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Introduction

The aim of this M.Phil thesis is to present my research throughout the past academic year.

My topics of interest ranged over a fairly wide variety of subjects. I started with the study of

automorphic forms from an analytic point of view by applying spectral methods to the Laplace

operator on Riemann hyperbolic surfaces. I finished with a focus on modular knots and their

linking numbers and how the latter are related to the theory of well-known analytic functions.

My research took many more directions, and I would rather avoid stretching the extensive list

of applications, papers and books that attracted my attention. I decided to present here some

of the topics I favored and parts of my research that proved or could prove fruitful. There is a

significant disadvantage to proceeding in this fashion. The discussion might look rambling as

the topics covered are well diversified.

The structure of the thesis is pretty standard. We start with a brief overview of general

theory about automorphic forms and include or reference all the additional results we need in

the next sections.

The first of these sections is about Farey fractions. After a straightforward introduction

and usual considerations about Farey sets, we discuss their distribution. We give an alternative

proof that the Farey fractions are equidistributed by means of nice arithmetic identities. Then,

we present a paper on correlation measures for Farey fractions [3] and sketch the arguments

that lead to two interesting theorems. To conclude the section, we show how one can recover the

uniform distribution of Farey fractions using methods borrowed from the theory of automorphic

forms. This emphasizes well how powerful and natural this approach can be.

The next section is dedicated to multiplier systems. We explain how they are used to

generalize automorphic forms to the non-integral weights case and give two famous examples

of such forms. Finally, we construct a series whose analytic properties could yield interesting

information about the image structure of a given multiplier system. Our approach is inspired

from techniques worked out in [19].

In the final section, we briefly outline Ghys’ result that linking numbers of modular knots

are given by the Rademacher function. We dwell on these two notions beforehand.

Some familiarity with analytic number theory, automorphic forms and spectral methods is

assumed. The reader should also feel confortable with elementary number theory. No extra

knowledge is required. The listed topics should cover most of our discussions and suffice to go

through the present thesis. The interested reader will find appropriate complementary material

in the references listed at the end of the thesis.

To conclude this introduction, I would like to thank Yiannis Petridis, for being an amaz-

ing supervisor, without whom this thesis would not exist. His assistance, availability, advice,

instructive discussions and encouragements were extremely precious throughout my year of

research.

C.F. Gauß

Mathematics is the queen of sciences and number theory the queen of mathematics.
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1 Brief overview of general theory

1.1 Hyperbolic geometry and Möbius transformations

This overview takes most of its inspiration from [9], [10] and [11].

Throughout the chapters, the complex upper half-plane {x+iy : x, y ∈ R, y > 0} is denoted

by H. It is left invariant under the action of SL2(R), as

ℑ(γz) = y

|cz + d|2 ,

where γ =

(
a b

c d

)
acts on H by

γz =
az + b

cz + d
.

Notice that γ and −γ have the same action on H. The factor group of transformations

PSL2(R) = SL2(R)/{I,−I}

is called the group of linear fractional transformations or Möbius transformations. These trans-

formations leave invariant another subset of the Riemann sphere, namely the real line R∪{∞}.
Möbius transformations have many nice properties, e.g. they map circles and lines to circles and

lines, they are conformal in the Riemann sphere, and they define isometries for the hyperbolic

metric derived from the Poincaré differential

ds2(z) =
|dz|2
ℑ(z)2 =

dx2 + dy2

y2
, z ∈ H.

The corresponding hyperbolic distance between the points z, w in H is explicitly given by

cosh d(z, w) = 1 + 2u(z, w), u(z, w) =
|z − w|2

4ℑ(z)ℑ(w) .

The hyperbolic measure is given by dµ(z) = dxdy/y2. We distinguish between three different

kinds of linear fractional transformations. We say that γ ∈ PSL2(R) is parabolic if it has one

fixed point in R ∪ {∞}, hyperbolic if it has two such fixed points and elliptic if it has one fixed

point in H.

Discrete subgroups of SL2(R) play a crucial role in the theory of automorphic forms. The

norm considered is the one inherited from R4,i.e.

‖γ‖2 = a2 + b2 + c2 + d2.

A group Γ ⊂ SL2(R) is discrete if the sets {γ ∈ Γ : ‖γ‖ < ρ} are finite for all ρ > 0.

We say that Γ acts discontinuously on H if the orbits Γz = {γz : γ ∈ Γ} have no limit

points in H. In particular, the stability group of a point z ∈ H,

Γz = {γ ∈ Γ : γz = z}

is finite. It is a famous Poincaré theorem that a subgroup Γ of SL2(R) is discrete if and only if

Γ acts discontinuously on H. Discrete subgroups of Möbius transformations are called Fuchsian
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groups. There are many characterisations for such groups. We say that a Fuchsian group Γ is

of the first kind if every point on the real line R ∪ {∞} is a limit point of an orbit Γz for some

z ∈ H.

A fundamental domain for a group Γ ⊂ PSL2(R), is a domain F in H such that distinct

points in F are not equivalent under the action of Γ and any orbit of Γ contains at least one

point in the closure1 of F . There are many ways of constructing fundamental domains. For

instance, the normal polygon P (w) of a Fuchsian group Γ ⊂ PSL2(R) of the first kind,

P (w) = {z ∈ H : d(z, w) < d(z, γw), ∀γ ∈ Γ, γ 6= I}

is a fundamental domain for Γ if w ∈ H is not fixed by any motion in Γ\{I}. We could dedicate

hundreds of pages discussing discrete subgroups and related properties. We assume that the

reader is already familiar with these notions. All the details on that matter can be found in

[11].

The set of orbits Γ\H is equipped with the topology that makes the quotient map H → Γ\H
continuous. This yields a connected Hausdorff space that can be seen2 as a Riemann surface.

We say that a Fuchsian group is cofinite if there is a corresponding fundamental domain in

H with finite hyperbolic area. As dµ is Γ-invariant, it is easy to show3 that this area does not

depend on the choice of a fundamental domain. We denote this area by vol(Γ\H).

Clearly vol(Γ\H) < ∞ if there exists a compact fundamental domain for Γ. However there

are cofinite Fuchsian groups Γ with a non-compact fundamental polygon. This implies that

some of the vertices of the polygon lie on R ∪ {∞}. We call these points cuspidal vertices or

cusps. If in addition, Γ is of the first kind, we can construct a fundamental polygon all of whose

cuspidal vertices are inequivalent under the action of Γ. Cusps are precisely the fixed points of

the parabolic motions of Γ.

Cusps will be denoted by bold letters a,b, c, . . . ,∞. The stability group Γa is cyclic infinite

(easy exercise). It is generated by a parabolic motion γa. The scaling matrix σa ∈ SL2(R) is

such that

σa∞ = a, and σ−1

a
γaσa = ±

(
1 1

0 1

)
.

Conjugating Γa by the scaling matrix for the cusp a, we get that

σ−1
a

Γaσa = B, where B = Γ∞ =

{(
1 b

0 1

)
: b ∈ Z

}
.

Most of the interesting Fuchsian groups are cofinite and of the first kind. We end this section

with a focus on congruence subgroups. Let n be a positive integer, we define the principal

congruence group of level n to be

Γ(n) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0

0 1

)
mod n

}
.

1With respect to the euclidean topology on the Riemann sphere C ∪ {∞}.
2This means that one can consider analytic charts for which Γ\H becomes a Riemann surface.
3This is theorem 3.1.1 in [11].
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Any subgroup of the modular group Γ(1) = SL2(Z) which contains Γ(n) for some n is called a

congruence subgroup of level n. The two other classical examples of congruence subgroups are

Γ0(n) = {γ ∈ SL2(Z) : c ≡ 0 mod n} and Γ1(n) = {γ ∈ Γ0(n) : a ≡ d ≡ 1 mod n} ,

where γ =

(
a b

c d

)
. All these congruence subgroups are cofinite and of the first kind. They have

finitely many cusps that can be explicitly computed by means of elementary number theory.

For example, the number of inequivalent cusps of Γ0(n) is given by

h =
∑

ab=n

ϕ[(a, b)],

where ϕ is the Euler’s totient function and (a, b) is the largest common divisor of a and b.

1.2 Laplace operator and automorphic forms

In the present section, we follow closely the discussion in [9], [10] and [23]. The Laplace operator

derived from the Poincaré differential is given by

∆ = y2(∂2x + ∂2y) = −(z − z̄)2∂z∂z̄,

where ∂z = (∂x−i∂y)/2 and ∂z̄ = (∂x+i∂y)/2. A straightforward computational exercise shows

that ∆ is SL2(R)-invariant, that is

∆[f(γz)] = (∆f)(γz),

for all γ ∈ SL2(R) and all f ∈ C2(H,C). The determination of the spectrum and eigenfunctions

of ∆ is of prime importance for the sequel. We quote an important result (proposition 1.5 in

[9]) which is easily obtained from the Fourier expansion theorem for periodic functions.

Proposition. Set β =

(
1 1

0 1

)
, and consider f , an eigenfunction of ∆ with eigenvalue

λ = s(1− s). Assume that f is such that f(βz) = f(z), for all z ∈ H and that4

f(z) = o[e(−iy)],

as y tends to infinity. Then f has the following Fourier expansion,

f(z) = f̂0(y) +
∑

n∈Z\{0}

f̂(n)Ws(nz),

where f̂0(y) is a linear combination of the functions ys and y1−s if s 6= 1/2 and of
√
y and

√
y log(y) if s = 1/2. Here the function Ws is derived from the Bessel function Ks−1/2,

Ws(z) = 2
√
yKs−1/2(2πy)e(x).

4We write e(x) = exp(2πix).
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For the rest of the section, Γ will be a cofinite discrete subgroup of SL2(R) of the first kind.

A function f : H → C is said to be Γ-automorphic if it lives on Γ\H, i.e.

f(γz) = f(z), for all γ ∈ Γ.

The set of all such functions is denoted by A(Γ\H), as it is in [9]. An automorphic function

which is also an eigenfunction of the Laplace operator ∆ is called an automorphic form. The

space of automorphic forms with eigenvalue λ = s(1− s) is denoted by As(Γ\H).

Assume now that a is a cusp for Γ. Then, if f ∈ A(Γ\H), we have

f(σaβz) = f(γaσaz) = f(σaz)

for all z ∈ H, so that f(σaz) has the following Fourier expansion,

f(σaz) =

∞∑

n=−∞

fan(y)e(nx),

where the n-th Fourier coefficient is given by

fan(y) =

∫ 1

0

f(σaz)e(−nx)dx, n ∈ Z.

Automorphic forms whose zero-th Fourier coefficients fa0 vanish identically at all cusps a

of Γ are called cusp forms. The space of such functions is denoted by C(Γ\H), and we set

Cs(Γ\H) = C(Γ\H) ∩ As(Γ\H).

By the proposition, we know that any cusp form f ∈ Cs(Γ\H) expands as

f(σaz) =
∑

n∈Z\{0}

f̂a(n)Ws(nz)

at every cusp a for Γ.

1.3 The spectral theorem

Let Γ be a Fuchsian group of the first kind and consider the space of smooth and bounded

functions in A(Γ\H) whose Laplacian is also bounded. We denote this space by B(Γ\H). It is

easy to show that B(Γ\H) is dense in L2(Γ\H). The next theorem is lemma 4.1 in [9].

Theorem. The Laplacian ∆ is symmetric and non-negative on B(Γ\H) with respect to the

inner product

〈f, g〉 =
∫

Γ\H

fgdµ.

Therefore, by the Friedrichs extension criterion, it has a unique self-adjoint extension to some

subspace H(Γ\H) of L2(Γ\H), that we write again ∆.

Proof. Using Stokes’ theorem, we get that, for any two functions f and g in B(Γ\H),

∫

P

g∆fdµ(z) = −
∫

P

∇f · ∇g dxdy +
∫

∂P

g∂nfdl,
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where P is a normal polygon with respect to Γ. In particular, P is a bounded domain and

∂P is a hyperbolic polygon whose sides can be arranged in pairs of Γ-equivalent sides. The

differential operator ∇ is the eucidean gradient, ∇ = [∂x, ∂y], ∂n is the outer normal euclidean

derivative and dl is the euclidean length element. Note that

∂ndl = ∂ndl,

where ∂n = y∂n and dl = y−1dl are the associated hyperbolic operators. One can check that

they are Γ-invariant. This implies that

∫

∂P

g∂nfdl =

∫

∂P

g∂nfdl = 0

as f and g live on Γ\H so that integrals along equivalent sides cancel out. Hence,

〈∆f, g〉 = −
∫

P

∇f · ∇g dxdy = 〈f,∆g〉 ,

and

〈∆f, f〉 = −
∫

P

|∇f |2dxdy ≤ 0,

as desired.

