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ABSTRACT

This thesis describes a new method of measuring dielectric
constants and loss tangents using an open resonator. The dielectric
constant measurement method consists basically of perturbing the
resonant frequency of an open resonator by placing a dielectric sample

at the centre of the resonator normal to its axis. By measuring the

resonant frequency of a symmetrical mode and of the adjacent lower=-
frequency asymmetrical mode, the dielectric constant can be determined.
Based on the Gaussian beam theory, a pair of transcendental
equations, one for each mode, are derived by assuming first the surfaces
of the dielectric sample are spherical and coincident with the phase
fronts of the resonator modes. These equations can easily be solved
for the refractive index n, by using a computer. When sample in sheet
form is measured, the results can be corrected to account for the error
so introduced. The formula giving this correction is derived by using the
perturbational technique.
From these two equations, two sets of approximate formulas are
also derived for the determination of the dielectric constant. An
important feature of these formulas is that they are algebraic expressions,

but reduction in their accuracy occurs if the sample is nearly a multiple

of half wavelengths thick.

The loss tangent is determined by the measurements of Q of the
perturbed and the unperturbed resonator. Based on the usual definition

of Q, an algebraic expression is derived relating the loss tangent to

the experimentally measurable quantities.



Measurements of dielectric constants and loss tangents of
polystyrene and perspex have been made at X-band frequencies and the
results are presented. It is on these results that the accuracy of

+0.25%7 for measuring dielectric constant is claimed. The accuracy of

the loss tangent measurement 1s estimated to be about +*10%Z. The method
1s applicable to the measurements of both low-loss and high-loss

materials, and becomes more accurate at shorter wavelengths.
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LIST OF SYMBOLS

The following list contains those symbols most frequently used

throughout the thesis.

f
S

radius of the mirrors

radius'of the coupling apertures
amplitude factor

velocity of light

distance from the dielectric sample to the mirror
distance of separation between the mirrors
resonant frequency

resonant frequency of the asymmetrical mode

resonant frequency of the symmetrical mode

H (x) Hermite polynomial

m
k

propagation constant in free space

ka = zufa/c propagation constant for asymmetrical mode

ks = 2wa/c propagation constant for symmetrical mode

Lpz(x) generalized Laguerre polynomial

1l

refractive index

Fresnel number

quality factor of the empty resonator

quality factor of the resonator when the dielectric 1s inserted

radius of curvature of the phase front

surface resistance

radius of curvature of the mirrors

radius of curvature of the phase front inside the dielectric



v

radius of curvature of the phase front outside the dielectric
half thickness of the dielectric sample
radius of the beam

beam radius at the mirrors
= wi(t) = wz(t) beam radius at the interfaces
radius of the beam waist
beam radius inside the dielectric
beam radius outside the dielectric

surface reactance

intrinsic impedance of free space

surface impedance
relative permittivityt
wavelength
additional phase shift
= ¢1(t) value of ¢ at the interface
= ¢2(d + t) - ¢2(t)
additional phase shift inside the dielectric
additional phase shift outside the dielectric

a slowly varying complex function

w = 27f angular frequency
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CHAPTER 1

INTRODUCTION

The dielectric properties of materials employed in microwave devices
can be measured by means of conventional cavity-resonator or waveguide
techniques. However, at millimetric and submillimetric wavelengths, these
techniques become increasingly difficult to use and inaccurate because
of the small physical size of the cavity or waveguide involved. Open
resonator techniques are inherently suited for measurements of low loss
materials at wavelengths of below one centimetre, but with proper
precautions they can also be used at centimetre wavelengths when
dielectric materials in sheet form are measured. As there are no side
walls, no opening and closing of the resonant structure for the insertion
or removal of the dielectric is necessary and a closely fit sample to the

cross-section of the resonator is not required.

Several open resonator methods employing spherical mirrors have
been 1::or01:,c:;s:ee:1.1-4 The first three are resonator length variation methods
in which the separation between the mirrors is varied to bring the
resonant frequency back to its original value when the sample is removed
from the resonator. While the theories are quite simple by using plane
wave approximation, in actual practice it is troublesome to restore the
resonant frequency precisely by tuning the mirror and the accurate
measurement of the small mirror movement is rather difficult. The fourth

one is a frequency variation method. However, the sample 1s required to

be placed at the Brewster angle which 1s not known in advance and has to
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be found experimentally. This complicates the experimental procedures

and eventually leads to errors in the measurements. More details of
these methods will be discussed in the next chapter.,

Since frequency can be measured much more accurately than
displacement, it is obvious that a simple measuring scheme, involving
only the measurements of the resonant frequencies and the Q of the

resonator,is advantageous and desirable. The method described in this

thesis has the merit of being simple and quite accurate. Placing the
sample symmetrically between two fixed mirrors of equal curvature, the
dielectric constant and the loss tangent can be related to the resonant
frequencies and the Q of the resonator measured with and without the
dielectric. The analysis is based on the Gaussian beam theory by
Kogelnik and Li5 where the spherical phase front and the additional
phase shift of the beam wave have been taken into account. Assuming
first that the dielectric sample has two spherical surfaces coincident
with the phase fronts of the resonator modes, the formulas for ¢ and

r
tand can be derived. When samples in sheet form are to be measured, the

measured dielectric constant and loss tangent can be corrected by
applying corrections to the measured resonant frequencies to account

for the errors introduced by the plane dielectric surfaces.
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CHAPTER 2

USUAL METHODS OF DIELECTRIC MEASUREMENT

This chapter surveys thé existing methods of measuring dielegtric'
properties of materials. The number of such methods and variations which
exist are, however, so numerous that is is virtually impossible to treat
all of them here. The following more useful methods are consequertly
emphasized: waveguide methods, cavity methods and open resonator
methods.

Free-wave methods are sometimes employed in the measurement of
dielectric constants and loss tangents of materials in sheet form. In
the majority of cases, free-wave methods are less satisfactory than
gulded-wave methods, because the former ones involve a lot of special
problems, such as the suppression of unwanted reflections, the

launching of a plane wave in a limited space, and diffraction from the

edges of the sample.,.
The microwave bridge methods rely on measurements of phase and

attenuation at different points along the axis of the waveguide which
contains the sample. This can be achieved by the use of a precision
rotary phase shifter and rotary attenuator. However, these methods are

not widely used since the range of dielectric constants which can be

measured by their use substantially duplicates the range afforded by

the methods given, while calibration and instrumentation problems

usually increase with their use.
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L | Waveguide‘Methods6’ 7

The dielectric properties of materials can be determined from the
results of measurements on a length of waveguide within which 1s a
sample of that material. Two fypes of measurement have been found gsefui
for this purpose. The first type is for those depending on the standing-
wave pattern in the guide when terminated by a known impedance, usually
a short or an open circuit. The second type is for those in which the
absorption of waves passing through the sample is the main object of
interest.

Two distinct observations must be made in order to obtain full
information concerning the dielectric properties of the sample as there
are two independent quantities, the relative permittivity and the loss
tangent, to be determined. Typical examples of these observations are
the propagation constant including the attenuation and phase constant,
and the complex wave impedance or admittance of the sample-filled
waveguide. Other methods combine in different ways the measurements
described by the above two types.

The properties of gases may be determined by the technique

9

described by Hershberger?’ A section of a waveguide is sealed off by

gas tight mica windows. Measurements can then be made when the sealed
section of the guide is evacuated and when it is filled with the gas
to be measured.

Measurements on liquids and solids are complicated by the fact
that the relative dielectric constant no longer approximates to unity,
and reflections at the boundary with the surrounding air cannot be

neglected. Under such circumstances the method given by Roberts and
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10

and Von Hippel™ may be used. The input impedance of a short-circuited

waveguide 1s measured with and without the sample and a transcendental
equation must be solved. Unless the approximate dielectric constant 1is
known, two such measurements must be carried out with samples of

different lengths.

A method, requiring two reactive terminals and only one sample,

11, 12

has been used, ™’ Generally, it is not as accurate as the above

method because sample length cannot be properly optimized for both
terminations simultaneously, but it involves a simple solution. When
for some reason the length or the location of the sample cannot be
evaluated properly, the techniques described by Oliner and Altschulerl3
can be applied. Since these are predicated on network representations,

any one of the many available impedance measurement methods for two

ports is applicable.

When a dielectric material has a very high loss tangent, it
becomes difficult to measure it satisfactorily with the methods usually
applied to low and medium loss materials. In such cases, a simple
waveguide method can be carried out by considering the sample to be of

infinite length. It requires the determination of essentially only the

normalized input impedance at the sample face.

The method for the measurement of the relative permittivity of
low-loss dielectric rod14 which 1s mounted on the axis of a circular
waveguide with one end contacting a short-circuit plate has the
advantage that the samples do not have to fit the waveguide cross-
section, but the loss tangent cannot be determined from the measurements

without considerable computational effort.
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An unconventional waveguide method has been proposed by Bell and
R.upprecht15 for the measurement of small dielectric losses in materials
of high permittivity. This utilizes a sample large enough to support a
dielectric resonance, but small compared with the dimensions of the

waveguide in which it is suspended. The dielectric loss of SrTiO, was

3

measured at a frequency range from 3 GHz to 37 GHz. Due to ‘the large
variation of permittivity with temperature, there are many temperatures
at which the sample is resonant, and the loss tangent can then be

determined.

Waveguide methods have been widely used and are versatile, but

they have the very serious disadvantage that for wavelengths below 4 mm

the very small waveguide size used gives rise to practical difficulties.

