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Abstract

The immediacy of subjective experience belies the complex process of

inference and categorisation that our brains undertake every moment of

our waking lives, a process that allows the selection of the best course

of action in the face of under-determined sensory input. There is much

behavioural evidence that humans use the context in which decisions

occur to actively shape links between perception and action. However,

there are several remaining questions as to how this process occurs in

the brain, and how such decision-making is linked to subjective reports,

four of which are addressed in this thesis. It is unknown at which stage

along the path from sensory to motor areas a loss function is integrated

into the perceptual decision process. Using fMRI I show that asymme-

tries in value affect a fronto-parietal-basal ganglia network, rather than

impacting upon the coding of visual categories. Theoretical models pre-

dict that the basal ganglia adjust the link between decision and action

on the basis of contextual variables, but supporting empirical evidence

is scarce. In two further imaging studies I show that the subthalamic

nucleus modulates action control when default expectations are violated.

That links between perception and action may be labile leads one to ask

to what extent the observer has metacognitive access to these stages

of the decision process, and which brain structures might mediate this

access. I show that a second-order signal detection model can capture

some, but not all, features of metacognitive confidence. Finally, I show

that individual differences in metacognitive ability are associated with

the structure of anterior prefrontal cortex. Comparing the levels of per-

ceptual and metacognitive decision is critical for understanding how the

mechanisms of decision-making are linked to awareness and self-report.

The thesis concludes with a brief discussion of future challenges in this

direction.
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Chapter 1

Introduction

1.1 Conceptual overview

Decision-making is usually assumed to involve concerted deliberation, such as choos-

ing which job to take, or which café to go to for lunch. Darwin famously engaged in

this type of effortful decision-making when choosing whether to marry, by weighing

up the pros and cons of having a wife1. But from the moment we open our eyes in

the morning and embark upon a continuous series of glances, looks, categorisations,

judgements, misjudgements and deliberations, we are making decisions, both auto-

matic and effortful. Our brain is able to classify a voice as male or female, a face in

the crowd as being a familiar or unfamiliar, without our conscious ‘self’ necessarily

having insight into this process (Pylyshyn, 2003). Here we adopt this broader def-

inition of decision, one that allows us to probe how the brain multiplexes various

sources of ‘evidence’ to guide our everyday behaviour. This thesis addresses the

relationship between perception – ‘seeing’ – and action – ‘doing’, and one’s aware-

ness of this relationship. By analysing the neural basis of simple visual decisions

both in terms of first-order decision-making, and second-order commentaries on this

decision process, I aim to form bridges between mechanism on the one hand, and

subjectivity on the other.

The first part of the thesis examines how sense data (visual input) interacts with

context to bias connections between stimuli and actions in the brain. The role of the

basal ganglia, a collection of nuclei that play a key role in the control of action, forms

the focus of these chapters. The second part of the thesis then asks to what extent

we are able to access and report aspects of the relationship between perception and

action, and how this ability is linked to individual differences in brain structure.

On one view, introspection is only weakly linked to the underlying characteristics of

the decision process (Nisbett & Wilson, 1977; Johansson et al., 2005). In contrast,

data reported here show that under the right testing conditions, subjects are able

to report the fine-grained and graded nature of processes underlying their decision-

1He eventually decided the pros outweighed the cons.
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Figure 1.1: England appeal for the dismissal of South African batsman Graeme
Smith in a 2010 Test match.

making. How this access arises from the mechanisms that underpin ‘first-order’

perceptual decisions is a question that will be pondered at multiple junctures in this

thesis.

Despite perceptual decisions being based on information arriving from the outside

world, the context in which we receive sensory information fundamentally affects

our judgments, and how these judgments connect to action. Biases in the link

between perception and action are most noticeable when decisions are made under

uncertainty. Intuitively, when the correct decision is clearly specified by incoming

sense data, the context in which the decision is made plays little role in the outcome.

Alternatively, when the data only weakly specifies one course of action over another,

a priori knowledge of the costs and benefits of choosing one response over another are

given more weight (Kersten et al., 2004). This can be illustrated in a simple example.

The umpire at a Test cricket match is often called upon to make a perceptual

judgment under uncertainty, such as whether the ball struck the bat or not following

an appeal for ‘caught behind’ (see figure 1.1). If the sensory input is equivocal, the

influence of the crowd, the state of the game, and the number of times a similar

incident has occurred up to this point may sway his or her decision2. In other words,

extraneous factors impinge upon the decision process, biasing the action taken. If

the evidence that the batsman hit the ball were stronger, leading to greater certainty

in the mind of the umpire, these factors can be assumed to carry less weight when

arriving at a decision.

The combined influence of prior beliefs (how likely is it, on average, that a bats-

man nicks the ball), and costs and benefits (will giving the batsman ‘out’ significantly

change the course of the game?) is known as the ‘loss function’. As indicated in

figure 1.2, the mechanisms through which the loss function may affect perceptual

2Such effects have been quantified for Premiership football referees, and indeed show a significant
bias away from penalising the home side (Boyko et al., 2007).
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Figure 1.2: Cartoon of how the loss function could be applied to various stages
of the perceptual decision process. Bias could either affect an early sensory stage,
prior to response specification, a decision stage intermediate between stimulus and
response, or a post-decision stage at the level of response specification.

decisions under uncertainty are unknown, and several potential systems-level models

have been articulated (Maloney, 2002). On the one hand, the loss function could

shape early sensory processing, leading to a change at the input stage. On the other

hand, beliefs about the stimulus could be constructed in relative isolation from the

loss function, before adjustments in the decision are made during action selection. In

Chapter 4 we explore this question, concluding that the asymmetries in costs affect

cortico-basal ganglia circuitry, rather than early perceptual mechanisms, consistent

with the latter view.

As we will see in Chapter 5, the weight attached to the loss function is inversely

proportional to the subject’s current level of uncertainty about the correct answer

(see also section 2.2.4). However, the extent to which subjects are aware of (i.e. able

to report) their fluctuating level of uncertainty and/or interactions with the loss

function during perceptual decision-making is unknown. In the second part of this

thesis (Chapters 7 and 8), I investigate the extent to which subjects are able to

communicate their level of uncertainty about their own decision process. To the

extent that this communication is accurate, it provides convergent evidence that the

brain encodes and use decision uncertainty to shape ongoing behaviour. In Chapter

7 I extend simple models of perceptual decision-making used to analyse behavioural

data in the first part of the thesis to encompass metacognitive judgments. In Chapter

8 I go on to apply this analysis to investigate how metacognitive sensitivity is related

to brain structure.

1.2 Unifying principles

1.2.1 Bayesian decision theory

Imagine you are a radar operator at the height of the Cold War. Tensions are high,

and there is a real sense of danger from unannounced enemy missiles. Your job is
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to detect the earliest, faint visual signals of these objects on your screen. Often you

have only the merest glance, a fleeting visual impression of the signal, yet have to

decide whether the blip you just saw was truly a missile or not. How does your

brain compute the right course of action?

Signal detection theory (Green & Swets, 1966), a special case of Bayesian de-

cision theory (see section 2.2.1), provides us with a natural way of thinking about

forced-choice decision scenarios such as these, giving a prescriptive framework for

converting single observations of noisy evidence into a categorical choice. Like decid-

ing whether to accept or reject a scientific hypothesis (Neyman & Pearson, 1933),

a trade-off needs to be made between saying something is true when it is not (a

false positive) and failing to identify something as true when it is (a false negative).

Deciding whether to convert instantaneous sensory evidence into the decision of a

missile, or some other harmless object such as a flock of birds, requires adoption

of a decision criterion. By assuming certain factors about observers’ internal repre-

sentation of sensory evidence, signal detection theory can both proscribe how this

criterion should be set (Macmillan & Creelman, 2005), and provide an experimental

measure of its usage.

The decision criterion is known to be affected by the loss function (Gold &

Shadlen, 2007), such that two contextual influences impinge upon the decision-

making process. The first is the respective value of particular outcomes: in a

wartime context, the repercussions for missing a potential missile firing are catas-

trophic, whereas in peacetime, the costs associated with this outcome are likely to

be downgraded. Second, prior beliefs affect the inference process: is one area of the

screen (such as the location of enemy airspace) more likely to generate missiles than

any other area?

In Chapters 4-6, I investigate changes in decision thresholds induced by action

costs and prior probabilities for simple perceptual decisions. I will review the lit-

erature specific to the neural mechanisms underlying perceptual decision-making in

Chapter 2. Briefly, competing theories place the basal ganglia, and associated cor-

tical afferents, at the centre of a network adjusting a threshold for action initiation

on the basis of decision context (Bogacz, 2007; Lo & Wang, 2006). However, the

implementation of these adjustments in the brain remains unclear (Bogacz et al.,

2010).

1.2.2 Higher-order awareness

We regularly engage in higher-order reflection on our thoughts, memories and per-

ceptions, or ‘thinking about thinking’. Here I use the terms ‘second-order’ and

‘metacognitive’ interchangeably to refer to (self-referent) cognition about a first-

order mental state that has the potential to be communicated to others (Jack &

Roepstorff, 2002). Humans (and possibly some animal species; Smith et al. 2004)
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are able to use metacognitive commentaries to communicate confidence in their own

decision process (Flavell, 1979; Kunimoto et al., 2001; Persaud et al., 2007). Fur-

thermore, explicit knowledge of uncertainty can optimise performance on a task. For

instance, the opportunity to ‘opt-out’ of a decision is often given in multiple-choice

exams; if there is a penalty for wrong answers then knowing you do not know is

highly beneficial (Metcalfe, 1996; Higham et al., 2009).

The accuracy of metacognitive commentaries suggests awareness of the an-

tecedents of the decision process. Several researchers have used variants of metacog-

nitive report to measure self-knowledge about a decision process, in particular, the

ability to discriminate correct from incorrect decisions using confidence ratings (Di-

enes & Seth, 2010; Evans & Azzopardi, 2007; Kunimoto et al., 2001), wagers (Per-

saud et al., 2007) or signalling of errors (Ullsperger et al., 2010). Second-order judg-

ments can be usefully analysed within an extension of SDT known as Type 2 signal

detection theory (Type 2 SDT; Clarke et al. 1959). In Type 2 SDT, the ‘evidence’

which is being discriminated is the subjects own mental state, rather than sensory

evidence in the world. For post-decision confidence, a ‘hit’ is then a high-confidence

correct judgment, and a ‘false alarm’ is a high-confidence incorrect judgment (see

section 3.2). Little is known about the psychological and neural processes underlying

metacognitive judgments of perceptual decision-making.

1.3 Outline of the thesis

First, I review the literature on both perceptual (first-order) and metacognitive

(second-order) decision-making in Chapter 2. Chapter 3 provides background on

general methodology, allowing each subsequent experimental Chapter to take up

the baton with specifics on methods used.

The empirical work contained in this thesis is roughly divided into two intercon-

nected halves. The first, in Chapters 4-6, presents studies characterising the psy-

chological and neural effects of changes in decision criteria during human perceptual

decision-making using psychophysics and functional magnetic resonance imaging

(fMRI). Chapter 4 asks at what stage in the perceptual decision system does a loss

function exert its effects (cf. figure 1.2). Next, Chapters 5 and 6 ‘zoom in’ on basal

ganglia mechanisms hypothesised to control the threshold for action initiation under

asymmetric priors. This work isolates novel prefrontal and basal ganglia mechanisms

that may play a role in setting decision criteria, with a particular focus on the STN.

The second half of the thesis builds a paradigm for investigating (second-order)

introspective assessments about perceptual performance. Chapter 7 presents a the-

oretical framework for analysing second-order decisions, and applies these methods

to the analysis of confidence rating data collected in the context of uncertain per-

ceptual decisions. In brief, the method I outline holds objective decision uncer-
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tainty constant across subjects, and asks to what extent subjects can access local

fluctuations in performance using a subjective confidence scale. I ask whether a

‘bottom-up’ model based on first-order accounts of decision-making is enough to

explain metacognitive ability, and conclude that there exists variance in metacog-

nitive reports that cannot be explained by a ‘direct translation’ approach alone (cf.

Higham et al. 2009). Chapter 8 then applies second-order decision analysis to in-

vestigate the neural basis of this partially separable metacognitive component using

voxel-based morphometry (VBM) and diffusion-tensor imaging (DTI). Finally, the

discussion (Chapter 9) draws together the two halves of the thesis, examining con-

nections between first- and second-order decision-making. The computational and

psychological implications of these mechanistic insights are discussed.



Chapter 2

Literature review

2.1 Overview

The studies within this thesis are situated at the interface of perception and action.

In this chapter, I begin with an outline of normative theoretical concepts that can be

considered common to all types of decisions. I then review recent work on the neural

implementation of perceptual decision-making, with a particular focus on work that

has examined interactions between visual information and contextual biases induced

by prior beliefs and asymmetric costs.

Post-decision, or metacognitive, commentaries provide insight into the psycho-

logical structure of links between perception and action The concepts and models

that are used to analyse the decision itself can also be applied to metacognitive com-

mentaries, casting the latter as ‘decisions about decisions’. In section 2.4 I review

behavioural studies that have quantified metacognitive decision-making, and the

few recent studies that have begun to examine the neural correlates of second-order

decision processes. I conclude by indicating how the work contained in this thesis is

positioned to address outstanding questions in the field.

2.2 Statistical decision theory

At any moment in time, the brain is being bombarded with noisy neural signals

from the outside world. It must use this shadowy impression of reality to guide

behaviour and, in so doing, maximising the likelihood of its continued existence.

This is a formidable problem, as action guidance depends on perceptual inference

(Kersten et al., 2004). If we misperceive a poisonous plant as a tasty snack, then

we will act upon it as if it was a tasty snack. There is no way of knowing otherwise.

This, in a nutshell, is the problem of decision-making and inference: going from the

data (the noisy signals), back to its cause (the species of plant), and then to the

selection of an appropriate action (eating or avoiding). Many researchers agree that

22
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solving this problem requires a statistical approach (Doya et al., 2007)1, which is

reviewed next.

2.2.1 Bayes’ rule

The basic idea behind Bayes’ theorem was presented in section 1.2.1. The core

insight is that the probability of the cause given a piece data can be inferred from

the likelihood of the data arising from a particular cause (MacKay, 2003). Consider

a random variable x that encodes the evidence supporting a particular choice. For

example, if an observer is discriminating whether a dim light is present or absent, x

might be the average firing of his or her retinal ganglion cells. If this firing is related

to the actual state of the world (present or absent), then it should covary with this

state; it is on average higher if the light is actually present. The key qualifier here

is ‘on average’: x is corrupted by noise at all stages of signal transduction, and

therefore is described by a distribution, rather than a deterministic transition. If we

consider the presence or absence of the light to be indicated by two hypotheses, h1

and h2, the probability that each gave rise to the data x is equal to:

p(h1|x) =
p(x|h1).p(h1)

p(x)

p(h2|x) =
p(x|h2).p(h2)

p(x)
(2.1)

These equations specify the posterior probability of the state of the world (h1 or

h2):

posterior ∝ likelihood× prior (2.2)

On this view, perception is the computation of a posterior belief in the state of the

world given incoming sense data. But this computation is not the end of the story –

brains are not passive perceivers, but instead function to maximise their chances of

survival in a changing world (Smith, 1982). Achieving this requires action – given a

particular belief that the plant in front of me is harmless, I should probably eat it in

order not to go hungry. Converting a posterior belief into action requires integration

of a loss function (Kording, 2007; Berger, 1985; Davison & Tustin, 1978), which

summarises the costs and benefits of each possible decision outcome. Contextual

biasing of perception has broad historical precedent in psychology, beginning with

the ‘New Look’ school of the 1950s (Bruner & Goodman, 1947; Bruner, 1957).

1I will not be concerned with proving or disproving what is known as the ‘Bayesian brain
hypothesis’ – the suggestion that the brain faithfully implements Bayesian inference – in this
thesis (cf. Whiteley 2009). Instead I use Bayes as an organising framework for the link between
perception and action, and note that much of the empirical work presented in the subsequent
chapters can be interpreted in strictly psychological, rather than computational, terms.
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These studies emphasised the role of ‘needs and desires’ in altering perception, and

have been echoed in recent work showing that, for example, being motivated to

receive a particular outcome leads to perceptual biases (Balcetis & Dunning, 2006;

Changizi & Hall, 2001). That perceptual decision processes are affected by changes

in context has been repeatedly confirmed by experimentation in psychology (Balcetis

& Dunning, 2006; Bohil & Maddox, 2001; Johnstone & Alsop, 1996, 2000; Maddox

& Bohil, 2003; Proshansky & Murphy, 1942). Indeed, as Balcetis & Dunning (2007)

note, ‘the time might be ripe to explore [the New Look] hypotheses with theories

and methods that are more nuanced and sophisticated than what was available 50

years ago’.

2.2.2 Decision criteria

I now consider a simple choice between two alternatives (such as a stimulus being

present or absent) in order to illustrate the concept of a decision criterion. Under

flat, or uninformative, priors, the posterior weight of evidence favouring decisions

h1 and h2 can be computed as the likelihood ratio (l):

l =
p(x|h1)
p(x|h2)

(2.3)

The Neyman-Pearson lemma states that the likelihood ratio is the optimal (most

sensitive) test to apply when choosing between two alternatives under uncertainty

(Neyman & Pearson, 1933). However, this ratio can take on one of many continuous

values, and does not yet specify which of the two decisions the observer should take.

Instead, a decision rule (criterion) needs to be applied to the likelihood ratio, which

I denote β. The observer makes the choice of h1 when l > β, and h2 otherwise.

For example, when testing scientific hypotheses, the rule often used is to accept the

alternative hypothesis if the weight of evidence is greater than 20:1, or α < 0.05.

Here, if the goal is to maximise the accuracy of the choice, we should choose h1

when β > 1, the point at which the evidence supporting each hypothesis is equal.

Except in certain constrained psychophysics experiments, the goal is not usually

to maximise accuracy. Instead, the loss function is used to adjust the decision

criterion to maximise the potential reward to the decision-maker given knowledge

of the costs and benefits of each course of action, subsuming, for instance, the

motivational factors that might impinge on our umpire in figure 1.1. The optimal

value of the likelihood ratio to maximise expected reward weights the values and

probabilities of each outcome (hypothesis) in the following fashion (Green & Swets,

1966; Dayan & Daw, 2008):

β0 =
V (h2, r2)− V (h2, r1)

V (h1, r1)− V (h1, r2)
.
P (h2)

P (h1)
(2.4)

where V (hi, rj) indicates the value of response rj made when the true state of the

world was hi.
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Note that decision theory is agnostic as to how values and priors are dealt with in

the algorithms underlying the decision process (Maloney 2002; figure 1.2). Indeed, a

recent theoretical suggestion holds that cost functions and priors perform a common

role in Bayesian inference (Friston et al., 2006). In other words, costs may be

implemented ‘as if’ they were prior expectations (and vice versa). On one view,

the expected value of potential outcomes is taken into account when computing a

posterior belief (equation 2.1). Alternatively, the expected value can affect a decision

stage beyond coding of the sensory likelihood (equation 2.4). In other words, values

and priors could affect perception, or affect a post-perceptual stage (see Liston &

Stone 2008; Summerfield & Koechlin 2010 and Chapter 4 for experiments bearing on

this question), while remaining faithful to the ideal observer model outlined above.

In the former case, we might expect the individual to resolve a belief state2 about

the cause of his or her sense data (the movement of the ball after hitting the bat

in figure 1.1), before taking into account asymmetries in the value of each potential

decision and acting accordingly (Henderson & Hollingworth, 1999; Lu & Dosher,

2008). On the latter view, a belief in a particular state of the world is itself adjusted

by the value of that state; action is then concerned with communicating the decision

with the strongest supporting belief. The crucial fact here is that while behaviour

would remain the same in both cases, the internal state variables of our observer

would differ.

One way of arbitrating between the two hypotheses is through use of functional

brain imaging. The logic here is that biases to belief states should manifest as

changes in the activity profile of sensory regions known to be sensitive to particular

perceptual categories, such as faces and houses (Kanwisher et al., 1997; Grill-Spector

et al., 2001).

2.2.3 Sensitivity and bias

Signal detection theory (SDT) is a special case of a more general Bayesian inference

scheme, and connects concepts of the likelihood ratio and criterion to equations that

can easily be applied to the analysis of behavioural data (see Chapter 3). I will make

use of SDT in the analysis of behavioural and brain imaging data in Chapters 4,

5, 7 and 8. Classic psychophysical paradigms for investigating sensitivity and bias

ask observers to complete several forced-choice judgments, such as whether a visual

stimulus is present or absent. The difficulty of this judgment is adjusted to induce

uncertainty in the observer. Initial work on validating SDT measures confirmed that

for both visual and auditory stimuli, sensitivity (d′) is independent of an observer’s

criterion (c), as predicted by theory (Green & Swets, 1966; Macmillan & Creelman,

2005). More generally, the goodness-of-fit of the receiver operating characteristic

(ROC) model in a wide range of psychophysics experiments provides strong support

2We remain agnostic as to the reportability of this belief state.
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for the existence of underlying posterior distributions of evidence values to which a

changing threshold or criterion is applied (figure 2.1; Green & Swets 1966).
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Figure 2.1: Left panel: Type 1 SDT distributions for hypothetical ‘signal+noise’
and ‘noise’ classes over a random variable X. d′ increases in direct proportion to
the distance between the two distributions and in inverse proportion to the variance.
The dotted line represents the criterion value that an ideal observer would choose to
maximise accuracy (β = 0). Light and dark shaded areas represent the proportion
of hits and false alarms for this particular criterion value. Right panel: receiver
operating characteristic (ROC) curve that tracks out the relationship between hit
and false alarm rate for all possible values of decision criteria.

We can loosely categorise these biasing influences, or components of the loss

function, into two classes: prior probabilities and prospective costs. Changes to

both prior probabilities of the occurrence of one or other target, and/or the costs or

benefits associated with one or other decision, have been shown to affect response

criteria in categorisation tasks (Alsop & Davison, 1991; Alsop & Porritt, 2006; Bo-

hil & Maddox, 2001; Johnstone & Alsop, 2000). Similarly, evidence that observers

adopt an optimal criterion for perceptual judgments based both on their categori-

sation uncertainty and payoff matrix has been found in low-level visual decision

tasks (Landy et al., 2007; Simen et al., 2006; Whiteley & Sahani, 2008). Further-

more, Whiteley & Sahani (2008) found that the best model of the data required

only a single psychometric function slope (a measure of sensitivity) for multiple cri-

teria, supporting the independence of sensitivity and bias. A similar experiment in

monkeys has also reported optimal integration of asymmetric value with perceptual

sensitivity (Feng et al., 2009).

An open question is how bias and sensitivity interact. For instance, object

classification is often sufficiently determined to make context irrelevant; when cate-

gorising an object as a bus, I do not need to worry about the relative probabilities

of the object being a bus to avoid misclassification, because the perceptual input

is unequivocal. The basic premise here is that the confluence of perceptual conflict

(what Bruner called ‘equivocality’) and the need to maximise expected gain in the
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face of this conflict, leads to the prediction of systematic biases in some decision

contexts, but not others. It is an unclear whether bias is always necessary, and ap-

plied ‘blindly’ regardless of the evidence the system is operating with (as in SDT),

or whether the mechanisms governing bias are themselves dynamically shaped by

changes in sensitivity.

One result bearing on this question is that empirically measured criteria often

tend to be conservative – they are closer to neutral (β = 1) than would be ex-

pected based on equation 2.4 (Bohil & Maddox, 2001; Green & Swets, 1966; Healy &

Kubovy, 1981; Maloney & Thomas, 1991). One explanation of this effect is that ob-

servers also place weight on being accurate, rather than only on maximising reward,

leading to a competition between reward and accuracy maximisation, or ‘COBRA’

(Maddox & Bohil, 2004; Maddox, 2002). In COBRA it is proposed that bias should

be applied in inverse proportion to the long-running d′; this scheme makes intuitive

sense, in that it is only when states are uncertain (low d′) that penalties associated

with misperception become relevant. Such an interaction has been confirmed in

animal studies: when pigeons are trained to discriminate between two intensities of

red light, asymmetries in the rewards available for each response induce biases in

behaviour only when stimulus discriminability is low but not high (Alsop & Porritt,

2006; Davison & Tustin, 1978). The same researchers have reported similar results

in humans (Johnstone & Alsop, 2000; Lie & Alsop, 2010). Such interactions between

sensitivity and bias pose problems for the standard versions of SDT.

2.2.4 Reconciling interactions between sensitivity and bias

In a full Bayesian model, the relative influence of the prior and likelihood is inversely

proportional to their precision (MacKay, 2003). This feature provides a simple ex-

planation for why bias and sensitivity might be expected to interact (Ma, 2010).

More generally, the weighting of competing sources of information by their precision

is at the heart of probabilistic approaches to decision-making (Daw et al., 2005).

A common example is visual capture: as vision is usually more reliable than hear-

ing for spatial localisation, the location of an object is usually biased towards that

suggested by visual information, partially explaining the well-documented ability of

ventriloquists to seemingly ‘throw’ their voices (Pick et al., 1969; Welch & Warren,

1980; Bertelson, 1999). Psychophysical experiments have demonstrated that this

weighting is dependent on the uncertainty of the cue (e.g. Knill & Saunders 2003;

Jacobs 1999; Ernst & Banks 2002), and that observers often assign weights in a

Bayes-optimal fashion. If the sensory likelihood and loss function both have asso-

ciated uncertainties, we might expect each source to be weighted in proportion to

its precision, exactly as observed in SDT experiments (Alsop & Porritt, 2006; Lie &

Alsop, 2010; Johnstone & Alsop, 2000).

However, both COBRA and related approaches run into both mathematical and



Chapter 2. Literature review 28

algorithmic problems, as they do not specify how observers monitor this uncertainty,

or precision, to adjust β accordingly. Indeed, the problem of criterion setting is prob-

lematic in general, as it assumes self-knowledge of the posterior belief distributions

involved (Lau, 2008; Ma, 2010). This knowledge can be considered equivalent to

observers having access to the antecedents of their decision process. We will turn to

these questions in section 2.4.

2.2.5 Evidence accumulation models

Intuitively, accumulating further information pertaining to the discrimination can

reduce uncertainty. The static models discussed above do not permit this type of

accumulation; instead, SDT assumes that the decision-maker has instantaneous ac-

cess to the underlying signal (x). As such, it is silent on temporal issues such as a

subject’s reaction time (RT). In contrast, a broad class of models known as sequen-

tial sampling or evidence accumulation models takes the evolution of evidence into

account, forming a more complete model of the decision-process (Link, 1975; Rat-

cliff, 1978). These models may also have an advantage in connecting more naturally

to neural implementation of a decision, as the brain itself deals with dynamic rather

than static data (Gold & Shadlen, 2001, 2007).

The evidence accumulation framework treats each sample of data as an indepen-

dent piece of evidence (Wald & Wolfowitz, 1948). It is thus possible to update a

decision variable (e.g. the likelihood ratio), at each point in time. Assuming that x

is on average informative about the true state of the world, the decision variable will

tend to diverge from zero, despite being corrupted by noise at each timestep. More

formally, by transforming the probability ratio into a logarithm (thus permitting

additivity), its evolution over time is given by:

log(l) = log
p(x1, x2, . . . xn|h1)
p(x1, x2, . . . xn|h2)

log(l) =
n∑

i=1

log
p(xi|h1)
p(xi|h2)

(2.5)

This ‘decision variable’ (DV) increases (decreases) in proportion to the strength

of evidence favouring h1 (h2). As for the static theory discussed in section 2.2.2,

we need to apply a decision rule to the DV. A simple rule in this case is to accept

one or other hypothesis when the DV reaches a ‘barrier’ or threshold that is mirror

symmetric around a neutral starting point (only the positive barrier B is shown in

figure 2.2). The further the excursion of this barrier from the starting point, the

fewer errors are made, but the longer it takes to make the decision. The rate of evi-

dence accumulation in this type of model can be considered equivalent to d′, and the

position of the bound equivalent to the criterion (Palmer et al., 2005). Increasing
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Figure 2.2: Graphical representation of the evolution of a decision variable over
time in an evidence accumulation model. The two probability density plots indicate
the increased separation of instantaneous SDT distributions that occurs with time,
demonstrating the benefit to the organism of accumulating evidence. Reproduced
with permission from Gold & Shadlen (2002).

the speed of the decision can be achieved by reducing the baseline-to-threshold dis-

tance in evidence accumulation models; conversely, emphasis on accuracy is thought

to raise the baseline-to-threshold distance (Bogacz et al., 2010). Thus the evidence

accumulation model provides a principled account of the ubiquitous speed-accuracy

tradeoff (SAT) in decision-making (Luce, 1991), a topic I return to in section 2.3.3.

