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ABSTRACT 

This thesis describes a new method of measuring dielectric 

constants and loss tangents using an open resonator. The dielectric 

constant measurement method consists basically of perturbing the 

resonant frequency of an open resonator by placing a dielectric sample 

at the centre of the resonator normal to its axis. By measuring the 

resonant frequency of a symmetrical mode and of the adjacent lower- 

frequency asyrmetrical mode, the dielectric constant can be determined. 

Based on the Gaussian beam theory, a pair of transcendental 

equations, one for each mode, are derived by assuming first the surfaces 

of the dielectric sample are spherical and coincident with the phase 

fronts of the resonator modes. These equations can easily be solved 

for the refractive index n, by using a computer. When sample in sheet 

form is measured, the results can be corrected to account for the error 

so introduced. The formula giving this correction is derived by using the 

perturbational technique. 

From these two equations, two sets'of approximate formulas are 

also derived for the determination of the dielectric constant. An 

important feature of these formulas is that they are algebraic expressions, 

but reduction in their accuracy occurs if the sample is nearly a multiple 

of half wavelengths thick. 

The loss tangent is determined by the measurements of Q of the 

perturbed and the unperturbed resonator. Based on the usual definition 

of Q, an algebraic-expression is derived relating the loss tangent to 

the experimentally measurable quantities. 
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Measurements of dielectric constants and loss tangents of 

polystyrene and perspex have been made at X-band frequencies and the 

results are presented. It is on these results that the accuracy of 

±0.25% for measuring dielectric constant is claimed. The accuracy of 

the loss tangent measurement is estimated to be about ±10%. The method 

is applicable to the measurements of both low-loss and high-loss 

materials, and becomes more accurate at shorter wavelengths. 
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LIST OF SYMBOLS 

The following list contains those symbols most frequently used 

throughout the thesis. 

a radius of the mirrors 
M 

a0 radius of the coupling apertures 

A amplitude factor 

c velocity of light 

d distance from the dielectric sample to the mirror 

D distance of separation between the mirrors 

f resonant frequency 

fa resonant frequency of the asymmetrical mode 

fS resonant frequency of the symmetrical mode 

HM (X) Hermite polynomial 

k propagation constant in free space 

ka 27rf 
a 

/c propagation constant for asymmetrical mode 

ks 21Tf 
S 

/c propagation constant for symmetrical mode 

LpI (x) generalized Laguerre polynomial 

n refractive index 

N Fresnel number 

QO quality factor of the empty resonat. or 

QL quality factor of the resonator when the dielectric is inserted 

R radius of curvature of the phase front 

R surface resistance 
s 

R radius of curvature of the mirrors 
0 

R1 radius of curvature of the phase front inside the dielectric 
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R2 radius of curvature of the phase front outside the dielectric 

t half thickness of the dielectric sample 

w radius of the beam 

w beam radius at the mirrors m 

wt =w1 (t) -w2 (t) beam radius at the interfaces 

w0 radius of the beam waist 

w1 beam radius inside the dielectric 

w2 beam radius outside the dielectric 

XS surface reactance 

z0 intrinsic impedance of free space 

zs surface impedance 

Cr relative permittivity 

X wavelength 

4) additional phase shift 

Ot M01 (t) value of 0 at the interface 

0d-02 (d + t) -0 2(t) 

0 additional phase shift inside the dielectric 

0 additional phase shift outside the dielectric 2 

a slowly varying complex function 

w= 27f angular frequency 
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rMAPTVR 1 

INTRODUCTION 

The dielectric properties of Lterials employed in microwave devices 

can be measured by means of conventional cavity-resonator or waveguide 

techniques. However, at millimetric and submillimetric wavelengths, these 

techniques become increasingly difficult to use and inaccurate because 

of the small physical size of the cavity or waveguide involved. Open 

resonator techniques are inherently suited for measurements of low loss 

materials at wavelengths of below one centimetre, but with proper 

precautions they can also be used at centimetre wavelengths when 

dielectric materials in sheet form are measured. As there are no side 

walls, no opening and closing of the resonant structure for the insertion 

or removal of the dielectric is necessary and a closely fit sample to the 

cross-section of the resonator is not required. 

Several open resonator methods employing spherical mirrors have 

been proposed. 
1-4 The first three are resonator length variation methods 

in which the separation between the mirrors is varied to bring the 

resonant frequency back to its original value when the sample is removed 

from the resonator. While the theories are quite simple by using plane 

wave approximation, in actual practice it is troublesome to restore the 

resonant frequency precisely by tuning the mirror and the accurate 

measurement of the small mirror movement is rather difficult. The fourth 

one is a frequency'variation method. However, the sample is required to 

be placed at the Brewster angle which is not known in advance and has to 
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be found experimentally. This complicates the experimental procedures 

and eventually leads to errors in the measurements. More details of 

these methods will be discussed in the next chapter. 

Since frequency can be measured much more accurately than 

displacement, it is obvious that a simple measuring scheme, involving 

only the measurements of the resonant frequencies and the Q of the 

resonator, is advantageous and desirable. The method described in this 

thesis has the merit of being simple and quite accurate. Placing the 

sample symmetrically between two fixed mirrors of equal curvature, the 

dielectric constant and the loss tangent can be related to the resonant 

frequencies and the Q of the resonator measured with and without the 

dielectric. The analysis is based on the Gaussian beam theory by 

Kogelnik and Li 5 
where the spherical phase front and the additional 

phase shift of the beam wave have been taken into account. Assuming 

first that the dielectric sample has two spherical surfaces coincident 

with the phase fronts of the resonator modes, the formulas for E and r 
tanS can be derived. When samples in sheet form are to be measured, the 

measured dielectric constant and loss tangent can be corrected by 

applying corrections to the measured resonant frequencies to account 

for the errors introduced by the plane dielectric surfaces. 
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CHAPTER 2 

USUAL METHODS OF DIELECTRIC MEASUREMENT 

This chapter surveys the existing methods of measuring dielectric 

properties of materials. The number of such methods and variations which 

exist are, however, so numerous that is is virtually impossible to treat 

all of them here. The following more useful methods are consequerttly 

emphasized: waveguide methods, cavity methods and open resonator 

methods. 

Free-wave methods are sometimes employed in the measurement of 

dielectric constants and loss tangents of materials in sheet form. In 

the majority of cases, free-wave methods are less satisfactory than 

guided-wave methods, because the former ones involve a lot of special 

problems, such as the suppression of unwanted reflections, the 

launching of a plane wave in a limited space, and diffraction from the 

edges of the sample. 

The microwave bridge methods rely on measurements of phase and 

attenuation at different points along the axis of the waveguide which 

contains the sample. This can be achieved by the use of a precision 

rotary phase shifter and rotary attenuator. However, these methods are 

not widely used since the range of dielectric constants which can be 

measured by their use substantially duplicates the range afforded by 

the methods given, while calibration and instrumentation problems 

usually increase with their use. 
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2.1 Waveguide Methods. 
6,7 

The dielectric properties of materials can be determined from the 

results of measurements on a length of waveguide within which is a 

sample of that material. Two types of measurement have been found useful 

for this purpose. The first type is for those depending on the standing- 

wave pattern in the guide when terminated by a known impedance, usually 

a short or an open circuit. The second type is for those in which the 

absorption of waves passing through the sample is the main object of 

interest. 

Two distinct observations must be made in order to obtain full 

information concerning the dielectric properties of the sample as there 

are two independent quantities, the relative permittivity and the loss 

tangent, to be determined. Typical examples of these observations are 

the propagation constant including the attenuation and phase constant, 

and the complex wave impedance or admittance of the sample-filled 

waveguide. Other methods combine in different ways the measurements 

described by the above two types. 

The properties of gases may be determined by the technique 

described by Hershbergerý' 9A 
section of a waveguide is sealed off by 

gas tight mica windows. Measurements can then be made when the sealed 

section of the guide is evacuated and when it is filled with the gas 

to be measured. 

Measurements on liquids and solids are complicated by the fact 

that the relative dielectric constant no longer approximates to unity, 

and reflections at the boundary with the surrounding air cannot be 

neglected. Under such circumstances the method given by Roberts and 
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and Von Hippel 10 
may be used. The input impedance of a short-circuited 

waveguide is measured with and without the sample and a transcendental 

equation must be solved. Unless the approximate dielectric constant is 

known, two such measuremefits must be carried out with samples of 

different lengths. 

A method, requiring two reactive terminals and only one sample, 

has been used. 
11,12 Generally, it is not as accurate as the above 

method because sample length cannot be properly optimized for both 

terminations simultaneously, but it involves a simple solution. When 

for some reason the length or the location of the sample cannot be 

evaluated properly, the techniques described by Oliner and Altschuler 13 

can be applied. Since these are predicated on network representations, 

any one of the many available impedance measurement methods for two 

ports is applicable. 

When a dielectric material has a very high loss tangent, it 

becomes difficult to measure it satisfactorily with the methods usually 

applied to low and medium loss materials. In such cases, a simple 

waveguide method can be carried out by considering the sample to be of 

infinite length. It requires the determination of essentially only the 

normalized input impedance at the sample face. 

The method for the measurement of the relative permittivity of 

low-loss dielectric rod 
14 

which is mounted on the axis of a circular 

waveguide with one end contacting a short-circuit plate has the 

advantage that the samples do not have to fit the waveguide cross- 

section, but the loss tangent cannot be determined from the measurements 

without considerable computational effort. 
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An unconventional waveguide method has been proposed by Bell and 

Rupprecht 15 for the measurement of small dielectric losses in materials 

of high permittivity. This utilizes a sample large enough to support a 

dielectric resonance, but small compared with the dimensions of the 

waveguide in which it is suspended. The dielectric loss of SrTiO 3 was 

measured at a frequency range from 3 GHz to 37 GHz. Due to-the large 

variation of permittivity with temperature, there are many temperatures 

at which the sample is resonant, and the loss tangent can then be 

determined. 

Waveguide methods have been widely used and are versatile, but 

they have the very serious disadvantage that for wavelengths below 4 mm 

the very small waveguide size used gives rise to practical difficulties. 

2.2 Cavity Methods 

In resonant cavity methods, the resonant frequency and Q-factor 

of a resonant cavity are measured with and without. a suitably shaped 

dielectric sample. A variety of methods using resonant cavities to 

measure the dielectric properties of materials have been developed. 

Three types of methods are commonly used in different situations and 

are as follows: 

M Completely filled cavity of arbitrary shape 
79 16,17 

(ii) Partially filled cavity 
18-21 

. 

(iii) Cavity perturbation methods. 
7,22v 23 

A measurement method in (i) has been derived from Maxwell's 

equations without reference to cavity shape or mode. It involves 

a cavity which is completely filled with a reference material (or a 

vacuum) with known dielectric constant and loss tangent, and which 
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resonates in an arbitrary but fixed mode. The reference material is 

replaced by the sample which must also fill the cavity completely, and 

then a second measurement is made with the cavity again resonating in 

the same mode. This method finds its application in the measurement of 

gases and low loss liquids. A variation of this method, which is often 

considered preferable, employs two identical cavities, one containing 

the reference material, the other containing the sample. 

In the case of measurements on liquids and solids, much larger 

changes in resonant frequency and Q will normally be experienced, if 

the sample completely fills the resonator. Since large frequency * 

excursions, while theoretically permissible, actually tend to lead to 

error, it is desirable to fill the cavity partially. 

Samples of dielectric used for partial filling often take the 

form of a disc, a rectilinear body or an axial rod. Frequency or cavity 

length can be adjusted to resonate the cavity with and without the 

sample or for different lengths of the sample. These methods are 

particularly suited for measurements on low-loss materials, but usually 

require that the dielectric sample should be an accurate fit with 

respect to one or two of the cavity dimensions. Another disadvantage is 

that the mathematical analysis becomes much more complicated and, in 

general, the numerical or graphical solution of a transcendental 

equation is involved. 

Cavity perturbation methods involve approximations in their 

formulation which lead to acceptable results only under very restricted 

conditions: The sample must be very small compared with the cavity 

itself, so that a frequency shift which is small compared with the 

resonant frequency of the empty cavity, is produced by the insertion of 
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the sample. Moreover, since the fields assumed in the sample are usually 

the solutions of static problems, certain sample dimensions must be 

small compared with wave length, or the unperturbed field in the sample 

region must be uniform. Cavity perturbation measurements can be highly 

accurate and are particularly advantageous in measuring relatively lossy 

materials. Perturbation techniques also permit the measurement of small 

dielectric samples of various shapes. 

Like the waveguide methods, resonant cavity methods have been 

found to be capable of high accuracy, but the problem of physical size 

and increased metal losses at short wavelengths remains. 

2.3 Open Resonator Methods 

It has become increasingly difficult to use the conventional 

waveguide and microwave cavity resonator methods for measuring the 

permittivity of materials at the lower millimetric or shorter wave- 

lengths. Thus development of new methods is necessary to overcome the 

difficulties of small cavity dimensions and the increased metal losses. 

In order to obtain accuracy in the measurements, a resonator of high 

Q-factor at short wavelength is desirable and recent development has 

been concentrated on more suitable types of resonator. 