2.2 Cavity Methods

In resonant cavity methods, the resonant frequency and Q-factor
of a resonant cavity are measured with and without a suitably shaped
dielectric sample. A variety of methods using resonant cavities to
measure the dielectric properties of materials have been developed.
Three types of methods are commonly used in different situations and

are as follows:

(1) Completely filled cavity of arbitrary shape7’ 16, 17

(ii) Partially filled cavity18-21 -

(1ii) Cavity perturbation'methods.7’ 22, 23

A measurement method in (1) has been derived from Maxwell's

equations without reference to cavity shape or mode. It involves

a cavity which is completely filled with a reference material (or a

vacuum) with known dielectric constant and loss tangent, and which
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resonates in an arbitrary but fixed mode. The reference material 1s

replaced by the sample which must also fill the cavity completely, and

then a second measurement is made with the cavity again resonating in
the same mode. This method finds its application in the measurement of
gases and low loss liquids. A variation of this method, which is often
considered preferable, employs two identical cavities, one containing
the reference material, the other containing the sample.

In the case of measurements on liquids and solids, much larger
changes in resonant frequency and Q will normally be experienced, if
the sample completely fills the resonator. Since large frequency
excursions, while theoretically permissible, actually tend to lead to
error, it is &esirable to £ill the cavity partially.

Samples of dielectric used for partial filling often take the

form of a disc, a rectilinear body or an axial rod. Frequency or cavity
length can be adjusted to resonate the cavity with and without the

sample or for different lengths of the sample. These methods are
particularly suited for measurements on low-loss materials, but usually
require that the dielectric sample should be an accurate fit with

respect to one or two of the cavity dimensions. Another disadvantage is

that the mathematical analysis becomes much more complicated and, in
general, the numerical or graphical solution of a transcendental
equation is involved.

Cavity perturbation methods involve approximations in their
formulation which lead to acceptable results only under very restricted
conditions: The sample must be very small compared with the cavity

itself, so that a frequency shift which is small compared with the

resonant frequency of the empty cavity, is produced by the insertion of
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the sample. Moreover, since the fields assumed in the sample are usually
the solutions of static problems, certain sample dimensions must be
small compared with wave length, or the unperturbed field in the sample
region must be uniform. Cavity perturbation measurements can be highly

accurate and are particularly advantageous in measuring relatively lossy

materials. Perturbation techniques also permit the measurement of small

dielectric samples of various shapes.

Like the waveguide methods, resonant cavity methods have been
found to be capable of high accuracy, but the problem of physical size

and increased metal losses at short wavelengths remains.

2.3 Open Resonator Methods

It has become increasingly difficult to use the conventional
waveguide and microwave cavity resonator methods for measuring the
permittivity of materials at the lower millimetric or shorter wave-
lengths. Thus development of new methods 1s necessary to overcome the
difficulties of small cavity dimensions and the increased metal losses.
In order to obtain accuracy in the measurements, a resonator of high
Q-factor at short wavelength i1s desirable and recent development has
been concentrated on more suitable types of resonator.

24

The work of Hakki and Coleman”  1is an interesting development.

Here the measuring structure is a resonator made up of a right circular
cylindrical dielectric rod placed between two parallel conducting plates.
The problem of physical size is avoided to some extent, and metal losses
are reduced. However, the modes of interest are restricted to the TE

onf
which form a small portion of all the possible modes of operation, and

a highly selective method of excitation is rather difficult to obtain.
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Difficulties also arise in the determination of the mode indexes, and
the method would become more difficult to apply at very short wave-
lengths.

The application of a Fabry-Perot interferometer with plane mirrors
for the measurement of the permittivities and loss tangents of matérials
at millimetric and sub-millimetric wavelengths has been considered by
Culshaw and Anderson%5 Permittivities are deduced from the change in the
plate spacing for resonance when the sheet is inserted. This involves

the solution of a transcendental equation. The measurement of loss

tangent depends on measurements of the Q-factor with and without the

dielectric sheet in the interferometer. However, the Q-factor of the
empty interferometer, which is limited by the relatively high diffraction

losses, is not particularly high to give accurate tané measurements of

low-loss materials, and the assumption of constant diffraction losses may

lead to errors in the results.

A method of measuring dielectric constants of materials in sheet
form by insertion in a Fabry-Perot confocal resonator has been described
by Degenford and Coleman.1 By tilting the dielectric sheet at a small
angle with respect to the system axis, the reflected wave can be
eliminated, The working formula for determining the dielectric constant
then reduces to a simple linear relation involving the ratio of the
mirror motion required to restore resonance to the thickness of the
dielectric. This method has a drawback that tilting the dielectric
sheet at an angle of more than 5° reduces drastically the Q-factor of

the resonator. This increases the difficulty of an accurate measurement

of the resonant frequency. Sometimes the Q-factor becomes so low that

the output is undetectable even before the reflected wave is completely
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eliminated. The above has been verified by an experiment carried out
by using the resonator described in this thesis. It was found that the

measured dielectric constant of a 6.96 mm thick polystyrene sheet varied

O

from 2.542 to 2.659 for a tilt angle ranging from 5° to 7°. At 8° the

output was hardly detectable.

This method has been extended to the measurements of dielectric

2 : . : . :
loss tangent. The technique basically consists of perturbing a microwave

confocal resonator with a dielectric sheet placed normal to the axis of

the resonator. The change in Q and the change in cavity length necessary
to restore resonance can then be related to the loss tangent of the

dielectric.

A technique similar to the foregoing has been developed for use
3

with a semiconfocal resonator.” The advantage of this technique is that
it allows the simultaneous measurements of dielectric constant and loss
tangent. Also, in applying this technique the sample 1s mounted against

the flat mirror in the semiconfocal system, thus eliminating any

uncertainty in the angular position of the sample.

The above three are length variation methods which involve the
adjustment of the mirror spacing to restore the resonant frequency when
the sample is removed from the resonator. The accuracy of these methods

depends on the precision of the mirror adjustment and the measurement of

of the small displacement of the mirror.

Measurement of complex dielectric constant using a Fabry~Perot

resonator by installing the dielectric sample at Brewster angle has

4

been carried out by Yuba et al. Results are derived from application

of computations on the transmission and reflection coefficients with




respect to a plane wave incident obliquely upon the dielectric sheet.
But tilting of the sample at large angle causes misalignment of the

mirrors and it is difficult to find the Brewster angle accurately

which is not known in advance.

20
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CHAPTER 3

THEORY OF THE OPEN RESONATOR

26 27

Dick, Prokhorov, and Schawlow and Towne328

were first to

suggest the use of a Fabry-Perot interferometer as a resonator operating
at infrared or optical frequencies. Theoretical studies of the modes of

an open resonator, as determined by diffraction effect, were made by

Fox and Li.29 Boyd and Gordon,30 and Boyd and Kogelnik31 developed a

theory for resonators with spherical mirrors and approximated the modes

by wave beams. The concept of electromagnetic wave beams was also
introduced by Goubau and Schwering32 who studied the guided transmission

of reiterative beams. In this chapter, we consider the mode theory of

spherical mirror resonators based on the analysis by Kogelnik and Li.5

Diffraction losses, resonant conditions and mode patterns are also

discussed.

3.1 The Travelling Beam Modes

Two methods have been used to find the transverse modes. One 1is
to seek simple solutions to Maxwell's equations which take the form of

wave beams. The other method is to use the scalar formulation of Huygen's

principle to determine the mode patterns and the actual diffraction

losses.,

Let us consider the approximate solutions to the scalar wave

equation

V2E + sz = () (3.1)

where E 1s a field component and k = 2w/X, the propagation constant in

the medium.
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For beam waves travelling in the z direction, we can write

E = ¢(x, vy, 2) exp(~jkz) (3.2)

where y is a complex function varying so slowly with z that it is assumed

2
its second derivative'%zg-can be neglected (see Appendix I). Substitution

of (3.2) into (3.1) then gives

20 329 ...
ot eyt~ kg = 0 (3.3)

3.1.1 Fundamental Mode
A solution of (3.3) 1is

W
b, 2) = 2 expl- Iy + §(o - K] (3.4)

Substituting (3.4) into (3.2), the fundamental CGaussian beam can be

written in the form

W

E(r, 2) = 2 exp{-j(kz - ) - r2(y + 15} (3.5)

where r measures the distance from the z-axis and ¢(z) indicates an

additional phase shift due to the geometry of the beam. The radius of

the beam 1s w(z) at which the field amplitude falls to 1/e, and the

radius of curvature of the phase front at z is R(z).

As shown in Fig. 3.1, the Gaussian beam has a minimum diameter 2wo

at the beam waist at z = 0 where the phase front is plane. As the beam

propagates it expands according to a hyperbolic law. The expansion of

the beam is given by

2
we = w02{1 + [-z—) } (3.6)

O

— 2 o ® ®
where z, = MW /A, the mirror spacing of the equlivalent confocal resonator.
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The radius of curvature of the phase front is given by
z 2 |
ezl o ' (3.7)
v/
and the additional phase shift is
d = tan-rl (%—-} (3.8)
o .

Dividing (3.7) by (3.5), we have

(3.9)

which is a very useful relation.

