 0110 10.000 . 010 . 500 
361 60.0010 . 010 10.000 . 030 . 000 
352 '90. '000 DID 10.0010 . 030 . 17's 
'353 50.1000 . 0110 10.000 . 030 . 250 
364 60. '000 . '0110 10.000 . 1330 . 375 
355 60.000 . 010 10.000 . 030 . 500 
365 50.000 . 010 110.0100 . 100 . 000 
'367 60.000 -. 010 10.000 . 100 . 125 
368 -60.100 . 0110 10.101013 . 100 . 250 
359 '60.000 . 0110 10.000 . 100 . 375 
370 510.1300 . 10110 10.000 . 100 . 500 
371 50.000 . 010 20.00,0 . 010 . 000 
372 50.13130 . 010 20.000 . 010 . 125 
373 60.000 . 010 20.000 

. 010 . 250 
314 50.1000 . 0110 20.000 . 1010 . 375 
375 50.000 . 010 20.000 . 010 . 500 
376 '90. '0'00 . 10113 210.0130 . 030 . 000 
377 50.000 . 0110 20.000 . 030 . 125 
378 6T ., 000 . 13113 20.1300 

. 1030 . 750 
379 60.000 . 0110 70.01010 . 030 . 375 
350 '90.1300 . 0110 Z0.0 00 . 1330 . 'SO O 
3131 50.00-0 . 010 20.000 . 100 . 000 
382 '60.10010 V 1'0 30.13010 . 1'013 . 175 
383 50.000 . 010 30.000 . 100 . 250 
384 50.11000 . 01'0 30.1000 . 1,00 . 375 
385 50.0010 . 0110 20.001 . 1100 . 500 
385 50.0-00 . la ro 30. '100 . 10113 . 1300 
387 60.000 . 010 30.000 . 01-0 . 175 

388 50.300 . '01'0 30.1300 . '010 . 250 
389 E0.000 . 0110 30.000 

. 010 . 375 
390 50.10010 . 1101,10 30.1000 . 010 . Soo 
391 U0.000 . 010 310.00-0 . 030 . 13010 
352 '90.000 . 1010 30.1313 0 . 030 . 175 
393 50.000 . 010 30.000 . 030 . 250 
394 60.1000 . 010 30.000 . 030 . 375 
395 60.000 . 010 30.000 . 030 . 500 
398 50.1300 . 010 30.000 . 100 . 000 
397 '60.000 . 010 30.000 . 100 . 125 
358 '50.1000 . 0113 30.000 . 100 . 2513 
399 60.000 . 010 30.000 . 100 . 375 
400 50.00 . 1310 30.1000 . 100 . 500 
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401 '60.0100 . 030 -50.000 . 010 . 000 
492 '90.0010 . 730 -30.0000 . '010 . 125 
40.3 So. 0010 . 030 -50.000 . 010 . 250 

, C04 F0 . ld0 0 . 030 -50.00 0 . 010 . 375 
405 50.000 . 030 -50.000 . 010 . 500 
4106 50.000 . 130 10.000 . 010 . 000 
407 50.000 . 030 10.000 . 010 . 125 
41d 8 60.000 . 1430 10.0 00 . 010 

. 250 
409 '0.000 . 030 10.000 . 010 . 375 
41lä 'FO. '0O1o . 030 10.0-00 . 010 . 1500 
411 E0.000 . 030 10.000 . 030 . 000 
412 50.000 . 030 10.000 . 030 . 125 
413 '60.1000 . 030 10.000 . 030 . 250 
414 50.00 0 . 030 113.0100 . 030 . 375 
41S '60.000 . 030 10.000 . 030 . 500 
41-6 ED. = . 7030 10.1800 . 100 . 000 
417 50.000 . 030 10.000 . 100 . 175 
418 '50.000 . 030 110.000 . 100 . 250 
419 50.000 . 1030 10.000 . 11010 . 375 
420 S 0.1d00 . 1430 10.000 . 100 

. -Soo 
421 50.0100 . 030 20.000 . 010 . 000 
472 521.1400 . 030 70.000 . 010 . 125 
423 '60.000 . 030 20.000 . 010 . 250 
424 50.12100 . 030 70.000 . la 10 . 375 
425 ' 0.000 . 0-30 '410. zoo . 010 . 500 
476 50.100 . 12130 70.000 

. 230 . 000 
477 '910.000 . 030 20.000 . 030 . 175 
478 50.000 . 030 20.000 . 030 . 250 
429 '50.000 . 030 70.000 . 030 . 375 
430 '90.100 . 930 20.000 . 03E . 500 
431 '910.000 . 030 20.000 . 100 . 000 
432 50.000 . '030 20.000 . 10 0 . 175 
433 50.000 . 030 70.000 . 100 . 250 
434 '50.1000 . 030 Z0.0010 . 100 . 375 
435 'ED. 01010 . 030 4 1.0.0010 . 1010 . 500 
436 "E0.12100 . 12130 30.00-0 AM 10 . 000 
437 '60.000 . 030 30.000 . 010 

. 125 
438 '50. '000 . 030 30.00 0 . 010 . 7510 
439 60.000 . 030 30.000 . 010 . 375 
440 '0.000 . 030 30.000 . 010 . 300 
441 60.000 . 030 30.000 

. 030 . 000 
442 50.000 . 12130 30.000 

. WM- . 125 
443 '60.000 . 030 30.000 . 030 . 250 
444 50.000 . 030 30.000 . 030 . 375 
445 '60.000 . 030 30.000 . 031 . 500 
446 50.000 . 030 30.000 . 11010 . 000 
447 '60.0100 . 030 '30.000 . 100 . 125 
448 50.000 . 030 30.000 . 100 . 250 
449 '60.000 . 030 30.000 . 100 . 375 
450 50.000 . 1030 30.000 . 100 . 'SOO 
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Index CNR1 ai fcI CNR2 ß2 fc2 

1 20.000 . 010 . 000 -20.000 . 010 . 000 
2 20.0'00 . 010 . 200 -210.000 . 010 

. 2010 
3 20.0010 . 010 . 000 -20.000 . 010 . 400 
4 20.000 . 010 . 000 -20.000 . 010 . 600 
5 20.000 . 010 . 000 -20.000 . 010 

. 800 
"6 20. ''00 . 010 . 000 10.000 . 010 

. 000 
7 20.000 . 010 . 000 10.000 . 010 

. 200 
8 20.1000 . 010 . 000 10.000 . 010 . 400 
9 20.000 . 010 . 000 10.000 . 010 . 600 

10 20.0-00 . 010 . 000 10.000 . 010 . 800 
11 20.000 . 010 . 000 10.000 . 020 . 000 
13 20.1000 . 010 . 000 10.000 . 020 . 200 
13 20.000 . 010 . 000 10.000 . 020 . 400 
14 70.10010 . 010 . 000 10.000 . 020 . 600 
15 20.000 . 010 . 000 10.000 . 020 . 800 
B 20. -0-00 . 010 . 000 30.000 . 010 . 000 
17 20.000 . 010 . 000 30.000 . 010 . 200 
18 '70. * 0'00 . 0110 . 00'0 30.00 0 . 010 . 4100 
19 20.0000 . 0113 . 000 30.000 . 010 . 600 

TO 710. Wo . 01 0 . 000 30 . '0-0Ta . 0110 . 8lä0 
21 7-0.000 . 010 . 000 30.000 . 020 . 000 
72 20.0(500 . '01'0 . 00' 30.000 . 020 . 200 
Z3 20.000 . 0110 . 000 30.000 . 020 . 400 
7-4 70.000 . 010 . 00'0 30.000 . 0210 . 520 
75 20.000 . 010 . 000 30.000 . 020 . 800 
75 70.020 . 010 . 350 -20.000 . 010 . 000 
27 70.000 . 010 . 250 -20.000 . 010 . 200 
78 70.020 . 010 . 250 -20.000 . 010 . 400 
23 20.000 . 010 . 250 -20.000 . 010 . 600 
30 70.000 . 0110 . 250 -20.000 . 010 . 800 
31 20.000 . 010 . 250 10.000 . 010 . 000 
32 210.020 . 010 . 250 10.000 . 010 . 200 
33 20.000 . 010 . 250 10.000 . 010 . 400 
34 20 . '0 00 . 010 . 250 10.13010 . 010 . 800 
35 20.000 . 010 

. 25.0 10.000 . 010 
. 800 

36 20. '000 . 010 . 750 10.020 . 130 . 1000 
37 20.000 . 010 . 250 10.000 . 020 . 200 
'38 20.1300 . 010 . 250 10.200 . 020 . 4100 
39 20.000 . 010 . 2810 10.000 . 020 . 502 
40 "0. '000 . *010 . 250 113.000 . 1020 . B'00 
41 20.000 . 010 . 250 30.000 . 010 . 000 
42 7-0. '0 00 . 1010 . 250 30.000 . 010 . 200 
43 20.000 . 010 . 250 30.000 . 010 . 400 
44 20.000 . 010 . 250 30.000 . 010 . 600 
45 20.000 . 010 . 250 30.000 . 010 . 800 
46 20.000 . 010 . 250 30.000 . 020 . 000 
47 20.000 . 010 . 250 30.000 . 020 . 200 
48 20.000 . 010 . 250 30.000 . 020 . 400 
49 20.000 . 010 . 250 30.000 . 020 . 600 
513 0.000 . 010 . 250 30.000 

. 020 . 800 
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51 20.000 . 010 . 500 -20.000 . 010 . 000 
-92 70. lö00 . 010 . T500 -20.000 . 10110 . 200 
53 4_100.000 . 010 . 500 -20.000 . 0110 . 400 
54 4_0.000 . 210 . 5.00 -70.000 . 010 . -E00 
55 20.000 . 010 . 500 -20.000 . 0110 . 900 
-56 70. '000 . 0110 . 1, lä0 10.0-00 . '01'0 XW 
57 20.000 . 010 . 500 10.000 . 010 . 2010 
E"13 70.0010 . '01'0 . 1_; 00 10.000 . 1310 . 400 
59 20.000 . 010 . 5010 113.00-0 . 1010 . 800 
'90 4_0.1000 .0 i-0 . Soo 10.000 . 01-0 .. 90'0 
51 7`0 . 10010 . 01110 . Sod 1-0.101410 .m . 080 
. 64_ 4_0.1400 . '01"o . ̀5o1ä na . 1400 ., O-zä . Zola 

63 20.000 . 010 . 500 1110.110140 . ia7o . 41313 

E4 4_0.13132 . 01D . 
-50 113.0u0 . 02iä . 600 

E5 20.200 . 010 . 5013 10. ooo . 920 BIID 
36 Zia . 131313 . '01'10 . "51313 30.1000 . "0 ro . -00'0 
57 20.10100 . 010 . 300 30.000 . 101-0 . 
513 70.103 . 1310 . "S0ja 30.70 . 0110 . 4100 
EE 20.000 . 010 . 500 30.000 . 010 . 600 

70 70.1300 . 010 . 500 30.000 . 010 . 800 
71 70.000 . 010 . 500 30.000 . 020 . 000 
72 ?m . 0013 AID . 500 30.1000 . 070 . 2130 
73 20.0010 . 010 . 500 30.000 . 070 . 400 
74 70.1300 . 0113 . E1313 30.000 . 1320 . 800 

75 210.000 . 1010 . 500 30.000 . 1920 . 800 
76 Z0 . '000 . 1'0'0 . 0013 -20.030 . IN . 000 
77 20.003 . 100 . 000 -20.1000 . 100 . 200 
78 4_0.11313 . 100 ADD -20.13130 ADD . 4130 
79 23.000 . 100 . 000 -20.000 . 100 . 530 
. 90 -70., 0,00 . 100 . 000 -20.000 . 100 . 8@B 

81 20.000 . 100 . 000 10.000 . 100 . 000 
U2 213.013 . 100 . 000 10.000 . 100 . 2130 
33 20.000 . 100 . 000 10.000 . 100 . 400 
54 20.000 . 100 . 000 10.000 . 100 . 5010 
85 20.000 . 100 . 000 10.000 . 100 . 500 

-96 70.000 . 100 . 000 10.000 . 200 . 000 
97 20.000 . 100 . 000 10.000 . 200 . 200 
58 70.000 . 100 . 000 10.000 . 200 . 400 
89 20.000 . 100 . 000 10.000 . 200 . 600 
-90 4_0.000 . 100 . 000 10.000 . 200 . 1300 

91 '70.000 . 100 : 000 30.000 . 100 . 000 
92 "-10.000 . 1@0 . 1300 30.000 . 1140 . 700 
93 20.000 . 100 . 000 30.000 . 100 . 400 
'94 4_0.000 . 100 . 13130 30.000 . 1100 . EDO 
45 20.000 . 100 . 000 30.000 . 100 . 800 

ES 7@ . 0000 . 100 . LIDO 30.000 . 200 . 000 
97 00.000 . 100 . 000 30.000 . 200 . 200 

? 70. E00 . 100 . 000 31.000, . 200 . 400 

s9 470.000 . 100 . 000 30.000 . 200 . 500 
100 4_0. '000 . 100 . 000 30.000 . 200 . 800 
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101 20.0010 
. 100 . 250 -20.000 . 100 

. 000 
F02 20. ODO . 100 . 250 -2'0.000 . 100 

. 21rTr 
193 20.000 . 100 . 250 -20.000 . 100 . 400 
1-04 70.00-0 . 100 . 750 -20.000 . 100 

. 600 
105 20.000 . 100 . 250 -20.000 . 100 

. 800 
106 70.00 0 . 1010 .Z SO 10.000 

. 1100 
. 11`00 

1107 20.01010 . 100 . 250 10.000 . 100 . 200 
108 70.0 0 . 10 0 . 750 10.00 0 . 100 . 4'00 
U019. 20.000 . 100 . Z50 10.000 . 100 . 500 
1 10 -2110 . Ta rO . 10 0 . 750 110. Duo . 1101 8DD 
111 20.0010 1100 . 1150 10.000 . 200 . 000 
112 20.000 . 100 . 750 10.000 . 200 . 200 
113 20.000 . 100 . 250 10.000 . 200 . 4010 
114 20.000 . 100 . 75D 10.000 . 200 . 500 
115 20.0010 . 100 . 250 10.000 . 200 . 800 
115 20.000 . 1010 . 750 -30. '0010 . 100 -UDO 
117 20.000 . 100 . Z50 30.000 . 100 . 200 
1113 70.000 . 10@0 . 250 30.000 . 100 . 481 
11,9 2>A. 000 . 100 . 250 30.000 . 100 . 600 
170 -ZO 

. 7"O . 170 . 750 30.000 . 100 . 81 0 
121 20.00@ . 100 . 750 . 30.000 . 200 . 000 
172 2O. OQr@ . 100 . 750 30.000 . 200 . 200 
173 20.000 .. 100 . 250 30.000 . 2100 . 400 
1-24 770.000 . 1100 . 750 30.000 . 270 . 500 
175 20.0110 . 100 . 250 30.000 . 200 .. 800 
176 70.000 . 1100 . -70.000 . 110110 . 00VO 
127 70.1000 . 100 . 500 -20.000 . 10@ . 200 
1213 70.000 1W . 500 -70.0010 . 100 . 400 
129 20.000 . 100 . 500 -20.000 . 100 . 600 
130 70.000 . 1,00 . 1500 -20.000 . 100 . 500 
131 20.000 . 100 . 500 10.000 . 100 . 000 
132 '= 0.000 . 100 . 7500 1'0.000 . 100 . 
133 20.000 . 100 . 500 10.000 . 100 . 400 
134 -. 0.000 . 100 . 500 10.000 . 100 . 'Wo 
135 2'0.000 . 100 . 500 10.000 . 100 . 800 
136 70. -000 . 100 . 500 10.000 . 200 . 000 
137 20.000 . 1@0 . 5@0 10.000 . 200 . 200 
170 70.000 . 100 . 5@0 10.000 . 200 . 400 
139 20.000 . 100 . 500 10.000 . 200 . 600 
14-0 20.1000 . 100 . 500 10.000 . 200 . 800 
141 20.000 . 100 . 500 30.000 . 100 . 000 
142 70.000 . 100 . 500 3L . 000 . 100 . 200 
143 20.000 . 100 . 500 30.000 . 100 . 400 
144 70.1100 . 100 . 500 0.000 . 100 . 500 
145 20.000 . 1010 . 500 30.000 . 100 . 800 
148 70.000 . 100 . 5@0 3@. 000 . 200 . 000 
147 20.000 . 100 . 500 30.000 . 200 . 200 
148 70.000 . 100 . 500 " 0.000 . 2100 . 400 
149 20.000 . 100 . 500 30.000 . 200 . 500 
150 20.000 . 1100 . 500 30.000 . 200 . 500 
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151 40.0-00 . 010 . 000 -20.000 . 010 . 000 
152 40.0 . 010 . 000 -70.000 . 010 . 200 
153 40.000 . 0110 . 000 -20.000 . 010 

. 400 
1-54 40.000 010 . 000 -20.000 . 010 . 600 
155 40.000 . 010 . 000 -20.000 . 010 . 800 
186 40.000 . 010 . 000 10.000 . 010 . 000 
157 40.000 . 010 . 000 10.000 . 010 . 200 
rue 40.000 . '010 . 000 10.000 . 010 . 400 
1.59 40.000 . 010 . 000 10.000 . 010 . 600 
160 410.000 .D 1100 . 000 10.000 . 010 . 800 
1,61 40.00'0 . 010 . 000 10.000 . 020 . 000 
182 40.0 . 131'0 000 1 . 000 , 020 . 71 0,0 
163 40.000 . 010 . 000 10.0100 . 020 . 400 
164 4-0.000 . 010 . VY0 10.000 . 0210 . 600 
1E5 40.000 . 0110 . 000 110.000 . 020 . 800 
186 4-0.000 . 010 . 000 30.000 . 1010 . 07 
167 40.000 . 010 . 0100 30.000 . 010 . 200 
158 40.1070 . 101 0 . 000 -370. DUO . 010 . 400 
159 40.000 . 0110 . 000 30.000 . 010 . 600 
170 4'0.000 .1 10 . 0130 33.000 

.A 10 . 1300 
171 40.000 . '010 . 000 30.000 

. 020 . '000 
172 4'0.1 . 0113 ON 0 30.000 . 02 0 . "ZO D 
173 40.0'00 . 010 . 000 30.000 . 020 . 400 
174 40.0L00 . 10110 . 000 30.000 . 020 . 600 
175 40.000 . 010 . 000 30.000 . 020 . 800 
176 40.000 . 1010 . 25 -20.000 . 010 . 000 
177 40.0100 . 010 . 250 -20.000 . 010 . 200 
178 410., 000 . 010 . 250 -20.000 . 010 . 400 
179 40.000 . 010 . 250 -20.000 . 010 . 600 
180 400.1 30 . 0110 . 750 -20.10100 . 010 . 800 
181 40.000 . 1010 . 250 10.000 . 010 . 000 
1'82 40.0 . 1010 . '250 10.000 . 0110 . 200 
163 40.000 . 010 . 250 10.000 . 010 . 400 
184 40.000 . 010 . 20 10.000 . 0100 . 800 
195 0-010 . 010 , 250 10.1000 . 010 . 800 
1's36 4*0 . g0 0 .A 10 . 250 10.0130 . 1020 . 0010 
187 40.000 . 010 

. 250 10.000 . 020 . 200 
18'8 4'0.000 O 10 . 250 10.000 . 020 . 400 
189 40.000 . 010 . 250 10.000 . 020 . 800 
1.90 4'0.000 . 010 . 250 10. '000 . 07-0 . 'B'00 
191 40.000 . 011 . 250 30.000 . 010 . 000 
192 4: 0., 020 . 131'0 . 750 -3 . 000 . 13 ILA . 200 
193 40.000 .0 113 . 250 30.0 Oro . 1310 . 400 
194 41 . io10 . '0 ro . 750 70. -000 . 01V : 5013 
195 40.000 . 010 . 350 30.1000 . 0110 . 8010 
1 X36 410.0130 .0 TYP . 750 30.000 . -020 . V0r0 
197 40.00- . 018 . 750 30.000 . 070 . 200 
198 40.1000 .0 10 . 75-0 30: 000 : 020 . 400 
1 99 40.0010 . 0110 . 250 30.000 . 020 . 600 
700 4-@ . 000 . 10113 . 750 30.1300 . 070 . '800 
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Index CNR1 ßi fc 1 CNR2 62 fc 2 
201 40.000 . 010 . 500 -20.000 . 010 

. 000 
702 40.000 . 010 . 500 -20.000 . 010 . 200 
203 40.000 . 010 . 500 -20.000 . 010 . 400 
704 40.000 . DID . 500 -20.000 . 010 . 5100 
205 40.000 . 010 . 500 -20.000 . 010 

. 800 
": rs 40.00-0 . 010 . s00 10.000 . 010 

. 000 
207 40.000 . 010 . 500 10.000 . 010 

. 200 
708 470.7000 .D IV . '500 10.0100 . 010 . 400 
209 40.000 . 010 . 500 10.000 . 010 . 600 
-21,0 4`0. U0 . 010 . 500 10.000 . 010 BOO 
211 40.0-013 . 010 . 500 10.000 . 020 . 000 
7212 40.000 . 010 . 500 10.000 . 020 . 200 
213 40.000 . 010 . 500 10.000 . 020 . 400 
-214 40.000 . 010 . 500 10.000 . 020 . 600 
215 40.000 1010 . 500 10.000 . 020 . 800 
Z 15 40.1 00 . 010 . 5014 30.0'00 . 010 . 000 
Z17 40. -000 . 010 . 500 30.000 . 010 . 200 
Z 18 4lä . 15iä0 . 010 . 500 30.000 . 010 . 400 
219 

. 
40.000 . 010 . 500 30.000 . 010 . 600 

720 40. W O . 010 . 500 30.000 . 010 . 800 
ZZ1 40.000 . 010 . 500 30.000 . 020 . 000 
722 4ä .V . 0110 . 500 30.5013 . 070 . 200 
ZZ3 40.000 . 010 . 500 30.000 . 020 . 400 

2'24 40.1000 . 101'0 . 50 310 , 1000 . 020 . 500 
225 40.000 010 . 500 30.000 . 070 . 802 
ws 40. '000 . 11x0 . 0150 -21a . 1ä00 . 100 . 000 
227 40.000 . 100 . 000 -20.000 . 100 . 200 
7,116 40.1500 . TTUO . 0150 20.000 . 100 . 400 
239 40.000 . 100 . 000 -20.000 . 100 . 500 
730 40. ý00 . 1'00 . 100 ZTD . 1ä1Ö0 . Tin . B0'O 
231 40.0010 . 1100 . 000 10.000 . 100 . 000 
732 40.1500 . 100 . 130'0 10 . lä00 .1 td0 . 00 
233 40.000 . 100 . 000 10.000 . 100 . 400 

734 40.1500 . 1'00 
. 1400 10.1000 . 100 . 500 

235 40. '000 . 100 . 000 10.000 . 100 . 800 
236 40.1500 . 1'00 . 000 10.100 . 7210 . 1300 
737 40.000 . 100 . 000 10.000 . 200 . 200 
738 40. -000 . 100 . 1510 10.000 . 00 . 4100 
239 40.000 . 100 . 000 10.000 . 200 . 500 
-Z40 40 . '00 0 . INTO . '0130 10.00 0 70 0 Vo 0 
Z4T 40.000 . 100 . 000 30.000 . 100 . 000 
242 40.1500 . 1'00 . 000 30.1500 -170 0 
243 40.000 . 1100 . 000 30.000 . 100 . 4010 
-Z44 40 . '10 0 . 1-00 . 150'0 30.12500 . 100 X CIO 
Z45 40.000 . 100 . 000 30.000 . 100 . 800 

'246 40. '0`00 . 100 . 000 30 . lä0'0 . '200 . 0150 
247 40.0070 . 100 . "000 30.000 . 200 . 200 
'248 40.1500 . 100 . 000 '370. W O . 200 . 4TdO 
249 40.000 . 1*00 . 000 30.000 . 200 . 600 
250 40.1500 . 100 . (x0'0 '30.1 00 . 2550 W@ 
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Index CNR1 al fc1 CNR2 a2 fc2 

Z5'1 40.000 . 100 . 250 -20.000 . 100 . 000 
ý'SZ M-000 . 1,00 . 250 -70 . '01 0 . 1-00 . 700 
253 40.00'0 . 1100 . 250 -20.000 . 100 . 400 
I54 40 . "000 . 1,00 . 250 -ILS . J00 . 1100 . 30N 
Z55 40.000 . 1100 . Z50 -20.000 . 100 . 800 

7S6 40. '000 . r00 . 750 1'0. '1äo0 . roo . N00 
257 40.000 . 100 . 250 10.000 . 100 . 20'0 
758 40.000 . 100 . 750 r(: O00 . 100 . 400 
Z59 40. J00 . Too . 250 10.000 . 100 . 100 
'160 40: 000 . 100 . ZsO T'O.: o00 . r00 . -9130 
51 40.000 . 100 . 250 10.000 . 200 . 000 
Zb2 40: 000 . ro0 . ýT50 10.000 

. 00 . 770 
253 40.000 . 100 . ZSO 10.000 

. 200 . 400 
-264 40: 000 . r00 . 250 r0: (00 . -ZOO : 60LI 
735 40.000 . 100 . 250 T 0.0O0 . 200 . 200 
Z82 40.000 . 100 . 250 330.000 . 1130 . lä0@ 
257 40.1 00 . 100 . 250 30. -000 . 100 200 

796 40.000 . 100 . 751 30 . voo . 1130 . 400 
289 40.000 . YOU . 250 30. '000 . 1100 . '600 
270 40.000 . r00 . 750 -30. '1300 . 100 . '800 
Z71 40.0010 . 1130 . '250 310.000 . 700 . 0100 
27.7 . 40.000 . 100 . 750 30.0.00 . 700 . 700 
Z73 40.000 . TOO . 750 30.000 . 700 . 4id0 
174 40.000 . 100 . 250 30.1000 . 200 
275' 40.000 . 110 . 250 '30.000 . 200 . 800 
776 40.0`00 . 100 5150 -70. lä00 . 110 . 1000 
277 40.000 . 100 . 500 -20.000 . 100 . 200 
778 40. '000 . 1-00 . 500 -70.000 . 100 . 400 
279 410. '00 . 100 . 500 -20.000 . 100 . 1300 
780 40.000 . 100 . 500 20.00'0 . 1100 . 270 
2131 40.000 . 100 . 500 10.000 . 100 . 000 
71Z 40. -000 . 100 . -500 10.000 . 100 . 20'0 
Z)33 40.0010 . 100 . 500 10.000 . 100 . 400 
784 40.000 . 100 . 500 1'0.12100 . 1100 . 500 
285 40.000 . 100 . 500 10.000 . 100 . 800 
2138 40.000 . r@L0 . 500 10.1300 . 700 . '000 
787 410.000 . 100 . 500 10.000 . 700 . 700 
288 40.000 . 100 "1500 10.000 . 700 . 400 
28'3 40.000 . 100 . 500 10.000 . 200 . 800 

2790 40.000 . 1'00 . '50.0 10.000 . 700 V0@ 
291 40.000 . 1100 . 500 30.000 . 100 . 00'0 
7'32 40 . '000 . 1'00 . 5.00 30.0100 . 100 . 200 
Z93 40.000 . 100 . 500 30.000 . TOO . 4010 
294 40.000 . 100 . 500 30. '000 . 100 . 130@ 
'Zug 40.0010 . 100 . 500 30.000 . 100 . 800 
796 40. '000 . 100 . "1300 -30.000 . 200 X00 
Z'37 410.000 . 100 . 500 30.000 . 200 . 200 
798 40 . W0 . 100 . 300 30.1ä1ö0 . 300 . 400 
299 40.00 . 100 . 500 30.000 . Zoo . 500 

-300 40.000 . 1'00 . 300 "30.00'0 
. 70'0 . }? 00 
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APPENDIX 3.4 

IMPROVEMENT FACTOR ANALYSIS 

1. Calculation of False Alarm Rate 

Let the desired false alarm rate at the output of the Mb/Nb integrator be PfaO, the false alarm 
probability at the input to the Mb/Nb integrator be Pfal; and the false alarm probability at the 

output of each CFAR detector in each doppler bin be Pfa2" Assume that Pfa2 is identical and 
independent in each doppler bin. Then 

Pfal =1- [1- Pfa2]N ... (A3.4.1) 

Therefore: 

Pfa2 =1- [1- Pfal]lIN ° Pfal/N ... (A3.4.2) 

Assuming also that Pfal is identical and independent on each of the Nb bursts, the output 
false alarm probability PfaO is given by 

N 
PfaO = (M) Pfal [1' Pfa1]N. i 

i=M ... (A3.4.3) 

The detection threshold in each detector is therefore obtained from inversion of eqn. 
(A3.4.2) to obtain Pfal, substitution of the answer into eqn. (A3.4.2), and calculation of 
the threshold from : 

T= -P, In( P1) for ideal detection 

T= Pc"Nr[Pfä2 ̀ -1] for a CA CFAR detector ... (A3.4.4) 

where Pc is the clutter residue power. 

2. Calculation of Detection Probabilities 

Given clutter with covariance matrix M, the clutter residue and signal powers out of each 
filter are given by PC = WHMW and PS = [WS]2 respectively, where W is the complex 
filter weight vector and S is the complex signal vector, of magnitude So and frequency ft. 