The work of Hakki and Coleman 
24 is an interesting development. 

Here the measuring structure is a resonator made up of a right circular 

cylindrical dielectric rod placed between two parallel conducting plates. 

The problem of physical size is avoided to some extent, and metal losses 

are reduced. However, the modes of interest are restricted to the TE 
ont 

which form a small portion of all the possible modes of operation, and 

a highly selective method of excitation is rather difficult to obtain. 
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Difficulties also arise in the determination of the mode indexes, and 

the method would become more difficult to apply at very short wave- 

lengths. 

The application of a Fabry-Perot interferometer with plane mirrors 

for the measurement of the permittivities and loss tangents of materials 

at millimetric and sub-millimetric wavelengths has been considered by 

Culshaw and Anderso25 Permittivities are deduced from the change in the 

plate spacing for resonance when the sheet is inserted. This involves 

the solution of a transcendental equation. The measurement of loss 

tangent depends on measurements of the Q-factor with and without the 

dielectric sheet in the interferometer. However, the Q-factor of the 

empty interferometer, which is limited by the relatively high diffraction 

losses, is not particularly high to give accurate tanS measurements of 

low-loss materials, and the assumption of constant diffraction losses may 

lead to errors in the results. 

A method of measuring dielectric constants of materials in sheet 

form by insertion in a Fabry-Perot confocal resonator has been described 

by Degenford and Coleman. 
1 

By tilting the dielectric sheet at a small 

angle with respect to the system axis, the reflected wave can be 

eliminated. The working formula for determining the dielectric constant 

then reduces to a simple linear relation involving the ratio of the 

mirror motion required to restore resonance to the thickness of the 

dielectric. This method has a drawback that tilting the dielectric 

sheet at an angle of more than 50 reduces drastically the Q-factor of 

the resonator. This increases the difficulty of an accurate measurement 

of the resonant frequency. Sometimes the Q-factor becomes so low that 

the output is undetectable even before the reflected wave is completely 
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eliminated. The above has been verified by an experiment carried out 

by using the resonator described in this thesis. It was found that the 

measured dielectric constant of a 6.96 mm thick polystyrene sheet varied 

000 from 2.542 to 2.659 for a tilt angle ranging from 5 to 7. At 8 the 

output was hardly detectable. 

This method has been extended to the measurements of dielectric 

loss tangent. 
2 The technique basically consists of perturbing a microwave 

confocal resonator with a dielectric sheet placed normal to the axis of 

the resonator. The change in Q and the change in cavity length necessary 

to restore resonance can then be related to the loss tangent of the 

dielectric. 

A technique similar to the foregoing has been developed for use 

with a semiconfocal resonator. 
3 The advantage of this technique is that 

it allows the simultaneous measurements of dielectric constant and loss 

tangent. Also, in applying this technique the sample is mounted against 

the flat mirror in the semiconfocal system, thus eliminating any 

uncertainty in the angular position of the sample. 

The above three are length variation methods which involve the 

adjustment of the mirror spacing to restore the resonant frequency when 

the sample is removed from the resonator. The accuracy of these methods 

depends on the precision of the mirror adjustment and the measurement of 

of the small displacement of the mirror. 

Measurement of complex dielectric constant using a Fabry-Perot 

resonator by installing the dielectric sample at Brewster angle has 

been carried out by Yuba et al. 
4 

Results are derived from application 

of computations, on the transmission and reflection coefficients with 
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respect to a plane wave incident obliquely upon the dielectric sheet. 

But tilting of the sample at large angle causes misalignment of the 

mirrors and it is difficult to find the Brewster angle accurately 

which is not known in advance. 
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rmAPTVR 'I 

THEORY OF THE OPEN RESONATOR 

26 27 28 
Dick, Prokhorov, and Schawlow and Townes were first to 

suggest the use of a Fabry-Perot interferometer as a resonator operating 

at infrared or optical frequencies. Theoretical studies of the modes of 

an open resonator, as determined by diffraction effect, were made by 

Fox and Li. 
29 

Boyd and Gordon, 
30 

and Boyd and Kogelnik 
31 developed a 

theory for resonators with spherical mirrors and approximated the modes 

by wave beams. The concept of electromagnetic wave beams was also 

introduced by Goubau and Schwering 
32 

who studied the guided transmission 

of reiterative beams. In this chapter, we consider the mode theory of 

spherical mirror resonators based on the analysis by Kogelnik and Li. 

Diffraction losses, resonant conditions and mode patterns are also 

discussed. 

3.1 The Travelling Beam Modes 

Two methods have been used to find the transverse modes. One is 

to seek simple solutions to Maxwell's equations which take the form of 

wave beams. The other method is to use the scalar formulation of Huygen's 

principle to determine the mode patterns and the actual diffraction 

losses. 

Let us consider the approximate solutions to the scalar wave 

equation 

V2E + k2E -0 (3.1) 

where E is a field component and k- 27r/Xp the propagation constant in 

the medium. 
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For beam waves travelling in the z direction, we can write 

ý(x, y, z) exp(-jkz) (3.2) 

where ý is a complex function varying so slowly with z that it is assumed 

a2q, its second derivative -, --T can be neglected (see Appendix I). Substitution az 

of (3.2) into (3.1) then gives 

Z2ý 2 a Z- 
+ 14 

- 2jk4 =0 az 
(3.3) 

Dv 

3.1.1 Fundamental Mode 

A solution of (3.3) is 

w 
r2 kr2 (r, z) =wS! expl- 
W2- 

+ (3.4) 

Substituting (3.4) into (3.2), the fundamental Gaussian beam can be 

written in the form 

w 
E(r, z) -0 expl-j(kz r2(l + Ik)l (3.5) 

w W2,2R 

where r measures the distance from the z-axis and ýD(z) indicates an 

additional phase shift due to the geometry of the beam. The radius of 

the beam is w(z) at which the field amplitude falls to I/e, and the 

radius of curvature of the phase front at z is R(z). 

As shown in Fig. 3.1, the Gaussian beam has a minimum diameter 2w 
0 

at the beam waist at z-0 where the phase front is plane. As the beam 

propagates it expands according to a hyperbolic law. 7he expansion of 

the beam is giveu by 

W2 w 211 +z2 
0 ZK -) 

I 

0 
(3.6) 

where z0= ffw 0 
2/X, the mirror spacing of the equivalent confocal resonators 



23 

0 

0 
U 

-4 
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The radius of curvature of the phase front is given by 

24 

(z-) 
2] 

(3.7) 

and the additional phase shift is 

tan-' (-ý-) (3.8) 
z 0 

Dividing (3-7) by (3.5), we have 

Xz 7rw2 (3.9) 
ITW 

0 

which is a very useful relation. 

If we assume that E is the only component ýf the electric field 
x 

and let 

gm1+ 
ik 

.w 2R 

equation (3.5) can be written as 

(3.10) 

exp 
[-j 

(kz gr 2] (3.11) 

From Maxwell's equations, the magnetic field has the form (see Appendix I) 

H. 
j DE 

xk [1 
+2 (g2r2 - g)]E (3.12) 

y W11 Z-Ij 17 x 0o 

The last two terms inside the square bracket when comparing with 1 are 

of the same order of magnitude as the term neglected when deriving (3.11) 

and, therefore, are negligible. Equation (3.12) then becomes 

By =kE (3.13) 
W11 0x 

This is a very good approximation as long as k2w 
02 

: ": " 1. 
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3.1.1 Higher Order Modes 

In addition to the solution discussed in the preceding section 

there are other solutions of (3.3) with similar properties. They ire 

called higher order modes which form a complete and orthoirgonal set of 

functions. These modes are distinguished by their mode numbers, which 

are m, n and q for rectangular geometries and p, L and q for cylindrical 

geometries. The mode number q measures the number of field zeros of the 

standing wave pattern along the z-axis. 

(i) Modes in Cartesian Coordinates: For a system with a rectangular 

geometry the solution has the form 

' 727 x) H( y127 -i Ekz -0 (m, n; Z)] - (X2 + y2) 
1k 

E=H (V til exp {-+ 4k) 
(3.14) 

mwn W) 
(W-7 

2R 
1 

where HM and Hn are Hermite polynomials of order m and n which measure 

the field nodes in the x and y direction respectively, and the phase 

shift (P(m, n; z) is now given by 

e(m, n; z) - (m +n+ 1) tan-'( Z) (3.15) 

Some Hermite polynomials of low order are 

0 
(X) m1 

H1(x) x 

H 4X2 -2 (3.16) 

(ii) Modes in Cylindrical Coordinates: For a system with cylindrical 
(r, ý, z) geometry the solution of (3.3) has the form 
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2+ 4k) 
E F2 Lp2r expl-jfkz - ýD(p, Z; z) + Iýj - r2(l W (3.17) '7) -W7 2R w 

where the Lt are the generalized Laguerre polynomials, and p and Z are 
p 

radial and angular mode numbers. The phase shift 4)(p, Z; z) is now given 

by 

-1 z 
z ýD(p, 9,; z) = (2p +Z+ 1) tan (]a-) (3.18) 

0 

The beam parameter R(z) is the same for all modes. 

Some polynomials of low order are 

LZ(x) =1 

L1 91 (x) -Z+1- 

2 
91 (x) = j(A, + 1)(t + 2) - (Z + 2)x + 1x2 (3.19) 

Since we are more interested in cylindrical geometries, some linearly 

polarized mode configurations are shown in Fig. 3.2. 

3.2 Open Resonator 

Given the beam modes discussed in the preceding section, we can 

insert two mirrors which match two of the spherical surfaces defined by 

(3.7) to form a resonator. Alternatively, given two mirrors with 

spherical curvature and some distance of separation, the position and 

the radius of the beam waist can be adjusted so that the mirrors 

coincide with two such surfaces. The present discussion applies to 

resonators with mirror apertures that are large compared to the size 

of the beam. 

Consider an open resonator with mirrors of equal curvature. Let 

D be the distance of separation and R0 be the radius of curvature of 
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the mirrors. From (3.7) with z= D/2, the beam waist w0 in the centre 

of the resonator is given by 

w2-X Y'b (2RO - D) 
0 27r (3.20) 

Using (3.9) and (3.20), the beam radius at the mirrors can be written as 

XR /T -D 

0 
R 2.1 _D 7r R_-D 

(3.21) 

Fig. 3.3 shows how the beam radii vary with the distance of separation 

between two given mirrors, w oc 
being the beam waist when the resonator 

is confocal. 

For modes of circular geometry, resonance occurs when the phase 

shift from one mirror to the other is a multiple of ir. From (3.17) and 

(3.18), this condition can be written as 

-1 z kD - 2(2p +Z+ 1) tan (-:! -) = (q + 1)n 
z 

(3.22) 
0 

where (q + 1) is the number of half wavelengths of the axial standing 

wave pattern. 

The frequency spacing of longitudinal modes is 

C f 
0 2D (3.23) 

where c is the velocity of light. Combination of (3.20), (3.22) and (3.23) 

yields the resonant frequency of a mode 

f (q + 1) +-1(2p +I+ 1) Cos-I(, 
D 

T IT ý7) (3.24) 
00 

f 
-1 D 

where 
IT 

0 cOs (1 - I-) is the frequency separation between adjacent 
0' 

azimuthal modes. 
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It is clear that for a given q, all modes with 2p +k= constant 

are degenerate. If the the resonator is confocal, then D=R and (3.24) 

becomes 

f (q + 1) +I (2p +I+ 1) (3.25) 
f 
0 

and all the modes with the same (2q + 2p + Z) are thus degenerate. 

3.3 Diffraction Losses 

In practical resonator systems the losses due to diffraction 

spillover are usually small compared with the other losses such as 

metal losses suffered at the resonator mirrors and coupling losses. 

Knowledge of the amount of loss is, however, desirable whenever one 

wishes to design a resonator operating in the fundamental mode only. 

The loss is a fucntion of the radius of curvature R of the 
0 

mirrors, the mirror spacing D, and the size and shape of the mirrors.. 
a2 

An important loss parameter is the Fresnel number N-M, where for DX 

round mirrors am is the mirror radius and for strip or rectangular 

mirrors 2a is the mirror width. m 
The results of theoretical calculation of the diffraction losses 

for low-loss modes of a confocal resonator with circular mirrors are 

shown in Fig. 3.4.33 For non-confocal resonators, diffraction losses 

can be obtained by finding first the corresponding equivalent confocal 

systems, 

The open resonators with either plane or spherical mirrors are 

inherently multimode devices. In general the systems resonate in several 

modes at the corresponding resonant frequencies. However, because of the 

Gaussian-Laguerre transverse field distribution, the diffraction losses are 

higher for higher-order modes for a given system. By a proper choice of 
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of the parameter N, we can thus discriminate against higher-order modes 

by increasing their losses relative to that of the fundamental mode. 

In addition to diffraction losses, there are losses due to coupling, 

absorption, scat*ering and other effects. If the total loss is small the 

of the resonator can be approximated by 

2TrD 
Xat (3.26) 

where at is the total loss. 