As we will see in section 2.3.2, activity in several cortical regions involved in

decision-making shows properties one might expect of an accumulating decision vari-

able (see Gold & Shadlen 2007 for a review). However, the evidence accumulation

framework applies to a restricted range of settings, especially given that the a likeli-

hood ratio computation assumes a small, discrete set of options (two in equation 2.5;

see Churchland et al. 2008 for an extension to a four-choice scenario). Reframing

the accumulation model as a special case of a full probabilistic representation of the

options available to the decision-maker (Dayan & Daw 2008; see also Beck et al.

2008) might help to strengthen the interpretation of these neural activities in more

general terms.

2.3 Neural mechanisms for perceptual decision-

making

A general experimental approach for investigating perceptual decision-making is

to ask observers to make sensory discriminations under conditions of greater or

lesser uncertainty. Various paradigms have been developed, including vibrotactile

frequency discrimination (Romo et al., 2002a), visual motion discrimination (New-

some et al., 1989) and face-house discrimination (Heekeren et al., 2004). All rely
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on degrading the sensory evidence available to the observer to investigate the labile

link between perception and action. The next sections review the current state of

knowledge of the neural mechanisms underlying perceptual decision-making. As the

empirical work in this thesis manipulates visual uncertainty, I focus on studies in the

visual domain, while noting that many of the conclusions about the neural coding

of uncertainty and value often transcend domains (see Heekeren et al. 2008 for a

review). A general scheme for decision-making is shown in figure 2.3 (adapted from

Heekeren et al. 2008 and Rangel et al. 2008); here, a distinction is made between

the representation of evidence, evidence accumulation, and action selection. As em-

phasised in section 2.2.2, valuation could affect one of several points of this process.

Similarly, uncertainty is associated with both the representation of evidence, and the

selection of particular actions, and such signals may be used to adaptively resolve

competition among response options (Botvinick et al., 2001; Frank, 2006).

Evidence	
  
Decision	
  
variable	
  

Ac1on	
  
selec1on	
  

Uncertainty	
  

Priors/
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Outcome	
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Perception 

Figure 2.3: Hypothetical relationship between various dissociable stages of the de-
cision process. For perceptual decision-making, posterior beliefs over the state of the
world are used to compute decision variables that reflect the likelihood the observer
will take each possible decision. How value and priors are integrated into this process
is unknown, and uncertainty in the sensory-to-motor mapping may arise at both the
level of stimulus representation and action selection. Adapted from Heekeren et al.
(2008) and Rangel et al. (2008).

2.3.1 Encoding of evidence

One of the most widely used experimental paradigms in perceptual decision-making

research is the random dot kinematogram (RDK) discrimination. In an RDK exper-

iment, the subject is required to detect the global direction of motion (usually from

two alternatives) in the noisy movement of the dots. Using such stimuli, single-unit

recordings in monkeys have identified area MT (V5) as containing neurons that en-

code the strength of evidence for a given direction of motion (Britten et al., 1996;

Newsome et al., 1989), and electrical microstimulation of this area is sufficient to bias
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the animals choice (Salzman & Newsome, 1994). Analogously, the sensory coding

of frequency in vibrotactile frequency (VTF) discrimination is reflected in the firing

of primary somatosensory cortical neurons (de Lafuente & Romo, 2006). Consistent

with S1 representing the sensory evidence during this task, replacing one interval’s

tactile stimulus with microstimulation of neurons responsive to the same frequency

was sufficient to replicate the endpoint of the behavioural decision (Romo et al.,

2002a). Finally, for higher-level categories, stimulation of face-selective neurons in

extrastriate visual cortex biased the monkey’s decisions towards the face category in

a face/non-face discrimation task (Afraz et al., 2006), consistent with these neurons

representing evidence in support of the face category.

Functional MRI experiments have revealed that particular sensory dimensions

are represented in localised regions of cortex, for example, house and face object

categories (Epstein & Kanwisher, 1998; Kanwisher et al., 1997). Building on the

VTF paradigm in monkeys, Pleger and colleagues demonstrated that primary so-

matosensory cortex is active in proportion to the strength of evidence supporting

the decision alternative (Pleger et al., 2006). More generally, these results on the

representation of sensory evidence accord with the ‘standard model’ in cognitive

neuroscience, where, despite massive recurrence, visual cortex is organised in a hi-

erarchy of regions that are tuned to increasingly complex features (Zeki & Bartels,

1998), from motion, colour and orientation up to high-level categories such as faces

and places (Grill-Spector et al., 2001).

2.3.2 Formation of a decision variable

In RDK decisions, neural activity that ramps up in proportion to the strength of

motion evidence has been found in the lateral intraparietal sulcus (LIP; Shadlen &

Newsome 2001). This ramping is consistent with these neurons encoding the likeli-

hood ratio in evidence accumulation models (section 2.2.5). Furthermore, the mon-

key’s eye movement decision can be predicted by this activity reaching a threshold

level (Roitman & Shadlen, 2002). Similar neural responses have been documented in

dorsolateral prefrontal cortex (dlPFC) (Kim & Shadlen, 1999) and frontal eye fields

(FEF) (Thompson & Schall, 2000). Secondary somatosensory (S2) cortical neurons

show activity that is proportional to a comparison of the two frequencies in a VTF

task (Romo et al., 2002b). Similar results have been found in medial and ventral

premotor cortex (Hernandez et al., 2002; Lemus et al., 2007; Romo et al., 2004).

Indeed, in a review integrating findings from several recording sites, the transition

from representation of the sensory evidence to computation of a decision variable

(DV) in the VTF task is characterised as gradual, proceeding from somatosensory

to premotor cortex via prefrontal regions (de Lafuente & Romo, 2006). The lo-

calisation of an evolving DV within premotor cortical regions suggests decisions

are partly embodied within the particular sensorimotor pathway used to make the
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response (Cisek, 2007; Gold & Shadlen, 2003; Tosoni et al., 2008).

Using multiple criteria for the triangulation of a decision region, Heekeren and

colleagues demonstrated that the BOLD signal in left dlPFC tracks the difference

between activity in fusiform face area (FFA) and parahippocampal place area (PPA)

(Heekeren et al., 2004) during identification of noisy images. However, it is unclear

whether the ‘decision’ may already be computed in the category-invariant responses

of neurons in FFA and PPA for high-level object categories such as faces and houses

(McKeeff & Tong, 2007; Afraz et al., 2006; Ploran et al., 2007). Other studies have

provided evidence (similar to the primate literature) that evidence accumulation is

not restricted to dlPFC, but is spread out across a fronto-parietal network (Phil-

iastides et al., 2006; Philiastides & Sajda, 2007; Ploran et al., 2007; Thielscher &

Pessoa, 2007; Tosoni et al., 2008). It remains an open question as to which are the

critical nodes in this network that facilitate accurate perceptual decision-making.

An important and unanswered question is how decision variables interact with

motor plans (Freedman & Assad, 2011). As noted above, prefrontal and parietal

areas thought to encode decision variables overlap with those involved in the plan-

ning, selection and implementation of motor responses (e.g. Hernandez et al. 2002).

However, many studies conflate the decision process with the motor response, for

instance by requiring an leftward saccade to signal leftward motion. In non-human

primates, a recent study suggests that activity in LIP encodes the monkey’s cate-

gorical decision independent of activity related to motor programming (Bennur &

Gold, 2011). In humans, Heekeren et al. (2006) varied response modality in the same

motion-discrimination task and found that a network of left posterior dlPFC, cingu-

late cortex, left intraparietal sulcus (IPS) and left fusiform/parahippocampal gyrus

correlated with the strength of sensory evidence independent of whether responses

were given with button presses or eye movements (see also Ho et al. 2009). More

generally, a central feature of PFC function is the selection of responses on the basis

of context, rather than just the gating of a particular motor program (Miller & Co-

hen, 2001). Thus an important issue is how flexible and multifarious fronto-parietal

decision-variables are, how they are linked to specific actions, and whether there are

significant species differences in their level of abstraction (Freedman & Assad, 2011;

Heekeren et al., 2008). In Chapter 9 I will return to this issue and outline how the

‘frame of reference’ in which decision variables are encoded may have important im-

plications for relating perceptual decision-making to metacognitive function (section

2.4).

2.3.3 Neural basis of the decision threshold

The basal ganglia are a set of subcortical nuclei that play a pivotal role in action

selection (figure 2.4; Gurney et al. 2001; Redgrave et al. 2010). Two opposing

pathways – the direct and indirect pathway – facilitate and suppress the selection
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of actions, respectively (Alexander & Crutcher, 1990). Recent models of the basal

ganglia have additionally placed emphasis on ‘hyperdirect’ inputs into the STN

(Nambu et al., 2000, 2002) that may modulate the flow of activity around the cortico-

basal ganglia circuits. Cortico-basal ganglia loops have been proposed to be central

in the setting of the decision threhsold (Simen et al., 2006; Lo & Wang, 2006),

consistent with neurons in the dorsal striatum responding to changes in response

criteria (Lauwereyns et al., 2002; Pasquereau et al., 2007).
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Figure 2.4: A subset of known connections between basal ganglia nuclei, thalamus
and cortex. The direct, indirect and hyperdirect pathways are marked. Adapted from
Redgrave et al. (2010).

At least two non-mutually exclusive hypotheses have been proposed with regard

to the basal ganglia’s role in setting decision thresholds (Bogacz et al., 2010). First,

the striatal hypothesis predicts that increased excitatory input from cortex is the

neural instantiation of an increase in an evidence accumulation baseline. Forstmann

and colleagues found that the BOLD signal in the pre-supplementary motor area

(pre-SMA) and striatum was increased when speed was emphasised in the RDK task;

this pre-SMA increase correlated negatively with an individual differences measure

of response caution, or the weight subjects ascribed to being accurate (Forstmann

et al., 2008). Furthermore, a recent structural imaging study found that the white

matter connections between pre-SMA and caudate were stronger in subjects who

displayed greater alterations in response thresholds (Forstmann et al., 2010), leading

the authors to suggest that the pre-SMA provides a controlling input to the striatum

to adjust SAT.
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Other studies have proposed the STN is an important node in the setting of re-

sponse thresholds, with increased STN activity producing slower and more accurate

choices (Bogacz et al., 2010). Specifically, Frank and colleagues have proposed that

areas of frontal cortex detect the need for cognitive control, and activate the STN

to slow down decision-making (Frank, 2006; Frank et al., 2007). This view is sup-

ported by the fact that deep-brain stimulation (DBS) of the STN for treatment of

Parkisons disease leads to deficits in impulse control when conflict is high (Alberts

et al., 2008; Ballanger et al., 2009; Frank et al., 2007; Hershey et al., 2004), and

lesions of the STN in rodents produce impairments in high-conflict decision-making

(Baunez et al., 2001; Eagle et al., 2008).

Potential sources of basal ganglia modulation include the inferior frontal cortex

(IFC) and pre-SMA. The IFC, particularly the right IFC (although see Swick et al.

2008), has been specifically implicated in the inhibition of motor responses (Aron

et al., 2003; Garavan et al., 1999; Menon et al., 2001; Rubia et al., 2001; Hodgson

et al., 2007; Leung & Cai, 2007; Swann et al., 2009). Studies of the stop-signal

reaction time (SSRT) task using fMRI have isolated both the right IFC and STN as

critical nodes the stopping of ongoing responses (Aron & Poldrack, 2006; Li et al.,

2008). Deep brain-stimulation of the STN in patients with Parkinson’s disease di-

rectly modulates SSRTs (Ray et al., 2009; van den Wildenberg et al., 2006). An

important study confirmed that, as would be predicted by an adjustment of decision

threshold, the rIFC and STN are active both for outright stopping and slowing of re-

sponses (Aron et al., 2007), and that these functionally activated regions overlapped

with interconnected regions identified using white-matter tractography.

However, recent studies have begun to question the specificity to which rIFC

activation can be ascribed solely to motor inhibition. rIFC is implicated in a wide

variety of cognitive tasks, including attentional reorienting (Corbetta & Shulman,

2002; Hampshire & Owen, 2006), oddball detection (Bledowski et al., 2004; Hamp-

shire et al., 2007) and updating actions in the light of new information (Mars et al.,

2007). Indeed, these latter two functions may be compatible with a role for IFC

and/or STN in action reprogramming, rather than inhibition per se (Mostofsky &

Simmonds, 2008). With respect to the IFC, two recent lines of evidence support this

suggestion. First, when comparing two types of trials using fMRI, both requiring

detection of a novel cue but only one requiring inhibition, only the pre-SMA but

not the IFC was found to be specific to inhibition (Dodds et al., 2010; Sharp et al.,

2010). Dodds et al. (2010) built upon these results by showing that the rIFC was

active both during attentional and motor shifts, and that this region was even more

active during trials requiring increased response control (an additional response)

compared to trials only requiring inhibition (no-go trials). Second, pre-SMA, but

not rIFC, was shown to have heightened functional connectivity with the basal gan-

glia in the SSRT (Duann et al., 2009), in keeping with its role in resolving response
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competition (Nachev et al., 2007; Sumner et al., 2007).

With respect to the STN, a single-neuron recording study in monkeys found

that STN neurons were active during trials requiring action reprogramming (Isoda

& Hikosaka, 2008), with similar activity reported in the pre-SMA (Isoda & Hikosaka,

2007). Employing a similar task, Neubert and colleagues used paired-pulse transcra-

nial magnetic stimulation (TMS) to reveal that pre-SMA and rIFC have facilitatory

and inhibitory effects respectively on motor output during trials requiring a switch in

a planned movement (Neubert et al., 2010). Furthermore, subjects who showed the

greatest inhibitory effects also showed greater white-matter connecitivity between

rIFC/pre-SMA and the STN region. However, it is unknown whether the STN signal

seen in human fMRI experiments reflects motor inhibition per se (Aron & Poldrack,

2006; Li et al., 2008), or whether, as may be the case for the rIFC/pre-SMA, it plays

a more general role in action reprogramming.

2.3.4 Effects of asymmetric priors

Functional imaging studies have revealed activity that is systematically modulated

by prior beliefs in a stimulus class. A classic and simple example of this effect is

the oddball response, or mismatch negativity (Näätänen et al., 1987). By defining

surprise as an information theoretic quantity [I = −log(P (xi)], Strange et al. (2005)

showed that the activity of a widespread corticothalamic network correlated with the

conditional surprise of an event in a stimulus sequence. A similar analysis revealed

that the P300 component of the electroencephalography (EEG) signal correlates

with trial-by-trial surprise (Mars et al., 2008). Surprising events are accompanied by

slowed reaction times (Bestmann et al., 2008; Mars et al., 2008), and Bestmann et al.

(2008) found that this slowing was mediated by a decrease in the excitability of the

cortico-spinal motor tract using TMS, consistent with decreased drive to the motor

system and a raised decision threshold (see section 2.2.5). More broadly, this work

indicates that the brain is sensitive to the probabilistic context of stimuli, consistent

with predictive coding models of cognition (Friston, 2009; Rao & Ballard, 1999),

and indicates expectation violation may be a key driver of action reprogramming

(see previous section 2.3.3).

Another line of research has investigated how predictions adjust the perceptual

decision process. Classical attentional paradigms use cues to bias perception towards

or away from a particular stimulus (e.g. Posner et al. 1980), altering activity in

both spatially-selective and feature-selective visual cortex via top-down modulatory

connections originating in prefrontal cortex (see Desimone & Duncan 1995; Corbetta

& Shulman 2002 for reviews). Similarly, Summerfield et al. (2006a) found that when

subjects were expecting to see (‘looking for’) faces in a stream of visual stimuli, the

BOLD signal in FFA was selectively increased. This effect was accompanied by

increased backward connectivity from frontal cortex as a function of changes in
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expectation (see also Summerfield & Koechlin 2008). Changes in the probability of

face/house stimuli have been found to activate a network of frontoparietal regions

(Puri et al., 2009), as well as causing baseline shifts in the activity of FFA and PPA

(Egner et al., 2010; Esterman & Yantis, 2010; Puri et al., 2009).

2.3.5 Effects of asymmetric costs

In perceptual discrimination tasks, participants often receive feedback that signals

whether their response was correct or not. Increasing the reward available for correct

judgments can motivate increases in performance and induce attention-like modu-

lations of early sensory activity in both somatosensory (Pleger et al., 2008) and

visual (Weil et al., 2010) domains, an effect that may be dependent on dopamine

(Pleger et al., 2009). However, relatively less is known about how asymmetric costs

associated with one or other alternative affect the neural hierarchy subserving per-

ceptual decisions. As outlined in section 2.2.2, computational models of behaviour

are agnostic as to how value is incorporated. Changes in value linked to partic-

ular regions of space have been shown to modulate spatially selective regions of

early visual (Serences, 2008) and somatosensory (Pleger et al., 2008) cortex. Using

elegant psychophysical analysis, Liston & Stone (2008) demonstrated that associ-

ating one region of space with greater reward probability increased the subjective

perception of brightness of targets at that location (measured via a post-decision

report), supporting the proposal that asymmetric rewards have effects on early vi-

sual processing. Such modulation may occur via recruitment of fast attention-like

mechanisms (Serences, 2008), but the extent to which attentional biases can be dis-

sociated from knowledge of the spatial distribution of rewards is an open question

(Maunsell, 2004).

When stimulus value is defined by identity, rather than spatial location, the pic-

ture is less clear. In a single-unit recording study, Rorie et al. (2010) demonstrated

that asymmetric payoffs bias the initial firing rate of individual neurons in the intra-

parietal sulcus coding for a saccadic response to one of two particular targets. Similar

effects (albeit induced via changes to category boundaries, rather than asymmetric

reward) have been observed in FEF neurons (Ferrera et al., 2009). These modula-

tions are consistent with changes in the starting point and/or barrier of evidence

accumulation circuits, rather than the accumulation rate (Brodersen et al., 2008;

Gold & Shadlen, 2002), a hypothesis supported by model fits to subjects’ reaction

times in asymmetric reward tasks (Feng et al., 2009; Simen et al., 2009; Summerfield

& Koechlin, 2010). Indeed, computational simulations of the decision process have

suggested that asymmetries in potential rewards optimise the height of the decision

threshold (barrier), making responses associated with higher rewards more likely

irrespective of the evidence obtained (Bogacz & Gurney, 2007; Simen et al., 2006).

Together, these studies predict that the effects of asymmetric costs in perceptual
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decision-making might be observed in brain regions involved in setting the decision

threshold (section 2.3.3), rather than representing sensory evidence.

2.3.6 Effects of increasing task difficulty

Decisions can be easy or difficult. One influential suggestion is that the decision-

making system should be sensitive to the current level of difficulty to mobilise ad-

ditional ‘cognitive control’ resources in an adaptive fashion (Botvinick et al., 2001).

Studies that have directly investigated this component of perceptual decision-making

have found a network of regions centred on dorsomedial prefrontal cortex (dmPFC)

and anterior insula are engaged when reaction times increase despite the stimulus re-

maining constant (Binder et al., 2004; Philiastides et al., 2006; Philiastides & Sajda,

2007) or stimuli are closer to a category boundary (Grinband et al., 2006). Such

activity naturally connects to the research discussed in section 2.3.3, where conflict-

related activity was proposed to activate the STN and raise decision thresholds

(Frank, 2006). Indeed, dmPFC is often coactivated with the lateral frontal cortex in

neuroimaging studies (Koski & Paus, 2000), and is thought to recruit lateral PFC to

implement increases in cognitive control (Kouneiher et al., 2009; MacDonald et al.,

2000).

As discussed above, uncertainty can enter into the decision process at at least two

distinct loci. First, uncertainty over the stimulus may occur, despite response map-

pings being clear and unambiguous (as for perceptual decisions involving degraded

stimuli). Second, the stimulus might be unambiguous, but conflict is induced due to

response mappings being similar (Botvinick et al., 2001). Conflict between multiple

potential responses activates the ACC even when the sensory evidence is unam-

biguous (Botvinick et al., 2001), and may be related to the monitoring of potential

and actual errors in choosing (Brown & Braver, 2005; Gehring et al., 1993; Magno

et al., 2006; Yeung et al., 2004). Wendelken and colleagues used a novel version

of the RDK task to attempt to dissociate these contributions to decision difficulty

(Wendelken et al., 2009). It was found that when conflict between irrelevant and

relevant motion information was high (‘stimulus conflict’), the middle temporal area

(human MT) and right IFC was active; conversely, the parietal cortex and dmPFC

were selectively active when the two kinematograms indicated conflicting responses

compared to congruent responses (‘response conflict’). A central role for posterior

parietal areas in resolving response-specific conflict has been demonstrated through

careful testing of patients with lesions to this region (Coulthard et al., 2008).

One limitation of studies of cognitive control is that they often rely on manip-

ulations of either the stimulus and/or correlations with reaction time to identify

regions that are related to adaptive adjustments to task difficulty. Thus an alterna-

tive interpretation is that these regions participate in the process of decision-making

itself (Thielscher & Pessoa, 2007), rather than exerting cognitive control over an in-
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dependent sensorimotor pathway (Miller & Cohen, 2001). To the extent to which

uncertainty optimises a single ‘closed loop’ system, the adaptive effects of conflict will

be confined to a single sensorimotor pathway, and may be unreportable. Conversely,

to the extent that the latter hypothesis is true, we might expect that subjects can

report domain-general uncertainty, or conflict, through other modalities such as ver-

bal reports. One way to gain traction on this distinction is to explicitly ask subjects

to comment on their own decision process. By doing so we can ask to what extent

variables such as perceptual and response uncertainty are encoded in a higher-order

frame of reference (and thus are available to be reported). This approach will be

discussed next.

2.4 Metacognition during decision-making

Metacognition refers to the monitoring of one’s own cognition and behaviour. Hu-

mans (and possibly some animal species, see Smith 2009) are able to use metacogni-

tive commentaries to communicate confidence in their own decision process (Flavell,

1979; Hampton, 2001; Kunimoto et al., 2001; Persaud et al., 2007). The neural

mechanisms contributing to metacognition remain largely unknown (Shimamura,

2000). Metacognitive reports are particularly intriguing, as they allow for a fuller

characterisation of the subjective milieu of a decision, by assessing what the observer

can tell the experimenter about their decision at a given point in time. The theory

and methods underlying this approach are outlined in the next section.

2.4.1 Metacognitive measures

Metacognitive reports about perceptual decisions can take many forms, but in gen-

eral require the subject to give an additional report or commentary over and above

their initial forced-choice response. For example, Peirce & Jastrow (1885) asked

observers to rate their degree of confidence in their judgment on the following scale:

‘0’ denoted absence of any preference for one answer over its opposite,

so that it seemed nonsensical to answer at all. ‘1’ denoted a distinct

leaning to one alternative. ‘2’ denoted some little confidence of being

right. ‘3’ denoted as strong a confidence as one would have about such

sensations.

Peirce & Jastrow (1885)

Since this seminal work, asking for confidence-in-accuracy has become a stan-

dard tool for analysing judgments of performance. Several studies have documented

a systematic relationship between confidence and task features such as difficulty

and processing time (Baranski & Petrusic, 2001; Graziano & Sigman, 2009; Vickers,
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1979), where under most conditions, confidence decreases with both increasing dif-

ficulty and response time (see Pleskac & Busemeyer 2010 for a review). However,

there are several methods of elicitation that can be used to more or less accurately

tap the observers assumed underlying confidence. I consider a selection of these

methods next.

2.4.1.1 Free report

The simplest measure of confidence-in-accuracy is a subjective rating. This can be

obtained using a binary categorisation (‘Sure’, ‘Unsure’), or a continuous rating scale

such as that used by Peirce & Jastrow (1885). One drawback of subjective reports is

that the scale is open to interpretation: a confidence rating of ‘Sure’ might mean dif-

ferent things to different people. Measuring an observer’s metacognitive sensitivity

(ability to discriminate correct from incorrect decisions) is largely unaffected by this

subjectivity, provided the observer is encouraged to give a range of relative ratings

(see Chapter 7). One other potential measure of interest is whether an observer’s

confidence judgments are accurately calibrated. Answering this question requires

an absolute scale, such as eliciting the numerical probability that a decision was

answered correctly. This probability can then be compared to the true probability,

computed as an aggregate measure over several trials. The typical finding is (rela-

tive) over-confidence for difficult decisions, and (relative) under-confidence for easy

decisions (e.g. Gigerenzer et al. 1991).

Subjective reports have also been used to investigate awareness of errors. Again

this is usually achieved via a two-stage decision procedure – subjects make a forced-

choice decision, and subsequently ‘comment’ to the experimenter via a separate

response if they were aware of having made an error. This would appear to be a

similar cognitive phenomenon to the monitoring of subjective confidence. Interest-

ingly, errors can be made in the presence and absence of such a subjective report,

which permits analysis of error monitoring within the Type 2 signal detection the-

ory (SDT) framework I go on to discuss below (Steinhauser & Yeung, 2010). A rich

body of literature on error awareness has identified the ‘error-related positivity’ (Pe)

as being an ERP component selectively associated with error awareness (Nieuwen-

huis et al., 2001; Steinhauser & Yeung, 2010), possibly originating in anterior insula

cortex (see Ullsperger et al. 2010, for a review).

2.4.1.2 Post-decision wagering

One problem that has dogged subjective reports is their potential unreliability (Erik-

sen, 1960). Why should the subject be motivated to reveal his true confidence, when

there is no incentive to do so? In addition, the necessarily subjective instructions

given to the subject in a free report task preclude the use of these measures in

children and non-human animal species. Even if instructions can be imparted ac-
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curately, they may be misinterpreted, leading to aberrant usage of the scale. To

circumvent these issues, Persaud and colleagues introduced post-decision wagering

(PDW) as an intuitive measure of metacognitive confidence (Persaud et al. 2007; see

also Seth 2008). In its simplest form, a participant is asked to gamble on whether

their response was correct or not. If the decision was correct, the wager amount

is kept; if it was incorrect, this amount is lost. The size of the chosen gamble is

assumed to be a reflection of the subject’s confidence in his or her decision.

2.4.1.3 Incentive-compatible scoring

In the same spirit as PDW, incentive-compatible scoring aims to elicit ‘true’ un-

derlying confidence. However, here the goal is less that of an intuitive measure,

rather the construction of payoff structure that provides a maximum return when

the participant provides an honest rating. This approach is similar to that taken by

the Becker-DeGroot-Marschak procedure in behavioural economics to elicit the true

value attached to an object (Becker et al., 1964). For example, using the Quadratic

Scoring Rule (QSR), the participant’s payoff is proportional to his or her confidence

if they get the answer correct, but provides an increasing penalty if the answer

provided was incorrect. It is, in effect, a graded version of PDW. A more complex

procedure is provided by the Lottery Rule (Holt & Smith, 2009): here, participants

enter into a two-step lottery following every decision. The elicited probability of be-

ing correct is used to set the probability that the first lottery is won. If this lottery is

lost, then a second lottery is initiated with a probability set by the random number

drawn on the first lottery. It can be shown that this procedure motivates the subject

to reveal her true subjective probability that the decision was correct in order to

maximise their reward (Holt & Smith, 2009). However, one potential drawback of

this procedure is that it requires considerable depth of understanding on the part

of the subject. Furthermore, Hollard and colleagues found only minor advantages

in use of the Lottery Rule over the considerably more intuitive free report method

(Hollard et al., 2010).

2.4.1.4 Implicit metacognitive measurement

Other studies document how subjects are able to monitor their decision uncer-

tainty, and use this monitoring to effectively guide task performance. For example,

Barthelmé & Mamassian (2009) asked observers to choose between two stimuli to

judge on any given trial, before carrying out a difficult perceptual judgment on the

chosen stimulus. Observers were seen to improve their performance by choosing

the less uncertain among a pair of visual stimuli, demonstrating that higher-order

sensitivity to uncertainty can be used to guide future decision making. Other work

has demonstrated that subjects can use knowledge of uncertainty to optimally bias

decision-making in both perceptual (Landy et al., 2007; Whiteley & Sahani, 2008)
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and motor (Trommershauser et al., 2003) tasks. These abilities have also been found

in non-human animal species: both rats (Foote & Crystal, 2007; Kepecs et al., 2008)

and monkeys (Hampton, 2001; Kiani & Shadlen, 2009; Smith et al., 2004) show indi-

rect signs of metacognitive monitoring through effective use of an ‘opt-out’ response

on uncertain trials.

2.4.2 Extending statistical decision theory to metacognitive

judgments

The brief review in the previous sections indicates that subjects can monitor and

report their uncertainty during decision-making, and use these estimates to guide

future behaviour. What then is the optimal strategy for observers to adopt when

generating a metacognitive report? When rewards are contingent on the correct-

ness of the previous decision (as in post-decision wagering and incentive-compatible

scoring), observers should compute the conditional probability of being correct given

their previous choice, P (correct|choice), and use this quantity to adjust the second-

order decision. There are various proposals for how this might be achieved. Most

involve tracking the strength of the underlying evidence. In signal detection the-

ory, it is assumed that confidence ratings reflect the existence of multiple decision

criteria, each corresponding to an increment in confidence in the category (Green

& Swets 1966; see figure 2.5). Similarly, in a dynamic situation, Vickers (1979)

proposed that decision confidence could be computed by comparing the absolute

distance between the winning and losing integrators in an evidence accumulation

model (see also Kepecs et al. 2008). A probabilitistic analogue of this approach has

demonstrated that the distribution of activity over a population of simulated evi-

dence accumulation cells is sufficient to provide a robust estimate of the likelihood

of being correct (Beck et al., 2008; Moreno-Bote, 2010).