Using the threshold and SCR values obtained above the detection probability Pd; on each 
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filter channel i is obtained as usual from Marcum's Q function for non-fluctuating targets in 
Rayleigh backgrounds. On an individual burst k this detection probability is a function of 
the wavelength Xk and PRF on that burst, and the target doppler (and is hence periodic with 
target velocity v with period equal to ? k. PRFk/2). The probability of detection over all 
filters is obtained from: 

N 

Pd(v, k) =1- JJ (1 - Pdi) - maxi(Pd) 
i=1 ... (A3.4.5) 

Then for a given target velocity v the overall detection probability after 1/3 binary 
integration is given by Pd1/3(v) =1- (1 - Pd(v, 1))(1 - Pd(v, 2))(1 - Pd(v, 3)) . The final 

result is obtained by averaging this over all likely target velocities, ie: 

vm-Ay 

Pdt/3 = pv(v). Pdt/3(v) dv ... (A3.4.6) 

In this study pv(v) was taken as being uniform between -10 PRF and +10 PRF; the stagger 
pattern ratio was taken as 12: 13: 15. Eqn. (A3.4.6) was evaluated for each type of filter in 

each clutter scenario for signal powers of -10 dB to 50 dB (relative to thermal noise in 2 dB 
increments). The signal powers Sdp (with doppler processing) and So (without doppler 

processing but assuming non-coherent integration of the same number of pulses in each 
burst) required to achieve Pd = 50% were found. The true IF was then calculated as IF = 
So/Sdp. 
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APPENDIX 3.5 

RESULTS OF IMPROVEMENT FACTOR ANALYSIS 

Table 3.5.1: IF for Different Doppler Processors, Land Clutter Scenarios 

Table 3.5.2: IF for Different Doppler Processors, Sea Clutter Scenarios 

Table 3.5.3: Average Lif for Different Doppler Processors 
Averaged over all Land Clutter Scenarios 

Table 3.5.4: Average Lif for Different Doppler Processors 
Averaged over all Sea Clutter Scenarios 
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Table 3.5.1 
IF for Different Doppler Processors, 

Land Clutter Scenarios 

Scenario MTD PD&MTI 
Index Ham. Kais. OF OF& LP& LP AMTIAMTI 

1234S6 b=6 MTI MTI &MTI 
I 18. b 28. '1 . 8. y 28.0 Z9.4 28.8 28.5 Z*/. 8 30.0 30.0 21.8 'L10.9 24. b 13. '/ 
4 49.0 29.1 29.3 48.4 29. '1 29.4 48.9 28.2 . 50.4 30.4 21.9 21.4 24.9 44.1 
3 29.0 : dm-. ti 29.9 28.4 29.4 29.1 18.9 28.0 30., 5 300.2 19. b 21.0 24.9 24.0 
4 17.7 '2'/. '/ 47. D 27.7 48.4 28.3 27.7 27.0 19.8 29.7 18.1 10.4 24.4 'LZ. 1 
5 31.5 31.4 31.8 30.9 31.8 31. '/ 31.5 30.8 32.9 32.9 23.8 23.4 27.5 28.8 
8 31.4 31.0 31.4 30.9 29.9 31.3 31.0 30.4 32. '/ 32. '/ 21.9 15.4 L'/. 5 48.4 
! 49.1 29.1 29.3 29.1 48. '4 29.8 28.9 27.9 31.1 30.9 19.4 44.5 24.0 18.4 
8 38.9 38.8 39.9 32{. 3 35.4 38.1 38.8 , 38.0 40. '4 40. Z 30.0 31 .8 34.8 34. L 
9 38.4 38.3 391.5 38.. E J O. 4 38 . '! 38.3 . 37.5 40.0 . 59.9 . 30.1 30.13 34.8 32.0 

10 33.8 33.8 33.8 33.8 48.1 33.3 33.4 31.4 35.8 35.3 '25.4 28.3 23.8 16.4 
11 48.8 49.4 49.5 'LLLID 28. ' 28.8 13.5 27.8 29.9 19.9 40.6 40.5 24.5 'L3. '/ 
12 9.0 28.8 49.0 48.4 49.1 '29.2 48.9 49.4 3l?. 3 JN. 3 20.9 40.9 24.9 Z4.1 
13 29.10 48.8 28.9 28.4 213.9 49.1 `8.1 '22.0 310.3 310.4 19.4 415. '/ 24.9 44.15 
14 1'/. '/ 1'/. '/ 17.8 2'/. '/ 17.9 48.3 'L'/. '/ L'1.0 29.8 29.8 18.10 20.4 14.4 42.1 
15 31.5 31.3 31. b 315.9 31.1 , 31.8 131.5 30.7 32.9 . 32.9 '22.9 43.3 ''11.5 25.5 
16 31.4 31.0 31.4 310.9 29.5 31.3 31.0 315.4 32. '/ 34.7 21.9 13. b 27.8 18.4 
17 29.1 49.1 29.3 29.1 '4 /. 9 49.9 495.9 4'1.9 31.1 31.9 19.4 42.5 24.0 12.4 
je 38.9 38.8 . 38.9 38.3 35.1 38.1 39.7 j7.2 40. Z 410.2 315.15 31 .6 34.8 J4.0 
19 5U. 4 39., 3 38.5 . 38., 3 30.3 38. 'f 38.33 37.5 410.0 39.9 315.1 315.9 , 34.9 34.0 
110 33.6 33.8 . 33.8 33.8 28.0 5.5.2 33.4 31.4 35.6 35., E '25.4 ''28.3 23.8 18.4 
21 '28.4 48.0 28.4 2'/. 9 "4'/. O '28.4 28.0 27.4 29.8 19.10 ''410.4 24.5 43.4 
ZZ*28.8 28.4 28.8 28.4 27.3 28.8 28.5 27.8 30.2 30.1 19.4 20.8 24.9 23.8 
Z3 28.8 28.4 28.8 28.4 27.2 28.8 28.5 27.8 30.2 30.1 19.4 20.9 24.9 23.8 
74 27.7 27.7 27.8 77.7 25.4 28.1 Z7.7 27.0 29.7 29.6 17.7 20.4 24.4 21.9 
25 31.4 31.0 31.4 30.9 29.3 31.3 31.0 30.4 32.7 32.7 21.9 23.5 27.5 26.4 
ZS 31.3 30.9 31. '3 30.9 28.4 31.1 31.0 30.3 32.7 32.9 22.4 23.7 477.5 26.1 
27 29.1 29.1 29.3 29.1 25.9 29.8 28.9 27.9 31.1 30.8 19.3 22.5 24.0 18.4 
'ý 38.8 36.4 38.8 38.3 34.3 37.9 38.4 37.8 40.1 40.0 2932 31.1 34.8 33.7 
339 39.4 38.3 38.5 38.3 30.1 

. 36.6 38.3 37.5 40.0 35.9 30.0 30.8 34.8 31.8 
30 33.6 33.8 33.15 33.8 77.8 33.1 33.4 31.4 35.8 35.3 25.4 28.3 73.5 16.4 
31 48.5 48.3 48.5 47.9 44.8 46.8 48.4 47.7 >"9.9 49.9 40.5 40.7 44.4 43.15 
32 48. *6 48.3 48.5 47.9 44.3 46.8 48.4 47.7 49.9 49.9 40.6 40.15 44.4 43. '6 
33 48.5 48.2 48.5 47.9 44.7 46.8 48.3 47.5 49.8 49.8 39.0 40.1 44.4 43.5 
34 47.3 47.3 47.4 47.3 44.3 46.7 47.2 45.5 49.3 49.2 37.5 40.0 43.9 41.7 
35 48.5 48.3 48.5 47.9 44.6 46.8 48.5 47.8 49.9 49.9 40.0 40.3 44.5 43.6 
36 48.4 48.1 48.4 47.9 43.8 413.6 48.0 47.4 49.7 49.7 38.9 40.8 44.5 43.4 
37 46.1 46.1 45.3 46.1 42.8 46.0 45.9 44.9 48.1 47.9 36.4 39.5 41.0 35.4 
38 48.9 48.5 48.9 48.3 43.2 46.7 48.7 47.9 50.2 50.2 40.1 41.7 44.8 44.0 

. 39 48.4 48.2 48.5 48.1' 39.4 45.4 48.3 47.5'49.9 49.9 40.1 40.8 44.8 41.9 
47Z 43.5 43.5 43.5 43.5 37.5 42.9 43.4 41.4 45.5 45.3 35.4 '38.3 33.6 25.4 
41 48.5 48.1 48.5 47.9 36.7 43.8 48.0 47.4 49.7 49.7 40.1 41. ) 44.4 43.3 
42 4'8.5 48.1 48.5 47.9 36.7 43.8 48.0 47.4 49.8 49.7 40.1 41.1 44.4'43. «3 
43 48.5 48.1 48.5 47.9 36.7 43.7 48.0 47.4 49.7 49.7 39.8 40.7 14.4 43.3 
44 47.7 47.7 47.4 47.2 35.7 43.7 47.2 45.5 49. Z 49.1 37.4 415.0 43.9 41.5 
45 48.5 49.1 48.5 47.9 35.7 43.8 48.1 47.4 49.8 49.7 40. "Z41.2 44.5 43.3 
4b 48.4 47.9 48.4 4'/. 9 38.8 43. '/ 48.0 4'/. 4 49.7 49.6 38. '/ 40.6 44.5 43.1 
47 46.1 46.1 46.3 46.1 36.1 43.3 45.9 44.9 48.0 47.8 35.3 39.5 41.0 35.4 
48 48.9 42.5 48.9 48.3 36.8 43.9 48.4 47.8 515.2 50.1 40.5 41'. 5 44.1 43.7 
49 49.4 48.2 48.5 48.2 35.6 43.2 48.3 47.5 49.9 49.9 39.8 40.8 44.8 41 .7 
50 43.5 43.5 43.6 43.6 34.4 41.3 43.4 41.4 45.5 45.3 35.4 38.2 33.6 26.4 
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Table 3.5.1 (Cont) 

Index MTD PD&MTI 
Ham. Kais. OF OF& LP& LP AMTIAMTI 

123456 b=6 MTI MTI &MTI 

51 47.8 47.4 47.9 47.4 30.5 39.7 47.5 45.9 49.4 49.2 38.4 41.0 44.3 35.1 
52 4'7.8 4'/. 4 4'(. 9 4'(. 4 30.5 . b. '! 4'!. b 4b. 9 49.4 49.2 . 8. b 41.1 44.3 s5.1 

53 47.8 47.4 47.9 47.4 30.5 39.7 47.5 46.9 49.4 49.2 38.5 41.1 44.3 35.1 
'54 4: 7. "'Y 47.2 47.3 47.? '30.4 39.5 47.2 48.5 4'3.10 48.8 37.2 39.9 43.5 34.33 
55 47.9 47.5 48.0 47.5 30.5 39.7 47.6 47.0 4.9.4 49.3 38.5 41.1 44.4 55.1 
-55 47.9 47.5 413. '0 47.5 30.5 39.7 47.5 47.1 49.4 49.3 39.5 41.1 44.4 '35.1 

57 46.0 46.0 45.2 46.0 30.2 39.0 45.9 44.9 47.9 47.5 38.4 39.5 40.9 3Z. 5 
'58 48.7 47.8 48.4 47.8 '30.9 39.9 47. '9 47.3 49.8 49.7 313.9 41.5 44.13 35.5 
59 48.2 47.8 48.3 4'/. 11 30.5 9. '! 4'/. 9 4'/. 3 49.8 49. b 38.9 41.5 44.7 35.1 

50 4: 3. '5 43.5 43.5 43.5 29.5 38.1 43.4 41.4 45.4 45.1 35.3 '38.3 33.6 'ZS. ' O 
51 157. E 67. '6 58.1 65.5 45.8 54.0 88.0 57.3 '69.9 69.8 51.4 51.9 64.5 63.3 
tit 91.7 57.7 68.1 b'1.0 49.8 54.0 68.1 9*7.4 59.9 59.9 51.4 61.8 84.8 83.4 
53 6'/. 5 b'/. 4 58.1 95. '/ 4b. 8 54.0 ä'!. 9 ö'/.. 3 h9. '! 59. '/ 90.8 bi .1 94.4 b6.3 
94 bb. 0 69.9 67.1 95.9 4b. 8 54.0 67.1 59.4 99.0 68+. 9 9'/. 5 99.8 53.8 61.4 
65 67.7 5'/. 5 58.. 3 59.8 49.8 53.9 bä. 1 57.5 '10.0 '10.0 51.5 52.0 b4.4 63.4 
bb b'!. b 97.1 bL{. 1 b'1.0 4b. ä 54.0 58.0 57.4 59.8 513.5 50.6 54.9 53.2 
5'/ 65.0 65.0 55.8 65.0 49.7 53.9 65.9 64.5 5'/. 7 91.5 96.3 59.2 90.13 55.3 
b9 b'!. 5 ö'/. b 68.0 95. '/ 4b. '/ 93.9 b7.8 b'!. 1 69.7 b9. '/ bl. 3 61.8 64.3 63.2 

by 61.6 56.6 58.0 66.6 46.6 53.8 51.9 57.0 69.5 69.4 b9.5 60.4 94'. 2 61.. 3 

'110 53.0 b, 6.0 63.0 96.0 46.3 53.6 63.0 51.00 65.1 64.8 54.9 b'1.13 56.2 45.0 

71 61.5 65.5 68.0 95.5 37.0 45.8 58.1 61.1 59.8 69.8 51.4 51. '/ 64.1 54.2 

'/'L 61.5 65.4 6'1.7 65.4 3'1.0 46.8 51.9 66.8 59.5 59.5 61.4 51.8 64.3 54.2 

75 5'/. 4 65.5 ä'!. 9 59.5 37.0 45.8 68.0 97.1 69.7 69.7 91.2 61.5 94.6 54.1 
74 56.1 b4. '/ 67.1 b4. '/ 67.0 45.8 67.2 bb. b 59.1 58.9 57.9 50.1 53.9 53.9 

'(5 Ei'/. b b5.4 67.8 65.4 57.10 4b. 8 ö'!. 9 bb. '! 59.4 59.4 61.3 b1. '/ 94.2 54.2 

76 '6735 *95.4 *67.8 '6"5.4 37.0 45.8 '67.9 56.7 "69. '3 *69., 3 '6039 51 .3 64.7 54. ) 
77 64.0 64.0 65.1 64.0 37.0 45.8 65.8 64.8 67.8 67.6 55.3 59.3 60.9 52.0 
78 87.5 55.4 57.9 53.4 37.1 45.8 58.0 55.8 59.5 59.5 51.4 61.8 54.3 54.2 
79 67.4 55.4 87.9 65.4 5'1.0 45.8 57.9 55.9 59.4 59.6 5U. 9 50.7 94.4 53.9 

t-0 51.9 51.8 51.9 61.8 35.9 45.7 6,6.2 51.1 99.1 94.9 54.8 59.2 53.1 45.4 

81 hic. A 53.3 55.8 b6.6 310.5 40.2 5'(. 6 98. '1 59.0 58.9 99.9 b1 .1 59.5 35.7 

92 53.2 53.2 b5. '! 63.2 30.5 40.2 51.2 55.5 58.9 58. '! 59.8 61.0 59.4 . 35.7 

H'. 3 53. '2 53.2 59. '( 56.2 60.5 40. '1 b'!. 2 98.6 58.9 58.19 59.9 91.2 59.5 35.7 

t{4 53.1 56.1 bb. b b:. S. 1 0.5 40. '_' 9'7.0 95.4 58. b 9Lt. 5 b8. A 60.2 59.3 35. 

89 b. 5 .2 93.2 65.5 53.2 30.5 40.2 5'1.1 bb. 4 58.! 98.5 59.8 60.9 59.4 S5. 

85 63.2 5-i. 1 95. b 63.1 60. b 40.2 b'(. 1 bb. 4 b8. '/ 58.5 59.8 61.0 b4.4 35. '/ 

8'/ 52., 52.1 53.9 9'1.1 30.5 40. '2 65.7 64.8 b'/. 5 57.2 56.4 513.7 58.0 35.? 

Lßä 63.2 53.2 95.9 53.2 30.5 40. '1 57.1 bb. 5 528.8 58.7 99.9 91.2 59.4 35. '/ 

89 53.3 53.3 65. '! 63.3 50.5 40.2 5'!. S b5. '1 69.0 59.9 59.9 61 .1 59.5 35.1 

90 59.4 59.4 59.8 59.4 30.5 40.0 6'L. '! 60.9 94.4 b4.1 54. '/ 51.1 51.5 35.4 

91 28.6 28. '1 28.4 213.0 '199.4 28.8 228.5 L'!. ä 30.0 30.0 21. b 20.9 Z4. b 23.1 

91 29. 8.5 29.8 28.2 29.4 29.2 1.8.6 27.9 30.6 60.2 '26.5 14.8 24.9 21.5 

9S 28.1 28.6 29.8 28.2 29.3 29.0 28.5 '1'/. 9 30.2 60.1 22.5 24.5 24.9 ZZ. I 

94 2'(. 8 l'/. 9 '28.1 1'1. '/ 28.4 28.3 27.9 27.. 5 29.8 29. '! 19.1 20.9 24.1 19.3 

95 30.8 60.9 31.1 30.7 '1.9.5 51.4 31.2 30.2 , 32.8 32. '7 26.1 1'!. 4 27.5 16.7 

95 30.7 S0.9 30.9 30. '/ '49.3 61.2 61.1 60.1 62. '! 32.5 25.2 27.6 2'1.5 22.5 

9'1 29.3 29.2 29.4 28.1 Z9.8 29.2 28.4 61.2 . 510.9 21.8 '23.9 25.2 15. U 

98 31.9 3d. 1 S'/. 8 8.1 29. '! 36.5 38.5 S!. 5 40.1 40.0 34.2 64.8 34.9 2'1.4 

99 , 3'/. 7 37.9 37.8 37.9 36.5 38.1 37.5 69.9 39.41 . 55.3 64.5 34.5 25.? 

100 35.4 33.2 33.28 3.5.2 28.1 33.3 33.4 51.2 35.9 35.3 27.7 29.2 25.6 15.0 
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Table 3.5.1 (Cont) 

Index MTD PD&MTI 
Ham. Kais. OF OF& LP& LP AMTIAMTI 

1 2 3 4 5 6 b=6 MTI MTI &MTI 
JO J ZU-4 25.5 25.0 95.5 'LE3.13 213.5 17.13 25.3 25.3 20.5 4) .5 24.5 23. '! 
1101 25.5 25.5 25.5 213.2 '4_'3.15 ßy. 4 15.5 22'1.5 5(5.4 60.4 45.1 24.5 14.5 22.5 
1 (6 45.2 '1ýS. 5 '1ä. K 213.2 213.13 213.5 ýý3.5 S(5.1 s. 1 _''. S 24.5 24. s 42.4 
104 1'!. 8 2`1. V 25.1 i'/. 1 1'1.3 25.6 1'!. 5 2 '/. 6 25.8 1y. '! 11-4.0 21 5 24.1 1 5.4 
1155 50.8 60. y 61.1 60.7 'l5.4 51.4 51.1 . 10.2 Sil. '! _h. t0 . 61b . 'j 4'1.5 23.5 
Job 30. '/ AO. V 5O. v 6LR. '/ 15.0 61. Z 61.1 610.1 31.5 5ý .5 45.7 25.5 17.5 2: 1.1.9 
10'/ 45.6 45.1 45.4 25.4 27.13 25.13 25.2 28.4 31.4 . 5)5.5 41. '! 45. '( 45.4 l3.4 
1IDt3 S'!. y 313.1 . 7.13 . 513.1 15.5 6b. 5 613.5 5'!. b 40.0 40.0 64.1 . 54.4 54. V 4'1.10 
1(55 S'/. '! 6'1.9 37.8 S'!. 5 25.5 65.4 513.1 , S'/. 5 S5, t3 . 35. '/ 66.6 34.1 34.9 2b. 4 
110 , 63.4 36.2 6.8 66.2 213.15 53.3 66.4 61.2 35.5 55.6 27.7 25.2' 23.6 16.1 
111 45.4 213.0 213.4 4'1.5 27.0 213.4 28.0 27.4 25.8 L5. '! 15.10 ''210.4 24.5 23.4 
114 113.5 113.1 213.7 113.1 47.4 45.13 413.2 'L'/. b 60.1 . 50.0 17.0 22.5 44.13 42.3 
I1S 113.1 413.1 413.5 41.1 4'/. 1 25.5 25.2 27.5 310.10 `i1s. s 17.3 23.5 24.5 44.10 
114 47.13 27.7 25+. 0 Zt. '! 45.6. 2ä. l 21.11 27.1 25.7 15.5 17.0 22.13 24.1 113.6 
115 (5.1{ 310. "! 51.0 60.1 213.1 61.0 5(6.5 30.2 32.6 51.5 22.5 25.2 2'/. 5 lz. s 
ll li '50.7 60. / 315.5 3(3.7 21.5 60. e 50.13 60.1 51.5 52.3 13.4 25. b 47.5 ZZ. 1 
117 25.3 '1 5 "Vol 45.2 4b. ä 25. b 25.4 25.3 61.1 .5 21. b 24.0 45.1 15.5 
1115 51.13 313.1 51.13 513. l 45.4 65.1 . 313.2 67.4 513.13 35.5 60.5 32.5 34.5 25.0 
115 5 /. 7! 61. V _V1.8 3'1.5 25.2 6b. ] 333.0 37.4 35.7 313.5 31 .b 62.6 34.8 45.5 
120 55.4 33.2 35.13 66.1 21.5 66.1 33.4 31.1 65.5 55.3 2'/. '/ 45.2 25.5 15.0 
121 413.5 45.6 413.5 4'/. 5 44.8 45.5 48.4 47.7 413.13 413.13 40.5 410.1 44.4 43.5 
142 4'/. 13 45.1 45.4 4'1.1 44.5 45. (3 415.1 47.4 45.5 413. '/ 44. '! 44.2 44.5 41.5 
1Z3 47.8 48.1 41.3 47.7 44.6 45.8 49.1 47.4 413. '! 45.5 41.5 44.2 44.4 41.2 
124 4'/.:, 4'/. 4 4'/. '! 4'/. 2 44.1 45.1 47.4 45.13 45.6 413.4 6(. b 41.5 43. '/ 55.5 
125 4Y. a 4'(. ä 48.1 47. / 45.5 45.5' 48.2 47.2 45 . '/ 413. '/ 46.15 44.2 44.5 35.4 
1"b 4'/. 7 4'/. 5 4'!. 13 4'/. '/ 43.4 4b. b 45.1 4'!. 1 413.5 45.5 43.1 44.0 44.5 34.5 
1 45. S 45.2 45.5 45.4 44.5 44.7 45. '1 45.4 41.1 4'!. 13 , 513.8 41 . -A 4'1.2 , ä0.1D 
1213 4'/. 5 45.1 47.5 413.1 3u. ä 44. '/ 45.5 4'/. 5 50.0 50.0 44.2 44.5 44.5 i'/. 4 
ley 47. 47.5 4'1.5 4'(. 5 35.5 45.1 45.1 47.4 49.13 45.7 43.3 44.2 44.9 25.3 

1.60 43.4 43.2 43.5 43.2 S'/. 5 44.1 4.5.4 41.2 45.5 45.3 35.5 55.13 '11.0 
111 413.5 413.1 411.5 4/. 5 Sb. '! 43.5 48.0 4'/. 4 413.7 45. '/ 40.1 41.1 44.4 4.5.4 
162 4'/. 5 48.0 45. S 4'/. '1 35. '1 4S. '! 47.8 47.4 45.5 45.5 31.1 45.5 44.5 41.4 
15.3 4'/. t3 48.0 4136 4'1. '/ . 65.7 46.7 4'1.13 4'/. 45.5 413.5 3 .2 43.13 44.4 41.10 

164 4'!. 3 4'1. S 4'/. b 4'!. 2 Sb. 4 46.6 47.5 4b. 4J. 2 45.10 . 3'/. 1 4'2.7 46.5 313.4 
135 47. '1 47.8 48.1 47.7 55.5 46. b 47 .5 47. '.:. ' 413.5 45.5 4(6.13 45.1 44.5 . 55.4 
1.55 4'1. '/ 4'1.13 41.5 4'/. 7 65.5 43.7 4'/. 8 4'!. 1 45.5 49.4 41.0 45.6 44.5 . 34.5 

137 4b. 6 45.1 45.5 45.1 35.8 42.5 45.2 45.4 413.0 47. ö 613.5 41.5 42.1 30.0 
1St{ 4'/. 5 413.1 4'!. '! 413.1 65.3 42.13 413.2 4'/. 5 45.5 45.11 41.5 43.1 44.5 27.13 
1313 4'!. '! 4'/. 5 4'/. ti 4'/. 5 35.2 46.10 413.0 4'/. 4 413.7 45.5 42.4 46.7 44.5 2ä. 1i 
14(5 45.4 43.2 43.13 4,3.4 . 54.2 40.7 45.4 41 .2 45.5 45.5 37.7 45.5 35.5 z1.1 
141 47.5 4'!. 4 4'/. 5 4'/. 4 315.5 35.7 4'/. 5 413.5 49.4 413.2 313.4 41.0 44.6 S5.7 

144 4'!. b 4'/. 4 4'(. 13 4'/. 4 . 30.5 35.5 4'/. 5 45.5 413.6 413.2 S5.0 613.5 44.3 34. '1 
146 4'/. b 4'!. 4 4'/. 33 4'/. 4 30.5 . 313.5 47.5 45.13 49.2 45.1 , 1(3.13 410.1 44.2 14.7 
144 4'/. 2 45.13 47.3 45.13 510.4 613.6 45.5 45.13 48.8 413.5 . 95. b 42.1 42.5 S6.13 
145 4'!. b 47.5 4'/. '/ 4'/. 5 50.5 . 19. b 4'!. b 45.5 413.3 45.2 65.5 35.4 44.1 52.5 

145 4'!. b 4'/. 4 47.7 4'/. 4 30.5 35.4 4'!. 5 4b. '/ 45.2 49.10 313.7 40.5 43.7 32.1 
147 45.2 45.5 45.3 45.8 3(6.1 613.13 45.13 44.5 47.7 47.5 37.13 43.10 . 35.7 24.10 

148 4'/. ä 47.5 4'!. '/ 4'/. 13 30.4 613.5 4'!. 13 45.13 45.5 45.5 . Sä. 5 416.4 4,5.5 11.14 
1413 4/. 5 47.5 47.7 47.5 30.6 35.4 47. b 45.13 413.4 413.3 613.6 41.0 42.13 25.1 
15(3 46.6 43.1 43.13 43.1 113.4 68.0 43.3 41.0 45.6 45.10 67.4 410.5 31.13 21.18 
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Table 3.5.1 (Cont) 

Index MTD PD&MTI 
Ham. Kais. OF OF& LP& LP AMTIAMTI 1 2 3 4 S 6 b=6 MTI MTI &MTI 

151 b'!. b b'!. b bö. l bb. 'd 4b. ä b4. ri bä. 0 b'/. S tib. y b'd. 13 b1.4 bl. ' b4. b ki3. j 
15L b*1.3 1; '/. L b&. o bb. '! 4b. 8 54.10 b'1.3 ö'/. 1 b`1. '/ b8.6 b6.4 b4.5 b1.4 
lb, S b'/. 1 b'/. 1 b'/. y bb. b 4b. ä 54.0 b'1.8 b'!. 1 by. 5 by. b 55. b b3.5 b4.4 bl. 0 
154 bb. 5 bb. 4 b7.4 bb.; e 4b. '/ 53.5 b'/. 4 bb. 't bs. Z ss. I 5'l.. 61. '/ b3.7 5d. 4 
lbb b'!. 1 bb. 5 b'!. '/ bb. 5 4b. 5 b6.5 ö'1.5 b'!. l 55. b 55.4 bi . 'L b3.1 b4.4 55.2 
I5b Ei'/. 10 bb. li b'/. b bb. 5 4b. 5 53.5 b'!. b bb. 5 b'J., s 55.2 b1.. 5 b6.4 b4.6 54., E 
15'/ bb. 4 b4. b bb. b b4. b 4b. ö' 53. b bb. 3 bb. 4 b5.1 b'!. s 5ä. b bl .s b2.1 4s. 9 
155 bb. 3 bb. 5 b'!. 1 bb. b 4b. b 5S. '/ b'!. 't bb. 5 55.4 by. 3 b1.4 b2.5 b4.4 4b. 8 
lbu bb. 5 bb. U b'!. 5 bb. ki 4b. 5 53.5 ö'!. ä b'!. 2 by. 5 bS. 4 b2.2 56.5 b4.7 44.5 
IbO 51. b ! "i 1.. 3 b6.4 b1.6 4b. 5 51. '! b'L. 5 bO. d bb. 10 b4.5 b'!. [ b5. b 55.4 40.1 
1bI b'!. 5 b5.5 b5. I0 bb. b 31.0 45.8 b5.1 b'!. 1 55.8 btl. 8 51.4 b1 . '! ö4. '/ 54.2 
ib4 bb. 5 b5.3 b'l. 5 b5.3 3'1.0 45.8 b8.10 b'l. 4 by. '/ bs. b ss. b bl. 8 b4. b S. S. s 
1l; 3 bb. 4 bb. i b'/. '1 b5.6 31.0 45.8 b'!. 5 b'l. 0 55. b by. 5 55.2 6'1.5 b4. b 53.5 
lb4 bb. 3 b5.10 b'/. 3 b5.0 31.10 45.8 b'/. 5 bb. b 55.1 by. {0 b5.5 52.5 b4. b 53.2 
lbb bb. 3 55.3 b'!. "! b5.3 St. 0 45.8 b'/. 5 b'/. t0 bS. b b'd. 5 55.4 b1. '! b4.5 52.0 
lbb bb. 3 b5.2 b/. b bb. 2 31.0 45.8 ö'!. '! Sb. 'l 55.6 by. 1 bo. I 52.4 b4.1 51.5 
151 54.5 66.8 bb. 2 b3.3 3/. 0 45. '/ bb. I b4.5 b'/. '/ b'!. b b'/. 8 Fi1.5 55.0 4M. ä 
lbä bb. b bb. 2 5'1.10 b5.2 3'1.10 45. '/ b'l. 8 5b. 8 55.6 bb. 'L b8.5 54.4 b. 3.5 4b. 3 
1533 b5. '/ bb. 1 b'/. 3 55.1 , 5'1.0 45.8 b'/. 5 bb. 't by. 1 bU. 0 so. '/ b'L. 4 ä, ß. o 44.5 
1'/0 b1 .b bI. 4 ki3.4 bl. 2 Sb. '! 45. '2 äs. 0 50.5 b4.5 54.5 5'/. 0 50.4 53.. 333.5 
1'/1 b6.3 b6.3 b5.8 56.3 30.5 410. '!. ö'/. 6 Fib. '1 by. f0 5ä. y ss. s 51.1 bU. b . 5.7 
1'12 53.4 5.3.2 b5.5 li6. '2 60. b 40.! ö'l. {0 bb. 3 b8.5 b5.5 55. '! 50.5 58.3 35. '/ 
173 bd. 3 b3.3 bb. '/ b6.6 30.5 40.4 b'/. 2 bb. 5 58.5 533. '1 55.4 50. '1 55.4 3b. '/ 
1'14 b'L. 4 52.4 54.1 5'2.4 30.5 40.2 bä. 0 55.3 b'!. 5 b'l. 5 b'l.. 50.8 b5. L 35.7 
175 53.3 56.. 3 b5. ti 53.3 Jo. b 410. '4 bY. 3 bb. 5 bä. 5 ä8.33 55.5 by. '/ 533. '2 35. '/ 
1'/ö b6.2 53.2 bb. b 53.4 , 30.5 40. '4 ä'l. (0 bb .3 b5.7 bb. 5 bu. 1 55.0 55.8 . 35. '/ 
1'/'/ ä1. b bl. 6 b. 3. b b1 b 30.5 40.1 55.0 53.5 bb. 5 bb. 5 5b. '/ 5'2.10 b6. b 35.5 
1'! t! b, 6. '2 53.2 55.2 53.4 . 332^. 5 40.2 b'1.1 b5.1 511. '1 bll. 5 b. 3.8 5'/. M 5'1.5 . 35.3 
1'f9 53.0 b6.0 55.1 53.10 . 30.5 40. '2 55.7 55.0 58.5 55.3 55.1 5333.1 55.0 35.4 
1330 50.1 b0.0 b1. U 50.0 390.4 39.8 52. b 50. I 54.3 54.4 57.5 51.0 45.5 34.4 
131 'ki. 5 '233. '1 '1535 233.0 45.4 25.3 155 .:! .8 60.0 3''. 0.0 21 5 40.5 44.5 '233.1 
182 2ä. 1 233.7 233.8 .!. 5 2La. 5 45. '! 233.4 33 30.3 Z'. 4.2 '24.5 15. '2 '24.5 15.1 
1L+. ßb. 0 133.5 28.5 i'/. mod. '! '2ä. b 'ßb. 4 '4'!. 33 51ý. 'ý ý. ý?. l 24.5 25.10 .: 4. ä 15.5 