33 

r'PAPTRIZ A 

MEASUREMENT OF DIELECTRIC CONSTANT 

4.1 Method of Measurement 

The dielectric sample of thickness 2t is placed symmetrically at 

the centre of the resonator formed by two spherical mirrors of equal 

curvature as shown in Fig. 4.1. For the moment these mirrors will be 

regarded as having infinite aperture, and the dielectric sample will 

be assumed to have zero loss and to be slightly convex on both sides 

so that they are coincident with the phase fronts of the resonator 

modes. 

In considering the axial standing-wave electric field patterns 

in the resonator and with the axial mode number q measuring the number 

of zeros between the mirrors, the mode is symmetrical when q is even 

or an antinode is at the centre, and the mode is asymmetrical when q 

is odd or a node is at the centre. As shown in Fig. 4.2, the mode 

spectrum of an empty resonator comprises a set of equispaced resonances 

while the resonant frequencies of a resonator with a dielectric sample 

inserted are unevenly spaced. The shift in the resonant frequency is 

proportional to the electric energy increased by the insertion of the 

dielectric. 

The proposed method of measurement is very simple. It consists of 

measuring the resonant frequency of a symmetrical mode and of the adjacent 

lower-frequency asymmetrical mode. From these two frequencies the 

dielectric constant can be determined without the need to solve a 

transcendental equation, so long as X << d. The dielectric constant can 

also be found by using a computer to solve the two transcendental equations 

relating the refractive index to these frequencies. 
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4.2 Fields of the Resonator with the Dielectric Sample at the Centre 

Fig. 4.1 shows the arrangement to be considered with the dielectric 

sample at the centre between the mirrors. The mirror separation is D, the 

thickness of the sample is 2t, and the distance from the sample to the 

mirror is d. It is assumed that the electromagnetic field inside the 

resonator is of the TEM 
00 mode, and that the electric and the magnetic 

fields have only x and y components respectively., The assumption of no, 

longitudinal component is a very good approximation if k2w 
02 

>> 1 or 

when the region of interest is near the centre of the resonator where the 

wave front is almost plane. 

Because of the symmetry about the plane z=0, it is sufficient to 

consider only half of the resonator, i. e. a resonator with an open 

circuit for symmetrical mode and a short circuit for asymmetrical mode 

at z=0, and a short circuit at the mirror intercepting the axis at 

z=t+d. Let subscripts 1 and 2 indicate fields and beam parameters 

inside and outside the dielectric respectively. From (3.5) and (3.13), 

the fields in the two regions may be written as 

0 

Alwo 
(_ r2 

_ 
c? s 

_nkr2 E exp nkz (z) + T]- 
J(Z) w W12 sin[ 1R 

-0<z N< t jA 
1w0 r2 sin (Z) nkr2 1 

Z1H+ý exp(- =. -, ) 
[nk 

z- 1D 
1 (4.1) w1wI Cos 1 TR-l ( -z) j 

Ew0 exp(- r2 sin[kz - (D (Z) + 
kr2 

+ w 22w22 2R 2 (Z) Ctl 

ZH 
Iwi 

exp(- r2 2 w (4.2) o2ww cos[kz -0 (Z) + 
kr 

222 'i-R 
2 (Z) + 
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where AI is the amplitude factor, k= 2w/X 
0, 

the propagation constant in 

free space, Z= vrpTe-, the intrinsic impedance, and Z0 /Z 
1-n, the 

refractive index of the dielectric. The upper trigonometric functions 

are for the symmetrical mode and the lower ones are for the asymmetrical 

mode. From (3.6), (3-7) and (3.8), the beam parameters and the additional 

phase shift in region 1 can be written as 

2z 
w12 (Z) W02 +ý 

nkw 2) 

nkw 2 2] (--27z- 

0 (z) = tan -1 (2z/nkw 
0 

2) 

where w is the beam radius at z=0. 0 

(4.3) 

Applying the boundary condition that E2-0 at the mirror, we have 

-k 2 

Substitution of (4.4) into (4.2) gives 

(4.4) 

w0 r2 kr2 1 
.. 

)sin[ exp k (z -d- t) +4 (d + t) (z) + 

t<z< t+d jw 
0 xp r2 

C. s kr2 [k 
(z -d- t) +0 (d + t) -0 (z) + (Z)] (4.5) o2w2-w2R2 

Expressions for 4ý 2 
(z)' W2(z) and R 2(z) can be found by matching the beam 

parameters at the interface. 
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4.3 Matching of Beam Parameters 

As illustrated in Fig. 4.3, the beam in the region t4z4t+d 

can be considered as coming from the beam waist w01 of an equivalent 

empty resonator formed by the spherical mirror at z=t+d and a plane 

mirror at z=f. Under such circumstances, the beam radius and the radius 

of curvature of the wave front in region 2 can be written as 

W2 (Z) =W 12 1+(, 
2 (z -f) 

20 kw 7- 
1 

kw 22-tz<t+d (4.6) 

f) R2 (Z) m (Z -f) 
[l 

+ (2 
(z 

0- 
j 

1. 

The matching of amplitude and radius of curvature of the wave front at 

the interface requires w1 (t) =w2 (t) and R1 (t) -R2 (t). Combination of 

(4.3) and (4.6) yields 

ý 4Wrt 2 
[1 

+2 
2] 

. Wot2[1 + (, 2(kt - f))2] 
0ww w (4.7) 

00 

nkwO2 kw 
0 

92 2] 2] 
f) 2t ;7 (t + (t - f) 

11 (T( 3 (4.8) 

Dividing (4.7) by (4.8), we have 

4t 4(t -Q 
nlkz-w-7 '2 k2W 12 

00 

Hence tw 12 
ft-22 (4.9) nw 0 

Substitution of (4.9) into (4.7) yields 
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21- tv- 2 

w 12 + (nkw--'7) 

-W 2 tIL 
0+ (-n- 

-k. -w- 
0 

The right-hand side of (4.10), when k2w 
02:,:, 

1, can be approximated by 

1 with very little error. Equation (4.9) then becomes 

t 
n7* 

Using (4-11), the beam parameters in (4.6) may be written as 

Z) = w02[1 
2t )21 

w2'2( +ö l(z t+ -n-7) 

z4t+d (4.12) 

[, kw 2 
R2 (z) = (z -t+ n7) '2(z -t+ t/nz 

1 

and the additional phase shift in region 2 is 

w 
- lF2(z - f)l 

.-[2 
12 (4. * 13) tan tan T_ Z. (z -t+ 

0t 0n 

At z=t+d, the wave front of the resonant mode is coincident 

with the mirror surface. From (4.12), the radius of curvature of the 

mirrors is given by 

kw 2 

Ro (d ++(0 T)2] (4.14) 
n k2 (d + t/n4 

For a pair of mirrors of known equal curvature, the beam radius w0 in 

the centre of the resonator with the dielectric sample inserted can be 

calculated by means of (4.14) as 

w2= .1 V(d + t/n4) (Ro -d- tlnz) 
0k 
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4.4 Transcendental Equations 

On an equiphase surface intersecting the axis at z, (4.1) and 

(4.5) reduce to 

Aw0 
r2 nkz - 4ý, (z)] Cos 

wwI sin 

jA 
Iw0 (_ r2 ) sin zH7 exp 

[nkz 
-0 (z) 

1w1w1 Cos 11 

w0 r2 E exp(- sin[k(z -d- t) +0 (d + t) - 15 (z)] - 2w2w222 

H 
jw 

0 
-*, p(- 

2, 
cos[k(z -d- t) +02 (d + t) -02 (Z)] 

o2w2w2 

where it has been assumed that w is constant over the surface. 

For the symmetrical mode, E1 has a maximum at z-0. At the 

(4.17) 

interface ABC (Fig. 4.1: ), the wave impedance looking to the left is 

z1l -jZ cot[nk t-0 (t)] 
sH11s1 

where ks =2f /c, f being the resonant frequency of the symmetrical ss 

mode. 

For the asymmetrical mode 

Z tan [nk t (t) (4.19) a1a 

The impedance looking to the right at ABC is 

(4.16) 

t 

zs iz 
0 

tan[k 
sd2 

(t + d) + 4ý 2(t)] (4.20) 
aa 
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Applying the resonance condition Z+ Z' - 0, we find 

-1 cot[nk t (0] + tan[k d-0 (t + d) + ýD (01 =0 (4.21) 
nss22 

tan [nk t (t) + tan [k d- 4ý (t + d) + (P (01 =0 --(4.22) 
naa22 

where 
(t) = tan-1 

2t (4.23) (nkýI-W-ýr) 

0 

(t) = tan- 
1ý 2t (4.24) 

2 
(n=klw=) 

0 

(D (t + d) = tan iýw-2=(d +t (4.25) -1 [ 
20 n2') 

kw 
02- 

2V(d + t/n')(R 
0-d- 

t/n2) (4.15) 

which are the same for both symmetrical and asymmetrical modes. 

Let 

(4.26) 
ýD d2 

(t + d) 2(t) 

Equations (4.21) and (4.22) can be written as 

cot(nk t-0+ tan(k d-0)-0 (4.27) 
stsd 

tan(nk t-0+ tan(k d-D)=0 (4.28) 
natad 

The dielectric constant can be found by solving these two equations 

for n using either a numerical method or an approximate method. 
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4.5 Computer Solutions for the Transcendental Equations 

Equations (4.27) and (4.28) can easily be solved for the refraction 

index n by using a computer. If d, t and fs (or fa) are known values 

obtained from the measurements, both equations can be written in the form 

f (n) = (4.29) 

which can be solved numerically by means of Mueller's iteration scheme 

of successive bisection and inverse parabolic interpolation. A computer 

programme, in which a standard subroutine RTM134 is called to solve the 

transcendental equation using this iteration scheme, has been written to 

find er and is included in Appendix 11. In addition to input data on d, 

t and f, input values which specify the initial left and right bounds of 

the root n and the upper bound of the resultant error have to be entered 

into the programme when it is used. 

Expeiimental procedures can be greatly simplified if the dielectric 

constant of a sample of known thickness can be determined from the 

measured values of fs and fa only, without the knowledge of d. In this 

case, (4.27) and (4.28) can be written in the form 

f(n, d) 0 

g(n, d) =0 

(4.30) 

and can be solved simultaneously for both n and d using the method of 

minimization. In this method, solving the pair of equation in (4.30) is 

equivalent to minimizing 

S(n, d) = {f(n, d)12 + {g(n, d)12 (4.31) 
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A standard subroutine VA 04 
A for finding the minimum of a function of 

several variables 
35 

can be used for this purpose. This forms a part of 

the programme for the determination of cr by solving (4.27) and (4.28) 

simultaneously. This programme is also included in Appendix II. 

In view of the periodic nature of the tangent function, there 

exists an infinite number of solutions for c r* 
It is consequently either 

necessary to know cr approximately in order to pick the right solution, 

or to perform a second identical experiment with a sample of different 

thickness. In the former case, an approximate value of cr can be obtained 

using the formulas derived in the following section. The proper solution 

in the latter case is the one common to the two sets of solutions. 

Graphically this is an intersection point as shown in Fig. 4.4 for a 

particular case. 

4.6 Approximate Solutions for the Transcendental Equations 

4.6.1 First Approximation 

If X << d, the frequency change from ka to ks will be relatively 

small, and we may assume that 

ks-k1 (4.32) 

nk t << 1 (4.33) 

By applying Taylor's expansion to the left-hand side, (4.28) can be 

written as 

-1 tan(nk t- 4D )-kt sec2(nk t-o)= -tan(k d-0) (4.34) nst1stad 

where the higher order terms in nk 1t has been neglected. 
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From (4.27) 

tan(nk t-o)= -1 cot(k d-0) (4.35) 
stnsd 

Substitution of (4.35) into (4.34) gives 

I. 
cot(k d-a)-k Q1 +1 Cot2(k d-I )I = -tan(k d-0 (4.36) 

n-sd1 nl sda d) 

Solving this equation for n2, we have 

C 
cot (k 

sd-: 
ýD d)-k1t cot2(k sd d) (4.37) 

r tan(k 
ad-0d)-k1t 

Since higher order terms in tan(nk 
st-0t) 

have been neglected in the 

Taylor's expansion, (4.37) can be used if 

or, from (4.35) 

Itan(nk 
st- 

4ý dl <1 (4.38) 

I cot (k 
sd- 

ýD d) 
I<n (4.39) 

By similar operations expanding (4-27), a complementary formula 

for c can be obtained as 

cot(k ad- 
4ý d)+k1t cot2(k d- 4ý d) 

tan(k d-0) +T-. -t (4.40) 
sdI 

which can be used if 

lcot(nk 
at- -ý t 

)1:, < 1 (4.41) 

or I cot (k 
ad-od 

)I <n (4.42) 

Strictly speaking, 0a is a function of n and, from (4.26), (4.24), 

(4.25) and (4.15), can be written as 
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-1 [2- 1( 2 
tan Jýw 7 (d + tan - ýZ) 

I 

rl 
t 
n kw 

FRI 

_7iiZ t tan +t -- -_1 (4.43) 
0Ad4 Tr 

The term involving n in (4.43) can frequently be neglected with very 

little error. This can be done by using a large mirror spacing when 

comparing with the thickness of the dielectric sample. Equation (4.43) 

then becomes 

tan d (4.44) d 

If the condition d >> t/n2 can not be fulfilled and the error 

involved in neglecting this term is found to be large, then an iterative 

procedure can be followed to find er. First, an approximate value for 

Cr can be calculated from (4.37) and (4.44). This value of cr can be 

used to calculate 0d from (4.43). Knowing o d' a more accurate cr can be 

found from (4.37). 