While not explicitly stating so, these accounts of decision confidence refer to Type

1, or belief confidence, as it is assumed that confidence is equivalent to a graded

belief in the percept. In contrast, post-decision confidence ratings are metacogni-

tive judgments about the subject’s response. These second-order judgments can be

usefully analysed within the framework of Type 2 signal detection theory (Type 2

SDT). Type 2 SDT was first devised by Clarke et al. (1959), but recently there has

been a revival of the method, spurred on by an in-depth derivation of the relevant

probability distributions by Galvin et al. (2003). For post-decision confidence, a

‘hit’ is then a high-confidence correct judgment, and a ‘false alarm’ is a high confi-

dence incorrect judgment (table 3.2). As for Type 1 SDT, if continuous confidence

ratings are used, an ROC function relating how increasing confidence discriminates

between correct and incorrect judgments can be derived (figure 7.2). Often post-

decision confidence ratings are used to construct a Type 1 ROC, by treating them

as equivalent to ratings of the original stimulus dimension (Macmillan & Creelman,
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Figure 2.5: Left panel: Type 1 distributions as in figure 2.1, but here overlaid with
hypothetical post-decision confidence criteria. Confidence is assumed to increase both
for post-decision confidence in reporting signal (to the right of the x-axis), and post-
decision confidence in reporting noise (to the left of the x-axis). Right panel: A formal
treatment of post-decision confidence is obtained by computing the conditional (Type
2) probability of being correct (f(x|C)) or incorrect (f(x|I)) given a particular value
of X (Clarke et al., 1959; Galvin et al., 2003); here, the symmetry of the distributions
naturally maps onto the symmetry of the confidence criteria. The proportions of Type
2 hits (light shading) and false alarms (dark shading) are indicated for a single value
of the Type 2 criterion.

2005). However, as Galvin et al. point out, ‘the difference between a Type 1 and

Type 2 task lies in which [mental] events are being evaluated, not in whether the

evaluation is binary or a rating’ (p. 845). Thus Type 1 decisions can be made on a

continuous scale, such as brightness, or a categorical scale, such as present/absent.

Similarly, Type 2 decisions can be made on a continuous scale, such as confidence, or

on a categorical scale, such as correct/incorrect. It is the referent of these judgments

(stimulus or response) that separates them into the classes of Type 1 or Type 2.

Type 2 probability functions (the conditional probability of being correct or

incorrect for a given stimulus strength) can be derived theoretically, from a linear

transformation of the assumed underlying Type I SDT distributions (Galvin et al.,

2003; Kiani & Shadlen, 2009). Knowledge of the underlying distributions is required,

through assuming some representation of uncertainty on the part of the subject

(Barthelmé & Mamassian, 2009; Whiteley & Sahani, 2008). This derivation – the

‘direct translation hypothesis’ (Higham et al., 2009) – assumes that confidence is

based directly on an assessment of the probability of being accurate, as derived from

the perceptual system, and is unaffected by other factors endogenous to the subject.

The model is thus ‘feed-forward’ in that it assumes that perceptual performance

is veridically translated into estimates of metacognitive confidence. Further, the

model makes the prediction that when perceptual (Type 1) performance increases,

metacognitive (Type 2) performance, or the ability to discriminate correct from

incorrect decisions, also increases (figure 7.2).
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Conversely, models that permit partial independence between perception and

post-decision confidence have recently been proposed (Pleskac & Busemeyer, 2010;

Del Cul et al., 2009; Insabato et al., 2010). For example, Pleskac & Busemeyer

(2010) set out to devise an evidence accumulation model that could account for a

wide range of empirical regularities governing the relationship between choice and

confidence ratings using the same underlying computational variable. The solution

here was to allow a decision variable to continue to accumulate (and be perturbed by

noise) beyond the point at which the decision is made3, until it is accessed to form a

confidence judgment. The model provided a good fit to behavioural data, including

differences in confidence for correct and incorrect responses. However, neural data

supporting these predictions are yet to be obtained. Testing this model would require

analysis of neural activity after a decision is made, but before a confidence rating is

elicited.

Indeed, studies using methods other than analysis of post-decision confidence

also suggest that the direct translation account is incomplete (Baranski & Petrusic,

1998; Busey et al., 2000; Busey & Arici, 2009; Wilimzig et al., 2008). For exam-

ple, Baranski & Petrusic (1998) concluded based on analysis of reaction times that

confidence is partly constructed after the perceptual judgment is made. Metacog-

nitive processes can also be manipulated by factors that are orthogonal to the task

of interest: Bengtsonn and colleagues found that priming subjects as ‘clever’ or

‘stupid’ altered the monitoring of errors, but not basic task performance, which was

held constant throughout the experiment by use of a staircase procedure (Bengtsson

et al., 2010); similarly, manipulating the ease of processing can affect metacognitive

reports while leaving task performance relatively unaffected (Alter & Oppenheimer,

2009; Busey & Arici, 2009; Wenke et al., 2010).

The antecedents of metacognitive knowledge of decision-making would thus ap-

pear to be complex and multi-faceted. In my view, a reductionist approach to

defining these processes is preferable: by building on current knowledge of per-

ceptual decision-making (section 2.3), the components of metacognitive processes

should become more transparent. Such logic is harnessed by the direct-translation

account derived from Type 2 SDT, but this model is likely to be too simplistic. The

inter-relationships between first-order decision making, confidence and metacogni-

tive ability are yet to be fully characterised.

2.4.3 Neural mechanisms of metacognitive report

In this section I expand my scope to encompass studies of memory and other forms

of decision-making, as relatively little is known about the neural bases of metacogni-

3Recent analysis of changes of mind in perceptual decision-making make a strong case for
continual accumulation of evidence beyond the initiation of a decision (Resulaj et al., 2009), lending
plausibility to this proposal.
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tive processes in any one given domain. This approach is also motivated by the sug-

gestion that metacognitive function relies on hierarchical processing of ‘first-order’

cognitive operations. As such, metacognitive variables may be encoded in a fashion

that transcends task-specific mechanisms, suggesting a domain-general rather than

a domain-specific process (Alter & Oppenheimer, 2009; Song et al., 2011).

2.4.3.1 Neural basis of metamemory

Knowledge of one’s own memory capacity has been dubbed ‘metamemory’ (Flavell,

1979). Often metamemory is studied using ancillary reports (section 2.4.1) or by

recording whether individuals engage in particular strategies to manage their own

learning process (Metcalfe, 1996). Shimamura & Squire (1986) reported that Ko-

rsakoff’s syndrome patients presented with impaired feeling-of-knowing (FOK), a

measure of whether they will be able to recognise the correct answer to a question,

even if they cannot the answer at the time (Nelson & Narens, 1990). Other amnesics

were not impaired in FOK judgments. One suggestion is that frontal lobe damage

specific to Korsakoff’s underlies the impairment in metamemory, consistent with

non-amnesic frontal patients also displaying impaired FOK (Janowsky et al., 1989).

Separate evidence for frontal lobe involvement in metamemory comes from fMRI

studies. Activation of the PFC during memory encoding predicts future memory per-

formance (Wagner et al., 1998). One suggestion is that the PFC is recruited when

second-order, or metacognitive, operations are carried out on first-order memory

representations (Christoff & Gabrieli, 2000; Fletcher & Henson, 2001). Consistent

with this suggestion, Chua et al. (2009) found that activity in anterior PFC (BA

10/9) and IFC (BA 45) showed greater activity for high compared to low prospective

FOK judgments. Interestingly, these same regions were not modulated by the level

of retrospective confidence in a memory judgment, suggesting they are sensitive to

a particular type of first-order task information. Other studies have examined confi-

dence at recognition, finding increased activation of memory-related medial temporal

lobe (MTL) regions as confidence increases for true memories, but activation of fron-

toparietal regions for high confidence false memories (Kim & Cabeza, 2007; Moritz

et al., 2006). In a related paradigm, Kao et al. (2005) scanned participants while

they made predictions about whether they would later remember a variety of differ-

ent pictures. Objective success in recognition correlated with activity in the MTL,

whereas predicted success (irrespective of objective success) activated medial PFC

activity. No region showed activity related to the accuracy of the metacognitive

judgment (Type 2 hits > false alarms); however, across subjects, vmPFC activity

correlated with metamemory ability (the coupling between confidence and memory

performance). In summary, these studies suggest that confidence in true memories

may derive from a process of recognition (mediated by the MTL), but that modula-

tion of PFC activity can additionally alter meta-level processes to affect confidence,
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for example when a false memory is held with high confidence.

2.4.3.2 Metacognitive mechanisms in decision-making

Kiani & Shadlen (2009) adapted the RDK paradigm to allow the investigation of

decision confidence. They found that monkeys could learn to use an ‘opt-out’ re-

sponse on trials where they were unsure about the right answer. The likelihood of

using this response was causally related to intermediate firing of LIP cells, previ-

ously shown to reflect the accumulation of evidence supporting one or other response

(section 2.2.5). However, the extent to which this activity signals confidence in the

stimulus or confidence in the decision is unclear, as no post-decision judgment was

collected. Another recent study recorded the neural firing of rat orbitofrontal cortex

(OFC) neurons during the period after a difficult perceptual decision (Kepecs et al.,

2008). Firing was modulated by the difficulty of the decision, and activity differed

between correct compared to incorrect trials before the rat had received feedback.

While these results might also be interpreted as a signal of expected value – which

is higher on correct trials, and has previously been found in OFC (Schoenbaum

et al., 2007) – a signal relating to the correctness of a decision in the absence of

feedback would also be expected from a circuit computing subjective confidence in

the decision. Similar signals showing differences between correct and error trials in

the absence of feedback have also been identified in monkey BA10 and dorsolateral

PFC (Tsujimoto et al., 2010; Middlebrooks & Sommer, 2010).

An alternative perspective on the encoding of metacognitive variables during

decision-making has emerged from studies employing hierarchical computational

models. For example, Behrens and colleagues had subjects learn which of two re-

sponse options delivered greater average reward over time. Unbeknownst to the

subjects, the rate at which the best options switched over time, or their volatility,

was altered. A hierarchical model which tracks both the reward and its associated

volatility provided the best fit to subjects’ behaviour, suggesting that they encoded

higher-order knowledge about their uncertainty about reward estimates and used

this to bias their learning. Furthermore, this higher-order volatility parameter cor-

related with activity in the anterior cingulate cortex (ACC) (Behrens et al., 2007). In

a study employing a similar model-driven analysis, uncertainty about one’s position

in a computerised maze was correlated with BA10 activity (Yoshida & Ishii, 2006),

a region where activity is also linked to exploration during learning (Daw et al.,

2006), suggesting that the brain might use a current estimate of belief uncertainty

to guide future exploration (Boorman et al., 2009).

Finally, studies aimed at dissociating components of subjective awareness have

provided evidence that metacognitive ability – the ability to link performance to

confidence – may by partially dissociable from perceptual performance, and may

depend on prefrontal function. Rounis et al. (2010) showed that within individuals,
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metacognitive sensitivity in a perceptual task could be selectively decreased through

bilateral TMS of dorsolateral PFC, despite perceptual performance remaining in-

tact. Similarly, patients with lesions to anterior prefrontal cortex show an increased

threshold for producing a subjective ‘seen’ response compared to controls in a visual

task, despite objective performance being matched between groups (Del Cul et al.,

2009). The peak correlation of the lesion with the decrease in subjective report

threshold was seen in left BA10.

2.4.3.3 Neural basis of insight

While conceptually broad in scope, studies investigating the neural correlates of self-

reflection may provide important information as to where we might expect metacog-

nitive processing to occur. A common network consisting of dmPFC and anterior

PFC is active during reflections on mental states (Christoff & Gabrieli, 2000; Fletcher

& Henson, 2001; Northoff & Bermpohl, 2004; Passingham et al., 2010). This net-

work is highly reminiscent of that engaged when assessing the mental states of oth-

ers (Amodio & Frith, 2006), suggesting commonalities between processes engaged by

metacognition and mindreading (Carruthers, 2009). A lack of self-reflective capacity

is thought to underlie the anosagnosias, neurological conditions in which subjects are

unaware of their own deficits. One extreme anosagnosia is Anton’s syndrome, where

objectively blind subjects believe that they can see. While the varieties of anosag-

nosic subtypes are beyond the scope of this review, it is interesting to note that

anosagnosia is often accompanied by frontal and/or parietal lesions (Vuilleumier,

2004), and is closely related to the concept of insight in neuropsychiatric disorders.

For example, in schizophrenia, lack of insight of one’s condition is only weakly as-

sociated with the severity of delusions, with correlative studies instead implicating

prefrontal pathology (Amador & David, 2004).

2.5 Outstanding questions

1. Several behavioural studies employing asymmetric payoffs have probed the

integration of reward with perceptual accuracy (Davison & Tustin, 1978; Green

& Swets, 1966; Johnstone & Alsop, 2000; Maddox, 2002; Maddox & Bohil,

2004). However, little is known about how value interacts with perceptual

uncertainty in the brain (Gold & Shadlen 2002; see section 2.3.5); in particular,

whether value affects an early or late stage of sensorimotor integration. Indeed,

in a review of the field, Heekeren and colleagues note that value ‘might affect

sensory representations, as well as motor planning or action selection; however,

how this occurs in the human brain is still an open question’ (Heekeren et al.,

2008). In Chapter 4, I report an experiment that employed a modification

of the design used by Whiteley & Sahani (2008) to ask how value biases the
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neural stages of perceptual decisions.

2. As discussed in section 2.2.2, there are several competing hypotheses for how

asymmetries in the loss function alter the decision threshold. One influential

view is that cortico-basal ganglia mechanisms adjust decision criteria (e.g. Lo

& Wang 2006), but evidence for the operation of such mechanisms in the

human brain during decision-making is currently sparse (Bogacz et al., 2010).

In Chapters 5 and 6 I determine how biases in the criteria for acting during

perceptual decisions affects basal ganglia activity measured using fMRI, with

a particular focus on the STN.

3. Control of decision criteria is generally only required when incoming evidence

is uncertain (section 2.2.4). The sensitivity of observers to dynamic changes in

uncertainty suggests that the brain is able to monitor uncertainty and use this

knowledge to effectively adjust decision strategies (section 2.4). It is unknown,

however, the extent to which this uncertainty is available for use by other

response systems, such as through verbal reports. By using metacognitive

reports, I ask in Chapter 7 whether observers’ post-decision ratings of decision

confidence can be concisely described by a Type 2 SDT model, and whether

such a model can identify differences in metacognitive ability across subjects.

4. The neural mechanisms of metacognitive monitoring are poorly understood

(section 2.4.3). In Chapter 8, I harness the individual differences in metacog-

nitive ability identified in Chapter 7 to identify variability in the structure of

prefrontal cortex that correlates with metacognitive ability.



Chapter 3

Methodology

3.1 Overview

This chapter provides general background on the specific methods used in each

experiment contained in the thesis. Signal detection theory (SDT) is used to analyse

behavioural data in Chapters 4, 5 and 7, and a brief primer on the rationale behind

the theory and measures of SDT is presented in section 3.2. The following sections

review the principles behind magnetic resonance imaging, and its application to

identify functionally relevant changes in both blood-oxygen level and the structure

of grey and white matter.

3.2 Signal detection theory

As we saw in Chapter 2, a crucial problem in decision-making is dealing with uncer-

tainty. Imagine an experiment where we repeat random states (present or absent)

and record the value of an arbitrary internal state variable X; by doing so we can

build up a picture of the conditional probability distributions over X given a par-

ticular state of the world h1 or h2. These distributions overlap; it is only on average

that the signal + noise distribution is higher than the noise-alone distribution (figure

2.1). The observer’s job is to categorise a given value of X as either arising from

h1 or h2, signal or noise. The point at which the distributions cross, or log(β) = 0

(equation 2.3), is the optimal point to place a criterion (assuming uninformative

priors).

Following placement of a criterion, the observer’s job is simple – when x > β

choose h1, else if x < β, choose h2. Nevertheless, there will still be times when the

observer makes mistakes, even for the optimal criterion – for ‘h1’ responses, these

mistakes are termed false alarms, and are determined by the magnitude of the area

under the h2 curve to the right of the criterion. Correspondingly, we can splice up

the other areas under the two curves to form a contingency table (table 3.1).

The performance of our decision-maker is dependent on how faithfully their cat-

48
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‘h1’ ‘h2’

State of the world
h1 Hit Miss
h2 False alarm Correct rejection

Table 3.1: Type 1 signal detection theory contingency table.

egorisation of true states of the world is made. If hits are high and false alarms

are low, then we can say the observer has a high sensitivity. Indeed, this difference

between hits and false alarms is the basis of the measure of sensitivity inherent to

signal detection theory (SDT):

d′ = z(H)− z(FA) (3.1)

where z is the inverse of the cumulative normal distribution function (Green &

Swets, 1966). The insight of SDT is that an observer’s criterion placement is in-

dependent of his sensitivity. This can be immediately seen from figure 2.1: as the

criterion is swept to the left, hit rate increases to a point at which all h1 states are

correctly classified. But this increase in hits is paralleled by a detrimental increase

in false alarms, where h2 states are incorrectly classified as h1. The observation that

the relationship between hits and false alarms is invariant across placements of the

criterion is a cornerstone of SDT. If we assume a Gaussian generative model for hits

and false alarms, d′ will increase as the separation between the means of the distri-

butions increases (as the signal strength increases) and decrease as the variance of

the distributions increases. Indeed, the use of z-transforms in equation 3.1 specifies

d′ as the distance in units of standard deviation between the means of the assumed

underlying signal and noise distributions.

As for sensitivity, SDT provides us with both a generative model and empirical

description of bias. By assigning values to each of the outcomes of table 3.1, SDT

specifies the optimal likelihood ratio criterion as being a function both of the payoff

matrix and the a priori probabilities of each state of the world (equation 2.4; Dayan

& Daw 2008; Green & Swets 1966). We can specify an empirical measure of bias

by noting that the bias towards reporting h1 independent of the state of the world

is proportional to the sum of hits and false alarms. In SDT, this measure is scaled

such that a value of c = 0 is indicative of a neutral criterion (β = 1):

c = −0.5[z(H) + z(FA)] (3.2)

This treatment of sensitivity and bias in SDT allows one to go from a point

estimate of d′ and c in a psychophysical experiment (using table 3.1 and equations

3.1 and 3.2) to an assumed picture of the probability distributions upon which the

decision is based (figure 2.1). However, this transformation relies on a leap of faith,

in that point estimates of d′ and c only connect to the underlying model under

conditions in which the conditional probability distributions over x given h1 and
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h2 are normally distributed with equal variance. We can go one step further here

by noting that the relationship between the two hypothetical distributions is fully

specified by the (continuously valued) pairs of hit and false alarm rates generated

by sweeping the criterion from left to right across the decision axis (figure 7.2).

The theoretical function generated by plotting hit rate against false alarm rate

is known as a receiver operating characteristic (ROC) function (figure 2.1). As the

only thing that changes when generating a ideal observer’s ROC function is the

position of c, it follows that d′ is constant for all points on an ROC curve, known as

iso-sensitivity points. To measure an empirical ROC, all that is required is for an

observer to adopt multiple criteria for a given level of sensitivity (e.g. through use

of multiple confidence ratings), thus generating multiple hit-false alarm pairs which

can be plotted in ROC space. The area under the empirical ROC is a measure of

sensitivity that is assumption free with respect to underlying distributions (Korn-

brot, 2006). Further, the assumptions of SDT can be checked by plotting the ROC

in z-transformed space (Macmillan & Creelman, 2005). If the hypothetical p(x|h1)
and p(x|h2) probability distributions are Gaussian, this transformation will yield a

straight line whose slope is specified by the relative variance of the two distributions.

The same logic underlying Type 1 SDT measures can be applied to metacognitive

reports about decision-making performance. This ‘Type 2’ SDT analysis was first

devised by Clarke et al. (1959), but recently there has been a resurgence of interest in

the method, in part spurred on by an in-depth derivation of the relevant probability

distributions by Galvin et al. (2003). In Type 2 SDT, the ‘evidence’ which is being

discriminated is the subject’s own decision, rather than the state of the world. For

post-decision confidence, a ‘hit’ is then a high-confidence correct judgment, and a

‘false alarm’ is a high confidence incorrect judgment (table 3.2). As for Type 1 SDT,

if continuous confidence ratings are used, an ROC function relating how increasing

confidence discriminates between correct and incorrect judgments can be derived

(figure 7.1).

‘High confidence’ ‘Low confidence’

State of the world
Correct Hit Miss
Incorrect False alarm Correct rejection

Table 3.2: Type 2 signal detection theory contingency table.

3.3 Functional magnetic resonance imaging

(fMRI) methods

Functional magnetic resonance imaging (fMRI) provides an elegant, non-invasive

method for defining the neural mechanisms underlying human behaviour and sub-
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jective experience in healthy individuals. fMRI measures changes in local cerebral

blood flow, providing an indirect picture of changes in brain activity over time. The

specific nature of the linkage between blood flow and underlying neural activity is

still an open area of investigation (Logothetis, 2008); however, recent surveys of the

field indicate replicable mappings between changes in fMRI signal in particular brain

regions or networks and particular cognitive functions (e.g. Poldrack et al. 2009). In

this manner, fMRI, in tandem with cognitive psychology, has the potential to refine

our concepts of the structure of the mind (Yarkoni et al., 2010).

Initial studies in the field were concerned with functional localisation: identify-

ing mappings from particular brain areas to particular cognitive functions in healthy

subjects. More recent work has also focussed on functional integration (e.g. Fris-

ton et al. 2003), creating models of how one area’s activity relates to, or putatively

causes, another area’s activity over time. The end-goal of this research is to iden-

tify a mechanism tying cognitive function to the large-scale interaction of multiple

specialised brain regions. In this thesis, fMRI is used primarily in functional localisa-

tion mode, enabling answers to questions about which stage in the decision pathway

(sensation, decision or action) contextual variables such as value and uncertainty

become integrated into the decision process.

3.3.1 Principles of fMRI

3.3.1.1 Nuclear magnetism

In quantum mechanics subatomic particles such as protons have a property known

as spin. Some atomic nuclei, because of the numbers of protons and neutrons they

contain, have a non-zero spin and consequently a magnetic moment. When such

nuclei are placed in a strong magnetic field they align around an axis along the

direction of the field. Because this alignment is not perfect, nuclei ‘precess’ around

the external field at a frequency known as the Larmor frequency. The Larmor

frequency is determined both by the magnitude of the field (increasing as the field

strength increases) and the nature of the nucleus itself (see figure 3.1).

Hydrogen nuclei (protons) align in two states, parallel and anti-parallel to the

direction of the magnetic field. The anti-parallel state is a higher-energy state than

the parallel one, so a slightly greater proportion of nuclei align themselves parallel

to the field. This results in a net longitudinal magnetisation parallel to the external

field, which increases with the field strength. Since the brain contains a large number

of hydrogen nuclei, many of them in water, this kind of magnetisation occurs when

it is placed in a magnetic field. The quantity of mobile protons in a tissue relative

to water is referred to as its proton density.
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Figure 3.1: Hydrogen atoms align either parallel or anti-parallel to a magnetic field
B0. Because alignment is not perfect (angle θ) they ‘precess’ around the direction of
B0 at the Larmor frequency.

3.3.1.2 Generating an MR signal

If an oscillatory radio frequency (RF) pulse is applied perpendicular to the direction

of the static magnetic field, resonant absorption of energy will occur in protons of

any nuclei with a Larmor frequency matching those present in the pulse. In the

case of hydrogen nuclei this means that some of the low-energy state protons absorb

energy and move to the high-energy state, which tips the net magnetisation in the

transverse plane. A sufficiently large pulse can tip the net magnetisation sideways

(a 90◦ pulse) or even reverse it (a 180◦ pulse). This transverse angle is called the

flip angle of the RF pulse, and all experiments reported here used a 90◦ flip angle.

After the RF pulse nuclei tend to recover their original orientation, giving off

radio waves (photons) as this occurs. These emissions form the basis of MR images.

This phenomenon, known as relaxation, occurs in two ways, longitudinal or T1 re-

laxation, and transverse or T2 relaxation, both of which are important in functional

brain imaging. An image can be constructed because the protons in different tissues

return to their equilibrium state at different rates.

3.3.1.3 Generating an MR image

To produce a three-dimensional MR image it is necessary to distinguish between

different spatial locations. This is achieved using three additional magnetic fields

containing spatial gradients (gradient fields). These fields, aligned orthogonally to

one another (usually on the superior-to-inferior (z) axis, left-to-right (x) axis, and

posterior-to-anterior (y) axes) are known as the slice-select gradient, the readout or

frequency-encoding gradient, and the phase-encoding gradient, respectively. Typ-

ically the gradient fields are discretely stepped, allowing the user to partition the

image into small cubed elements (volume elements or voxels). All protons within a

voxel are combined in the reconstructed image, and voxel size thus determines the

maximum resolution of the image.
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The slice-select gradient is switched on briefly at the same time as the RF pulse,

creating a gradient in the magnetic field. Since the Larmor frequency of hydrogen

nuclei is proportional to the field strength, it will vary along the slice-select gradient.

This means that by confining the RF pulse to specific frequency ranges it is possible

to affect the magnetisation vector in only a specific region along the slice-select

axis (in a two-dimensional brain slice). To differentiate between locations within a

2D slice requires two additional gradient fields. The frequency-encoding gradient

is applied during measurement of the signal (hence ‘readout gradient’), and alters

the precession frequency within a slice. Finally, phase-encoding is applied briefly

between the RF pulse and measurement. Phase-encoding generates a gradient of

precession frequencies, resulting in the nuclei at different locations along the axis of

the phase-encoding field becoming out of phase. When the phase-encoding field is

shut off they return to precessing at the same frequency, but maintain their altered

phase. Both of these gradients allow the emitted radio wave to be differentiated in

the Fourier spectrum of the MR signal, as the frequency of the released photons

depends on position in a predictable manner.

3.3.1.4 Different kinds of scan

Although the fundamentals remain the same, altered scanning parameters and pro-

cedures are used to optimise acquisition of different kinds of data. Two key parame-

ters are the repetition time (TR) between two consecutive pulses, and the echo time

(TE) between the RF pulse and the measurement of the signal. T1-weighted scans

(which maximise the T1 difference between tissues) typically have a short TE and

TR (e.g. 20ms and 500ms). T2/T2*-weighted scans usually have a long TE and TR

(e.g. 80ms and 2000ms).

Echoes are signals produced by additional 180◦ RF or gradient pulses, and are

used to resynchronise the precession of the nuclei to allow collection of further signal.

Echo-planar imaging (which is used in all the studies reported in this thesis) makes

use of echoes to acquire images with a tolerable signal-to-noise ratio fast enough for

fMRI (typically once every 2-3 seconds; Stehling et al. 1991). Here an initial RF

pulse is followed by a series of 180◦ refocusing pulses, each sandwiching separate

phase and gradient-encoding steps.

3.3.1.5 BOLD fMRI

Haemoglobin, the oxygen-transporting protein found in red blood cells, has differ-

ent magnetisation properties depending on whether it is oxygenated (oxyHb) or not

(deoxyHb). DeoxyHb is paramagnetic due to the presence of unbound-iron contain-

ing haem-groups. The presence of deoxyHb in red blood cells induces a difference

in magnetic susceptibility between blood and surrounding tissue. In the large ho-

mogenous magnetic fields used in MRI, compartmentalised susceptibility differences
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induce small magnetic field distortions in the blood. Water protons in these areas

are affected by the field distortion, altering the T2* relaxation time. When the

content of deoxyHb changes in the blood, the relaxation process of water protons is

modified, producing differences in the T2* signal. Pioneering work both in animals

(Ogawa et al., 1990) and humans (Ogawa et al., 1992) showed that these changes

can be reliably measured with fMRI.

Changes in blood oxygenation is related to brain activity due to metabolic ac-

tivity by neurons requiring oxygen (Heeger & Ress, 2002; Logothetis, 2008; Ogawa

et al., 1992). The time course of the BOLD response to transient neuronal activity is

now fairly well characterised (Heeger & Ress 2002; see figure 3.3). Neuronal activity

increases metabolic demand, transiently increasing the concentration of deoxyHb in

local vasculature. This is followed after a delay of ∼1-2 seconds by a large increase

in local blood flow which leads to an oversupply of oxygenated blood, leading to a

decrease in deoxyHb and consequent increase in BOLD signal peaking at around 6

seconds after the onset of activity. This is followed by an undershoot which lasts

several seconds. Although measuring the initial dip in blood oxygenation might be

the most sensitive way of exploring BOLD changes, these changes are very small,

to the extent that their existence remains somewhat controversial (Heeger & Ress,

2002). Consequently, fMRI analysis tends to concentrate on clearly identifiable

BOLD peaks. The time course of the BOLD response provides a natural limit to

the temporal resolution of fMRI.