334 11.1 27.5 23.0 25.5 233.1 18.0 2'!. 33 2'1.2 233. '/ 25.5 22.0 40.6 23.2 14.5 
lös ýý. l; ý'L'. 5 3.33 Sß'. 5 '25.5 . S0. ä 31.0 . 30.4 
lb'5 30.4 , 30.5 40.5 30., 3 25. '1 30.5 30.7 30.4 . 33L. ä 2.5 27.7 21.5 27.5 14.7 
1L''f '1'1.8 '45.. 3 15.5 9b. l 15.5 Z5.4 31.0 30. '! ''4. J '9433 '21.0 11.5 
1533 3'1.7 31. ä . 67. V 3'1.5' 25.5 35.5 . 52'. '2 . 57.5 40.1 40.1 55.1 35.3 35. ) 11.5 
I533 . '', '1.1 ß'1. b 3'1.1 . '', '1.4 65.0 37.5 3'!. 3 35.5 . 35. b 35.0 35.2 , 5.6. Ei 17.6 
1330 331.5 33.13 33.9 , '2.0 33.1 66.1 51.4 6b. b 35.1 . 50.6 310.4 35.2 133.5 
I91 28.5 '25.4 15.5 15.0 45.5 '2&. b 20. b '20.5 24.5 23.7 
152 25.1 25.5 '2 5.7 45.4 15 3 '1 25.4 '21.5 60.2 30.1 24.8 : 45. z '2 4.5 15.3 
133s '2'5.0 25.4 25.5 21. b ;U. I '115.6 ; 4U. 4 4'1.5 . 1.0.1 . 50.0 24. b 2b. 0 24.13 15 . '2 
1334 '1'l .1 2'1.5 : eV .0 45.5 'L'! .5 25.0 27.5 21.2 'Z 5. b ': 9.4 '21 . 1b. 1 
1 bb 330.5 3 1-4.5 . ', 1 .0 4'0.5 25.2 60.5 31.0 0.4 32.1 . 32.1 2'1. '! 15.5 
1335 30.4 30.5 61A. 5 60. 25.4 30. b 30.7 . 50.4 62.5 ; 1.4 27.7 21 .8 27.5 15.1 

I37 Z7.8 Z9.3 28.5 ZS .0 27.8 2U. 5 Z9.4 22.7 30.9 30.7 24.9 24.2 21.0 12.0 
1,99 -37.7 37.13 37.8 '37.8 Z8 . '5 333 . 'S 3'? .Z -37 .S 4'3 .L 40.0 35.1 3S. 3 35.1 17.1 

199 37.1 37. E 37.1 37.3 28.56 35.0 37. S 37.3 39.7 2'3.5 35.0 35.3 33.5 17.0 
-2-00 31.5 33.3 31.8 31.9 27.9 33.2 33.1 31.4 35.5 35.1 30.3 30.4 19.3 13.5 
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Table 3.5.1 (Cont) 

Scenario MTD PD&MTI 
Index Ham. Kais. OF OF& LP& LP AMTIAMTI 

1 2 3 4 5 6 b=6 MTI MTI &MTI 

201 28.4 22.0 28.4 27.9 27.0 28.4 28.0 27.4 29.8 29.7 19.0 20.4 24. S 33.4 
Z0'Z 38.1 28.0 28.5 27.9 2E. 8 28.2 28.0 27.4 30.0 29.8 34.6 25.2 24.9 16.3 
203 28.0 28.0 28.4 27.9 25.6 28.2 28.0 27.3 29.9 29.7 24.0 24.9 24.7 16.1 
3L^4 77.1 27.3 27.8 35.7 25.9 27.4 37.2 '5.4 29.1 28.5 20.3 18.9 23.0 15.0 
205 30.5 30.5 30.9 30.5 27.3 30.4 30.5 29.7 32.5 32.3 27.6 29.0 27.5 15.1 
ZUS 39.4 3D .4 30.5 30.3 27.3 30.5 30.3 29.7 32.3 32.1 27.55 27.8 27.3 14.7 
207 27.8 23.7 28.5 27. E 2E. 5 28.8 28. E 27.7 30.4 29.9 24.0 23.7 20.9 11.8 
298 37.7 37.8 37.8 37.8 38.3 35.3 37.9 37.3 39.8 39.5 35.1 35.4 34.9 19.9 
209 37.1 37.5 37.1 37.2 23.4 35.5 37.2 36.9 39.4 39.2 34.8 35.1 33.4 15.8 
310 31. E 32.9 31.8 31.3 27. E 3'x. 7 32.7 30.9 35.2 34.7 30.0 30.5 19.2 13.5 
211 48.5 48.3 48.5 47.9 44.8 45.8 48.4 47.7 49.9 49.9 40.8 40.7 44.4 43. E 
212 47.7 48.1 48.3 47.5 44.4 45. E 48.0 47.4 49.8 49.7 44.4 44.7 44.5 34.8 
213 47.5 48.0 48.1 47.4 44.2 4E. 3 47.9 47.4 49. E 49.5 44.1 44.5 44.4 34.7 
Z14 4E. 7 47.4 47.5 4E. 3 43.2 44.13 47.4 49.8 49.1 49.0 41.4 39.9 42.7 33.9 
219 47.8 47.9 48.0 47.5 42.9 45.0 48.0 47.4 49.7 49.7 44.8 44.9 44.7 25.4 
215 47.4 47.7 47.5 47.3 42.7 49.1 47.7 47.4 49.5 49.4 44.7 44.9 44.55 25.3 
217 44.8 45.3 45.5 44. E 41.2 41.3 46.4 45.7 47.9 47.7 41.9 47.4 38.0 24.4 
218 47.7 47.8 47.8 47.8 37.8 44.3 48.2 47.5 50. L^ 50.0 45. '1 45.3 45.1 1E. 8 
219 47.70 47. E 47.1 47.2 37.7 44.5 47.5 47.3 49.7 49. E 45.0 45.3 43.5 15. E 
220 41. E 43.3 41.8 41.0 32.5 38.9 43.1 41.4 45.3 45.1 40^. 3 40.5 29.2 15.4 
221 48.5 48.1 48.5 47.9 38.7 43.9 48.0 47.4 49.7 49.7 40.1 41.1 44.4 43.3 
' 47.7 47.9 48.2 47.5 38.5 43.5 47.9 45.9 49. E 49.5 44.3 44.9 44.4 34.7 
223 47.5 47.8 48.1 47.4 39.5 43.4 47.5 45.8 49.5 49.3 43.9 44.5 44.3 34.6 
724 45.7 47.2 47.5 4E. 3 35.9 42.1 45.8 45.0 48.7 48.5 40.2 38.7 42.5 33.8 
2--75 47.5 47.8 48.0 47.5 32.2 43.3 47. E 48.7 49. E 49.5 44.9 45.1 44.5 25.5 
ZZE 47.4 47. E 47.5 47.3 35.0 43.3 47.4 4E. 7 49.3 49.3 44.7 44.9 44.3 25.3 
227 44.8 45.1 45.5 44.5 35.1 40.3 45.7 44.7 47.4 47.1 41.2 40.8 37.2 24.4 
228 47.7 47.2 47.2 47.8 34.5 42.4 47.9 47.0 49.8 49.7 4>5.3 45.5 44.8 17.1 
22-9 47.0 47.5 47.1 47.3 34. E 42. E 47.3 45.9 49.4 49.2 45.0 45.2 43.4 15.9 
230 41. E 43.3 41.8 40.5 33.4 38.5 42.8 40.9 45.1 44.8 40.1 40.5 22.2 15. E 
2-31 47.8 47.4 47.9 47.4 30.5 39.7 47.5 46.9 49.4 49.2 38.4 41.0 44.3 35.1 
332 47.4 47.2 47.5 47.2 30.3 33.4 47.2 48.3 49.1 49.0 41.7 44.3 42.1 32.2 
733 47.4 47.1 47.4 47.1 30.2 39.3 47.2 46.1 49.0 49.9 41.1 44.1 41.7 3--1.2 

434 45.1 45.4 45.2 45.4 30.1 38.7 45.5 43.7 47. E 47.4 36.13 38.5 38.5 31.7 
735 47.4 47.2 47.5 47.2 30.2 39.1 47.2 45.7 49.1 42.9 43.3 44.2 38.3 Z5.1 

47.2 45.9 47.3 4E. 9 30.1 39.1 4E. 8 45.3 48.7 48.5 43.1 44.1 37.2 28.0 
337 44.5 43.5 44.5 43.5 29. S 37.7 43.6 40.9 45.9 45.5 39.5 39.3 32.7 34.1 
338 47.5 47.5 47.7 47.5 29.9 39.0 47.5 45.9 49.3 49.3 43.9 44.5 37.4 17.0 
239 4E. 9 46.7 46.9 46.7 29.8 39.1 46.5 45.6 48.8 48.6 43.6 44.5 36.6 16.8 
240 41.4 40.4 41.4 40.4 28.9 38.1 41.0 37.5 43.1 42.8 38.9 38.6 27.8,15.5 
241 57. S E7.5 58.1 5E. 9 45.8 54.0 68.0 67.3 69.9 59.8 51.4 51.9 64.5 63.3 
242 S7.2 67.3 57.7 E5.7 49.7 54.0 87.6 55.9 69.8 E9.7 54.2 54.8 54.4 54.7 
243 57.0 57.2 57.7 85.5 45.7 53.9 87.5 55.8 69.5 59.4 63.9 54.5 54.3 54.6 
244 59.0 85.4 E7.2 54.9 45. E 53.3 55.9 65.1 E8.9 99.7 90.4 59.0 92.5 53.8. 
245 '57.0 57.1 57.5 ES. S 48.7 53.9 57.5 58.7 69.6 69.5 64.9 55.1 

, 54.5 45.3 
249 bä. 7 '66.8 E7.3 E5.1 46.8 53.8 67.4 EE. 7 E9.3 E9.2 E4.8 55.0 54.3 45.2 
247 E4.6 55.7 55.3 53.7 45.9 50.4 65.9 54.8 57.5 E7.3 51.3 EV. 9 57.8 44.3 
249 55.9 55.8 E7.3 69.5 48.3 53. E 87.5 68. E 59.5 E9.4 95.0.85.1 E4.4 35.4 
249 55.5 E5.7 EE. 5 E5.2 46.1 53.5 E5.9 99.5 99.0 58.9 54.7 94.9 53.3 3S. Z 
M50 81.2 52.9 91.3 50.2 44.8 45.7 82.5 50.5 54.9 84. E 59.8 513.3 49.9 34.3 
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Table 3.5.1 (Cont) 

Scenario MTD PD&MTI 
Index Ham. Kais. OF OF& LP& LP AMTIAMTI 1 2 3 4 5 6 b=6 MTI MTI &MTI 

251 57.5 55.5 68.0 E5.5 37.0 45.8 58.1 57.1 59.9 E9.8 '881.4 51.7 54.7 54.2 
252 x. 13 55.2 '57.4 55.2 37.0 45.8 '67.7 55.7 ES. 4 E?. 4 84.1 B4. '9 '51.7 
353 '55.4 55.1 57.4 E5.1 37.0 45.8 57.7 555.5 E9.4 59.3 62.9 64.2 '8'. 2 "91.7 
254 58.1 'S4. '2 55.5 U4. '2 "37.0 45.7 55.5 E4.2 E S. 4 E S., 2 S7.3 99.5 55.9 51. -3 
255 55.5 55.2 57.3 55.2 38.9 45.7 57.7 55.2 59.4 69.3 94. E 55.0 58.5 44.8 
795 Eä. 3 55.0 57. '3 55.5 35.5 45.7 67.4 56.1 E9.1 58.9 '84.0 54. E '57.2 44.7 
257 54.8 52.9 55.2 52.9 36.8 45.0 55.0 92.9 55.7 X5.3 E0.0 '5ä. 1 '52. Z 43.13 
258 55 . '? ES. 1 57.1 55.1 3E -2 4-5.8 57 . '5 '55.5 55.3 'S2. -2 'E 4. 'E 5 4.7 '55.7 35.3 
259 95.5 54.5 '55.7 "54.5 .7 45.3 "55.7 55.5 38.8 58.7 1-5-3.13 54.5 55.8 35.2 
285 '5 1 .2 50.5 51 .3 39.8 3.1 43.4 b l' .4 53.0 U4. '0 53.3 'S9.5 *So. 1 47.1 3 4.3 
Z51 53.3 63.3 65.8 53.3 35.5 40.2 57.3 56.7 55.0 68.9 59.9 '81.1 59.5 35.7 
282 E2.5 52.5 E4,4 52. F 313.5 a 0.2 5'6,7 '56.1 58. F b'-. 7 50. '1 53.7 57.1 35.7 
39 52.4 54.4 Y 

.4 
%y. 

5 40.2 

. [j . 

5V Lß. 5 

.2 

S 

'9A .J 

55. 
x. % 

39 7 

54 51.2 31.2 E2. 31 .2 70. -55, 45.2 134.2 E -JA 86.1 6v. Z "5`. 7 ä'0. l4 -4,7 35.7 
795 62.4 r; 2.4 Ed .Z ý' . -4 3'3.3 40.0 Eö. B E5. -3 58.5 59.3 '55.7 ä3.3 '51 .Z 35.3 
SE ä'-7. "ä bß .3 '54.2 52.3 30.3 43.5 58.3 '84.5 58.2 57.: 1 '6 1 .4 U7.7 '-". S 35.3 
79r .T '57.4 59.0 97.4 30.5 36.8 58.9 S5.7 63.7 63.3 SS. 2 58.2 47.0 35.2 
259 .4 S7.4 54.2 52.4 31.3 40. @ 68.7 64.6 68.4 85.1 61.5 53.4 45.4 3:. "5 
Z, 61.7 61.7 53.7 61.7 30.3 39.8 55.1 64.5 67.6 67.4 61.1 52.9 44.6 32.5 
275 '54.5 50.8 : 4.5 15-0. 3 5.2 39.2 5@. 9 47.3 59. iß S~ .5 53.7 5.. iß 35.4 ' .5 ? 71 29.6 25.7 28.9 23.0 29.4 28.8 28. b 27.5 35.5 30. @ 21.6 Z@. 9 24.5 23.7 
777 27.7 25.5 28.7 77.4 28.5 28.5 28.5 27: 0.2 .1 24.9 Z5.: ß : 5.: 1'1.5 
23 27.4 28.3 28.4 27.2 28.6 28.3 28.1 27.5 30.1 30.0 24.5 25.0 24.8 17.5 
274 24.7 : 7.3 'Z'i. 4 Z4. ß 26.8 25.5 26.8 23.8 28.6 28.5 20.2 19.9 0.5 11.6 
275 35.7 38.5 3@. 3 29.8 28.9 30.9 30.9 29.8 32.7 32.6 27.5 28.0 27.8 9.1 
76 25.5 .0 25.6 25.0 5. , c-; 330 .5 310.0 25.7 3:. 5 3Z. 4 27.5 27.5 7E. 7 5. iß 
:. 777 20.4 732.6 25.4 24.2 25.7 '.? 7.0 26.7 25.3 29.6 26.7 20.7 22.7 74.7 7.7 
276 '355.0 «37.1 ä6.8 .3 29.2 55.5 37.4 , äa. 7 40.0 -J5,2.3 3"5.1 35.4 35.13 12.3 
279 -5.1 5 .b 35.2 5 .Z 29.8 3 .5 3 .i 3e. 5 5.6 33.5 34.6 3s. 0 29.1 12. E 
2513 'Z Z5.4 27.7 35.4 34.0 31.5 Z`. 4 Z8.9 1Z. 2 10.5 
281 25 .b 23.4 28.5 28.0 25.5 ä. 8. V 28.5 27.8 29.3 28.9 20.5 20.5 24.5 23.7 
Z6` : '7.7 28.3 ßb". 7 :: 7.3 28.2 28.5 28.5 27.5 3@. 1 33.0 24.9 25.3 25.2 11.8 
283 Z7.4 21.2 278.3 27.2 15.0 28.3 18.1 27.4 30.0 29.9 24.6 . 75.0 24.5 11.8 
294 24.7 ". 1 27.2 Z4. ä 26.3 26.7 5.7 25.8 28.6 2.. 3 Z@. 2 15.7 2@. 3 12.0 
259 29.7 30.5 30.3 19.7 28.5 30.9 30.9 25.7 32.6 32.5 27.8 28.0 27.8 9.5 
265 26.8 13.0 2. C 19 25.5 29.2 30.5 Z9.5 29.8 32.3 32.2 27.5 7.88 26.6 5.3 

25.9 25.4 3.8 25.5 27.7 25.7 25.3 25.9 28.6 20.7 22.7 14.7 8.0 
28'8 ", ää. L 37.1 35. '8 30.2 Z9.1 36.5 37.4 ßd. 7 39.5 x.. 19 .1 35.4 .0 12.5 
269 35.1 38.5 35.2 35.0 28.7 55.6 35.3 385.0 39.5 35.3 34.9 34.9 29.1 12.0 
'3 53 18.3 77.4 24.5 27.2 25'. 6 29.5 Z7.7 2'5.4 3`. 8 ä1 .5 25.3 27.5 12.2 10.5 
291 Z8.4 28.0 28.4 Z7.9 27.0 28.4 28.0 27.4 29.5 29.7 19.0 20.4 24.5 Z3.4 
292 27.5 27.9 Z8.4 27.2 25.5 Z7.8 Z7.7 26.88 29.9 28.7 Z4.7 25.2 24.4 11.8 
263 27.4 27. E 28.1 Z7.0 25.4 27.8 27.5 Z6.5 29.6 29.4 24.3 24.8 24.1 11.8 
27 q. 4 24.5 25. ä .T ßa. 5 24.5 25.5 25.2 24.4 Z7.4 Z7.3 19.3 17.5 20.1 11.5 
295 Z5.7 3@. 2 30.3 25.6 Z7.4 30.3 35.2 28.7 32.3 32.1 27.7 28.0 25.7 9.3 
ZSC 2 .5 25.4 2 .5 28.7 77.1 3 .0 29.3 28.6 31.8 3) .5 27.5 27.7 25.7 5.1 
287 70.4 25.7 24.8 21.0 24.6 25.8 25.0 24.0 27. '1 26.5 20.2 21.0 14.6 7.8 
255 36.5 55.8 3ä. 8 '3ä. 0 28.9 36.8 37.1 35.6 39.5 35.3 35.1 35.4 32.9 12.0 
253 i s. 1 36.3 355.2 35.6 28.5 35.1 35.1 35.2 38.7 38.3 34.3 34.9 28.8 12.0 
00 19.3 77.2 24.5 .2 25.3 28.7 27.1 25.1 30.0 29.5 24.2 25.1 12.2 10.5 
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Table 3.5.1 (Cont) 

Scenario MTD PD&MTI Index Ham. Kais. OF OF& LP& LP AMTIAMTI 123456 b=6 MTI MTI &MTI 

301 48.5 48.3 48.5 47.5 44.8 45.8 48.4 47.7 49.9 49.9 40.6 40.7 44.4 43.6 
47.2 47.9 48.2 45.8 46.6 44.4 48.1 47.1 49.7 49.6 44.4 44.8 44.7 30.5 

03 47.0 47.7 47.9 46.5 43.2 44.1 47.6 47.0 49.5 49.4 44.1 44.5 44.4 30.6 
'3'04 44.7 48.7 46.8 43.1 41.2 40.4 46.3 45.3 48.1 47.9 33.7 39.4 40.0 300.9 
305 46.7 47.9 47.3 46.6 42.1 44.1 47.9 46.8 49.5 49.6 44.8 45.0 44.8 70.8 

b 45.9 41.0 46.6 45.7 42.0 43.8 47.0 46.7 49.4 49.3 44.6 44. E 43.7 20.9 
äi7 37.4 43. E 42.4 36.3 37.8 37ß. v7 43.7 42.3 45.8 45.6 37.7 '39.8 31.7 21.2 
7 95 49.0 47.1 45.8 46. iß : r. 8 43.8 47.4 46.7 49.9 49.8 45.1 45.4 45.0 11.8 

75 45.1 46.5 45.2 45.6 37.5 42.1 45.3 46.0 49.5 49.3 44.5 44.9 39.1 11.9 
3ii3 28.3 : 7.4 34.5 27.9'3.7 5 .7 3"r. 7 35.4 41.5 41.5 355.4 37.3 22.2 12.1 
311 48.5 48.1 48.5 47.9 35.7 43.8 48.0 4.7.4 49.7 49.7 40.1 41.1 44.4 43.3 
ä17 47.2 47.5 48.2 46.8 ä6b. 1 42.2 47.3 46.4 49.5 49.3 44.3 44.9 43.8 30., ' 
313 47.0 47.4 47.8 46.6 35.9 42.0 47.1 46.0 49.3 49.1 44.0 44.4 43.5 30.5 
314 44.7 45.7 45.9 43.1 35.1 39.7 45.0 43.9 47.3 47.0 39.3 38.3 39.5 30.9 
315 46.7 47.4 47.3 49.6 35.9 41.5 47.3 45.7 49.4 43.3 44.9 45.1 43.4 20.8 
315 4-5.6 4F. ä 45.6 45.7 35.4 41.9 46.4 45.7 48.9 48.8 44.6 44.7 42.5 20.9 
31737.4 43.2 41.9'35.3 33.7 3"7.0 42.3 41.0 44.4 44.0 37.5 38.6 31.6 21.2 
319 49.8 47.0 45.8 46.9 34.4 41.9 47.1 45.5 49.6 49.5 45.3 45.4 43.6 12.1 
319 45.1 46.4 45.2 45.5 34.2 41.0 45.2 45.2 48.9 48.7 44.6 45.0 38.7 12.1 
z -, 7 'L 25.3 .ä! . 73 34.4 77.6 31 .1 34.3 37.2 35.1 39.9 39.5 34.2 35.3 22.2 12.2 
371 47.8 47.4 47.9 47.4 30.5 39.7 47.5 46.9 49.4 49.2 38.4 41.0 44.3 35.1 

-27 ä 46.7 46.2 46.8 49.2 33.2 38.8 46.2 44.5 48.9 48.7 43.5 44.5 35.5 2 9.4 
3-27,2 4B. 4 45.9 46.6 45.9 30.1 39.8 46.0 43.6 48.3 48.1 43.2 44.0 35.3 29.4 
ä24 43.2 42.4 43.2 42.4 29.9 37.4 42.5 39.9 45. [3 44.7 36.5 33.9 33.3 29.7 
3<5 45.4 45.9 48.7 45.19 30.0 38.2 46.2 41.5 48.7 48.5 44.4 45.0 310.7 20.7 
378 45.4 44.7 45.9 44.7 29.7 38.1 44.8 41.3 47.7 47.4 44.2 44.5 30.4 20.7 
377 37.0 36.1 37.5 36.1 28.7 34.4 36.9 34.0 40.7 40.5 36.2 33.1 27.0 21.1 
X28 4b. b 44.9 43.5 44. ' 2y. 8 j8.4 4b. 10 41.. E 48. b 48.4 4b. 0 4b. 4 60.2 12.0 
525 44.7 44.2 44.8 44.2 29.5 38.0 43.4 41.1 47.2 46.9 43.8 44.7 29.6 12.0 
30 ä33.5 ät. 7 7ýr. 1 27.5 : 9. Z 29.1 .5 34.7 34.2 3ýý. ä 28.9 21.2 12. T 
0-1 67.6 97f. E 98.1 95.9 48.8 5'L. 0 68.0 87.3 99.9 59.8 91.4 61.9 64.5 63.3 
37 3172 , 56.1 66.8 67.6 6`. 1 46.4 53.1 67.4 66.3 59.5 59.4 54.2 64.7 63.5 50.5 
33 56.1 66.3 57.4 5 .1 46.4 52.6 67.2 66.1 59.3 69.1 64.1 64.5 63.6 50.5 
334 93.6 55.2 65.2 67.4 45.4 51.3 65.1 64.0 67.3 67.1 59.4 58.6 59.5 50.9 
33 95.8 69.3 97.1 55.0 45.2 50.1 67.3 65.7 69.4 69.4 64.9 55.1 63.6 40.7 
39 65.4 '69.1 56.5 64.5 45.8 49.1 55.4 6S. 7 69.0 68.9 64.6 64.8 62.6 40.7 
3 -if 57.3 62.9 61.5 99.1 44.5 46.4 62.5 51.2 64.4 54.1 57.5 58.5 51.6 41.1 
339 165.7 56.9 89.4 64.5 45.4 48.3 65.8 65.4 69.3 69.2 65.2 65.3 53.4 30.7 
339 84.6 95.3 64.7 54.1 44.9 47.9 64.7 64.9 68.6 68.5 64.3 64.6 58.3 30.8 
34L'ß 4!. 9 56.9 54.0 46.7 42.3 41.4 556.9 54.7 59.7 59.3 53.9 55.2 41.7 31.1 
341 67.5 65.5 68.0 65.5 37.0 45.8 68.1 57.1 69.8 69.8 51.4 61.7 64.7 54.2 
ä42 B-0.7 b4.4 57.3 64.4 3-x. 0 45.5 67. E 65.4 69.3 69.2 54.3 54.8 55.8 49.1 
343 95.9 54.1 66.9 64.1 37.0 45.5 68.5 64.5 58.7 58.6 63.6 54.0 55.4 49.1 
344 63.9 81.9 64.3 51.8 '3"r. 0 45.3 63.6 61.4 66.1 65.8 58.1 57.1 5-3.4 49.4 
345 55.6 64.1 66.8 54.1 36.6 44.9 65.5 63.8 68.9 68.8 64.5 64.7 49.7 40.5 
346 55.7 53.5 69.1 63.5 36.5 44.6 65.8 63.6 58.3 68.2 64.3 64.4 45.4 40.6 
347 57.3 57.1 80.5 555.9 36.6 43.4 57.2 54.3 62.4 61.9 55.9 55.7 46.3 40.9 
348+ 55.0 '63.9 55.2 63.5 36.31 43.7 66.3 63.2 68.7 88.8 54.8 65.0 48.7 33.7 
349 64.6 53.10 54.7 53.0 36.1 43.5 64.4 53.0 67.7 67.5 63.3 64.2 48.2 30.8 
FLA 477.9`53.4 53.5 46.7 35. '3 40.4 49.1 47.0 55.5 59.7 51.7 51.7 40.6 31.1 
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Table 3.5.1 (Cont) 