4.6.2 Second Approximation 

The accuracy of the formula (4.37) can be improved by including 

second order terms in the expansion of (4.28) as 

I 
tan(nk t- 4ý kt sec2(nk t-ý)- nk 2t2 tan(nk t- ýý ) SeC2(nk t-t nst1st1st5d 

= -tan(k ad-o d) (4.45) 

Substituting (4.35) into (4.45) and solving for n2, we find 

cot(k sd-0d)-k1t Cot2 (k 
S, 
d(D)-k1 2t2 cot3(k d-0 d) 

tan (k dkt TýTd --(D, ) (4.46) 
ad15d 

As before, this formula can be used if Icot(k 
Sd- iý d)l < n. 
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In the same way, by including second order terms, (4.40) can be. 

replaced by 

EW- 
cot(k 

ad-0d)+k1t 
cot2(k 

ad-0d)+k1 
2t2C0t3(k 

a 
d. - 0d) 

(4.47) 
r tan (k d- -V d)+k1t+k1' t-cot (k d-0 d) 

which can be used if lcot(k 
ad- 

ýP d )I < n. 

4.6.3 Accuracy of the Approximate Formulas 

The accuracy of formulas (4.37) and (4.40) can be studied by 

comparing with those including second order terms. Considering (4.37) 

and (4.46) first, we have 

cot S-kt cot2S 
C rl tan Ak1t (4.48) 

e 
cot S, - kt cot2S -k1 2t2cot3S 

(4.49) 
r2 tan Ak1t-kI ztzcot S 

where Skd0 

kd- 4ý 

The error 6c 
r 

is given by 

(4.50) 

6c 
r=c r2 - erl (4.51) 

Maximum error due to the approximation occurs under the limiting 

conditions 

cot 

(4.52) 
tan A= +-n 
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Combining (4.48), (4.49), (4.50) and (4.52), and dividing the 

resulting equation by n, we have 

6c 
r 

2n2k 1 
2t2 

(4.53) -±nk t) (1 ± nk t+ nzk. -7i=) 

Similarly, from (4.40) and (4.47), we find 

6c 
r -2n2k 

2t2 
(4.54) 

c l< nk 1 
Ml nk t- n"k 1 

'tz) 

When A1t << I both (4.53) and (4.54) can be approximated by 

Se 
4 2n2k 1 

2t2 (4.55) 
r 

This sets an error limit to (4.37) and (4.40) due to the approximations 

made. 

4.7 Correction for Plane Dielectric Surfaces 

It has so far been assumed that the sample surfaces are spherical 

and coincident with the equiphase surfaces forming a perfectly matched 

system. This condition, however, is very difficult to fulfil in practice, 

and dielectric sheet sample having two parallel flat surfaces is usually 

used. The measured dielectric constant can be corrected by applying corrections 

io the resonant frequencies to account for the error so introduced. 'These 

corrections can be derived using perturbation theory. 

Let E, H, w represent the field and resonant frequency of the 

resonator with dielectric sample of spherical surfaces at the centre, and 

let E+H+w+ 6w represent the corresponding quantities of the 

perturbed resonator having plane dielectric surfaces. In both cases, the 

Maxwell's equations must be satisfied, that, is 
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Vxi= -j J (4.56) 

Vx jwB (4.57) 

vx (E + E, -j (w + sw) + (4.58) 

v+R, i (w + 6w) (B + B, (4-59) 

Here D' c0 {c 
r 

(E + El) - E) 
(4.60) 

B' 
0 
H' 

inside the volume 2V I bounded by the plane and the original spherical 

dielectric surfaces as shown in Fig. 4.5, and 

0HD cE 
(4.61) 

0 
H' D' W 

outside 2VI, c being a function of position. 

Subtracting (4.56) from (4.58), we have 

VxE, = -j{WEI + 6W(E + it)) (4.62) 

Scalarly multiplying (4.57) by i' and (4.62) by H-, we obtain 

E' -V xH jwE' -D (4.63) 

R-V x j6w(R-E + R. E, ) (4.64) 

Subtracting and applying the identity 

V-(A x i) 
= i-V xý- ý-V x 

we have 

VO(H x E') = jw(E'OD + H-BI) + jSw(H*B + H-B') (4.65) 
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Similarly, from (4.57) and (4.59), we find 

V-(E + 9.5, ) - jaw(E-B 9.5, ) (4.66) 

The sum of the last two equations is integrated over the volume 

of the resonator 2V 
0 

bounded by the mirrors and a hyperbolic surface S h9 

and the divergence theorem is applied to the left-hand terms. The left- 

hand terms then vanish, because both ^n xE=0 and 'n' xD=0 on the 

boundary surfaces (see Section 5.3). The resulting equation is 

0= jwf (E'-B - E-E')dV + j6wf {(R. E - E-5) + (R. E' - E-B')}dV (4.67) 
2V 2V 

00 
In the region 2V 

0- 
2V,, the contribution to the first term 

cancels with that to the second term in the first integral. Thus we 

only require the contribution to this integral from the region 2Vl* 

Neglecting B' and E' in comparison with 5 and E in the second integral, 

(4.67) becomes 
f E-B')dV 

6W 2V 

Wf (E-D 11-B)dV (4.68) 
2V 

0 
Assuming that the additional field E' is so small that it can be neglected 

in comparison with E, (4.68) then becomes 

f E-B'dV 
2V 1 

(4.69) (E-D - 9--B-)dV 
2V 

0 

where 51 =c0 (c 
r- 

1)E (4.70) 

In the perturbed volume, the field has very little variation with 

z and the electric field can be written as 

r2 E= --2 exp (- -- wtwt 2-) s in (kd -ed) (4.71) 

where wt =w1M=w2 (t), being the beam radius at the interfaces. 
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Let the elementary volume be dV - 7rr3 dr (Fig. 4.5), where Rt 

Rt = R(t), the radius of curvature of the phase front intersecting 

the z-axis at z=t. The numerator on the left-hand side of (4.69) can 

be written as 

2 iTw 2E 
Co 

2(kd- - (D 3 2r2 f00 (C - 1)sin r exp(- =)dr (4.72) 
2V Rtwtrd0wt 

Since 
f 
Co 

3 2r2 w4 
exp (- = -t )dr 

8 
(4.73) 

0wt 

using (4.73) and (3.9), (4.72) becomes 

Irte 
0 f E-B'dV 

=ckr (c 
r- 

1)sin2(kd 
d) 

(4.74) 
2V 

1r 

Let W be the total energy stored in the unperturbed resonator. 

We have 

f fi-E)dV = 4W 
2V 

0 

(4.75) 

Substituting (4.72) and (4.75) into (4.69), and using (5.39) for W, we 

obtain 

6w t(c 
r- 

1)sin2(kd 
d) 

wcr ký-w 
0 

z(At + d) (4.76) 

This gives the amount of frequency shift due to small perturbations of 

the interfaces, and can be applied to both symmetrical and asymmetrical 

modes. 
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FIG. 4.5 Element of volume 
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MEASUREMENT OF LOSS TANGENT 

5.1 Energy Stored in an Open Resonator 

The Q-factor of the resonator may be defined in the usual way as 

x energy stored (5.1) 
power lost 

Since the loss tangent is determined by measurements of Q with and 

without the dielectric sample in the resonator, a knowledge of the 

energy stored in an open resonator is essential before we derive a 

formula for the calculation of loss tangent. 

5.1.1 Without Dielectric Sample 

The electric field inside an empty resonator can be written as 

E-w ýý exp (_ r2 ) cos (kz -0- 
kr2 (5.2) 

xw w7 sin 
ýR) 

where the cosine and the sine functions are for symmetrical and 

asymmetrical modes respectively, and W, R and 0 are given by (3.6), (3.7), 

and (3.8). 

Let ZI z- r2 (5.3) 2R 

Using (3.9), this can be written as 

zi = Z(l - 
2r2 

k2w 7-7) (5.4) 
0 

Then 
ZI 

2r4 (5.5) 
kzw Zwz 

0 
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Substituting (5-5) into (3.6), w can be approximated by 

W2 . W, 2+ 4r2 (5.6) 
k2W 4W2 

0 

where 
(2, z' 2 

W12 =w2+ (5.7) 
kw=) 00 

When r<aM, the second term on the right-hand side of (5.6) can be 

neglected with very little error. 

Similarly, ýD can be approximated by 0' where 

tan Z' (5.8) 
0 

Equation (5-1) then becomes 

w r2 Cos Ex=w Sl exp s in 
(kz' (5.9) 

As shown in Fig. 5.1 where ABC is an equiphase surface, the 

elementary volume will be taken as the ring 

V- 27rr dr dz' (5.10) 

At resonance the time-average electric and magnetic energy stored 

in the resonator are equal. The average stored electric energy is given 

by 

flE 12dV 
vx 

2 
D/2 -- 2., 2 C0S2 JTW r- ff= exp (- ZI -Z) 2(kz' - (D')dr dz' 

00 w-, sin 00 

The upper limit of the r-intergration is taken as infinity sine the f ield 

is negligible when r is larger than the radius of the mirrors. 
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Since the variable of intergration in a definite integral is of 

no importance, (5.11) can be written as 

D/2 "0 r_ 2r2 C0S2 - 0)dr dz 
* (5-12) We = Trwo Co f fl « exp(- 2(kz 

00 IJ2 
ZýZ)sin 

Integrating with respect to r from zero to infinity, we have 

7TW 
0 

2co 
JD/2 COS2 

e4S,, 2(kz ýp)dz 
0 

7rW 
2£ D/2 

0. 
= -- 8-- --2 f {l ± cos2(kz - Mdz 

0 

Let us consider the integral 

D/2 
f cos2(kz - O)dz 
0 

D/2 1 
y- dsin2(kz - 0) (5.14) , _i(k - 2/kw? - 0 

Integrating by parts, this becomes 

,. sin{kD - 2o(D/2)1 D/2 2s-in2(kz - 0) dz (5-15) 2 {k -2/ -kw-i 2-(-DT2 f 
Rkwz(k - 2/-k--w"Z-)7 

0 

Since kD - 2o(D/2) = w(q + 1) where q-0,1,2,3 .... the first term on 

the right-hand side of (5.15) vanishes. The integral becomes 

D/2 
f 
0 Rkwz (k 2/kw2 dcos2(kz (5.16) 

Integrating by parts again, we obtain 

2) (k 2/ kw z (-D)-T2-)- F+f 
D/2 

cas2(kz ---2-7 
02 

-ki, 
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If we continue this operation, the integral in (5.17) will yield a series 

of terms that are very small in comparison with D/2 and can be neglected. 

Substitution of (5.13) into (5.17) yields 

Irw 2c 

e80 

[22T 
:ý Rokwz(D/2){k 2/kwz(D/2)13 

Hence the total energy stored in the resonator is given by 

W- 2W = 
Trw 0 

2c 
0D1±2 

e8R0 kW2(D/2){k - 2/kW2(D/2)}3 

where 
D[ (kwo 

2 
2] 

R0- R(D/2) + 
(5.20) 

W2(D/2) =W 2[l +D 
2] 

0 
(kwl-, 

-7) 
0 

being the radius of curvature of the mirrors and the beam radius at the 

mirrors respectively. The plus sign in (5.19) is for symmetrical mode 

and the minus sign is for asymmetrical mode. If k2w 
0 

2-:,. > 1, the second 

term on the left-hand side of (5.19) is much smaller than 1, and can 

usually be neglected. 

5.1.2 With Dielectric Sample 

Electric fields in a resonator with the dielectric sample at the 

centre can be written as 

Alwo 2 Cos exp - {nkz - (P (z)), 04z<t (4.16) w1w sin 1 

w 
r2 

E exp(- =-)sin(k(z -t- d) (Z) +e (t d)1, t4zt+d (4.17) 2w2w2 



59 

where for symmetrical mode, the amplitude factor A1 has the value 

A 
sin(k sd d) (5.21) ls cos(nk st0t 

and for asymmetrical mode, it has the value 

A L« 
sin(k 

ad-0 d) (5.22) 
la sin(nk at-bt) 

If the lossy dielectric material has a permittivity e- c' - jC11 I 

the time-average electric energy stored in the resonator is given by 

W= et f JE1J2dV + 
C2 

f JE 12dV (5.23)' 
e4 2V 14 2V 

22 

where 2V 1 and 2V 2 are the volume in regions 1 and 2 of the resonator 

respectively. 