If we assume that Ex 1s the only compomnent of the electric field

and let

=L .k 3.10
T A (3.10)

equation (3.5) can be written as

W
E = — exp[-j (kz - ¢) - grz] (3.11)

X W

From Maxwell's equations, the magnetic field has the form (see Appendix I)

3 aEx k 2 , 2.9

Hy = :J-I_J—T = Td.l-;_ []. + Ez'(g r= = g)]Ex (3-12)
0 0

The last two terms inside the square bracket when comparing with 1 are

of the same order of magnitude as the term neglected when deriving (3.11)

and, therefore, are negligible. Equation (3.12) then becomes

This is a very good approximation as long as kzwo2 >> 1.,
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3.1.1 Higher Order Modes

In addition to the solution discussed in the preceding section
there are other solutions of (3.3) with similar properties. They are
called higher order modes which form a complete and orthoxgonal set of
functions. These modes are distinguished by their mode numbers, which
are m, n and q for rectangular geometries and p, £ and q for cylindrical

geometries. The mode number q measures the number of field zeros of the

standing wave pattern along the z-axis.

(1) Modes in Cartesian Coordinates: For a system with a rectangular

geometry the solution has the form
- X Y i Ty - : o (w2 4 w2y (L. 4 3K
E Hm(VE-W)Hn(/§ w) exp{-jlkz - ¢(m, n; 2)] - (x2 + y YGCr + 5t (3.14)

where Hm.and Hn are Hermite polynomials of order m and n which measure

the field nodes in the x and y direction respectively, and the phase

shift ¢(m, n; z) is now given by

d(my, n; 2) = (m + n + 1) tan-l(g—o (3.15)
o
Some Hermite polynomials of low order are
Ho(x) = ]
Hl(x) = X
Hz(x)_- 4x2 - 2 | (3.16)

(11) Modes in Cylindrical Coordinates: For a system with cylindrical

(r, ¢, z) geometry the solution of (3.3) has the fornm
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%

2 1 ik
E= (25125 expl-jlkz - 0, 25 2) + 10} - £2Gz + )} (31D

P

where the Lpa are the generalized Laguerre polynomials, and p and £ are

radial and angular mode numbers. The phase shift &(p, &; z) 1s now given

by

d(p, 2 2) = (2p + & + 1) tan-l(—zz-—) ' (3.18)
o

The beam parameter R(z) is the same for all modes.

Some polynomials of low order are

L () = 4L+ D+ 2) = (1 + Dx + §x? (3.19)

Since we are more interested in cylindrical geometries, some linearly

polarized mode configurations are shown in Fig. 3.2,

3.2 Open Resonator

Given the beam modes discussed in the preceding section, we can
insert two mirrors which match two of the spherical surfaces defined by .

(3.7) to form a resonator. Alternatively, given two mirrors with
spherical curvature and some distance of separation, the position and
the radius of the beam waist can be adjusted so that the mirrors
coincide with two such surfaces. The present discussion applies to
resonators with mirror apertures that are large compared to the size
of the beam.

Consider an open resonator with mirrors of equal curvature. Let

D be the distance of separation and Ro be the radius of curvature of
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FIG. 3.2 TEMpz mode configurations for circular mirrors
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the mirrors. From (3.7) with z = D/2, the beam.waist'w0 in the centre

of the resonator is given by

2 = A
w0 2m

VB(ZRO - D) (3.20)
Using (3.9) and (3.20), the beam radius at the mirrors can be written as

AR D

2 o L
W T |2k~ D (3..21)

Fig. 3.3 shows how the beam radii vary with the distance of separation

between two given mirrors, V. being the beam waist when the resonator

1s confocal.

For modes of circular geometry, resonance occurs when the phase
shift from one mirror to the other is a multiple of 7. From (3.17) and

(3.18), this condition can be written as

KD - 2(2p + % + 1) tan-l(-z—-) = (q + 1) (3.22)

O

wvhere (q + 1) is the number of half wavelengths of the axial standing
wave pattern.

The frequency spacing of longitudinal modes is

where c is the velocity of light. Combination of (3.20), (3.22) and (3.23)

yields the resonant frequency of a mode

f 1 -
= @+1) +>(2p + 2+ 1) cos 1(1 - 2 (3.24)
R
o o
' -1, _D. .
where — cos (1 - 2-) is the frequency separation between adjacent
o

azimuthal modes.
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R.o = constant

0.4 0.8 1.2 1.6 2.0
D/R

FIG. 3.3 Variation of beam radius with distance of separation
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It is clear that for a given q, all modes with 2p + & = constant

are degenerate. If the the resonator is confocal, then D = R and (3.24)

becomes

o= (a4 1)+ 2+ L+ 1) (3.25)
O

and all the modes with the same (2q + 2p + 2) are thus degenerate.

3.3 Diffraction Losses

In practical resonator systems the losses due to diffraction
spillover are usually small compared with the other losses such as
metal losses suffered at the resonator mirrors and coupling losses.
Knowledge of the amount of loss is, however, desirable whenever one
wishes to design a resonator operating in the fundamental mode only.

The loss 1s a fucntion of the radius of curvature RO of the

mirrors, the mirror spacing D, and the size and shape ofzthe mirrors. -
a

An important loss parameter is the Fresnel number N ='ﬁ%—3 where for

round mirrors am.is the mirror radius and for strip or rectangular

mirrors Zamhis the mirror width.

The results of theoretical calculation of the diffraction losses

for low-loss modes of a confocal resonator with circular mirrors are
h . ® 33 ] ¢
shown 1n Fig., 3.4.”" For non-confocal resonators, diffraction losses

can be obtained by finding first the corresponding equivalent confocal

systems.

The open resonators with either plane or spherical mirrors are
inherently multimode devices. In general the systems resonate in several
modes at the corresponding resonant frequencies. However, because of the
Gaussian-Laguerre transverse field distribution, the diffraction losses are

higher for higher-order modes for a given system. By a proper choice of
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of the parameter N, we can thus discriminate against higher-order modes
by increasing their losses relative to that of the fundamental mode.

In addition to diffraction losses, there are losses due to coupling,
absorption, scatdering and other effects. If the total loss is small the

Q of the resonator can be approximated by

where G, 1s the total loss.
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CHAPTER 4

MEASUREMENT OF DIELECTRIC CONSTANT

4.1 Method of Measurement

The dielectric sample of thickness 2t is placed symmetrically at
the centre of the resonator formed by two spherical mirrors of equal
curvature as shown in Fig. 4.1. For the moment these mirrors will be
regarded as having infinite aperture, and the dielectric sample will
be assumed to have zero loss and to be slightly convex on both sides
so that they are coincident with the phase fronts of the resonator
modes.

In considering the axial standing-wave electric field patterns

in the resonator and with the axial mode number q measuring the number
of zeros between the mirrors, the mode is symmetrical when q is even
or an antinode is at the centre, and the mode is asymmetrical when q

1s odd or a node is at the centre. As shown in Fig. 4.2, the mode
spectrum of an empty resonator comprises a set of equispaced resonances
while the resonant frequencies of a resonator with a dielectric sample
inserted are unevenly spaced. The shift in the resonant frequency is
proportional to the electric enmergy increased by the insertion of the
dielectric.

The proposed method of measurement is very simple. It consists of

measuring the resonant frequency of a symmetrical mode and of the adjacent
lower-frequency asymmetrical mode. From these two frequencies the

dielectric constant can be determined without the need to solve a

transcendental equation, so long as A << d. The dielectric constant can

also be found by using a computer to solve the two transcendental equations

relating the refractive index to these frequencies.
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4.2 Fields of the Resonator with the Dielectric Sample at the Centre

Fig. 4.1 shows the arrangement to be considered with the dielectric

sample at the centre between the mirrors. The mirror separation is D, the
thickness of the sample is 2t, and the distance from the sample to the

mirror is d. It is assumed that the electromagnetic field inside the

resonator 1s of the TEMOO*mode, and that the electric and the magnetic

fields have only x and y components respectively. .The assumption of no

longitudinal component is a very good approximation if k2w°2 >> 1 or

when the region of interest is near the centre of the resonator where the

wave front is almost plane.

Because of the symmetry about the plane z = 0, 1t 1s sufficient to
consider only half of the resonator, i.e. a resonator with an open
circuit for symmetrical mode and a short circuit for asymmetrical mode
at z = 0, and a short circuit at the mirror intercepting the axis at

z = t + d. Let subscripts 1 and 2 indicate fields and beam parametérs

inside and outside the dielectric respectively. From (3.5) and (3.13),

the fields in the two regions may be written as

AW >

l o Y coSs nkr?
E = - ; J— ———————————
1 Wy exp ?J?) si'.n[nkz ¢>1(z) ¥ 2Rl(z)]
A 0Ozt
- Ja.w 2 : 2
l o r sin nkr
Z.BH, = + - - o
W ?
2 ™%, w2 Sinfke = 9@ gy o
o tszgt+d
ZOH2 = JWO exp(_ ;2 ) o l:kz - . ( ) . krz (4 2)
2 2 - A W I “]
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where A, 1s the amplitude factor, k = ZN/XO, the propagation constant 1in

1
free space, 2 = vYp/e, the intrinsic impedance, and ZOIZ1 = n, the
refractive index of the dielectric. The upper trigonometric functions
are for the symmetrical mode and the lower ones are for the asymmetrical

mode. From (3.6), (3.7) and (3.8), the beam parameters and the additional

phase shift in region 1 can be written as

2
2 - 2 22
2@ = w2 (L SR ]

0zt (4.3)

nkw'o2 2
Rl(z) = z[i + [ 5o ) ]

¢1(z) = tan-l(Zz/nkwoz)

'where'wb 1s the beam radius at z = 0.