Scenario MTD 
Index 

351 u3. Z 
st. 4 

, 753 '61.0 
7S4 "-i; .4 
355 51aä 

356 ý. s 
35B "59.4 
LI3 

L5 
.t 

. 2b-L1 45.7 

351 23.5 

3t-22 -1.13 
35 X5.5 
64 22.7 
355x3.0 

23 

53.3 55.8 
51.3 b.. ä 
51.6 Sä. 2 
"s'b'. b 58.0 
50.13 Ei. 4 

50.0 53.2 
55. iß 52.7 
53. S 57.4 
45.0 45.5 
25.7 28.5 
28.5 Zä. 4 
28.4 28.3 
25.7 -S. 7 

. 20., 0 30.0 
30. E 27.4 
20.5 0.5 
'34.5 34.4 
35.3 ßb. 5 
18.3 12.3 
28.4 22.5 
. 55. b 28.4 
25.2 28.3 
2S. 3 ZS. «3 
30.0 30.0 
30.3-0.27 27.4 
20.5 2ä. S 
34.8 34.4 
35. b 25.8 
12.3 18.3 
25.0 28.4 
Z7.7 28.2 
27.2 ý8. i 
23.2 73.5 
28.0 12-0.0 
25.1 27.3 
18.7 13.6 

34. iß Z, 4.4 
34.5 25.7 
17. '3 r7. '8 
48.3 48.5 
45. '0 48.0 
47.8 47.8 
44.9 44.8 

4 

J5/ 16.4 
B, 0 34.4 

36rß 23.6 
ßi3 1 . T5 

37r 7B. 6 
7? 27.5 
173 Z, B. 'J 

374 '77.7 
3'75 'N. io 
J6 25.71 

, irr 16.4 
89 34.4 
ß-r. 6 

, ä9i 29.4 
27.6 

111 Lb- 
.V 

T84 =-. 7 

,?: 5 . ̂ ( .O 
-37r. 52 6. u 

3B7 15.3 
; 369 34.4 

, 553 23.6 
350 13). *9 
391 49.5 
ß'6Z 47.4 
3133 45.5 
64 42.3 
396 47. "0 

396 42. *0 

357 33.4 
TB 44.4 
339 -33.6 
4003 23.6 

t) o 

sr. a 
BE JE 

5 

3aä. 5 

3.5 
361., 5 

PD&MTI 
Ham. Kais. OF 

6 b=6 
40. Z 
4iß. 1 
40.1 
413.1 

Eäi. 8 JV. 39.6 
S' 3L5 39.5 

50.0 3'iß .5 39.4 
59.00 SO). 2 39.3 
S-3. s 30.2 39.1 
45.0 29.9 3r. 9 
28.0 29.4 28.8 
27.0 29.9 28.5' 
25.7 29.5 28.3 
22.2 25.4 25.0 
27.0 30.7 30.8 
Zb. 7 29.0 29.9 
18.5 20.9 20.5 
34.1 34.1 8.4 
34.0 29.4 35.4 

16.8 20.1 18.5 
28.0 28.8 28.8 
27.0 28.3 28.5 
25.7 28.1 28.3 
21.8 25.0 25.0 
25.5 30.2 30.8 
25.1 28.6 30.0 
18.5 20.9 20.5 
33.5 33.9 36.5 
3.4 29.3 35.5 
18.5 19.8 18.5 
27.9 27.0 28.4 
: 7.0 Zä. 5 27.8 
25.7 28.4 7.7.5 
1£. 9 2.. 9 23.6 
15.1 28.9 30.0 

57.3 
1=5.0 
54.4 
177.7 
64.7 
57.4 
49.7 
&4.0 

53.6 
45.1 
28.5 
28. & 
28.3 
25.4 
31.0 
30.1 
27.5 
3r. 1 
33.9 
15.4 
28.5 
5.6 
28.3 
25.1 
31.0 
30.0 
21.3 
37.1 
33.9 
19.4 
28.0 
27.8 
27.1 
73.4 
30.1 

ES. 7 
63.6 
b2.4 

59.1 
5B. 1 
47.2 
513.4 
47.0 
41.2 
27.9 
27.6 
27.7 
24.3 
30.0 
29.7 
21.7 
35.1 

20.2 
27.8 
Z7.6 
27.6 
24.0 
29.9 
29.6 
21.6 
35.0 
33.9 
20.2 
27.4 
Z-. 7 
X5.3 
X1.7 
Z7.5 
27.5 
17.5 

7 

19.2 

47.7 

47.2 
47.1 

OF& LP& LP AMTIAMTI 
MTI MTI &MTI 

6'S. 0 sb. 5 59.9 
är. 79 s77.7 3.5 
s7.0 ss. 8 s1.9 
s2. s sß. 4 S1. s 
sß. 4 5.2 s4. s 
b5.0 F -EI .E 

b3. " 

'95.5 55.2 50.7 
ss. 9 5.7 54.5 

äI. 1 59. E 35.7 
E4.3 S1. I u5. ä 
6Z. 4 51.0 35. B 
X5.0 51 I. I S. 8 
54.9 43.2 34.5 
U-3 .7 43.1 34.5 
48.2 42.3 34.8 
64.8 35.1 29.6 

54.7 54.3 52.3 S: -! . '3 34.9 29.5 
49.2 48.5 45.: 39.1 ä2. $ Z5.9 
30.0 30.0 21.5 20.9 24.5 23.7 
30.2 30.2 21.3 21.5 24.0 9.8 
30.0 29.9 21.1 21.5 23.0 9.8 
28.3 27.8 18.9 20.3 16.5 10.5 
32.5 32.6 24.4 24.1 26.7 5.2 
32.4 32.2 22.9 23.7 23.9 5.1 
27.4 26.2 19.5 20.6 10.5 4.8 
39.9 39.8 31.4 32.0 333.6 10.0 
39.5 39.3 30.5 31.5 24.1 9.9 
25.5 25.5 21.3 24.2 8.0 8.7 
29.9 29.9 20.6 20.5 24.5 23.7 
30.1 30.0 20.4 21.4 24.0 9.8 
29.8 29.7 20.2 21.1 23.0 9.9 
27.7 27.4 18.2 20.3 16.5 10.5 
32.5 32.4 23.6 23.9 26.6 5.4 
32.2 32.0 22.1 23.7 23.9 5.3 
26.2 25.9 19.1 20.8 10.5 4.8 
39.7 39.6 30.5 31.5 33.6 9.9 
39.3 39.1 30.0 31.7 24.1 9.9 
26.6 Z5.4 21.1 20.7 8.0 8.8 
29.8 29.7 19.0 20.4 24.5 23.4 
29.8 29.5 18.7 21.1 21.5 9.8 
23.4 29.1 18.5 21.1 21.0 9.8 
25.5 25.0 15.8 18.4 19.0 10.4 
32.2 32.0 21.9 23.7 23.9 5.3 
31.5 31.1 20.9 23.3 22.2 5.2 
22.5 22.1 15.0 15.5 10.4 4.8 

.ä X9.0 ZE. 7 31.7 -31.1 10.0 
39.2 37.7 Z7.8 30.8 25.7 9.5 
73.9 73.2 17.4 17.6 8.0 8.5 
49.9 49.9 40. «6 40.7 44.4 43. E 
43.16 49 . x' 4U. 13 41.1 43. =5 Z 5. : 
45.4 49.3 33.8 40.9 4Z. S 25.3 

ZZ .ä Z7.5 U. 5 '27. e 
17.4 MB 20.2 T9.8 
Z9. ä 0 .: 35.3 35.8 
Z9. ß 25.0 ; a3.5 32.5 
ILS 1B. ß TF. 3 T .ý 
47. "5 44.5 49. I3 48.4 
4b: E 42. '3 41 . 'S fS. 2 
45. Z 4Z. is 41.7 47.3 
J7. ß 3 .ý Jt. 4 44. s 43.5 47. E är. ß 37. B 40.1 X5.3 º'9.8 

47.0 47.0 43.1 42. b' 41.8 4$. 0 49.? 49.5 49.4.40.7 41. Z 43. U 19.4 
47.7 44.4 '3' . '3 41. '3 41.13 477.1 4 13. b 4x. 2 43.3 35 .2 41. iä 4'0.8 TS. b 
37r. ä 797.13 2B. 3 34.13 33.9 39.3 3-Uaä 43.1 4Z. 9 35.2 3 .1 Z7.5 ZO. 1 
44.16 44.4 '35.3 410.7 41.2 47.1 4S. 0 49.7 49.7 40.5 41.3 43.8 5. 's 
45.5 3B. 8 Z9.9 37.7 37.4 43.9 43.9 49.3 49.1 40.0 41.5 34.1 10.0 
29.3 2B. 3 23.8 28.3 27.7 29.4 30.2 35.5 35.4 31.2 31.4 *18.0 10.6 
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Table 3.5.1 (Cont) 

Scenario MTD PD& MTI Index 
1 2 

Ham. Kais. OF OF& LP& LP AMTIAMTI 3 4 5 6 b=6 MTI MTI &MTI 

401 48.5 48.1 48.5 47.9 36.7 43.8 48.0 47.4 49.7 49.7 40.1 41.1 44.4 43.3 
40Z 47.4 47.8 48.0 46.6 35.8 40.8 47.4 45.3 49.4 49.2 39.8 41.4 40.5 29.2 
403 46.5 47.4 47.8 45.2 M. 5 40.7 45.8 44.8 49.1 48.9 38.9 41.4 40.0 29.3 
4134 41.9 43.1 43.1 37.8 34.6 37.4 43.3 41.2 45.8 45.4 36.9 39.8 35.3 29.9 
405 47.0 46.7 47.0 43.1 35.3 40.7 47.2 44.5 49.2 49.1 40.0 41.1 40.2 19.4 
478 42. D 46.9 44.4 38.9 35.2 40.1 45.0 44.4 4.8.7 419.5 39.5 41.7 38.7 19.5 
407 57j. 4 35.4 35.3 28.3 32.3 34.4 . 36.6 34.0 39.8 39. E 33.8 35.0 27.4 20.1 
439 44.4 44.5 44.4 35.3 35.3 40.13 46.0 43.3 49.5 49.3 36.5 42.1 40.4 6.9 
409 '33. 'g 45.4 36.8 28.9 34.3 '37.5 42.9 42.7 48.4 48.1 39.6 41.7 33.5 110.0 
4113 23.9 X7.5 77.5 33.1 77.5 27.8 2U. ß 28.8 33. iß 32.5 26.6 77.2 18.0 10.6 
411 47.8 47.4 47.9 47.4 30.5 39.7 47.5 46.9 49.4 49.2 38.4 41.0 44.3 35.1 
412 47.0 45.4 47.0 45.4 30.2 8.5 45.5 41.8 48.5 48.3 38.2 41.4 28. '5 28.3 
413 49.1 44.3 46.1 44.3 30.1 38.4 45.0 40.6 47.9 47.5 37.5 40.6 28.8 28.4 
414 38.3 37.6 38.2 37.6 79.8 35.9 36.1 36.0 41.6 41. B 34.10 35.3 26.6 28 . '9 
41'5 45.5 42.5 45.8 42.5 29.5 38.5 45.4 35.5 48.4 48.1 39.0 41.3 24.2 19.3 
418 41.5 "35.7 41.9 38.7 29.4 38.1 41.9 34.0 46.8 46. '5 37.2 41.1 24.2 19.4 
417 32.0 30.8 333.1 28.2 28.2 29.1 29.1 28.0 34.9 34.7 29.7 29.7 22.6 20.0 
418 44.2 35.: 44.2 35.2 29.7 38.3 44.3 29.3 48.3 47.9 38.0 41.3 24.5 9.9 
418 33.8 3Z. 8 35.0 29.8 29.4 35.8 34.4 28.9 45.6 45.1 38.0 41.6 24.1 10.0 
4213 33.3 75.0 35.3 19.4 Z5.8 25.5 25.2 22.9 27.9 27.2 21.3 21.7 17.1 10.5 
421 57.8 97.8 68.1 59.9 43. B S4.0 68.0 67.3 99.9 69.8 61.4 61.9 64.5 63.3 
432 67.4 67. '3 67.5 69.8 46.3 49.5 U-1. E 65'. F 8'3.4 55.4 61 .I B7.1 6T . 13 49.2 
4Z3 65.4 EE. 8 E7.1 94.6 46.2 48.3 66.9 '65.0 69.1 65.0 59.8 61.8 '60.3 49.3 
424 51.5 53.0 62.8 57.6 46.2 30.0 63.7 61.4 '56.2 56.0 57.9 90.6 55.5 45.9 
476 äb. 9 x; 8.4'66.9 62.7 49.3 45.3 97.4 64.5 69.4 69.3 51.2 62.0 60.7 39.3 

FT .8 66.4 54.3 758.7 44.9 44. E 65.4 64.7 88.7 68.6 60.2 62. '1 56.10 39.4 
42< 53.2 55.3 55.2 48.2 43.7 43.5 56.9 '54.2 55.9 59.8 54.1 55.1 47.4 40.1 
428 E3.9 E3.8 63.9 '54.8 44.5 43.1 65.7 S3.1 65.0 68 . '5 58.8 b 1.9 60.3 29.4 
4Z9 53. Z 54.8 55.3 49.4 44.4 43.0 62.8 62.5 68.3 68.1 50.0 61.8 53.3 29.4 
4 TO 4 3.3 d7.: 47.2 38.3 -55.9 -377 47.7 48.4 5-2.13 3Z .4 45.4 47.2 37.6 30.1 
431 67.5 65.5 68.0 65. '5 '37.0 45.8 68.1 67.1 65.3 65.8 61.4 61.7 64.7 54.2 
432 67.3 64.7 57.3 64.7 36.5 44.9 67.3 63.5 69.1 69.0 60.4 61.9 48.5 48.1 
433 998.2 93.7 66.2 63.7 6.9 44.8 66.3 61.9 68.3 58.2 60.4 61.8 48.6 48.2 
434 '81.4 57.5 51.8 57 .5 39.9 45.0 58.3 66.5 53.7 53.5 57.4 59.0 48.5 48.7 
435 57.1 62.2 97.1 627 .2 36.6 43.1 67.2 57.0 69.1 69.0 61.2 62.3 42.9 39.2 
436 62.0 58.7 63.2 58.5 36.5 42.7 62.6 54.2 68.2 58.0 59.8 61.5 42.8 39.3 
437 2.8 53.3 54.6 48.2 38.5 42.1 49.4 47.9 56.8 56.2 51.0 51.2 41.6 39.9 
4-58 '64.0 '57.2 '54.13 '54.7 36.0 41.7 65.1 48.8 68.6 68.4 51.0 92.4 42.8 28.4 
439 53.2 57.2,5b. 1 49.4 35.7 41.6 54.1 48.3 67.4 157.1 59.0 62.5 42.5 25.4 
441. E 43.1 45.1 4-5.1 'aß. 3 34.7 37.8 45.3 42.9' 49.4 48.6 43.2 45.0 36.4 30.1 
441 63. '3 63.3 65.8 63.3 30.5 40.2 67.3 66.7 68.0 58.9 59.9 61.1 59.5 35.7 
442 '59.6 '54.2 56.9 54.2 30.5 40.1 69.10 52 .9 6 .3 67.1 53.6 61.10 48.4 35.5 
443 66. '8 93.7 56.8 53.7 30.5 40.1 54.4 52.7 65.5 65.7 59.0 51.5 48.5 35.6 
444 '54.7 63.1 '54.8 53.1 30.6 40.1 53.4 32.8 58.5 58.3 62.3 57 .6 49.5 35.13 
445 56.8 S1.3 56.8 51.3 30.4 39.5 513.2 44.8 66.7 66.5 59.4 62.1 32.7-34.2 
446 56.13 50.6 35.13 30.9 313.4 35.5 '5'0.0 44.5 63.5 B3.10 58.8 ED. 8 at-1, B '34.7 
447 48.0 46.6 48.0 46.6 30.4 399.2 46.5 43.4 50.7 50.4 44.9 45.5 39.6 34.4 
44tr *56.5 5tß. 0 5r. ß' 50.0 30.2 39.13 *53.1 43. '1 65.7 65.4 5-8.7 82.0 27.5 28.5 
449 51.6 47.4 51.6 47.4 30.1 39.0 48.8 41.7 58.9 58.4 54.8 69.4 27.9 28.5 
45-0 '38.8 378-1 38.6 5n. 1 29.8 388.1 38.5 35.4 42.8 42.6 36.8 ', ßb. 8 27.5 2U. 1 
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Table 3.5.2 
IF for Different Doppler Processors, 

Sea Clutter Scenarios 

Scenario MTD PD&MTI 
Index Ham. Kais. OF OF& LP& LP AMTIAMTI 1 23 4 5 6 b=6 MTI MTI &MTI 

i 28.1 28.3 28.5 27.8 28.8 28.8 28.4 28.9 29.9 29.9 70.6 20.5 24.5 23.6 
Z 29.0 28.8 9.0 28.4 29.1 Z9.2 28.9 29.4 30.3 30.3 20.9 20.8 24.9 74.1 
3 2'9.0 28.7 29.0 28.4 39.0 20.2 28.0 29.4 30.3 , 30. -3 20.2 20.7 24.9 24.1 
4 8.8 38.6 38.9 38.3 35.1 38.1 39.7 39.3 4iä. 2 40.2 313.0 31.6 34.8 34.0 
5 38.91 3-8.4 38.9 38.3 31.9 37.2 388.4 39.3 40.1 40.0 28.4 37.0 34.8 33.5 
b ßl. 9 23.1 ZU -21 28.1 78.0 28.4 28.0 29.0 25.9 25.7 24.8 24.5 24.7 23.6 
7 28.0 28.3 28.4 28.0 28.0 28.3 28.4 27.3 30.2 30.2 75.2 25.3 25.1 15.9 
528.8 28.329.4 29.0 ZS 'ZU 2B. Z5.2 Z5.3 : 5.1 16.5 
53 .9 38.3 38.4 37.9 33.4 37.3 388.3 37.3 40.0 40.0 35.0 35.4 385.1 17.0 

18 31 -'s 3 7., 9 38.3 37.89 .5 36.4 39.0 377.3 39.8 35.7 35.1 35.4 34.7 17. -3 
11 27.4 Z(. 77 X7.4 27.5 28.7 28.7 28.0 23.4 29.8 29. E 21.3 20.5 23.6 73.5 
17 27.4 7.7.4 27.4 27.0 28.3 28.5 28.5 20.7 30.1 30.0 21.7 21.4 24.1 5.9 
13 227.4 27.4 27.4 28.8 28.2 28.5 28.4 20.7 29.9 29.8 20.9 21.2 24.0 9.9 
14 37.4 37.4 37.4 333.5 33.9 . äb. 5 38.2 30.7 39.7 39.6 30.3 31.5 33.6 9.9 
15-57.4 38.4 37.4 333.5 30.8 35.8 37.5 30.7 39.5 39.3 29.2 31.2 29.5 9.9 
16Z6.1 26.7 ? F.. -, 

' 
26.1 25.2 26.8 25.9 26.5 28.1 27.9 16.4 19.5 21.0 15.4 

17 28.4 29.4 28. S 26.4 25.4 27.2 26.2 26.7 28.5 28.2 16.7 19.8 21.1 15.5 
18Z1.8 7.8 2.0 2"1.8 22.1 727.6 21.7 22.6 23.9 23.8 73.5 14.9 17.6 13.7 
113 3.4 33.4 33.4 33.4 27.7 33.0 33.3 30.9 35.4 3S. 1 25.3 28.2 23.2 16.0 
710 13.9 13. E 13.7 13.8 14.7 14.4 13.5 14.5 15.9 15.8 6.6 6.5 9.9 7.8 
21 24.8 26.3 25.5 28.1 25.0 25.7 26.4 18.5 28.1 27.7 21.9 21.3 18.0 15.4 
27 22.5 212.6 23.1 ZZ. 5 23.1 23.7 22.7 18.7 25.2 24.9 19.2 18.1 17.4 12.5 
713 18.5 18.6 18.9 18.5 19.5 19.5 18.8 17.1 20.9 20.7 14.7 12.1 15.0 12.0 
24 24.6 24. E Z5. Z 24.6 24.6 29.3 24.3 24.4 27.7 27.5 20.0 20.8 17.2 12.8 
25 13.0 13.0 13.1 13.0 14.2 T3.8 12.9 13.9 15.4 19.3 5.4 5.9 9.3 7.2 
2.5 24.9 28.0 26.13 26.3 25.1 26.8 19.2 17.1 Z8.1 , 3.2 15.5 19.4 7.5 15.4 
27 13.3 15.3 15.4 14.6 15.3 15.8 15.5 11.2 17.5 17.2 8.8 8.9 7.15 9.2 
ZU 13.9 115.0 18.0 15.1 16.4 16.0 15.0 12.6 17.4 16.5 8.9 8.0 6.8 10.0 
29 15.2 14.7 15.2 14.7 16.5 16.0 14.9 15.8 17.7 17.6 9.3 9.1 10.0 9.3 
CO 10.5 10.4 10.6 10.4 11.6 11.2 10.4 11.5 12.7 12.6 3.2 3.0 7.1 5.9 
31 48.5 48.1 48.5 47.9 36.7 43.7 48.0 48.9 49.7 49.7 40.1 41.1 44.4 43.3 
32 45.5 48.1 48.5 47.9 36.7 43: 8 48.0 48.9 49.8 49.7 40.1 41.1 44.4 43.3 
33 48.5 48.1 48.5 47.9 36.7 43.8 48.0 48.9 49.7 49.7 40.1 41.1 44.4 43.3 
34 48.9 48.5 48.9 48.3 35.8 43.9 48.4 49.3 50.2 50.1 40.5 41.5 44.8 43.7 
35 48.9 48.3 48.8 48.3 35.1 43.5 48.4 49.2 50.1 50.0 39.4 41.3 44.8 43.2 
, gib 49. '5 47.1 45.3 47.5 29.4 38.0 46.8 32.1 49.7 49.5 44.8 44.8 44.4 43.2 
37 46.2 47.1 46.0 47.3 28.2 37.6 46.8 32.1 49.6 49.6 44.8 44.9 44.5 34.7 
38 45.2 47.1 46.0 47.2 20.1 37.6 46.8 32.1 49.5 49.5 44.8 45.0 44.5 34.7 
33 45.6 47. '5 46.4 47.5 28.9 37.9 47.2 32.5 49.8 49.7 45.2 45.4 44.9 17.1 
40 46.5 47.5 45.4 47.6 28.7 37.8 47.1 32.5 49.5 49.4 45.2 45.4 44.5 17.8 
41 45.1 45.1 45.1 47.8 36.7 43.7 41.5 Zä. 0 49.7 49.2 41.5 41.1 40.2 43.2 
4Z 36.2 36.7 3a. Z 46. e 35.8 40.8 41. E 23. E 45.4 45. E 41.3 41.4 40.2 Z9. Z 
43 6.2 36.7 3-t2.2 46.1 35.7 40.8 41.6 23.7 49.2 49.1 40.4 40.9 40.2 0.2 
44 3b .6 37.1 366 . '6 35.3 35.3 40 .3 41. U 21.4 49.6 49.4 413.0 42.1 40.4 '9. '9 
45 3*6.6 37.8 36.5 32.8 34.7 40.0 40.7 21.4 49.1 48.8 40.3 42.2 38.0 10.0 
46 Jb. 6 ýt,. b '3B-'5 36.6 ßt. 13 -52--0, 3ä. 3 31. E ä9. i Jb. 7 3fß fß. 1 
47 35.5 366.6 -36.6 '38.6 Z8.0 35.0 35.3 31.8 39.0 378.7 31.6 33. E 23.5 16.1 
48 *3S. -ts 35. -5 35. E (. z3 ä4., 3 35.3 31. E 37.7 37.4 Sib. 1 31.6 23.4 16.8 
49 35.6 3,6.6 36.7 35.6 Z9. i1 35.0 35.4 31.8 39.1 39.8 31.7 33.7 23.5 18: 1 
50 23.1 Zä. 1 23.3 733.1 Z3.7 24.0 73.0 73.8 75.7 2 .1 16.4 15.4 18. E 14.1 
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Table 3.5.2 (Cont) 

Index MTD PD&MTI 
Ham. Kais. OF OF& LP& LP AMTI AMTI 

123456 b=6 MTI MTI &MTI 

51 333. +0 34.. 5 -. ä. a. 1 
. 3äa. 8 27.9 34.. 8 34.5 19.0 39.0 '3'R. ; -35 1-3 33,8 11j. q 18.1 

57 37.8 33.8 32.8 33,27.8 33.5 '33.5 15. O 37.3 , ä5.8 03.5 3Z"9 18.9 15.0 
5331.5 2. Zs31.73Z. 777.15 32. E 32. t3 P 35.2'34.531.4 3'0.1 ißt. 8 16.0 
54 25.0 74.4 25.1 74.4 24.5 25.0 74.5 15.7 78.1 27.5 Z4.3 22. '1 18.1 12.9 
65 15.0 19.1 19.4 19.0 20.0 20.1 19.3 T7.4 2t. 4 21.2 15.8 12.9 15.4 12.3 
SB 36.6 36.6 36.6 36. E 28.0 34.9 19.9 17.7 39.0 25.3 21.6 33.5 7.5 16.1 
-57 29.0 28. '0 29.0 29.5 26.9 30.1 19.8 17.4 31.7 24.9 20.9 23.6 7.6 15.9 
58 31.0 31.0 31.0 31.1 Z7.3 31.4 19.8 17.5 33.3 24.9 20.9 25.4 7.6 15.9 
59 13.3 13.5 15.5 14.7 16.5 16.0 15.7 11.3 17.8 17.4 9.2 9.2 7.5 9.3 
SO 14.1 '15.1 15.2 15.3 16.6 16.2 15.1 12.7 17.6 16.6 9.3 8.2 7.0 10.3 
61 28.5 78.3 28.5 Z7.9 28.8 28.8 28.4 28.9 29.5 79.9 20.6 20.5 24.5 23.6 
62 28.1 29.5 28.6 28.0 28.8 28.5 28.4 28.10 310.7 30.2 24.9 25.4 24.9 18.9 
53 28.1 78.5 78.6 28.9 28.7 28.9 28.4 28.2 30.2 30.1 24.9 25.3 24.9 18.8 
54 37.9 37.9 37.9 37.3 34.9 37.8 38.1 25.0 40.0 40.0 35.4 35.4 35.0 20.3 
55 37.9 37. '9 37.9 -371. s 31.6 3S -11 38.1 25.7 '39.8 38.8 3^5.4 35.4 34.9 20.2 
'66 77.8 28.1 28.2 28.1 26.0 28.4 28.0 26.9 29.9 29.7 24.8 24.9 24.7 23.6 
U7 78.1 28.4 28.3 28.5 25.0 28.9 28.4 26.6 30.3 30.1 25.1 25.3 2'S. l 24.9 
58 28.8 28.3 28.3 28.4 26.0 28.9 28.4 26.7 30.3 30.1 25.0 25.6 15.1 14.0 
by ý'l. 5 3'1.5 67. U 35.6 66. b 67.7 66.1 15.1 40.1 39.9 65.5 65.6 64.7 65.4 
10 , ý'f. t3 67.9 3'/. 5 69.6 61.0 6b.. 39.1 15.5 40.1 69.7 65.4 65.3 64.7 66.0 
71 27.4 2'1.7 27.4 2'/. 8 15.7 1.5.7 19.0 26.4 29.5 29.5 21.6 10.5 23.5 26.9 

17.2 27.4 17.9 15.4 25.5 1'/. 9 26.6 60.2 29.8 45.0 25.1 10.9 14. b 
27.01'1.0 1'1.0 L"/. '/ 28.6 29.9 27.9 12.5 60.1 25. '1 15.0 25.2 10.5 14. b 

'14 64.8 64.5 64.8 6Y. 6 64.5 67.4 6b. 8 26.9 40.0 65.2 65.5 65.6 14.0 14. b 
'/b 34. '1 64.6 34.7 67.6 31.6 65.5 65.9 26.6 69.9 65.9 65.4 65. i 14.1 14.5 
'1b 25.1 25.1 2b. 6 25.1 25.1 25.9 25.9 25.5 25.1 27.5 15.4 19.5 21.0 15.4 