There is less consensus about how to relate BOLD changes to specific patterns

of neuronal activity, although one finding is that BOLD changes are more tightly

coupled to synaptic activity (inputs to cortical regions) rather than cell firing (Heeger

& Ress, 2002; Logothetis, 2008). In particular it is not clear how BOLD changes

relate to inhibitory modulatory activity, or situations where both inhibition and

excitation are increased at the same time within a confined region of the brain

(Logothetis, 2008). Furthermore, the interpretation of a decrease in BOLD signal

relative to a resting baseline remains controversial (Lin et al., 2010). These concerns

do not invalidate fMRI as a powerful investigative tool, but they should be borne in

mind when designing and interpreting fMRI studies.

3.3.2 fMRI preprocessing

In order to transform the acquired functional images into a format suitable for

analysis, a number of preprocessing stages are necessary. Before preprocessing the

first few images are typically removed from analysis to allow for T1-equilibration

effects. Analyses reported here were carried out in SPM5 (Chapters 4 and 5) or

SPM8 (Chapter 6) (Wellcome Trust Centre for Neuroimaging, London, www.fil.

ion.ucl.ac.uk/spm), with each stage described in the sections that follow.
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Figure 3.2: Schematic depicting the processing stages that start with a raw imaging
data sequence and end with a statistical parametric map (SPM). Voxel-based anal-
yses require that data are in the same anatomical space: this is achieved through
realignment of the data. After realignment, the images are normalised and smoothed.
The general linear model is then employed to estimate the parameters of an analysis
model (depicted here by a design matrix) and derive the appropriate univariate test
statistic at every voxel. The test statistics (usually T or F -statistics) constitute the
SPM. Statistical inferences are made based on the SPM and Random Field Theory
and characterise the responses observed using the parameter estimates (reproduced
from Flandin & Friston 2008).

3.3.2.1 Realignment and unwarping

The image time series first needs to be realigned to a common reference frame to

correct for any head movements during scanning. This is performed using a rigid-

body affine transformation, with the reference frame taken as the first image in

the acquired time series. Even once realignment has been performed, considerable

movement-correlated variance is found in the time series due, among other things,

to the existence of magnetic field inhomogeneities, and consequent movement-by-

inhomogeneity interactions (Andersson et al., 2001). In other words, the BOLD

contrast in a particular region will be subtly different if that part of the brain is

moved into a different part of the magnetic field, considerably reducing the statistical

power of a subsequent analysis of task-related activation. One method to alleviate

this issue is to include the movement parameters as covariates in the statistical model

used to analyse the data. A drawback is that if movements are task-correlated, ac-

tivations of interest may be removed. An alternative method (unwarping) is to

acquire fieldmaps, images which are used to estimate inhomogeneities in the mag-

netic field and then generate a forward model of the movement-by-inhomogeneity

interactions (Andersson et al., 2001). The imaging studies reported in Chapters 4-6

incorporate a combination of unwarping and realignement covariates to deal with

movement-correlated activity.
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3.3.2.2 Normalisation

To aid anatomical interpretation and standardisation between studies, images are

typically transformed into a standard space. This is performed using a three-stage

process. First the mean realigned/unwarped image is coregistered with the subject’s

T1-weighted structural image using a rigid-body transformation estimated by max-

imising the mutual information between the two images. The structural image is

then ‘segmented’ (Ashburner & Friston, 2005) into separate grey- and white-matter

images using a nonlinear deformation field to map it onto template tissue probability

maps. This mapping is then applied to both the structural and functional images

to create spatially normalised images. Normalisation is to Montreal Neurological

Institute (MNI) space.

3.3.2.3 Smoothing

For analysis under Gaussian Random Field Theory assumptions (described below),

functional images must be spatially smoothed with a Gaussian filter. In addition,

smoothing improves the signal-to-noise ratio, though at the cost of spatial resolution.

This is done by convolving the images with Gaussian kernels with full-width at half-

maximum (FWHM) of 8mm (Chapters 4 and 5) or 6mm (Chapter 6).

3.3.3 Statistical testing

The most common way to analyse fMRI time series is with a mass-univariate ap-

proach. This involves performing a statistical test separately at each voxel in the

image. The resulting statistics can then be assembled into an image – a statistical

parameteric map (SPM) – and improbable patterns attributed to an experimental

factor (figure 3.2). Typically, this statistical testing is done using a General Lin-

ear Model (GLM). All statistical tests reported in this thesis were carried out in

SPM5 (Chapters 4 and 5) or SPM8 (Chapters 6 and 8; Wellcome Trust Centre for

Neuroimaging, London, www.fil.ion.ucl.ac.uk/spm).

3.3.3.1 The General Linear Model

The General Linear Model (GLM) is a broad framework of which most of the sta-

tistical tests typically used in neuroimaging (e.g. t-test, ANOVA, linear correlation)

are special cases (Flandin & Friston, 2008). At the core of the GLM is an equation

relating a matrix Y , containing observations of BOLD signal, to a linear combination

of explanatory (predictor) variables, contained in the design matrix X:

Y = Xβ + ε (3.3)

where β is a vector containing the parameters to be estimated and ε is a residual term

(Friston et al., 1994a). (This is also often described as multiple regression analysis,
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see Howell 2009). The GLM approach assumes that the residuals are independently

and identically distributed (IID) (a condition often described as ‘sphericity’, or,

equivalently, as having a multivariate normal distribution). This condition is not

met by fMRI time series, so a correction must be applied to impose sphericity

(Glaser, 2004).

In analysing fMRI data the design matrix consists of the experimental manipu-

lations, confounds and covariates of no interest, each entered as a separate column.

These columns are referred to as regressors. Experimental events are typically mod-

elled as either stick (delta) or boxcar functions and then convolved with a haemo-

dynamic response function (HRF) before being entered into the design matrix (see

figure 3.3). In SPM, the β parameters are then estimated using a restricted maxi-

mum likelihood (ReML) algorithm.

Statistical inferences about parameter estimates are made using their estimated

variance. Two sorts of test are possible: an F -statistic testing the null hypothesis

that the parameter is zero, and a T -statistic testing whether some linear combination

of estimates is significantly different from zero (and is therefore directional). Applied

at each voxel, an image of T - or F -statistics across the entire brain volume (the SPM)

is produced. Regressors can be categorical, such as a 1 or 0 to index the onset of a

particular stimulus condition, or parametric, such that the height of the regressor

is modulated by the quantity associated with the current trial. An example of the

latter would be modulating a regressor’s height by the subject’s reaction time (see

also Grinband et al. 2008), isolating activity that covaries with reaction time. The

experiments in this thesis make use of both categorical and parametric regressors.

Figure 3.3: Left panel: canonical haemodynamic response function. Right panel:
time series showing the model of the stimulus (red), model after convolution with
canonical HRF (green), and observed data from a single voxel (blue). The latter two
terms form single columns of each of the X and Y matrices in equation 3.3.

3.3.3.2 Correction for multiple comparisons

In fMRI the mass-univariate approach involves thousands of separate tests across

the whole-brain volume, and this presents a large multiple-comparison problem that

must be addressed before interpreting regions as being significantly ‘active’. One
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way around this problem is to specify a priori a specific brain structure of interest

(such as the STN in Chapter 6), and extract contrast estimates only from this region

for further analysis. However, if the analysis is more exploratory, or is used as a first

step to define regions for subsequent analysis, large-scale corrections for multiple

comparisons are required. One common approach is to use family-wise error (FWE)

correction to control the probability of making one or more Type 1 (false positive)

errors. In classical statistics with multiple independent tests FWE correction is often

implemented through a Bonferroni correction (dividing the acceptable Type 1 error

rate, α, by the number of statistical tests being carried out). However, because of the

large number of comparisons and spatial correlations between neighbouring voxels,

Bonferroni correction is extremely conservative for neuroimaging data. Alternative

approaches are therefore used to refine this issue and achieve an appropriate balance

between sensitivity and specificity.

One method for increasing the sensitivity of FWE-corrected tests is to appeal to

Random Field Theory (Adler, 2009; Friston et al., 1995). Functional images show a

strong degree of spatial correlation (indeed, this is ensured by the smoothing step in

preprocessing; see section 3.3.2.3), leading to covarying clusters of voxels (‘resolution

elements’ or ‘resels’). It therefore makes sense to control false positives at the level

of these clusters, rather than individual voxels. Moreover, we are interested in

functional brain regions, not individual voxels in the image. Since there are always

fewer clusters than voxels this allows for more sensitive FWE-corrected tests. A

cluster-level inference tests if the number of activated voxels in a particular cluster

(the cluster volume) is greater than would be expected by chance, whereas voxel-

level inference tests only the peak value in that cluster. Cluster-level inference

tends to be more sensitive to extended activations that may not contain a definite

peak. In contrast, voxel-level inference permits greater spatial localisation (Poline

et al., 1997). Cluster-level inference requires a ‘cluster-defining threhsold’, such as

P < 0.001, uncorrected. While the cluster-defining threshold is somewhat arbitrary,

simulations show that the assumptions behind cluster-level correction hold down

to a defining threshold of around T = 2.5, and allow inferences to be based on a

combination of peak height and spatial extent (Friston et al., 1994b). The statistical

inferences made in this thesis at the whole-brain level are carried out at the cluster-

level (see section 3.4.3 for specific considerations regarding voxel-based morphometry

analyses).

A different (and often complementary) approach is to restrict the search volume

to a particular region of interest (ROI). This can be defined either as an anatomical

region, or by specifying a volume around a particular location, usually the peak

activation found in a previous study. Once such regions have been defined, a small

volume correction (SVC) can be implemented using one of the previously described

multiple comparisons techniques. An alternative approach for defining ROIs is to
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use orthogonal contrasts to restrict the search volume to task-relevant activations.

For example, in Chapter 4, I identify regions in ventral visual cortex that are active

in proportion to the amount of ‘face’ information in an image. These active voxels

are then used as ROIs for further analysis of whether face-sensitive regions are

affected by the (orthogonal) effect of changes in the cost structure of the task.

This procedure is valid to the extent that ROI selection is independent of contrasts

subsequently applied to analyse the signal from this ROI (Kriegeskorte et al., 2009;

Vul & Kanwisher, 2010).

3.3.3.3 Group analyses

The above procedure describes how parameter and contrast estimates are generated

at the single subject level. Typically fMRI studies consider data from several sub-

jects. In order to generalise the results of this group analysis to the population, one

has to incorporate the between-subject variance of the estimates. This can be im-

plemented using a two-stage ‘summary statistics’ procedure (Friston et al., 2005) in

which contrast estimates at the first-level (individual subjects) are treated as a new

response variable Y in a second-level (group) analysis (equation 3.3). (This is called

a ‘random effects’ analysis, and makes the assumption that first-level parameter

estimates are normally distributed in the population). This second-level model can

then be analysed in precisely the same way as the first-level models via the GLM.

This approach provides a good approximation to the ideal, but computationally

expensive, mixed effects analysis (Friston et al., 2005).

3.4 Voxel-based morphometry methods

Voxel-based morphometry (VBM) proceeds in a very similar fashion to analysis

of functional MRI timeseries, except now the image is static in time (there is a

single observation). The goal of VBM is to isolate differences in structure, either

between groups (e.g. schizophrenics and controls; Kubicki et al. 2002), timepoints

(e.g. before and after learning a motor skill; Draganski et al. 2004) or different levels

of a psychological profile (e.g. structure covarying with language learning; Carreiras

et al. 2009). The analysis proceeds by identifying a particular tissue type (grey or

white matter) using segmentation algorithms, and warping these segmented images

to a common anatomical space. The original methods proposed for VBM relied on

the fact that these warps would be necessarily imperfect (low-dimensional), and thus

the residual differences in structure in a region would remain despite macroscopic

differences (such as changes in head size) being eliminated by the normalisation

routine (Ashburner & Friston, 2000). With the advent of high-dimensional warping

routines that can be carried out using readily available computing power, current

approaches scale the pre-processed data such that the total volume of tissue in
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each structure is preserved (Ashburner & Friston, 2001). ‘Modulated’ VBM thus

measures the tissue volume per unit volume of spatially normalised image. The

steps in this analysis are outlined next.

3.4.1 Segmentation

Segmentation algorithms rely on a high-contrast between grey and white-matter in

the MRI image. The ‘unified segmentation’ routine in SPM5/8 assumes that every

voxel belongs to one of four tissue classes: grey matter, white matter cerebrospinal

fluid and everything else (Ashburner & Friston, 2005). Image intensity inhomogene-

ity is modelled out of the data using a linear combination of low-frequency 3D cosine

transform spatial basis functions. A ‘mixture of Gaussians’ model is fit to the varia-

tion in intensity values across the brain to map each pixel into one of the four tissue

classes. Assigning a voxel to a tissue class also relies on tissue priors, incorporating

knowledge of how common a particular tissue is at a particular location in the image.

These prior probabilities are encoded in template tissue probability maps, which are

combined with the likelihood of the model given the data (the mixture of Gaussians

fit) in a Bayesian fashion to complete the segmentation. More broadly, the SPM5/8

segmentation approach combines inhomogeneity correction, tissue classification and

nonlinear registration (warping) within a single probabilistic generative model.

3.4.2 DARTEL registration

The unified segmentation routine discussed in the previous section generates warps

to MNI space as part of the generative model. However, these warps are relatively

low-dimensional (∼ 1000 parameters), and modulated VBM requires very accurate

warps to be able to localise regional differences in volume. As a solution to this

approach, a separate registration model has been developed using in the order of

6, 000, 000 parameters (Ashburner, 2007). A recent empirical validation showed that

the accuracy of DARTEL registration is much higher than that achieved by other

intersubject registration approaches (Klein et al., 2009). In this study, measures

of accuracy were based on the amount of overlap achieved for regions of the brain

manually delineated by human experts.

DARTEL involves an iterative procedure that alternates between computation

of a cohort-specific template, and warping all subjects’ tissue probability maps (pro-

duced by segmentation) into increasingly good alignment with this template. This

optimisation is again carried out in a Bayesian fashion, by minimising the negative

log posterior probability of the model given the data. DARTEL creates a ‘flow-field’

for each subject, which encodes how the individual grey- and white-matter tissue

probability images should be warped, or deformed, to best-match the average shape

of the template. While this template (created from a large number of subjects) tends
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to reflect the ‘common average’ of multiple brains, it may not be well-aligned to MNI

space, and a further spatial transformation can be applied to permit reporting of

results in MNI coordinates.

As mentioned above, a high-dimensional warp ‘throws away’ information about

fine-grained volumetric differences. In other words, in the ideal case where image

registration is exact, there would be no volume differences left to examine. In

contrast, by multiplying the warped images by the Jacobian determinants of the

deformation, information about volume is retained. For example, if one subject’s

temporal lobe is much larger than that of the group, the large deformations required

to warp this lobe to a common template will multiply the signal intensity of this

region. Thus the signal from any region following modulation can be interpreted as

the tissue volume per unit of spatially normalised image.

3.4.3 Statistical analysis

As for functional brain imaging data, the warped, modulated tissue-class images

are blurred through a smoothing step. Smoothing alleviates problems caused by

inaccuracies in inter-subject registration, and allows the use of Gaussian random-

field theory correction during statistical analysis, as outlined in section 3.3.3.2. The

study reported in Chapter 8 uses a 8mm FWHM Gaussian kernel for smoothing.

Statistical analysis proceeds using the same GLM framework outlined in section

3.3.3.1 for fMRI data. Here one image per subject (or per time-point, in a longitu-

dinal study) is entered into a multiple regression model to identify regions of volume

change that covary with the parameter or group membership of interest. If there

were N subjects in the study, the design matrix contains N rows. It is also impor-

tant to model covariates of no interest that may affect the statistical interpretation

of changes in regional volume (Barnes et al., 2010). For instance, it is known that

men have systematically larger brains with proportionally more white matter than

women (Luders et al., 2006); in the statistical model used in Chapter 8, a covariate

indicating gender group membership is included to account for this effect. Similarly,

‘global’ differences in brain volume are taken into account by scaling each voxel’s

value to be a proportion of the total volume of a particular tissue class.

Inference as to whether regional volume significantly correlates with one or more

regressors of interest is performed in the manner outlined in section 3.3.3.2. Gaus-

sian random field theory is used to correct for multiple comparisons across the

whole-brain volume. One exception is the use of cluster-based statistics – during

the original development of VBM, it was observed that cluster-based inference pro-

duces an unreasonable number of false positives (Ashburner & Friston, 2000), due

to the calculation of the expected number of clusters depending on local variations

in the smoothness of the image. In fMRI, ‘stationarity’ of smoothness across the

whole image is assumed, and this assumption is usually a good approximation to re-
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ality. However, SPMs generated from tissue probability data violate the stationarity

assumption (Hayasaka et al., 2004). Implementing cluster-based inference (which

is preferred for the reasons outlined in section 3.3.3.2) requires correction for non-

stationarity of smoothness (Hayasaka et al., 2004). Computational simulations show

that for designs with high degrees of freedom and sufficient smoothness (as used in

Chapter 8), using a cluster-defining threshold of P < 0.001 with correction for non-

stationarity provides adequate control (P < 0.05) over the family-wise false positive

rate (Hayasaka et al., 2004).

It is important to note that statistically significant regions in a VBM analysis

only reflect regional differences in volume to the extent that the segmentation and

registration steps are effective. Furthermore, real increases in volume in a partic-

ular region may be due to increases in folding, increases in cortical thickness, or a

combination of the two. These considerations are illustrated in figure 3.4, showing

examples of how differences in tissue shape and registration affect the total volume

encoded by a voxel value.

Figure 3.4: This illustrates how findings from a VBM study of grey matter could
be interpreted. The top row shows situations where there would be less grey matter
in a cortical region compared to the situation shown below it. From left to right, dif-
ferences could be attributed to folding, thickness, misclassification or misregistration.
Generally, the objective is to interpret differences in terms of thickness or folding.
Figure reproduced with permission from Ashburner (2009).

3.5 Diffusion-tensor imaging methods

Water molecules in the brain move over distances of around 20µm every 50ms,

bouncing off, traversing or interacting with other tissue components such as cell

membranes and fibres (Bihan, 2003). Diffusion occurs in three dimensions, but

molecular mobility in tissues is not necessarily isotropic (i.e. not necessarily the same
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in all directions). For example, the diffusion constant is lower across compared to

along white-matter fibre bundles. In MRI, the effect of diffusion in the sample of

interest is to reduce the signal, and is considered an artifact. However, it has been

determined that the extent of reduction in the signal can be related to the diffusion

constant of the sample. Because this constant can be different in different spatial

directions (i.e. anisotropic), several directionally-specific measurements are needed.

These measurements are encoded in the MRI signal by using large, bipolar magnetic

field gradient pulses which are played out along the direction of interest. The effect

of the tendency for diffusion to prefer one direction over another – anisotropy – can

thus be quantified through observation of variations in the diffusion measurements

when the direction of the gradient pulses is systematically changed.

Diffusion anisotropy in white matter originates from its organisation in bundles

of fibres running in parallel. Original diffusion imaging studies demonstrated that

this feature could be used to track the orientation in space of the white matter

tracts in the brain (Douek et al., 1991). By fitting a diffusion tensor at each voxel

(Basser et al., 1994), anisotropy effects in diffusion MRI data can be quantified. The

methods behind DTI scanning and analysis are covered below, with a focus on the

measure employed in the Chapter 8, fractional anisotropy (FA).

3.5.1 Diffusion-tensor imaging acquisition

Diffusion acts to attenuate the MRI signal in a manner dependent on the b-value,

which characterises the gradient pulses used in the DTI sequence, and the diffu-

sion coefficient D. A diffusion tensor describes the attenuation in each direction of

diffusion at each voxel, and the covariance between these attenuations:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dxz Dyz Dzz

 (3.4)

In order to estimate the diffusion tensor, one must acquire diffusion-weighted im-

ages along several gradient directions. As the diffusion tensor is symmetric (equation

3.4), determination of its 6 unique elements requires a minimum of 6 measurements

with non-collinear directions. In practice sampling more than 6 directions improves

tensor fitting and signal-to-noise ratio; in the study reported in Chapter 8 68 gra-

dient directions are measured. In addition, DTI data was acquired twice to correct

for image distortions introduced by magnetic field inhomogeneities; these methods

are covered in more detail in Chapter 8.

3.5.2 Extracting fractional anisotropy

Once diffusion-weighted images are collected, the tensor is fitted using multiple

regression at each voxel (see Bihan et al. 2001) given knowledge of the b-value and
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gradient encoding directions. In this thesis I use algorithms implemented in FSL v

4.1 (http://www.fmrib.ox.ac.uk/fsl/) for DTI preprocessing and tensor fitting.

The diagonal components of the diffusion tensor (the eigenvalues; λ1 = Dxx, λ2 =

Dyy, λ3 = Dzz) are then used to define fractional anisotropy through the following

equation:

FA =

√
3

2

√
(λ1 − λ2) + (λ1 − λ3) + (λ2 − λ3)√

(λ21 + λ22 + λ23)
(3.5)

This calculation assigns each voxel a single FA value, which is a measure of the

fraction of the magnitude of D that can be ascribed to anisotropic diffusion. In

other words, FA indicates the asymmetry in the directionality of diffusion, where

this asymmetry can be oriented in any direction.

3.5.3 Statistical analysis

Inference as to whether regional FA significantly correlates with one or more regres-

sors of interest is performed in the manner outlined in section 3.3.3.2. FA maps

can be analysed using voxel-based techniques. In Chapter 8, warps (DARTEL flow-

fields) calculated during VBM preprocessing are applied to the FA images (after

coregistration), and voxel-based analysis is carried out in a similar manner to the

analysis of grey matter (including correction for smoothness non-stationarity). The

one difference between the grey-matter and FA analyses is that the latter images

are not modulated, as FA is not a volumetric measure.

FA is thought to underlie the microstructural integrity of a particular white-

matter tract, although the precise functional implications of changes in FA remain

to be determined (Alexander et al., 2007). Care must therefore be taken when in-

terpreting statistical differences in FA. Furthermore, similar caveats to those flagged

for VBM analysis apply to voxel-wise analysis of FA (figure 3.4): imperfections in

image registration and partial volume effects can lead to spurious differences in FA.

In Chapter 8 I attempt to militate against these factors through high-resolution

DARTEL warps and use of a mask to restrict analysis to white-matter tracts. Fi-

nally, one additional caveat is that regions where two or more fibres cross will tend

to have low FA, despite each individual fibre having high FA. Thus knowledge of

the expected white-matter crossing profile in a particular region is required to cor-

rectly interpret FA values, and, in regions with significant crossing, changes should

be interpreted with care.

Assuming FA reflects the microstructural integrity of a white matter tract, any

changes in this property may affect brain function and behaviour through affecting

nerve conduction and signalling along the tract. Pathological conditions, such as

optic neuritis and multiple sclerosis, provide extreme examples of the behavioural

consequences of a loss of white matter integrity. In healthy populations, changes
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in white matter function have been observed following training on particular motor

skills. For example, white matter FA in several tracts was seen to correlate with

the amount of time spent practicing the piano in professional musicians (Bengtsson

et al., 2005). Similarly, increases in FA following juggling practice (compared to a

control group) were found in tracts underlying primary motor cortex (Scholz et al.

2009; see Draganski et al. 2004 for a similar study reporting changes in grey matter

volume). The relevance of FA changes for alterations in functional connectivity was

investigated by Boorman et al. (2007): here, the magnitude of paired-pulse TMS

effects measured between premotor and motor cortices correlated with FA variation

along pathways believed to mediate the stimulation pulses.



Chapter 4

Effects of category-specific costs

on neural systems for perceptual

decision-making

‘How many fingers, Winston?’

‘Four. I suppose there are four. I would see five if I could. I am trying

to see five.’

‘Which do you wish: to persuade me that you see five, or really to see

them?’

‘Really to see them.’

Nineteen Eighty-Four, George Orwell

4.1 Introduction

In Chapters 1 and 2 we saw how the loss function in Bayesian decision theory could

be theoretically applied at one of several stages of visuomotor processing. Signal

Detection Theory (SDT) makes it clear that decisions, including those involved in

simple sensory judgements, necessitate decision thresholds (Green & Swets, 1966).

These thresholds provide a means to splice up noisy sensory input and recover the

most likely causes in the environment of a signal. The relatively simple solution

provided by SDT is that a decision criterion is applied to the fixed, unchanging

sensory evidence on any given trial. Any changes to this criterion, for instance

brought about by the influences of prior expectation and reward, are said to occur

downstream from the accumulation of sensory evidence. However, while this theo-

retical dissociation between the compilation of evidence and incorporation of utility

is inherent to SDT (and several more complex models of perception), there is no a

66
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priori reason to expect that its neural implementation should neatly reflect such a

division of labour. Thus, the issue of where stimulus value exerts its effects within

the sensorimotor transform remains an unresolved empirical question (figure 1.2).

Evidence from psychophysics suggests that prospective costs have strong effects

on human perceptual decision criteria (Green & Swets, 1966; Whiteley & Sahani,

2008; Landy et al., 2007). Changes in value linked to particular regions of space

are thought to alter intermediate representations between sensory coding and motor

planning (Liston & Stone, 2008), and to modulate spatially selective regions of early

visual (Serences, 2008) and somatosensory (Pleger et al., 2008) cortex, potentially

via recruitment of fast attention-like mechanisms (Maunsell, 2004; Serences, 2008).

However, it is unclear whether costs associated with particular categorical outcomes,

such as deciding between the presence of a face or house in a noisy input, are similarly

mediated via category-sensitive visual areas (the left-most arrow in figure 1.2).

An alternative suggestion is that potential losses and gains exert their bias at a

decision stage, either in frontoparietal regions thought to accumulate category ev-

idence (Heekeren et al. 2004; Tosoni et al. 2008; Ho et al. 2009; Philiastides et al.

2006; Philiastides & Sajda 2007; Ploran et al. 2007; Thielscher & Pessoa 2007; Pleger

et al. 2006; but see McKeeff & Tong 2007), or via cortico-basal ganglia loops im-

portant for controlling the threshold for action (Bogacz et al., 2010; Lo & Wang,

2006). This suggestion would map onto the middle arrow in 1.2, and is supported by

recent single-unit recording evidence showing that inducing shifts in decision criteria

through changing a learnt category boundary (the speed of moving dots) modulates

neural firing in frontal eye fields (Ferrera et al., 2009).

To examine how prospective losses bias perceptual categorisation, I manipulated

the costs associated with visual categories (faces and houses) while obtaining brain

data using functional magnetic resonance imaging (fMRI)1. I predicted that if biases

are expressed through changes in classically defined object representations, I should

observe asymmetries in the activity of face- and house-selective regions located in

fusiform and parahippocampal gyri in inverse proportion to the loss associated with

a particular category. Alternatively, if losses solely bias evidence accumulation,

effects of category-specific cost may be restricted to fronto-parietal regions known

to compare evidence for perceptual decisions. A third possibility is that payoffs

are integrated at a post-decision stage, at the level of response coding (the right-

most arrow of 1.2). This possibility would predict that biases towards or away

from a particular category (here, face or house) are expressed at the level of the

very effector used to indicate a response to that category (here, the left or right

hand). By design, response hand was orthogonal to the perceptual category, allowing

us to specifically examine such effector-specific biases in activity induced by an

asymmetric loss function.

1This study was carried out in collaboration with Louise Whiteley, Oliver Hulme and Maneesh
Sahani. See page 14 for details of contributions.
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4.2 Methods

4.2.1 Subjects

Nineteen right-handed subjects participated in the psychophysics session (7 male;

19 – 44 years of age; mean age, 25.0 years). All had normal or corrected-to-normal

vision, and no history of psychological or neurological illness. Of these participants,

sixteen were scanned. One participant was excluded at this stage due to a change of

response strategy in the scanner that led them to disregard the face/house image,

leaving fifteen subjects (5 male; 19 – 27 years of age; mean age, 23.9 years) in the

analysis. The study was approved by the Institute of Neurology (University College

London) Research Ethics Committee.

Figure 4.1: Example Fourier phase transition from a single house image to a single
face image.

4.2.2 Stimuli

I used 10 neutral faces (5 male, 5 female) from the KDEF face set (Lundqvist et al.

1998) and 10 houses (photographed by the author). The stimuli were all cropped

to be of equal size and converted to grayscale. To create a stimulus continuum, I

adapted a technique used by Heekeren et al. (2004). Fourier transforms (FT) of each

image were computed, producing 20 magnitude and 20 phase matrices. The average

magnitude of all house and face stimuli was then stored. On each trial, a linear

combination of one randomly selected house and face phase matrix was computed,

plus a constant proportion (0.35) of a stored white noise matrix (figure 4.1). The

resulting phase matrix was then recombined with the average magnitude matrix of

the whole stimulus set using an inverse FT. Finally each image was normalised to

have average luminance equal to that of the screen background and constant RMS

contrast.