Applying the boundary condition that E2 = 0 at the mirror, we have
o = -k(d + t) + ?,(d + t) (4.4)

Substitution of (4.4) into (4.2) gives

E, = ———wo exp (- _2_1-2 )Sln[k(z - d=-t) +¢,(d + t) - ¢,(z2) + kr?
2 Wo, W, 2 2 2R2(z)
jw ! 2
0 r kr?
Z H,A = exp (- cos ik -d - + -
o 2 9 P ( 'wzz) [:(z t) ‘:1)2(d tt) ¢2(z) ¥ 2R2(z)]

Expressions for ¢2(z), w:(z) and Rz(z) can be found by matching the beam

parameters at the interface.
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4.3 Matching of Beam Parameters

As illustrated in Fig. 4.3, the beam in the region t € z € t + d

can be considered as coming from the beam waist w ' of an equivalent

o
empty resonator formed by the spherical mirror at z = t + d and a plane

mirror at z = £. Under such circumstances, the beam radius and the radius

of curvature of the wave front in region 2 can be written as

. 2(z - £)42
o) = w21 e FEEY
kwlZ 5 t £z t+d (4-6)
O
Rpl2) = (2~ f’[‘ * e |

The matching of amplitude and radius of curvature of the wave front at
the interface requires wl(t) = w2(t) ande(t) = R2(t). Combination of

(4.3) and (4.6) yields

2
woz[l ¥ %2’) ] =V [1 ' (Z(t - f)) ] (4.7)
nkw02 ) kw
el + (5 )]=(t-f)[1+(—i—(-——:—-5-]] (4.8)

Dividing (4.7) by (4.8), we have

bt _4(t = £)
nzkzwo2 - kzwb'z
Hence two' 2
f =t - nzwoz (zl . 9)

Substitution of (4.9) into (4.7) yields
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o ° (4.10)

The right-hand side of (4.10), when k2w°2 >> 1, can be approximated by

1 with very little error. Equation (4.9) then becomes

f s Lt - .[E],lz- (4111)

Using (4.11), the beam parameters in (4.6) may be written as

2
wfe) = w2l + (Erte - € v ) ]

(z) = tan-]' [2_(‘:_—:;—)] = tan_l [-E‘%—z-(z - t + IEI.Z-)] (4.13)
O

At z = t + d, the wave front of the resonant mode is coincident

with the mirror surface. From (4.12), the radius of curvature of the

mirrors 1s given by

kw 2 2
| o

t
Ry = d+ 2 [1 * G o)

For a pair of mirrors of known equal curvature, the beam radius W in

the centre of the resonator with the dielectric sample inserted can be
calculated by means of (4.14) as

2/———7—2'T'———]—2'5'
w2=-E (d""tn (Ro-d-tn (4-15)

O
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4.4 _Transcendental Equations

On an equiphase surface intersecting the axis at z, (4.1) and

(4.5) reduce to

F = Arwo (- r® )y 0% lnkz - ¢ (25
1w, exP -qu sin 1
0gz<gt (4.16)
jA W 2 o
=" 1o Y sin _
Z].H]. + Wl exp( ;]'-2') cOS l:nkz 4’1(2)]
“o r?
E, = ;}—2- exp (- w—zvz) sin[k(z = d = t) + d>2(d + t) - ¢>2(z)]
t gz t+d
e r’ 4,17
ZOH2 = —{J—; exp (- ;J;z')COS [k(z -d-t) + 4’2(d + t) - @2(2)] (4.17)

where it has been assumed that w 1s constant over the surface.

For the symmetrical mode, E, has a maximum at z = Q0. At the

1

interface ABC (Fig. 4.1), the wave impedance looking to the left is

E
7 =—_.l=-jz

. ) lcot[nkst - 0, ()] (4.18)

where ks = 2 fS/c, fS being the resonant frequency of the symmetrical

mode.

For the asymmetrical mode

Z, = jZ tan[nk t - ¢, (t)] (4.19)

The impedance looking to the right at ABC is

' o 3 -
Zg ]Zotan[kgd o, (t + d) + ¢, (t)] (4.20)
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Applying the resonance condition Z + Z' = 0, we find

- -—:’-1- cot [nkst - fbl(t)] + tan [ksd - o,(t +d) + ¢2(t)] = 0 . (4.21)
-%-tan[ﬁkat - ¢1(t)] + tan[kad - o, (t + d) + ¢2(t)] =0 -(4.22)
where L,

¢l(t) = tan (mi‘;f) (4.23)

= tan }[—2t 4.24

¢,(t) = tan [W] ( )
o, (t + d) = t::m”1 [—-g—-z-(d + —tlz-)] (4.25)

2 kwb n

kwoz = 2/(d + t/nz)(Ro - d - t/n?) (4.15)

which are the same for both symmetrical and asymmetrical modes.

Let
¢t = ¢1(t)
b, = ¢2(t + d) - ¢2(t)
Equations (4.21) and (4.22) can be written as
1
- — - - = .2
— cot(nkst b)) + tan(ksd ¢d) 0 (4.27)
1
= tan(nkat <I>t) + tan(kad Qd) 0 (4.28)

The dielectric constant can be found by solving these two equations

for n using either a numerical method or an approximate method.
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4.5 Computer Solutions for the Transcendental Equations

Equations (4.27) and (4.28) can easily be solved for the refraction
index n by using a computer. If d, t and fs (or fa) are known values

obtained from the measurements, both equations can be written in the form
f(n) =0 | (4.29)

which can be solved numerically by means of Mueller's iteration scheme

of successive bisection and inverse parabolic interpolation. A computer

» » e 4
programme, 1n which a standard subroutine R.TMI3

1s called to solve the
transcendental equation using this iteration scheme, has been written to
find € . and 1s included in Appendix II. In addition to input data on d,
t and £, input values which specify the initial left and right bounds of
the root n and the upper bound of the resultant error have to be entered
into‘the programme when it 1s used.

Expenmental procedures can be greatly simplified if the dielectric

constant of a sample of known thickness can be determined from the

measured values of fs and £ only, without the knowledge of d. In this

a

case, (4.27) and (4.28) can be written in the form

f(n, d) =0

(4.30)
g(n) d) =0

and can be solved simultaneously for both n and d using the method of

minimization. In this method, solving the pair of equation in (4.30) is

equivalent to minimizing

S(n, d) = {f(n, d)}2 + {g(n, d))2 | (4.31)
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A standard subroutine VAOAA for finding the minimum of a function of
several variables35 can be used for this purpose. This forms a part of
the programme for the determination of €. by solving (4.27) and (4.28)
simultaneously. This programme 1s also included in Appendix II.

In view of the periodic nature of the tangent function, there
exists an infinite number of solutions for € It is consequently either
necessary to know €. approximately in order to pick the right solution,
or to perform a second identical experiment with a sample of different
thickness. In the former case, an approximate value of €. can be obtained
using the formulas derived in the following section. The proper solution

in the latter case 1s the one common to the two sets of solutions.

Graphically this is an intersection point as shown in Fig. 4.4 for a

particular case.

4.6 APEroximate Solutions for the Transcendental Eguations

4.6.1 First Approximation

If A << d, the frequency change from ka to ks will be relatively

small, and we may assume that

k, =k -k (4.32)

nk,t << 1 (4.33)

By applying Taylor's expansion to the left~hand side, (4.28) can be

written as

1
L . 2 L
—-tan(nkst @t) klt sec (nkst @t) = -tan(k d -~ ¢|) (4.34)

where the higher order terms in nklt has been neglected,
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From (4.27)

1
tan(nkst ¢t) --E~cot(ksd Qd) (4.35)

Substitution of (4.35) into (4.34) gives

1

1 - - 2 _ - - -
-Ez-cot(ksd @d) klt{l +*Eg-cot (ksd ? } tan(kad o (4.36)

&’ &

Solving this equation for n2, we have

- - 2 -
cot(ksd .¢d) klt cot (ksd ¢d)

€ = m— ® (4.37)
r tan(kad ¢d) klt

Since higher order terms in tan(nkst - ¢t) have been neglected in the

Taylor's expansion, (4.37) can be used if

Itan(nkst - ¢t)| <1 (4.38)

or, from (4.35)
lcot(k d - 0.)| < n (4.39)

By similar operations expanding (4.27), a complementary formula

for € can be obtained as

e cot(k d - ¢,) + k.t cot2(kad - 0,) .40y
-— = _—-—_'_‘_"__—’—"'"—'——-—-————‘-—————-—-—._—__.___ »
r tan(ksd ¢d) + klt
which can be used if
|cot(nk t - ¢t)|r§ 1 (4.41)
or |cot(kad - ¢d)| £n (4.42)

Strictly speaking, Qd is a function of n and, from (4.26), (4.24),

(4.25) and (4.15), can be written as
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-11 2 t -1, 2t
4 = tan [W(d 5| - tan T
R
-1 d o

The term involving n in (4.43) can frequently be neglected with very
little error. This can be done by using a large mirror spacing when
comparing with the thickness of the dielectric sample. Equation (4.43)

then becomes

(4.44)

If the condition d >> t/n? can not be fulfilled and the error
involved in neglecting this term is found to be large, then an iterative

procedure can be followed to find € First, an approximate value for

€. can be calculated from (4.37) and (4.44). This value of €_ can be

used to calculate ¢d from (4.43). Knowing ¢d’ a more accurate €_ can be

found from (4.37).