Consider first the integral 

f JEJ12dV (5.24) 
2V I 

Taking an element of volume dV = 2nr dr dz' and following similar 

procedures as those in the previous section, we have 

t (M r 2r2 47rw 21AJ12f f exp(- Co {nkz -0 (z))dr dz 0w sin2 001w11 

sin2(nkt d 

2 2(nk - 2/nk-w 
t2 

(5.25) 

where ýt =01M and wt =w1W=w2 (t) being the additional phase shift 

and the beam radius at the interfaces. 
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In the same way, the second integral in (5.21) can be written as 

12ýf JE 
2 

12dV 
2V 2 

t+d 
f-r 2r2 2{k(z -t- d) - 4ý (z) + ýD (t + dý}dr dz (5.26) 47rw 2f exp(- --'- 1) sin 

0t0 W2 w222 

Integrating by parts and neglecting small terms, we have 

I 
7rw 

02 
[d sin2 (kd - Od 

22 2(k - 2/kw 
t 

1) (5.27) 

From (5.23), (5.26) and (5.27), the total energy stored in the resonator 

with the dielectric sample at the centre is 

W= 
Trw 

020 IA112[t + 
sin2(nkt -0t )« in2(kd d) 

+ 
[d 

- 
'3 

4). 

c 

41cr U(-nk- 2/nkw 
t 

2(k - 2/kw 
t 

where the positive sign in the first square bracket is for symmetrical 

mode and the negative sign is for asymmetrical mode. 

Now let us consider 

cot(nk st- 
Ot) =n tan(k 

sd-0 d) (4.27) 

tan (nk 
at-0t)- -n tan (k 

ad-0 d) (4.28) 

Squaring and adding 1 to both sides of (4.27), we have 

oý cot2(nk st-Dt)+1- n2tan2(k sd-0 d) +1 (5.29) 

Hence 
sin2(nk t-0)=1 cos2(k d-0) (5.30) stTsd s 

cos2(uk t-0)- R- sin2(k d-0) (5.31) stAssd 

sin2(nk st-0t)- 
2n sin? -(nk st-0t 

)tan(k 
sd-od) 

(5.28) 

n 
E- sin2(k sd (5.32) 

s 
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where As n2sin2(k sd- 
ýP d)+ cos2 (k 

sd d) 

z 
n2 (5.33) 

n siný'(nk st- 
ýD 

t)+ cosý'(uk st-0d 

Similarly, from (4.28), we obtain 

sin2(nk t- ýD sin2(k d'- 4ý (5.34) 
2 

atad a 

COS2(nk t- ýD )= !- 
COS2(k d -. ýD (5.35) 

ata 
a 

sin2(nk t- ýD sin2(k d0 (5.36) 
atad 

a 

where Aa= n2sin2(k ad-0d)+ 
cos2(k 

ad- 
(P d) 

=z, n2 (5.37) 
n cos7-(nk att)+ sini- (nk 

at 

Using (5.31) and (5.34), (5.21)and (5.22) can be written as 

JA 
112 .A7 (5.38) 

n 

where A, -A Is and As. Let as- nk st-0t. 
Then the variation 

aaaa 
of jAl 12 with es can be plotted as shown in Fig. 5.2. From these curves, 

a 
it can be seen that JA112 has a value between 1 and I/e 

r when the 

thickness of the dielectric sample varies from 0 to X/2. 
k --ý- 

Substitution of (5.32), (5.36) and (5.38) into (5.28) yields 

Irw 0 
2c 

0 
sin2(kd -0 d) sin2(kd -0 d) W4+ 

2k(l - 2/n; zkzw 2) +d- ý7, (5.39) 2k(l - 2/-k=wtZ)] 

ILt 

t 

When k2w 
02 

>> 1, (5.39) can be approximated by 

7rW 2C 

00 (Aý + d) 4 (5.40) 

with very little error. 
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5.2 Determination of Loss Tangent 

Keeping the same resonator arrangement as shown in Fig. 4.1, the 

loss tangent measurement takes the form of Q-factor measurements with 

and without the dielectric sample. Let Q0 be the Q of the empty reýonatorp 

QL be the Q after insertion of the dielectric sample, and QC be the Q 

due to the dielectric loss only. These three factors are related by 

111 (5.41) 

where it has been assumed that the energy stored, the diffraction losses 
I 

and the coupling losses are approximately constant in the measurements. 

The lossy dielectric material, of which the permittivity can be 

written as e- e' - ic", has an effective conductivity wc". Hence the 

power loss in the dielectric is 

p= we it f JE112dV wctan6 f JE112dV (5i42) 2 2V 12 2V 1 

With the use of (5.1), we find that Qc is given by 

2wW 

pe (5.43) 
c 

Substitution of (5.23) and (5.42) into (5.43) yields 

f JE, 12dV + -L f JE 12dV 
2V r 2V 22 Qc (5.44) 

tanS f JEJ12dV 
2V 1 

Using (5.25), (5.32), (5.36) and (5.39), this becomes 

tanS -1 
At +d 

Q At + sin2(kd -0 2k(l-----2/fn-2 Z) (5.45) 
e[ d zkzw 

I 
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This is the required expression relating tanS to the various measurable 

quantities, and is valid for both symmetrical and asymmetrical modes. 

The value of A can be calculated from (5.33) and (5.37) or obtained from 

a graph similar to those shown in Fig. 5.2. 

5.3 Effect of Plane Interfaces on the Measurement of Losslangent 

Equation (5.45) has been derived assuming that the interfaces are 

spherical forming a perfectly matched system with no reflection loss. 

If dielectric materical in sheet form is to be measured, the system is 

perturbed by the small volume of dielectric bounded by the plane and 

the original spherical interfaces. It can be considered that a 

polarization current 3 is induced in this small volume of which the 

effect on the measurement of loss tangent can be seen by considering 

the field excited by this current and the external source. 

Let EHa be the actual field in the resonator with excitation, 

and EV Hb be the test field which exists when the mirrors are perfectly 

conducting, the dielectric surfaces are spherical, and there is no 

coupling aperture. Assuming the dielectric loss is negligible, we have 

for the actual field 

xEa -j wu 0Ha 
(5.46) 

a+ 
(5.47) 

and for the test field 

xEb 
o"A (5.48) 

x l1b wo CE b (5.49) 
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Multiplying (5.46) by Ub and (5.48) by Ea and subtract the second 

resulting equation from the first. This gives 

Ve (E 
ax 

Hb) ý' -joloHa*"b - joocEa -E b 
(5.50) 

Similarly, from (5.47) and (5.48), we have 

Va (E bxHa -jw 0V0H a*Hb - jwcE 
a -E b- Eb*j (5.51) 

Dividing (5.50) by w0 and (5.51) by w and subtract the latter resulting 

equation from the former. We obtain 

(E x Hb) - 
1-V 

- (E -j VI -0) Hb +E (5.52) oj a to bx Ha) 
0 

(W 
wawb 

Integration over the volume of the resonator V and application of the 

divergence theorem gives 

f{! -(E IdS - -ju +1 fE 
ID(2-- 

2) f9- TlbdV 0J dV (5.53) 
swax 

lw(ýb 
xwwvavb 

As shown in Fig. 5.3, the surface S can be devided up as: 2S 
ms 

the total surface of the two mirrors, Sh, a hyperbolic surface on which 

the surface integral vanishes since EaX HE b and EbXHa are both parallel 

to the surface, and Sa, Sb the coupling apertures. Since Eb is zero on 

Sm, Sa and Sb, and the current J- jwe 
0 

(C 
r- 

1)E 
a exists only within the 

volume 2V'9 (5.53) becomes 

(E x ýb)-n dS - -jw 11 0 f 
-ýO-)ffi -RbdV + jw c (c 

2S +S +S a00wa00rV, a" b 
mab0v2 

(5.54) 

We next define Ea on the three surfaces. On the surfaces of the 

mirrors 
Ea- -Z mnxHa (5.55) 
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where Zm = vFj7-wv--7G-, the surface impedance of the metal. The integrand 
0 

on the left-hand side of (5.54) can be written as 

x Hb) -n n (2a x l1b) x %*nb 

=mnxnxH ao"b w ZMa*Iib (5.56) 

On S b' the output coupling aperture 

Eaý -Zb nxH (5.57) 

where Zb is the wave impedance presented by the detector to the output 

coupling aperture. The integrand becomes 

(E 
ax 

Y*ý - ZOa*Rb (5.58) 

On Sa, the input coupling aperture 

(5.59) 

This is the external excitation, and is assumed known. 

Substitution of (5.56), (5.58) and (5.59) into (5.54) gives 

w 
fx gb)-ý dS = -2ZM f -H *H dS -ZfR -HbdS - Jw ji (w - 

O)fR 
a* 

Hb dV 
sa0smabbsba00w0wv 

jw 
0e 

(e 
r- 

of 
I 
-E 

a --E b dV (5.60) 
2V 

In the evaluation of the integral over Sm, the surface element may 

be written as dS = 2vr dr and the surface integral becomes 

w 
27r f Ra -ýbr dr 

0 
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Strictly the coupling apertures, holes of radius a0 should be excluded, 

and the curvature of the mirrors should be taken into consideration. 

However, if a0 << w0 and R0 >> w0, then the error in the evaluation due 

to including the coupling aperture and neglecting the curvature of the 

mirrors will be very small. Also the upper limit of the integration is 

taken as infinity since the field is negligible when r>am. The 

integration is thereby simplified. 

The mode most likely to be excited are those having circular 

symmetry, i. e. x-0. For such modes, neglecting longitudinal component 

the magnetic field Flb = jH 
yb outside the dielectric may be written as 

w0 
r2 (_ r 2- 

H 2z -S! L exp =)cos{kz - (2p + l)-P + a) (5.62) 
yb w2 Pb 2w2b2 

At the mirrors, the field has the special value 

woo 2zr2 r2 H 
ybm -W L exp (5.63) 

2 Pb w2w2 

The magnetic field Ra= 3H 
ya 

is assumed to be very closely that given 

by (5.62) with pa replacing pb, and with an amplitude factor A. Thus 

Aw0 
2r2 r2 00L (=, exp 

w ya w 
"I-- )cos{kz 

- (2p + 1)0 + a) (5.64) 
2pwa2 a22 

Similarly 
A0w0Lo 

2r2 
exp r2 

yam w2 Pa w2w2 
(5.65) 

Consider first the integral over Sm in (5.60) using (5.61), (5.63) 

and (5.65). We have 

co W22 
o( 2r o 2r2 2r2 f0 H -HbdS - 21TA Lr dr (5.66) L exp 

f 
=W- w sa0w2 Pa 2 Pb 2w2 
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Let u= 
2r2 
w2 

(5.67) 

4r dr du =2 W2 

The integral becomes 

ITW 2A 

f 'a -ÜbdS -00f Lo (u)LO (u)exp(-u) du (5.68) 
s2o Pa Pb 
m 

This is a standard form 36 
and yields 

, ffw 2A 
fH -HbdS 

00 {r(p + 1))2 
sa2 

(5.69) 

m 

where the test field and the actual field have the same value of p. 

Otherwise the integral is zero. 

Let us for the moment assume that there is no output aperture. 

Using the fact that Z= Fa -R+ jX where R-X-r, -, l M0Mmmm0 
/2a, 

and that the Q-factor of the resonator 

Wilo fH 
a" 

Hb dV 

Qv (5.70) 
2R 

mf 
H- 

a -H-bdS 
S 
m 

equation (5.60) then becomes 

-f (9 x gb)-n^ dS . 7rW 2A R {r(p + 1)}2 + %-0 (2- - . -0) 1 
sa000m 

11« 

w0w1 

- iw 
0c0 

(c 
r- 

1) 
2V' 

E 
a* 

Eb dV 

Let w-w+ Sw - ýL. Then 
0 2Q 
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wo w0+ 6w - w/2Q w0 
www0w0+ 6w - w/2Q 

w02+ 2w 
0 

(6w - w/2Q) + Ow - w/2Q)2 -w02 

w0 (w 
0+ 

6w - w/2Q) 

w0 2(Sw - w/2Q). l + (6w - w/2Q)/2w -= (5.72) 
w0ww01+ Ow - w/2Q)/w 0 

The latter expression, when 
I 6w w/2Q I is much less than unity, can be 

2(6w - w/2Q) 
0 

approximated by 
W 

with very little error. Equation (5.71) 
0 

then becomes 

0x 
fib)-n dS = lTw 0 

2AOR 
m 

{r(p + 1))2(l +j jw 
0 eo (c 

r- 
1)f 

, 
E-a --E b dV 

s 2V 
a 

(5.73) 

In the volume 2V1, the variations of Ea= 1E 
xa and Eb '* iE 

xb 

with z are so small that they can be considered as functions of r only 

and can be written as 

o 2r2 r 2- 
t) L (='-I)exp(- )Sin(kd (5.74) 

xb w2pw2w2 

jA 
0Z0woo 2r2 r2- E (r, t) 
wL 

)exp (5.75) 
xa 

)sin(kd 
2pw2w2d 

Taking a volume element 

r2 7rr 3 
dV - 2R 

t- 
21Tr dr =Rt dr (5.76) 

where Rt is the radius of curvature of the wave front at the interfaces, 

the volume integral in (5.73) becomes 

fE*E dV L71 fEE r3dr (5.77) 
2V, abRto xa xb 
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This involves an integral 