14.0 24.0 14. E 24.0 24.0 25.1 26. V 14.5 25.5 25.2 14.5 19.8 19.3 16. b 
(9 15. b 19.5 19.8 15. b 10.6 20.4 19.5 20.3 11.8 '11. '/ 11. b 11.1 15.2 1'2.9 
/5 25.5 lä. 4 1'!. i 25.4 2b. 9 19.1 25. '1 21. b X0.2 60.0 24.5 24.2 '10.5 16.6 
80 16. '1 16. b 16.5 16.6 14.5 14. '2 16. b 16.4 15. '( 15.5 7.5 1.5 10.1 '/. b 
81 24.9 1b. 6 25.5 25.1 25.0 15.7 25.4 18. b 18.1 27.1 21.9 21.6 15.0 15.4 
cs'L 25.2 25.1 25.9 25.4 15. E ß'l. 1 25. '1 15.7 15.4 29.0 22.2 21. b 18.6 lb. j 
93 21.1 21 .9 21 .9 21 . '/ 2'1.0 11.5 22.1 Ft. b 2i. 9 26.5 15.0 15.0 15.6 16. '/ 
84 66.6 66.6 66.6 36.1 2'1. b 62.9 66.2 21. b 6b. 2 64. '1 29.7 60.1 21.4 15.5 
55 1ä. y 1.5 14. '1 16.5 14. '( 14.4 16.9 16.6 15.9 15. '1 8.5 1.8 10.6 '/. 5 
5b 14.9 15.0 25.0 'Lb. 0 '25.1 1b. 5 l5. l 1Y. 1 '19.1 lö. 5 15.4 7.5 15.4 
t#'( 1b. 5 1'/. 9 1'1.5 21.0 21.5 22.6 L)4. '/ 23.5 19.5 lb. 6 16.6 ä. '1 11. '! 
99 15.1 15.5 16.5 1'(. 5 18.5 18.6ß 15.2 16. b 19.9 18.1 12.0 8.8 'l. 0 11.5 
Ms 1'!. 5 22.7 11. '1 22.6 26.0 26.8 26.5 15.5 25.1 94.5 21.4 15.5 12.7 11.8 
90 12.5 16.0 16.4 12.5 16. b 16.6 11.9 11.0 14.9 14. '/ '1.5 .58. '1 b. s 
91 49.5 48.1 49. b 4'(. `9 , 65. '1 46. '( 48.0 48.9 45. '( 49. '! 40.1 41.1 44.4 46.6 
92 47.7 4'/. 5 413.1 47. b ib. b 46. 'f 4'(. 5 4'(. b 45.5 45.5 46.7 44. b 44.4 , ß'l. 6 
96 4'/. b 4'/. J 45.1 4'/. 5 65.5 46. '! 41. b 4'1.8 49.5 4'x. 5 46.5 44.5 44.4 6'(. 2 
54 4'/. 8 4'!. 9 4'(. 5 4'1. ýJ 65.5 46.5 47.7 65.0 49.8 45. 'I 44.8 45.1 44.9 20.4 
yb 4'/. 8 47.5 47.9 47.9 6b. U 46.1 47.7 65. '1 49.5 45.5 44.1 44.9 44.8 20.2 
yb 45.5 47.1 45., 6 47.5 19.4 65.0 45.5 i2.1 45. '/ 49.5 44.8 44.8 44.4 43.2 
51 45.4 4'7.1 45.2 47.5 19.1 65.0 4b. ts 61.1 45.7 48.5 44.5 44. *8 44.4 46.2 
99 45.4 47.1 45.2 4'1. b 2`5.1 38.0 45.5 ß2.1 49.1 49.4 44.8 44.5 44.4 46.2 
99 45.5 47.5 4b. 4 46.0 15.9 69.1 45.9 60. b 50.0 45.9 45. E 45.6 46.1 40.0 

100 45.5 4'1. b 45.4 45.0 ; e8.7 39.1 4b. 9 60.5 50.0 49. b 45.6 45.6 C2.7 39.5 
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Table 3.5.2 (Cont) 

Index MTD PD&MTI 
Ham. Kais. OF OF& LP& LP AMTIAMTI 1 2 3 4 5 6 b=6 MTI MTI &MTI 

101 45.1 4b. 1 45.1 4'1.8 3b. '/ 46. '/ 41. b 1b. 0 4y. 'I 48. '1 41. b 41.1 40. l 46.1 
102 44.6 44.6 44.6 47.3 36.3 43.4 40.0 26.0 49.6 48.5 44.6 44.7 29.9 32.7 
T03 44.1 44.1 44.1 47.3 366.2 43.4 40.0 2"6. -0 49.5 48.4 44.5 44.7 30.0 32.6 
104 36.0 59.2 3ö .o 4'1.; e 3U .1 4.8 40., S 15.4 49.8 48.5 45.1 4b. 4 10.9 14. b 
105 35.1 35.4 35.1 47.2 35.4 42.5 40.3 24.1 4'9.6 4k 3. Z 44.8 46.4 11.0 14. ä 
106 6.6 -366.1; 36.5 35.13 28.0 35.0 3-6 .3 31.8 335.0 3U. 7 3T .5 33.6 23.9; 16.1 
'1u7 35.5 35.9 35.9 35.3 29.0 34.6 35.7 31.6 3.8.3 33.13 30.99 32.6 73.4 113.0 
108 '33.8 33.8 33.3 '33.9 27.6 33.3 33.8 31.0 35.8 35.7 28.1 28.8 23.2 15.0 
109 76.7 76.7 77.3 26.7 26.0 28.6 28.3 26.8 31.0 30.9 23.9 25.13 19.0 13.9 
110 20.3 20.3 20.5 20.3 20.13 71.2 20.2 21.0 22.6 22.5 12.6 12.9 15.3 12.8 
Tit 333.0 34.8 33.1 33.8 27.13 34.6 34.5 19.0 38.0 39.4 35.3 34.6 19.8 TE. i 
l17 33. is 34.8 333.1 33.8 77.9 34.6 34.5 19.0 39.0 8.4 35.3 34.8 1U. 9 16.1 
113 32.5 34.1 32.6 33.3 27.0 34.0 333.6 13.0 377.5 äi. 8 3'3. '3 3.1 18.9 1ä. ä 
114 33.3 34.5 53.4 33. -5 Z7.9 34.4 34.5 19.2 38.6 37.5 34.8 34.3 1 9.1 15.9 
115 72.4 23.7 23.1 22.9 23.0 23.8 23.3 17.9 75.1 24.8 20.2 17.6 16.6 14.10 
TIE 36. E 36.5 36.6 36.6 18.0 34.9 19.9 17.7 39.0 25.3 21.6 33.5 7.6 16.1 
1'17 33.4 33.4 33.4 -So-. 'S 277.7 33.2 19.8 17.9 35.9 24. B 71.0 29.7 7.6 16.0 
115 32.3 32.3 32.3 37.4 27.5 32.4 19.8 17.6 34.5 25.10 21.1 27.0 7.13 16.0 
119 16.5 19.3 18.3 27.4 73.1 24.8 17.9 14.9 75.3 20.9 18.9 15.5 6.7 11.8 
120 15.3 16.8 15.8 17.9 18.9 18.7 16.4 13.8 20.3 T8.5 13.3 10.2 7.0 TT. 7 
121 28.5 26.3 28.5 27.9 28.9 28.0 28.4 28.9 29. '9 29.9 20.6 70.5 24.5 23.6 
TZZ 27.7 28.6 28.6 27.1 28.3 "'U. S 28.5 24.1 30.1 30.0 24.8 25.3 25.1 11.2 
173 27.1 213.3 78.5 27.0 28.2 28.5 28.4 73.5 30.0 29.8 24.9 25.2 25.0 11.2 
174 34.8 36.4 35.1 35.0 34.1 35.8 35.8 16.2 39.8 39.7 35.3 35.3 34.8 11.4 
175 34.9 38.4 35.0 36.0 31.0 313.0 35.8 15.2 39.6 39.5 34.4 34.8 32.3 11.4 
126 77.8 28.1 28.2 28.1 26.0 28.4 28.0 26.9 29.9 29.7 24.8 24.9 24.7 23.6 
177 27.9 213.2 28.2 28.3 28.0 28.6 28.0 23.5 30.2 29.9 25.1 75.3 21.3 21.2 
128 27.8 29.1 28.2 28.2 25.9 28.5 78.0 22.9 30.2 29.8 25.1 25.3 21.0 21.1 
123 37.3 37.6 37.3 8.1 33.6 371.5 35.3 21.5 40.0 39.7 35.1 35.3 21.5 24.5 
130 37.4 37.6 37r. 4 38.1 31.0 36.7 35.4 19.5 39.9 39.4 33.8 34.8 21.2 24.4 
131 27.4 77.7 77.4 27.9 28.7 28.7 28.0 23.4 29.8 7.9.6 21.3 20.5 23.6 23.6 
132 27.5 Z8.2 27.5 28.3 29.1 29.2 28.2 23.3 30.2 29.8 21.8 24.1 19.1 23.6 
173 77.5 28.0 27.5 28.2 29.0 29.2 28.2 23.0 30.2 79.7 22.1 24.0 18.7 23.5 
T34 37.2 35.7 37.2 38.1 35.1 38.0 35.5 24.9 40.1 39.5 31.5 33.3 ZZ. 6 29.5 
135 37.2 36.8 37.2 38.1 31.9 37.2 35.5 70.9 40.0 39.3 31.8 333.7 22.4 29.3 
136 26.1 26.1 26.3 26.1 25.2 26.8 25.9 26.5 28.1 217.9 16.4 19.5 21.0 15.4 
137 17.1 16.9 17. '3 16.9 18.3 18.0 17.0 17.9 19.9 19.8 10.4 7.5 12.8 10.1 
138 16.0 15.9 16.2 15.9 17.0 16.7 15.9 16.9 18.2 18.1 8.8 8.3 11.8 10.7 
139 13.8 18.3 18.5 17.2 18.7 18.4 18.1 12.8 20.4 20.1 15.1 13.0 10.5 10.3 
140 10.7 11.8 11.9 11.2 12.3 12.0 11.4 9.9 13.6 12.8 6.4 2.0 5.2 6.3 
141 24.8 26.3 25.5 25.1 25.0 26.7 26.4 18.5 28.1 27.7 21.9 21.3 18.0 15.4 
147 22.3 25.4 24.2 25.3 24.7 26.2 25.5 17.1 27.5 26.7 20.8 20.5 15.6 14.3 
143 17.7 18.8 19.7 20.4 21.1 21.3 20.3 15.9 22.7 21.8 15.3 14.5 13.8 13.0 
144 19.7 25.0 73.3 29.0 26.8 30.3 25.8 16.4 32.5 29.2 23.2 25.9 10.5 14.7 
145 11.9 13.3 13.3 13.5 14.6 14.3 12.6 11.3 15.8 13.9 8.4 4.6 5.2- 7.7 
146 24.9 Z5.0 25.0 25.0 25.1 26.8 19.2 17.1 28.1 23.2 16.5 19.4 7.5 15.4 
147 25.0 25.1 25.1 26.0 25.2 25.8 19.2 17.1 28.1 22.5 15.7 19.7 7.2 14.9 
148 19.3 19.7 19.7 21.2 21.7 22.1 17.5 15.7 23.4 19.8 13.8 14.2 7.0 13.4 
148 35.5 25.0 25.13 31.7 27.4 374.1 23.1 17.3 34.3 27.2 20.1 25.7, 9.6 15.4 
15-0 12.0 13.3 13.3 13. E 14.7 14.4 12.7 11.4 15.9 13.8 8.4 4.9 5.0 7.9, 
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Table 3.5.2 (Cont) 

Index MTD PD&MTI 
1 23 4 

Ham. Kais. OF OF& LP& LP AMTIAMTI 56 b=6 MTI MTI &MTI 

151 48.5 48.1 48.3 47.9 35.7 43.7 48.0 48.9 48.7 49.7 40.1 41.1 44.4 43.3 
157 46.8 47.6 48.1 46.3 35.9 41.9 47.2 43.7 49.4 49.3 44.3 44.8 43.4 30.0 
163 46.7 47.6 48.1 45.4 35.8 41.9 47.1 43.0 49.3 49.2 44.3 44.7 43.3 30.1 
154 44.8 46.3 45.1 45.5 35. '5 41.3 45.6 26.2 49.6 49.4 45.2 45.3 43.0 11.4 
135 44.3 46.3 45.0 45.5 35.0 41.0 45.5 76.2 49.2 49.0 44.5 44.6 41.2 11.4 
156 46.5 47.1 4E. 3 47.8 Z9.4 38.0 46.8 32.1 45.7 49.5 44.8 44.8 44.4 43.2 
157 45.9 46.8 48.0 47.5 28.8 37.6 46.6 31.8 49.6 49.3 44.7 44.9 39.1 40.1 
158 45.7 45.7 45.8 47.4 28.5 37.5 46.5 31.7 49.6 49.2 44.7 44.9 38.8 40.0 
139 44.4 45.6 44.4 47.8 28.9 37.8 44.4 25.1 49.9 49.4 44.8 43.3 24.2 24.9 
160 44.4 46.6 44.4 47.8 28.7 37.8 44.4 24.3 49.7 49.2 44.6 45.3 23.6 24.6 
151 45.1 45.1 45.1 47.8 36.7 43.7 41.6 26.0 49.7 49.2 41.5 41.1 40.2 43.2 
152 45.2 45.2 45.2 47.8 36.7 43.8 41.6 26.0 49.6 49.1 39.5 42.5 36.3 42.4 
153 45.2 45.2 45.2 47.7 36.7 43.7 41.6 26.0 49.6 49.0 39.8 43.0 36.0 42.2 
164 45.6 45.6 45.6 48.1 36.7 43.8 40.0 25.8 49.9 49.2 41.7 43.0 20.2 31.2 
165 45.6 46.6 45.6 48.1 36.1 43.4 39.8 25.1 49.8 49.1 41.9 42.8 19.6 30.5 
155 35. E 35.6 36. E 36.6 28.0 35.0 36.3 31.8 39.0 38.7 31.5 33.6 23.5 16.1 
157 30.6 30.1; 30.7 30.5 27.7 31.0 30.4 29.7 33.0 32.9 24.9 25.2 22.8 15.9 
FEB 31.5 31.5 31.5 31.5 Z7.4 31.7 31.4 30.1 33.6 333.6 25.7 25.8 22.9 16.0 
'168 17.5 17.2 '17.6 17.2 18.7 18.5 17.4 18.3 20.5 20.4 12.5 7.8 12.7 10.3 
1rä0 16.3 1E. 2 16.4 16.2 17.2 17.0 16.2 17.7 18.5 18.4 9.3 8.5 11.6 10.9 
171 333.0 34.8 333.1 äo. 8 27.9 34.6 34.5 19.0 39.0 38.4 36.3 34.8 18.9 '16.1 
172 32.8 34.7 3Z=8 33.7 77.9 34.5 34.3 19.0 38.8 38.2 35.1 34.6 18.8 15.0 
1733 31 .6 33.7 31.7 j2. *S 27.7 333.5 ä3. Z 19.0 38.5 3B .1 32.9 31.8 *18.8 '18.0 
174 24.6 31.6 27.0 31.0 27.0 32.1 30.8 17.4 34.0 33.5 30.3 29.1 16.0 14.8 
175 18.1 20.5 20: 3 71.2 21.9 27.2 21.1 15.1 23.6 22.7 18.0 15.8 14. '0 13.3 
116 äa. 6 36.5 36.5 36.6 28.0 34.9 19.9 17.7 39.0 25.3 21.5 33.5 7.6 16.1 
1-777 7 36.5 35 . '5 35.3 3"b .6 Z8.1ä 34.8 19.8 17.7 39.0 '25.3 Z1 .5 a3.5 7.6 l's. 1 
176 34.9 34.9 34.8 35.0 27.9 34.0 19.9. 17.6 37.1 25.2 21.4 30.7 7.6 15.0 
1 79 3-32.4 33.4 333.4 '33. -S 77.73-3.7 13.7 1 7.6 '3E. '8 '24.1 16.0 31.1 7.3 16.5 
180 20.3 70.6 Z0. ä 22.372.3 23.3 17.9 15.1 24. S Z0.4 15. '7 15.5 7.1 13.7 
1'81 Z'n .5 70.3 213.6 27.13 M3.13 78.13 28.4 213.9 29.8 23.9 20.5 20.5 24. -S 23.8 
182 27.2 28.6 28.6 27.1 25.3 28.5 28.5 z4.1 370.1 50.8 Z4.8 35.3 23.6 9.8 
183 Z7.1 28.3 28.5 771.10 21.2 28.5 28.4 03 .6 30. iý3 23.8. + 74.8 Z5. Z 23.2 3.13 
194 s4.8 38.4 35.1 3-t?. 0 34.1 38.8 ä5.8 16.2 33.8 39.7 35.3 35x .3 34.8 9.9 
165 34.2 '36.4 35. '0 35.0 31 .8 3b. ßä 36. '8 1-5. Z 313.13 34.4 34.13 22.3 8.5 
156 27.8 28.1 78.2 78.1 Z6.0 28.4 Z8.0 7-5.13 28.9 ZU. 7 24.8 24.9 24.7 23.5 
157 25.7 27.6 27.4 27.8 25.3 22.0 25.2 21.3 30.1 25.6 24.9 26.7 8.7 12.4 
188 25.7 Z7.4 27.4 27.7 26.2 28.0 26.2 20.7 30.1 29.2 24.4 24.9 9.7 12.4 
188 35.5 35.9 36.5 37.2 33.4 36.7 31.0 21.4 39.9 38.7 34.7 34.8 9.7 12.8 
190 35. '5 35.6 35.6 37.2 30.9 35.0 30.4 19.3 39.7 37.6 33.7 33.5 9.2 12.8 
191 77.4 27.7 27.4 77.9 28.7 Z8.7 28.0 23.4 29.8 Z9. ä 21.3 20.5 23.8 23.6 
192 27.5 28.2 27.5 28.3 29.1 29.2 28.2 23.3 30.2 219.8 21.8 24.1 18.3 73.1 
193 27.5 28.0 27.5 28.2 29.0 29.2 28.2 2'3.0 30.2 29.7 22.1 24.0 18.0 22.9 
154 37.3 36.7 37.2 38.1 35.1 38.0 35.5 24.9 40.1 39.5 31.5 33.3 22.7 29.7 
135 37.2 35.8 37.7 38.1 31.8 37.2 35.5 20.9 40.0 39.3 31.8 33x. 7 22.5 29.4 
19b Zä. 1 26.1 25.3 25.1 25.2 26.8 25.9 26.5 28.1 27.9 16.4 19.5 21.0 15.4 
197 17.1 16.9 17.3 16.9 18.3 18.0 17.0 17.9 19.9 19.8 10.4 7.5 8.3 9.1 
198 15.0 15.9 16. Z 15.9 17.0 16.7 15.9 16.9 18.2 19.1 8.8 8.3 9.9 10.1 
139 15.8 18.3 18.3 17.2 18.7 18.4 18.1 12.8 20.4 20.1 15.1 13.0 10.3 9.2 
2000 10.7 11.8 11.9 11.2 12.3 12.0 11.4 9.9 13.6 12.8 6.4 2.0 5.1 5.8 
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Table 3.5.2 (Cont) 

Scenario MTD PD&MTI 
Index Ham. Kais. OF OF& LP& LP AMTIAMTI 

123456 b=6 MTI MTI &MTI 

201 24.8 25.3 25.5 26.1 25.0 26.7 28.4 18.5 28.1 27.7 21.9 21.3 18.0 15.4 
202 14.2 17.0 16.9 18.9 20.3 20.3 17.1 13.8 21.8 19.5 14.6 13.8 10.1 10.8 
Z03 14.9 18.3 16.4 15.8 17.7 17.5 16.2 14.8 19.0 17.9 12.0 9.6 11.6 11.1 
Z04 19.2 19.3 19.3 19.5 20.8 20.9 16.5 15.9 22.7 15.6 7.4 11.6 7. S 11.0 
t65 T1.1 11.8 11.8 TT. 8 T2.9 12.6 11.3 10.9 14.2 11.6 5.0 4.3 4.0 6.6 
Zog 24.9 25.0 25.0 26.0 25.1 26.8 19.2 17.1 28.1 23.2 16.5 19.4 7.5 15.4 
207 Z'5. *0 Z5.1 25.1 26.0 25.2 26.8 19.2 17.1 28.1 22.3 15.7 19.7 7. Z 14.9 
208 113.3 19.7 19.7 21.2 21.7 22.1 17.5 15.7 23.4 19.8 13.8 14.2 7.0 13.3 
209 25.5 29.0 25.8 31.7 27.4 32.1 23.1 77.3 34.3 27.2 20.2 26.7 9. E 15.4 
210 12.0 13.3 13.3 13.5 14.7 14.4 12.7 11.4 15.9 13.8 8.4 4.9 4.9 7.8 
211 48.5 48.1 48.5 47.8 . äb. 7 43.7 48.0 48.8 49.7 49.7 40.1 41.1 44.4 43.3 
ZTZ 45.8 47.9 48.1 48.5 35.9 41.9 47.2 43.7 49.4 49.3 44.3 44.9 40.5 30.0 
713 45.7 47.5 48.1 45.4 35.8 41.9 47.1 43.0 49.3 49.7 44.3 44.7 40.2 30.0 
214 44.8 45.3 45.1 45.5 35.5 41.3 45.6 26.2 49.6 49.4 45.2 45.3 42.9 9.8 
2155 44.9 45.3 45.0 45. u5 35.0 41.0 45.6 25.2 49.2 49.0 44.5 44.9 41.1 9.9 
Z16 45.5 47.7 46.3 47.5 29.4 38.0 46.8 32.1 49.7 49.5 44.8 44.8 44.4 43.2 
717 43.1 43.3 43.2 45.8 Z9.4 37.4 42.7 30.3 49.5 48.7 44.3 44.8 28.7 31.1 
Z18 43.1 43.3 43.2 45.7 Z9.4 37.3 42. E 30.2 49.4 48.3 43.8 44.5 28.8 3T. 1 
Z19 43.5 43.8 43.5 45.5 29.7 37.8 39.7 72.1 49.7 48.0 43.7 44.6 9.8 12.8 
ZZ0 43.5 43.5 43.5 45.5 29. T; 37.5 35.4 21.5 49.5 46.5 43.4 43. E 5.8 12.8 
271 45.1 43.1 45.1 47.8 36.7 43.7 41.8 28.0 49.7 49.7 41.5 41.1 40.2 43.2 
ZZZ 45.2 45.2 45.2 47.8 36.7 43.8 41.5 ZE. 0 49. E 49.1 39.5 42.5 38.3 42.4 
ZO 45.2 45.2 45.2 47.7 35.7 43.7 41.8 25.0 49.8 49.0 39.8 43.8 366.0 42.2 
Z24 45.5 45.5 45.6 48.1 36.7 43.8 40.0 Z5.8 49.9 49.2 41.7 43.0 20.2 31.2 
775 45.5 43.8 45.8 48.1 336.1 43.4 399.8 25.1 49.8 49.1 41.9 42.8 19.8 30.5 
ZU 36.6 36. E 35.5 36.5 Z8.0 35.0 38.3 31.8 39.0 38.7 31.5 3,3.6 23.5 16.1 
22 äßö .b 30.16 30.7 3 0.5 27.2 31.0 50.4 29.7 333.0 32.9 24.9 25.2 22.7 15.9 
228 31.5 31.5 31.5 31.5 27.4 31.7 31.4 39.1 39. E . 33.5 25.7 25.8 27.9 18.0 
279 17. '5 1'7.2 17.8 17.2 18.7 18.5 17.4 18.3 20.5 20.4 12.5 7.8 7.8 9.2 
230 16.3 15.2 18.4 16.2 17.2 17.0 16.2 17.1 18.5 18.4 9.3 8. E 9.4 10.2 
Z31 33.0 34.8 ä3.1 333.8 27.9 34.5 34.5 19.0 39.0 38.4 35.3 34.8 18.9 16.1 
Z32 29.2 32.1 29.3 31.7 27.4 37.4 31.7 18.9 34.3 33.9 30.4 29.1 18.6 15.9 
'2aä 30.0 32.0 750.3 '31. S 77.3 32.1 31 .7 18.9 34.00 33.7 30.0 28.5 18.7 15.1 
234 14.3 17.2 17.2 15.5 21.1 21.1 17.5 13.9 22.8 20.1 15.9 15.2 10.1 11.0 
235 15.1 16.1 15.8 17.1 18.1 17.9 16.4 14.8 19.3 18.1 12.5 10.1 11.9 11.3 
236 35.9 36.5 35.5 36.5 28.0 34.9 19.9 17.7 39.0 25.3 21.6 33.5 7.5 15.1 
2or 3"5.5 35.9 35.5 36.5 28.0 34.9 19.9 17.7 39. Z c .3 21.5 333.5 7. F 15.1 
2388 34.9 34.9 34.9 35.0 27.9 34.0 19.9 17.5 37.1 25.2 21.4 30.7 7.5 15.0 
739 33.4 33.4 3'"'0.4 31,1.5 27.7 33.7 19.7 17. E 35.8 24.1 19.0 31.1 7.3 15.5 
240 20.3 20.5 20.5 22.3 22.6 23.3 17.9 15.1 24.5 20.4 15.7 15.5 7.1 13.7 
241 28. -5 28.3 28.3 77.9 28.8 28.8 28.4 28.9 29.9 29.9 20.5 20.5 24.3 23. E 
247 28.1' 28. S 28.6 28.0 28.8 28.9 28.4 28.0 30.2 30.2 24.9 25.4 10.3 14.0 
243 78.1 28.5 28.8 26.0 28.7 26.9 28.4 28.2 30.2 30.1 24.9 75.3 10.4 13.9 
244 37.5 37.9 37.9 37.9 34.9 37.8 38.1 25.0 40.0 40.0 35.4 35.4 35.0 14.2 
245 ir. 9 ßr. 9 37.9 37.9 31.5 38.9 äu. 1 25.7 39.9 "ßa. 8 35.4 35.4 34.9 14.1 
245 27.8 Z8.1 Z8.2 Z8.1 26.0 28.4 28.0 25.9 29.9 Z9.7 24.8 24.9 24.7 23.5 
247 27.8 77.6 27.8 27.5 25. Z 28.1 25.8 25.0 30.0 29.8 70.9 22.2 14.8 9.7 
248 27.4 27.4 27.6 27.4 26.2 28.1 26.7 26.1 29.9 29.7 17.6 20., 9 14.6 9.7 
249 35.5 35.8 35.7 35.5 33.4 35.9 35.5 24.9 39.8 39.3 25.6 32.5 11.0 8.7 
250 36.5 35.5 35.5 '35.5 30.7 35.2 35.5 25.4 39.5 388.9 24.7 32.7 10.9 9.7 
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Table 3.5.2 (Cont) 

Scenario MTD PD&MTI Index 
1 2 3 4 

Ham. Kais. OF OF& LP& LP AMTI AMTI 5 6 b=6 MTI MTI &MTI 

751 Z<. 4 27.7 27.4 27. '9 28.7 213.7 713.0 73.4 29. $ 29.5 . 1.3 20.5 73.5 13.6 
2152 27. Z Z7.2 Z7. Z 2.7.8 28.4 28.5 Z<. 8 23.3 330.2 29.8 25.0 25. Z 10.5 13.8 
75377.10 77. ' Z7.0 27.7 28.3 7B. E 37.8 ZZ. T5' 30.1 29.7 T5.0 7"S. Z 10.7 13.8 
254 34.8 34.5 34.8 37.3 34.5 37.4 35.8 23.8 40.0 39.2 35.5 35.3 14.0 14.7 
255 34.7 34.3 34.7 37.3 31.3 35.5 3F. 8 73.3 39.8 3 .9 35.4 35.3 14.0 14 8 
256 26.7 28.1 Z6.3 28.1 25.2 26.8 25.9 25.5 28.1 27.9 15.4 19.5 71 0 

. 
15 4 ZS-t 24. i0 24.13 24.3 74.0 24.0 Z5.1 73.8 24.5 76.5 75.2 14.8 78.8 

. 
1'1.0 

. 
'10 8 

258 19.8 19. E 19.8 19.6 20.3 20.4 19.5 20.3 21.8 21.7 11.5 12.1 11.0 
. 