Face/house images were presented for 100ms on a grey background using Co-

gent 2000 (www.vislab.ucl.ac.uk/cogent.php) running in MATLAB. In the psy-

chophysics experiment, stimuli were presented using a 20.1 inch Dell 2001FP monitor
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running at a refresh rate of 60 Hz, situated in a dimly lit room. All images sub-

tended 4 degrees of visual angle at a viewing distance of 60cm. During the fMRI

experiment, stimuli were presented using an NEC LT157 LCD projector, viewed

by subjects via an adjustable mirror. At the beginning of each scanning session, a

custom-written Cogent routine adjusted stimulus size and position to match that

used in the psychophysics.

4.2.3 Psychophysics

The experiment was divided into two separate sessions. The first session involved

acquiring psychophysics data outside the scanner; the second session repeated the

same task during fMRI data acquisition. Participants were not informed of the image

continuum, but were instead asked to categorise each briefly presented stimulus

as either a noisy face or house. Participants found this task natural and were

unaware of any blend between the two image categories when debriefed. Before

introducing a monetary component to the task, each participant completed 540

trials of simple face/house discrimination using the same stimulus timings as in the

main experiment.

Face and house responses were made using left and right-hand key presses re-

spectively. There were 15 stimulus levels, spaced in equal steps from 100% house to

100% face phase, enabling us to plot out each individual’s psychometric function.

The point of subjective equality (PSE) for each subject was then used to define face

and house categories for the category-specific cost task.

The category-specific cost task involved further face/house discrimination under

asymmetric losses for incorrect responses. There were three levels of the cost factor:

face value (FV; -50p for an incorrect ‘house’ response, -10p for an incorrect ‘face’

response), neutral value (NV; -30p for an incorrect ‘house’ response, -30p for an

incorrect ‘face’ response) and house value (HV; -10p for an incorrect ‘house’ response,

-50p for an incorrect ‘face’ response). Before each block of trials, subjects were

given an endowment of £10, and informed that they would keep any money they

did not lose on the task. I used losses as losses are hypothesised to engender a

greater behavioural impact on decision criteria than gains (Kahneman & Tversky,

1979). Cumulative feedback screens displaying the current total were provided only

every 15 trials, to avoid incremental learning of decision strategy via trial-by-trial

adjustments (Whiteley & Sahani, 2008).

Image phase (15 levels) was randomised and orthogonal to the cost factor, which

was signalled to participants prior to the face/house stimulus on every trial (figure

4.2). The cost level changed every two trials. Subjects completed nine experimental

blocks of 140 trials each, spanning a single session lasting around 3 hours including

breaks. Note that when the penalty for answering ‘house’ incorrectly is greater, a

reasonable strategy is to answer ‘face’ more often when uncertain of the answer.
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4.3 fMRI experiment

The fMRI experiment took place within a week of the psychophysics, and employed

the same task with minor alterations. Subjects completed four runs of 105 trials.

The initial endowment for each block was £12, and feedback was given every 10

trials. Each trial began with a cost cue presented for 1820ms, followed by a vari-

able interval of 100ms – 3000ms during which a fixation cross was presented. The

face-house image was then presented for 100ms, and subjects were able to respond

immediately following the onset of the image. Following the offset of the face-house

image, a fixation cross was presented for a variable interval of 1625ms – 3625ms prior

to the start of the next trial. The buttons indicating face and house responses were

switched halfway through the session, so that each subject made face and house

decisions with both left and right button presses. To avoid switch costs, a short

training run was given with the new response mapping without any imaging data

being collected.

Stimuli were presented in a permuted randomised fashion, so that the full phase

range was covered every ∼ 7 trials. Similarly, the three cost levels were cycled every

6 trials (changing every two trials, as in the out-of-scanner psychophysics), while

keeping stimulus phase and cost orthogonal. This cycling over ∼ 30s was chosen to

match the filter properties of the canonical haemodynamic response function (HRF),

maximising power for estimating the cost- and stimulus-related parameters in our

event-related analysis.

4.3.1 fMRI acquisition

Images were acquired using a 3T Allegra scanner (Siemens, Erlangen, Germany).

BOLD-sensitive functional images were acquired using a gradient-echo EPI sequence

(48 transverse slices; TR, 3.12s; TE, 65ms; 3 × 3mm in-plane resolution; 2mm slice

thickness; 1mm gap between adjacent slices; z-shim, +0.6 mT/m; positive phase

encoding direction; slice tilt, -45 degrees) optimised for detecting changes in the

parahippocampal region and fusiform gyrus (Weiskopf et al., 2006). Four runs of

213 volumes were collected for each subject, followed by a T1-weighted anatomical

scan and local field maps.

4.3.2 Behavioural data analysis

Subjects’ psychophysical responses outside the scanner were modelled using a cumu-

lative normal psychometric function incorporating a random lapse term (Wichmann

& Hill, 2001), assuming binomial response counts (see Whiteley & Sahani 2008, for

full details of the mathematical model). The curve for each cost condition (indexed

by j) had three free parameters: the mean (µj) reflecting the PSE, the slope (ρj)

reflecting a subjects uncertainty over the whole stimulus range, and the lapse rate
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(εj) reflecting motor errors and lapses of attention. In equation 4.1 below, CPij

gives the probability of answering ‘face’ for each given stimulus phase combination,

xi, in the jth cost condition:

CPij = (1− εj).
1 + f(

√
π.ρj.(xi − uj))

2
+

1

2
εj

where f(z) =
2√
π

∫ z

0
e−t

2
dt (4.1)

I used gradient descent algorithms to find the parameter values that produced

optimal curve fits to the observed data. I additionally implemented a Bayesian

model comparison to determine whether sharing each of the parameters µ, ρ and

ε between cost conditions gave better fits to the data than allowing each to be

optimised separately.

To define decision difficulty for a given stimulus phase, I rectified each individ-

ual’s psychometric function under the neutral cost condition around the PSE and

normalised the result such that the range varied from 0 to 1 (equation 4.2).

Ui =
||0.5− CPi| − 0.5

0.5
(4.2)

Following Grinband et al. (2006), this procedure defines the PSE as having max-

imal decision difficulty and 100 % house/face phase as having minimal decision

difficulty. Note that this use of the term ‘difficulty’ refers to the difficulty of cate-

gorisation for a particular face-house phase composition, as opposed to the overall

uncertainty about the task expressed in the slope of the psychometric function across

the full phase axis. The latter might be expected to change with, for example, prac-

tice, stimulus duration, or lighting conditions.

The psychometric function fits to the in-scanner data were not a robust basis

for inference, given the lower number of trials per data point compared to the psy-

chophysics session. Consequently, I conducted further behavioural analysis using

the framework of signal detection theory (SDT; Green & Swets 1966). Stimuli were

classified as being faces or houses, depending on which side of the PSE they fell,

yielding a classic 2 × 2 stimulus-response table for each cost condition. This ap-

proach implicitly approximates the stimulus continuum as being drawn from two

overlapping Gaussian distributions, one for each category. This allowed us to com-

pute subject-specific measures of sensitivity (d′) and criterion (c) separately for each

cost condition. Despite being a cruder measure of behavioural performance than the

psychometric function fitting described above, this method provides a useful index

of whether value primarily affects sensory discrimination or decision/response crite-

ria (Macmillan & Creelman, 2005), and circumvents the problem of fewer trials in

the scanner leading to unreliable psychometric function fits.
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4.3.3 fMRI data preprocessing and analysis

Functional data were analysed using SPM5 as outlined in Chapter 3. The first five

volumes of each run were discarded to allow for T1 equilibration. Using the FieldMap

toolbox (Andersson et al., 2001), field maps were estimated from the phase difference

between the images acquired at the short and long TE. The EPI images were then

realigned and unwarped using the created field map, and slice-timing correction

applied to align each voxel’s timeseries to the acquisition time of the middle slice.

Each subject’s T1 image was segmented into grey matter, white matter and CSF,

and the segmentation parameters were used to warp the T1 image to the SPM

MNI template. The resulting normalisation parameters were then applied to the

functional data. Finally, the normalised images were spatially smoothed using an

isotropic 8mm full-width half-maximum Gaussian kernel.

fMRI timeseries were regressed onto a composite GLM containing delta (stick)

functions representing the onsets of the cost cue, stimulus, response and cumulative

feedback. These delta functions were convolved with the canonical HRF, and low-

frequency drifts were excluded with a high-pass filter (128s cutoff). Short-term

temporal autocorrelations were modeled using an AR(1) process. The stimulus

delta functions were separated into three regressors dependent on the cost condition

on each trial (face value – FV, neutral value – NV and house value – HV).

Each stimulus onset was parametrically modulated by two subject-specific func-

tions. The first was the choice probability (CP ) curve fitted to the out-of-scanner

psychophysics data in the neutral value condition. The second was the decision

difficulty function (U), again derived from the out-of-scanner psychophysics data,

and orthogonalised with respect to choice probability (see equations 4.1 and 4.2 for

mathematical definitions). The cumulative feedback stick function was also mod-

ulated with the amount of money lost on the previous 10 trials. To investigate

interactions of value and response hand, the response delta function was separated

by cost, decision and response hand, giving a 3 (cost; FV vs. NV vs. HV) × 2

(decision; face vs. house) × 2 (response; left vs right) factorial combination. Mo-

tion correction regressors estimated from the realignment procedure were entered as

covariates of no interest.

4.3.4 Statistical inference

Statistical significance was assessed using linear compounds of the model parame-

ters (regression coefficients of the trial-specific stimulus functions above), for each

subject. These contrast images were then entered into a second-level random effects

analysis using a one-sample t-test against zero to assess group-level significance.

Cluster-based statistics (Friston et al., 1994b) were used to define significant activa-

tions based both on their intensity and spatial extent. Clusters were defined using
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a height threshold of P < 0.001 and corrected for multiple comparisons across the

whole brain using family-wise error correction (FWE) and a threshold of P < 0.05.

Images are displayed at the cluster-defining threshold of P < 0.001 using MRI-

cron (http://www.sph.sc.edu/comd/rorden/mricron/). Small-volume correction

(SVC) was applied to category-specific responses by using anatomical masks for

fusiform and parahippocampal gyri as specified in the PickAtlas toolbox (Maldjian

et al., 2003). Percent signal change was extracted from clusters of interest for further

analysis by averaging over subjects and sessions using MarsBar (Brett et al., 2002).

Estimated time courses within clusters are plotted at seven TRs following stimu-

lus onset using a finite impulse response (FIR) model. I note that timecourses are

plotted for illustration purposes only, inference having first been carried out using

appropriate adjustments for multiple comparisons within SPM.

4.4 Results

4.4.1 Behavioural results

Subjects’ average point of subjective equality (PSE) in the face-house discrimination

pre-test was 53.9 ± 9.15 % face phase. Categorisation probability data from a

representative subject’s psychophysical results are shown in figure 4.2. To explore

the effects of asymmetric cost on choice probability, I fit psychometric functions to

the data with either shared or separate mean (µj), slope (ρj), and lapse rate (εj)

parameters for the three cost conditions (indexed by j). I then carried out Bayesian

model comparison, thereby revealing which of eight possible parameter structures

(single vs. shared mean × single vs. shared slope × single vs. shared lapse rate) best

accounted for the effects of manipulating asymmetric cost on choice probabilities.

All subjects consistently shifted their responses towards the category carrying

lower cost, as expected (figure 4.3). Paired-sample t-tests confirmed that average

shifts were significantly different from NV for both FV (t(18) = 5.95, P < 0.0001)

and HV trials (t(18) = 4.98, P < 0.001). There were also small, but significant,

differences in psychometric function slope between value conditions (white markers

in figure 4.3b; one-way ANOVA, significant effect of value: F(2,36) = 4.61, P < 0.05).

Consistent with these results, figure 4.3a shows that the model with both separate

means and slopes provided the best model of the data, despite an Occam’s razor-

like penalty for greater model complexity inherent in Bayesian model comparison.

However, the magnitude of the difference between the summed log model evidences

for shared and separate slopes is rather small, rendering definitive conclusions about

differences in slope between conditions difficult.

As fewer trials precluded fitting reliable psychometric curves to the choice data

in the scanner, I carried out a signal detection analysis (Green & Swets, 1966)

to characterise in-scanner behaviour, collapsing stimuli into either face or house
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Figure 4.2: Perceptual decision task and example behavioural data. (a) Experimen-
tal procedure. Subjects viewed a cost signal screen informing them of the potential
losses for an incorrect face or house categorisation at the start of each trial. They
were then asked to categorise an image randomly drawn from the face-house phase
continuum as a ‘face’ or ‘house’. Timings shown are for the fMRI experiment. (b)
Illustrative psychophysics data from one subject (LB). Crosses show choice probabil-
ities for each stimulus phase and cost combination; lines show psychometric curves fit
to the data.

categories based on each individual subject’s PSE. This analysis confirmed that

asymmetric cost led to deviations of the decision criterion in the predicted direction,

relative to the neutral value condition (c; FV, t(14) = 5.82, P < 0.0001; HV, t(14)

= 5.78, P < 0.0001) but did not change category discriminability (d′; F(2,28) =

0.41, P > 0.5; figure 4.3c).

Importantly, mean reaction times (RT) did not differ across value conditions

(psychophysics, F(2,36) = 0.70, P > 0.4; in-scanner, F(2,28) = 1.67, P > 0.2), suggest-

ing that any bias-related differences I find in brain activity are not driven by system-

atic differences in task difficulty (figure 4.3). RT was however significantly correlated

with decision difficulty (figure 4.4; psychophysics, mean r = 0.79 ± 0.092, N = 19;

in-scanner, mean r = 0.56± 0.21, n = 15).

4.4.2 fMRI results

4.4.2.1 Cost-selective regions

I first identified regions involved in processing the extra demand of integrating

asymmetric cost by computing the COST > NEUTRAL contrast (FV + HV >

2NV). A frontoparietal network (figure 4.5) was consistently active for both types of

asymmetric cost condition compared to neutral (P < 0.05, whole-brain corrected),

suggesting its involvement in the biasing of perceptual decisions as a function of

category-specific cost. In addition to frontoparietal areas, I also found increased

activity in a cluster spanning the subthalamic nucleus (STN) region, thalamus and

caudate nucleus (P < 0.05, whole-brain corrected).
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Figure 4.3: Behavioural results. (a) Bayesian model comparison was used to show
that the best model for the psychophysics data was one with separate mean and
slope parameters for each cost condition. The chart shows Laplace approximation to
the total log marginal likelihood across subjects and across shared and separate error
parameters (it seems possible that attentional lapses would vary with value condition,
which does not bear on the hypothesis of interest) – a smaller negative value indicates a
better model. Note that each unit difference in log likelihood corresponds to an e-fold
ratio of model probabilities. (b, c) Average parameters of the psychometric function
fits to the psychophysics data, N = 19 (b), and a corresponding signal detection
analysis of the in-scanner data, N = 15 (c). Bars represent the point of subjective
equality (PSE)/criterion in FV, NV and HV conditions. White markers indicate the
average slope/d′ parameter in each value condition for comparison. (d) Mean reaction
times (RT) averaged across changes in stimulus information for each cost condition.
In all panels, error bars denote SEM; two asterisks (**), P < 0.005; one asterisk (*),
P < 0.05 in comparison with NV.
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Figure 4.4: Mean reaction times from the psychophysics experiment as a function
of cost condition and stimulus phase.

Figure 4.5: (a) Axial (z = 54) and saggital (x = -36 and -12) sections showing
brain activations reflecting the main effect of asymmetric cost [(FV + HV) > 2NV],
averaged over category. Shown are significant clusters in left ventrolateral prefrontal
cortex (vlPFC), intraparietal sulcus (IPS), bilateral frontal eye fields (FEF) and sub-
cortical regions (STN – subthalamic nucleus region; Th – thalamus; see also table
4.1). Labelled activations are significant at P < 0.05, cluster FWE whole-brain cor-
rected. (b) Haemodynamic response time courses aligned to stimulus onset for the
three different cost conditions, plotted for the significant cluster in vlPFC.
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Label Voxels Z-score Cluster-
FWE
P -value

MNI coordinate Laterality

IFG (p. opercu-
laris)

106 4.92 < 0.001 -36 3 24 L

FEF 36 4.56 0.004 -27 3 54 L
Caudate / thala-
mus / STN

93 4.28 < 0.001 -15 -18 0 L

FEF 42 4.10 0.002 26 -9 54 R
IPS 49 4.26 0.001 -36 -39 45 L
IFG (p. triangu-
laris)

31 3.94 0.009 -45 21 0 L

Insula/Putamen 33 3.90 0.007 36 15 -6 R
post. MTG 43 4.04 0.001 -36 -72 21 L

Table 4.1: COST > NEUTRAL activations. Clusters were defined using a threshold
of P < 0.001, uncorrected.

4.4.2.2 Stimulus-selective regions

To test our first hypothesis, that category-specific costs directly affect responses in

the ventral visual stream, I computed the signal change for each cost condition in

each stimulus-selective ROI identified above. One-way ANOVAs (FV vs. NV vs.

HV) revealed effects of cost on right PHG (F(2,28) = 4.80, P = 0.002), but not left

PHG or right FG (F(2,28) < 2.5, P > 0.1). Further investigation of the pattern of

differences in right PHG revealed increases in the HV condition compared to NV

(t(14) = 3.09, P = 0.008), a trend for increases in the FV condition (t(14) = 1.77,

P = 0.10), but no evidence for differences between the category-specific FV and HV

conditions (t(14) = 1.26, P = 0.23). A similar trend for non-specific increases under

asymmetric cost conditions can be seen in all three ventral visual areas (figure 4.6c

and d), and an omnibus ANOVA in which region was included as a separate factor

indicated an overall significant effect of cost (F(2,28) = 5.95, P = 0.007). Together,

these analyses indicate that asymmetric cost has a general driving effect on ventral

stimulus-selective regions, but in a manner that does not appear to discriminate

between stimulus categories.

I also considered the possibility that any biasing effects of cost in extrastriate

visual areas may impact on the face- or house-selectivity of these regions, rather

than a tonic level of activity. To test this I computed beta estimates for the

choice probability-modulated regressor at peak object-selective voxels for each dif-

ferent cost condition. As expected, the activity of these regions showed significant

correlations with either face or house stimulus information in each cost condition

(seen as consistently above-zero parameter estimates in figure 4.7); however, one-

way cost ANOVAs showed no significant influence of value on this selectivity (all

F(2,28) < 0.95, P > 0.40).
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Figure 4.6: Effects of cagetory-specific costs on stimulus-selective brain activity. (a)
Coronal (y = -48) section showing parametric effects of the probability an image was
classified as a face in right fusiform gyrus (FG; 39, -48, -24; Z-score = 4.07; P < 0.05,
small-volume corrected). (b) Coronal (y = -42) section showing parametric effects of
the probability an image was classified as a house in bilateral parahippocampal gyrus
(PHG; left: -21, -42, -15; Z-score = 3.68; right: 33, -42, -9; Z-score = 5.26; both
P < 0.05, small-volume corrected). (c, d) Percent signal change as a function of value
condition in stimulus-selective ROIs defined from clusters shown in (a) and (b).

Figure 4.7: Parameter estimates for the correlation with face or house choice prob-
ability (CP ) in neutral and category-specific cost trials, plotted at the peak voxel of
each object-selective ROI. Error bars denote s.e.m.
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4.4.2.3 Category-specific effects of cost

The account presented thus far indicates that category-selective stimulus informa-

tion is to some degree represented independently of category-specific biases induced

by changes in the payoff matrix. In other words, payoff asymmetries lead to only

general, not category-specific, increases in the signal in voxels sensitive to stimulus

(face or house) information. However, the mechanism by which asymmetric value

information brings about a change in perceptual decision (such as a bias towards

responding face) remains unclear. To address this question, I computed the category-

specific value contrasts (FV > HV; HV > FV). A cluster in left parahippocampal

gyrus (-33, -36, -15; P < 0.05, SVC) responded specifically to increases in house

value (decrease in cost for responding house), lateral and anterior to the stimulus-

selective cluster I characterised previously (figure 4.8a). No significant clusters were

evident in the opposite (FV > HV) contrast even at a liberal (P < 0.01) defining

threshold. Together, these findings suggest that category-specific costs exert effects

on the ventral visual pathway (at least for the bias towards responding house).

I noted that while the direction of decision criterion shifts under asymmetric cost

was consistent across subjects (figure 4.3), individual differences in the size of this

shift were evident in the behavioural data (figure 4.8b). To explore whether subjects

who exhibit greater decision criterion shifts also show greater activity within regions

that are the putative sources or targets of these shifts, I regressed the category-

specific value contrasts (FV > HV; HV > FV) against between-subjects covariates

encoding the amount of behavioural bias in the relevant asymmmetric value con-

dition (FV criterion shift; HV criterion shift). Subjects who displayed greater cri-

terion shifts in the HV condition tended to activate the anterior cingulate cortex

(ACC; 6, 36, 30) more than subjects who shifted to a lesser degree (figure 4.8c, d;

P < 0.05, whole-brain corrected). Again, as for the simple main effect of FV > HV,

no significant correlations were found with individual differences in the FV criterion

(P > 0.001, uncorrected).

4.4.2.4 Decision difficulty

To look for brain regions responsive to decision difficulty, I regressed a parameter

which essentially measures how close to chance the subject is in deciding whether

the stimulus is a face or a house (see equation 4.2) onto the fMRI signal at the

time of choice. Dorsal medial frontal (paracingulate) cortex (dMFC; 6, 12, 51)

and right anterior insula (42, 24, -3) showed positive correlations with decision

difficulty (both P < 0.05, whole-brain corrected; figure 4.9). I next established

whether this difficulty-related BOLD signal was independent or overlapping with

the frontoparietal regions found to be active under conditions of asymmetric cost.

By exclusively masking the COST > NEUTRAL contrast for regions correlating

with decision difficulty at a liberal (P < 0.05, uncorrected) threshold, I found that
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Figure 4.8: (a) Axial (z = -15) showing the region in left parahippocampal gyrus
(red) active during decreased cost (increased value) for houses (HV > FV; -33, -36,
-15; Z-score = 3.84; P < 0.05, small-volume corrected). Shown in blue are clusters
selective for house stimulus information (figure 4.6b) for comparison. (b) Intersub-
ject variation in decision criteria, with subjects ordered by their decision criterion in
the NV condition. The arrow shows the difference (extent of behavioural shift un-
der HV) used as a covariate for the relevant contrast testing for HV-specific effects
of asymmetric value shown in (a). (c) Saggital (y = 6) and axial (z = 30) sections
showing a region in the anterior cingulate (ACC) that shows greater activity in sub-
jects who show greater behavioural shifts in the HV condition (6, 36, 30; Z-score
= 4.29; P < 0.05, whole-brain corrected). (d) Averaged HV > FV beta within the
ACC cluster shown in (c) plotted against the criterion shift in the HV condition,
across subjects. Inference was carried out using appropriate corrections for multi-
ple comparisons in the SPM framework; this plot is simply provided for illustration
purposes.
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left vlPFC, left caudate/thalamus/STN and bilateral FEF were specifically active

under conditions of asymmetric cost, independent of changes in decision difficulty

(table 4.2). Conversely, dMFC activity was independent of changes in category

value, indicating a partial dissociation in the brain between regions encoding changes

in decision difficulty and prospective costs during perceptual categorisation. The

negative effect of the decision difficulty regressor (testing for greater activity in

‘easy’, certain decisions) was seen in ventromedial prefrontal cortex (vmPFC; 9, 33,

-6; P < 0.05, whole-brain corrected; figure 4.9).

Figure 4.9: (a) Saggital section (y = -2) showing positive (red) and negative (blue)
correlations with a regressor indexing decision difficulty (see equation 4.2). Dorsome-
dial frontal cortex (dMFC; 6, 12, 51; Z-score = 3.70; P < 0.05, whole-brain corrected)
and insula (not shown; 42, 24, -3; Z-score = 4.11; P < 0.05, whole-brain corrected)
showed positive correlations with difficulty. A cluster in ventromedial prefrontal cor-
tex (vmPFC) showed increased activity for easier decisions (6, 36, 30; Z-score = 4.20;
P < 0.05, whole-brain corrected). (b) Haemodynamic response timecourses for the
three different cost conditions, plotted for the significant cluster in dMFC. While
showing strong correlations with the categorical difficulty regressor, this region was
insensitive to changes in category value (cf. figure 4.5).

4.4.2.5 Interaction of cost with motor planning

The previous analyses identified brain regions that responded preferentially to a

particular direction of bias (towards responding ‘house’). I next asked whether any

bias effects are expressed at the level of the motor system, given that response

hand (left or right) was orthogonal to decision (face or house). Interactions of cost

asymmetry with response hand were computed by coding each trial as to whether

the left or right hand was assigned to a high or low cost response (face or house),

and examining the interaction of cost condition with response hand. No effects were

found (P > 0.001, uncorrected), suggesting that the biasing effects of asymmetric

value occur upstream of effector-specific response planning.
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Contrast Voxels Z-score Cluster-
FWE
P -value

MNI co-
ordinate

Laterality Label

[(FV+HV) >
NV] ex.
masked by U

35 4.56 0.013 -27 -3 54 L FEF
93 4.28 < 0.001 15 -18 0 L Caudate /

thalamus /
STN

42 4.10 < 0.001 27 -9 54 R FEF
43 4.04 < 0.001 -36 -72

21
L post.

MTG
29 3.90 0.035 36 15 -6 R Insula

U ex.masked
by [(FV +
HV) > NV]

35 3.54 0.027 9 12 48 R/L dMFC

Table 4.2: Activations following exclusive masking for either cost- or difficulty-
related activity.

4.5 Discussion

Here I investigated the brain mechanisms that integrate prospective costs and sen-

sory evidence during decisions under uncertainty. The behavioural manipulation

systematically biased the perception of a noisy image using asymmetric costs, lead-

ing to shifts in decision criteria. These shifts functioned to reduce monetary losses,

by biasing decisions toward the category with lower cost when the participant was

unsure of the answer. Using fMRI, I then asked whether category-specific shifts

were reflected by changes in frontoparietal areas known to accumulate evidence

leading to perceptual categorisation (e.g. Heekeren et al. 2004), in ventral visual re-

gions known to encode category-specific information about faces and houses, and/or

through changes in effector-specific mechanisms. Our data best fit the former, ‘de-

cision stage’ hypothesis. The requirement to integrate asymmetric cost information

into perceptual decisions robustly activated a frontoparietal network, despite con-

ditions being closely matched for expected value and reaction time. In addition, a

cluster in the thalamus/caudate was active under asymmetric cost, consistent with

subcortical loops being important for the setting of decision criteria (Lo & Wang,

2006; Simen et al., 2006). A specific effect on ventral visual areas (parahippocam-

pal gyrus) was found under decreasing cost for houses, although this effect was

anatomically separate to that shown to be sensitive to bottom-up stimulus informa-

tion. Finally, subjects who showed greater shifts in decision criteria towards houses

demonstrated greater activation of the anterior cingulate cortex (ACC), a region

thought to be pivotal in the adjustment of decision strategy (Behrens et al., 2007;

Botvinick et al., 2001).



Chapter 4. Category-specific costs and decision criteria 83

4.5.1 Sources of category-specific bias

The dorsal frontoparietal network active under asymmetric cost is similar to that

commonly activated in studies of transient allocation of attention (Corbetta et al.,

2008; Corbetta & Shulman, 2002; Yantis et al., 2002), and has been implicated in the

modulation of early visual cortical activity by rewards tied to particular locations

in visual space (Serences, 2008). It is plausible that changes in category-specific

costs co-opt a similar network. Low-level changes in arousal or task difficulty are

unlikely to be explanations for this widespread increased activity, as RTs and poten-

tial gains/losses were matched across conditions. Instead, our findings indicate that

frontoparietal (ventrolateral prefrontal cortex, insula, intraparietal sulcus, frontal

eye fields) and subcortical (anterior thalamus/STN) regions are recruited when an

asymmetric loss function affects the perceptual decision. Bilateral activation was

found at the junction of the precentral and superior frontal sulci, consistent with the

location of the frontal eye fields (FEF; Lobel et al. 2001), which have been shown to

encode shifts in decision criteria (Ferrera et al., 2009). In addition, activation in ven-

trolateral prefrontal regions including insular cortex is consistent with involvement

both in the accumulation of sensory evidence (Romo et al., 2004; Ho et al., 2009)

and the incorporation of gains and losses in decision-making (Leon & Shadlen, 1999;

Watanabe & Sakagami, 2007). Indeed, the network outlined above may be recruited

more generally when shifts in decision criteria are induced by manipulations other

than asymmetric payoffs. This view is supported by previous findings of modulation

of subcomponents of this network when decision criteria are shifted through changes

in category boundary – specifically, BOLD signal in anterior thalamus/caudate and

insula/vlPFC (Grinband et al., 2006; Li et al., 2009) and single-unit activity in FEF

(Ferrera et al., 2009).