4.6.2 Second Approximation

The accuracy of the formula (4.37) can be improved by including

second order terms in the expansion of (4.28) as

1 - - 2 - -k 2
- tan(nkst ¢t) klt sec (nkst @t) nk1 t2 tan(nkst - ¢t) secz(nkst - ¢t)
= -tan(kad - ¢d) | (4.45)

Substituting (4.35) into (4.45) and solving for n?, we find

- - 2 -
o cot(ksd ¢d) klt cot (ksd ¢d) - k12t2 cot3(ksd - ¢d)
[ L ] [ ]
r tan(kad ¢d) klt klzt2 cot(ksd - ¢dy“““‘“-—-— (4.46)

As before, this formula can be used if |cot(ksd - ¢d)[5 n.
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In the same way, by including second order terms, (4.40) can be.

replaced by

cot(kad ¢d) + klt cot (kad ¢d) + kl t<cot (kad_ ¢d) (4.47)
e = - — | *
r tan(ksd @d) + klt + klztzcot(kad ¢d)

which can be used if |cot(k d - ¢,)| < n.

4,6.3 Accuracy of the Approximate Formulas

The accuracy of formulas (4.37) and (4.40) can be studied by

comparing with those including second order terms. Considering (4.37)

and (4.46) first, we have

cot S - k.t cot?$

1
11 " T T tan A - Kt (4.48)
cot S.- klt cot?s - k12t2c0t3S
€ f = = ——— (4.49)
r2 tan A - klt - kl tccot S
where S =k d - &
S d
(4.50)
A = kad ~ ¢d
The error Ger is given by
éer = €., " €, (4.51)
Maximum error due to the approximation occurs under the limiting
conditions
cot S = in
(4.52)
tan A = in
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Combining (4.48), (4.49), (4.50) and (4.52), and dividing the

resulting equation by n , we have

> 20k, 2t2
€. (1 + nklt)(l + nklt + nzklztz)

Similarly, from (4.40) and (4.47), we find

Ger -2n2k12t2 (4.54)
S T T o TN )
€ (1 * nklt)(l s nklt n kl t<)

When nklt << 1 both (4.53) and (4.54) can be approximated by

e
r

€
T

< 2n2k12t2 (4.55)

This sets an error limit to (4.37) and (4.40) due to the approximations

nade.

4.7 Correction for Plane Dielectric Surfaces

It has so far been assumed that the sample surfaces are spherical

and coincident with the equiphase surfaces forming a perfectly matched
system. This condition, however, is very difficult to fulfil in practice,
and dielectric sheet sample having two parallel flat surfaces is usually
used. The measured dielectric constant can be corrected by applying corrections
to the resonant frequencies to account for the error so introduced. .These
corrections can be derived using perturbation theory.
let E, H, w represent the field and resonant*frequency of the
fesonator with dielectric sample of spherical surfaces at the centre, and
let E+ E', H+H', v+ du represent the corresponding quantities of the

perturbed resonator having plane dielectric surfaces. In both cases, the

Maxwell's equations must be satisfied, that is
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V xE = -juB (4.56)
V x H = jm]-) (4.57)
Vv x (E+E') ==j(w + Sw)(B + B'") (4.58)
9 x (H+ H') = j(w + Su)(D + D") (4.59)
Here D' = ¢ {e¢ (E + E') - E} .

) ° (4.60)

Bl - .u Hl

O

inside the volume 2V1 bounded by the plane and the original spherical

dielectric surfaces as shown in Fig. 4.5, and

B = udH 5 = eE
(4.61)
T { B! = cE"
outside 2V1, € being a function of position.
Subtracting (4.56) from (4.58), we have
VxE'=-=j{uwB' + 6w(B + B')} (4.62)
Scalarly multiplying (4.57) by E' and (4.62) by H, we obtain
E'-V x H = jwﬁ"f) (4.63)
HeV x E' = =juH+B' - jSw(H-B + H-B") (4.64)

Subtracting and applying the identity
Ve(A X B) = BoV X A = A+V x B
we have

Ve(H x E') = jw(E'*D + HeB') + jSw(H<B + H*B') (4.65)
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Similarly, from (4.57) and (4.59), we find
Ve(E x H') = =jw(H'+B + E.D') - j8w(E*D + E-D') (4.66)

The sum of the last two equations is integrated over the volume

of the resonator 2Vo bounded by the mirrors and a hyperbolic surface Sh'

and the divergence theorem is applied to the left~hand terms. The left-

hand terms then vanish, because bothn x E =0 and n x E' = 0 on the

boundary surfaces (see Section 5.3). The resulting equation is
0 = ju[ (E'*D - E-D')AV + jéw[ {(H*B - E*D) + (HB' - E*D')}V  (4.67)
2V 2V
0 o
In the region 2VO - 2V1, the contribution to the first term

cancels with that to the second term in the first integral. Thus we

only require the contribution to this integral from the region 2V1.

Neglecting D' and B' in comparison with D and B in the second integral,

(4.67) becomes o _
[ (E'*D - E+D")dV

Sw 2v1
w | (ED - HeB)dV (4.68)
2v0

Assuming that the additional field E' is so small that it can be neglected

in comparison with E, (4.68) then becomes

[ E<D'av
.QE,_ . 2V1
W , (E*D - H+B)dV (4.69)
2V
0
where D' = eo(er - 1)E (4.70)

In the perturbed volume, the field has very little variation with

z and the electric field can be written as

W 2
o 0 - r X
E = -——-Wt exp( Et—z-) Sln(kd - ¢d) (4-71)

where*wt = wl(t) = wz(t), being the beam radius at the interfaces.
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3
Let the elementary volume be 4V = X dr (Fig. 4.5), where

Ry

Rt = R(t), the radius of curvature of the phase front intersecting

the z=axils at z = t. The numerator on the left-hand side of (4.69) can

be written as

2MW %€

- - * 2
f E.D'dV =———2——g-(e - 1)sin?(kd - ¢ )f r3exp(-2£g)dr (4.72)
2V R w r d W
1 t t 0 o
Since L
> 3 21‘2 wt
[ r3exp(- =—)dr = —— (4.73)
W 8
o t
using (4.73) and (3.9), (4.72) becomes
o Tte
D! = -— e .2 -
iv E<D'dV ¥ (e, = 1)sin?(kd - ¢,) (4.74)

1

Let W be the total energy stored in the unperturbed resonator.

We have

[ (E-D - H-B)AV = 4W (4.75)

2V
o

Substituting (4.72) and (4.75) into (4.69), and using (5.39) for W, we

obtain
50 t(er - 1)sin?(kd - ¢d)
o erkzwoz(ﬁt + d) (4.76)

This gives the amount of frequency shift due to small perturbations of

the interfaces, and can be applied to both symmetrical and asymmetrical

modes.
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CHAPTER 5

MEASUREMENT OF LOSS TANGENT

5.1 Energy Stored in an Open Resonator

The Q-factor of the resonator may be defined in the usual way as

_w X energy stored
Q = power lost (5.1)

Since the loss tangent is determined by measurements of Q with and
without the dielectric sample in the resonator, a knowledge of the

energy stored 1n an open resonator is essential before we derive a

formula for the calculation of loss tangent,

5.1.1 Without Dielectric Sample

The electric field inside an empty resonator can be written as

W
o r2

E = exp (- -‘;z)

2
S (kz - ¢ - <X

sin R (5.2)

where the cosine and the sine functions are for symmetrical and

asymmetrical modes respectively, and w, R and ¢ are given by (3.6), (3.7),

and (3.8).

Let 2’ =z =59 (5.3)

Using (3.9), this can be written as

212 )

2! = 2(l - oy (5.4)

Then .
&= 212 (5.5)
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Substituting (5.5) into (3.6), w can be approximated by

b2
W2 = W'z + W ' * (5.6)
where byt 2
&%
w12 =2 WOZ[]. + (W ] (5-7)

When r < a_, the second term on the right-hand side of (5.6) can be

neglected with very little error.

Similarly, ¢ can be approximated by ¢' where

Voo -1 ,22" .
¢ tan E;'z (5 8)

Equation (5.1) then becomes

\ 2
E_= ;—?— exp (- %';-77) zgz(kz' - ¢') (5.9)

As shown in Fig. 5.1 where ABC is an equiphase surface, the

elementary volume will be taken as the ring

dV = 21r dr dz' (5.10)

At resonance the time-average electric and magnetic energy stored
in the resonator are equal. The average stored electric energy is given

by
£
= -0 2
W, =3 QEXI dv

D/2 = 2r2_ cos

2
r
= wozeo £ £;,—2- exp (- W)Sinz(kz' - &')dr dz'  (5.11)

The upper limit of the r-intezgration is taken as infinity sine the field

is negligible when r is larger than the radius of the mirrors.



56

1031eUOS3dX U3dO UBR UT IJWNTOA JO JUdWITE [°G *9H1d




57

Since the variable of intergration in a definite integral is of

no importance, (5.11) can be written as

D/2 o

_ 5 r _ 2r? cos? ~ |
We LS £ {;f o exp ( —F)sinz(kz ®)dr dz (5.12)

Integrating with respect to r from zero to infinity, we have

O O f 0032

Sinz (kz - ‘b)dz

= ——— [ {1t cos2(kz - ¢)}dz (5.13)

= | '2—&—_%@7)——- dsin2(kz - ¢) (5..:14)

Integrating by parts, this becomes

D/2

5 . sin{kD - 20(D/2)} _ 2sin2(kz - ¢
L= 3 - 27z 0/} £ 'iﬁaf%k'¥227kw%)2 4z (3-15)

Since kD - 2¢(D/2) = n(q + 1) where q =0, 1, 2, 3..., the first term on

the right-hand side of (5.15) vanishes. The integral becomes

D/2
I = - 1 |
£ RkwZ(k - 2/kw2)3 dcos2(kz = ¢) (5.16)

Integrating by parts again, we obtain

. D/2
. } 1 5.17)
R kw2(D/2) (k = 2/kwZ(D/D) 15 * £ cosz(kz - ) d[Rsz(k - 2/kw?) 3] )
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1f we continue this operation, the integral in (5.17) will yield a series

of terms that are very small in comparison with D/2 and can be neglected.