11.1 755 2U. 1; 76.4 Z7.1 7F. 4 25.8 28.1 25.7 21-D 30.2 30.0 24.5 24.7 20.1 7 0.9 
=bra 13.7 13.5 13.9 13.3 14.5 14.2 13.13 i3.4 15.7 i5.5 7.8 1.8 8.3 5.3 
7-61 74.8 79.3 75.5 29.1 26.0 29.7 75.4 18.5 28.1 27.7 71.13 27.3 7$. 13 '15.4 
262 '15.5 15.5 I'M Is. 's 17.0 18.8 15.6 15.4 16.3 18.0 11.4 8.8 11.4 13.2 
253 76.3 '15.5 15.8 '15.5 'I U. 5 '75.3 75.5 15.1 '17.5 17.6 11.0 7; 7 12.1 10.3 
284 15.4 15.5 15.5 15.5 17.2 15.8 15.4 15.2 18. E 18.4 110.0 8.3 10.4 9.1 
2,55 10. '3 11.0 11.2 10.7 11.8 11.4 10.9 11.4 13.0 12.9 3.9 1.6 5.5 5.3 
255 24.5 Z5.0 25.0 28.7 Z5.1 2E. 8 19.2 17.1 28.7 23.2 18.6 19.4 7.5 15.4 
287 18.5 17.9 17.9 21.0 21.8 22.3 17.2 14.7 23.6 19.9 16.3 13.3 6.6 11.6 
5'S 15.2 16. T5 18.5 17.5 18.5 18.3 15.7 13.5 19.9 18.1 12.0 9.8 7.0 11.5 
Z89 17. E 2Z. 7 21.7 2Z. 3 Z3.0 23.8 23.5 15.9 35.1 24. E 71.4 18. E 12.7 11.8 
770 12.5 '13.0 13.4 12.5 13.8 13.3 12.9 12.0 14.9 14.7 7.5 .5 8.1 5.7 
271 48.5 48.1 48.5 47.9 35.7 43.7 48.0 48.9 49.7 49.7 40.1 41.1 44.4 43.3 
272 47.7 47.9 48.1 47.5 36.5 43.7 47.5 47.8 49.8 49.5 43.7 44.5 29.4 37.2 
Zia 47.5 47.9 48.1 47.5 35.5 43.7 47.8 47.8 49.8 49.5 43.6 44.5 29.5 37.2 
774 47.8 47.9 47.9 47.9 36.5 43.5' 47.7 375.0 49.8 49.7 44.8 45.1 44.9 14.3 
275 47.8 47.5 47.5 47.9 35.8 43.1 47.7 35.7 49.6 49.5 44.2 44.9 44.7 14.3 
ZT 46.5 47.1 45.3 47. E 29.4 38.0 46.8 32.1 49.7 49.5 44.8 44.8 44.4 46.2 
ZT 46.1 45.1 46.2 48.1 29.4 377.9 45.2 31.9 49.4 49.0 40.7 41.8 34.8 29.4 
278 45.8 45.8 45.9 45.8 29.4 37.9 44.8 31.9 49.2 48.9 37.1 40.2 34.7 29.4 
279 43. E 43.8 43.9 43.5 29.7 38.0 43.4 29.3 49.5 48.7 39.7 40.7 14.9 9.7 
280 43.5 43.5 43.8 43.5 29.5 37.9 43.3 29.5 49.1 48.1 34.7 37.7 14.8 9.8 
2'81 45.1 45.1 45.1 47.8 355.7 43.7 41.5 ZE. 0 49.7 45.2 41.5 41.1 40.7 43.2 
282 44. E 44.8 44.6 47.3 36.3 43.4 40.0 26.0 49.5 48.5 44.6 44.7 29.9 32.7 
293 44.1 44.1 44.1 47.3 35. Z 43.4 40.0 26.0 49.5 48.4 44.5 44.7 30.0 32.6 
284 35.0 36.2 38.0 47.2 36.1 42.8 40.3 25.4 49.8 48.5 45.2 45.4 10.9 14.6 
295 35.1 335.4 35.1 47.2 35.4 42.5 40.3 24.1 49.6 48.2 44.8 45.4 11.0 14.6 
295 36.6 35.6 35.5 3^b. 6 Z8.0 35.0 36.3 31.8 39.0 38.7 31.5 33.6 23.5 16.1 
287 35.9 35.9 35.9 ä5.9 28.0 34.6 M'. 7 31.6 38.3 38.0 30.9 32.6 23.4 16.0 
758 33.8 33.8 33.8 333.8 27.8 33.3 .6 31.0 35.8 35.7 28.1 28.8 23.2 16.0 
28-9 75.7 76.7 27.3 25.7 25.0 28.8 25.3 25.8 31.0 30.9 23.9 25.8 10.0 10.9 
255 20.3 20.3 20.5 20.3 20.9 21.2 20.2 21.0 22.6 22.5 12.6 12.9 10.3 11.2 
7B1 333.0 34.8 333.1 33.8 27.9 ä4.8 34.5 19.0 39.0 38.4 39.3 34.8 18.9 16.1 
Z9< 29.7 30.2 28.5 30.1 26.8 30.6 30.3 19.0 32.1 31.8 27.6 26.0 18.7 15.9 
2133 30 .Z 31. '5 -50.2 '31 .0 

27 
.Z 31 .5 31.4 19.0 33.4 33.1 29.2 27.7 18.7 15.9 

294 15.7 15.8 113.1 15.8 17.3 16.9 15.8 15.6 18.6 18.3 12.3 9.3 11.3 9.2 
795 15. -5 15.8 15.0 15.7 16.8 16.5 15.8 15.2 17.8 17.7 11.4 8.0 12.1 10.4 
'z U-6 3sr,. 6 35.6 5.8 36.6 28.0 34.9 19.9 17.7 39.0 25.3 21.6 33.5 7.6 16.1 
297 333.4 33.4 33.4 33.5 27.7 33.2 19.8 17.6 35.9 24.9 21.0 29.2 7.6 16.0 
2913 32.3 32.3 32.3 32.4 27.5 32.4 19.8 17.6 34.5 25.0 21.1 27.0 7.6 16.0 
285 17. lä 18.3 18.3 22.4 23.1 24.0 17.8 14.9 25.3 20.8 18.9 15.5 6.7 11.9 
300 15. -5 16.8 18.8 17.9 18.9 18.7 16.4 13.8 20.3 18.5 13.3 10.2 7.0 11.7 
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Table 3.5.3 
Average L; f for Different Doppler Processors, 

Averaged over all Land Clutter Scenarios 

Filter Type Mean(L; f1dB) [Mean(L; f)]dB 

a=5% a=30% a=70% a=100% a=5% a=30% a=70% a=100% 

MTD 1 2.733 3.507 4.114 4.138 4.584 5.071 5.509 5.497 
MTD 2 2.651 3.146 3.630 3.654 3.691 4.068 4.397 4.412 
MTD 3 2.037 2.616 3.106 3.134 2.845 3.342 3.754 3.771 
MTD 4 3.561 4.208 4.870 4.942 5.909 6.265 6.636 6.662 
MTD 6 9.533 10.337 10.825 10.870 19.225 19.594 19.458 19.440 
PD&MTI1 1.922 2.493 2.948 2.977 2.970 3.334 3.627 3.645 
OF . 000 . 000 . 000 . 000 . 000 . 000 . 000 . 000 
PD&MTI2 3.435 3.846 4.406 4.445 6.472 6.518 6.502 6.503 
OF&MTI . 145 . 188 . 252 . 265 . 154 . 198 . 261 . 274 
LP&MTI 6.593 7.968 8.649 8.631 7.720 8.613 9.110 9.076 
LP 5.246 6.709. 7.486 7.483 6.101 7.121 7.792 7.778 
AMTI&MTI 8.486 9.170 10.361 10.463 16.102 16.379 16.561 16.574 
AMTI 19.625 19.689 20.083 20.156 28.186 28.198 28.215 28.210 
MTD 5 15.002 15.432 15.421 15.408 28.396 28.491 27.579 27.396 
AMTD 1 1.815 2.344 2.846 2.875 2.282 2.731 3.172 3.197 
AMTD 2 2.651 3.146 3.628 3.652 3.691 4.068 4.396 4.410 
AMTD 3 2.502 3.036 3.513 3.539 3.507 3.917 4.249 4.265 
AMTD 4 1.814 2.363 2.818 2.844 2.714 3.081 3.404 3.422 
AMTD 5 1.986 2.551 3.037 3.065 2.654 3.131 3.542 3.562 
AMTD 6 1.843 2.436 2.903 2.933 2.456 2.963 3.334 3.356 
AMTD 7 1.640 2.181 2.612 2.640 2.129 2.552 7.907 2.930 
AMTD 8 2.996 3.654 4.264 4.333 4.790 5.212 5.609 5.649 
AMTD 9 1.903 2.475 2.932 2.961 2.886 3.252 3.564 3.584 
AMTD 10 1.814 2.363 2.818 2.844 2.714 3.081 3.404 3.422 
AMTD 11 1.815 2.344 2.844 2.873 2.282 2.731 3.170 3.195 
AMTD 12 1.841 2.424 2.887 2.917 2.455 2.950 3.31? 3.339 
AMTD 13 1.638 2.175 2.607 2.635 2.127 2.544 2.897 2.920 
AMTD 14 1.829 2.388 2.855 2.889 2.802 3.163 3.483 3.506 
AMTD 15 1.726 2.283 2.760 2.790 2.170 2.651 3.059 3.084 
AMTD 16 1.580 2.122 2.556 2.. 585 2.043 2.475 2.836 2.860 
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Table 3.5.4 
Average Li f for Different Doppler Processors, 

' Averaged over all Sea Clutter Scenarios 

Filter Type Mean(L; }4dB) [Mean(L; f)]dB 

a=5% cc=30% a=70% a=100% a=5% a=30% a=70% a=100% 

MTD 1 2.594 3.630 4.498 4.542 3.621 4.651 5.611 5.649 
MTD 2 2.455 3.119 3.811 3.860 3.250 4.023 4.927 4.978 
MTD 3 2.425 3.271 4.016 4.064 3.331 4.269 5.209 5.254 
MTD 4 2.174 2.608 3.220 3.292 2.712 3.099 3.800 3.861 
MTD 6 2.976 3.654 4.141 4.200 4.241 5.187 5.859 5.927 
PD&MTI1 3.579 4.417 4.978 5.021 7.252 7.658 7.296 7.296 
OF . 000 . 000 . 000 . 000 . 000 . 000 . 000 . 000 
PD &MTI2 9.208 10.838 11.558 11.574 15.382 17.595 18.741 18.700 
OF&MTI 1.213 1.349 1.734 1.794 3.685 3.277 3.369 3.388 
LP&MTI 6.039 7.698 8.883 8.961 8.711 9.211 9.997 10.055 
LP 5.430 7.042 8.041 8.079 7.077 7.726 8.394 8.426 
AMTI& MTI 13.097 13.377 14.402 14.542 24.579 24.684 25.288 25.304 
AMTI 15.949 15.640 15.973 16.091 25.945 26.153 26.546 26.543 
MTD 5 6.743 7.271 7.529 7.540 10.897 12.002 12.463 12.335 
AMID 1 2.306 3.013 3.723 3.773 3.128 3.947 4.869 4.919 
AMID 2 2.005 2.401 2.939 2.993 2.257 2.636 3.265 3.319 
AMID 3 1.647 2.343 2.962 3.013 1.873 2.647 3.465 3.522 
AMID 4 2.088 2.904 3.584 3.632 2.424 3.252 4.095 4.150 
AMID 5 1.910 2.377 2.933 2.989 2.198 2.663 3.322 3.376 
AMID 6 1.653 2.398 3.033 3.085 1.900 2.726 3.581 3.638 
AMTD 7 2.064 2.891 3.587 3.637 2.405 3.264 4.141 4.195 
AMTD 8 1.525 2.050 2.629 2.699 1.691 2.199 2.846 2.918 
AMID 9 1.819 2.381 2.922 2.979 1.969 2.483 3.067 3.125 
AMID 10 1.797 2.331 2.862 2.915 1.935 2.427 3.004 3.059 
AMTD 11 1.873 2.307 2.861 2.917 2.122 2.547 3.196 3.252 
AMTD 12 1.474 1.982 2.513 2.569 1.640 2.131 2.725 2.782 
AMTD 13 1.748 2.283 2.814 2.868 1.889 2.390 2.971 3.027 
AMID 14 1.458 2.008 2.521 2.581 1.597 2.130 2.692 2.754 
AMTD 15 1.458 1.962 2.486 2.542 1.606 2.103 2.683 2.740 
AMTD 16 1.435 1.967 2.472 2.528 1.574 2.090 2.645 2.703 
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APPENDIX 4.1 

LIMITING FILTER PERFORMANCE IN AMPLITUDE 
HETEROGENEOUS CLUTTER 

Table 4.1.1 Mean IF and S50 for Pc = 30 dB, ßo = 0.02 
Table 4.1.2 Mean IF and S50 for P, = 60 dB, ao = 0.02 
Table 4.1.3 Mean IF and S50 for P, = 30 dB, oo = 0.05 
Table 4.1.4 Mean IF and S50 for P, = 60 dB, as = 0.05 
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Table 4.1.1 
Limiting Filter Performance in Amplitude Heterogeneous Clutter 

Pc =30dB aa=0.02K-ºoo 

V=0.5 v=1.0 v=2.0 v=4.0 V-- 00 

M ean value of S5o 
A=10% 9.671 9.845 9.948 9.985 10.028 
A=30% 7.627 7.773 7.850 7.877 7.905 

N=5 0=50 % 6.628 6.722 6.762 . 6.767 6.770 
A=70% 6.401 6.492 6.529 6.532 6.535 
0=90% 6.524 6.617 6.656 6.660 6.664 

A=10% 4.951 5.100 5.186 5.217 5.251 
0=30 % 3.216 3.301 3.337 3.340 3.342 

N=10 0=50% 3.069 3.154 3.189 3.192 3.193 
0=70 % 3.011 3.097 3.131 3.134 3.136 
A=90% 2.989 3.075 3.109 3.112 3.114 

A=10% 1.037 1.180 1.256 1 . 282 1.311 
A=30% 

-. 119 -. 035 -. 001 . 002 . 004 
N=20 0=50% 

-. 189 -. 105 -. 072 -. 069 -. 067 
A=70% 

-. 215 -. 131 -. 097 -. 095 -. 093 
A=90% 

-. 225 -. 141 -. 107 -. 104 -. 103 

Mean IF 
0=10% 33.699 33.924 34.056 34.130 34.211 
0=30% 34.741 34.960 35.088 35.159 35.237 

N=5 0=50% 35.681 35.848 35.940 35.989 36.042 
A 36.072 36.165 36.213 36.238 36.264 

=70% - 35.679 35.894 36.010 36.072 36.136 

0=10% 38.217 38.348 38.417 38.454 38.493 
A=30% 39.218 39.336 39.396 39.427 39.459 

N=10 A=50% 39.417 39.510 39.556 39.580 39.604 
39.500 39.582 39.621 39.641 39.662 

0-90% 39.533 39.610 39.647 39.665 39.684 

0=10% 41.817 41.900 41.947 41.972 42.001 
0=30% 42.673 42.724 42.747 42.758 42.770 

N=20 A=50% 
42.766 42.806 42.824 42.833 42.842 A=70% 

0=90% 42.801 42.837 42.853 42.860 42.868 
42.815 42.849 42.864 42.871 42.878. 
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Table 4.1.2 
Limiting Filter Performance in Amplitude Heterogeneous Clutter 

Pc =60 dB ao=0.02 K-. 

N=5 

N=10 

e-i0% A-30% 
A-50% 
A-70% 
0-90% 

A=10% 
A=30% 
A=50% 
0=70% 
0=90% 

0=10% 
0=30% 
0=50% 
A=70% 
0=90% 

v=0.5 

16.501 
13.127 
10.162 
8.107 
7.155 

V=1.0 v=2.0 v=4.0 

Mean value of S50 

00 v-, 

16.793 16.951 17.048 17.164 
13.328 13.413 13.463 13.522 
10.294 10.332 10.352 10.375 
8.187 8.192 8.194 8.197 
7.224 7.225 7.225 7.225 

7.220 7.242 7.253 7.266 
4.984 5.008 5.021 5.036 
3.657 3.659 3.659 3.659 
3.506 3.508 3.508 3.509 
3.459 3.461 3.461 3.462 

2.453 2.454 2.454 2.454 
. 391 . 392 . 392 . 392 

. 177 . 178 . 178 . 178 

. 114 . 115 . 115 . 115 

. 091 . 092 . 092 . 092 

Mean IF 
60.482 60.622 60.700 60.783 
61.572 61.712 61.789 61.873 
62.953 63.088 63.162 63.241 
64.448 64.548 64.602 64.658 
65.484 65.527 65.549 65.571 

66.968 67.051 67.097 67.146 
68.057 68.140 68.186 68.234 
69.020 69.073 69.101 69.129 
69.147 69.212 69.245 69.279 
69.189 69.257 69.292 69.328 

71.279 71.305 71.318 71.332 
72.365 72.390 72.403 72.416 
72.563 72.585 72.596 72.606 
72.629 72.646 72.655 72.664 
72.654 72.670 72.678 72.686 

N=20 

N=5 

N=10 

N=20 

7.122 
4.875 
3.589 
3.437 
3.390 

2.383 

. 318 

. 103 

. 040 

. 016 

A=10% 60.238 
0=30% 61.328 
e=s0% 62.718 0=70% 64.264 
A=90% 65.397 

0=10% 66.817 0=30% 67,907 
e=s0% 68.913 A=70% 
0=90% 69.021 

69.056 

A=10% 
0=30% 71.223 

0=50% 72.309 

0=70% 72.515 

A=90% 72.588 
72.616 
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Table 4.1.3 
Limiting Filter Performance in Amplitude Heterogeneous Clutter 

Pc=30 dB ao=0.05K-- 

N=5 

N=10 

N=20 

N=5 

N=10 

N=20 

A=10% 
A=30% 
A=50% 
A=70 % 
A=90% 

A=10% 
A=30% 
0=50 % 
0=70 % 
0=90% 

A=10% 
A=30 % 
0=50% 
0=70% 
0=90% 

v=0.5 v=1.0 v=2.0 v=4.0 

Mean value of Ss0 
13.693 14.141 14.449 14.587 
10.989 11.318 11.537 11.647 
8.725 8.922 9.034 9.078 
7.478 7.584 7.633 7.643 
6.969 7.056 7.092 7.095 

8.182 8.489 8.695 8.788 
5.609 5.845 5.998 6.077 
3.681 3.772 3.810 3.815 
3.439 3.525 3.560 3.563 
3.368 3.452 3.487 3.490 

4.000 
1.620 

. 117 
-. 011 
-. 044 

A=10% A=30 % 30.822 

0=50 % 31.907 

A=70% 33.218 

A=90% 34.490 
35.432 

A=10% 
e=3o% 36.182 
A=50% 37.271 

0=70 % 38.541 

A=90 % 38.934 
39.053 

A=10% 
0=30% 40.055 

A=50 % 41.144 

0=70% 42.351 

A=90% 42.529 
42.579 

4.306 4.505 4.593 
1.870 2.035 2.122 

. 209 . 246 . 249 

. 081 . 118 . 121 

. 044 . 082 . 085 

Mean IF 

31.202 31.431 31.560 
32.287 32.515 32.644 
33.585 33.805 33.929 
34.786 34.957 35.052 
35.564 35.631 35.666 

36.407 36.533 36.602 
37.495 37.622 37.690 
38.742 38.852 38.911 
39.074 39.146 39.183 
39.172 39.233 39.264 

00 v-, 

14.740 
11.774 
9.127 
7.652 
7.097 

8.894 
6.170 
3.819 
3.565 
3.492 

4.693 
2.223 

. 251 

. 123 

. 086 

31.700 
32.785 
34.065 
35.154 
35.702 

36.675 
37.763 
38.973 
39.222 
39.296 

40.187 40.261 40.301 40.342 
41.277 41.350 41.390 41.432 
42.444 42.491 42.515 42.539 
42.595 42.626 42.641 42.657 
42.637 42.664 42.678 42.692 
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Table 4.1.4 
Limiting Filter Performance in Amplitude Heterogeneous Clutter 

PC=60 dB ß0=0.05K-ºoo 

v=0.5 v=1.0 v=2.0 v=4.0 v -. oo 

Mean value of Sm 
A=10% 30.839 32.481 33.398 33.888 34.398 
A=30% 26.454 27.987 28.812 29.189 29.514 

N=5 0=50 % *22.558 24.202 25.075 25.525 25.990 
A=70% 20.030 21.603 22.403 22.804 23.201 
i=90% 18.817 20.391 21.177 21.562 21.942 

A=10% 18.110 18.600 18.776 18.827 18.859 
X=30 % 12.354 12.613 12.732 12.797 12.869 

N=10 A=50% 8.395 8.642 8.763 8.837 8.925 
\=70% 5.182 5.275 5.291 5.299 5.308 
0=90% 4.846 4.917 4.919 4.919 4.920 

A=10% 10.791 10.968 11.001 11.008 11.015 
0=30% 5.291 5.405 5.441 5.459 5.478 

N=20 A=50 % 2.034 2.190 2.243 2.273 2.306 
A=70 % 

. 723 . 795 . 796 . 797 . 797 
A=90% 

. 599 . 671 . 672 . 672 . 672 

Mean IF 
A=10% 44.748 45.253 45.450 45.515 45.556 
A=30% 45.839 46.344 46.541 46.606 46.647 

N=5 0=50% 47.265 47.771 47.968 48.033 48.075 
A=70% 48.894 49.400 49.598 49.663 49.705 
A=90% 50.018 50.526 50.724 50.789 50.832 

A=10% 62.357 62.692 62.891 63.001 63.122 
0=30% 63.448 63.784 63.982 64.093 64.213 

N=10 A=50% 64.907 65.243 65.441 65.552 65.672 
A=70% 66.803 67.111 67.290 67.390 67.497 
0=90% 67.600 67.737 67.807 67.844 67.881 

A=10% 67.850 68.065 68.190 68.261 68.338 
0=30% 68.942 69.156 69.282 69.352 69.430 

N=20 A=50% 70.402 70.616 70.742 70.812 70.890 
A=70 % 71.753 71.876 71.939 71.971 72.004 
0=90 % 71.928 72.027 72.077 72.102 72.127 
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APPENDIX 4.2 

LIMITING FILTER PERFORMANCE IN SPECTRALLY 
HETEROGENEOUS CLUTTER 

Table 4.2.1 Mean IF and S50 for Pc = 30 dB, ao = 0.02 
Table 4.2.2 Mean IF and S50 for Pc = 60 dB, ao = 0.02 
Table 4.2.3 Mean IF and S50 for Pc = 30 dB, ßo = 0.05 

Table 4.2.4 Mean IF and S50 for Pc = 60 dB, ao = 0.05 
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Table 4.2.1 

Limiting Filter Performance in Spectrally Heterogeneous Clutter 
Pe=30 dB 60=0.02K-ºoo 

bl=0.1 bl=0.2 bl=0.3 bl=0.4 b1=0.5 bl=0.6 bl=0.7 bl=0.8 

A=10% 10.151 
A=30% 7.971 

N=5 A=50% 6.825 
A=70% 6.570 
0=90% 6.714 

A=10%v 5.268 
A=30% 3.370 

N=100=50% 3.210 
A=70% 3.149 
A=90% 3.126 

A=10% 1.402 
A=30% . 024 

N=20 A=50 %- 
. 056 

0=70% -. 084 
A=90% -. 094 

A=10% 34.192 
A=30% 35.218 

N=5 i=50% 36.025 
A=70 % 36.255 
A=90% 36.118 

A=10% 38.468 
0=30 % 39.434 

N=10 A=50% 39.588 
A=70 % 39.649 
A=90% 39.673 

A=10% 41.972 
A=30% 42.754 

N=20 0=50 % 42.831 
A=70% 42.859 
0=90% 42.869 

10.240 
8.050 
6.875 
6.592 
6.759 

5.332 
3.437 
3.239 
3.169 
3.143 

1.540 

. 063 
-. 043 
-. 074 
-. 086 

34.143 
35.166 
35.983 
36.235 
36.077 

38.406 
39.376 
39.559 
39.628 
39.655 

41 . 899 
42.722 
42.816 
42.848 
42.860 

Ml 
10.385 
8.177 
6.955 
6.632 
6.819 

5.456 
3.538 
3.275 
3.190 
3.160 

1.659 

. 113 
-. 024 
-. 061 
-. 074 

34.057 
35.078 
35.918 
36.200 
36.022 

38.313 
39.291 
39.524 
39.607 
39.637 

41.828 
42.681 
42.798 
42.835 
42.848 

an value of S50 
10.575 10.797 

8.344 8.541 
7.056 7.180 
6.687 6.762 
6.876 6.926 

5.607 5.788 
3.680 3.878 
3.311 3.361 
3.212 3.249 
3.178 3.211 

1.768 1.977 

. 182 . 300 

. 005 . 050 
-. 039 -. 010 
-. 054 -. 028 

Mean IF 
33.941 33.807 
34.962 34.827 
35.835 35.735 
36.154 36.094 
35.967 35.920 

38.193 38.044 
39.173 39.017 
39.489 39.447 
39.587 39.556 
39.621 39.593 

41.757 41.635 
42.629 42.541 
42.771 42.735 
42.813 42.787 
42.829 42.804 

11.054 
8.774 
7.351 
6.882 
6.991 

6.054 
4.140 
3.455 
3.329 
3.287 

2.217 

. 486 

. 128 

. 051 

. 026 

33.645 
34.663 
35.599 
36.000 
35.867 

37.860 
38.833 
39.370 
39.490 
39.531 

41.480 
42.406 
42.680 
42.743 
42.764 

11.376 11.782 
9.087 9.522 
7.613 7.986 
7.089 7.394 
7.109 7.300 

6.457 6.915 
4.456 4.814 
3.631 3.893 
3.474 3.683 
3.424 3.620 

2.510 2.866 

. 730 1.039 

. 274 . S05 

. 176 . 375 

. 145 . 337 

33.430 33.147 
34.441 34.150 
35.392 35.101 
35.841 35.609 
35.787 35.667 

37.639 37.392 
38.621 38.379 
39.230 39.027 
39.375 39.218 
39.423 39.277 

41.301 41.094 
42.240 42. ' 40 
42.584 42.438 
42.663 42.541 
42.688 42.572 
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Table 4.2.2 

Limiting Filter Performance in Spectrally Heterogeneous Clutter 
PC =60 dB ao=0.02K--- 

bl=0.1 bl=0.2 bl=0.3 bl=0.4 bl=0.5 bl=0.6 bl=0.7 bl=0.8 

Mean value of S50 
A=10% 17.298 17.821 18.572 19.502 20.618 21.967 23.586 25.559 

A=30% 13.673 14.069 14.609 15.382 16.557 18.041 19.792 21.600 
N=5 A=50% 10.504 10.808 11.244 11.900 .. 13.003 14.490 16.340 18.268 

A=70% 8.282 8.472 8.802 9.429 10.517 12.045 13.967 15.960 
A=90% 7.307 7.449 7.744 8.290 9.362 10.977 12.890 14.838 

A=10% 7.881 8.102 9.268 10.762 12.040 14.609 16.062 17.531 
A=30% 5.566 5.691 6.521 7.587 8.805 10.669 11.806 12.930 

N=10 i=50 % 3.938 3.875 4.174 4.875 5.953 7.400 8.444 9.316 
A=70% 3.846 3.743 3.895 4.070 4.432 5.268 6.538 7.357 
A=90% 3.811 3.694 3.781 3.872 4.321 4.649 4.881 5.371 

A=10% 8.623 2.786 3.781 4.924 6.778 8.732 10.723 12.415 
A=30% 4.894 . 749 1.569 2.439 3.780 5.094 6.485 7.827 

N=20 i=50 % 6.971 . 333 . 459 . 662 1.253 2.091 3.181 4.211 
A=70% 11.564 . 228 . 302 . 424 . 617 1.044 1.566 2.148 
A=90% 2.932 . 186 . 248 . 363 . 509 . 705 1.078 1.387 

Mean IF 
A=10% 60.714 60.493 60.169 59.637 58.754 57.555 56.140 54.619 
A=30% 61.804 61.583 61.259 60.727 59.843 58.644 57.230 55.709 

N=5 A=50% 63.172 62.962 62.649 62.124 61.238 60.027 58.591 57.038 
A=70% 64.599 64.434 64.159 63.656 62.772 61.542 60.081 58.499 
A=90% 65.534 65.411 65.170 64.690 63.808 62.566 61.092 59.505 

A=10% 66.763 66.772 66.348 65.677 64.865 63.744 62.781 62.195 
A=30% 67.851 67.860 67.437 66.767 65.955 64.834 63.872 63.285 

N=10 A=50 % 68.839 68.918 68.647 68.069 67.272 66.217 65.263 64.677 
A=70% 68.932 69.048 68.890 68.724 68.391 67.609 66.573 65.990 
A=90% 68.969 69.096 69.002 68.919 68.491 68.188 68.025 67.684 

A=10% 68.542 71.059 70.505 70.036 69.323 68.535 67.713 67.060 
A=30% 69.623 72.145 71.594 71.126 70.414 69.625 68.804 68.150 

N=20 0=50 % 68.945 72.478 72.367 72.186 71.680 70.980 70.190 69.546 
A=70% 65.674 72.571 72.506 72.396 72.220 71.829 71.357 70.871 
A=90% 69.842 72.608 72.554 72.450 72.318 72.148 71.820 71.586 
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Table 4.2.3 
Limiting Filter Performance in Spectrally Heterogeneous Clutter 

Pc=30 dB 60=0.05K--oo 

bl=O. 1 bl=O. 2 

A=10% 14.829 15.097 
0=30% 11 . 855 12.111 

N=5 0=50% 9.251 9.585 
0=70% 7.784 8.016 
0=90% 7.177 7.320 

A=10% 9.000 9.262 
0=30% 6.214 6.432 

N=10 A=50% 3.933 4.236 
0=70% 3.597 3.673 
E=90% 3.513 3.562 

0=10% 4.816 5.024 
0=30% 2.190 2.294 

N=20 0=50% 
. 316 . 498 

A=70% 
. 151 . 207 

0=90% 
. 109 . 151 

0=10% 31.636 31.436 
A=30% 32.720 32.519 

N=5 0=50% 33.993 33.776 
A=70% 35.083 34.894 
0=90% 35.664 35.546 

0=10% 36.598 36.400 
A=30% 37.686 37.487 

N=10 . A=50% 38.883 38.665 
A=70% 39.190 39.120 
A=90% 39.277 39.230 

A=1O% 40.337 40.228 
A=30% 41.426 41.316 

N=20 A=50% 42.497 42.366 
A=70% 42.639 42.591 
0=90% 42.677 42.640 

bl=0.3 

Me 
15.533 
12.517 
10.049 
8.356 
7.580 

9.655 
6.791 
4.680 
3.832 
3.678 

5.432 
2.608 

. 813 

. 318 

. 220 

31.134 
32.214 
33.455 
34.624 
35.353 

36.103 
37.189 
38.340 
38.987 
39.127 

39.995 
41.081 
42.141 
42.506 
42.584 

bl=0.4 bl=0.5 

an value of S50 
15.928 16.238 
12.876 13.122 
10.503 10.661 
8.744 9.171 
7.924 8.332 

10.243 10.765 
7.270 7.647 
5.126 5.496 
4.119 4.480 
3.856 4.042 

5.864 6.320 
2.958 3.316 
1.161 1.488 

. 504 . 747 

. 328 . 477 

Mean IF 
30.841 30.615 
31.919 31.690 
33.130 32.861 
34.323 34.020 
35.096 34.785 

35.765 35.496 
36.848 36.576 
38.001 37.719 
38.752 38.476 
38.968 38.825 

39.747 39.536 
40.830 40.614 
41.893 41.665 
42.371 42.199 
42.502 42.396 
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b l=0.6 

16.536 
13.356 
11.146 

9.619 
8.772 

11.167 
7.926 
5.793 
4.780 
4.247 

6.697 
3.587 
1.761 

. 981 

. 643 

30.441 
31.510 
32.650 
33.735 
34.455 

35.321 
36.397 
37.521 
38.268 
38.700 

39.391 
40.464 
41.490 
42.046 
42.289 

b l=0.7 

16.899 
13.654 
11.439 
10.060 

9.270 

11.539 
8.198 
6.070 
5.047 
4.502 

7.017 
3.826 
2.010 
1.212 

. 838 

30.277 
31.340 
32.465 
33.464 
34.129 

35.194 
36.266 
37.369 
38.107 
38.544 

39.281 
40.348 
41.344 
41.906 
42.171 

b l=0.8 

17.357 
14.027 
11.791 
10.516 
9.804 

11.956 
8.524 
6.419 
5.356 
4.827 

7.370 
4.103 
2.289 
1.483 
1.090 

30.103 
31.159 
32.274 
33.200 
33.819 

35.050 
36.118 
37.198 
37.924 
38.340 

39.161 
40.220 
41.185 
41.745 
42.018 



Table 4.2.4 
Limiting Filter Performance in Spectrally Heterogeneous Clutter 

Pc =60 dB ap=0.05K-º00 

bl=0.1 bl=0.2 b1=0.3 bl=0.4 bl=0.5 bl=0.6 bl=0.7 bi=0.8 

Mean value of S50 

, &=10% 34.713 35.761 37.389 39.367 41.352 42.901 44.126 45.161 
A=30% 30.080 31.408 33.095 35.096 37.024 38.592 39.898 40.975 