The present analyses cannot pin down the source of the bias towards houses and

faces, as effects of category-specific bias were not observed in the network discussed

above. However, it is possible that local neural subpopulations within these areas

encode biases towards face and house categories. This suggestion is supported by

a recent study by Rorie et al. (2010) in monkeys, demonstrating that asymmetric

payoffs in a perceptual decision task bias the initial firing rate of individual neurons

in the intraparietal sulcus coding for a saccadic response to one of two particular tar-

gets. Similarly, using fMRI, distributed patterns in the inferior frontal gyrus/insula

have been found to discriminate the direction of criterion shifts in a visual categori-

sation task (Li et al., 2009). Our finding that the ACC tracks individual differences

in the extent of a signed criterion shift is also consistent with category-specific payoff

information being represented in frontal cortex.
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4.5.2 Differential effects of house and face cost

When the signal change in stimulus-selective ROIs was calculated, general but not

selective effects of asymmetric cost were observed. In contrast, a parahippocampal

region anterior to the stimulus-selective areas was significantly more active when

houses rather than faces were more valuable. Due to the potential impact of smooth-

ing and thresholding procedures, I am cautious in attributing separate locations to

the stimulus- and cost-sensitive regions of the PHG. However, I note evidence sug-

gesting local separation of task- and stimulus-driven regions using neural stimulation

coupled with high resolution imaging (Ekstrom et al., 2008); similarly, differences

between stimulus- and task-driven localisations have been reported in the fusiform

gyrus during perceptual decision making (Philiastides & Sajda, 2007).

Category-specific biases were seen in ventral visual regions for increases in house,

but not face, value. Furthermore, across subjects, a correlation with decision criteria

was seen in the ACC for bias towards houses, but not faces. While I am cautious

about over-interpreting null results, I note that previous studies examining atten-

tional and decisional biases towards faces and houses have also found asymmetric

effects of the two categories. Specifically, Summerfield et al. (2006a) found that mis-

taken categorisations of houses as faces were accompanied by increases in fusiform

gyrus activity, but that the opposite mistake did not increase PHG responses. In

contrast, Serences et al. (2004) found that shifts in object-based attention towards

houses recruited parietal and frontal regions to a greater degree than shifts towards

faces. Both these findings and the asymmetry in the results of the present study can

be reconciled by assuming that subjects have a dominant prior to respond ‘face’.

This hypothesis is supported by informal debriefing – some subjects in our study

commented that they performed the task by responding house whenever evidence

for a face was scant (see also Summerfield et al. 2006b). In the case of the present

data, increases in value for houses would lead to top-down shifts in PHG activ-

ity to overcome this implicit prior towards responding face, but the converse may

not be necessary. Whether visual phenomenology also changes under such shifts

in decision criteria is an open question, one that could potentially be addressed by

eliciting detailed reports from subjects under biased and unbiased conditions (Jack

& Roepstorff, 2002).

Finally, one limitation of our results is that I was unable to specify subject-

specific face- and house-sensitive ROIs. Parametric correlations with stimulus phase

were not robust at a single-subject level, precluding the identification of individual

ROIs in the ventral visual cortex and potentially obscuring inter-individual variabil-

ity in regions of peak stimulus sensitivity (e.g. Spiridon et al. 2006). However, I

note that if this analysis was underpowered to detect inter-individual differences in

peak locations of FFA/PPA, this limitation applies equally to the category-specific

contrasts (FV > HV; HV > FV). The lack of robust ventral visual activity in these
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contrasts, despite detection of parametric correlations with face/house information,

supports a view that asymmetric costs modulate decision-making downstream of

extrastriate visual regions.

4.5.3 Responses to decision difficulty

Consistent with previous reports, I found that activity in dorsal medial frontal

(paracingulate) cortex (dMFC) and anterior insula correlates with decision difficulty

(Grinband et al., 2006; Preuschoff et al., 2008; Philiastides & Sajda, 2007). There

has been recent debate about the functional role of the medial frontal/paracingulate

cortex in perceptual decisions (Heekeren et al., 2008). Here I report preliminary

evidence for segregation of networks responding to changes in decision difficulty and

category value. Dorsal paracingulate activity correlated with increases in decision

difficulty, independent of changes in value; conversely, the frontal eye fields and cau-

date/thalamus/STN were specifically active during decisions requiring integration

of loss function information. As decision difficulty was correlated with reaction time

(RT), I was unable to dissociate the contributions of decision time to these acti-

vations (cf. Grinband et al. 2006, 2008). Interestingly however, the dMFC region

lies just dorsal to the ACC, which responded to the degree of decision criterion

shift across individuals. Given that such shifts are only required when subjects

are uncertain about the sensory data (Maddox & Bohil, 2003), the close anatom-

ical relationship between these regions may be optimal for integration of decision

uncertainty during shifts in decision criteria.

Conversely, the opposite contrast (examining brain activity that increases for

‘easy’, certain choices), revealed a cluster in ventromedial prefrontal cortex. This

finding supports recent evidence that the ventromedial prefrontal cortex may signal

a perceptual ‘match’ between observed and predicted stimulus information (Sum-

merfield & Koechlin, 2008), and accords with suggestions that perceptual accuracy

itself may act as a reinforcer (Bohil & Maddox, 2001). However, in the present ex-

periment this signal could also be related to the ongoing assessment of the expected

value of the current decision (Boorman et al., 2009; Gottfried et al., 2003), as both

perceptual accuracy and potential rewards are highly correlated on any given trial.

4.5.4 Summary

To conclude, the findings in this chapter extend previous reports that costs at-

tributed to perceptual decision outcomes have consistent effects on stimulus cate-

gorisation, with subjects acting to minimise prospective losses. I show that this effect

of cost on perceptual decisions is robustly associated with BOLD signal increases in

a frontoparietal network, in keeping with the hypothesis that loss functions affect

a decision stage of processing. When the cost for responding ‘house’ decreased, I
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additionally observed selective activation within the parahippocampal gyrus. Across

subjects, greater shifts in decision criteria were associated with greater activation of

the medial frontal cortex (ACC). These findings are consistent with the hypothesis

that asymmetric costs alter an intermediate representation between perception and

action, albeit with possible recurrent effects upon extrastriate cortex.



Chapter 5

Effects of an inaction default on

perceptual decision criteria

To do nothing is in every man’s power.

Samuel Johnson (1709-1784)

5.1 Introduction

In Chapter 4 we saw that activity in inferior frontal and parietal cortex, and subcor-

tical regions including thalamus, caudate and STN, was increased when an asym-

metric loss function is incorporated into a perceptual decision. This result suggests

that the loss function adjusts a decision stage, as opposed to early coding of category

beliefs (evidenced by weak modulation of extrastriate visual activity). However, I

found no modulation of category-specific biases in the active fronto-basal ganglia

network. One reasonable explanation for this null result is that the experiment in

Chapter 4 was optimised to investigate the effects of asymmetric bias on category

coding, rather than on response coding. In other words, because the response in

both cases was a single button press, we might expect category-specific biases in a

cortico-basal ganglia network to be irresolvable with the available spatial resolution

of fMRI.

In the present study I take an alternative tack to address this question. I set

up a default response option, requiring no action on the part of the subject. On

each trial, this manipulation associates half the decision axis with inaction (figure

5.1). This allows investigation of the neural signature for crossing a threshold for

action. Furthermore, I expect the default to itself act as an asymmetric prior:

under equivocal sensory input, the default should be favoured. I can thus set up

a 2 × 2 design crossing decision difficulty with whether the default is rejected or

accepted. As rejecting the default requires action, I expected a markedly different

neural signature in cortico-basal ganglia loops for rejecting compared to accepting

87
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the default. I asked participants to make sensory judgements in the context of

a tennis ‘line-judgement’ game (figure 5.2) while undergoing functional magnetic

resonance imaging (fMRI). This game was selected on the basis of its natural default

option – line judges remain silent to indicate that the ball was in, but make an overt

response by shouting ‘out’ to reject the default. Further, such a task involves graded

perceptual difficulty (Mather, 2008). To examine brain mechanisms for overcoming

this bias, I therefore implemented a simple factorial design by crossing high and low

decision difficulty with rejection or acceptance of the default.

The neural mechanisms involved in adjusting thresholds for action in the face

of difficulty are unknown. Decision difficulty activates the dMFC (Botvinick et al.

2001; Heekeren et al. 2008; see also Chapter 4); and the dMFC is strongly intercon-

nected with the lateral frontal cortex (Koski & Paus, 2000), which may implement

behavioural adjustments in control (Buch et al., 2010; Kouneiher et al., 2009). In

addition, conflict is thought to in part recruit STN (Frank, 2006), which is known to

play a key role in response inhibition (Aron & Poldrack, 2006; Aron et al., 2007; Li

et al., 2008), and is strongly interconnected with medial and lateral frontal cortex

via an anatomical hyperdirect pathway (Aron et al., 2007; Nambu et al., 2000). Fur-

thermore, despite the beneficial effects of deep-brain stimulation (DBS) of the STN

in Parkinsons disease (Bergman et al., 1990; Limousin & Martinez-Torres, 2008;

Gradinaru et al., 2009), DBS can lead to impairments in cognitive control (Alberts

et al., 2008; Ballanger et al., 2009; Hershey et al., 2004; Frank et al., 2007), suggest-

ing a core function of the STN is to modulate cortico-basal ganglia circuits involved

in decision making (Frank, 2006; Gurney et al., 2001).

An alternative perspective on this prediction can be drawn from behavioural

economics. When faced with a complex decision people tend to accept the status

quo, as reflected in the old adage ‘When in doubt, do nothing’. Indeed, across a

range of everyday decisions, such as whether to move house or trade in your car, or

even whether to flip the TV channel, there is a considerable tendency to maintain

the status quo, and refrain from acting (Samuelson & Zeckhauser, 1988). One factor

driving this status quo bias is the difficulty of the decision process. In supermarkets,

for example, there is often an overwhelming choice of different brands for the same

product, and consumers may leave the store empty handed because of a difficulty-

induced bias towards inaction (Anderson, 2003; Iyengar & Lepper, 2000).

As the previous paragraph indicates, the default bias can be shaped by a number

of complex and interacting factors including economic costs involved in making the

transition (Johnson & Goldstein, 2003; Samuelson & Zeckhauser, 1988), aversion

to losing what you presently own (DeMartino et al., 2009; Kahneman & Tversky,

1979), and the potential for regretting a change (Anderson, 2003). Here I restrict

investigation to the ubiquitous factor of decision difficulty, minimising the influ-

ence of other, potentially confounding psychological variables. In my simple visual
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detection task, the choice set size remains constant (two-alternative forced-choice)

and outcomes are omitted. This simple factorial design allows investigation of the

effect of impact of an asymmetric loss function – the default – independently of the

difficulty of the decision.
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Figure 5.1: Signal detection theory schematic of an action-asymmetric decision. On
each trial, either the area to the left or right of the criterion is mapped to inaction
(here, it is the noise response).

5.2 Methods

5.2.1 Subjects

Seventeen healthy right-handed subjects who provided informed consent took part

in the study. All had normal or corrected-to-normal vision, and no history of psycho-

logical or neurological illness. One participant was excluded due to poor behavioural

performance (33 % errors on low difficulty trials). The study was approved by the

Institute of Neurology (University College London) Research Ethics Committee.

Participants received a fixed reimbursement plus a small bonus payment calculated

from their best-scoring block of trials.

5.2.2 Task and procedure

Stimuli were presented on a grey background using Cogent 2000 (www.vislab.ucl.

ac.uk/cogent.php) running in MATLAB. The court consisted of two white tram-

lines presented either side of fixation, the outer edge of which was viewed at an

eccentricity of 12.4 degrees of visual angle (figure 5.2). The ball was a filled yellow

circle subtending 3.7 degrees. Stimuli were presented using an NEC LT157 LCD
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projector running at a refresh rate of 60 Hz, viewed by subjects via an adjustable

mirror.

Each trial began with a central fixation cross flanked by two longitudinal white

tram lines, presented for a variable interval (750-3000ms) in peripheral vision. Par-

ticipants were asked to maintain fixation, and instructed that not doing so would

compromise their performance on the line judgment task. The target ball was pre-

sented at either tramline for 66ms, either overlapping the line (in) or outside the

line (out). The difficulty of the decision was manipulated by altering the distance

of the stimulus from the outside edge of the tramline. An inter-stimulus interval of

750ms followed the offset of the target.

Responses were made using an optical keypad and consisted of a go/nogo deci-

sion. Specifically, during each run of trials, participants were required to depress one

key with the index finger of their right hand, designated as the default. Response

options (in/out) were presented for 2000ms. One of these options was defined as

the default by a surrounding black square. Participants continued to depress the

default key to select the default option (accept); this key was released and a sec-

ond key pressed to select the alternative (reject). On half of trials the target offset

was defined as low difficulty and on the other half high difficulty by drawing the

offsets from two separate Gaussian distributions defined on the basis of pilot data.

The random draw of offsets was further constrained to produce half ‘out’ and half

‘in’ ball positions. The default option was balanced over in/out and over low/high

difficulty trials, giving a fully factorial design.

Each participant was given both written and verbal task instructions, before

being familiarised with the task format by a short practice block (16 trials). The

task involved 3 runs of 80 trials, with a short break between runs. Participants

were informed that they would earn 20p per correct decision and lose 10p for every

incorrect decision. This asymmetry in wins and losses was designed to ameliorate

the effects of loss aversion on the status quo bias, given previous findings of losses

looming around twice as large as gains (Tversky & Kahneman, 1991). Feedback,

in terms of cumulative money earned and lost, was given every 10 trials; trial-by-

trial feedback was not given. At the end of the task participants received a bonus

payment equivalent to their earnings in their highest scoring run.

5.2.3 Behavioural analysis

Behavioural responses were classified according to whether the trial led to a rejec-

tion or acceptance of the default, and whether the trial was high or low difficulty.

An inaction bias was assessed by comparing the proportion of trials leading to an

acceptance response on high and low difficulty trials, using a two-tailed paired t-

test. Each participant’s decision criteria (c) and sensitivity (d′) were estimated from

the data using signal detection theory (SDT; see Chapter 3), where the hit rate
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Figure 5.2: Participants played a ‘tennis line-judgment’ game in which the default
was systematically manipulated in a balanced factorial design. At the beginning of
each trial, participants were asked to depress the ‘default’ key and fixate on the cross
between two tramlines. They then saw a ball land on the court, before being asked to
make a decision on whether it was in (overlapping the line) or out. This decision was
indicated by continuing to depress the key to accept the default, or releasing it and
switching to the opposite key to reject. Uncertain and certain trials were randomly
interleaved within a block, and balanced across whether the correct response was to
accept or reject the default.

(H) was defined as p(‘in’|ball = in) and false alarm rate (F ) as p(‘in’|ball = out).

SDT parameters and error rates were analysed using repeated-measures analysis of

variance (ANOVA).

5.2.4 fMRI analysis

Functional data were analysed using SPM5 in the manner reported in Chapter 3.

The first five volumes of each run were discarded to allow for T1 equilibration.

EPI images were realigned and unwarped using field maps (Andersson et al., 2001),

and slice-timing correction applied. Each subject’s T1 image was segmented into

grey matter, white matter and CSF, and the segmentation parameters were used

to warp the T1 image to the SPM MNI template. These normalisation parameters

were then applied to the functional data. For one subject, normalisation parameters

were estimated from the SPM EPI template due to the unavailability of a T1 image.

Finally, the normalised images were spatially smoothed using an isotropic 8mm

full-width half-maximum Gaussian kernel.

fMRI timeseries were regressed onto a composite GLM containing delta (stick)

functions representing the onsets of the lines, ball, choice screen, button press (if
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any), response screen and cumulative feedback. These delta functions were con-

volved with the canonical HRF, and low-frequency drifts were excluded with a

high-pass filter (128s cutoff). Short-term temporal autocorrelations were mod-

eled using an AR(1) process. Stimulus delta functions were separated into

two regressors depending on the perceptual uncertainty on each trial (high/low).

Choice screen delta functions were separated into six regressors dependent on

whether the trial was high/low difficulty, whether it led to an accept/reject re-

sponse, and, on high difficulty trials, whether this response was correct or incor-

rect (reject high correct, reject high incorrect, reject low, accept high correct, ac-

cept high incorrect, accept low). Response accuracy (correct/incorrect) was not

modeled as a separate factor on low difficulty trials given the relative rarity of

incorrect responses (4.9±1.0%, s.e.m.). Additionally, the reject stick functions were

parametrically modulated by the reaction time on each trial, and the cumulative

feedback stick function was modulated by the amount of money won on the previ-

ous 10 trials. Motion correction regressors estimated from the realignment procedure

were entered as covariates of no interest.

Statistical significance was assessed using linear compounds of the regressors in

the GLM, generating statistical parametric maps (SPM) of T -values across the brain

for each subject and contrast of interest. These contrast images were then entered

into a second-level random effects analysis using a one-sample t-test against zero.

Our critical contrast of interest (the interaction of default rejection and difficulty,

collapsing across correct/incorrect) was computed as follows: [reject high correct

= +0.5; reject high incorrect = +0.5; reject low = −1; accept high correct = −0.5;

accept high incorrect = −0.5; accept low = +1].

Cluster-based statistics were used to define significant activations both on their

intensity and spatial extent (Friston et al., 1994b). Clusters were defined using a

threshold of P < 0.005 and corrected for multiple comparisons within a given search

volume using family-wise error correction (FWE) and a threshold of P < 0.05.

Small volume correction was applied to a priori regions of interest (ROIs) in the

STN and dmPFC. Right and left STN ROIs were defined as 10 x 10 x 10 mm

boxes centred on ±10,−15,−5, following Aron & Poldrack (2006); the dmPFC ROI

was defined as a 12mm sphere centred on 0, 27, 30. This volume is representative

of coordinates reported in a recent meta-analysis of conflict-related activity in the

dmPFC (Ridderinkhof et al., 2004). In order to quantify the interaction effect,

percent signal change within each STN ROI was extracted for each condition and

averaged across subjects and sessions using MarsBar (Brett et al. 2002; http://

marsbar.sourceforge.net/).
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5.3 Results

5.3.1 Behaviour

In line with theoretical predictions, there was a greater tendency to accept the

default on high compared to low difficulty trials (t(15) = 2.51, P < 0.05; figure 5.3).

Post-hoc paired t-tests confirmed that this interaction was driven by a significant

increase in error rates when the default was accepted on high difficulty trials relative

to when it was rejected (t(15) = 2.45, P < 0.05), with no differences in low difficulty

default acceptance and rejection errors (t(15) = 0.58, P = 0.57). These behavioural

effects were replicated in a separate experiment (N=18) outside the scanner (figure

5.3).

Judgment accuracy on low difficulty trials was 95.1 ± 1.0 % (s.e.m.). By design,

accuracy on high difficulty trials was reliably lower (t(15) = 24.3, P < 0.0001), but

remained significantly above chance (58.0 ± 1.3 % s.e.m., one-sample t-test against

50%, t(15) = 5.71, P < 0.001). As expected, rejection response times (RTs) were

greater on high compared to low difficulty trials (t(15) = 5.28, P < 0.001). The

distribution of RTs in the two difficulty conditions is shown in figure 5.4.

We next computed signal detection theory (SDT) measures from our data (see

Chapter 3). This analysis confirmed shifts in criteria (c) as a function of default

position (in/out) on high difficulty trials (cin = 0.31, cout = −0.48) but not low

difficulty trials (cin = 0.049, cout = 0.0052), leading to a significant interaction of

default and difficulty level (F(1,15) = 9.84, P < 0.01). Changes in sensitivity (d′)

due to difficulty level did not interact with default position (in/out; F(1,15) < 1, P =

0.69).

Figure 5.3: Inaction bias was calculated as the percentage of default acceptance
greater than 50% on both high and low difficulty trials. A significant bias towards
accepting the default was seen on high, but not low, difficulty trials. Left panel,
fMRI experiment (N=16); right panel, behavioural replication (N=18). Error bars
reflect ± s.e.m. Two subjects in the latter cohort also provided data in the main
fMRI experiment. The task and experimental protocol were identical to the fMRI
design, except the experiment was carried out seated in front of a computer monitor.
The head was stabilised using a chin rest at a distance such that stimulus size and
eccentricity was matched to that reported in the main text.
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Figure 5.4: Histogram of reaction times split by decision difficulty (high and low).

5.3.2 fMRI

Our behavioural findings of an inaction bias on high but not low difficulty trials

motivated us to explore the neural basis of this interaction. Crucially, we were

interested in regions showing differential activity for rejection of the default under

high difficulty compared to low difficulty. To isolate such regions, we computed an

interaction contrast [reject high - accept high] - [reject low - accept low]. In this

interaction we found activation in the right STN region that survived correction for

the whole brain (P < 0.05, family-wise error (FWE) corrected; figure 5.5). Similar

activation was found in left STN (P < 0.05, small-volume corrected (SVC)). No

other brain regions survived whole brain correction, and the reverse contrast did

not reveal any other significant interaction effects.

To further explore the observed interaction, we computed percent signal change

for each trial type, averaging over all voxels within anatomically defined STN re-

gions of interest (ROIs) (Aron & Poldrack, 2006) and entered these values into a

repeated measures analysis of variance [ANOVA; factors STN side (left/right) ×
decision (accept/reject) × difficulty (high/low)]. We found a significant interaction

between decision difficulty and default rejection (F(1,15) = 17.70, P < 0.001) that was

consistent across both left and right STN (no three-way interaction with STN side;

F(1,15) < 1, P = 0.80). A main effect of decision was also present (greater activity on

reject trials; F(1,15) = 18.04, P < 0.001). Specifically, the interaction effect is driven

by increases in STN activity on trials where the default is rejected in the face of high

decision difficulty, as shown in figure 5.5b. Importantly, this difference is similar for

both correct and incorrect responses (no difference between grey and white bars in

figure 5.5b), suggesting that the behavioural difference in accuracy for accept high

and reject high responses cannot explain the signal change we observe in the STN.

As expected, we found a widespread motor network (table 5.1) when contrasting

reject > accept responses, with greater activity on the left side consistent with
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Figure 5.5: (A) T -map for the interaction contrast [(reject high - accept high) -
(reject low - accept low)], shown in coronal and axial sections (right P < 0.05,
whole-brain corrected, left P < 0.05, SVC; shown at P < 0.005, uncorrected).
Activity is seen bilaterally in the region of the STN (peak voxels; left, -6,-24,-3; right,
12,-18,0). The insets (right) show the overlap between the active clusters and the
anatomically defined STN ROIs (10 x 10 x 10 mm boxes centred on ±10,−15,−5).
(B) Average difference in percent signal change (reject accept) calculated from an
unbiased average of all voxels within each STN box ROI. Events are split as a function
of difficulty level. High difficulty trials were further split into correct and incorrect
(the relative rarity of an incorrect, low difficulty response precluded the same split
on low difficulty trials). The interaction effect was driven by a greater STN response
for rejecting the default on high compared to low difficulty trials. Post-hoc paired
t-tests; *P < 0.05, **P < 0.005. Error bars reflect ± s.e.m.
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rejection responses being made with the contralateral (right) hand. The reverse

contrast, accept > reject, did not reveal any significant activations.

Activity in bilateral inferior frontal cortex (IFC; P < 0.05, FWE whole-brain

corrected) and bilateral dorsomedial prefrontal cortex (dmPFC; both P < 0.05,

SVC) correlated with increasing reaction time for rejecting the default (figure 5.6

and table 5.2). We saw additional main effects of decision difficulty in both dmPFC

(P < 0.05, FWE whole-brain corrected) and IFC (P < 0.001, uncorrected) (table

5.5).

Figure 5.6: Coronal sections are shown through the group T -map for positive cor-
relations with the reaction time (RT) regressor (P < 0.005, uncorrected).

5.3.3 Anatomical localisation of the interaction effect

To explore the anatomy of our interaction effect, group level clusters were projected

onto the averaged structural from the same subjects in MNI space. With the aid

of the atlas of Duvernoy (Duvernoy, 1999), the STN was localised as lying lateral

and slightly anterior to the high-signal red nucleus when viewed on an axial slice.

On a coronal section, the STN is separated from the grey matter of the thalamus

by the zona incerta and the lenticular fasciculus. Using these landmarks, the group

maximum for the interaction of decision difficulty and response type (12, -18, 0)

was identified as lying ventral to the border of the thalamus, overlapping with the

zona incerta/STN. The right-side cluster may extend dorsally into the body of the

thalamus (figure 5.7), thus we cannot rule out a contribution of ventral thalamic

motor nuclei to the interaction effect. However, the percent signal changes shown

in figure 5.5 were calculated by averaging over all voxels within a priori STN ROIs,

and are thus directly comparable to previous ‘STN region’ activations seen in recent

studies investigating response inhibition (Aron & Poldrack, 2006; Aron et al., 2007;

Li et al., 2008).

5.4 Discussion

The results in this chapter show that participants are more likely to accept a no-

action default when faced with difficult choices, leading to more errors. This result
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Figure 5.7: Multiple coronal views of the interaction effect displayed in 5.5

indicates that the default acted as an asymmetric loss function, leading to a bias

towards acceptance when difficulty is high. In a signal detection analysis, partic-

ipants showed criterion shifts towards the default on high, but not low, difficulty

trials, suggesting that the threshold for action was modulated by difficulty. The

brain imaging findings provide a neural perspective for how difficulty may modu-

late action initiation. In the fMRI data, rejection of the default on uncertain trials

recruited bilateral regions encompassing the subthalamic nucleus (STN), a compo-

nent of the basal ganglia thought to play a pivotal role in action selection (Bergman

et al., 1990; Frank, 2006). Specifically, BOLD signal increased in both left and right

STN when the default was rejected on difficult, but not easy, trials. This effect was

not explained by a change in decision accuracy. Instead, the interaction suggests a

specific role for STN activity in switching away from a default when decisions are

uncertain.

This context-dependence of STN activity is consistent with findings from deep-

brain stimulation (DBS) studies which report a role for STN under conditions of

high but not low difficulty in Parkinsons patients (Alberts et al., 2008; Frank et al.,

2007; Hershey et al., 2004). An alternative account might suggest that the activa-

tion we observe is epiphenomenal, rather than being causal in the amelioration of a

default bias. I consider this possibility as less likely, for a number of reasons. First,

the activity increase observed is specific to rejecting a difficult default, rather than

rejection of the default per se, and is not easily explained through simple correlation

with motor output or decision accuracy. Second, the effects we observe are anatom-

ically specific and consistent across bilateral STN, a region proposed as a key node

for control of decision making (Frank et al., 2007; Gurney et al., 2001). Finally, and

perhaps most persuasively, deep brain stimulation in Parkinsons disease reveals a

causal role for the STN in the modulation of decision making (Alberts et al., 2008;

Ballanger et al., 2009; Hershey et al., 2004; Ray et al., 2009; van den Wildenberg

et al., 2006), while lesions to the STN in rodents produce impaired response selection

under situations of high conflict (Baunez et al., 2001; Eagle et al., 2008).

The pattern of activity in the STN region can be further examined in the con-

text of two influential models that address the broader role of the basal ganglia in

decision making (Frank, 2006; Gurney et al., 2001). In brief, it is proposed that acti-
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vation of striatal neural populations by salient sensory stimuli drives selection of an

appropriate response, releasing pallidal inhibition of the thalamus. A ‘hyperdirect’

pathway from frontal cortex to the STN (Nambu et al., 2000) leads to modulation of

pallidal-thalamic responses as a result of decision difficulty (Frank, 2006), adjusting

basal ganglia output. Regions sensitive to task difficulty in the present study may

represent putative sources of this hyperdirect signal.

Studies of the stop-signal reaction time (SSRT) task using fMRI have isolated

both the right IFC and STN as critical nodes in the stopping of ongoing responses

(Aron & Poldrack, 2006; Li et al., 2008). Further, deep brain-stimulation of the STN

in patients with Parkinsons disease directly modulates SSRTs (van den Wildenberg

et al., 2006; Ray et al., 2009). In the present task, a simple inhibitory account of

STN function would suggest greater activity when a difficult default is accepted (lack

of action), whereas an account which emphasises a role for the STN in switching

would predict greater activity when the default is rejected. The data in this Chapter

favour the latter view, and together with related evidence (Aron et al., 2007; Isoda

& Hikosaka, 2008; Neubert et al., 2010) implicate the STN in both outright response

suppression and controlled slowing or switching.