To understand how important is the spectral resolution of ∆ on L2(Γ\H), we introduce

the hyperbolic lattice counting problem following the discussion in [17]. It consists in giving

asymptotics for the function counting points in a given orbit within a certain distance from a

fixed point. More precisely, suppose that Γ ⊂ PSL2(R) is a Fuchsian group of the first kind

and that z and w are fixed points in the upper half-plane H. We are looking for estimations of

the function p, defined for x ≥ 2 by,

p(x) =
∑

γ∈Γ

4u(γz,w)≤ x−2

1.

For Γ the modular group, one can show with elementary methods that p(x) ∼ 6x asymptotically.

Actually, we have

p(x) = 6x+O(x2/3), as x tends to ∞.

The easiest known way to generalize this result to more complicated groups, such as congruence

subgroups, is to use spectral methods. This is illustrated in the following theorem (theorem 12.1

in [9]).

Theorem. As x tends to infinity, we have,

p(x) =
∑

sj∈(1/2,1]

2π1/2Γ(sj − 1/2)

Γ(sj + 1)
uj(z)uj(w)x

sj +O(x2/3),

where j labels the spectral5 parameters sj of ∆ on L2(Γ\H) that lie in (1/2, 1] and uj ∈ Asj (Γ\H)

are the corresponding square integrable eigenfunctions.

5The eigenvalue is λj = sj(1− sj). Note that eigenvalues with double or higher multiplicity are repeated.
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Hence, the determination of the small eigenvalues of ∆ provides asymptotics for hyperbolic

lattice counting functions!

Before giving an outline of the proof, we describe the structure of the spectrum σΓ of a

Fuchsian group Γ.

Definition. Let λ ∈ C. The corresponding resolvent associated to ∆ onH(Γ\H) is the operator

Rλ = (∆+λ)−1. The point λ is regular if Rλ is a bounded operator defined on the whole space

H(Γ\H). The spectrum of Γ is

σΓ = {λ ∈ C : λ not regular}.

The spectrum decomposes as σΓ = σdΓ ∪ σcΓ.

• The discrete spectrum σdΓ is the collection of points λ for which Rλ is defined on a set not

dense in H(Γ\H);

• The continuous spectrum σcΓ is the collection of points λ for which Rλ is unbounded.

Notice that σdΓ and σcΓ are not necessarily disjoint!

The discrete spectrum σdΓ can be written as {0 < λ1 ≤ λ2 ≤ · · · } and is countable (not

necessarily finite). On the other hand, if Γ has m ≥ 1 cusps, σcΓ = [1/4,∞) and each of these

spectral points appear with multiplicity m. See [15] p.206 for a proof and a more detailed

discussion.

The complete set of eigenfunctions associated to λ = s(1 − s) ∈ σcΓ, i.e., ℜ(s) = 1/2 or

equivalently λ ≥ 1/4, is given by analytic continuations of the Eisenstein series Ea(z, s).

Definition. Let a be a cusp for Γ. The corresponding Eisenstein series is defined for ℜ(s) > 1

by

Ea(z, s) =
∑

γ∈Γa\Γ

[
ℑ
(
σ−1
a
γz
)]s

.

It is in As(Γ\H) as a function of z, but not in L2(Γ\H).

It is well-known (chapter 6 in [9]) that these series extend meromorphically to C and that

its poles are contained in the union of the half-plane ℜ(s) < 1/2 and the interval (1/2, 1].

We are now ready to sketch the proof of the previous theorem.

Outline of proof. The idea is to look at the spectral expansion of a particular automorphic

kernel. A point-pair invariant kernel k is defined on H2 so that

k(z, w) = k[u(z, w)],

i.e. k depends only on the hyperbolic distance between its two arguments. Such a kernel yields

an automorphic kernel K given by the series

K(z, w) =
∑

γ∈Γ

k(z, γw).
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If k decreases rapidly enough, this series converges absolutely. The control over the growth of k

is best expressed in terms of regularity assumptions on the Selberg/Harish-Chandra transform

h of k defined by

q(v) =

∫ ∞

v

k(u)(u− v)−1/2du

g(r) = 2q

[(
sinh

r

2

)2]

h(t) =

∫ ∞

−∞

eirtg(r)dr.

From now on, we will say that k is regular, if h is even, holomorphic in the strip |ℑt| < 1/2+ ǫ,

for some ǫ > 0 and

h(t) ≪ 1

(|t|+ 1)2+ǫ
in the strip.

En passant, a regular kernel k defines an invariant integral operator L given by6

Lf(z) =

∫

H

k(z, w)f(w)dµ(w).

Generalising the spectral theorem provided at the end of the present section, one can get a

spectral expansion for K. If k is regular, we have that7

K(z, w) =
∑

1/2<sj≤1

h(tj)uj(z)uj(w) +
∑

a

1

4π

∫ ∞

−∞

h(r)Ea(z, 1/2 + ir)Ea(w, 1/2 + ir)dr,

where sj = 1/2 + itj , tj ∈ C. The sum converges absolutely and uniformly on compacta.

Using the Bessel and Cauchy-Schwarz inequalities as well as estimations on the growth of

Eisenstein series, one can show (see chapter 7 in [9] for details) that for any regular kernel k,

we have

K(z, w) =
∑

1/2<sj≤1

h(tj)uj(z)uj(w) +O
[∫ ∞

0

(t+ 1)H(t)dt

]
,

where H is any decreasing majorant of |h| and the implied constant depends on Γ, z and w.

Now, the most natural approach would be to consider the kernel k for which k(u) = 1 if

u ≤ (x − 2)/4 and k = 0 elsewhere. However, this does not yield satisfactory results. As in

[9], we rather take k(u) = 1 if 0 ≤ u ≤ (x − 2)/4, k(u) = 0 if u ≥ (x + y − 2)/4 and k linear

continuous on [(x−2)/4, (x+y−2)/4]. Here y = y(x) is to be chosen later to in order optimize

the error term. For now, we only require that x ≥ 2y ≥ 2. Clearly, p(x) ≤ 2K(z, w) and if

1/2 < sj ≤ 1,

h(tj) = π1/2Γ(sj − 1/2)

Γ(sj + 1)
xsj +O(y + x1/2).

Also, if t ≥ 0, ℜ(s) = 1/2 and

h(t) ≪ |s|−5/2
[
min(|s|, xy−1) + log x

]
x1/2,

6We omit here the discussion on the regularity assumptions on the admissible test functions f .
7This is theorem 7.4 in [9]



1 BRIEF OVERVIEW OF GENERAL THEORY 12

where the implied constant is absolute. Therefore, we get the following upper bound for p,

p(x) ≤ 2K(z, w) =
∑

sj∈(1/2,1]

2π1/2Γ(sj − 1/2)

Γ(sj + 1)
uj(z)uj(w)x

sj +O(y + xy−1/2).

The optimal choice for y is when y = xy−1/2, that is for y = x2/3. A similar lower bound is

obtained by applying the above result with x replaced by x − y. Putting these two bounds

together, we get the desired estimation on p.

As ∆ is non-negative, all its eigenvalues are non-negative. Its first non-zero eigenvalue will

be denoted by λ1(Γ\H). The min-max principle applies here. We have

λ1(Γ\H) = inf
f∈E(Γ\H)

∫
Γ\H

|∇f |2dµ
∫
Γ\H

|f |2dµ ,

where E(Γ\H) is the space of all smooth functions f compactly supported in Γ\H and orthogonal

to the space of constant functions, i.e. such that
∫
Γ\H

fdµ = 0. It can be very hard to compute

the first eigenvalue for particular groups. It is less complicated to give non-trivial lower bounds.

For example, we can show that λ1(Γ\H) ≥ 1/4 if the corresponding eigenfunction vanishes on

the boundary of a normal polygon P .

Proposition. Suppose that f ∈ As(Γ\H), for some parameter s, is a solution to the Dirichlet

problem
{

∆f = −λf = s(s− 1)f in P

f = 0 on ∂P ,

where P is a normal polygon for Γ. Then, λ ≥ 1/4.

Proof. Clearly

−〈∆f, f〉 =
∫

P

|∇f |2 ≥
∫

P

|∂yf |2dxdy,

and using partial integration, we have that, for all x,
∫
f2y−2dy = 2

∫
f(∂yf)y

−1dy

so that after integrating over x, we get by Cauchy-Schwarz inequality that
∫

P

f2dµ ≤ 4

∫

P

(∂yf)
2dxdy.

Putting these two inequalities together yields

4λ 〈f, f〉 = −4 〈∆f, f〉 ≥ 〈f, f〉 ,

as desired.

The distribution of eigenvalues has been extensively studied. Though, the following conjec-

ture has been left unproved for over forty years.

Selberg’s eigenvalue conjecture. We have

λ1(Γ\H) ≥ 1/4

whenever Γ is a congruence subgroup.
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This is the best estimate possible on λ1 for congruence subgroups. Indeed, the continuous

spectrum of Γ(n) begins at 1/4.If true, this sharp inequality would have many applications to

classical number theory. This conjecture is equivalent to the Riemann hypothesis for the Selberg

zeta-function (defined in section 4.5), ZΓ, when Γ is a congruence subgroup. Indeed, one can

show that the non-trivial zeros of ZΓ are precisely the points 1/2± i
√
λ− 1/4, where λ ranges

over the discrete spectrum of Γ. If true, the conjecture would therefore yield the best error

term in the prime geodesic theorem (see section 4.5).

The conjecture can be interpreted in many other ways; it is a consequence of the more

general Ramanujan conjecture and is closely related to properties of expanding graphs.

Currently, the best known lower bound is 975/4096 ≃ 0.238. It was obtained in 2002 by Kim

and Sarnak (see appendix 2 in [12]), where bounds on parameters of automorphic cusp forms

on GL2/Q are explicitly related to lower bounds on λ1(Γ\H).

We can infer from the theory of integral operators, the following discrete resolution of ∆ in

C(Γ\H). See theorem 4.7 in [9] for example.

Spectral theorem. The automorphic Laplacian ∆ has pure point spectrum in C(Γ\H), i.e.

C(Γ\H) is spanned by cusp forms. The eigenspaces are finite dimensional. For any complete

system of cusp forms {uj}j, every f ∈ C(Γ\H) expands as

f(z) =
∑

j

〈f, uj〉uj(z),

converging in the norm topology. If, in addition, f ∈ B(Γ\H), then the series converges abso-

lutely and locally uniformly.

The eigenspaces corresponding to points in the continuous spectrum are fairly easy to de-

termine. As we have seen, the eigenfunctions are just Eisenstein series. However, a complete

system of cusp forms {uj}j can be very hard to construct.
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2 Farey sequence

2.1 Farey sets and growth of size

Definition. The Farey sequence (FQ)Q≥1 is an increasing sequence of finite sets of rational

numbers lying in (0, 1] defined for all Q ≥ 1 by

FQ = {p/q : 1 ≤ p ≤ q, q ≤ Q, (p, q) = 1},

where (p, q) stands for the greatest common divisor of p and q.

Hence, the greatest element of each set FQ is the integer 1. The first seven Farey sets are

given by

F1 = {1} |F1| = 1,

F2 =
{

1
2 , 1
}

|F2| = 2,

F3 =
{

1
3 ,

1
2 ,

2
3 , 1
}

|F3| = 4,

F4 =
{

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , 1
}

|F4| = 6,

F5 =
{

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 , 1
}

|F5| = 10,

F6 =
{

1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 , 1
}

|F6| = 12,

F7 =
{

1
7 ,

1
6 ,

1
5 ,

1
4 ,

2
7 ,

1
3 ,

2
5 ,

3
7 ,

1
2 ,

4
7 ,

3
5 ,

2
3 ,

5
7 ,

3
4 ,

4
5 ,

5
6 ,

6
7 , 1
}

|F7| = 18.