Substitution of (5.13) into (5.17) yields

v 2
W _“¢
W o= —a0 [D + 1 ] (5.18)

2 " Rosz (D/2){k - 2/kw2(D/2)}3

Hence the total energy stored in the resonator is given by

nwbzeoD 9
W= zwe = —-——————8 []. + —ﬁ'—‘————fﬁ'—wosz (D 2){k = 2/ kw D 2)} ] (5-19)

R = R(D/2) = -123-[1 + (5 )2]

(5.20)

D 2
2 = 2
\Y (D/Z) WO [l + EJ? ]

being the radius of curvature of the mirrors and the beam radius at the

mirrors respectively. The plus sign in (5.19) is for symmetrical mode

and the minus sign is for asymmetrical mode. If k2w62'>> 1, the second

term on the left-hand side of (5.19) is much smaller than 1, and can

usually be heglected.

5.1.2 With Dielectric Sample

Electric fields in a resonator with the dielectric sample at the

centre can be written as

A.W rz

_ 1o _ cos _
E, = o exp ( ;;l-z) sinitkz = ¢,(2)}, O<szgt (4.16)
W 2
E, =:G_.exp(--ﬁf2031n{k(z -t -4d) - ¢2(z) + ¢2(t +d)}, t g 2z g t +d (4.17)

2 2
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where for symmetrical mode, the amplitude factor A, has the value

1

81n(ksd - ¢d)

15 © 7 Cos(ak_t - o) (3.21)

and for asymmetrical mode, it has the wvalue

31n(kad - ¢d)

Ala -7 sin(nkat - ¢t) (5.22)

If the lossy dielectric material has a permittivity € = ¢' - je",

the time-average electric energy stored in the resonator is given by

€
O

W =-Z—f |E1|2dV *'Z“'f |E2|2dv (5.23)

2V1 2V2

where 2V1 and 2V2 are the volume in regions 1 and 2 of the resonator
respectively.

Consider first the integral

I, = | |E1|2dV (5.24)
2v, .

Taking an element of volume dV = 2nr dr dz' and following similar

procedures as those in the previous section, we have

t ® 2 |
Y 2r 52
Il = 41rw02|A1|2£ ({-‘qz- exp (-~ Wz :?rlz{nkz - ¢1(Z) }dr dz

ww62|A1|2 sin2(nkt - ¢t)

T T2 [t * Z(ak = 27nkwtzf] (5.25)

where ¢t = ¢1(t) and W, ='w1(t) =*w2(t) being the additional phase shift

and the beam radius at the interfaces.
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In the same way, the second integral in (5.21) can be written as

I, = [ |E, |24V
2 oy 2

2
2 202, . 2 “ 26
= 4ﬂW° { i-;;z-exp(--§;2)31n {k(z -t - 4d) - @2(2) + ¢2(t + d)}dr dz (5.26)

Integrating by parts and neglecting small terms, we have

(5.27)

From (5.23), (5.26) and (5.27), the total energy stored in the resonator

with the dielectric sample at the centre 1is

nwozeo , sin2(nkt - ¢ ) sin2(kd - ¢d)]
W= 4 E:rIA1| t 2 2(nk - 2/nkwt2) ¥ B 2(k - 2/kwt2) (5.28)

where the positive sign in the first square bracket is for symmetrical
mode and the negative sign 1s for asymmetrical mode.

Now let us consider

cot(nkst - @t) = n tan(ksd - ¢d) (4.27)
tan(nkat - (I:t) = -n tan(kad - ¢d) (4.28)

Squaring and adding 1 to both sides of (4.27), we have

2 - = nd 2 -
Cxa cot (nkst ¢t) + 1 = nctan (ksd ¢d) + 1 (5.29)
Hence 5 1 >
sin (nkst - ¢t) =~E;-cos (ksd - ¢d) (5.30)
2 - m B a2 -
COS (nkst ¢t) As sin (ksd ¢d) (5.31)

sin2(nk _t = ¢ ) = 2n sinz(nkst - ¢t)tan(ksd - ?.)

n .
=-z;-31n2(ksd - Qd) (5.32)
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e n2alnl - 2 -
wvhere bs = n‘sin (ksd ¢d) + cos (ksd ¢d)
2
= —Z——T—_—n—‘—‘z———" (5.33)

ncsin (nkst - @t) + COS (nkst - ¢t)

Similarly, from (4.28), we obtain

2
. 2 A = .r.!__ : 2 ' -— s
sin (nkat ¢t) aa sin (kad ¢d) (5.34)
1
2 _ , 2 B} _
cos (nkat @t) Aa cos (kad .tbd) (5.35)
’ ) §! .
81n2(nkat Qt) = -32-31n2(kad ¢d) (5.36)
= nlainl - 2 _
where A, = n°sin (kad ¢d) + cos (kad ¢d)
n® (5.37)
= - - — .
nzcosz(nkat ¢t) + 31n2(nkat ¢t5

Using (5.31) and (5.34), (5.21)and (5.22) can be written as

A
14,12 = = (5.38)
where A, = Alg and A = &g. Let eg = nng = ¢ . Then the variation
of |A1|2 with6 can be plotted as shown in Fig. 5.2. From these curves,
a

it can be seen that |A1|2 has a value between 1 and 1/¢_ when the

thickness of the dielectric sample varies from O to \/2.

] F‘_.-r"""
R

Substitution of (5.32), (5.36) and (5.38) into (5.28) yields

™ ze sin2(kd - ¢ ) sin2(kd - ¢.)
W= At + d (5.39)
2k (1 - 27n2k2w Z) © k(1 - 2/kzwt2) ’
Whenk2w02 >> 1, (5.39) can be approximated by
nwbzeo |
W = A (At + d) (5.40)

with very little error.
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5.2 Determination of Loss Tangent

Keeping the same resonator arrangement as shown in Fig. 4.1, the
loss tangent measurement takes the form of Q-factor measurements with
and without the dielectric saﬁple. Let Qo be the Q of the empty resonator,
QL be the Q after insertion of the dielectric sample, and ere the Q

due to the dielectric loss only. These three factors are related by

1 L 1
1,1 1 (5.41)
Q. Q. Q

where it has been assumed that the energy stored, the diffraction losses
and the coupling losses are approximately constant in the measurements.

The lossy dielectric material, of which the permittivity can be

written as ¢ = ¢' - je", has an effective conductivity we". Hence the

power loss 1n the dielectric is

P =~ [ |E |2av =-Eil§55§-[ |E, |24V (5:42)
2V 2V
1 1

With the use of (5.1), we find that Qe is given by

Q = 5— (5.43)

Substitution of (5.23) and (5.42) into (5.43) yields

[ |E[|2av + 3 [ g |2av
evy “r 2V, |

QL L - (5.44
‘ tand [ |E1|2dv ‘

&

Using (5.25), (5.32), (5.36) and (5.39), this becomes

tand = -]5—[ At + d
QC At + sin2(kd - ¢d) 2k(l - 2 nk?y <) (5-45)
t
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This is the required expression relating tand to the various measurable
quantities, and 1s valid for both symmetrical and asymmetrical modes.

The value of A can be calculated from (5.33) and (5.37) or obtained from

a graph similar to those shown in Fig. 5.2,

5.3 Effect of Plane Interfaces on the Measurement of lLoss Tangent

Equation (5.45) has been derived assuming that the interfaces are

spherical forming a perfectly matched system with no reflection loss.

If dielectric materical in sheet form is to be measured, the system 1s

perturbed by the small volume of dielectric bounded by the plane and

the original spherical interfaces. It can be considered that a

polarization current J is induced in this small volume of which the
effect on the measurement of loss tangent can be seen by considering

the field excited by this current and the external source.