' wo 21 2r2 2 2r2 fU 'LO(ý=""" )l exp(- =")r3dr (5.78) 
pww 

0222 

Applying the transformation in (5.67) 

w 2w 
22 co 

f u{Lo(u))2exp(-u)du 80p 

w 2W 
22 

- (2p + 1) {r (p + 1) 12 
8 

Hence 

(5.79) 

iTtA Z2 
fEE dV 00 (2p + 1){r(p + 1))2sin2(kd - 1ý (5.80) 

,abc kz d 
2V r 

I Since at the input coupling aperture and fib W JH 
yb' 

we get 

E0x H-b-n^ = E-O-H-b x n^ - -Eo-iH yb ý -E ox 
H 

yb 
(5.81) 

Thus only the x-component of Eo is needed. We assume this to be uniform 

over the coupling aperture. We also assume a0 << wm, wm being the beam 

radius at the mirrors, so that R 
yb 

is also uniform over the coupling 

aperture, having the value 

ww 
0L0 (o) 0r (p + (5.82) 

wmPwm 

We then find 

7ra 2w 

00 r(p + 1)Eo =R 7rw 2A {r(p + 1)12(l wm xm00 QýW) 

i 7r tAOZO 
+- (c 

ckr- 
1)(2p + mr(p + 1))2sin2(kd 0d 

(5.83) 
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or 

a2E 0 ox (5.84) 
0w0wm r(P + 1) 

R (1 +j 
8w 

+ 
jtz 

0 1)(2p + 1)sin2(kd - -b 
wc kw z (r: *r d 

ro 

It can be seen from (5.84) that resonator modes are excited by 

the external source and the polarization current. Unless degeneracy 

occurs, energy will be conserved in the resonator. However, the 

polarization current causes a shift in the resonant frequency which 

is represented by the second term in the denominator in (5.84). This 

agrees with the result obtained in §4.7. Thus the effect of plane 

dielectric surfaces on the measurement of loss tangent is quite small 

since a small change in resonant frequency will not affect the result 

very much. If the error involved in neglecting this frequency shift is 

found to be large, the measured loss tangent can be corrected by 

applying correction to the measured resonant frequency. 
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rl4APTVR A 

EQUIPMENT 

6.1 The Open Resonator 

6.1.1 Electromagnetic Design 

The open resonator is characterized by the folowing four dimensions: 

R0, the radius of curvature of the mirrors, 

D, the distance of separation between the mirrors, 

a the radius of the mirrors, 

a the radius of the coupling apertures. 
0 

The mirror curvature R0 and the mirror separation D determine the 

mode spectrum of the resonator. They also determine the beam radius w 

for a given frequency. In order to satisfy the assumed condition k2w 
0 

2>> 1, 

the ratio D/R can be chosen from the curve in Fig. 3.3 to give a large 
0 

w0 /w 
oc value. The choice of R. is somewhat arbitrary. However, too large 

a value of R0, although it gives a large beam radius, requires 

inconveniently large mirror diameter and dielectric sample. As a compromise, 

the radius of curvature R was chosen to be 127.0 cm. 0 
The mirror separation D also affects the frequency shift 

6w in (4.76) 
W 

and the factor F At +-d 
n (5.45) when At + sin2(kd -0 d) / 2k(l - 2Tn_Zký'w 

t 
a dielectric sheet of known thickness is to be measured. Based on these 

two equations, the variations of 
1H 

and F with D/2t can be plotted for 
W 

the worst case, i. e. when sin(kd -0d1, as shown in Fig. 6.1. To 

obtain accurate results, ýLw should be as small as possible. This requires W 

a large mirror separation. If low-loss material is to be measured, it is 

also necessary that F should be very close to 1 in order that a 
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considerable change 

by the insertion of 

a small separation. 

varying from 50 cm 

0.39 and 0.55. 

in Q is detected when the resonator is purturbed 

the dielectric sample. This can be achieved by using 

In view of these facts, a range of mirror separations 

to 70 cm was chosen giving a ratio D/R 
0 of between 

The higher order modes most likely to be excited are those with 

circular symmetry. For degeneA--ies to be avoided, the first few even 

multiples of the factor Cos- 
1 (1 - D/R ) should not lie too close to an 

0 

integer. Since this factor has a value of between 0.35 and 0.29, trouble 

from degener3cy in the empty resonator is unlikely. However, degenellcies 

or near degenercies might occur when the dielectric sample is inserted. 

This can be seen from the theoretical resonant frequencies of the 

fundamental and the TEMlo modes listed in Table 6.1. These frequencies 

have been calculated based on (4.27) and (4.28) for various thicknesses 

of the dielectric sample and for cý2.56, R= 127.0 cm. and D- 70.0 cm. r0 

TABLE 6.1 

Resonant frequencies of TEM 
00 and TEM 

10 modes 

TEM 
00 TEM lo 

2t (cm) f f f (Gllz) f a S a s 

0 9.92559 10.13972 
. 
10.07627 10.29041 

0.1 9.92544 10.11799 10.07600 10.26873 
0.2 9.92482 10-09907 10.07523 10.24922 
0.3 9.92320 10.08437 10.07344 10.23436 
o. 4 9.91999 10.07391 10.07002 10.22380 
0.5 9.91448 10.06702 10.06423 10.21684 
0.6 9.90591 10.06285 10-05530 10.21261 
0.7 9.89358 10.06062 10.04251 10.21032 
0.8 9.87722 10.05964 10.02563 10.20927 
0.9 9.85753 10.05937 10-00547 10.20889 
1.0 9.83644 10.05928 9.98407 16.20867 
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When 2t - 0.5 cm, the resonant frequency of the symmetrical TEM 
00 mode 

lies very close to that of the asymmetrical TEM lo mode, the frequency 

separation being about 3 MHz. For the measurement of low-loss material, 

QL is usually quite high. This means the bandwidth of the resonance 

curve is narrow. Since TEM 10 mode is only weakly excited, the chance of 

getting degene*y seems very small. In practice, if degene*y should 

happen affecting the measured loss tangent, a second measurement using 

a sample of different thickness is recommended. 

The radius of the mirror am affects the upper limit of the unloaded 

but as long as am >> wm, the beam radius at the mirrors, the losses 

due diffractional spillover are small in comparison with the other losses 

in the resonator. From (3.20) and (3.21), it is found for X=3.00 cm 

and D= 70.0 cm, wo = 7.37 cm and wm = 8.59 cm. The mirror radius was 

arbitrarily chosen to be 18.4 cm. The theoretical diffraction loss per 

pass is estimated from the fraction of the Gaussian beam not intercepted 

by the mirror. In our case, this has the value 

2a 24 
a= exp - (-H! ý - 10.5 x 10- 

,., 
IT) 

w m 

This corresponds to a diffraction-limited Q of 1.4 x 106. The conductivity 

limited Q is about 4.4 x 10ý Thus an upper limit for the unloaded Q is 

about 3.3 x 105. 

Because of coupling losses, the radius of the coupling apertures 

a0 affects the Q of the empty resonator. Two sizes of coupling holes, 

e. g. 2ao = 6.4 mm and 8.0 mm, were used giving a Qo of about 180,000 and 

80,000 respectively. The former size is particularly suitable for the 

measurement of low-loss dielectric such as polystyrene and the latter, 
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for high-loss material such as perspex. 

To summarize the above, the resonator has the following characteristics: 

(i) Radius of curvature of the mirrors R= 127.0 cm 

(ii) Distance of separation of the mirrors D= 50 - 70 cm 

(iii) Radius of the mirror apertures am 18.4 cm 

(iv) Radius of the coupling aperture ao 3.2 and 4.0 mm 

6.1.2 Mechanical Design 

The mirrors were turned from 19 mm thick duralumin disc. The 

surface finish of the concave part of the mirrors is better than 100 Pm. 

As shown in Plate 6.1, the mirrors are rigidly fixed to 1.3 cm thick 

duralumin back plates which are in turn fixed to compound slides 

consisting of vertical slides with swivels and cross slides. One of the 

compound slide is secured to the left end of a 3.5 ft lathe bed and the 

other one is supported by a movable carriage. The separation between 

the mirrors is variable from 25 to 70 cm by moving the carriage along 

the bed. The aperture planes of the mirrors can be adjusted for 

perpendicularity to the axis of the resonator by means of the swivels. 

Alignment of the mirrors in the axial direction can be made by adjusting 

the vertical and the cross slides. Waveguides can be connected to the 

two mirrors with the help of specially designed flanges. Coupling from 

the waveguides to the resonator takes place at the centre of each mirror 

through coupling holes of 8.0 mm diameter which can be reduced, when 

required, to 6.4 mm using adapters. 

A mounting frame holding the dielectric sample is fixed to a 

rotary table which is then supported by another movable carriage. The 

rotary table allows the sample to be turned at any angle and the movable 

carriage provides accurate axial movement of the sample. 
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6.2 Mode Spectrum 

The electrical performance of the mirrors in this resonator has 

been verified at a separation of 80 cm. 
37 It has been found that the 

experimental transverse field distribution in the central plane of 

symmetry of the resonator is Gaussian in form, and that the theoretical 

and experimental mode spacings agree very well with each other. The 

latter shows that the separation between the mirrors can be measured 

electrically using (3,23). 

The mode spectrum of the resonator can be obtained experimentally 

by connecting a microwave sweep oscillator to the input of the resonator 

and recording the output of the resonator using an X-Y recorder. The 

resonant frequencies can be measured by means of an electronic counter 

with a 8-18 GHz frequency converter having an accuracy of about 1 part 

in 10 
8. 

The block diagram of the experimental set-up is shown in Fig. 6.2 

and two typical mode spectra for the resonator with and without the - 

dielectric are shown in Fig. 4.2. The mode spectrum of an empty resonator 

comprises a set of major resonances. For coupling holes of 8.0 MM 

diameter, minor resonances at TEM 
lo 

frequencies have been detected, but 

for holes of 6.4 mm diameter they can hardly be oberved. Both the axial 

and the azimuthal mode spacings are functions of mirror separation. 

Table 6.2 gives their values for three mirror separations. 

TABLE 6.2 

Axial and azimuthal mode spacings 

Mirror Axial mode Azimuthal mode 
separation (cm) spacing (MHz) spacing (MHz) 

70.00 214.13 75.34 
60.00 249.83 80.72 
50.00 299.79 87.74 
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6.3 Measurement of Q 

The range of Q to be measured varies from a fraction of a million 

for the empty resonator with small coupling holes to a few thousands 

when high-loss material such as perspex is to be measured. It is 

impossible to use a single method to cover such wide range of Q- 

measurement without affecting its accuracy. Two methods, e. g. the 

decrement method and the bandwidth method, have been employed for this 

purpose, the formeý being used when Q> 25,000 and the latter being 

used when Q< 25,000. 

6.3.1 Decrement Method 

This method is based on measuring the time rate of decay of 

microwave energy stored in the resonator and is particularly suited to 

the measurement of high Q-factors. Let &t be the time interval during 

which the energy decays to a level A db, lower than its value at the 

beginning of the interval. Then the Q can be determined from 

27.3fAt/A (6.1) 

For a3 db power level change, this becomes 

9. lf, &t (6.2) 

The experimental set-up is shown in Fig. 6.3. A microwave sweep 

oscillator operating in the unlevelled cw mode is pulse modulated by 

applying rectangular voltage pulses of 5 Usec duration and 10 kHz 

repitition rate to the diode modulator. Forced oscillations are 

exponentially built up in the resonator during the onset of the rf 

power and the energy then decays exponentially when the pulse is over. 
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The pulse generator also sends a synchronizing pulse to initiate the 

horizontal sweep-of the oscilloscope. 

The decay of energy is observed by means'of a crystal detector 

coupled to the resonator. After passing through a wide-band amplifier, 

the transient build-up and decay is displayed on an oscilloscope with 

a vertical amplifier having 10 MHz bandwidth. Plate 6.2 shows such a 

trace taken when aQ of about 180,000 was measured. The decay time is 

measured by means of the calibrated time base in the oscilloscope. 

Delay accuracy of the time base is 1% of full scale reading, and delay 

time linearity is within 0.2% of full scale of delay. The rotary 

attenuator is used to determine the half power point in the decay curve. 

f> 

PLATE 6.2 Transient buildup and decay of energy 

in the resonator 
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Decrement measurements are not affected by the residual FM in 

the sweep oscillator because small fluctuations of the source frequency 

about a mean value have very little effect on the level of energy 

buildup and on the rate of energy decay in the resonator. It can be 

seen from (6.2) that as the Q increases so does the time interval At, 

so that, on this account, the precision of the measurement tends to 

increase, provided the frequency stability is adequate. 

Before attempting to measure dielectric loss tangents, this 

method has been tried out to measure the Q-factor of the empty resonator 

with several mirror separations at the resonant frequencies of 10.00 GHz 

and 9.50 GUz. The results are shown in Fig. 6.4. It can be seen from 

these curves that Q0 increases at first linearly with D until it reaches 

the peak where diffraction losses start to predominate. After the peak, 

Qo decreases rapidly with further increase of D. This is not unexpected 

since the beam radius at the mirrors, which has an exponential effect 

on the diffraction losses, increases continuously with D in a manner as 

shown in Fig. 3.3. As the coupling losses are not known, theoretical 

values of Q0 are not available for comparison. 