For Q ≥ 2, the set FQ is the union of FQ−1 with the set

{p/Q : 1 ≤ p ≤ Q, (p,Q) = 1}.

The latter set has cardinality ϕ(Q) , where ϕ is the usual Euler’s totient function. As a

consequence, |FQ| = |FQ−1|+ ϕ(Q) and since |F1| = 1, we deduce that8

|FQ| =
Q∑

q=1

ϕ(q).

To understand the distribution of Farey fractions, we need to study the asymptotic behavior

of |FQ| as Q tends to infinity. We do this this by using a straightforward application of the

Wiener-Ikehara tauberian theorem. This result has proved very useful to get growth estimations

of arithmetic functions9. Unfortunately this technique does not provide any upper bound on

the corresponding error term. However, as it is a standard and efficient tool in analytic number

theory, we will cover the elegant arguments leading to the determination of the asymptotic

growth of |FQ|. The generalized version of the theorem we will use is as follows.

Wiener-Ikehara theorem. Given a sequence of non negative real numbers an, n ≥ 1, and a

real number b > 0, consider the corresponding Dirichlet series f defined as

f(s) =

∞∑

n=1

an
ns
,

8Some mathematicians use a different convention and include 0 to the Farey sets. Using this definition, the

cardinality of each set would be shifted by 1. We decide to discard the value 0, as it has no arithmetic inverse.
9For example, it provides the most direct way to prove the prime number theorem.
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and assume that f converges absolutely for ℜ(s) > b, has a meromorphic continuation on

ℜ(s) ≥ b with a simple pole at s = b with residue R and is holomorphic elsewhere. Then

∑

n≤x

an ∼ Rxb/b

as x tends to infinity.

In order to apply the previous theorem for our purposes, we need the following identity that

can be found in [16] for example.

Proposition 2.1. The Dirichlet series

f(s) =

∞∑

n=1

ϕ(n)

ns

converges absolutely for ℜ(s) > 2, defining a holomorphic function in that region. Moreover,

for the same values of s, we have

f(s) =
ζ(s− 1)

ζ(s)
,

where ζ is the well-know Riemann zeta function.

Proof. Clearly ϕ(n) ≤ n and the series f converges absolutely in the region ℜ(s) > 2 as it is

dominated by ζ(s− 1). Fixing now s in the same region, we get that

ζ(s)f(s) =

(
∞∑

n=1

1

ns

)(
∞∑

m=1

ϕ(m)

ms

)
=

∞∑

ℓ=1

(
∑

mn=ℓ

ϕ(m)

)
1

ℓs

=

∞∑

ℓ=1


∑

m|ℓ

ϕ(m)


 1

ℓs
=

∞∑

ℓ=1

ℓ

ℓs
= ζ(s− 1),

where we used the well known arithmetic identity
∑
m|ℓ ϕ(m) = ℓ.

Putting the last two results together, we get the desired estimation.

Theorem 2.2. As Q tends to infinity, we have

|FQ| ∼
3Q2

π2
.

Proof. Since ζ does not vanish10 on ℜ(s) = 1, and has a simple pole at s = 1 with residue 1 and

no other poles on that line, the Dirichlet series f defined in the previous proposition extends

meromorphically on ℜ(s) ≥ 2. It has a simple pole at s = 2 with residue 1/ζ(2). Moreover, the

extended function f is holomorphic on ℜ(s) = 2, s 6= 2. The Wiener-Ikehara theorem implies

that

|FQ| ∼
Q∑

q=1

ϕ(q) ∼ Q2

2ζ(2)
,

and the proof follows from the famous equality ζ(2) = π2/6.

10Accurate determinations of zero-free regions for ζ have been extensively investigated. However, the Riemann

conjecture has not been proved yet. The interested reader will find in [24] more information about these matters,

as well as short proof of the stated property.
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There is an interesting probalistic interpretation of this result. If one defines pQ to be the

probability that two integers, chosen randomly in the set {1, 2, . . . , Q} , are coprime, then

lim
Q→∞

pQ = 6/π2 = 0.607927102 · · · .

There are better estimations on the growth of |FQ|, i.e., involving an explicit error term,

but they require a lot more technical machinery. For example, one can prove, using a Korobov-

Vinogradov exponential sum estimates, that the following sharp improvement holds,

|FQ|
Q2

=
3

π2
+O

[
(logQ)2/3(log logQ)4/3

Q

]
,

as Q tends to infinity. See [25] for a proof.

2.2 Distribution

Let’s now focus on the distribution of these fractions. We want to prove that they appear

uniformly at infinity, i.e. that, given 0 ≤ a ≤ b ≤ 1,

|{r ∈ FQ : a ≤ r ≤ b}|
|FQ|

∼ (b− a)

as Q tends to infinity. A natural and direct approach is to apply Weyl’s criterion for the

uniform distribution of a sequence. The statement is as follows.

Weyl’s criterion. Let (un)n≥1 be a sequence of real numbers contained in [0, 1]. The following

three conditions are equivalent,

• the sequence is equidistributed, i.e., for all 0 ≤ a ≤ b ≤ 1, we have

|{n ≤ N : a ≤ un ≤ b}|
N

∼ (b− a)

as N tends to infinity;

• for all m = 1, 2, . . .,

lim
N→∞

∑
n≤N e(mun)

N
= 0;

• for any continuous function g : [0, 1] → C,

lim
N→∞

∑
n≤N g(un)

N
=

∫ 1

0

g(t)dt.

Here, we use the standard notation e(x) = e2πix. To prove that Farey fractions are equidis-

tributed, we would like to check that the second condition in Weyl’s criterion holds. Therefore

we introduce a particular type of exponential sums.
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Definition. Let m and q be two positive integers. The corresponding Ramanujan sum is

denoted by cq(m) and defined by

cq(m) =
∑

1≤p≤q

(p,q)=1

e

(
mp

q

)
.

Therefore we need to investigate the asymptotic behavior of the sums

∑

r∈FQ

e(mr) =
∑

q≤Q

cq(m).

As we have already introduced and used the Wiener-Ikehara theorem, it is tempting to study

the analyticity of the generating function for Ramanujan sums given by the Dirichlet series

gm(s) =
∞∑

q=1

cq(m)

qs
.

We need the next lemma.

Lemma 2.3. Let m and n be positive integers. Then

∑

q|n

cq(m) =

{
n if n|m
0 otherwise.

Proof. For q a positive integer, let ξq = e(1/q). The q complex roots of the polynomial xq − 1

are precisely given by 1, ξq, ξ
2
q , . . . , ξ

q−1
q . The root ξq is called primitive because its integral

powers generate all the roots of the polynomial. It is an easy exercise to deduce that the set of

all the primitive roots is given by {ξpq : (p, q) = 1}. Therefore,

cq(m) =
∑

1≤p≤q

(p,q)=1

e

(
mp

q

)
=

∑

1≤p≤q

(p,q)=1

(ξpq )
m

is the sum of the m-th powers of the primitive q-th roots of unity. On the other hand, the

collection of the integral powers of ξn, i.e. ξ
a
n, a = 1, ..., n, coincides exactly with the collection

of the primitive roots of all the divisors of n. As a consequence,

∑

q|n

cq(m) =

n∑

a=1

ξman ,

since both sums are equal to the sum of the m-th powers of the primitive n-th roots of unity.

If n divides m, then ξmn = 1 and the right hand side of the preceding equation equals n. If n

does not divide m, then summing the geometric series implies that


∑

q|n

cq(m)



[
e
(m
n

)
− 1
]
= e

(m
n

)
[e(m)− 1] = 0,

and the conclusion follows since e(m/n) 6= 1.
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There are plenty of other beautiful arithmetic identities involving Ramanujan sums. The

interested reader is invited to take a look at [7], chapter XVII. For our purposes, the previous

lemma is all we need. We are now ready to factor nicely the Dirichlet series gm. Details can be

found in [24].

Proposition 2.4. Let m be a positive integer. The series gm is analytic on ℜ(s) > 1, and

satisfies, on the same region, the identity,

gm(s) =
σ1−s(m)

ζ(s)
,

where11 the function σ1−s(m) is the sum of the (1− s)-th powers of the divisors of m.

Proof. It is a straightforward rearrangement of the terms arising from the product of the series

ζ and gm. We have

ζ(s)gm(s) =

(
∞∑

n=1

1

ns

)(
∞∑

q=1

cq(m)

qs

)
=

∞∑

ℓ=1


∑

nq=ℓ

cq(m)


 1

ℓs

=
∞∑

ℓ=1


∑

q|ℓ

cq(m)


 1

ℓs
=
∑

ℓ|m

ℓ

ℓs
= σ1−s(m),

using previous lemma.

Theorem 2.5. The sequence of Farey fractions is equidistributed.

Proof. Fix m ≥ 1 an integer. From the last proposition, we see that gm extends to an holomor-

phic function on the whole of the region ℜ(s) ≥ 1 because ζ does not vanish on this region. We

deduce from the Wiener-Ikehara theorem that
∑

q≤Q

cq(m) = o(Q),

as Q tends to infinity, which clearly implies that
∑
r∈FQ

e(mr)

|FQ|
∼
π2
∑
q≤Q cq(m)

3Q2
→ 0,

as Q tends to infinity. The conclusion follows from Weyl’s criterion.

2.3 Correlations of Farey fractions

From our estimations, we see that actually
∑
r∈FQ

e(mr)

|FQ|
= o(1/Q),

as Q tends to infinity. This sharp bound is better than the one needed in order to verify the

second condition in Weyl’s criterion. This is an encouraging result and it suggests to investigate

further the distribution of Farey fractions. Our goal in the upcoming section is to discuss such

features and present recent studies concerning spacing statistics of the Farey fractions. We will

do so by giving an outline of the results in Florin Boca and Alexandru Zaharescu’s paper about

correlation measures [3]. We first recall some notions and explain our notation.

11Not to be confused with ’bold’ σ!
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Notation. Let I ⊂ R be a closed interval. Then I = [a, b] for some real numbers a ≤ b. We

denote by ℓ(I) = b− a its length and by

I + Z =
⋃

n∈Z

[a+ n, b+ n]

the collection of its Z-translated intervals. More generally, if µ ≥ 1 is an integer and A ⊂ Rµ,

we write

A+ Zµ =
⋃

n̄∈Zµ

(A+ n̄),

where A+ n̄ = {ā ∈ Rµ : ā− n̄ ∈ A}.

Definitions. Let ν ≥ 1 be an integer and consider F = (Fn)n≥1 an increasing sequence of

finite subsets Fn ⊂ [0, 1], n ≥ 1. The ν-level correlation measure of the sequence F is defined

on the set of boxes B ⊂ Rν−1 by

Rν(F , B) = lim
n→∞

RνFn
(B),

provided that the limit exists, where, for all finite subsets F contained in [0, 1], we set

RνF (B) =
1

|F |

∣∣∣∣
{
(fi)

ν
i=1 ∈ F ν : fi 6= fj for i 6= j, (f1 − f2, . . . , fν−1 − fν) ∈

B

|F | + Zν−1

}∣∣∣∣ .

The 2-level correlation measure is most usually referred to as the pair correlation measure.

Suppose that there is a measurable function gν(F) : Rν−1 → R ; x̄ 7→ gν(F , x̄) such that

Rν(F , B) =

∫

B

gν(F , x̄)dx̄,

for all boxes B ⊂ Rν−1. Then gν(F) is called the ν-level correlation function of F . Also, g2(F)

is rather called pair correlation function.

The rest of this section is dedicated to explaining results in [3] about the correlation measures

and functions of the Farey sequence F = (FQ)Q≥1. Although the proofs in the paper are

elementary, they are lengthy and technically heavy. Therefore, we only sketch the proof of the

main result here and detail its structure. Complete arguments can be found in [3].

Fix a box B in Rν−1. A natural approach to estimate Rν(F , B) is to approximate RνFQ
(B)

using a smoothing argument. Denote by χB the charasteristic function of the set B, and consider

the function

cQ(B) : Rν−1 → Z≥0 ; x̄ 7→ cQ(B, x̄) =
∑

r̄∈Zν−1

χB (|FQ|(x̄+ r̄)) .