Let Ea’ Ha be the actual field in the resonator with excitation,
and Eb’ ﬁb be the test field which exists when the mirrors are perfectly

conducting, the dielectric surfaces are spherical, and there is no

coupling aperture. Assuming the dielectric loss is negligible, we have

for the actual field

V x Ea = -quoHa (5.46)

V x ﬁa = jmeﬁa + J (5.47)
and for the test field

VX E = -juuH (5.48)

v = ijEEb (5.49)
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Multiplying (5.46) by ﬁb and (5.48) by Ea and subtract the second

resulting equation from the first. This gives

V-(Ea X Hb) = -Jmuoﬂa-Hb - Jmera'Eb (5.50)
Similarly, from (5.47) and (5.48), we have

V-(Eb ) = =W oM o . Hb - JmeEa-Eb - Eb-J (5.51)

Dividing (5.50) by W and (5.51) by w and subtract the latter resulting

equation from the former. We obtain

1 1 X w

-m—V(E xl'l.b)""—i}’«-»(E XH)=-J]J [%_-T)ﬁ 'ﬁb %-bj (5.52) .
o o

Integration over the volume of the resonator V and application of the

divergence theorem gives

L G xf)ed - LE x i )-A1dS = —tu (Yo = OV (f .7 L (£ .3
éfaz(Ea x H)f - =(E, x H_)-f}ds JuO(;;- —)[H_H dv + = [E «J dV  (5.53)

As shown in Fig. 5.3, the surface S can be devided up as: 2Smf

the total surface of the two mirrors, Sh’ a hyperbolic surface on which

the surface integral vanishes since E_X ﬁb and E, x H are both parallel

a

to the surface, and Sa’ Sb the coupling apertures. Since Eb 1S zero on

Sm? Sa and Sb’ and the current J = jweo(er - l)ﬁa exists only within the

volume 2V', (5.53) becomes

w
f (E, x H)-a dS = 'Jw H f——--—- H dV + -1 oE, dV
25 +5 +5, a “_ )5 Hb ju e (e )£V'E Eb

(5.54)

We next define Ea on the three surfaces. On the surfaces of the

mirrors

a l a (5155)
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where Zml= #jmuo7o, the surface impedance of the metal. The integrand

on the left-hand side of (5.54) can be written as

xrl.b)-ﬁ = ﬁ-(f‘.axrlb) =n X Ea.ﬁb

=-Zﬁxﬁxﬁ-ﬁb=2ﬁ-ﬁb (5.56)

m a m a

On Sb’ the output coupling aperture

E =-Z2.n x H (5.57)

where Zb is the wave impedance presented by the detector to the output

coupling aperture. The integrand becomes
(Ea X Hb)'n = ZbHa-Hb (5.58)
On S_, the input coupling aperture

E =E '(5.59)

This is the external excitation, and is assumed known.,

Substitution of (5.56), (5.58) and (5.59) into (5.54) gives

- - A - - W
é’ (B, x H ) ds = -22 £ H +H dS - 2 é Lo dS - o (= - ) [H_<H, dV
a m b Yo v

+ ju e (e = 1)/ E +E dV (5.60)

In the evaluation of the integral over Smf the surface element may

be written as dS = 2nr dr and the surface integral becomes

" £ i-{.:—1”;11,1' dr (5.61)
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Strictly the coupling apertures, holes of radius a_ should be excluded,
and the curvature of the mirrors should be taken into consideration.
However, 1f a <<w and R >> w , then the error in the evaluation due

O O O O

to including the coupling aperture and neglecting the curvature of the

mirrors will be very small. Also the upper limit of the integration is
taken as infinity since the field 1is negligible vhen r > a . The
integration is thereby simplified.

The mode most likely to be excited are those having circular

symmetry, i.e, ¢ = O. For such modes, neglecting longitudinal component

M

the magnetic field H_ = 'Hyb outside the dielectric may be written as
W
0,0 (2r2 r2
2 —— L - -
b =, pb(——zwz )exp v, Jeos{kz = (2p, + 1)¢, + a) (5.62)

At the mirrors, the field has the special value

\%

0 .0 (2r2 r2 |
Hybm = ;; Lpb (;2—2) exp (" ;52-) (5-63)

The magnetic field ﬁa = ija 1s assumed to be very closely that given

by (5.62) with P, replacing Py s and with an amplitude factor Ab' Thus

00 .0 (2r2 r2
ya - v, Lpafggz)exp(--azzﬂcos{kz - (2p, + 1)0, + a) (5.64)
Similarly
Aw
00 .0 (2r% r2
Hyam o le’a(—z-w2 Jexp (- —z-wz ) (5.65)

Consider first the integral over Sm.in (5.60) using (5.61), (5.63)
and (5.65). We have

= = 0y4. 0 (2réy_ o0 (2r2 2r2
é H +H ds = 2mA_ £ (;-2-) Lpa(W)Lpb(gz]exp (- ==2)r dr (5.66)
0 2



69

Let ‘ 212
u =~
2 (5.67)
4r dr
du = ——7—

The integral becomes

mw 2A co

[ H_H s = —— [ LY (u)LY (u)exp(-u) du (5.68)
S _

2 0 Pa pb

This 1s a standard form36 and yields

_ mw_2A
[ H +H dS = —— {T(p + 1)} (5.69)
S _

where the test field and the actual field have the same value of p.
Otherwise the integral 1s zero.

Let us for the moment assume that there 1s no output aperture,
Using the fact that Zm = /qu07o = Rm1 + JXm where Rm = xm e /muO/Zc:,

and that the Q-factor of the resonator

, [ B <Hav
q = ‘; (5.70)
m g a*HpdS
equation (5.60) then becomes
- - A s 2 . mo (P} wo
-é (E, x ) ndS = mw AR {T(p + 1)} [1' + j{1 + Qw—(.a-; - 5_)}1
d
- ju e (e - 1)f Ea-Ebdv (5.71)

2v'

Let w = W, + Sw - --. Then

2Q
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w,ow W, w, + Sw - w/2Q

w % + 2w0(6m - w/2Q) + (8w - w/2Q)2 - moz

O
wo(wo + Sw - w/2Q)

w W w 1 + (bw - w/2Q)/w '
O O O
Sw - w/2Q

The latter expression, when is much less than unity, can be

2(8w - w/2Q)

W

W
O

approximated by with very little error. Equation (5.71)

0
then becomes
-[ (E x H)nds =mw 2A R {T(p + 1)}2(1 + 1022 - 3w e (. - 1)[ E -, av
O b O om W 0 O 2V a b
a
(5.73)
In the volume 2V', the variations of E =iE and E, = iE
a Xa b xb

with z are so small that they can be considered as functions of r only

and can be written as

o (T v, Up W) exp (- ;z-z-)sm(kd - 0,) (5.74)
_ _"0o’0oo  or2r r2 y
E_ (r, t) --—————-wz Lp(w-z-z) exp (- gz—z—)sln(kd - 0, (5.75)
Taking a volume element
2 3
r L
dV = —21—- ¢ 27r dr = _R: dr (5.76)

wvhere Rt 1s the radius of curvature of the wave front at the interfaces,

the volume integral in (5.73) becomes

3
A a b Rt o Xa Xbr dr (5-77)
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This involves an integral

® W 2 2. .2 2
1= ] (9 {L;(%- } exp (- 255)r3dr (5.78)
o 2

2 )

Applying the transformation in (5.67)

W 2w .2 o
I = 08 2 f u{LO(u)}zexp(-u)du
o P
w 2w 2
- 2 2_ (2p + D{T(p + 1)}2 (5.79)
Hence
o 'ntA.OZo2
[ E 'E, dV = = ———— (2p + 1){T(p + 1) }25in2(kd - ®,) (5.80)
oy? @ €%
Since n = -k at the input coupling aperture and ﬁb = ijb’ we get
w 1) - —— v *l- 2 = —- i‘? = — |
E0 X Hb n = EO Hb X 1 Eo 1Hyb onnyb (5.81)

Thus only the X-component of EO 1s needed. We assume this to be uniform

over the coupling aperture. We also assume a << w , w being the beam

O m m

radius at the mirrors, so that Hyb 1s also uniform over the coupling

aperture, having the value

Yo Lo Yo
m m
We then find
ﬂaozwo S
_ 2 2 . W
) T(p + DE__ =R m “A {T(p + 1)}2(1 + 1)
JﬂtAOZ

+ _..._E.;.R_?. (er - 1)(2p + 1){F(p + 1)}28in2(kd - ¢d)

(5.83)
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or
ao2 | on .
I Y [ 2 (5.84)
Rm(l + JQ_UJ) + W(Er - 1)(2p + 1)51n (kd - ¢d)

It can be seen from (5.84) that resonator modes are excited by

the external source and the polarization current. Unless degeneracy
occurs, energy will be conserved in the resonator. However, the
polarization current causes a shift in the resonant frequency which

is represented by the second term in the denominator in (5.84). This
agrees with the result sbtained in §4.7. Thus the effect of plane
dielectric surfaces on the measurement of loss tangent is quite small
since a small change in resonant frequency will not affect the result
very much. If the error involved in neglecting this frequency shift is

found to be large, the measured loss tangent can be corrected by

applying correction to the measured resonant frequency.
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CHAPTER 6

EQUIPMENT

6.1 The Open Resonator

6.1.1 Electromagnetic Design

The open resonator is characterized by the folowing four dimensions:

Rb’ the radius of curvature of the mirrors,

D, the distance of separation between the mirrors,

a_, the radius of the mirrors,

a s the radius of the coupling apertures.

The mirror curvature R0 and the mirror separation D determine the
mode spectrum of the resonator. They also determine the beam radius w
for a given frequency. In order to satisfy the assumed condition k2w02>> 1,

the ratio D/Ro can be chosen from the curve in Fig. 3.3 to give a large

wb/woc value. The choice of R, 1s somewhat arbitrary. However, too large

a value of Rb’ although it gives a large beam radius, requires

inconveniently large mirror diameter and dielectric sample. As a compromise,

the radius of curvature R0 was chosen to be 127.0 cn.

The mirror separation D also affects the frequency shift EELin (4.76)

TV
At + d )
At + sin2(kd - 6,) / 2k(1 - 2/n%k2w; in (5.45) when

a dielectric sheet of known thickness is to be measured. Based on these

and the factor F =

two equations, the variations of-gﬁ and F with D/2t can be plotted for

the worst case, i.e. when sin(kd - ¢d) = 1, as shown in Fig. 6.1. To

Sw

obtain accurate results,-—;-should be as small as possible. This requires

a large mirror separation. If low-loss material is to be measured, it is

also necessary that F should be very close to 1 in order that a
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considerable change in Q is detected when the resonator is purturbed
by the insertion of the dielectric sample. This can be achieved by using

a small separation. In view of these facts, a range of mirror separations

varying from 50 cm to 70 cm was chosen giving a ratio D/Rb of between

0.39 and 0.55.