N=5 A=50% 26.336 27.529 29.429 31.524 33.378 34.992 36.339 37.558 
A=70% 23.626 24.912 26.946 29.291 31.402 33.071 34.529 35.691 
A=90% 22.438 23.683 25.853 28.259 30.406 32.193 33.627 34.813 

, 
&=10% 20.339 23.779 27.031 30.990 33.692 35.653 37.175 38.439 
A=30% 13.846 16.526 19.180 23.917 27.552 30.123 31.964 33.373 

N=10 A=50% 9.577 11.918 14.112 18.454 22.256 25.181 27.369 29.078 
A=70% 5.825 7.825 10.079 13.783 17.931 21.374 23.975 26.022 
A=90% 4.992 5.474 7.679 11.896 16.193 19.665 22.374 24.540 

A=10% 13.359 17.421 21.437 24.906 27.615 29.556 31.074 32.305 
A=30% 7.082 9.546 12.872 16.946 20.711 23.461 25.392 26.808 

N=20 A=50% 3.424 5.195 7.597 11.032 14.955 18.055 20.386 22.204 
A=70% 1.135 1.889 3.285 5.922 10.073 13.709 16.548 18.768 
A=90% . 890 1.154 1.695 3.506 7.237 11.063 14.227 16.778 

Mean IF 
A=10% 38.468 38.406 38.313 38.193 38.044 37.860 37.639 37.393 
A=30% 39.434 39.376 39.291 39.174 39.017 38.833 38.621 38.380 

N=5 &=50% 39.588 39.559 39.524 39.489 39.447 39.369 39.230 39.027 
A=70% 39.649 39.628 39.607 39.587 39.556 39.490 39.375 39.219 
A=90% 39.673 39.655 39.637 39.621 39.593 39.531 39.423 39.278 

A=10% 62.731 61.029 59.178 55.790 52.084 49.145 47.138 46.006 
A=30% 63.822 62.120 60.269 56.881 53.175 50.236 48.228 47.095 

N=10 A=50% 65.279 63.577 61.725 58.334 54.620 51.670 49.649 48.507 
A=70% 67.129 65.504 63.627 60.308 56.548 53.529 51.453 50.299 
A=90% 67.815 67.440 65.603 61.903 58.077 55.194 53.379 52.654 

A=10% 67.722 66.719 65.413 63.340 59.938 56.724 54.291 52.656 
A=30% 68.813 67.810 66.505 64.431 61.029 57.815 55.381 53.746 

N=20 A=50 % 70.272 69.268 67.962 65.887 62.480 59.258 56.812 55.163 
A=70% 71.724 71.035 69.904 67.909 64.485 61.201 58.679 56.962 
A=90 % -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 
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APPENDIX 4.3 

IF LOSS IN AMPLITUDE AND SPECTRALLY 
HETEROGENEOUS CLUTTER 

Table 4.3.1 IF Loss for Amplitude and Spectrally Heterogeneous Clutter pg. 279 

Table 4.3.2 Standard Deviation of Simulation Results for IF Loss for pg. 280 
Amplitude and Spectrally Heterogeneous Clutter 
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Table 4.3.1 

V .º 00 

v=2.0 

V=0.5 

V -b 00 

v=2.0 

v=0.5 

IF Loss in Amplitude and Spectrally Heterogeneous Clutter, K<oo 

bl=0.0 bl=0.15 bl=0.3 b1=0.45 bl=0.6 

K=5 14.28 15.36 15.15 15.24 15.12 
K=10 7.19 7.67 7.67 7.20 7.67 
K=20 2.49 2.53 2.46 2.67 2.96 
K=40 1.11 1.01 1.16 1.40 1.91 
K=80 . 54 . 43 . 69 . 96 1.59 

K=5 14.74 15.41 15.34 15`75 15.53 
K=10 8.29 8.40 7.99 8.60 8.96 
K=20 3.34 3.20 3.30 3.29 3.64 
K=40 1.43 1.46 1.77 1.79 2.37 
K=80 

. 87 . 67 1.05 1.14 1.96 

K=5 16.19 16.10 16.69 16.76 16.35 
K=10 10.11 8.99 9.81 10.48 9.63 
K=20 5.30 5.33 5.46 5.42 5.59 
K=40 3.41 3.20 3.77 3.74 3.72 
K=80 2.13 2.18 2.54 2.57 2.57 

K=5 33.92 35.12 32.26 29.88 27.22 
K=10 7.81 7.70 7.75 8.17 8.43 
K=20 2.53 2.33 3.55 4.06 5.65 
K=40 1.04 1.23 2.68 4.34 7.17 
K=80 . S9 1.10 2.78 5.1 1 9.58 

K=5 34.56 34.68 30.65 28.48 28.225 
K=10 8.95 8.65 8.25 8.94 8.95 
K=20 3.47 3.76 3.66 5.30 6.09 
K=40 1.84 1.81 2.68 5.72 7.28 
K=80 . 67 1.04 2.27 6.28 9.24 

K=5 34.88 34.44 33.96 32.54 28.65 
K=10 11.38 11.40 11.86 11.07 11.62 
K=20 5.47 5.66 6.08 6.63 7.42 
K=40 3.10 3.49 4.42 6.14 8.28 
K=80 2.00 2.15 4.72 5.47 9.09 

Pc 30 dB 

ao = 0.05 

Pc60dB 

a0 = 0.05 
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Table 4.3.1 (cont. ) 

b1-0.0 b1-0.15 b1-0.3 bl=0.45 bl=0.6 

v -I. 00 

v=2.0 

v=0.5 

K=5 13.59 13.90 14.15 13.79 13.82 K=10 8.11 8.29 8.25 7.71 8 09 K=20 2.56 2.63 2.89 2.75 . 
2 82 K=40 1.20 1.29 1.47 1.43 . 
1.46 K=80 

. 66 
. 67 

. 97 
. 85 

. 86 

K=5 14.36 15.18 14.61 14.61 14.83 
K=10 9.64 9.28 9.51 9.25 9.18 
K=20 3.40 3.47 3.19 3.45 3.47 
K=40 1.71 1.91 1.70 1.86 1.75 
K=80 . 88 1.17 

. 91 1.19 1.18 

K=5 15.59 15.46 15.86 16.55 16.82 
K=10 10.71 10.64 11.51 11.35 11.33 
K=20 5.58 5.78 5.43 5.41 5.64 
K=40 3.16 3.44 2.95 3.36 3.09 
K=80 1.77 1.86 1.33 2.25 1.58 

Pc=60dB 

co = 0.02 
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Table 4.3.2 

Standard Deviation of Simulation Results for Loss in Amplitude and Spectrally 
Heterogeneous Clutter, K<oo 

b1-0.0 b1-0.15 b1-0.3 b1-0.45 bl=0.6 

K=5 2.33 2.19 2.25 2.39 2.67 
K=10 

. 44 . 49 . 49 . 51 . 43 
V. 00 K=20 

. 10 . 08 . 14 . 16 . 25 
K=40 

. 03 . 05 . ii . 15 . 21 
K=80 

. 02 . 03 . 07 . Li . 18 

K=S 2.16 1.97 2.80 2.78 2.80 
K=10 . 70 . 50 . 62 . 60 . 53 

v=2.0 K=20 11 . 14 AS . 28 . 39 
K=40 . 06 . 08 . 09 . 26 . 35 
K=80 . 04 . 0S . 09 . 21 . 18 

K=5 1.83 2.04 2.40 2.32 3.19 
K=10 . 97 1.19 . 81 . 73 . 95 

v=0.5 K=20 . 22 . 21 . 21 . 31 . 45 
K=40 . 13 . 12 . 10 . 27 . 36 
K=80 . 09 . 07 . 09 . 21 . 30 

K=5 1.92 1.40 1.62 2.10 1.16 
K=10 . 46 . 53 . 53 . 50 . 45 

V-b- 00 K=20 . 10 . 08 . 10 . 12 . 09 
K=40 . 03 . 03 . 04 . 04 . 08 
K=80 . 01 . 01 . 02 . 03 . 04 

K=S 1 . 66 1.67 1.77 1.76 1.84 
K=10 . 51 Si . . 46 . 44 . 60 

v=2.0 K=20 
. 12 . 12 . 14 . 12 . 17 

K=40 
. 07 0B . 10 . 06 . 08 

K=80 
. 04 . 04 . 05 . 02 . 05 

K=5 1. S7 1.79 1. S9 1.28. 1.88 
K=10 . 69 . 47 . 53 . 64 . 71 

v=0.5 K=20 . 22 . 23 . 27 . 23 . 27 
K=40 . 10 . 14 . 15 . 13 . 15 
K=80 . 08 . 08 . 15 . 12 . 12 

PC= 30 dB 

ßp =0.05 

PC=60dB 

Go =0.05 
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Table 4.3.2 (cont. ) 

bl=0.0 bl=0.15 bi=0.3 bl=0.45 b1=0.6 

v-. 

v=2.0 

V=0.5 

K=S 1.72 1.72 1.95 1.50 1.71 
K=10 . 92 . 85 . 72 . 64 

. 53 
K=20 . 09 . 10 . 09 . 08 . 09 
K=40 

. 03 . 03 . 03 . 05 . 04 K=80 

. 02 . 02 . 01 . 02 . 02 

K=5 1.57 2.88 1.80 1.92 1. G8 K=10 1.22 1.80 
. 79 

. 83 
. 88 K=20 AS . 19 . 15 . 

17 
. 17 K=40 

. 08 11 . 07 . 09 08 K=80 

. 07 . 07 . 07 . 05 . 
. 06 

K=5 1.81 1.45 1.76 1.70 1.82 K=10 1 . OS . 93 1.20 
. 82 

. 98 K=20 . 21 . 28 
. 26 

. 25 
. 28 

K=40 . 11 . 15 
. 17 

. 10 . 13 K=80 . 07 . 10 
. 15 

. 09 . 09 

Pe=60dB 

ßp = 0.02 
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APPENDIX 4.4 

CLUTTER SCENARIO INDEX 

Table 4.4.1 

Scenario Ppc fcbg ßbg Pbg 

Index 
1 30 0.0 0.05 30 
2 30 0.0 0.05 50 
3 30 0.0 0.1 30 
4 30 0.0 0.1 50 
5 30 0.25 0.05 30 
6 30 0.25 0.05 50 
7 30 0.25 0.1 30 
8 30 0.25 0.1 50 
9 30 0.5 0.05 30 
10 30 0.5 0.05 50 
11 30 0.5 0.1 30 
12 30 0.5 0.1 50 
13 45 0.0 0.05 30 
14 45 0.0 0.05 50 
15 45 0.0 0.1 30 
16 45 0.0 0.1 50 
17 45 0.25 0.05 30 
18 45 0.25 0.05 50 
19 45 0.25 0.1 30 
20 45 0.25 0.1 50 
21 45 0.5 0.05 30 
22 45 0.5 0.05 50 
23 45 0.5 0.1 30 
24 45 0.5 0.1 50 
25 60 0.0 0.05 30 
26 60 0.0 0.05 50 
27 60 0.0 0.1 30 
28 60 0.0 0.1 50 
29 60 0.25 0.05 30 
30 60 0.25 0.05 50 
31 60 0.25 0.1 30 
32 60 0.25 0.1 50 
33 60 0.5 0.05 30 
34 60 0.5 0.05 50 
35 60 0.5 0.1 30 
36 60 0.5 0.1 50 

fcbg relavite to the PRF 
Gbg relative to the PRF 

Pbg dB relative to thermal noise thermal noise 
Ppc dB relative to thermal noise thermal noise 
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APPENDIX 5.1 
CFAR LOSS TABLES 

All data in this appendix is applicable for Swerling case 1 and 2 targets, with Pd = 50%. The CFAR loss is 

given in dB relative to ideal fixed threshold detection in clutter of shape parameter v, as discussed in 
Chapter 4 of this report. 

The CFAR loss associated with the three types of CFAR processors is as follows: 

Table 5.1.1 
CFAR loss for the CA Processor 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 v=eo 

a) Pfa = 10-4 
N= 8 26.444 9.781 5.553 3.275 2.951 2.832 2.848 2.835 
N= 16 10.615 4.517 2.690 1.643 1.464 1.397 1.400 1.393 
N= 24 6.535 2.946 1.781 1.103 . 975 . 929 . 927 . 922 
N= 32 4.777 2.217 1.324 . 816 . 734 . 699 . 695 . 691 

b) Pfa = 10-6 
N= 8 31.043 16.811 8.902 5.040 4.534 4.363 4.411 4.384 
N = 16 19.489 7.430 4.237 2.497 2.226 2.123 2.131 2.116 
N = 24 11.542 4.810 2.777 1.666 1.484 1.404 1.408 1.397 
N = 32 8.202 3.519 2.066 1.244 1.105 1.050 1.050 1.042 

c) Pfa = 10-8 
N =8 34.500 24.759 12.505 6.897 6.195 5.974 6.062 6.020 
N = 16 29.822 10.570 5.875 3.410 3.020 2.871 2.888 2.864 
N = 24 17.462 6.813 3.836 2.281 2.001 1.897 1.895 1.878 
N = 32 12.095 4.967 2.848 1.706 1.500 1.414 1.417 1.404 
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Table 5.1.2 
CFAR loss for the CAGO Processor 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 v=oo 

a) Pfa = 10-4 
N= 8 26.614 10.092 5.979 3.611 3.252 3.090 3.079 3.067 
N= 16 10.895 4.796 3.079 1.876 1.691 1.599 1.589 1.582 
N= 24 6.794 3.240 2.166 1.281 1.150 1.085 1.079 1.074 
N= 32 5.060 2.449 1.681 . 967 . 872 . 821 . 814 . 810 

b) Pfa = 10-6 
N= 8 45.746 18.824 9.393 5.440 4.903 4.668 4.690 4. bb4 
N = 16 19.727 7.730 4.672 2.801 2.511 2.369 2.365 2.351 
N = 24 11.929 5.171 3.174 1.905 1.713 1.608 1.596 1.586 
N = 32 10.000 3.869 2.377 1.445 1.291 1.212 1.207 1.199 

C) Pfa = 10-8 
N =8 53.096 26.691 12.910 7.342 6.595 6.312 6.3V0 6.330 
N = 16 30.029 11.019 6.366 3.767 3.345 3.164 3.155 3.131 
N = 24 17.796 7.166 4.245 2.547 2.246 2.117 2.104 2.088 
N = 32 12.519 5.354 3.221 1.943 1.715 1.603 1.596 1.584 
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Table 5.1.3 
CFAR loss for the OS Processor 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 v=oo 

a) Pfa = 10-4 
N= 8 36.092 15.352 7.917 4.519 4.075 3.900 3.914 3.897 
N= 16 22.366 7.077 3.879 2.299 2.049 1.942 1.927 1.920 
N= 24 14.061 4.587 2.584 1.543 1.379 1.288 1.279 1.275 
N= 32 10.466 3.366 1.921 1.150 1.026 . 956 . 945 . 944 

b) Pra = 10-6 
N= 8 39.554 25.675 12.643 6.907 6.221 5.979 6.078 6.043 
N= 16 34.785 11.682 6.104 3.502 3.122 2.944 2.946 2.927. 
N= 24 23.682 7.470 4.038 2.351 2.089 1.959 1.942 1.930 
N= 32 17.328 5.479 3.018 1.767 1.572 1.461 1.447 1.439 

c) Ppa = 10-8 
N= 8 37.212 35.987 17.722 9.409 8.495 8.232' 8.421 8.368 
N= 16 39.161 16.629 8.406 4.727 4.184 3.948 3.969 3.940 
N= 24 33.140 10.560 5.533 3.187 2.803 2.622 2.615 2.595 
N= 32 24.558 7.711 4.143 2.422 2.119 1.975 1.951 1.936 
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APPENDIX 5.2 
PLOTS OFPfavs. TFORN=16ANDN=8 

This appendix presents the contours of constant P fa in the v-T plane for the CA, CAGO and OS 
processors for N= 16 and N=8. 
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APPENDIX 5.3 
TABLES OF DIFFERENCE IN LOSS FOR Pd = 50% AND Pd = 90% 

All data in this appendix is applicable for Swerling case 1 and 2 targets. The difference in loss is 

given in dB. The difference in loss for each of the three types of CFAR processors is as follows: 

Table 5.3.1 
Difference in loss for the CA Processor 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 v=oe 

a) Pfa = 10-4 
N= 8 2.364 . 900 . 391 . 121 . 072 . 049 . 053 . 052 
N= 16 1.147 . 364 . 120 -. 007 . 004 . 015 . 025 . 023 
N= 24 . 681 . 177 . 013 -. 026 -. 022 -. 004 . 025 . 023 
N= 32 . 473 . 096 -. 017 -. 058 -. 057 -. 033 . 004 . 002 

b) Pfa 10-6 
N= 8 2.444 . 990 . 493 . 174 . 132 . 079 . 075 . 074 
N = 16 1.230 . 453 . 187 . 049 . 035 . 019 . 035 . 033 
N = 24 . 796 . 272 . 112 . 006 . 023 . 029 . 030 . 027 
N = 32 . 589 . 187 . 055 . 001 -. 003 -. 009 . 018 . 015 

c) Pfa = 10-8 
N =8 2.493 1.047 . 931 . 201 . 150 . 124 . 091 . 090 
N = 16 1.280 . 484 . 232 . 085 . 048 . 061 . 041 . 039 
N = 24 

. 826 . 303 . 125 . 036 . 004 . 028 . 031 . 029 
N = 32 

. 620 . 217 . 071 . 006 . 010 . 005 . 014 . 013 
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Table 5.3.2 
Difference in loss for the CAGO Processor 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 v 

a) Pfa = 10-4 
N= 8 2.071 . 701 . 531 . 172 . 132 . 102 . 089 . 086 
N = 16 1.018 . 200 . 169 . 015 -. 021 -. 024 -. 005 . 019 
N = 24 . 611 

. 049 . 051 -. 040 -. 037 -. 026 -. 008 -. 237 
N = 32 . 417 -. 036 -. 020 -. 057 -. 062 -. 048 -. 016 -. 371 

b) Pfa = 10-6 
N =8 2.171 . 785 . 608 . 253 . 171 . 143 . 111 . 085 
N = 16 1.118 . 306 . 243 . 057 . 045 . 026 . 012 . 051 
N = 24 . 712 . 112 . 109 . 011 -. 011 -. 001 . 011 -. 348 
N = 32 

. 497 . 040 . 031 -. 024 -. 019 -. 029 -. 028 -. 558 

c) Pfa - 10-8 
N= 8 2.219 . 847 1.182 . 296 . 217 . 169 . 141 . 105 
N = 16 1.167 . 355 . 285 . 088 . 071 . 046 . 052 055 
N = 24 

. 749 . 179 . 153 . 021 . 027 . 005 . 023 -. 485 
N = 32 

. 559 . 082 . 088 . 020 -. 010 . 002 -. 017 -. 745 
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Table 5.3.3 
Difference in loss for the OS Processor 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 v=oo 

a) Pr, = 1(J-4 
N 
N 

=8 
= 16 

5.160 
2.697 

1.583 
731 . 722 

. L35 
. 15` 

. 113 
. 091 . 090 

N = 24 1.834 . 
. 449 . 293 

165 . 078 
. 055 

. 039 
. 043 . 040 

N = 32 1.360 
. 304 . 

. 085 . 023 
009 . 0`5 

. 029 . 034 . 029 
. . 008 

. 016 
. 031 . 026 

b) Pfa = 10-6 N= 
N= 

8 
16 

5.223 1.650 . 777 
. 270 

. 178 . 150 . 114 . 115 
N= 24 

2.751 . 768 
. 335 

. 095 . 047 . 037 . 034 . 034 
N= 32 

1.876 
. 496 . 200 

. 047 . 018 
. 009 . 019 . 018 1.434 

. 373 . 151 . 033 
. 028 . 034 . 032 . 029 

c) Pfa = 10-8 
N= 
N 

8 
16 

5.270 
2 825 

1.683 
8 

24.080 
. 379 

. 218 
. 173 

. 121 
. 122 = 

N= 24 
. 

1.914 . 59 
523 . 407 

237 . 142 
. 098 

. 099 
. 063 

. 062 
N= 32 1.461 . 

. 390 . 
. 159 . 074 

. 044 . 038 
032 . 031 

. 015 
. 014 

. . 029 
. 036 

. 034 
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APPENDIX 5.4 
TABLES OF ERROR IN LOSS DUE TO WATTS' APPROXIMATION 

This appendix tabulates the results of numerical analyses of the error in the Signal to Clutter-plus-Noise 
Ratio required for detection introduced through the use of Watts' approximation. All data in this appendix 
is applicable for Swerling case 1 and 2 targets, and represents the unweighted average of the error at Pd = 
25%, 50%, 70 % and 90%. The absolute error in loss in dB is given. The error in loss for each of the CA 

and OS processors is as given in the following tables. 

Note: ***** denotes that veff is out of the range of the analysis (ie. veff>10) 
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Table 5.4.1 
Error for the CA Processor, P fa - 10-4 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 

CNR = -9 dB -. 727 ****** ****** ****** ****** ****** ****** CNR = -6 dB -. 732 -. 532 ****** ****** ****** ****** ****** CNR = -3 dB 
. 361 -. 327 -. 268 ****** ****** ****** ****** 

CNR = 0 dB 3.272 . 470 -. 024 -. 119 -. 016 ****** ****** 
CNR = 3 dB 7.429 1.806 . 430 -. 011 -. 017 . 032 ****** CNR = 6 dB 11.172 3.092 . 865 . 068 

_. 
057 -. 004 ****** N8 CNR = 9 dB 13.517 3.802 1.080 . 091 . 085 . 016 ****** CNR = 12 dB 14.396 3.870 1.013 . 097 . 097 . 035 ****** CNR = 15 dB 14.210 3.530 . 830 . 080 . 093 . 046 . 054 

CNR = 18 dB 13.308 2.924 . 607 . 056 . 094 . 052 . 040 
CNR = 21 dB 12.017 2.298 . 439 . 036 . 090 . 054 . 040 

CNR = -9 dB -1.139 ****** ****** ****** ****** ****** ****** CNR = -6 dB -1.341 -. 848 ****** ****** ****** ****** ****** 
CNR = -3 dB -. 698 -. 809 -. 544 ****** ****** ****** ****** CNR = 0 dB . 797 -. 284 -. 393 -. 218 -. 075 ****** ****** CNR = 3 dB 2.704 . 404 -. 084 -. 143 -. 078 -. 003 ****** CNR = 6 dB 4.250 1.019 . 189 -. 050 -. 021 -. 019 ****** N= 16 
CNR = 9 dB 5.070 1.308 . 331 . 005 . 032 . 007 +ý+**** CNR = 12 dB 5.159 1.325 . 321 . 016 . 063 . 022 ****** CNR = 15 dB 4.767 1.110 . 265 . 022 . 075 . 031 . 050 
CNR = 18 dB 4.094 . 869 . 206 . 020 . 082 . 035 . 042 
CNR = 21 dB 3.310 . 630 . 151 . 020 . 084 . 038 . 037 

CNR = -9 dB -1.295 ****** ****** ****** ****** ****** ****** CNR = -6 dB -1.548 -. 964 ****** ****** ****** ****** ****** CNR = .3 dB -1.038 -. 968 -. 647 +***** ****** ****** ****** CNR = 0 dB 
. 074 -. 544 -. 510 -. 262 -. 110 ****** ****** CNR = 3 dB 1.409 . 019 -. 237 -. 199 -. 110 -. 018 ****** CNR = 6 dB 2.443 . 482 . 004 -. 096 -. 051 -. 034 ****** N= 24 

CNR = 9 dB 2.931 . 696 . 126 -. 031 . 000 -. 011 ****** CNR = 12 dB 2.944 . 711 . 169 -. 002 . 029 . 012 ****** CNR = 15 dB 2.645 . 627 . 144 . 013 . 047 . 021 . 045 CNR = 18 dB 2.191 . 483 . 106 . 020 . 057 . 028 . 036 CNR = 21 dB 1.694 . 347 . 077 . 022 . 062 . 032 . 032 

CNR = .9 dB -1.369 ****** ****** ****** ****** ****** ****** CNR = 
CNR = 

-6 
-3 

dB 
dB -1.648 -1.015 ****** ****** ****** ****** ****** 

CNR = 0 dB -1.216 -1.051 -. 687 ****** ****** ****** ****** 

CNR = 3 dB -. 263 -. 683 -. 573 -. 275 -. 119 ****** ****** 
. 856 -. 180 -. 326 -. 217 -. 119 -. 022 ****** CNR = 6 dB 1.716 . 233 -. 086 -. 118 -. 058 -. 035 ****** N= 32 

CNR = 9 dB 2.121 . 443 . 032 -. 053 -. 017 -. 013 **+*** CNR = 12 dB 2.164 . 484 . 079 -. 019 . 009 008 ***** * CNR = 15 dB . 
CNR = 1 8 dB 

1.938 . 436 . 081 -. 004 . 031 . 020 . 049 

CNR = 18 dB 
1.623 . 360 . 071 . 004 . 041 . 026 . 038 
1.266 . 279 . 053 . 007 . 046 . 030 . 040 
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Table 5.4.2 
Error for the CA Processor, Pfa = 10-6 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 

CNR = -9 dB -1.597 ****** ****** ****** ****** ****** ****** CNR = -6 dB -1.413 -1.056 ****** ****** ****** ****** ****** 
CNR = -3 dB . 454 -. 626 -. 584 ****** ****** ****** ****** 
CNR = 0 dB 5.640 . 717 -. 077 -. 274 -. 035 ****** ****** 
CNR = 3 dB 13.576 3.096 . 666 -. 040 2.108 . 045 ****** 
CNR = 6 dB 21.232 5.630 1.473 . 112 . 035 -. 079 ****** N=8 
CNR = 9 dB 26.455 7.287 1.929 . 163 . 109 -. 036 ****** 
CNR = 12 dB 29.038 7.833 1.963 . 135 . 123 -. 009 ****** 
CNR = 15 dB 29.659 7.550 1.707 . 085 . 124 . 008 . 095 
CNR = 18 dB 29.036 6.767 1.345 . 049 . 122 . 017 . 088 
CNR = 21 dB 28.359 5.768 . 988 . 023 . 120 . 021 . 068 

CNR = -9 dB -2.285 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -2.279 -1.555 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.107 -1.336 -. 997 ****** ****** ****** ****** 
CNR = 0 dB 1.431 -. 472 -. 650 -. 423 -. 194 ****** ****** 
CNR = 3 dB 4.776 . 773 -. 123 -. 256 -. 181 -. 048 ****** 
CNR = 6 dB 7.657 1.850 . 331 -. 112 -. 057 -. 068 ****** N= 16 
CNR = 9 dB 9.347 2.429 . 567 -. 022 . 021 -. 025 * **** 
CNR = 12 dB 9.853 2.476 . 591 . 020 . 049 . 006 *+**** 
CNR = 15 dB 9.485 2.210 . 482 . 020 . 070 . 023 . 058 
CNR = 18 dB 8.607 1.784 . 362 . 016 . 081 . 032 . 043 
CNR = 21 dB 7.425 1.368 . 250 . 009 . 085 . 037 . 041 

CNR = -9 dB -2.509 ****** ****** ****** ****** ****** ****** CNR = -6 dB 
-2.561 -1.744 ****** ****** ****** ****** ****** CNR = -3 dB 
-1.610 -1.554 -1.143 ****** ****** ****** ****** 

CNR = 0 dB 
. 247 -. 843 -. 839 -. 491 -. 235 ****** ****** 

CNR = 3 dB 2.552 . 106 -. 374 -. 333 -. 228 -. 073 ****** CNR = 6 dB 4.438 . 878 . 014 -. 179 -. 113 -. 084 *"**** N= 24 
CNR = 9 dB 5.474 1.281 . 216 -. 066 -. 025 -. 042 ****** CNR = 12 dB 5.691 1,340 . 285 -. 024 . 042 -. 007 ****** CNR = 15 dB 5.317 1.172 . 232 -. 001 . 070 . 015 . 057 
CNR = 18 dB 4.626 . 943 . 176 . 008 . 080 . 024 . 045 
CNR = 21 dB 3.789 . 721 . 128 . 013 . 086 . 032 . 045 

CNR = -9 dB -2.639 ****** ****** ****** ****** ****** ****** CNR = -6 dB 
-2.702 -1.830 ****** ****** *+ý**** ****** ****** CNR = -3 dB -1.854 -1.667 -1.217 ***** ****** ****** ***"** CNR =0 dB 

-, 306 -1.021 -. 932 -. 519 -. 27© ****** ****** CNR =3 dB 1.485 -. 190 -. 491 -. 376 -. 244 -. 092 *+**** CNR =6 dB 2.871 . 461 -. 124 -. 198 -. 127 -. 076 ***** N= 32 
CNR =9 dB 3.578 . 790 . 086 -. 101 -. 047 -. 038 *ý**** CNR = 12 dB 3.666 850 . 149 -. 038 . 005 -. 005 ****** CNR = 15 dB 3.344 . 748 . 163 -. 012 . 040 . 013 . 044 
CNR 18 dB = 2.807 . 593 . 118 . 001 . 060 . 024 . 035 CNR 21 dB 