Now, as |FQ| → ∞ as Q→ ∞, and B is bounded, we know that cQ(B) has image in {0, 1} for

Q large enough. Actually, it is easy to see that, for these precise values of Q,

cQ(B; x̄) =

{
1 if x̄ ∈ B

|FQ| + Zν−1

0 otherwise.
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As a consequence,

Rν(F , B) = lim
Q→∞

1

|FQ|
∑

r1,r2,...,rν∈FQ

ri 6=rj for i6=j

cQ(B, (r1 − r2, . . . , rν−1 − rν)).

As the numbers ri are all distinct, (r1 − r2, . . . , rν−1 − rν) has no zero coordinates, and

stays away from the origin. As a consequence we restrict our attention to boxes B that do not

contain the origin. Hence, χB can be uniformly approximated from above and below by smooth

functions HB,b,ǫ and HB,a,ǫ, ǫ > 0 with the following properties,

• HB,b,ǫ and HB,a,ǫ are compactly supported in sets of the type (0,Λ)ν−1,Λ > 0;

• HB,b,ǫ ≤ χB ≤ HB,a,ǫ, and

lim
ǫ→0

sup
x̄∈Rν−1

[χB(x̄)−HB,b,ǫ(x̄)] = 0 and lim
ǫ→0

sup
x̄∈Rν−1

[HB,a,ǫ(x̄)− χB(x̄)] = 0.

So, if HB,ǫ = HB,b,ǫ or HB,a,ǫ, the function

fQ(HB,ǫ, x̄) =
∑

r̄∈Zν−1

HB,ǫ (|FQ|(x̄+ r̄))

tends uniformly in x̄ ∈ Rν−1 to cQ(B, x̄) as ǫ tends to zero. Therefore, it turns out that it is

enough to study the asymptotic behavior of the quantities

SνQ(H) =
1

|FQ|
∑

r1,r2,...,rν∈FQ

ri 6=rj , i6=j

fQ(H, (r1 − r2, . . . , rν−1 − rν)).

The whole point in smoothing χB is that we have now enough regularity to apply efficient

analysis tools. We want to express SνQ(B,H) in a way that would reveal the distribution of

Farey fractions. It is obvious that if we replace H by its Fourier expansion, exponential sums

would appear. Rearranging the terms, we can get Ramanujan sums which are easy to handle

and exhibit the structure of Farey fractions. Doing this carefully, and using the identity12

cq(n) =
∑
d|(q,n) µ(q/d)d, where µ is the usual Mobius function, we get equation (2.11) in [3].

We will reproduce the statement hereunder, as in our opinion, this is the key identity leading to

the two main theorems in the paper. It is an easy enough expression to handle and it discloses

explicitly the arithmetic nature of the Farey fractions.

Proposition 2.6. For Q ≥ 1 an integer, set Ων−1
Q = {1, 2, . . . , Q}ν−1. Assume that H is a

smooth function with support in (0,Λ)ν−1, Λ > 0. Writing M(x) =
∑
n≤x µ(n), we have that

SνQ(H) =
1

|FQ|
∑

d̄∈Ων−1

Q

d1d2 · · · dν−1M

(
Q

d1

)
· · ·M

(
Q

dν−1

)
u
(
H, d̄

)
,

where

u
(
H, d̄

)
=

∑

ℓ̄∈Zν−1

a(d1ℓ1,d1ℓ1+d2ℓ2,...,d1ℓ1+···+dν−1ℓν−1)

∑

dν |d1ℓ1+···+dν−1ℓν−1

dνM

(
Q

dν

)
,

and

ar̄ =
1

|FQ|ν−1
Ĥ

(
r̄

|FQ|

)
, Ĥ(ȳ) =

∫

Rν−1

H(x̄)e(−x̄ · ȳ)dx̄.

12This identity results from lemma 2.3 after a Möbius inversion.
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To clarify the expression, we introduce a map T to reorder the indices involved in the above

summation. The action of T is as follows,

T (x1, x2, . . . , xν−1) = (x1 + x2 + · · ·+ xν−1, x2 + · · ·+ xν−1, . . . , xν−2 + xν−1, xν−1).

Inverting this map and using Poisson summation formula, we get after a lot of tedious and

brute force calculations theorem 1 in [3]. Here is its statement.

Theorem 2.7. All ν-level correlation measures of the Farey sequence F = (FQ)Q≥1 exist.

Moreover, for any box B ⊂ (0,Λ)ν−1,

Rν(F , B) = 2
∑

ā,b̄∈Z
ν−1

(ai,bi)=1, 1≤i≤ν−1

vol
[
Ωā,b̄,Λ ∩ T−1

ā,b̄
(TB)

]
.

In the above finite sum,

Tā,b̄(x, y) =
3

π2

(
b1

y(a1y − b1x)
, . . . ,

bν−1

y(aν−1y − bν−1x)

)
,

and

Ωā,b̄,Λ =

{
(x, y) ∈ R2 : 0 < x ≤ y ≤ 1, y ≥ 3

π2Λ
, 0 < aiy − bix ≤ 1, 1 ≤ i ≤ ν − 1

}
.

This result is impressive as it is not often the case that a sequence of interest has a workable

correlation measure!

We can say even more about the case ν = 2. The reason for this is that the expansion in

proposition 1.6. simplifies nicely. We easily compute that

S2
Q(H) =

1

|FQ|
∑

d1≤Q

d1M

(
Q

d1

)∑

ℓ∈Z

ad1ℓ
∑

d2|d1ℓ

d2M

(
Q

d2

)

=
1

|FQ|
∑

d1,d2≤Q

d1d2M

(
Q

d1

)
M

(
Q

d2

)∑

ℓ∈Z

aℓ[d1,d2].

Applying more or less the same technical machinery, one can get theorem 2 in [3].

Theorem 2.8. The pair correlation function of the Farey sequence F = (FQ)Q≥1 is given by

g2(F , x) =
6

π2x2

∑

1≤k<π2x/3

ϕ(k) log

(
π2x

3k

)
.

The function is such that

g2(F , x) = 1 +O
(
1

x

)
,

as x tends to infinity.

To conclude this section, we mention equivalent formulations of the Riemann hypothesis in

terms of distribution properties of the Farey fractions. Set r(Q, k) to be the k-th element in

FQ, 1 ≤ k ≤ |FQ| when the elements are increasingly ordered. Define

d(Q, k) =

∣∣∣∣r(Q, k)−
k

|FQ|

∣∣∣∣ .
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Fig. 1 : Graph of the pair correlation function g2(F) of the Farey sequence

The decay13 of d(Q, k) measures how strong is the uniform distribution of the Farey sequence.

Indeed, d(Q, k) is the absolute difference of the k-th term of the Q-th Farey set and the k-th

number of the set containing |FQ| points evenly distributed in [0, 1]. The mathematicians

Franel and Landau proved that the Riemann conjecture is equivalent to the estimation

∑

k≤|FQ|

d(Q, k) ≪ǫ Q
1/2+ǫ,

for all ǫ > 0, as Q tends to infinity, which is itself equivalent to

∑

k≤|FQ|

d(Q, k)2 ≪ǫ
1

Q1−ǫ
,

for all ǫ > 0, as Q tends to infinity.

2.4 Good’s result

The aim of this section is to show how one can deduce distribution properties about Farey

fractions following a different approach, using results arising from the theory of automorphic

forms and spectral methods.

Throughout the section, we will assume that Γ ⊂ SL2(R) is a cofinite discrete group. The

bold letters a,b, . . . will refer to cusps for Γ.

Definition. Let I and J be two closed intervals contained in [0, 1]. Given x ≥ 0, we define the

integer

a#b(I, J ;x)

to be the number of double cosets Γaσaγσ
−1
b

Γb in Γ such that

γ(∞) ∈ I + Z, −γ−1(∞) ∈ J + Z and 0 6= |c| ≤ x,

13Intentionally vague.
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for γ =

(
a b

c d

)
.

As γ(∞) = a/c, and γ−1(∞) = −d/c whenever c 6= 0, and since B = σ−1
a

Γaσa, we see that

both

γ(∞) mod 1, and γ−1(∞) mod 1

do not depend on the choice of the double coset representative γ.

Good’s result p.119 in [6] transposed to the parabolic case yields the following theorem.

Theorem 2.9. Suppose I, J ⊂ [0, 1] are given closed intervals. Then, as x tends to infinity,

we have

a#b(I, J ;x) ∼
ℓ(I)ℓ(J)x2

π vol(Γ\H)
.

The corollary stated in [6] is actually much more general. But as it stands in [6], the

notation is slightly confusing and since we only need to deal with cusps, we decided to simplify

the statement.

Sketch of proof. To prove this theorem, Good considers generalized Kloosterman sums (equa-

tion 5.10 p.43 in [6]) that turn into usual Kloosterman sums in the parabolic case. Following

Good’s definition, we write for three integers m,n and ν ≥ 1,

aSb(m,n, ν) =
∑

γ

e
[
mγ(∞)− nγ−1(∞)

]
=
∑

γ

e

(
am+ dn

c

)
,

where γ runs through a complete set of representatives γ for Γ∞\σ−1
a

Γσb/Γ∞ such that |c| = ν.

For instance, if Γ = SL2(Z) is the modular group and a = b = ∞, using theorem 2.10, one can

show that

∞S∞(m,n, ν) = S(m,n, ν) =
∑

1≤a<c=ν
ad≡1 mod c

e

(
am+ dn

c

)
.

The key result in order to prove the stated theorem is the following asymptotic spectral decom-

position,

∑

ν≤x

aSb(m,n, ν) =
δ0mδ0nx

2

π vol(Γ\H)
+ 2

∑

1/2<sj<1

x2sjB(3/2, sj − 1/2)αja(m)αjb(n) +O(x4/3),

as x tends to infinity, where B is the Beta function, defined by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and for j ≥ 0, the complex coefficients αja(n), n ∈ Z are uniquely determined as follows.

The Laplacian in L2(Γ\H) has a non-empty discrete spectrum {sj(1 − sj) : j ≥ 0} and a

corresponding maximal system {ej : j ≥ 0} of square integrable orthonormal eigenfunctions

ej . The spectral expansion of ej determines the numbers αja(n). We have

ej [σa(z)] =
∑

n∈Z

αja(n)Ua(z, sj , n),
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where Ua(z, s, n) are known special functions (see equation 4.7 p.28 in [6]).

Theorem 2.9. then follows from Weyl’s criterion applied to the given expansion of∑
ν≤x aSb(m,n, ν).

Now, the idea is to look at Γ = SL2(Z) to get some information about Farey fractions.

The group SL2(Z) has only one cusp at infinity, that we denote ∞. As σ∞ is the identity

transformation and as

Γ∞ =

{(
1 b

0 1

)
: b ∈ Z

}
= B,

we seek some information about

B\SL2(Z)/B

in order to compute explicitly ∞#∞.

This information can be obtained from [9], theorem 2.7. The next theorem is a simplified

version of it.

Theorem 2.10. Assume Γ = SL2(Z). Then

Γ∞\Γ/Γ∞ = Γ∞ ∪
∞⋃

c=1

⋃

d mod c

Γ∞ωd,cΓ∞,

where ωd,c =

(
ad,c bd,c

c d

)
∈ SL2(Z). The union is disjoint and does not depend on the choice

of the top two entries ad,c and bd,c. Moreover, ad,c mod c is also independent of that choice.

Definition. If r ∈ FQ, then r = p/q with (p, q) = 1 and 1 ≤ q ≤ Q. Then there exists a

unique 1 ≤ p∗ ≤ q such that pp∗ ≡ 1 mod q. We define the arithmetic inverse of r to be

r∗ = p∗/q ∈ FQ.

It is easy to check that the function FQ → FQ ; r 7→ r∗ is an involution. We are now ready

to prove our result.

Theorem 2.11. Let I and J be two closed intervals contained in [0, 1]. Then,

|{r ∈ FQ : r ∈ I, r∗ ∈ J}| ∼ 3ℓ(I)ℓ(J)Q2

π2
,

as Q tends to infinity, or equivalently,

|{r ∈ FQ : r ∈ I, r∗ ∈ J}|
|FQ|

∼ ℓ(I)ℓ(J),

as Q tends to infinity.