In summary, I describe a potential neural mechanism for modulating action

thresholds under uncertainty centred on STN. Difficult choice scenarios led to greater

acceptance of the default, resulting in suboptimal decision-making. When the de-

fault was successfully rejected on difficult trials, a selective increase in STN region

activity was found. I note however that the present design is unable to tease apart

the influence of prior expectations from action costs as the primary drivers of the

default bias. In other words, the pattern of STN activity I observed could either

be due to a difficulty × action interaction, or a difficulty × prior interaction, as on

each trial rejecting the default (a priori) response is synonymous with acting. In the

following Chapter 6 I explicitly address this question with a focus on the STN.
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5.5 Appendix

Label MNI coordinate Voxels Z-score Voxel-
FWE
P -value

L postcentral gy. -54 -15 51 575 6.12 < 0.001
R cerebellum 24 -51 -30 610 5.95 < 0.001
L putamen -33 0 -3 430 5.85 < 0.001
L precentral gy. -57 3 30 46 5.79 < 0.001
L cingulate gy. -6 -24 48 47 5.49 0.001
R thalamus 15 -15 3 115 5.45 0.001
L SPL -24 -54 51 25 5.35 0.002
R MFG 42 -6 57 67 5.34 0.002
R IFG 60 12 15 23 5.29 0.003
R postcentral gy. 63 -15 33 28 5.13 0.008
R postcentral gy. 36 -33 57 76 4.93 0.022
R pre-SMA 9 3 60 99 4.92 0.023
R cerebellum 30 -81 -21 6 4.89 0.028
R cerebellum 18 -60 -57 25 4.87 0.030
L cerebellum -36 -45 -30 57 4.85 0.033
L cerebellum -15 -63 -27 37 4.84 0.035
R post. tempo-
ral

42 -57 0 3 4.82 0.038

L IFG -39 33 27 6 4.79 0.045

Table 5.1: Significant activations for Reject > Accept. Due to the widespread
activity in this contrast, individual clusters were separated through adoption of a
conservative height threshold of P < 0.00001.
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Label MNI coordinate Voxels Z-score Cluster-
FWE
P -value

R IFC 45 12 24 140 4.94 0.002
L insula -39 9 -12 192 4.32 < 0.001
R insula 33 18 9 296 5.79 < 0.001
L precentral gy. -57 3 30 46 3.89 < 0.001
R cingulate gy. 9 30 33 57 3.89 0.005, SVC
L cingulate gy. -9, 24, 30 23 3.72 0.022, SVC

Table 5.2: Significant activations correlating with reaction time. Clusters are defined
using a threshold of P < 0.005, uncorrected.

Label MNI coordinate Voxels Z-score Cluster-
FWE
P -value

L precentral gy. -54 3 42 824 6.35 < 0.001
L/R MFC
(paracingulate
gy./pre-SMA)

3 15 54 255 3.93 < 0.001

L MFG -24 0 63 91 3.81 0.021

Table 5.3: Significant activations in the High > Low difficulty contrast. Clusters
are defined using a threshold of P < 0.005, uncorrected.



Chapter 6

Control of the unexpected by

human subthalamic nucleus

6.1 Introduction

We saw in Chapter 5 that the requirement to initiate non-default actions activates

STN (see also Isoda & Hikosaka 2008; Coxon et al. 2010). A hallmark of human

decision-making is its flexibility. When carrying out a well-practiced task, such as

driving, an unexpected change in the environment a cat running into the road, say -

wrenches us into immediate evasive action. This situation results in response compe-

tition between the ongoing process of driving, and the need to hit the brakes to avoid

the cat. One influential account of these effects is that the need for cognitive control

activates hyperdirect afferents to increase STN activity, allowing more time for the

correct decision to be made, and resolving pre-response conflict (Frank, 2006). In

support of this hypothesis, BOLD signal in the region of the STN increases during

successful stopping in the stop signal paradigm (Aron & Poldrack, 2006; Li et al.,

2008), and correlates with the extent of slowing as task difficulty increases (Aron

et al., 2007). Furthermore, co-activation of prefrontal cortical loci, including the

inferior frontal gyrus (IFG) and pre-supplementary motor area (pre-SMA)/anterior

cingulate cortex (ACC) is often found during tasks requiring inhibitory control (see

Aron 2010 for a comprehensive review); given that the STN receives monosynaptic

input from these prefrontal structures via the so-called hyperdirect pathway (Mon-

akow et al., 1978; Nambu et al., 2000; Aron et al., 2007), cortico-STN circuitry may

play a role in the resolution of response competition (Frank, 2006; Gurney et al.,

2001; Neubert et al., 2010).

However, it is unknown how different factors contributing to response compe-

tition affect the STN. Control is thought to be necessary both when decisions are

difficult, due to conflicting conditional action triggers (Botvinick et al., 2001; Wen-

delken et al., 2009), and when the environment is not in accord with our expectations

(Holroyd & Coles, 2002; Braver et al., 2001; Isoda & Hikosaka, 2008; Redgrave et al.,

101
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2010). One view suggests that stimulus uncertainty is the main driver of STN ac-

tivity. For example STN-DBS is known to have detrimental effects on performance

when decisions are difficult (Jahanshahi et al., 2000; Frank et al., 2007), and activ-

ity in the nucleus increases when there is competition between putative controllers

of decision-making (Fumagalli et al., 2010). Alternatively, the history of responses

(ones expectation) may be more important, rather than the difficulty of the current

decision. For example, recent data suggest that updating prior action plans (see

Mars et al. 2007) may engage similar mechanisms to inhibition of a single action

(Aron & Poldrack, 2006; Mostofsky & Simmonds, 2008; Isoda & Hikosaka, 2008;

Kenner et al., 2010; Neubert et al., 2010; Verbruggen et al., 2010). In an important

single-unit recording study, Isoda & Hikosaka (2008) showed that neurons in the

STN are selectively active when a cue calls for a switch of prepotent response. We

note that these influences on STN are not mutually exclusive; indeed, data from

Chapter 5 is potentially consistent with both accounts: here, BOLD signal in the

STN region was increased when the current default is rejected on difficult, but not

easy, perceptual decisions.

I set about disambiguating the effects of difficulty and expectation on STN ac-

tivity by analysing BOLD signal from anatomically-defined STN using rapid event-

related fMRI. Our task dissociated, through factorial design, the effects of action,

difficulty and expectation to changes in STN activity. I expected heightened diffi-

culty and violation of expectations to slow down reaction times allowing for more

controlled (less erroneous) responses to be made (Luce, 1991). More generally, the

role of the basal ganglia in contextual modulation of this speed-accuracy tradeoff

remains an open question (Bogacz et al., 2010). For example, striatal activity, and

structural projections between pre-SMA and striatum, closely correlate with individ-

ual differences in the lack of caution in a speeded decision task (Forstmann et al.,

2008, 2010). Given the potentially complementary roles of STN and striatum in

cognitive control, here we compare results from the STN with a similar analysis of

anatomically-defined striatum (caudate/putamen).

In Chapter 5, STN activation was localised using a ‘box’ region of interest at

the group level (Aron & Poldrack, 2006). However, given the small size of STN and

the unknown nature of inter-individual variability in location, I was only able to at-

tribute changes in fMRI signal here to the STN region, not the STN proper. A more

sensitive approach is to define regions based on individual anatomy. Here we iso-

late STN voxels using individual anatomy and high-resolution functional imaging1,

bypassing conventional normalisation and smoothing procedures to permit strong

inferences on regionally localised activity.

1This study was conducted in collaboration with Christian Lambert at the Wellcome Trust
Centre for Neuroimaging. See page 14 for details of contributions.
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6.2 Methods

6.2.1 Participants

Twenty-one right-handed subjects gave informed consent to participate. All had

normal or corrected-to-normal vision, and no history of psychological or neurolog-

ical illness. Two participants displayed an unacceptable proportion of erroneous

responses (> 50% omission errors to GO cues), and for one additional participant,

STN proved difficult to isolate from anatomical scans (see below), leaving eighteen

in the final cohort (9 female; 20 35 years of age; mean age, 25.11 years). The study

was approved by the Institute of Neurology (University College London) Research

Ethics Committee.

6.2.2 Task and procedure

The task was a modified version of the Eriksen flanker task (Eriksen & Eriksen,

1974). The flanker task has been showed to robustly modulate stimulus-bound

difficulty, or conflict, dependent on whether the flankers are congruent or incongruent

with the target (e.g. Botvinick et al. 2001). Two modifications to the classic flanker

task were made to allow us to investigate our hypotheses of interest. First, the

two response options were GO or NOGO, corresponding to a central ‘Y’ or ‘X’

cue respectively (figure 6.2). Second, the probability of having to make a GO or

NOGO response was modulated in a blockwise fashion (p(go) = 0.3 or 0.7). This

manipulation, coupled with 20% null (fixation-only) events per block, permitted

analysis of changes in expectation (‘surprise’) of GO or NOGO events. Our design

was thus 2 (difficulty) × 2 (action) × 2 (expectation) factorial.

Each trial lasted 2.5 seconds on average (figure 6.2), and each participant com-

pleted four blocks of 175 trials. GO, NOGO and null events were distributed ran-

domly throughout the block according to their fixed prior probabilities, allowing

effective event-related averaging despite the fast ITI (Burock et al., 1998). The dif-

ficulty level (high or low) changed every 7 trials, and p(GO) was switched at the start

of each block. Whether the experiment started with a high or low p(GO) block was

counterbalanced between subjects. GO responses were made with a right-handed

keypress on an MR-compatible button box. Prior to entering the scanner, partici-

pants completed one block of 175 trials (with equal GO and NOGO probabilities)

on a standard PC to allow familiarisation with the task. Both speed and accuracy

were emphasised, and a reaction time deadline of 550ms instigated during training

to encourage a high level of action preparation. This deadline was removed in the

scanner to avoid contamination of activity with feedback on response errors.
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6.2.3 fMRI acquisition

Functional images were acquired using a 3T Trio whole-body scanner (Siemens,

Erlangen, Germany) operated with a standard body transmit and 32-channel head

receive coil. BOLD-sensitive functional images were acquired using a gradient-echo

EPI sequence (30 transverse slices; TR, 2.55 s; TE, 85 ms; 2.3 × 2.3mm in-plane

resolution; 2mm slice thickness; 1mm gap between adjacent slices; z-shim, +0.6

mT/m; positive phase encoding direction; slice tilt, - 30 degrees). The positioning

of the slice block (field of view) was adjusted to cover the brainstem, striatum,

dorsomedial and lateral PFC, and is shown for a single example subject in figure

6.4. Four runs of 187 volumes were collected for each subject. The first 5 volumes

of each run were discarded before preprocessing to allow for T1 equilibration effects.

Anatomical images were collected using multiecho three-dimensional FLASH for

mapping proton density, T1 and magnetization transfer (MT), and by T1-weighted

inversion recovery prepared EPI sequences, all at 1mm3 resolution (Weiskopf &

Helms, 2008). Additionally, field maps were acquired using a double-echo FLASH

sequence (TE1 = 10ms, TE2 = 12.46ms, 3 × 3 × 2mm resolution, 1mm slice gap)

to allow distortion correction of the EPI images. The midbrain nuclei are known

to be particularly susceptible to physiological noise (e.g. D’Ardenne et al. 2008).

To allow removal of this noise from the fMRI timeseries during analysis, I recorded

participants’ heart rate (using a pulse oximeter) and respiratory phase and volume

(using a breathing belt).

6.2.4 Behavioural analysis

Reaction times (RT) to correct GO trials and the proportion of commission errors on

NOGO trials were extracted for each difficulty/expectation condition and subjected

to repeated-measures ANOVA using SPSS 17.0. There were very few omission errors

on GO trials (mean 1.9 ± 1 % s.e.m.) and these trials were not analysed further.

6.2.5 Image preprocessing

Analaysis of fMRI data was carried out using Statistical Parametric Mapping soft-

ware in Matlab2010b (SPM8 v4073, www.fil.ion.ucl.ac.uk/spm). The first five

volumes of each run were discarded to allow for T1 equilibration. Using the FieldMap

toolbox (Andersson et al., 2001), field maps were estimated from the phase difference

between the images acquired at the short and long TE. The EPI images were then

realigned and unwarped using the created field map. These realigned and unwarped

images were then used in the ROI analysis detailed below.

For exploratory whole-brain analysis, images were additionally normalized to

Montreal Neurological Institute (MNI) space, and smoothed. Each subject’s T1-

weighted structural image was segmented into grey matter, white matter and cere-
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brospinal fluid, during which the transformation to the SPM MNI template space

was estimated. The resulting normalization parameters were then applied to the

functional data. Finally, the normalized images were spatially smoothed using an

isotropic 6mm full-width half-maximum Gaussian kernel.

6.2.6 Anatomical ROI definition

The borders of the STN are defined by the zona incerta superiorly and immediately

medially; prelemniscal radiations, lateral hypothalamus and red nucleus further me-

dially and cerebral peduncle laterally. On its inferior-most lateral surface lies the

superior aspect of the substantia nigra pars reticulata. The majority of the nucleus

appears hypointense on T2-weighted images due to the presence of iron-containing

neuromelanin (Dormont et al., 2004; Marani et al., 2008). Due to the variability in

STN position and orientation, direct visualisation is the most accurate method to

identify the structure (Hariz et al., 2003; Ashkan et al., 2007). We used R2* images,

defined as 1/T2, leading to the STN appearing hyperintense (Dormont et al., 2004).

The hyperintense region of the STN was manually segmented by Christian Lambert

(see page 14) using ITK-SNAP software (http://www.itksnap.org; see figure 6.1).

The anatomical guidelines listed above were used to aid identification of the superior

and lateral boundaries of the STN, and where necessary ITK-SNAP’s multi-session

function was used to simultaneously visualise coregistered MT and proton density

images. Finally, to allow comparison with previous ROI approaches (Chapter 5;

Aron & Poldrack 2006; Aron et al. 2007; Li et al. 2008; Coxon et al. 2010; Neubert

et al. 2010), we additionally applied MNI normalisation (as detailed above) to the

STN images, and created an overlap map to reveal the extent of variability in ROI

position across subjects (figure 6.1).

Striatal (caudate and putamen) ROIs were created on an individual basis us-

ing the automated subcortical segmentation routines implemented in FreeSurfer

(http://surfer.nmr.mgh.harvard.edu/). Given previous studies implicating the

anterior/dorsal striatum in modulation of inhibitory control (Aron et al., 2003; Li

et al., 2008; Forstmann et al., 2008, 2010), I combine caudate and putamen into a

single striatal ROI.

6.2.7 Statistical modelling of the BOLD response

Statistical evaluation was performed using the general linear model. The design

matrix consisted of delta (stick) functions aligned with the onset of the cues to cor-

rectly performed trials, and separated into four conditions dependent on whether

the trial was high/low uncertainty and whether it required a GO or NOGO re-

sponse. Null events were modelled with a separate regressor, and high and low

p(go) blocks were modelled as separate sessions. GO trials were additionally para-
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y = -14 

y = -16 

Figure 6.1: Left panels show sections through the midbrain and thalamus showing
an example segmentation of the STN on R2* images for one subject. Right panels
show the overlap obtained when normalising all individually-identified STN ROIs into
MNI space. The colour bar indicates the number of subjects whose ROIs overlap at
a given voxel. The box ROI used in Chapter 5 is reproduced here for comparison,
demonstrating the advance in localisation achieved by accounting for inter-individual
variability in STN anatomy.

metrically modulated by the z-scored reaction time (RT). These delta functions were

convolved with the canonical HRF and its temporal derivative, and low-frequency

drifts were excluded with a high-pass filter (1/128s cutoff frequency). Short-term

temporal autocorrelations were modelled using an AR(1) process. Motion correc-

tion parameters estimated from the realignment procedure and physiological noise

terms created from a Fourier expansion of heart rate and respiration timecourses

were entered as covariates of no interest.

Contrast images for each condition in our factorial design were generated by

subtracting the relevant within-session null event. A ‘surprising’ event was con-

sidered low-frequency for that block type. Thus high p(go) blocks contained sur-

prising NOGO events, and expected GO events. Conversely, a low p(go) block

contained surprising GO events, and expected NOGO events. Single-subject con-

trast images were estimated using both native-space, unsmoothed functional data,

and normalised, smoothed functional data, for entry into the ROI and whole-brain

analyses, respectively.

6.2.8 ROI analysis

To allow extraction of functional data from anatomically-defined ROIs, the T1-

weighted structural was coregistered with the mean EPI image, and the same trans-

formation applied to the ROI images. ROI images were then resliced into the same
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voxel dimensions (2.3 × 2.3 × 3mm) as the functional data. For each subject, the

contrast estimates for each condition (created from a GLM analysis of native-space,

unsmoothed functional data) were extracted for each voxel in a particular ROI

and averaged. These contrast estimates were analysed using a 2 (hemisphere) ×
2 (action) × 2 (difficulty) × 2 (expectation) repeated-measures ANOVA. Having

established a lack of significant interactions with hemisphere, we collapsed across

this factor in subsequent analyses. To explore whether the effect of surprise on STN

activity was action specific, follow-up 2 (difficulty) × 2 (expectation) ANOVAs were

carried out for GO and NOGO trials separately.

Having observed an effect of expectation on STN responses, we additionally

tested whether this differential response was linked to behavioural slowing, by cre-

ating separate contrasts for the parametric correlation of activity with RT separately

for surprising and expected GO trials. Positive correlations with RT were assessed

through two-tailed one-sample t-tests against zero at the group level.

All statistical analysis was carried out using SPSS 17.0, using the default Type

III sum-of-squares estimation for repeated-measures ANOVA.

6.2.9 Whole-brain analysis

Contrast images for each condition in our factorial design (created from a GLM

analysis of normalised, smoothed functional data) were entered into a second-level

ANOVA in SPM8. I examined the main effects of action, surprise and difficulty using

T-contrasts. Cluster-based statistics were used to define significant activations both

on their intensity and spatial extent (Friston et al., 1994b). Clusters were defined

using a threshold of P < 0.001 and corrected for multiple comparisons across the

whole brain volume using family-wise error correction (FWE) and a threshold of

P < 0.05.

6.3 Results

6.3.1 Behaviour

Participants tended to make few errors overall, with the main source of errors being

commission errors on high difficulty, NOGO trials. Formal analysis of commission

error rates showed a robust effect of both difficulty (F(1,17) = 20.8, P < 0.00001) but

no significant effect of expectation (F(1,17) = 2.8, P = 0.11). As expected, increases

in difficulty and violations of expectation both increased reaction times (RTs) on GO

trials (difficulty; F(1,17) = 34.5, P < 10−5; expectation, F(1,17) = 114.9, P < 10−9).

In addition, there was a significant interaction between difficulty and expectation

(F(1,17) = 4.89, P = 0.04) driven by a greater speeding effect of expectation on low

compared to high difficulty trials.
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Figure 6.2: (A) Schematic of the stimuli and task. Participants fixated on a central
cross, and were instructed to press a button with their right hand as quickly as
possible when a central ‘Y’ was presented, and withhold the button press when a
central ‘X’ was presented. Flanking stimuli could either be congruent (low difficulty)
or incongruent (high difficulty). Whether the GO or NOGO response was expected
was controlled by manipulating the probability of a GO response between blocks
(p(go)). (B) Mean reaction times (excluding outliers > 3SD from the mean of each
condition) for GO trials, conditional on whether the trial was high or low difficulty,
and whether the GO response occurred on surprising (low frequency) or expected
(high frequency) blocks. Significant effects of both expectation and difficulty were
obtained (both P < 10−4).

Figure 6.3: Whole-brain analysis of the main effect of action (GO > NOGO). As
expected, increased activity was seen in cerebellum ispsilateral to the response hand,
and in premotor cortex and thalamus contralateral to the response hand.
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Contrast Voxels Z-score cluster
P -value

Peak voxel Laterality Label

Surprising
>
Expected

452 5.53 < 0.001 -32 16 13 L Insula/IFG
684 5.43 < 0.001 -7 19 31 L dmPFC
526 5.13 < 0.001 37 19 7 R Insula/IFG
112 4.73 0.01 -30 39 28 L BA46
215 4.69 < 0.001 30 41 22 R BA46
110 4.39 0.011 66 -41 22 R post. STG
109 4.37 0.011 -7 -20 31 L post. cin-

gulate
165 4.23 0.001 -34 -57 -14 L fusiform

gy.
332 4.15 < 0.001 14 -75 16 R V1

High >
low diff.

38 4.05 0.326 25 -66 34 R SOG
22 3.93 0.680 -23 -59 46 L Sup. pari-

etal
11 3.71 0.938 -30 -87 13 L MOG
10 3.50 0.952 -25 -73 28 L MOG

Low >
high diff.

628 5.15 < 0.001 14 -98 10 L V1
125 3.92 0.006 -12 -101 7 R V1

GO >
NOGO

4555 Inf < 0.001 16 -50 -17 R Cerebellum
263 7.00 < 0.001 39 2 7 R post. in-

sula
300 6.40 < 0.001 -30 -55 -23 L Cerebellum
66 6.19 < 0.001 57 -14 19 R Postcentral

gy.
70 5.53 < 0.001 14 -25 -5 R Thalamus/brainstem
126 5.29 < 0.001 0 5 43 L/R ACC
10 4.87 0.019 7 -23 -20 R Brainstem
62 4.85 < 0.001 -5 -25 28 L post. cin-

gulate
NOGO >
GO

706 6.23 < 0.001 39 -20 52 R Postcentral
gy.

108 4.62 0.012 11 -23 52 R SMA

Table 6.1: Whole-brain results. Activations are reported for the contrasts discussed
in the main text. Activations survive cluster-level correction for multiple comparisons
across the whole brain volume (P < 0.05), except for the high > low difficulty contrast
(P < 0.001, uncorrected, 10 voxel extent). The cluster-defining threshold is P <
0.001 uncorrected, except for GO > NOGO where a higher threshold of P < 0.00001
uncorrected was used to separate individual clusters of activation.
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6.3.2 Functional imaging analysis

As an initial check analysis, I examined the simple GO > NOGO contrast at the

whole-brain level. This contrast revealed contralateral ventral premotor cortex, and

ipsilateral cerebellum, as expected (see figure 6.3). The reverse contrast, NOGO

> GO, revealed activity increases in the ipsilateral premotor cortex and SMA (see

table 6.1), although I note this activity could equally be interpreted as reflecting a

decrease below baseline during motor execution.
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Figure 6.4: Left panel shows example ROIs from a single subject for STN (red) and
caudate/putamen (green). The transparent blue region indicates the slice block used
for functional data acquisition of this subject. (A, C) Contrast estimates examining
the coding of action (GO - NOGO) as a function of each cell in our difficulty ×
expectation factorial design. STN shows a robust interaction between action (GO
- NOGO) and expectation, such that action coding is seen on surprising but not
expected trials (P = 0.006). No interactions were seen in striatum. (B, D) Effects
of expectation collapsed across difficulty level, as a function of both GO and NOGO
responses. STN is seen to differentiate between expected and surprising trials for
both GO and NOGO responses (both P < 0.05).

6.3.2.1 ROI analysis

Defining the STN on a single-subject basis revealed heterogeneity between subjects

(figure 6.1). However, when normalised to a common template, most STN voxels

lay within the box ROI commonly employed in previous studies (Aron & Poldrack,

2006; Aron et al., 2007; Coxon et al., 2010; Li et al., 2008; Neubert et al., 2010),

indicating reasonable correspondence between a single-subject and group ROI ap-

proach. I extracted BOLD signal from each subjects anatomically-defined STN for

each condition of our factorial design and subjected this signal to a 2 (action) ×
2 (difficulty) × 2 (expectation) repeated-measures ANOVA. Our central question
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was whether violations of expectation or current-trial difficulty, or both, were the

key modulators of STN activity. Consistent with the former hypothesis, a robust

interaction between expectation and action was observed (F(1,17) = 10.0, P = 0.006),

driven by a coding of action (increase of GO relative to NOGO) on surprising but not

expected trials (figure 6.4a). This effect of expectation on action was similar for both

low and high difficulty trials (interaction with difficulty; F(1,17) = 0.03, P = 0.87;

figure 6.4a). No main effects of expectation (F(1,17) = 0.20, P = 0.66) or difficulty

(F(1,17) = 0.21, P = 0.65) were found. A main effect of action was also present,

driven by greater signal for GO than NOGO trials (F(1,17) = 19.9, P < 10−4), as

reported in Chapter 5.

To further test whether the modulatory effect of expectation on STN activity held

for both GO and NOGO trials, I carried out separate 2 (difficulty) × 2 (expectation)

ANOVAs. Significant, albeit opposite, effects of expectation were observed for both

GO (F(1,17) = 5.47, P = 0.03) and NOGO (F(1,17) = 7.23, P = 0.02) trials, shown

in figure 6.4b. Importantly, observing a significant effect of expectation for NOGO

trials obviates concerns that this effect is driven by subtle alterations in motor

execution (such as RT differences; Yarkoni et al. 2009), as no motor response was

made on these trials.

In contrast, a similar analysis of striatum did not reveal effects of expectation.

Instead, caudate/putamen robustly coded for action, showing a greater response for

GO than NOGO trials (figure 6.4c and d; F(1,17) = 17.2, P = 0.001). In addition, we

observed a marginal interaction between action and difficulty (F(1,17) = 3.39, P =

0.08), driven by a greater GO response on low difficulty trials (6.4c).
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Figure 6.5: Group-level parameter estimates for the correlation between average
STN response on GO trials and the associated reaction time, as a function of ex-
pectation. STN showed significant positive parameter estimates for the relationship
between RT and activity on surprising, but not expected, GO trials. No significant
relationship was observed between RT and activity in striatum.

6.3.2.2 Linking surprise-induced slowing to STN activity

I hypothesised that the selective change in activity due to surprising events in STN

may mediate the behavioural slowing manifest on these trials (Frank, 2006). If this
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hypothesis is correct, one would expect activity here to correlate with the extent of

slowing on a trial-by-trial basis (cf. Aron et al. 2007). To test this hypothesis, I

extracted the contrast estimate testing for the parametric correlation with reaction

time separately for surprising and expected trials. I observed a significant positive

parametric relationship between STN activity and RT on surprising (two-tailed one-

sample t-test, t(17) = 2.23, P = 0.04), but not expected (t(17) = 0.34, P = 0.74),

trials (figure 6.5). Reaction time parameter estimates in striatum tended to be

negative, but did not reach significance (figure 6.5).

A 

B 

Figure 6.6: (A) Hot colours indicate activity (SPM T -map, shown at T > 3) showing
a main effect of expectation (surprising > expected). Significant clusters were found in
pre-SMA/ACC, insula, IFG, posterior cingulated and extrastriate cortex (not shown).
Cool colours indicate activity (SPM T -map, shown at T > 3) correlating with GO-
trial RT in each cell of my factorial design, obtained through a conjunction analysis.
The SMA was the only region active in this contrast. (B) Hot (cool) colours indicate
positive (negative) effects of difficulty (SPM T -map, shown at T > 3). Significant
clusters were found in parietal cortex and primary visual cortex.

6.3.2.3 Whole-brain analysis

At a whole-brain level, I observed several regions in visual cortex and medial and

lateral frontal cortex showing increased activity for surprising events (figure 6.6a

and table 6.1), consistent with previous reports (Strange et al., 2005; Rosa et al.,

2010). This network included ACC/pre-SMA, and inferior frontal cortex/insula,

both known to share anatomical connections with STN (Aron et al., 2007). The

reverse contrast (greater activity for expected compared to surprising events) did

not show significant activity. In contrast, the main effect of difficulty was associated



Chapter 6. Expectation violation and human STN 113

with modulation of activity in visual and parietal cortex (figure 6.6b). Visual cor-

tical activity (BA17) increased on low compared to high difficulty trials (P < 0.05,

cluster-level corrected). Parietal cortex activity was increased for high compared to

low difficulty trials, albeit at an uncorrected threshold (P < 0.001, uncorrected).

Given that our restricted field of view was not optimised for detecting activity in

the posterior brain (cf. figure 6.4), I do not interpret these activations further.

No significant effects of surprise or difficulty were observed on correlations with

RT at the whole-brain level. A conjunction analysis of the parametric effect of

slowing across each cell of the factorial design revealed pre-SMA as the only region

correlating with behavioural slowing across all four conditions (figure 6.6a), con-

sistent with a hypothesised role for this region in action inhibition (Sharp et al.,

2010).

6.4 Discussion

Previous studies have shown a link between STN function and inhibition of decision

and action when the need for cognitive control arises (e.g. Aron & Poldrack 2006; Li

et al. 2008; Coxon et al. 2010). Such functionality might explain why STN DBS in

Parkinsons disease has subtle detrimental effects on executive function (e.g. Hershey

et al. 2004). However, cognitive control is a multi-faceted construct (Ridderinkhof

et al., 2004), and it is unknown how these components map onto STN function.

Here I dissociate, through factorial design, the effects of current-trial difficulty and

changes in expectation, with both inducing separate main effects upon behaviour

(RTs). I provide evidence that STN activity is modulated in response to unexpected

events in a simple GO/NOGO task. This response (figure 6.4a) is similar both for

high and low difficulty decisions, suggesting that a primary function of STN is to

switch between action plans based on new and unexpected information (see also

Isoda & Hikosaka 2008).