6.3.2 Bandwidth method 

Observation of the power transmitted through the resonator as a 

function of frequency affords a particularly simple and potentially 

accurate method of measuring low Q-factors. In this method, the 

bandwidth Af between the half-power frequencies is measured and the 

Q is calculated by 

f 
Af (6.3) 
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The measurement set-up is the same as illustrated in Fig. 6.3. The 

sweep oscillator is operated in the symmetrical sweep mode in which 

the frequency sweeps about a pre-set centre frequency. The width of 

the sweep can be adjusted independently. A synchronized saw-tooth 

sweep is also applied to the horizontal input of the oscilloscope 

giving a steady display of the transmitted power versus frequency on 

the oscilloscope screen. This trace is then recorded by means of an 

X-Y recorder using a much slower sweeping rate. The resonant frequency 

and the bandwidth of the trace are then measured. Thus Af can be deduced 

from this bandwidth and Q can be calculated using (6.3). 

With the limited frequency stability and the inherent residual 

frequency modulation of the sweep oscillator, the accurate measurement 

of the half-power bandwidth for high-Q circuit is very difficult. Thus 

this method is more suitable for low-Q measurements. 
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CHAPTER 7 

EXPERIMENTS AND RESULTS 

7.1 Measuring Procedures 

The experimental set-up is shown in-Plate 7.1. The separation 

between the mirrors is first adjusted to an arbitrary value. The Q of 

the empty resonator is measured using the decrement method and the axial 

mode spacing is noted from which the mirror separation D can be found. 

The dielectric sheet is then inserted at the centre of the resonator 

normal to the resonator axis. The centre position is ensured by noting 

the resonant frequency of the symmetrical mode fs is a minimum and that 

of the adjacent lower-frequency asymmetrical mode fa is a maximum. These 

two frequencies and QL of the perturbed resonator are measured. The 

dielectric constant and the loss tangent can then be related to fS'. f 
a* 

Qo' QL' D and the thickness of the dielectric sheet 2t by the formulas 

given in Chapters 4 and 5. 

7.2 Dielectric Constant of Polystyrene Sheets 

Dielectric constants of polystyrene sheets of various thicknesses 

have been measured following the procedures given above at five mirror 

separations of 70-1124,65.0266,60.0254,55.0206 and 50.0180 cm. 

Table 7.1 gives the results at f 
S' ý'10 GHz, obtained by solving (4.27) 

for n. The repeatability of the results is extremely good. If we exclude 

the value 2.567 for 2t = 7.95 mm and D- 65.0266 cm., whichis probably 

due to some human error in the measurement, the maximum deviation from 

the average value is 0.28%. When the measured dielectric constants are 

compared with the quoted value of 2.54,38 the agreement is excellent. 
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TABLE 7.1 

Dielectric constants obtained by solving 

the transcendental equation 

D (cm) 
2t (mm) 70.1124 65.0266 60.0254 55.0206 50.0180 average 

over all D 

5.97 2.545 2.550 2.549 2.549 2.549 2.548 

6.96 2.541 2.548 2.543 2.546 2.548 2.545 

7.95 2.539 2.567 2.542 2.546 2.547 2.548 

8.84 2.540 2.552 2.542 2.548 2.547 2.546 

9.96 2.539 2.544 2.541 2.547 2.541 2.542 

average value - 2.546 

The measured dielectric constants given in Table 7.1 were then 

corrected to account for the error introduced by the plane dielectric 

surfaces. The frequency correction 
SW in (4.76) was applied to the 
W 

measured resonant frequency f as follows: 

f 
corr = f(l + 

Sw (7.1) 
w 

fcorr being the corrected value of f. Substitution of the corrected 

data into (4.27) yielded the results in Table 7.2. 

TABLE 7.2 

Corrected values of the dielectric constants 

D (cm) 70.1124 65.0266 60.0254' 55.0206 50.0180 average 
2t (=) 

I 

over all D 

5.97 2.544 2.549 2.547 2.548 2.548 2.547 

6.96 2.540 2.547 2.543 2.545 2.547 2.544 

7.95 2.539 2.567 2.542 2.545 2.547 2.548 

8.84 2.540 2.552 2.542 2.548 2.547 2.546 

9.96 2.539 2.544 2.541 2.547 2.541 2. . 542 
average value = 2.545 
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The differences between the original and the corrected values 

are very small. This is because the thicknesses of the samples were 

between X 
and-!, and with such thicknesses the dielectric surfaces 42 

were subjected to low field intensity for symmetrical mode. For thinner 

sheets, the differences will be much bigger. 

From the measured data, the two sets of approximate formulas (4.37), 

(4.40) and (4.46), (4.47) gave similar results. Table 7.3 lists the more 

accurate set of results obtained by substituting the corrected data into 

(4.46) and (4.47). The maximum deviation from the average value is 0.6%. 

TABLE 7.3 

Dielectric constants calculated by using 

the approximate formulas 

D (mm) 70.1124 65.0266 60.0254 55.0206 50.0180 average 
2t (mm) 

I 
over all D 

2.88 2.539 2.543 2.537 2.540 

4.92 2.529 2.529 2.533 2.530 

5.97 2.525 2.529 2.527 2.527 

6.96 2.517 2.523 2.518 2.521 

average value - 2.529 

2.539 2.540 

2.531 2.530 

2.527 2.527 

2.520 2.520 

It is observed that the measured values vary with the thickness of 

the sample, and become very poor as the thickness approaches . 
1. 

This 2 
is understandable because of the tangent and the cotangent terms 

involved in the formulas. The estimated accuracy is ±0.5% if samples 

near an integral number of half wavelengths thick are avoided. 
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This shows that the approximate formulas are very useful when a computer 

is not available. In any case, knowing cr approximately can help to 

select the right answer from the computer solutions. 

Results obtained by solving (4.27) and (4.28) simultaneously are 

less accurate, because d is variable in the calculation, and are oifiitted. 

7.3 Loss Tangent of Polystyrene Sheets 

Table 7.4 gives the measured loss tangents of polystyrene sheets of 

5.97,6.96,7.95,8.84 and 9.96 mm thick, obtained from the measured Q0 

and QL following the procedures given above. The average value is 0.00053 

TABLE 7.4 

Measured loss tangents, x 10-4 

D (cm) 
70.1124 65.0266 60.0254 55.0206 50.0180 average 

2t (mm) 
I 

over all D 

5.97 6.6 6.0 5.7 5.4 4.8 5.7 

6.96 5.3 5.1 5.8 5.3 4.9 5.3 

7.95 5.8 5.2 6. o 5.7 4.8 5.5 

8.84 4.9 5.4 5.6 5.2 4.9 5.2 

9.96 4.5 3.6 4.8 5.0 4.9 4.6 

and the maximum deviation is 32%. These poor results are mainly due to 

the inaccuracy in the measured values of QL which are around 70,000. 

These values were found too low to be measured with the decrement method 

and too high with bandwidth method, and were eventually measured by 

using the former one. As the accuracy of the loss tangent measurement 
is limited mostly by the accuracy of Q measurements, it is expected that 

more elaborate instrumentation for measuring Q will give better results. 
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To justify the method used here, loss tangents have also been 

measured by measuring Q0 and QL at constant resonant frequency and 

slightly different mirror separations. Table gives the results which 

are extremely close to those in Table 7.4. 

TABLE 7.5 

Measured tan6 at constant resonant frequency 

65.0266 cm when the sample is inserted 

(mm) tanS ,x 10-3 

5.97 6.1 

6.96 5.2 

7.95 5.2 

8.84 5.4 

9.96 3.7 

7.4 Dielectric Constant and Loss Tangent of Perspex Sheets 

In order to test the suitability of the method in measuring high- 

loss dielectric materials, the dielectric constants and loss tangents 

of perspex sheets of 3.14 and 6.17 mm thick have been measured. 

Extremely low output. was found with the 6.4 mm diameter coupling holes. 

Larger holes with 8.0 mm diameter were then used. The measured dielectric 

constants calculated from (4.27) and from the approximate formulas (4.46) 

and (4.47) are tabulated in Tables 7.6 and 7.7. The measured loss 

tangents are given in Table 7.8. The results are extremely consistent, 

particularly those in Table 7.6, and are in good agreement with the quoted 

values, e. g. crý2.59 and tan6 = 0.0067 at 10 GHz. 38 
This shows that the 

method here can be used for measuring low-loss as well as high-loss 

materials. 
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TABLE 7.6 

Cr of perspex sheets obtained by solving 

the transcendental equation 

D (cm) 70-1124 65.0266 60.0254 55.0206 50.0180 average 
2t (mm) 

I 
over all D 

3.14 2.630 2.630 2.631 2.629 2.628 2.630 

6.17 2.627 2.628 2.628 2.627 2.626 2.627 

average value = 2.629 

maximum deviation = 0.12% 

TABLE 7.7 

Cr of perspex sheets calculated by using 

the approximate formulas 

D (cm) 70.1124 65.0266 60.0254 2t (mm) 

3.14 2.628 2.627 2.626 

6.17 2.659 2.664 2.660 

average value -2 

maximum deviation 

55.0206 50.0180 average 
over all D 

2.626 2.626 2.627 

2.666 2.652 2.660 

. 644 

- 0.832 

TABLE 7.8 

tanS of perspex sheets, x 10-3 

D (cm) 
70.1124 65.0266 60.0254 55.0206 50.0180 average 2t (=) 

I 

over all D 

3.14 7.4 7.2 7! 1 7.2 7.2 7.2 

6.17 7.9 7.6 7.5 7.3 7.3 7.5 

average value 7.4 x 10 

maximum deviation - 6.8% 
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^TT Aý"n 

ESTIMATION OF ERRORS 

8.1 Errors in Measured Dielectric Constant 

8.1.1 Errors in c Due to Errors in Measured f, d and t 

The measured values of frequency f, distance from the interface 

to the mirror d and the thickness of the dielectric sample 2t, which 

are required in the evaluation of the dielectric constant cr using the 

formulas given in Chapter 4, are susceptible to errors. Let these errors 

be Sf, Sd and St. The error in er is then given by 

6c 
De 

r 6f + 
ae 

r 6d + 
ac 

r 6t 
r -3 -d at 

In terms of relative errors, (8.1) can be written as 

6c 
r. 

6r:, 
rl +6 

cr2 
+ 

6c 
r3 (8. 

. 
2) 

crcrcrcr 

where 
6c 

rl 
Be 

rf Sf 
Er 3f r:. f 

ac 
r2 

De 
rd Sd (8.3) 

cr ad cd 

6c 
r3 

ac 
rt 6t, 

c at ct 

which can be obtained, based on (4.37), as follows. 

Putting S-ksd- 1D d' A=Kad-0d and k1-ks-ka, (4.37) can be 

written as 

cotS - (k 
s-ka 

)t cot2s 
r tanA - (ks -k a) 

-t (8.4) 
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Let ka be fixed. Since ýD d 
is not a function of frequency, differentiating 

with respect to kS, we obtain 

rI 
iý{d csc2S(l - 2k t cotS) + t(cot2S -C (8.5) 

ak 
s 

tanA -k11r 

Using (8.3), we find 

Sc kt 

CotS) + t(cot2S -C 

US 
rl s 2S(l )I " ýT (tanA - k1t) 

{d csc - 2k 
rf crr1s 

6f 
Fffs (8.6) 

s 

k 
where Ff. 

cr (tanA 
s-k1 

t) 
(d csc2S(l - 2k 

1t CotS) + t(cot2S -cr 

To find the error in cr due to the error in d, we consider first 

tan-' 
2t 

2 wýr) 
(7 

k 
0 

(4.24) 

-1 2_ (D (d + t) = tan 
ý-02-(d 

+ t/n2) 2w1 (4.25) 

kw 
02= 

2vl(Ro - -d-- t/nl) (d --+-t7-n7-) 

Differentiating (4.25) with respect to d, we obtain 

3 {O (d + t) 1-1 ý_d 2 -kw-2* (8.7) 
0 

Similarly, differentiating (4.24), we find 

2 
(t) 

t- 22 
Mý- nz t 

kw (R 
0- 

2d - 2t/n2) (8.8) 

Since 
2 

<< 
a (d + 01, we can write - 'Rd"2 ad 
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(8.9) 
kw 

Differentiating (8.4) with respect to d and applying the relationship 

in (8.3), the relative error is 

6e 
r2 d 

CSC2S(I 
1d 

2k t cot S) + (k - 
2AM 

kW 2)sec tanA -ktCsad r1r00 

F 
6d 

dd 

where FdI (k csc2S(l - 2k t cots) + (k 7 )seC2AI 
S d tanA -k1te kw 

01a 
kw 

0 

By analogous operations, we have 

30 d1 
-iFý -n-I"k- -w -7 (8.11) 

Differentiating (8.4) with respect to t and using (8.3), the relative 

error in cr due to the error in t is 

6 F- r3 2S(2k t cotS - 1) -c sec2, & 
c-k t) 'i kw Z{CSC 
r01 

le 

r01 

+k (Cot2S c )16t 1rt 

at 
tt 

where Ft {csc2S(2k't cotS - 1) - er sec2A) týc (tanA -kt k-w -0 2' 
rIr 

(Cot2S - 

Consider the factors Ff, Fd and Ft. 'Fig. 8.1 shows the experimental 

curves of their variations with the thickness of the dielectric sheet 2t, 
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for D= 65.0266 cm and fs=9.5 GHz. It can be seen that the errors in 

cr , due to errors in f, d and t, vary with the thickness of the 

dielectric. They are quite small for sheet of around 5 mm thick, but 

become very large as the thickness approaches -1. This accounts for the 2 

poor dielectric constant results for sheets of nearly 
ý thick, calculated 2 

by using the approximate formulas. 