Proof. The decomposition theorem allows us to compute ∞#∞ explicitly. We have

∞#∞(I, J ;x) =

∣∣∣∣
{
(c, d mod c) : c, d ∈ Z, (c, d) = 1, 1 ≤ c ≤ x,

ad,c
c

∈ I + Z,
d

c
∈ J + Z

}∣∣∣∣

=

∣∣∣∣
{
(c, d) : c, d ∈ Z, (c, d) = 1, 1 ≤ c ≤ x, 1 ≤ d ≤ c,

a

c
∈ I,

d

c
∈ J

}∣∣∣∣ ,
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where a is the unique integer such that 1 ≤ a ≤ c and a ≡ ad,c mod c. This is well defined

since both d and ad,c are determined modulo c. On the other hand,

ad ≡ 1 mod c, so that
(a
c

)∗
=

(
d

c

)
.

From all this, we deduce that, given Q ≥ 1 an integer,

∞#∞(I, J ;Q) = |{r ∈ FQ : r ∈ I, r∗ ∈ J}| .

The conclusion is an immediate application of Good’s result on the surface SL2(Z)\H whose

volume is π/3.

Corollary 2.12. The sequence of Farey fractions is equidistributed.

Proof. It is a direct application of previous theorem with J = [0, 1].

A more general interpretation of the result is that the distributions of Farey fractions and

their inverses are uniform and independent.
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3 Multiplier systems

3.1 Definitions and properties

We introduce multiplier systems of complex weight following the discussion in [10]. Concep-

tually, a multiplier system is a factor associated with some modular forms that transform in

a certain way under the action of a given group. It can be viewed as a generalized character,

in the sense that it verifies multiplicative conditions and it involves an extra parameter, the

weight14. Equivalently, multiplier systems can be defined independently of modular forms. We

consider this second approach first.

For z 6= 0,

log z = ln |z|+ i arg z, −π < arg z ≤ π,

is the principal branch of the complex logarithm. It is such that z = exp(log z), z 6= 0. This

branch of logarithm allows us to define complex powers for z 6= 0. Throughout the remaining

of the section, we write

zs = exp(s log z),

whenever s ∈ C and z 6= 0.

For z ∈ C, and α =

(
a b

c d

)
∈ SL2(R), we set jα(z) = cz + d. This function is such that

jαβ(z) = jα(βz)jβ(z),

for all α, β ∈ SL2(R), and z ∈ H.

Definition. For α, β ∈ SL2(R), define

ω(α, β) =
1

2π
[− arg jαβ(i) + arg jα(βi) + arg jβ(i)] .

The choice of i is arbitrary. Indeed,

ω(α, β)(z) =
1

2π
[− arg jαβ(z) + arg jα(βz) + arg jβ(z)] = ω(α, β)(i) = ω(α, β)

for all z ∈ H. The reason for this is that |ω(α, β)(z) − ω(α, β)(i)| < 1 and ω(α, β)(z) is an

integer15. Actually, as |ω(α, β)(z)| < 3/2, we see that ω(α, β) takes values in {−1, 0, 1}. By

examining numerous cases, we can get useful identities.

Proposition 3.1. Let α, β, γ, δ ∈ SL2(R). Suppose that δ ∈ B, i.e., δ =

(
1 d

0 1

)
, for some

14Warning : for non integral weights, a multiplier system ceases to be strictly multiplicative. However, a

multiplier system of integral weight is just a unitary character satisfying a consistency condition.
15We have

e[ω(α, β)(z)] = jα(βz)jβ(z)jαβ(z)
−1 = 1,

so that ω(α, β) : H → Z and since ω(α, β) is continuous, it is also constant.
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d ∈ R. Then, ω(α, β) = ω(β, α), if αβ = βα, and

ω(αβ, γ) + ω(α, β) = ω(α, βγ) + ω(β, γ);

ω(δα, β) = ω(α, βδ) = ω(α, β);

ω(αδ, β) = ω(α, δβ);

ω(α, β) = ω(α−1δα, β) + ω(α, α−1δαβ);

ω(α, δ) = ω(δ, α) = 0;

ω(αδα−1, α) = ω(α, α−1δα) = 0.

There are many more properties involving ω(α, β), but we don’t really need them in the

sequel.

Definition. For any real number m, wm, the factor system of weight m, is defined by

wm(α, β) = e[mω(α, β)],

for all α, β ∈ SL2(R).

Since ω(α, β) is an integer, wm = wm+Z, and wZ = 1. For α ∈ SL2(R), the corresponding

slash operator, |mα, acts on functions f : H → C by

f|mα(z) = jα(z)
−mf(αz).

It follows directly from the definition of wm that

wm(α, β)jαβ(z)
m = jα(βz)

mjβ(z)
m,

which implies that

f|mαβ = wm(α, β)f|mα|mβ , ∀α, β ∈ SL2(R).

Definition. Let Γ ⊂ SL2(R) be a discrete group containing −I and m a real number16.

A multiplier system of weight m for Γ is a function ϑm : Γ → S1 such that17 ϑm(−I) =

e(−m/2) and
ϑm(αβ) = wm(α, β)ϑm(α)ϑm(β),

for all α, β ∈ Γ.

3.2 Automorphic forms of non integral weights

From now on, Γ ⊂ SL2(R) is a discrete group that contains −I and m is a given real number.

There are plenty of groups Γ with no corresponding multiplier systems of weightm. For example

(see [10] p.42), if Γ contains no parabolic elements, then Γ has a multiplier system of weight m

if and only if m ∈ uΓZ, where

uΓ =
4π

vol(Γ\H)[n1, n2, . . . , nℓ]
,

16It is possible to consider multiplier systems for groups not containing −I, but dealing with this extra case

would unnecessarily complicate our discussion.
17The first condition is sometimes omitted in the definition because one can show that the other acceptable

value for ϑm(−I), −e(−m/2), is not compatible with the second condition.
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n1, n2, . . . , nℓ are orders of elliptic generators of Γ, and [n1, n2, . . . , nℓ] is the least common

multiple of these orders. In fact, when Γ contains a free subgroup of finite index, one can

construct a multiplier system for Γ by appropriately choosing the values taken by the system

on each of the generators of the free group, and extending it to the whole of the free group.

However in much more general contexts, the existence of multiplier systems of non-integral

weights is a deep fact.

From the preceding discussion, it is easy to see (cfr. proposition 2.1. in [8]) that a multiplier

system of weightm for Γ, ϑm, exists if and only if one can find a non-zero meromorphic function

f : H → C for which the slash operators act by

f|mγ = ϑm(γ)f, ∀γ ∈ Γ.

We write A(Γ\H, ϑm) for the set of functions f : H → C that transform as above, and

L2(Γ\H, ϑm) ⊂ A(Γ\H, ϑm)

the subset of all dµ-square summable functions. We consider a last crucial set of functions.

Definition. Given a multiplier system ϑm, we denote by

Mm(Γ, ϑm) ⊂ A(Γ\H, ϑm),

the linear space of automorphic forms for Γ with multiplier ϑm of weight m.

As in the integral weight case, automorphic stands for holomorphic in H and at every cusp.

As the action of the slash operator twists the function with a multiplier, we need to explain our

meaning of being holomorphic at a cusp a. If σa is the corresponding scaling matrix, then the

stability group Γa is generated by γa and −γa, where

γa = σaβσa
−1, β =

(
1 1

0 1

)
.

Since |ϑm(γa)| = 1, there exists 0 ≤ ka < 1 such that ϑm(γa) = e(ka). Given f ∈ A(Γ\H, ϑm),

if we set

ga(z) = e(−kaz)f|mσa
(z),

we compute that, using jβ(z) = 1,

ga(βz) = e(−kaβz)f|mσa
(βz) = e[−ka(z + 1)]jσa

(βz)−mf(σaβz)

= e(−kaz)e(−ka)jσa
(βz)−mf(γaσaz)

= e(−kaz)e(−ka)ϑm(γa)f(σaz)jγa(σaz)
mjσa

(βz)−m

= e(−kaz)f|mσa
(z)jσa

(z)mjγa(σaz)
mjσa

(βz)−m

= ga(z)e[m(ω(γa, σa)− ω(γa, β))]

= ga(z),

where we used proposition 3.1 to get the last equality. As a consequence we can write ga(z) =

ha[e(z)], for some function ha : C\{0} → C. We then say that f ∈ A(Γ\H, ϑm) is holomorphic
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at a cusp a for Γ if ha can be extended to the whole plane so that it is holomorphic at the

origin.

As we mentioned before, it is not obvious at all that there are some non-empty Mm(Γ, ϑm)

spaces. We give two examples that arise from the theory of modular forms and elliptic curves.

The first one is obtained from the discriminant function ∆ defined on the complex upper

half-plane by the infinite product

∆(z) = (2π)12e(z)

∞∏

n=1

[1− e(nz)]24.

It is well known that ∆ is a cusp form of weight 12 and that it does not vanish anywhere in H.

As a consequence, the Dedekind η-function,

η : H → C ; z 7→ η(z) = (2π)−1/2∆(z)1/24 = e
( z
24

) ∞∏

n=1

[1− e(nz)]

is well defined. It was introduced by Dedekind himself in 1877. The next theorem shows that η

has indeed a proper multiplier system. Details can be found in [1] and more will be said about

this function in the next chapter about linking numbers of modular knots.

Theorem 3.2. The Dedekind η-function is an automorphic18 form of weight 1/2 for the mod-

ular group. More precisely, for all γ =

(
a b

c d

)
∈ SL2(Z), we have

η|1/2γ = ϑ(γ)η,

where ϑ(−γ) = e(1/4)ϑ(γ) for any γ, and

ϑ(γ) =

{
e
(
b
24

)
if c = 0;

e
(
a+d
24c − s(d,c)

2 − 1
8

)
if c > 0.

In the preceding theorem, s(d, c) is a classical Dedekind sum. The reader will find a detailed

definition and a more advanced discussion about it in the next chapter. Another closely related

function is the famous θ-function, usually defined19 by its Fourier expansion in the complex

half-plane H as

θ(z) =

∞∑

n=−∞

e(n2z).

One can prove (see [10]) that θ is an automorphic form of weight 1/2 for the group Γ0(4). These

two examples emphasize the importance of multiplier systems and the need to understand them.

18It is actually a cusp form!
19An alternative definition is given by the Jacobi product representation,

θ(z) =
∞∏

n=1

[1− e(nz)][1 + e(nz + z/2)].
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3.3 Construction of a new series

This section is about on-going research. Our results seem promising enough to be included in

the present section. It is sensible to first motivate our investigations. The idea is to adapt the

elegant method in Risager & Truelsen’s paper [19] to prove that the angles ϕ(γz) between the

tangent line to the [i, γz] hyperbolic geodesic at point i and the line iR are equidistributed mod

π when γ ranges20 over a discrete cofinite subgroup Γ of SL2(R) and z ∈ H is fixed.

In [19], the authors introduce the series Sn, defined for n ∈ Z, z ∈ H and ℜ(s) > 1, by

Sn(z, s) =
∑

γ∈Γ

e[nϕ(γz)/π]

cosh[d(i, γz)]s
.

Theorem 6.1 in [22] yields a good enough estimation to show that Sn is well defined, that

z 7→ Sn(z, s) is in L2(Γ\H) for all such s and that it is holomorphic in its s-variable. In order

to use Weyl’s criterion (see section 2.2), and prove the uniform distribution of the angles, we

need to show that

lim
ρ→∞

1

ρ

∑

γ∈Γ

cosh[d(i,γz)]≤ρ

e[nϕ(γz)/π] = 0,

for n 6= 0. The main point in dealing with the series Sn is that the nature of its pole at s = 1

is closely related to such estimations via a modified version of the Wiener-Ikehara tauberian

theorem (section 2.1). To achieve this, the strategy used in [19] is to look at the action of the

hyperbolic Laplacian on Sn in order to extend meromorphically the series on ℜ(s) > 1 − ǫ for

some ǫ > 0 thanks to known analytical properties of the resolvent.

Our plan is to mimic this approach. We want to define an appropriate series and look at how

this series transforms under the action of a certain differential operator. This would help us to

extend the considered series to a larger domain and a tauberian theorem could yield estimations

on averaging sums for a given multiplier system.