2.190 . 441 . 086 . 005 . 069 . 031 . 036 
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Table 5.4.3 
Error for the CA Processor, Pfa = 10-8 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 

CNR = -9 dB -2.159 ****** ****** *. **** ****** ****** ****** 
CNR = -6 dB -1.687 -1.431 ****** ****** ****** ****** ****** 
CNR = -3 dB . 892 -. 704 -. 780 ****** ****** ****** ****** 
CNR =0 dB 8.579 1.137 -. 041 -. 401 -. 093 ****** ****** 
CNR =3 dB 20.969 4.672 1.007 -. 047 -. 190 . 010 ****** 
CNR =6 dB 33.309 8.679 2.214 . 178 . 038 -. 139 ****** N=8 
CNR =9 dB 42.094 11.505 3.015 . 245 `134 -. 100 ****** 
CNR = 12 dB 46.867 12.763 3.210 . 203 . 172 -. 052 ****** 
CNR = 15 dB 48.847 12.755 4.083 . 136 . 191 -. 023 . 072 
CNR = 18 dB 51.321 11.972 4.618 . 068 . 160 -. 008 . 040 
CNR = 21 dB 52.740 10.760 4.908 . 018 . 146 -. 001 . 024 

CNR = -9 dB -3.043 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -2.739 -2.076 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.122 -1.595 -1.311 ****** ****** ****** ****** 
CNR =0 dB 2.436 -. 411 -. 769 -. 574 -. 287 ****** ****** 
CNR =3 dB 7.300 1.316 -. 064 -. 336 -. 263 -. 091 ****** 
CNR =6 dB 11.687 2.888 . 573 -. 126 -. 106 -. 119 ****** N= 16 
CNR =9 dB 14.426 3.791 . 909 -. 018 . 006 -. 060 ****** 
CNR = 12 dB 15.498 3.966 . 935 . 030 . 053 -. 010 **'*** 
CNR = 15 dB 15.339 3.637 . 796 . 031 . 080 . 019 . 066 
CNR = 18 dB 14.412 3.058 . 591 . 020 . 097 . 035 . 045 
CNR = 21 dB 14.394 2.404 . 419 . 012 . 105 . 043 . 041 

CNR = -9 dB -3.347 ****** ****** ****** ****** ****** ****** 
CNR ='-6 dB -3.102 -2.306 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.792 -1.881 -1.493 ****** ****** ****** ****** 
CNR =0 dB 

. 751 -. 911 -1.015 -. 671 -. 358 ****** ****** 
CNR =3 dB 4.018 . 350 -. 396 -. 429 -. 313 -. 128 ****** 
CNR =6 dB 6.836 1.444 . 112 -. 212- -. 153 -. 121 ****** N= 24 
CNR =9 dB 8.483 2.043 . 379 -. 074 -. 030 -. 064 ***** 
CNR = 12 dB 8.978 2.129 . 438 -. 019 . 024 -. 012 ****** 
CNR = 15 dB 8.641 1.914 . 377 . 002 . 053 . 014 . 046 
CNR = 18 dB 7.802 1.573 . 289 . 006 . 069 . 026 . 034 
CNR = 21 dB 6.705 1.203 . 202 . 008 . 076 . 033 . 033 

CNR = -9 dB -3.485 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -3.285 -2.417 ****** ****** ****** ****** ****** CNR = -3 dB -2.113 -2.035 -1.581 ****** ****** ****** ****** CNR =0 dB -. 039 -1.149 -1.131 -. 705 -. 411 ****** ****** CNR =3 dB 2.444 -. 072 -. 561 -. 472 -. 342 -. 158 ****** 
CNR =6 dB 4.482 . 810 -. 091 -. 264 -. 186 -. 123 ****** N= 32 
CNR =9 dB 5.599 1.269 . 172 -. 125 -. 065 -. 054 *****+ý 
CNR = 12 dB 5.842 1.344 . 242 -. 041 . 009 -. 019 ****** 
CNR = 15 dB 5.476 1.198 . 226 -. 020 . 041 . 007 . 045 
CNR = 18 dB 4.767 . 970 . 174 -. 006 . 054 . 023 . 036 
CNR = 21 dB 3.903 . 737 . 132 . 0P' . 063 . 031 . 032 
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Table 5.4.4 
Error for the OS Processor, Ppa = 10-4 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 

CNR = -9 dB -. 684 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -. 438 -. 551 ****** ****** ****** ****** ****** 
CNR = -3 dB 1.048 -. 099 -. 276 ****** ****** ****** ****** 
CNR =0 dB 5.720 . 978 . 175 -. 298 -. 182 ****** ****** 
CNR =3 dB 13.317 3.082 . 756 -. 082 -. 280 -. 165 ****** 
CNR =6 dB , 20.93S 5.390 1.32S . 002 z. 170 -. 286 ***** 
CNR =9 dB 26.360 6.876 1.563 -. 025 -. 113 -. 294 ****** 
CNR = 12 dB 29.260 7.234 1.402 -. 123 -. 147 -. 270 ****** 
CNR = 15 dB 30.190 6.726 1.006 -. 200 -. 168 -. 263 -. 166 
CNR = 18 dB 29.768 5.711 . 553 -. 254 -. 179 -. 257 -. 189 
CNR = 21 dB 28.428 4.475 . 188 -. 272 -. 189 -. 253 -. 195 

CNR = -9 dB -1.149 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -1.242 -. 894 ****** ****** ****** ****** ****** 
CNR = -3 dB -. 385 -. 740 -. 595 ****** ****** ****** ****** 
CNR =0 dB 1 . 928 -. 115 -. 356 -. 365 -. 268 ****** ****** 
CNR =3 dB 5.325 . 925 -. 027 -. 274 -. 300 -. 222 ****** 
CNR =6 dB 8.520 1.858 . 220 -. 201 -. 250 -. 238 ****** 
CNR =9 dB 10.562 2.235 . 243 -. 209 -. 222 -. 244 ****** 
CNR = 12 dB 11.336 2.016 . 098 -. 229 -. 205 -. 242 ****** 
CNR = 15 dB 11.072 1.452 -. 056 -. 245 -. 196 -. 226 -. 189 
CNR = 18 dB 10.039 . 815 -. 165 -. 247 -. 191 -. 226 -. 19"+ 
CNR = 21 dB 8.503 . 279 -. 214 -. 246 -. 189 -. 225 -. 201 

CNR = -9 dB -1.339 ****** ****** ****** ****** ****** ****** 
CNR = .6 dB -1.518 -1.016 ****** ****** ****** ****** ****** 
CNR = -3 dB -. 863 -. 974 -. 706 ****** ****** ****** ****** 
CNR =0 dB . 769 -. 477 -. 536 -. 415 -. 303 ****** ****** 
CNR =3 dB 3.028 . 274 -. 260 -. 341 -. 322 -. 242 *+ý**** 
CNR =6 dB 5.025 . 870 -. 073 -. 278 -. 261 -. 264 *+**** 
CNR =9 dB 6.197 1.017 -. 059 -. 232 -. 240 -. 252 ****** 
CNR = 12 dB 6.449 . 762 -. 132 -. 233 -. 224 -. 227 ****** 
CNR = 15 dB 5.916 . 353 -. 183 -. 241 -. 215 -. 212 -. 207 
CNR = 18 dB 4.814 . 006 -. 218 -. 236 -. 209 -. 201 -. 192 
CNR = 21 dB 3.371 -. 224 -. 237 -. 236 -. 211 -. 202 -. 203 

CNR = -9 dB -1.457 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -1.671 -1.118 ****** ****"* ****** ****** ****** CNR = -3 dB -1.126 -1.102 -. 781 ****** ****** ****** ****** 
CNR =0 dB . 187 -. 670 -. 640 -. 450 -. 333 ****** ****** 
CNR =3 dB 1.909 -. 059 -. 393 -. 371 -. 339 -. 253 ****** 
CNR =6 dB 3.373 . 393 -. 225 -. 307 -. 274 -. 276 ****** 
CNR =9 dB 4.166 X471 -. 195 -. 271 -. 245 -. 252 ****** 
CNR = 12 dB 4.201 . 246 -. 207 -. 242 -. 232 -. 234 ****** 
CNR = 15 dB 3.586 -. 040 -. 241 -. 218 -. 223 -. 227 -. 201 
CNR = 18 dB 2.510 -. 237 -. 253 -. 219 -. 221 -. 224 -. 210 
CNR = 21 dB 1.204 -. 349 -. 253 -. 224 -. 209 -. 224 -. 205 

N=8 

N= 16 

N= 24 

N=32 
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Table 5.4.5 
Error for the OS Processor, Pfa = 10-6 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 

CNR = -9 dB -1 . 430 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -. 993 -1.051 ****** ****** ****** ****** ****** 
CNR = -3 dB 1 . 488 -. 286 -. 540 ****** ****** ****** ****** 
CNR =0 dB 9.490 1.495 . 215 -. 464 -. 218 ****** ****** 
CNR =3 dB 22.889 5.167 1.222 -. 102 -. 400 -. 172 ****** 
CNR =6 dB 36.558 9.454 2.385 . 098 '202 -. 438 ****** 
CNR =9 dB 46.564 12.521 3.106 . 085 -. 091 -. 396 ****** 
CNR = 12 dB 52.277 13.822 3.145 -. 028 -. 129 -. 348 ****** 
CNR = 15 dB 54.863 13.686 2.683 -. 152 -. 155 -. 312 -. 164 
CNR = 18 dB 57.888 12.630 2.000 -. 245 -. 167 -. 287 -. 206 
CNR = 21 dB 59.633 11.042 1.291 -. 280 -. 169 -. 299 -. 223 

CNR = -9 dB -2.268 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -2.079 -1.616 ****** ****** ****** ****** ****** 
CNR = -3 dB -. 578 -1.170 -1.000 ****** ****** ****** ****** 
CNR =0 dB 3.295 -. 087 -. 520 -. 573 -. 369 ****** ****** 
CNR =3 dB 9.252 1.679 . 065 -. 348 -. 415 -. 264 ****** 
CNR =6 dB 15.061 3.452 . 550 -. 219 -. 293 -. 356 ****** 
CNR =9 dB 19.058 4.425 . 715 -. 200 -. 217 -. 288 ****** 
CNR = 12 dB 20.986 4.449 . 556 -. 215 -. 212 -. 285 ****** 
CNR = 15 dB 21.259 3.815 . 274 -. 241 -. 204 -. 273 -. 189 
CNR = 18 dB 20.372 2.867 . 030 -. 269 -. 203 -. 263 -. 206 
CNR = 21 dB 21.172 1.860 -. 129 -. 275 -. 201 -. 255 -. 214 

CNR = -9 dB -2.585 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -2.482 -1.836 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.293 -1.504 -1.196 ****** ****** ****** ****** 
CNR =0 dB 1.418 -. 639 -. 801 -. 644 -. 421 ****** ****** 
CNR =3 dB 5.259 . 628 -. 316 -. 471 -. 454 -.. 297 ****** 
CNR =6 dB 8.834 1.736 . 041 -. 311 -. 317 -. 338 ****** 
CNR =9 dB 11.134 2.192 . 126 -. 276 -. 276 -. 303 ****** 
CNR = 12 dB 12.009 1.987 . 021 -. 266 -. 247 -. 274 ****** CNR = 15 dB 11.700 1.407 -. 099 -. 258 -. 222 -. 257 -. 199 
CNR = 18 dB 10.550 . 751 -. 185 -. 257 -. 217 -. 248 -. 205 
CNR = 21 dB 9.816 . 207 -. 231 -. 260 -. 212 -. 242 -. 206 

CNR = -9 dB -2.740 ****** ****** ****** ****** ****** ***** 
CNR = -6 dB -2.686 -1.969 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.653 -1.688 -1.300 ***** ****** ****** ****** 
CNR =0 dB 

, S24 -. 909 -. 945 -. 693 -. 483 ****** ****** 

CNR =6 dB 3.419 . 122 -. 495 -. 519 -. 474 -. 332 ****** 
6.015 . 955 -. 191 -. 384 -. 368 -. 335 ****** CNR =9 dB 7.598 1". 227 -. 104 -. 311 -. 282 -. 288 ****** CNR = 12 dB 8.042 . 983 -. 155 -. 286 -. 250 -. 271 ****** CNR = 15 dB 7,528 . 521 -. 208 -. 266 -. 239 -. 256 -. 205 

CNR = 18 dB 6.309 . 092 -. 240 -. 256 -. 229 -. 248 -. 207 
CNR = 21 dB 4.670 -. 190 -. 255 -. 250 -. 226 -. 245 -. 213 

N=8 

N= 16 

N- 24 

N= 32 
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Table 5.4.6 
Error for the OS Processor, P fa = 10-8 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 

CNR = -9 dB -1. u59 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -1.226 -1 . 309 ****** ****** ****** ****** ****** 

CNR = -3 dB 2.324 -. 348 -. 674 ****** ****** ****** ****** 
CNR = 0 dB 13.660 2.215 . 297 -. 552 -. 276 ****** ****** 
CNR = 3 dB 32.289 7.554 1.804 -. 115 2.460 -. 192 ****** 
CNR = 6 dB 51.170 13.768 3.660 . 135 -. 226 -. 499 ****** N=8 
CNR = 9 dB 65.003 18.351 4.945 . 180 -. 130 -. 452 ****** 
CNR = 12 dB 75.024 20.542 5.295 . 066 -. 135 -. 403 ****** 
CNR = 15 dB 81.549 20.780 5.121 -. 089 -. 158 -. 361 -. 169 
CNR = 18 dB 85.326 21.553 5.722 -. 218 -. 193 -. 336 -. 233 
CNR = 21 dB 87.458 22.273 6.045 -. 293 -. 218 -. 344 -. 264 

CNR = -9 dB -3.003 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -2.494 -2.108 ****** ****** ****** ****** ****** 
CNR = -3 dB -. 429 -1.367 -1.281 ****** ****** ****** ****** 
CNR = 0 dB 5.044 . 109 -. 552 -. 740 -. 439 ****** ****** 
CNR = 3 dB 13.756 2.628 . 262 -. 404 -. 522 -. 284 ****** 
CNR = 6 dB 22.464 5.299 1.009 -. 185 -. 326 -. 434 ****** N= 16 
CNR = 9 dB 28.646 6.983 1.345 -. 153 -. 232 -. 383 ****** 
CNR = 12 dB 31.903 7.382 1.205 -. 204 -. 198 -. 332 ****** 
CNR = 15 dB 34.051 6.827 . 827 -. 241 -. 197 -. 309 -. 179 
CNR = 18 dB 36.123 5.730 . 404 -. 279 -. 195 -. 297 -. 208 
CNR = 21 dB 37.259 4.379 . 058 -. 294 -. 197 -. 291 -. 221 

CNR = -9 dB -3.375 ****** ****** ****** ****** ****** ****** 
CNR = -6 dB -2.981 -2.384 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.340 -1.782 -1.523 ****** ****** ****** ****** 
CNR =0 dB 2.393 -. 602 -. 911 -. 824 -. 542 ****** ****** 
CNR =3 dB 7.938 1.150 -. 253 -. 538 -. 556 -. 349 ****** 
CNR =6 dB 13.261 2.795 . 265 -. 347 -. 377 -. 417 ****** N= 24 
CNR =9 dB 16.870 3.641 . 420 -. 287 -. 291 -. 345 ****** 
CNR = 12 dB 18.516 3.579 . 294 -. 270 -. 248 -. 310 ****** 
CNR = 15 dB 18.576 2.927 . 076 -. 270 -. 222 -. 282 -. 200 
CNR = 18 dB 19.925 2.036 -. 090 -. 282 -. 209 -. 271 -. 213 
CNR = 21 dB 20.701 1.135 -. 196 -. 282 -. 208 -. 264 -. 220 

CNR = -9 dB -3.567 ****** ****** ****** ****** ****** ****** 
CN R = -6 dB -3.230 -2.522 ****** ****** ****** ****** ****** 
CNR = -3 dB -1.801 -2.000 -1.637 ****** ****** ****** ****** 
CNR =0 dB 1.144 -. 949 -1.101 -. 872 -. 603 ****** ****** 
CNR =3 dB 5.243 . 446 -. 498 -. 614 -. 586 -. 386 ****** 
CNR =6 dB 9.054 1'-. 661 -. 070 -. 423 -. 422 -. 414 ****** N= 32 
CNR =9 dB 1;. 519 2.169 . 050 -. 331 -. 320 -. 350 ****** 
CNR = 12 dB 12.458 1.964 -. 024 -. 292 -. 263 -. 307 ****** 
CNR = 15 dB 12.133 1.376 -. 137 -. 284 -. 241 -. 273 -. 216 
CNR = 18 dB 12.453 . 711 -. 208 -. 281 -. 230 -. 255 -. 222 
CNR = 21 dB 13.057 . 157 -. 242 -. 273 -. 226 -. 247 -. 221 
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APPENDIX 5.5 
TABLES OF ERROR DUE TO EMPIRICAL FORMULAE FOR CFAR LOSS 

This appendix gives the error between the numerically calculated CFAR loss and the approximate loss 

given by the empirivcal formula, as discussed in chapter 4.4.2. The data in this appendix is applicable for 
Swerling case 1 and 2 targets for Pd = 50%. The error in CFAR loss is given in dB. The error due to the 
empirical formal for each of the three types of CFAR processors is as follows: 

Table 5.5.1 

Approximation Error for the CA Processor 

v=0.1 v=0.25 v=0.5 

N= 8 -4.264 -. 306 . 038 
N= 16 

. 184 . 096 . 033 
N= 24 

. 553 . 083 . 006 
N = 32 

. 481 . 029 . 002 

N=8 
N= 16 
N= 24 
N=32 

N=8 
N= 16 
N=24 
N= 32 

3.810 -1.922 
-2.519 -. 180 

-. 403 -. 052 

. 061 . 010 

13. ©27 
-6.681 

2.272 
-. 8ý7 

-4.455 
-. 684 
-. 344 
-. 154 

v= 1.5 v=2.5 v=4.5 v=9.5 

a) Pfa = 10-4 
. 062 . 050 . 037 -. 011 

-. 018 -. 003 -. 001 -. 019 

-. 036 -. 016 -. 013 -. 021 

-. 024 -. 022 -. 019 -. 023 

b) Pfa = 10-6 
-. 116 . 205 . 182 

. 041 . 056 . 070 

. 030 . 011 . 023 

. 017 -. 001 . 013 

C) Pia = 10-8 
-. 524 . 255 . 236 

-. 042 . 072 . 111 

-. 007 . 005 . 054 

-. 008 -. 010 . 025 

. 145 

. 072 

. 037 

. 018 

. 173 
122- 

0 . 67 

. 043 

. 047 

. 039 

. 017 

. 007 

. 017 

. 072 

. 048 

. 024 
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Table 5.5.2 
Approximation Error for the CAGO Processor 

v=0.1 v=0.25 v=0.5 v=1.5 v=2.5 v=4.5 v=9.5 

a) Pl'a = 10.4 
N= 8 -1.416 -. 295 . 004 . 063 -. 014 -. 085 -. 036 
N= 16 1.808 . 143 -. 063 -. 023 -. 059 -. 084 -. 055 
N= 24 1.716 . 069 -. 145 -. 041 -. 057 -. 070 -. 051 
N= 32 1.344 . 041 -. 161 -. 033 -. 049 -. 058 -. 041 

b) Pia = 10-6 
N= 8 -6.149 -3.427 . 008 . 333 . 186 . 054 . 092 
N = 16 . 235 . 032 . 068 . 109 . 054 . 011 . 046 
N = 24 1.443 . 029 . 001 . 044 . 006 -. 013 . 019 
N = 32 . 064 . 044 . 013 . 022 . 003 -. 012 . 009 

c) Pia = 10-8 
N =8 . 899 -5.695 -. 090 . 530 . 345 . 126 . 151 
N = 16 -2.807 -. 434 . 097 . 201 . 154 . 082 . 133 
N = 24 . 439 -. 075 . 084 . 112 . 098 . 058 . 099 
N = 32 1.204 -. 018 . 038 . 058 . 048 . 034 . 061 
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Table 5.5.3 
Approximation Error for the OS Processor 

v=0.1 v=0.25 v=0.5 v= 1.5 v=2.5 v=4.5 v=9.5 

a) Pfa = 10-4 N= 8 10.034 -. 774 . 118 
. 182 

. 112 . 036 -. 063 N= 16 . 210 . 058 . 053 . 002 . 000 -. 016 -. 043 N= 24 . 803 . 111 . 005 -. 029 -. 030 -. 020 - 038 N= 32 
. 584 . 126 . 003 -. 024 -. 023 -. 013 . 

-. 023 

b ) a 1 
N= 8 32.930 -2.766 -. 017 480 . 359 

. 204 -. 027 N= 16 . 692 -. 469 . 075 
. 114 . 099 . 083 . 016 

N= 24 -. 325 -. 088 . 031 
. 029 . 031 . 034 

. 008 N= 32 . 035 . 009 . 006 
. 002 

. 004 
. 021 

. 003 

c) Pfa = 10-8 
N= 8 61.630 -4.748 -. 506 

. 664 . 478 
. 201 -. 169 N= 16 9.216 -1.339 . 021 . 203 . 208 . 180 . 070 N= 24 -1.289 -. 493 . 015 . 059 . 089 . 096 . 044 N= 32 -. 881 -. 228 -. 019 -. 009 . 031 . 045 . 026 
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APPENDIX 7.1 

INCREASE IN Pr, IN RDT-CFAR PROCESSOR 
IN CLUTTER WITH FINITE CNR 

a) K= 16; M/N = 1/3; ao = 0.03 
b) K=8; M/N=3/8; ao=0.03 

c) K= 16; M/N = 1/3; ßo = 0.25 

d) K=8; M/N = 3/8; ao = 0.25 

(Note: ****** denotes no false alarms occurred in simulation) 
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a) K= 16; M/N = 1/3; ao = 0.03 

CNR (dB) 

0 10 20 30 40 50 60 

ro = 2/3 NK: 

a -27.45 -23.01 -20.46 -19.75 -21.31 -19.59 -18.42 
a'= 1.5 a ****** -30.00 -26.20 -26.58 -30.00 -29.21 -25.23 
a'=2a ****** -36.99 -36.99 -33.98 -36.99 ****** -29.21 
a'=4a ****** s***** **s*** ****** ****** ****** ****** 

ro = NK-2N: 

a -2854 -24.20 -23.77 -21.94 -26.20 -26.20 -25.85 
a'=1.5 a -36.99 -33.98 -30.00 -30.97 -32.22 ****** ****** 
a'=2a ****** -36.99 ****** -33.98 ****** ****** ****** 
a'=4a ****** ****** ****** ****** ****** ****** ****** 

ro = NK-N: 

a -28.54 -29.21 -26.99 -25.85 -26.99 -29.21 -26.99 
a'=1.5 a -33.98 -36.99 -36.99 -36.99 -36.99 ****** ****** 
a'=2a ****** -36.99 ****** -36.99 -36.99 ****** ****** 
a"=4a ****** ****** ****** ****** ****** ****** ****** 

b) K=8; M/N = 3/8; ßo = 0.03 

CNR (dB) 

0 10 20 30 40 50 60 

ro = 2/3 NK: 

a -28.54 -20.18 -19.83 -21.19 -20.27 -15.20 -15.78 
a' =1.5 a -36.99 -27.45 -30.00 -30.97 -29.21 -25.23 -29.21 
a'=2a ****** -33.98 -33.98 ****** ****** -32.22 ****** 
a'=4a ****** ****** ****** ****** ****** ****** ****** 

ro = NK-2N: 

a -27.96 -20.46 -19.83 -21.94 -22.84 -18.07 -19.00 
a'= 1.5 a -36.99 -27.45 -26.99 -30.00 -36.99 -30.00 -36.99 
a'2a ****** -36.99 -36.99 -36.99 ****** ****** ****** 
a'=4a ****** ****** *****" ****** ****** ****** ****s* 

ro = NK-N: 

a -28.54 -22.37 -20.86 -22.37 -28.54 -25.85 -26.58 
a'=1.5 a -36.99 -30.00 -30.97 -30.97 ****** ****** ****** 
a'=2a ****** ****** ****** ****** ****** ****** ****** 
a'=4a ****** s*****. ***:. * *****. ****** : ***** *"**** 
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c) K= 16; M/N = 03; ßo = 0.25 

CNR (dB) 
0 10 20 30 40 50 60 

ro = 2/3 NK: 

a -32.22 ****** -32.22 -30.97 -32.22 -36.99 ****** 
a'=1.5 a ****** ****** ****** ****** ****** ****** ****** 
a'=2a ****** ****** ****** ****** ****** ****** *****« 
a'= 4a ****** ****** ****** ****** ****** **s*** s***** 

ro = NK-2N: 

a -32.22 ****** -33.98 -33.98 ****** -33.98 -33.99 
a'=1.5 a ****** ****** ****** ****** ****** ****** ****** 
a'= 2a ****** ****** ****** ****** ****** ****** ****** 
W= 4a ****** ****** ****** ****** ****** ****** ****** 

ro = NK-N: 

a -33.98 ****** -33.98 -32.22 ****** ****** -36.99 
a'=1.5 a ****s* ****** ****** ****** ****** ****** ****** 
a'=2a ****** ****** ****** ****** ****** ****** ****** 
a'=4 a ****** ****** ****** ****** ****** ****** ****** 

d) K=8; M/N=3/8; ao=0.25 

CNR (dB) 

0 10 20 30 40 50 60 

ro = 2/3 NK: 

a ****** -36.99 -30.97 -36.99 -36.99 ****** ****** 
a'=1.5 a ****** ****** ****** ****** ****** ****** ****** 
aý 2a ****** ****** ****** ****** ****** ****** ****** 
a'= 4a ****** ****** ****** ****** ****** ****** ****** 

ro = NK-2N: 

a ****** -33.98 -32.22 -36.99 ****** ****** ****** 
a'=1.5 a ****** ****** ****** ****** ****** ****** ****** 
aý= 2a ****** ****** ****** ****** ****** ****** ****** 
aý= 4a ****** ****** ****** ****** ****** ****** ****** 

ro = NK-N: 

a -33.98 -33.98 -33.98 -36.99 -36.99 ****** ****** 
a'=1.5 a ****** ****** ****** ****** ****** ****** ****** 
a"= 2a ****** ****** ****** ****** ****** ****** ****** 
a'=4 a ****** ****** ****** ****** ****** ***** ****** 
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ERRATA 

1. Page 26, paragraph 2, line 5: the words "theoretical and" should be removed; the 
models for predicting clutter eflectivity do not as yet have generally accepted 
physical justification. 

2. Page 27, paragraph 3, line 6: note that the decorrelation of the fast fluctuations 
assumes the use of radar frequency agility. 

3. Page 28, paragraph 3, line 3: The word "completely" only applies if the clutter has 
Rayleigh amplitude PDF. Deviations from this case require higher order moments to 
completely describe the clutter. 

4. Page 29, paragraph 1, linel8: Guinard and Daley (1970) presented, but did not 
originate, the composite surface model, which was originally due to Wright (19681) 

5. Page 30, paragraph 3, line 12: should read "Jakeman and Pusey (1976), Oliver 
(1984) and Lewinski (1983)).... ". 

6. Page 33, paragraph 1, line 5: in practical radars the speckle is not entirely 
decorrelated from one range bin to the next due to the non-ideal impulse response of 
the radar matched filter. 

7. Page 35, eqn. (2.1b): should be: 

2b2" 
Pv (v) = r(y) v2v-1 e-b2v2 

8. Page 48, paragraph 3: all targets, not only Rayleigh fluctuating targets, will exhibit 
the behaviour described here if post detection integration is employed. 

9. Page 50, paragraph 3, line 8: should read "(a+l)st to (n-b-1)st samples ... ". 

10. Page 51, eqn. (2.7): the upper limit of the summation should be n"b"1. 

11. Page 51, footnote, line 3: should read : "... a CA processor using n-b reference 
cells. " 

12. Page 52: section number should be section 2.3.3 ... . 

1Wright, J. W., "A New Model for Sea Clutter", IEEE Trans. on Antennas and Propagation, vol. AP-16, 
March 1968, pp. 217 - 223. 



13. Page 61, last paragraph: the term "zero Doppler component" refers to the spectral 
component with zero mean doppler. 

14. Page 97,6th last line: "relavite" should be "relative". 

15. Page 129, paragraph 3: It should be noted the the following analysis closely follows 
that presented by Watts (1985). 

16. Page 129, paragraph 4, line 3: the term Pd(SIC) should be written Pd(S(C)), since S 
is a function of C rather than being a random variable conditioned on C. 

17. Page 130, eqn. (6.1): should be: 

p(C)= xv 
1 C"-lexp(-C / X. ) 

18. Page 130, eqns. (6.2) and (6.3): the terms (SIC) should be replaced by (S). 

19. Page 131, paragraph 1: similar work by Oliver (19862,1988) and Conte et al (19913) 
is also relevant. 

20. Page 133, paragraph 2, line2: should read "... the g11 can be represented as g; 1 = pg; 2 

+ z; 1-p2 j1_p2 

21. Page 141, eqn. (6.24b): element (N/2; N/2) of matrix R. � should be Ru�(0), not 
Ruu(N/2-1). 

20liver, C. J., and Tough, R. J. A., "On the simulation of correlated K-distributed random clutter", Optica 
Acta 33, (3), 1986, pp. 223-250. 
3Conte, E., Longo, M., and Lops, M., "Modelling and simulation of K-distributed clutter", /E, Pro": 4'1 
ceedings-F, Vol. 138 No. 2, April 1991, pp. 121 130. 