The higher order modes most likely to be excited are those with

circular symmetry. For degenerkcies to be avoided, the first few even

1 -1

multiples of the factor*?cos (1 - D/Ro) should not lie too close to an

integer. Since this factor has a value of between 0.35 and 0.29, trouble
from degenerdcy in the empty resonator is unlikely. However, degenexncies
or near degenercies might occur when the dielectric sample is inserted.
This can be seen from the theoretical resonant frequencies of the

fundamental and the TEM10 modes listed in Table 6.1. These frequencies

have been calculated based on (4.27) and (4.28) for various thicknesses

of the dielectric sample and for €. = 2.56, RO = 127.0 cm and D = 70.0 cm,

TABLE 6.1
Resonant frequencies of TEM;0 and TEMiomodes
-
TEM00 TEM10
2t (cm) fa fs fa fs (GHz)
- -
0 9.92559 10.13972 10.07627 10.29041
0.1 9.92544 10.11799 10.07600 10.26873
0.2 9.92482 10.09907 10.07523 10.24922
0.3 9.92320 10.08437 10.07344 10.23436
0.4 9.91999 10.07391 10.07002 10.22380
0.5 9.91448 10.06702 10.06423 10.21684
0.6 9.90591 10.06285 10.05530 10.21261
0.7 9.89358 10.06062 10.04251 10.21032
0.8 9.87722 10.05964 10.02563 10.20927
0.9 9.85753 10.05937  10.00547 10.20889
1.0 9.83644 10.05928 9.98407 10.20867
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When 2t = 0.5 cm, the resonant frequency of the symmetrical TEMbo mode

lies very close to that of the asymmetrical TEM, mode, the frequency

lo

separation being about 3 MHz. For the measurement of low-loss material,
QL is usually quite high. This means the bandwidth of the resonance
curve 1s narrow. Since TEMlo'mode is only weakly excited, the chan;e of
getting degenexry seems very small. In practice, if degenexrky should
happen affecting the measured loss tangent, a second measurement using
a sample of different thickness is recommended.

The radius of the mirror a_ affects the upper limit of the unloaded

m

>> w_, the beam radius at the mirrors, the losses

Q, but as long as a_ o

due diffractional spillover are small in comparison with the other losses
in the resonator. From (3.20) and (3.21), it is found for XA = 3.00 cm

8.59 cm. The mirror radius was

and D = 70.0 cm, W_ = 7.37 cm and W

arbitrarily chosen to be 18.4 cm. The theoretical diffraction loss per

pass is estimated from the fraction of the Gaussian beam not intercepted

by the mirror. In our case, this has the value

2a 2

@ = exp ~(~—) = 10.5 x 10
m

4

This corresponds to a diffraction-limited Q of 1.4 x 105 The conductivity
limited Q is about 4.4 x 107 Thus an upper limit for the unloaded Q 1is
about 3.3 x 195.

Because of coupling losses, the radius of the coupling apertures
a affects the Q of the empty resonator. Two sizes of coupling holes,

e.g.2a_ = 6.4 mm and 8.0 mm, were used giving a QO of about 180,000 and

80,000 respectively. The former size is particularly suitable for the

measurement of low-loss dielectric such as polystyrene and the latter,
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for high-loss material such as perspex.

To summarize the above, the resonator has the following characteristics:

(1) Radius of curvature of the mirrors R0 = 127.0 cm
(11) Distance of separation of the mirrors D = 50 - 70 cm
(111) Radius of the mirror apertures a = 18.4 cm

m

(iv) Radius of the coupling aperture a = 3.2 and 4.0 mm

6.1.2 Mechanical Design

The mirrors were turned from 19 mm thick duralumin disc. The

surface finish of the concave part of the mirrors is better than 100 ym.,
As shown in Plate 6.1, the mirrors are rigidly fixed to 1.3 cm thick

duralumin back plates which are in turn fixed to compound slides
consisting of vertical slides with swivels and cross slides. One of the

cottpound slide is secured to the left end of a 3.5 ft lathe bed and the

other one is supported by a movable carriage. The separation between

the mirrors is variable from 25 to 70 cm by moving the carriage along

the bed. The aperture planes of the mirrors can be adjusted for

perpendicularity to the axis of the resonator by means of the swivels.
Alignment of the mirrors in the axial direction can be made by adjusting

the vertical and the cross slides. Waveguides can be connected to the
two mirrors with the help of specially designed flanges. Coupling from
the waveguides to the resonator takes place at the centre of each mirror
through coupling holes of 8.0 mm diameter which can be reduced, when
required, to 6.4 mm using adapters.

A mounting frame holding the dielectric sample is fixed to a

rotary table which is then supported by another movable carriage.The
rotary table allows the sample to be turned at any angle and the movable

carriage provides accurate axial movement of the sample.
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6.2 Mode Spectrum

The electrical performance of the mirrors in this resonator has

37 It has been found that the

been verified at a separation of 80 cm,
experimental transverse field distribution in the central plane of
symmetry of the resonator is Gaussian in form, and that the theoretical

and experimental mode spacings agree very well with each other. The

latter shows that the separation between the mirrors can be measured

electrically using (3,23).

The mode spectrum of the resonator can be obtained experimentally
by connecting a microwave sweep oscillator to the input of the resonator
and recording the output of the resonator using an X-Y recorder. The
resonant frequencies can be measured by means of an electronic counter

with a 8-18 GHz frequency converter having an accuracy of about 1 part

in.108. The block diagram of the experimental set-up is shown in Fig. 6.2

and two typical mode spectra for the resonator with and without the
dielectric are shown in Fig. 4.2. The mode spectrum of an empty resonator
comprises a set of major resonances. For coupling holes of 8.0 mm
diameter, minor resonances at TE'M10 frequencies have been detected, but
for holes of 6.4 mm diameter they can hardly be oberved. Both the axial
and the azimuthal mode spacings are functions of mirror separation.

Table 6.2 gives their values for three mirror separations.

TABLE 6.2

Axial and azimuthal mode spacings

_—HM

Mirror Axial mode Azimuthal mode
separation (cm) spacing (MHz) spacing (MHz)
____—————_M

70,00 214,13 75.34
60.00 249,83 80,72

50.00 299,79 87.74
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6.3 Measurement of Q

The range of Q to be measured varies from a fraction of a million
for the empty resonator with small coupling holes to a few thousands

when high-loss material such as perspex is to be measured. It 1s
impossible to use a single method to cover such wide range of Q-
measurement without affecting its accuracy. Two methods, e.g. the

decrement method and the bandwidth method, have been employed for this

purpose, the former being used when Q > 25,000 and the latter being

used when Q< 25,000,

6.3.1 Decrement Method

This method i1s based on measuring the time rate of decay of

microwave energy stored in the resonator and is particularly suited to

the measurement of high Q-factors. Let At be the time interval during
which the energy decays to a level A db lower than its value at the

beginning of the interval. Then the Q can be determined from

Q = 27.3ft/A (6.1)

For a 3 db power level change, this becomes
Q = 9.1f At (6.2)

The experimental set-up is shown in Fig. 6.3. A microwave sweep
oscillator operating in the unlevelled cw mode is pulse modulated by
applying rectangular voltage pulses of 5 ysec duration and 10 kHz

repitition rate to the diode modulator. Forced oscillations are
exponentially built up in the resonator during the onset of the rf

power and the energy then decays exponentially when the pulse is over.
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The pulse generator also sends a synchronizing pulse to initiate the
horizontal sweep of the oscilloscope.

The decay of energy 1is observed by means of a crystal detector
coupled to the resonator, After passing through a wide-band amplifier,
the transient build-up and decay is displayed on an oscilloscope with
a vertical amplifier having 10 MHz bandwidth. Plate 6.2 shows such a
trace taken when a Q of about 180,000 was measured. The decay time is
measured by means of the calibrated time base in the oscilloscope.
Delay accuracy of the time base is 17 of full scale reading, and delay

time linearity is within 0.27 of full scale of delay. The rotary

attenuator 1s used to determine the half power point in the decay curve.

PLATE 6.2 Transient buildup and decay of energy

in the resonator
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Decrement measurements are not affected by the residual FM in

the sweep oscillator because small fluctuations of the source frequency

about a mean value have very little effect on the level of energy
buildup and on the rate of energy decay in the resonator. It can be

seen from (6.2) that as the Q increases so does the time interval At,
so that, on this account, the precision of the measurement tends to
increase, provided the frequency stability is adequate.

Before attempting to measure dielectric loss tangents, this
method has been tried out to measure the Q-factor of the empty resonator
with several mirror separations at the resonant frequencies of 10.00 GHz
and 9.50 GHz. The results are shown in Fig. 6.4. It can be seen from
these curves that Qo increases at first linearly with D until it reaches
the peak where diffraction losses start to predominate. After the peak,
QO decreases rapidly with further increase of D. This is not unexpected

since the beam radius at the mirrors, which has an exponential effect

on the diffraction losses, increases continuously with D in a manner as

shown in Fig. 3.3. As the coupling losses are not known, theoretical

values of Qo are not available for comparison.

6.3.2 Bandwidth method

Observation of the power transmitted through the resonator as a

function of frequency affords a particularly simple and potentially

accurate method of measuring low Q-factors. In this method, the

bandwidth Af between the half-power frequencies is measured and the

Q is calculated by

Q=3F (6.3)
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