Remark. Before doing so, we should briefly mention another direction that we investigated

although it proved fruitless. Just as we did for Farey fractions, we wondered whether something

could be said about correlation measures for the sequence of angles. Our best hope was to

get some information about the pair correlation measure, which requires a careful study of

expressions for the difference of two angles. Here is the easiest such expression that we could

find. For z, z0 ∈ H and γ, γ′ ∈ SL2(R), we have

sin2 [ϕ(γz)− ϕ(γ′z0)] =
Λ[u(i, γz), u(i, γ′z0), u(γz, γ

′z0)]

u(i, γz)u(i, γ′z0)[1 + u(i, γz)][1 + u(i, γ′z0)]
,

where Λ is the three variables symmetric real function defined by

Λ(a, b, c) = abc+
ab+ bc+ ca

2
− a2 + b2 + c2

4
,

and u is the usual change of variable 2u(w,w′)+1 = cosh[d(w,w′)]. This equality is rather ugly

and we could not exploit it to approximate, asymptotically as ρ tends to infinity, the numbers

#

{
(γ, γ′) ∈ Γ2 : max{d(i, γz), d(i, γ′z0)} < ρ, γ 6= γ′, ϕ(γz)− ϕ(γ′z0) ∈

I

N(z; ρ)N(z0; ρ)
+ Z

}
,

20We order these angles with respect to the hyperbolic cosine of the hyperbolic distance from i to γz.
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where N(z; ρ) = #{γ ∈ Γ : d(i, γz) < ρ} and I ⊂ [0, 1] is a fixed interval. The main difficulty

is that the intervals I/N(z; ρ)N(z0; ρ) are shrinking as ρ increases and the methods used in

[19] for instance are not designed for this purpose. Before closing this remark, we would like

to mention an easy olympiad-type problem composed a few years ago and which popped in my

mind as I worked out explicitly Λ. It might entertain you on a train journey:

Let a, b and c be three positive real numbers. Show that there is a triangle with sides of

lengths a, b and c if and only if

v(a)2 + v(b)2 + v(c)2

2
≤ v(a)v(b) + v(b)v(c) + v(c)v(a),

where v(x) = x2.

Written in this form, we see how similar the expression for Λ is. We deduce from our equality,

that if a, b and c are the hyperbolic lengths of a hyperbolic triangle sides, then

u(a)2 + u(b)2 + u(c)2

2
≤ u(a)u(b) + u(b)u(c) + u(c)u(a) + u(a)u(b)u(c)/2,

where u(x) = 2[cosh(x) − 1] ∼ x2, as x tends to zero. However, this is not an if and only if

statement.

Back to business... We now introduce a very important operator. When functions in

A(Γ\H, ϑm) are lifted to SL2(R), the Casimir operator on SL2(R) becomes

∆m = y2
(
∂2x + ∂2y

)
− 2iym∂x.

This operator has many interesting properties and its spectral resolution on L2(Γ\H, ϑm) plays

a very important role in the theory of multiplier systems.

Theorem 3.3. Let m be a real number. For any function f ∈ C2(H,C) and γ ∈ SL2(R), we

have

∆m

[
f(γz)

(
cz̄ + d

cz + d

)m]
=

(
cz̄ + d

cz + d

)m
(∆mf)(γz).

Moreover, if Γ is a discrete subgroup of SL2(R) and ϑm is a multiplier system of weight m for

Γ, the second order differential operator ∆m is self-adjoint on a dense subset of L2(Γ\H, ϑm).

The proof of the first property is straightforward, and the second one was studied by Roelcke

in [20]. Let’s define a new function that will be later automorphized in order to get the desired

series.

Definition. Let m be real and s a complex number. For γ =

(
a b

c d

)
, define

[γ,m, s] : H → C ; z 7→ [γ,m, s](z) = (cz + d)−m[cosh d(i, γz)]−s.

In order to work out the Laplacian ∆m of [γ,m, s] we need some useful expansions for

cosh d(i, γz) and its z and z̄-derivatives.
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Lemma 3.4. Whenever γ ∈ SL2(R) and z ∈ H, we have

cosh d(i, γz) =
(ax+ b)2 + (cx+ d)2 + (a2 + c2)y2

2y
=

|cz + d|2 + |az + b|2
2y

and

4y2∂z[cosh d(i, γz)]∂z̄[cosh d(i, γz)] = cosh2 d(i, γz)− 1.

Proof. The first equations in the general introduction about hyperbolic geometry show that

cosh d(i, γz) = 1 + 2u(i, γz) = 1 +
|i− γz|2

2ℑ(i)ℑ(γz) .

As we mentioned before, ℑ(γz) = y|cz + d|−2 and hence

cosh d(i, γz) = 1 +

∣∣∣i− az+b
cz+d

∣∣∣
2

2y
|cz+d|2

= 1 +
|i(cz + d)− (az + b)|2

2y

=
2y + (−cy − ax− b)2 + (cx+ d− ay)2

2y

=
2y(1 + bc− ad) + 2x(ab+ cd) + (x2 + y2)(c2 + a2) + b2 + d2

2y

=
(ax+ b)2 + (cx+ d)2 + (a2 + c2)y2

2y
,

as det(γ) = ad− bc = 1. Remember that ∂z = (∂x − i∂y)/2 and ∂z̄ = (∂x + i∂y)/2 so that

4y2∂z[cosh d(i, γz)]∂z̄[cosh d(i, γz)] = y2 |∂x[cosh d(i, γz)] + i∂y[cosh d(i, γz)]|2 .

Since

∂x[cosh d(i, γz)] =
ux+ v

y
and ∂y[cosh d(i, γz)] =

u(y2 − x2)− w − 2xv

2y2
,

where

u = a2 + c2, v = ab+ cd, and w = b2 + d2,

we get that

4y2∂z[cosh d(i, γz)]∂z̄[cosh d(i, γz)] = (ux+ v)2 +
[u(y2 − x2)− w − 2xv]2

4y2

= v2 − uw +

[
w + 2vx+ u(x2 + y2)

2y

]2
,

after some tedious algebraic work. Note that the term between brackets is precisely equal to

cosh d(i, γz) by the first part of the lemma, and because

v2 − uw = (ab+ cd)2 − (a2 + c2)(b2 + d2) = −(ad− bc)2 = −1,

the conclusion follows.

Lemma 3.5. For all z ∈ H,

[∆m + s(1− s)][γ,m, s](z) = −s(s+ 1)[γ,m, s+ 2](z) + 2iymc(m+ s)[γ,m+ 1, s](z)

+2ims(ax+ b)[γ,m+ 1, s+ 1](z).
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Proof. Recall Fay’s decomposition [4] for the operator ∆m,

∆m = Lm+1Km +m(1 +m),

where z = x+ iy, Km = (z − z̄)∂z +m, and Lm+1 = (z̄ − z)∂z̄ − (m+ 1). We compute

Km[γ,m, s](z) = (z − z̄)∂z[γ,m, s] +m[γ,m, s]

Now,

∂z[γ,m, s](z) = ∂z
[
(cz + d)−m[cosh d(i, γz)]−s

]

= −mc(cz + d)−(m+1)[cosh d(i, γz)]−s

−s(cz + d)−m[cosh d(i, γz)]−(s+1)∂z[cosh d(i, γz)]

= −mc[γ,m+ 1, s](z)− s[γ,m, s+ 1](z)∂z[cosh d(i, γz)].

Therefore,

Km[γ,m, s](z) = −mc(z− z̄)[γ,m+1, s](z)−s(z− z̄)[γ,m, s+1](z)∂z[cosh d(i, γz)]+m[γ,m, s].

Similarly,

Lm+1[γ,m, s](z) = (z̄ − z)∂z̄[γ,m, s](z)− (m+ 1)[γ,m, s](z).

Now,

∂z̄[γ,m, s](z) = −s(cz + d)−m[cosh d(i, γz)]−(s+1)∂z̄[cosh d(i, γz)]

= −s[γ,m, s+ 1](z)∂z̄[cosh d(i, γz)],

so that

Lm+1[γ,m, s](z) = −s(z̄ − z)[γ,m, s+ 1](z)∂z̄[cosh d(i, γz)]− (m+ 1)[γ,m, s](z).

Putting these together, we get that

∆m[γ,m, s](z) = −mcLm+1 {(z − z̄)[γ,m+ 1, s](z)}
−sLm+1 {(z − z̄)[γ,m, s+ 1](z)∂z[cosh d(i, γz)]}
−sm(z̄ − z)[γ,m, s+ 1](z)∂z̄[cosh d(i, γz)]

= −mc(z̄ − z)∂z̄ {(z − z̄)[γ,m+ 1, s](z)}
−s(z̄ − z)∂z̄ {(z − z̄)[γ,m, s+ 1](z)∂z[cosh d(i, γz)]}
+m(m+ 1)c(z − z̄)[γ,m+ 1, s](z)

+(m+ 1)s(z − z̄)[γ,m, s+ 1](z)∂z[cosh d(i, γz)]

−sm(z̄ − z)[γ,m, s+ 1](z)∂z̄[cosh d(i, γz)]

= mc(z̄ − z)[γ,m+ 1, s](z) +mc(z − z̄)2∂z̄[γ,m+ 1, s](z)

+s(z̄ − z)[γ,m, s+ 1](z)∂z[cosh d(i, γz)]

+s(z̄ − z)2[γ,m, s+ 1](z)∂z̄∂z[cosh d(i, γz)]

+s(z̄ − z)2∂z̄[γ,m, s+ 1](z)∂z[cosh d(i, γz)]

+m(m+ 1)c(z − z̄)[γ,m+ 1, s](z)

+(m+ 1)s(z − z̄)[γ,m, s+ 1](z)∂z[cosh d(i, γz)]

−sm(z̄ − z)[γ,m, s+ 1](z)∂z̄[cosh d(i, γz)]
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After expanding further the derivatives of [γ,m, s] and noting that (z̄− z) = −2iy, we get that

∆m[γ,m, s](z) = −2iymc[γ,m+ 1, s](z) + 4smcy2[γ,m+ 1, s+ 1](z)∂z̄[cosh d(i, γz)]

−2iys[γ,m, s+ 1](z)∂z[cosh d(i, γz)]

−4y2s[γ,m, s+ 1](z)∂z̄∂z[cosh d(i, γz)]

+4y2s(s+ 1)[γ,m, s+ 2](z)∂z̄[cosh d(i, γz)]∂z[cosh d(i, γz)]

+2iym(m+ 1)c[γ,m+ 1, s](z)

+2iy(m+ 1)s[γ,m, s+ 1](z)∂z[cosh d(i, γz)]

+2iysm[γ,m, s+ 1](z)∂z̄[cosh d(i, γz)].

Using the preceding lemma, we see that

4y2[γ,m, s+ 2](z)∂z̄[cosh d(i, γz)]∂z[cosh d(i, γz)] = [γ,m, s](z)− [γ,m, s+ 2](z).

Moreover, the operator 4y2∂z̄∂z = ∆ is the hyperbolic Laplacian which commutes with the

SL2(R)-action, so that

4y2∂z̄∂z[cosh d(i, γz)] = [∆(2u+ 1)](γz),

where u(z) = (cosh d(i, z)− 1)/2. Using equation 1.21 in [9], we see that this last expression is

equal to 2 cosh d(i, γz).

These identities yield, after simplifying and rearranging the equality above,

∆m[γ,m, s](z) = s(s− 1)[γ,m, s](z)− s(s+ 1)[γ,m, s+ 2](z)

2iym2c[γ,m+ 1, s](z) + 4smcy2[γ,m+ 1, s+ 1](z)∂z̄[cosh d(i, γz)]

2iysm[γ,m, s+ 1](z)(∂z + ∂z̄)[cosh d(i, γz)].

The essential part of calculus is now done. But the right hand side is not elegantly written. To

get rid of the partial derivatives, we notice that

a = a(ad− bc) = d(a2+ c2)− c(cd+ab) = du−vc and b = d(ab+ cd)− c(b2+d2) = dv− cw,

so that

ax+ b = (du− vc)x+ (dv − cw)

= − c
2
[w + 2vx+ u(x2 + y2)] + (cx+ d+ icy)(ux+ v)− icy(ux+ v)

+
c

2
[u(y2 − x2)− w − 2xv]

= −yc cosh d(i, γz) + y(cz + d)(∂z + ∂z̄)[cosh d(i, γz)]− 2icy2∂z̄[cosh d(i, γz)].