Errors in cr, which is obtained by solving the transcendental 

equation (4.27), depend very little on the thickness of the dielectric, 

and the proportional factors Ffj Fd and Ft have now the values of around 

100,100 and 1 respectively, varying slowly with the sample thickness. 

8.1.2 Error in c Due to Axial Displacement of the Sample 

In the analysis in Chapter 4, it has been assumed that the sample 

is placed at the centre of the resonator normal to the resonator axis. 

This condition may not be fulfilled in practice. If the sample is 

slightly displaced from its central position, an error will be 

introduced to the resonant frequency. Let St be the small axial 

displacement, and VI and VI' be the perturbed volumes. The amount of 

frequency error can be calculated using (4.68), which can now be written 

as 

f E-B'dV f E-51dV 
v1v11 

f ROBW 
(8.13) 

2V 
0 

In the perturbed volumes, the electric field has the value 

Alwo 
r2 E exp =. 
'E, -)c? g(nkz 

-0 wwI sin (8.14) 
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where the cosine and the sine functions are for the symmetrical and 

the asymmetrical modes respectively. 

z0 
at at 

z 

+I+ 
vi' V1 

FIG. 8.2 Dielectric sample displaced axially from centre 

The volume element may be written as dV = 27rr dr dz. Equation 

(8.13) then becomes 

- 

w 

27r1A1I2C0 (r-r - 1) f JE1J2rdrdz -ff JE 
1 

12rdrdz 
t0 t-U 01 (8.15) 

f R-E)dV 
2V 

0 

Substituting (8-14) into (8.15) and performing the r-integration, we 

have 

112. ffw 2CO(r 
t+6zcOS2 t 

cOS2 0 )dz JA 
0r- 

1) f 
sin2(nkz - 'Dl)dz - f_ 

sin2(nkz -11 
It 

tR (8.16) 

2f 
2V 

0 

The first integral in the numerator on the left-hand side of (8.16) can 

be written as 

(I t cos2(ukz - ýD 1 ))dz 
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Integrating by parts and neglecting higher order terms as in Section 

5.1.1, this becomes 

lrsin2{nk(t + 69. ) - «t + 62)1 sin2(nkt - (Dt) 
-i[2{nk - 2/nkwz(t + 69, )} 2(nk - 2/nkw 

t 
Z) (8.18) 

Similarly, the second integral in the numerator in (8.16) can be 

written as 

6Z 
+ 

I-sin2(nkt -0t sin2fnk(t - R) - O(t - U)JI 
22- 2_2(nk - 2/nkw 

t 
2{nk - 2/nkwz(t --6k)} 

(8.19) 

If 62, << t, it can be assumed ýD(t + U) = ýD(t - U) = ýD t and 

W(t + 60 L- W(t - 60 n: wt. Subtraction of (8.19) from (8.18) gives 

I-I -- ±1 z) 
[sin2(nk(t. + ft) -e1+ sin2(nk(t - 62) -01 12 4(nk - 2/nkw 

t 

- 2sin2(nkt -0 dl 

sin2(nkt - 4ý 
t 

2(nk - 2Tn-k-vi7z-)-(cos2nkSX 
t 

Equation (8.16) then becomes 

Sw ; 
IA1121TWO260(e 

r 

4(nk - 2/nkw 
t 
2)f R-E)dV 

2V 
0 

(8.20) 

(8.21) 

From (4.75) and (5-40), the integral in the denominator can be written as 

f 
Trw 0 

2c 
0 

(At + d) 
2V 

0 

- 1)(cos2nkSk - I)sin2(nkt - Jý 

(8.22) 

Substitution of (5-32), (5.36), (5.38) and (8.22) into (8-21) yields 
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6w 
. 

(c 
r- 

1)(i cos2nk6t)sin2(kd 0 d) (8.23) 
w 4kc (1 2/n4k4w-2)(At +d 

rt 

This is the required formula for the frequency error and is valid for 

both symmetrical and asymmetrical modes. Fig. 8.3 shows the theoretical 

and experimental curves of the variation of with R for polystyrene 
W 

sheets of 4.92 and 9.78 mm, thick when D ='70.1124 cm. and the unperturbed 

resonant frequency f=9.5 GHz. It can be seen that the change in 

resonant frequency due to a small displacement of the sample from the 

centre is extremely small. The error so introduced in the measured 

dielectric constant is, therefore, negligible. 

8.1.3 Errors in cr Due to Tilting of the Sample 

If the sample is not exactly normal to the axis of the resonator, 

a shift in the resonant frequency will also be resulted. In Fig. 8.4 

the experimental values of the frequency shift W1 are plotted against 
1ýw 

the small tilt angle 66 for polystyrene sheets. These curves are for 

parallel polarization. For perpendicular polarization, much the same 

results have been obtained. 

In practice, the dielectric sample can usually be adjusted for 

perpendicularity to the resonator axis to within 0.10 by observing the 

frequency minimum for the symmetrical mode and the frequency maximum for 

the asymmetrical mode. For such a small angle of tilt, the frequency 

shift is very small. Thus the error in c due to this cause is 
r 

negligible. 

In addition to the errors discussed above, energy stored in the 

coupling holes may cause a shift in the resonant frequency. As the holes 

are very thin, this frequency shift can also be neglected. 
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8.2 Errors in Measured Loss Tangent 

Since the accuracy in measuring loss tangent is not so high as 

that in measuring dielectric constant, small errors in measured resonant 

frequency, separation between the mirrors and the thickness of the 

dielectric sheet have little effect on the loss tangent results. 

In Figs. 8.5 and 8.6, the experimental curves of the variation Of 
6Q L 

with the axial displacement U and with the angle of tilt 66 are QL 

shown for polystyrene sheets. It is observed that QL is nearly constant 

for small values of 61 and 60. As the loss tangent is proportional to 

(l/QL - l/QO ), the errors in tan6 so introduced are extremely small. 

The measured loss tangent has errors which are inherent in those 

involved in the measurement of Q. Thus the precision to which Q is 

measured determines the accuracy of the loss tangent. 

8.3 Accuracy 

The resonant frequency and the mirror separation can be measured 

to an accuracy of better than 1 part. in 106, and variations in dielectric 

sheet thickness can be controlled to 1 part in 104. When the dielectric 

constant is obtained by solving the transcendental equation, the errors 

in er due to these deviations amount to 2 parts in 104. Another probable 

source of error comes from the resonator theory used in which the second 
D21b derivative gz-2, - has been neglected, by assuming k2w 

0 
2>> 1, when deriving 

the beam wave equation (3.3). Judging from the high precision of the 

experimental results, the error due to this source is quite small. It is 

on these results that an accuracy of ±0.25% is claimed. 
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When the approximate formulas are used to determine the dielectric 

constant, the errors in the result depend on the thickness of the 

dielectric sheet. Provided samples of nearly an integral number of half 

wavelengths thick are avoided, the accuracy of this method is estimated 

to be tO. 5%. 

The accuracy of the loss tangent measurement is limited by the 

accuracy of the Q measurements. The loss tangent results for perspex 

sheets are quite satisfactory. This is because QL, having a value of 

around 5,000, was low enough to be measured quite accurately by using 

the bandwidth method. Poor loss tangent results for polystyrene sheets 

were due to inaccurate QL measurements which were in turn due to the 

high input noise level of the wide-band amplifier affecting the sharpness 

of the energy decay curve on the oscilloscope. As it is difficult to 

read the oscilloscope trace to better than 10%, the accuracy of the loss 

tangent measurement for low-loss materials is estimated to be abouý 

±10%. For high-loss materials, the accuracy of the method is about ±5%. 
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CHAPTER 9 

romrT. IlqTONI; 

A method for measuring dielectric constants and loss tangents of 

both low-loss and high-loss materials in sheet form has been described 

and has been found very satisfactory at X-band frequencies. It could 

also be used at higher frequencies and would give more accurate results 

owing to the increase of the factor k2w 
02 which is required to be much 

bigger than one in the theory. 

By measuring the resonant frequencies of the perturbed and the 

unperturbed resonator, it was possible to measure the dielectric 

constant of polystyrene and perspex quite accurately. The dielectric 

constant deduced from the transcendental equation for symmetrical mode 

and that deduced from the approximate formulas are probably accurate to 

within ±0.25% and ±0.5% respectively. In the latter case, the accuracy 

reduces as the thickness of the sample approaches a multiple of half 

wavelengths. The accuracy of the loss tangent measurement is estimated 

to be about ±10%. 

The principal advantages and disadvantages of the method are as 

follows. 

Advantages of the method 

(i) This method is applicable to the measurements of both low-loss 

and high-loss materials and becomes more accurate at higher frequencies. 

(ii) The experimental procedures are simple and straight forward 

involving no mechanical movement of any part of the resonator. 
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(iii) When the dielectric constant is determined by using the 

approximate formulas, its accuracy is comparatively unaffacted by the 

error in the measured thickness of the sample. 

(iv) The dimensions of the sample do not need to have any 

specified values, as long as its surface area is bigger than that of 

the mirrors. 

(v) The sample can be inserted and removed from the resonator 

easily-. 

Disadvantages of the method 

(i) When the approximate formulas are used for the determination 

of the dielectric constant, a reduction in precision occurs for certain 

tinfavourable ranges of sample thickness. 

(ii) In order to obtain accurate results, variations in sample 

thickness must be accurately controlled. 

(iii) Relatively large sample is required. 

To obtain increased accuracy a number of lines of attack are 

possible. Besides increasing the operating frequencies, the accuracy of 

the dielectric constant measurement could be improved by using mirrors 

of larger radius of curvature at shorter distance of separation. The 

assumed condition k2w 
02 >> 1 would then be more justifiable and the 

error in the dielectric constant due to the deviation in the measured 

frequency would be reduced. 

The accuracy of the loss tangent measurement depends on the 

precision to which Q is measured. The latter could be improved by 

employing more elaborate instrumentation, including the use of a 



110 

stabilized oscillator system, a crystal detector with flat frequency - 

response and high sensitivity, and a wide-band amplifier with very low 

input noise level, for measuring Q. 

The flexibility of the open resonator method is very great. With 

improved instrumentation for measuring Q and by reducing further losses 

due to metal absorption and coupling to maximize the Q of the empty 

resonator, very low-loss materials having loss tangent of the order of 

10-5 could be measured. 
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APPENDIX I 

CONDITION FOR NEGLECTING THE SECOND DERIVATIVE 

32ý 
The condition for neglecting the second derivative -a z2-in 

the 

beam wave equation (3.3) can be obtained by comparing it with the term 

2j 01. 
az 

Consider first the derivatives 

a1 kw 22 
1] 

Tz 
(-KL) w- -Rl'- 71 -z 

[z 11 + (-'ý 20z- -) -- kzw RZ 

tan- 
I 2zz 2 

w 
zz 

ý-z -Z (Tw- 
- 7) 

1n -kw 
00 

aW2 a [w 211 + (T2Z )21] 8z 2W2 
Tz- ý -ý-z -w -7 -k-7'-w---l 0 kw R 

00 

aw 1 3W2 w (1.4) ý-z m I-W ý -Z *2 'i 

1 aw L 57 (ý i' -w 7 '5 -z 

a jll 2 aw 2 
-jz- 

(; 
w; w* S -jz- -w-Z-R 

where w, R and 0 are given in (3.6), (3.7) and (3.8). 

Let 

1. jk 1 
r3 - w2 2R ww- -' G (D) 

then 

39 
_ exp(jo)1 _ 

2jg2 
-ýcz 

ýz Dz ww 0 

Equation (3.4) can then be written as 
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w 
-2 exp (-gr2 
w 

The first derivative of ý is 

aý 
.I (4g2r2 - 4g)ý 5-Z TJ -k 

The second derivative of * is 

32ý 
. 

4g2 (-g2 42 r+ 4gr - 2)ý 
az =k 

Using (1-7), (1.10) and (1.11) can be written as 

I 
xp r2 2jkU - -4 exp (j 2 (D) Dz 

1W 

0ww0w 

D2ý 42 
exp Q2 D) 

4r2 
+r4 DZ7 k1w 

0w0ww0 
zw z exp(j30) -W 3-w-T exp (j 4 0) (1.13) 

321p In order that the second derivative T- ,, 7 is negligible in comparison z 

with 2j'w we must have 
3z 

k2w 2 
0 (1.14) 

This is the condition required. 
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