Adding and subtracting the quantity 2iymsc[γ,m+1, s] to ∆m[γ,m, s](z) yields the following

synthetic identity, easier to handle than the rather lengthy expression we had obtained so far,

∆m[γ,m, s](z) = s(s− 1)[γ,m, s](z)− s(s+ 1)[γ,m, s+ 2](z)

+2iymc(m+ s)[γ,m+ 1, s](z) + 2ims(ax+ b)[γ,m+ 1, s+ 1](z),

which is the stated equality.
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Definition. Let m ≤ 0 be a real number and ϑm be a multiplier system of weight m for Γ. We

define for ℜ(s) > 1−m/2

Gm(z; s) =
∑

γ∈Γ

ϑm(γ)

(cz + d)m[cosh d(i, γz)]s
.

The series Gm converges absolutely in the half-plane ℜ(s) > 1−m/2 and converges locally

uniformly in H to a bounded function, in particular it is in L2(Γ\H, ϑm). To show this, we use

again the estimation given by theorem 6.1 in [22] and the inequality

|cz + d| ≤
(
|cz + d|2 + |az + b|2

)1/2
=
√
2y[cosh d(i, γz)]1/2,

that follows from lemma 2.4.

The transformation rule is easily obtained from the identity

jα(γz)
−mϑm(α) = jαγ(z)

−mϑm(αγ)jγ(z)
mϑm(γ),

which follows from the multiplicative properties of multiplier systems and the functions j, and

the fact that ϑ−1
m = ϑm. We find that

Gm(γz; s) =
∑

α∈Γ

ϑm(α)jα(γz)
−m[cosh d(i, αγz)]−s

= jγ(z)
mϑm(γ)

∑

α∈Γ

jαγ(z)
−mϑm(αγ)[cosh d(i, αγz)]−s

= jγ(z)
mϑm(γ)

∑

β∈Γ

jβ(z)
−mϑm(β)[cosh d(i, βz)]−s

= ϑm(γ)(cz + d)mGm(z; s).

Also, the previous lemmas directly yield the following proposition.

Proposition 3.6. Let m ≤ −1 be a real number and ϑm be a multiplier system of weight m

for Γ. If ℜ(s) > 1−m/2, then

[∆m + s(1− s)]Gm(z; s) = −s(s+ 1)Gm(z; s+ 2) + 2imy(m+ s)H1
m(z; s) + 2imsH2

m(z; s),

where

H1
m(z; s) =

∑

γ∈Γ

c ϑm(γ)

(cz + d)m+1[cosh d(i, γz)]s
, H2

m(z; s) =
∑

γ∈Γ

(ax+ b)ϑm(γ)

(cz + d)m+1[cosh d(i, γz)]s+1
.

We can invert the previous identity applying the resolvent R(s) = [∆m − s(s− 1)]
−1

on

both sides. The analytic properties of the resolvent have been treated in lots of papers, see [4]

for example. The resolvent is holomorphic for s(1− s) not in the spectrum of ∆m. In order to

extend Gm, we need to study the convergence of the series H1
m and H2

m. Notice that

max{y|c|, |ax+ b|} ≤ |(ax+ b)2 + (cx+ d)2 + (a2 + c2)y2|1/2 = (2y)1/2[cosh d(i, γz)]1/2,

so thatH2
m(z; s) converges absolutely for ℜ(s) > −m/2. On the other hand, the given estimation

only implies that H1
m(z; s) converges absolutely for ℜ(s) > 1−m/2 which is not good enough.
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Maybe one can improve this bound... Another idea would be to consider particular groups Γ for

which the paramater c vanishes for all but finitely many group elements. In that case, it would

be possible to extend meromorphically the series Gm to ℜ(s) > 1 − ǫ, for some ǫ = ǫ(m) > 0,

if we retrict ourselves to the case −2 < m ≤ −1.

Another way to go round the difficulty is to try to bound |cz+ d| from behind and get some

information about the series Gm for m > −1. Notice also that the restriction m ≤ 0 could be

relaxed. It is there in the first place only to ensure that Gm is nicely convergent.

A good apprehension of the analytic properties of Gm could shed light on the value distribu-

tion of a given multiplier system. In fact, a tauberian theorem could translate this information

to investigate the asymptotic behaviour of twisted (involving jγ(z) factors) sums of the numbers

ϑm(γ).
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4 Modular knots and linking numbers

The aim of this last section is to explain a very important result of Etienne Ghys,

The linking number between the modular knot obtained from a primitive hyperbolic element

γ ∈ PSL2(Z) and the trefoil knot is equal to the Rademacher function evaluated at γ.

To fully understand the statement above, we need to introduce and develop new notions.

This will be done in the next three sections. We then provide a beautiful proof of the result

and conclude with some counting theorems.

4.1 Modular knots

To define modular knots, we first need to study the topology of the quotient space SL2(R)/SL2(Z).

This quotient space can be canonically identified with the space of two-dimensional lattices in

R2 whose fundamental domain has area one. The reason for this is that for any such lattice Λ,

one can find independent vectors µ and ω such that

Λ = {nµ+mω : n,m ∈ Z} and |µ× ω| = 1,

and the vectors µ′ and ω′ also generate the lattice Λ if and only if there is a matrix γ =(
a b

c d

)
∈ SL2(Z) such that

µ′ = aµ+ bω and ω′ = cµ+ dω.

These identities imply that z′ = γz where z′ = µ′/ω′ and z = µ/ω. Here and in the sequel the

vectors µ, ω, . . . are treated as complex numbers through the natural identification R2 ∼= C. For

any given lattice, one can define21 the following two Eisenstein series

g2(Λ) = 60
∑

ω∈Λ\{0}

1/ω4 and g3(Λ) = 140
∑

ω∈Λ\{0}

1/ω6.

Thanks to a very appealing theorem (see [23] for instance), we know that these numbers are

the coefficients of an elliptic curve y2 = x3 − g2(Λ)x− g3(Λ) whose discriminant22

D = g2(Λ)
3 − 27g3(Λ)

2

is not zero. Conversely, if the discriminant of the curve y2 = x3 − g2x − g3 is not zero, then

g2 = g2(Λ) and g3 = g3(Λ) for some lattice Λ. As a consequence, the space of two-dimensional

lattices in R2 can be identified with C2 \ L where

L = {z, w ∈ C2 : D(z, w) = 0}, and D(z, w) = z3 − 27w2.

This space is embedded in R4 and we cannot picture it. Fortunately, we deal only with unimod-

ular lattices and this extra assumption will lead us to work with a three-dimensional object.

21These series converge absolutely. Notice also that with an odd exponent the series would vanish, as you can

see by pairing the terms ±ω.
22The discriminant of an elliptic curve is usually referred to as ∆. However ∆ has already been defined in the

previous chapter and we choose D instead to avoid any confusion.
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Given a lattice Λ, we can rescale it to get infinitely many other lattices tΛ, t > 0. We will

consider only the rescaled lattice for which |g2(tΛ)|2 + |g3(tΛ)|2 = 1. There is one unique t > 0

for which the last equality holds.

Hence, we can identify SL2(R)/SL2(Z) with S\L, where S = {(z, w) ∈ C2 : |z|2+|w|2 = 1}.
The unit sphere S is three-dimensional so that S ∩ L is one-dimensional and embedded in R3.

Since it is a closed curve, it defines a knot in the usual three-dimensional space. Now, S is

topologically equivalent to the three-sphere S3 and the image of S ∩ L under the considered

homeomorphism is the trefoil knot ℓ pictured hereunder23

Fig. 2 : The trefoil knot ℓ

Therefore, we have proved that there is a homeomorphism

Y = SL2(R)/SL2(Z) ∼= S3 \ ℓ.

To construct modular knots in S3 \ ℓ, we now consider a particular flow on Y , namely, the

modular flow Gt, defined for t ∈ R by

Gt (γSL2(Z)) = φtγSL2(Z) where φt =

(
et 0

0 e−t

)
.

The flow Gt is obviously well defined. Notice also that, up to conjugacy, the matrices φt range

over all the hyperbolic elements of SL2(R) as t ranges over R. If γ ∈ SL2(Z) is hyperbolic,

there exists a real number t = t(γ) and δ = δ(γ) a 2 × 2 matrix with real entries such that

φt = ±δγδ−1. It is clear that Λ = δZ2 is fixed by φt as γZ2 = Z2. Equivalently,

Gτ+t (δSL2(Z)) = Gτ (δSL2(Z)) ,

for all τ ∈ R. This shows that every hyperbolic matrix γ yields a periodic orbit of the modular

flow of period t(γ). Conjugated elements in SL2(Z) clearly share the same periodic orbit in

Y . Also, we can restrict our attention to primitive matrices as it is enough to go once around

the orbit in order to picture the corresponding modular flow. By definition, a matrix is said

to be primitive in a group Γ if it is not a non-trivial power of another element in Γ. It is now

easy to see that there is a bijection between periodic orbits of the modular flow and conjugacy

classes of hyperbolic primitive motions in PSL2(Z). These periodic orbits are closed curves in

Y . Therefore, each one of them yields a knot in the complement of the trefoil knot S3 \ ℓ ∼= Y .

The space Y also describes the unit tangent bundle of the modular orbifold Σ = H/PSL2(Z).

From this point of view, Gt appears to be the geodesic flow of Σ.

23All our images are taken from the website of the AMS.
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This geometric picture enables us to better visualize primitive hyperbolic matrices as closed

geodesics of a certain length.

Definition. Given a hyperbolic motion γ ∈ PSL2(Z), we denote by kγ the modular knot

in S3 \ ℓ associated by the above homeomorphism to the periodic orbit of the modular flow

corresponding to the conjugacy class of the primitive motion of γ.

Fig. 3 : The trefoil knot ℓ (orange) and the knots kγ for γ as indicated at the

top left corner of the pictures

4.2 Linking numbers

In order to investigate further properties of modular knots, we briefly examine the pictures in

Fig. 3. For γ =

(
1 1

1 2

)
or

(
1 1

2 3

)
, the modular knots kγ are trivial but tangled differently
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around the trefoil knot ℓ. A bit more exciting is the next knot, associated to γ =

(
2 3

5 8

)
.

In that case, kγ is another trefoil knot, as one can easily deduce from the picture. The three

last knots are more complicated. We want to investigate features of modular knots and the

most natural topological property from this point of view is related to linking numbers. The

linking number associated to two knots is a very intuitive concept. It can be understood as

the number of times that each knot winds around the other. It is thus an integer, but may

be positive or negative depending on the orientation of the two knots. We can give several

equivalent definitions of the notion of linking number. We consider a very formal one, given by

the Gauß’s integral.

Definition. The linking number between two closed curves k and k′ in R3 is denoted by

link(k, k′) and we have

link(k, k′) =
1

4π

∮

k

∮

k′

r − r′

|r − r′|3 · (dr × dr′).

4.3 The Rademacher function

In section 3.2 we introduced the Dedekind η-function. It has been established that

η24(γz) = j12γ (z)η24(z), for every γ ∈ PSL2(Z).

Since ∆ does not vanish, neither does η, and log η possesses a holomorphic branch on H. The

preceding identity yields the following one,

24(log η)(γz) = 24(log η)(z) + 12(sign c)2 log

(
jγ(z)

i sign c

)
+ 2iπφ(γ),

for some integral valued function φ defined on the space of Möbius transformations PSL2(Z).

We consider here the principal branch of the logarithm and

sign c =





0 if c = 0;

1 if c > 0;

−1 otherwise.

For our equality to be completely correct, we understand that

(sign c)2 log

(
jγ(z)

i sign c

)
= 0, if c = 0.

The numerical determination of φ is quite complicated. It has been studied by many math-

ematicians for a long time and in a wide range of fields, including the theory of numbers,

combinatorics, knot theory, topology, etc. A fairly extensive discussion about φ can be found

in [2] and [18].

From the identity defining φ and theorem 3.2, we expect a nice expression for the multiplier

system of η in terms of φ. The proof of the next proposition follows easily from a careful analysis

of the real and imaginary parts of the quantity (sign c)2 log
(
jγ(z)
i sign c

)
. Details are given in [14].

Proposition 4.1. The multiplier system of the η-function, ϑ, is such that

ϑ(γ) = e[ψ(γ)/24], where ψ(γ) = φ(γ)− 3 sign[c(a+ d)].
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Definition. The function ψ : PSL2(Z) → Z is called the Rademacher function.

A third characterization of the Rademacher function involves Dedekind sums. Recall that

the sawtooth function f is defined on R by

f(x) =

{
x− ⌊x⌋ − 1/2 if x is not an integer;

0 otherwise,

where ⌊·⌋ is the floor function.

Definition. Given two coprime integers a, b, b ≥ 1 the Dedekind sum s(a, b) is defined by

s(a, b) =

b∑

i=1

f

(
ai

b

)
f

(
i

b

)
.

Before exhibiting the link between Dedekind sums and the Rademacher function, we mention

the most famous formula about Dedekind sums. Several elementary proofs can be found in [18].

Reciprocity formula for Dedekind sums. Let a, b ≥ 1 be two coprime integers. Then

s(a, b) + s(b, a) = −1

4
+

1

12

(
a

b
+
b

a
+

1

ab

)
.

The proof of the next result is tricky and lengthy. We will avoid it. The interested reader

will find detailed arguments in [2].

Theorem 4.2. Let γ ∈ SL2(Z). Then,

φ(γ) =

{
b/d for c = 0;

(a+ d)/c− 12(sign c)s(d, |c|) otherwise.

It is, a priori, not clear that (a+ d)/c− 12(sign c)s(d, |c|) is an integer. One can check that

it is actually the case using the reciprocity formula.

4.4 Ghys’ result

As we mentioned in the beginning of the present section, the linking number between kγ and ℓ

is given by the Rademacher function evaluated at γ.

Theorem 4.3. Let γ ∈ PSL2(Z) be a hyperbolic motion. Then

link(kγ , ℓ) = ψ(γ).

Proof. We more or less copy the first proof in [5]. It is based on the monodromy definition of

the Dedekind η-function and uses Jacobi’s identity,

D(Λ) = g2(Λ)
3 − 27g3(Λ)

2 = (2π)12ω−12η24
(µ
ω

)
,

for Λ = {nµ + nω : n,m ∈ Z}. Now remember that Y ∼= S3 \ ℓ, so that we can associate a

unimodular lattice Λ(z) to each point z in the complement of the trefoil knot in S3. Hence, it

makes sense to consider the function

χ : S3 \ ℓ→ S1 ⊂ C ; z 7→ χ(z) =
D[Λ(z)]

|D[Λ(z)]| .
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Let k be a closed curve in S3\ℓ. As the trefoil ℓ has equationD = 0, the linking number link(k, ℓ)

corresponds to the winding number of χ(k) around the origin. Let γ = ±
(
a b

c d

)
∈ PSL2(R)

be a hyperbolic motion. The corresponding periodic orbit of the modular flow has period

t = t(γ). Hence, we can parametrize the modular knot kγ by

p : [0, t] → S3 \ ℓ ∼= Y ; τ 7→ p(τ) = Λ(τ),

where Λ(τ) = {nφτµ+mφτω : n,m ∈ Z} and

φtµ = aµ+ bω and φtω = cµ+ dω,

for some µ and ω in C. We want to compute the total variation of the argument of χ[Λ(τ)]

or D[Λ(τ)] as τ ranges over [0, t]. Remember that, if we write D[p(τ)] = e[r(τ)] for some

continuous function r defined on [0, t], then

VarArgτ∈[0,t] p(τ) = 2πℜ [r(t)− r(0)] .

Set z = µ/ω. By Jacobi’s identity, this variation is given by

VarArgτ∈[0,t] χ[Λ(τ)] = −12ℑ
[
log

(
φtω

ω

)]
+ 24ℑ

[
(log η)

(
φtµ

φtω

)
− (log η)

(µ
ω

)]

= −12ℑ [log jγ(z)] + 24ℑ [(log η) (γz)− (log η) (z)]

= ℑ[2πiψ(γ)] = 2πψ(γ),

where we used proposition 4.1 to get the last equality.

We now have an efficient tool to determine link(ℓ, kγ). To illutrate this, we computed the

linking numbers ψ(γ) associated to the motions γ whose corresponding modular knot kγ is one

of the first five knots pictured in Fig. 3.

γ s(d, c) φ(γ) ψ(γ)(
1 1

1 2

)
0 3 0

(
1 1

2 3

)
0 2 −1

(
2 3

5 8

)
0 2 −1

(
13 8

21 13

)
−4/63 2 −1

(
43 163

67 254

)
−51/134 9 6

One of the research problems we focused on for a little while is the following.

Given two hyperbolic PSL2(Z) motions γ and γ′, is there a convenient way to compute link(kγ , kγ′)?

For particular modular knots kγ , but not as singular as ℓ, can we find a function arising from

the theory of modular forms that nicely characterizes the linking numbers link(kγ , kγ′)?
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4.5 Sarnak and Mozzochi’s work

We will focus here on Sarnak and Mozzochi’s work about the statistical behavior of modular

knots and their linking numbers around the trefoil knot ℓ. The main results, as well as a short

outline of the proofs can be found in [21]. The details will appear24 in [14]. We won’t reproduce

here the proofs of the results. The interested reader should have a look at the referenced

material.

Definition. Denote by Π the set of all primitive hyperbolic conjugacy classes in PSL2(Z).

Equivalently, as we have noted previously, Π is the set of all primitive closed geodesics on the

Riemann surface H/PSL2(Z). The hyperbolic length of a geodesic γ ∈ Π, will be denoted by

l(γ) and the geodesic counting function is written π, i.e. for x ≥ 1, we have

π(x) =
∑

γ∈Π

l(γ)≤x

1.

The next result is a strong version of the prime geodesic theorem (cfr. [13]).

Theorem 4.4. We have

π(x) = Li(ex) +O
(
e7x/10

)
,

as x tends to infinity, where

Li(ex) =

∫ ex

2

dy

log y
∼ ex

x
, as x→ ∞

is the usual logarithmic integral function from the theory of prime numbers.

This result resembles the prime number theorem. A common way to prove the latter is to

study the Riemann zeta-function ζ defined on ℜ(s) > 1 by

ζ(s) =
∏

p

1

1− p−s
.

The key points in the proof are that ζ has a simple pole at s = 1 and that it has a non-zero

analytic extension to a neighbourhood of ℜ(s) ≥ 1. To show this, one usually studies the

analytic properties of the logarithmic derivative of ζ, namely ζ ′/ζ, and then gets the estimation

(without error term) using a tauberian theorem.

To prove the prime geodesic theorem (without error term), the easiest way is to mimic the

preceding approach. The analogies of ζ one shall consider is the Selberg zeta-function, ZΓ,

defined on ℜ(s) > 1 by

ZΓ(s) =
∏

p

∞∏

k=0

[1− e−τ(p)(s+k)],

where p ranges over Π, the set of all primitive hyperbolic conjugacy classes in Γ and τ(p) is the

norm of p such that

Tr(p) = τ(p)1/2 + τ(p)−1/2.

24Warning to the reader : the document, as it currently (August 2010) stands, contains several typos.
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The study of the logarithmic derivative of ZΓ, or to be precise of the quantity

1

2s− 1

Z ′
Γ

ZΓ
(s)− 1

2a− 1

Z ′
Γ

ZΓ
(a)

yields the meromorphic continuation of ZΓ to the whole complex plane. To see this, we need

the resolvent trace formula in its usual form (see theorem 10.1 in [9]). The estimation follows,

as in the proof of the prime number theorem, from a tauberian theorem.

To investigate the statistical behavior of prime geodesics with a given linking number around

the trefoil, we generalize the counting function π.

Definition. For n ∈ Z and x ≥ 1, we write

π(x;n) =
∑

γ∈Π

l(γ)≤x

link(kγ ,ℓ)=n

1 =
∑

γ∈Π

l(γ)≤x

ψ(γ)=n

1.

A first beautiful result taken from [21] asserts that π(x;n) has a uniform asymptotic esti-

mation as x tends to ∞, i.e. with an asymptotic error term independent of n. More precisely,

Sarnak proved the following estimation.

Theorem 4.5. Given an integer n, we have

π(x;n) ∼ π(x)

3x


1 +

2
[
1−

(
nπ
3

)2]

x3
+O(x−3)


 , as x→ ∞.

This theorem follows from the stronger estimation,

∑

γ∈Π

l(γ)≤x

ψ(γ)=n

l(x) =
1

3
Li(ex;n) +O(e3x/4),

as x tends to infinity, where Li(ex;n) is the suitable variation of Li defined, for x ≥ 2, as

Li(ex;n) =

∫ ex

2

log y

(log y)2 +
(
nπ
3

)2 dy.

Using the above estimation, one can also establish the distribution of the linking numbers

ψ(γ). It turns out that it is a Cauchy distribution.

Theorem 4.6. For −∞ ≤ a ≤ b ≤ ∞, we have

∑

γ∈Π

l(γ)≤x

a≤ψ(γ)/l(γ)≤b

1 → arctan
(
πb
3

)
− arctan

(
πa
3

)

π
,

as x tends to ∞.

The proofs use tools borrowed from the theory of automorphic forms, such as Selberg’s trace

formula (see theorem 10.2 in [9]). It is quite remarkable and surprising how these methods

apply effectively to knots!
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Given a knot k in S3 \ ℓ, it seems difficult to assert whether or not one can find γ ∈ Π

such that k = kγ , i.e., k is homologous to kγ . However, once we know that this is the case,

asymptotics for the function counting these conjugacy classes γ are more approachable. For

example, if t is the trivial knot, we easily infer the following two estimations from Ghys’ results.

Proposition 4.7. As x tends to infinity, we have

∑

γ∈Π

l(γ)≤x

kγ=t

1 ∼ xex/2

2
,

and for a fixed integer n, ∑

γ∈Π

l(γ)≤x

kγ=t, ψ(γ)=n

1 ∼ ex/4.

The results in proposition 4.7 are surprising as they show that thin-looking subsets of Π

grow much more quickly than the error term in theorem 4.4. It is probably worth describing

the arguments yielding proposition 4.7. The approach is different from the one leading to the-

orems 4.4, 4.5 and 4.6. The fine asymptotics are obtained thanks to an explicit description of

the set of conjugacy classes {γ ∈ Π : kγ = t}.

Sketch of proof. We denote by {α} the conjugacy class of a primitive hyperbolic element

α ∈ PSL2(Z). From the free product decomposition (see [5] p.272)

PSL2(Z) = Z/2Z ∗ Z/3Z,

one can deduce that

(a, b) 7→
{(

1 −b
−a ab+ 1

)}

is a bijection from N2 to {γ ∈ Π : kγ = t}. Hence,

∑

γ∈Π

l(γ)≤x

kγ=t

1 ∼
∑

γ∈Π

t(γ)≤ex/2

kγ=t

1 ∼
∑

a,b≥1

ab+2≤ex/2

1 ∼ xex/2

2
,

as desired.

Now, to prove the second part, notice that

ψ

(
1 −b
−a ab+ 1

)
= a− b.

Therefore,

∑

γ∈Π

l(γ)≤x

kγ=t, ψ(γ)=n

1 ∼
∑

γ∈Π

t(γ)≤ex/2

kγ=t, ψ(γ)=n

1 ∼
∑

a,a−n≥1

a2−an+2≤ex/2

1 ∼ ex/4.



46

Conclusion

As we have seen, the spectral theory of automorphic forms plays a role in many distinct

areas. First of all, it has nice applications in classical number theory as emphasized in the

first section dedicated to Farey fractions and their uniform distribution. In the next section,

we investigate innovative approaches to study the statistics of multiplier systems. The spectral

theory of automorphic forms is actually itself a modern and bustling field of research with a lot

of promising new ideas. Finally, the last section presents a recent theory that depicts particular

knots in a clever and surprising way. The list of applications does not stop here. The spectral

theory of automorphic forms is a fascinating and interdisciplinary field of study, standing at the

forefront of mathematical research!

It has occupied genius minds for centuries, to name but just a few, Hardy, Ramanujan

and Selberg. There are many unsolved questions that keep the field extremely hectic. We

mention in the very first section the Selberg’s eigenvalue conjecture. This is probably the most

fundamental open problem concerning modular forms. However there are other important

questions to answer in order to improve our understanding of this area of mathematics.

More than ever, spectral methods applied to automorphic forms turn out to be crucial in

the development of modern mathematics.

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein
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