Importantly, I find a modulation of STN activity due to unexpected events for

both GO and NOGO trials. This result refines the interpretation of results from my

previous study (Chapter 5), where STN activity and connectivity with right IFC

was found to be increased when a difficult ‘default’ response option was rejected,

consistent with implementation of increased cognitive control through cortico-STN

coupling. In this previous experiment, rejecting the default was synonymous with

acting, preventing dissociation of these influences on STN function. In parallel to

findings in the pre-SMA/ACC (Braver et al., 2001; Nieuwenhuis et al., 2003), the

results of the current study suggests the STN does not show a ‘nogo-dominant’ re-

sponse, but rather responds to events that are not in accordance with expectations

(Isoda & Hikosaka, 2008). Indeed, Isoda & Hikosaka (2008) found both ‘go’ and

‘nogo’ switch cells in the STN, albeit a greater proportion of the latter. Functional
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imaging of elderly participants provides convergent data in support of this interpre-

tation: here, deficits in switching between opposite directions of circular movement

were associated with decreased modulation of bilateral STN (Coxon et al., 2010).

The sign of STN modulation was opposite for unexpected GO and NOGO events.

This interaction pattern is consistent with the view of STN as a cognitive modu-

lator of motor output (Gurney et al., 2001; Frank, 2006), potentially via distinct

subnuclear territories (Hershey et al., 2010; Mallet et al., 2007). How the concepts

of inhibitory control connect to action through the STN remains to be determined.

The strong main effect of GO > NOGO may be due to reverberant effects in cortico-

basal ganglia loops (Gradinaru et al., 2009), and the increase in activity known to

occur during movement execution itself (Wichmann et al., 1994; Nambu et al., 2000).

Future studies could investigate this phenomenon by equating action, for instance

through use of task-switching designs (Isoda & Hikosaka, 2008; Neubert et al., 2010).

6.4.1 Indirect or hyperdirect pathway?

The STN is traditionally thought of as being part of the indirect pathway (Alexander

& Crutcher 1990; figure 2.4). More recent studies have indicated a functional role

for the cortical hyperdirect pathway into the STN, originating in prefrontal cortical

sites known to be important for cognitive control (Nambu et al. 2000; Aron et al.

2007; Neubert et al. 2010; see Aron 2010 for a review). To the extent that the

indirect pathway is considered inhibitory, our results linking STN to behavioural

slowing may be consistent with activation of either pathway. However, given that

changes in expectation are likely to be encoded in prefrontal cortex (e.g. Summerfield

& Koechlin 2008), and that the dorsal striatum (also a component of the indirect

pathway) did not show effects of expectation, I suggest the results are consistent

with activation elicited by hyperdirect inputs into STN.

6.4.2 Effects of difficulty

In my previous study we found that the STN region was activated when non-default

actions were initiated on difficult, but not easy, trials (Chapter 5). How can this

finding be reconciled with the absence of difficulty effects here? First, the STN

activity observed on non-default GO trials in my previous study can be attributed

to increases in difficulty, the need to switch away from the default, or both. Here,

through use of a factorial design, I dissociate these influences, demonstrating that

STN activity is modulated on low-frequency trials requiring switches from the pre-

potent action plan, and that this modulation is similar for high and low difficulty

trials. In addition, STN activity was correlated with behavioural slowing on un-

expected, but not expected, trials. The absence of an interaction with difficulty

could be due to the fact that the current task was in general more difficult than
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our previous task, due to the emphasis on speed and the relatively rapid stimulus

presentation. Thus the ‘low difficulty’ condition in the current experiment may still

require substantial cognitive control.

Similar to the present findings, Coxon et al. (2010) observed that activation

in the STN in young people was increased during switches of action-plans, and

that this increase was similar for low and high difficulty trials. However, there

was a selective decrease in STN function solely for difficult switches in the elderly,

potentially explaining the behavioural deficit observed in this condition. STN-DBS

has also been reported to exert selective affects upon difficult decision-making (Frank

et al., 2007; Baunez et al., 2001), although expectation was not manipulated as a

factor in these designs. However DBS is unlikely to only affect activity within

the nucleus, but also other interconnected areas in cortex (Ballanger et al., 2009;

Gradinaru et al., 2009; Mallet et al., 2007), regions that may be involved in the

resolution of stimulus-response conflict. Further work is thus required to tease apart

the role of the STN and interconnected regions during increases in task difficulty.

6.4.3 Relationship between switching and inhibitory control

Recent work has emphasised that the mechanism underlying action inhibition may

be a special case of a broader circuit specialised for switching between different

action plans (Aron et al., 2007; Buch et al., 2010; Kenner et al., 2010; Mostofsky

& Simmonds, 2008; Verbruggen et al., 2010). The STN is reliably activated during

successful stopping in the stop-signal reaction time (SSRT) task (Aron & Poldrack,

2006; Aron et al., 2007; Li et al., 2008). Assuming that our high/low p(GO) blocks

differ to the extent that a GO response is prepotent, stopping on an infrequent

NOGO trial may be similar to stopping on a stop trial in the SSRT task (Aron,

2010). In other words, to the extent that the stop-signal is relatively infrequent,

the SSRT can be conceptualised as a task involving an occasional and rapid switch

from the default GO response. Recordings from STN unit activity reveal selective

increases on switch trials (Isoda & Hikosaka, 2008). Furthermore, the timing of the

activity predicted whether the behavioural switch would be successful or not. These

data are consistent with theoretical models where the STN temporarily inhibits the

output structures of the basal ganglia to allow a new, correct response to be selected

(Aron, 2010; Frank, 2006; Nambu et al., 2002).

One further consideration is that the present design does not dissociate a se-

lective inhibitory signal – for a particular effector – from a more global stopping

requirement (Aron & Verbruggen, 2008), as participants knew that a single button

press either would or would not be required on each trial. Thus the increase in signal

I see for unexpected GO events may be attributable to a global stopping signal that

permits subsequent selection of the correct action (Nambu et al., 2002); or, alter-

natively, a selective ‘switch’ signal. Further studies using methodology designed to
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separate global and selective control are required to decide which hypothesis best

accounts for STN function (Aron, 2010; Aron & Verbruggen, 2008). In addition,

unexpected, or surprising, trials in the current design may have induced greater

attentional orienting, due to their oddball status (Sharp et al., 2010), consistent

with increases in visual cortex activity in this contrast (table 6.1). I am unable to

dissociate this attentional effect from the requirement for action reprogramming in

the present design. However, I note the direction of the surprise effect was opposite

for GO and NOGO trials, suggesting STN is involved in linking surprising events to

the reprogramming of the motor response, rather than simply in detection of salient

events. Experimental paradigms designed to dissociate attention and action control

at a cortical level (Dodds et al., 2010; Sharp et al., 2010; Verbruggen et al., 2010)

could be usefully employed here to investigate the possible role of STN in attentional

orienting over and above its putative role in action reprogramming.

6.4.4 Conclusions

Cognitive control is a multi-faceted construct, but is broadly invoked when the

resolution of response competition is required. The anatomical position of the STN

makes it well-situated to connect control signals to changes in motor output, but its

precise role in this process is unknown. In this chapter I demonstrate that the BOLD

signal in human STN responds to an unexpected change in action plan, in a manner

dependent on whether action had to be initiated or withheld. Furthermore, STN

activity was correlated with behavioural slowing when go responses were unexpected,

but not expected. Together these findings indicate that STN is a key node in

resolving the discrepancy between ongoing cognition and unexpected events through

modulatory effects on action.



Chapter 7

Post-decision confidence during

perceptual decision-making

7.1 Introduction

Knowledge of one’s own uncertainty regarding an outcome plays a key role in de-

termining decision strategy (Hampton, 2001; Kepecs et al., 2008; Metcalfe, 1996;

Smith et al., 2004), and has been suggested to be a central property of higher-order

consciousness (Cleeremans et al., 2007; Kunimoto et al., 2001; Lau, 2008; Persaud

et al., 2007). For example, knowing in advance that you are unlikely to pass a test

might make you reluctant to take the test in the first place (Higham, 2007; Koriat &

Goldsmith, 1996; Metcalfe, 2008). Up until this point I have considered how the ob-

server uses context to optimise decisions under uncertainty, but the extent to which

decision uncertainty is subjectively accessible after implementation of a decision is

unclear. ‘Subjectively accessible’ here refers to overt reporting of confidence about

a particular cognitive state, via metacognitive reports. Such reports are often taken

to index conscious awareness of a particular state, a topic I will return to in Chap-

ter 9. The goal of the present chapter is to extend the signal detection theoretic

(SDT) approach outlined in Chapter 3 to metacognitive reports, and ask whether

predictions derived from this account provide a good fit to metacognitive reports

measured during perceptual decision-making.

The accuracy of metacognitive assessments can be intuited as how transparent

the initial decision process is to a putative ‘higher’ level assessment. For example,

if there is ambiguity in this decision process then the categorisation of one’s own

performance as being correct, or incorrect, will be subject to error. In standard

applications of SDT (Type 1), detection performance is assessed by a comparison of

the proportion of ‘hits’ and ‘false alarms’ in a stimulus detection task. By applying

the logic of SDT to post-decision wagering, one can categorise a ‘hit’ as a high

confidence response after a correct decision and a ‘false alarm’ as a high confidence

response after an incorrect decision (see table 3.2), a type of analysis known as

117
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Type 2 SDT (Clarke et al., 1959; Clifford et al., 2008; Galvin et al., 2003; Kunimoto

et al., 2001). On the basis of these considerations, I derive a theoretical relationship

linking Type 1 and Type 2 task performance by applying an ideal observer framework

(Galvin et al., 2003), enabling an exploration of the relationship between confidence

and changes in decision performance.

I ask two questions1. First, I test the fit of a Type 2 SDT model to metacog-

nitive confidence data collected during a perceptual task in which contributions

of external noise (stimulus variability) are minimised. Second, I harness adaptive

psychophysics procedures to test a prediction of the SDT model: that Type 2 per-

formance (metacognitive ability) should scale with Type 1 performance (d’ ) across

individuals. To pre-empt the results, I find that while a Type 2 model provides a

good fit to post-decision confidence ratings, metacognitive ability is partially inde-

pendent from perceptual performance, suggestive of a dissociable second-order stage

of decision-making.

7.2 Type 2 signal detection model of metacogni-

tive reports

7.2.1 Outline of model

In SDT, a Type 1 decision is based upon overlapping Gaussian probability distribu-

tions over a random variable X, conditional on the events signal (S) and noise (N)

(figure 7.1). Assuming an unbiased response criterion, c, for the Type 1 detection

decision, we can specify the distribution over X for the probability of the Type 1

response being correct or incorrect:

f(x|C) =


f(x|N)

p(C)
, x ≤ c

f(x|S)

p(C)
, x > c

f(x|I) =


f(x|S)

p(I)
, x ≤ c

f(x|N)

p(I)
, x > c

(7.1)

where p(C) and p(I) are the average probabilities of making a correct or incorrect

response on any given trial (Macmillan & Creelman, 2005). Full derivations of

equations 7.1 can be found in Galvin et al. (2003); the (constant) prior terms from

their more general analysis are omitted here for clarity. The distributions specified

by equations 7.1 are plotted graphically in figure 7.1. It is important to note that

these Type 2 distributions are conditional transformations based on whether the

1The work presented in this chapter and in Chapter 8 was carried out in collaboration with
Rimona Weil, Zoltan Nagy and Geraint Rees. See page 14 for details of contributions.
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first decision was correct or not. That is, the shape of the f(x|C) curve follows

the signal distribution when x > c (a Type 1 hit) and the noise distribution when

x < c (a Type 1 correct rejection). Similarly, the shape of the f(x|I) curve follows

shape of the noise distribution when x > c (a Type 1 false alarm) and the signal

distribution when x < c. The heights of both f(x|C) and f(x|I) are then scaled so

that they sum to one.

Figure 7.1: (A) Theoretical distributions over a random variable X (corresponding
to an arbitrary stimulus axis) for signal (S, solid line) and noise (N , broken line). (B)
Probability distributions over different values of X for the probability of making a
correct (solid line) and incorrect (broken line) categorisation. Shaded areas represent
the integrals specified in equations 7.3 (H, grey; FA, black).

A correct Type 2 response is more likely towards the left or right-hand extremes

of X in figure 7.1 (high signal or high noise trials), whereas incorrect responses

predominate where there is maximal overlap between signal and noise. The inher-

ent assumption here is that the uncertainty associated with being sure of seeing

something is the same as the uncertainty associated with being sure of not seeing

something (the Type 2 distributions are symmetric around X = 0).

The log-likelihood of being correct on any given trial (likelihood ration; β) is the

log of the ratio of equations 7.1:

β = log

(
f(x|C)

f(x|I)

)
(7.2)

I assume that confidence increases as the log-likelihood of being correct on the Type

1 task also increases. As the likelihood ratio is symmetric around c, there are thus

two values of x for each possible value of β, one for when x < c and one for when

x > c. This corresponds to being confident that a signal was or was not present. I

define c±m (as the likelihood ratio is symmetric about c) as values of x that satisfy

equation 7.2 for a given value of β.

Using the signal detection categories of 3.2, it is possible to compute theoretical

hit and false alarm rates for a range of values of β by integrating over the Type 2
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probability distributions specified in equations 7.1:

H =
∫ c−m

−∞
f(x|C) dx+

∫ ∞
c+m

f(x|C) dx

FA =
∫ c−m

−∞
f(x|I) dx+

∫ ∞
c+m

f(x|I) dx (7.3)

These integrals are plotted graphically for a single arbitrary value of m in figure 7.1.

7.2.2 Simulation results
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Figure 7.2: Computational simulations of Type 2 confidence functions for three
values of Type 1 d′ (0.5 - light grey, 1.5 - medium grey and 3 - black). The left panel
shows the predicted Type 2 ROC quantifying the ability to discriminate between
correct and incorrect responses cumulated across levels of confidence. The middle
panel shows the same ROC functions plotted in normal-normal (z) coordinates. The
right panel shows the predicted Type 2 d′ [z(H) − z(FA)] as a function of Type 2
criterion (m) and Type 1 d′. These functions would be flat if Type 2 sensitivity and
bias were independent.

In figure 7.2 I simulate the Type 2 ROC for a range of values of Type 1 d′.

Three qualitative results are of interest here. First, the area under the ROC (Aroc)

is predicted to scale with Type 1 d (leftmost panel). This prediction arises because

Type 2 performance is generated from a linear transformation of Type 1 distri-

butions; if there is greater signal for making the decision itself, there will also be

greater signal for making a metacognitive judgment about this decision. In other

words, metacognitive sensitivity should increase as performance increases (Kruger

& Dunning, 1999).

Second, like Type 1 ROC functions, Type 2 ROCs are predicted to lie along a

straight line in normal-normal (z) coordinates (middle panel), indicating that an

equal-variance model is a good approximation of the relationship between Type 2

hits and false alarms (note that while the difference between Type 2 hits and false

alarms is predicted to be normally distributed, it does not follow that the underlying

distributions themselves follow normal distributions; indeed, examination of figure

7.1 indicates this is not the case). However, unlike Type 1 ROC functions, Type

2 ROCs are predicted to have a slope of less than unity on z coordinates, due to
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the ‘long tails’ of the f(C|x) function. The form of this asymmetry predicts that

there are categories of subjective confidence that are solely used when perception is

veridical.

Finally, our simulations replicate a potentially counter-intuitive result obtained

by Evans & Azzopardi (2007). Due to the sub-unity slope of the z-ROC, varying the

Type 2 criterion (m) leads to an asymmetric effect on Type 2 hits and false alarms

(rightmost panel in figure 7.2). This asymmetry predicts that as the Type 2 criterion

becomes more conservative, Aroc increases. In other words, the independence of

sensitivity and bias assumed by SDT may not hold in Type 2 decision scenarios. This

exact non-independence has been observed in empirical data (Evans & Azzopardi,

2007).

7.3 Comparison of Type 2 model with behaviour

7.3.1 Methods

7.3.1.1 Participants

32 participants (15 males; aged 19 37 years; mean age 26.4 years) gave written

informed consent to take part in the experiment. The study was approved by the

local Research Ethics Committee.

7.3.1.2 Stimuli

The perceptual decision display comprised six Gabor gratings (circular patches of

smoothly varying light and dark bars) arranged around a central fixation point

(figure 7.3). Each Gabor subtended 1.4 degrees of visual angle in diameter, and

consisted of a luminance pattern modulated at a spatial frequency of 2.2 cycles per

degree. Each ‘baseline’ Gabor had a contrast of 20% of maximum, and appeared

at a mean eccentricity of 6.9 degrees. The fixation point comprised a black square

measuring 0.2 degrees diameter, luminance 0.10 cd/m2, with a central white square

0.1 degrees diameter, luminance 13.64 cd/m2. The background was a uniform gray

screen of luminance 3.66 cd/m2.

Baseline Gabors were displayed with a contrast of 20% (where 0% is no differ-

ence between the luminance of the grating bars and 100% is maximum difference,

i.e. black to white). The pop-out Gabors were drawn from a stimulus set in which

contrast varied from 23 to 80% in increments of 3%. At the time of confidence rat-

ings, the display consisted of a grey screen (luminance 3.66 cd/m2) with the numbers

1 to 6 written left to right (luminance 13.64 cd/m2, 0.7 degrees in height, centred

around fixation).

Stimuli were presented on a gamma calibrated CRT display (Dell FP2001, 20.1

inch display; 800× 600 pixels; 60 Hz refresh rate), at a viewing distance of approxi-
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1st or 2nd?
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Perceptual task: Metacognition 
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Figure 7.3: Subjects completed a two-alternative forced choice task that required
two judgments per trial: a perceptual response followed by an estimate of relative
confidence in their decision. The perceptual response indicated whether the first
or second temporal interval contained the higher contrast (pop-out) Gabor patch
(highlighted here with a dashed circle which was not present in the actual display),
which could appear at any one of 6 locations around a central fixation point.

mately 60 cm, situated in a darkened room. Stimulus display and response collection

were controlled by Matlab 7.8.0 (Mathworks Inc., Natick, MA, USA) using the CO-

GENT 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent.php).

7.3.1.3 Task

The visual judgement comprised a temporal two-alternative forced choice pop-out

task (see figure 7.3 for timings). All Gabors in one interval were of the same contrast,

but in the other interval, one of the Gabors was of higher contrast than the others

(the pop-out Gabor, illustrated by a dashed circle in figure 7.3 that was not present

in the actual display). The temporal interval and spatial position of the pop-out

Gabor varied randomly between trials. Participants were required to decide whether

this pop-out Gabor had appeared in the first or the second interval. The perceptual

judgement was indicated using the left hand with the numbers ‘1’ (first interval) or

‘2’ (second interval) on the QWERTY keypad of a standard PC keyboard. Partici-

pants then indicated their confidence in the perceptual decision they had just made

on a scale of 1 (low relative confidence) to 6 (high relative confidence), using their

right hand to press one of the numbers 1 to 6 on the numerical keypad. A square

red frame (width 1 degree, thickness 0.1 degree) appeared around the selected rating

(figure 7.3).

The contrast of the pop-out Gabor was chosen from the stimulus set of pop-

out Gabors using a 1-up 2-down staircase procedure (Levitt, 1971) which, at the

limit, results in convergence on 71% accuracy. The contrast of the pop-out Gabor

at the end of each block was used as the starting contrast for the pop-out Gabor

in the next block. Our aim in this staircase procedure was to equate objective

perceptual performance across individuals, leaving quantification of metacognitive

ability unconfounded by performance (Lau, 2010).

Participants were instructed to try to use the whole of the confidence scale in

their responses, and to bear in mind that the scale represents relative confidence, as,
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given the difficult nature of the task, they would rarely be completely certain that

their visual judgement had been correct. Participants performed a practice session

to familiarise themselves with the stimuli and task. The main experiment consisted

of 600 trials, split into 6 blocks of 100 trials. They were given no feedback about

their performance until the end of the experiment.

7.3.1.4 Type 2 signal detection analysis

Because the specific mathematical assumptions of conventional SDT may not hold

for this new analysis (Evans & Azzopardi, 2007; Galvin et al., 2003), I used nonpara-

metric assessments of sensitivity and bias (Kornbrot, 2006). I constructed Type 2

ROC curves for each participant that characterised the probability of being correct

for a given level of confidence. ROC curves were anchored at [0, 0] and [1, 1].

To plot the ROC, hi = p(confidence = i|correct) and fi = p(confidence =

i|incorrect) were calculated for all i. These probabilities were then transformed

into cumulative probabilities, and plotted against each other. Following Kornbrot,

I computed distribution-free measures of sensitivity and bias from this ROC by

dividing the area into two parts KB is the area between the ROC curve and the

major diagonal to the right of the minor diagonal and KA is the area between the

ROC curve and major diagonal to the left of the minor diagonal. From simple

geometry (derived in the Appendix of Kornbrot 2006), these areas can be calculated

as follows:

K
A

=
1

4

k=3∑
k=1

[(hk+1 − fk)2 − (hk − fk+1)
2]

K
B

=
1

4

k=6∑
k=4

[(hk+1 − fk)2 − (hk − fk+1)
2] (7.4)

Sensitivity (Aroc) is then the sum of these areas, and Type 2 bias (Broc) is the log

of the ratio:

Aroc = K
A

+K
B

Broc = ln

(
K

A

K
B

)
(7.5)

Type 1 d′ and bias (c) were calculated in the standard manner (see Chapter 3) where

H = p(response = 1|interval = 1) and FA = p(response = 1|interval = 2).

7.3.2 Results

7.3.2.1 ROC model fits

I noted a practice effect in the staircase parameters (figure 7.4) reflected in a decrease

in mean contrast and variability from block 1 to 2. A one-way ANOVA of mean
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contrast with block as a within-subjects factor revealed a significant effect of block

(F(5,155) = 8.18, P < 0.001) that was abolished on removal of block 1 (F(4,124) =

1.56, P = 0.19). ROC analysis was therefore carried out on data from blocks 2

– 6 (indicated by the red box in figure 7.4), after stabilisation of psychophysical

performance.

Figure 7.4: Mean and standard deviation (SD) of oddball Gabor contrast (percent-
age of maximum contrast) plotted for each block of the perceptual task, averaged over
participants. Error bars represent one standard error of the mean. Because stimulus
contrast and variability were significantly higher in block 1, indicating a period of
gradual stabilisation of performance, only data from blocks 2-6 (indicated by the red
surround) were used to calculate SDT measures.

To explore how well a Gaussian Type 2 SDT model accounted for the confidence

rating data, I fit the following linear regression model:

z(h) = β0 + β1.z(f) + ε (7.6)

where z is the inverse of the cumulative normal distribution function. This simple

linear model provided an excellent fit to the data (mean R2 = 0.98 ± 0.016 SD),

indicating that the underlying f(X|correct) and f(X|incorrect) distributions are

normal-like, lying along a straight line in z-coordinates. The β1 parameter (slope)

indicates the relative variance of the two distributions. This parameter was on aver-

age less than 1 within our sample (0.87±0.09 SD), indicating that the f(X|correct)

distribution has greater variance than the f(X|incorrect). As can be seen from fig-

ure 7.2, this finding is in accordance with the direct-translation model, which also

predicts slopes of less than 1 when the proportion of hits and false alarms are plotted

against one another in z-coordinates.

7.3.2.2 Individual differences in metacognitive ability

To test the prediction that Aroc scales with Type 1 d′, I examined individual dif-

ferences in metacognitive ability (figure 7.5). Through the staircase, I deliberately

minimised variability in d′, thus isolating variability in Aroc that might otherwise

be obscured by significant covariation with Type 1 performance (see Lau et al.

(2006) for a similar approach). I found considerable variation across individuals
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Figure 7.5: Individual ROC curves. Data is split into odd (blue; blocks 3 and 5)
and even (red; blocks 2, 4 and 6) blocks.
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in metacognitive ability (Aroc = 0.55 – 0.75) despite underlying task performance

being held constant (proportion correct: 70 – 74%). Furthermore, both proportion

correct (Pearsons r = −0.21, P = 0.24) and d′ (Pearsons r = 0.08, P = 0.66) were

uncorrelated with Aroc (figure 7.6). To establish whether this variability was stable,

I split data from each participant into two halves, and computed the test-retest

reliability of the two sets. This analysis revealed intrasubject consistency in Aroc

(r = 0.69, P = 0.00001; figure 7.5).

0.5 1 1.5
0.55

0.6

0.65

0.7

0.75

dprime

Figure 7.6: The left panel plots of the relationship between task performance (%
correct) and Aroc, with subjects ordered by increasing Aroc. The right panel plots the
relationship between Aroc and Type 1 d′. The circled outlier (d′ > 3SD from group
mean) was omitted from the analysis of brain structure reported in Chapter 8.

I next asked what might be driving these differences in Aroc. An increase in

sensitivity can be driven either by a better sensitivity to correct decisions (hits vs.

misses), incorrect decisions (false alarms vs. correct rejections) or a combination of

the two. To examine this, I split participants into high and low Aroc groups based on

the median value, and collapsed across confidence ratings to generate a 2×2 factorial

design crossing low (ratings 1-3) and high (ratings 4-6) confidence with decision

accuracy. It can be seen that sensitivity in confidence ratings to incorrect decisions

(false alarms and correct rejections) does not differ between groups (figure 7.7).

However, the high Aroc group demonstrate better monitoring of correct decisions;

i.e. they are more likely to use higher than lower confidence ratings when they were

actually correct on the Type 1 decision. This effect was reflected in a significant 3-

way interaction between group, Type 1 outcome (correct/incorrect) and confidence

(F(1,30) = 8.76, P = 0.003). Follow-up one-sample t-tests of hit rate against 0.5

revealed that that this interaction was driven by significant sensitivity to correct

decisions in the high Aroc group (t(15) = 2.26, P = 0.039), but not the low Aroc

group (t(15) = 0.30, P = 0.77).

7.3.2.3 Relationship between reaction times and metacognitive ability

The relationship between decision confidence and reaction time (RT) is complex

(Baranski & Petrusic, 1998; Pleskac & Busemeyer, 2010), but the general finding is
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Figure 7.7: Relative proportions of responses categorised using Type 2 SDT, split
according to whether individuals demonstrated high or low metacognitive ability.

that greater decision confidence is associated with faster Type 1 RTs (this relation-

ship can reverse in situations where extended evidence accumulation is beneficial;

see section 2.2.5). However, the relationship between individual differences in Type

2 sensitivity and RTs is largely unexplored. Here I examine RTs for both the Type

1 and Type 2 judgment as a function of confidence rating (figure 7.8), and link these

relationships to changes in metacognitive ability.

	
  
Figure 7.8: Mean RTs measured in milliseconds for both the perceptual decision
(blue) and the confidence judgment (red) from blocks 2-6, plotted as a function of
reported confidence level. Data are averaged across 32 participants and the error bars
represent one standard error of the mean.

I entered each participant’s RTs for both the initial task judgement into a mul-

tiple regression designed to predict reported confidence level. As expected based on
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previous work, faster RTs to the first perceptual judgement were significantly pre-

dictive of greater subjective confidence at a group level (t(31) = −8.43, P < 0.001;

figure 7.9). The mean regression coefficient for RTs to the second metacognitive

judgement was on average positive, but was not significant at the group level

(t(31) = 0.99, P = 0.33). However, of interest was whether subjects RTs for the

metacognitive judgment provided insight into the Type 2 decision process. I there-

fore examined the relationship between this Type 2 regression coefficient (beta) and

Aroc. Subjects who showed an increasingly positive relationship between Type 2 RT

and confidence also demonstrated greater Aroc, as indexed by a positive correlation

between the relevant multiple regression beta and Aroc (r = 0.48, P = 0.006; left

panel of figure 7.9).
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Figure 7.9: The left panel plots the significant positive relationship observed between
the extent to which Type 2 RT predicted confidence (via multiple regression) and Aroc

across individuals (see text for further details). The right panel plots the same (non-
significant) relationship for the quadratic term.

This result is somewhat difficult to interpret, as it reflects a significant linear

effect at the group level on a linear effect (between RT and confidence) at the indi-

vidual level. To gain a better understanding of what is driving this effect, I examined

the relationship between Type 2 RTs and confidence separately for high and low Aroc

individuals (figure 7.10). A shift can be seen from an inverted-U pattern in high Aroc

individuals to a decreasing-linear pattern for low Aroc individuals. In other words,

our data suggest that subjects who have high Aroc treat the metacognitive report as

a second-order decision, with confidence ratings at the extremes of the scale (1 and

6) being made with greater speed than intermediate confidence ratings; in contrast,

low Aroc subjects show a pattern of RTs that is relatively indistinguishable from

that seen for Type 1 RTs. Given this inverted-U seen for high Aroc individuals, we

might expect a quadratic term (Type 2 RT2) to be a better predictor of Aroc than a

linear term; however this was not the case (r = −0.20, P = 0.27; right panel of figure

7.9). Further work is therefore required to disambiguate the complex relationship

between RT and Aroc.
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Figure 7.10: The upper row plots the relationship between Type 1 RT and reported
confidence; the lower row plots the relationship between Type 2 RT and confidence.
For both analyses participants are sorted into high Aroc (left column) and low Aroc

(right column) based on a median split.

7.4 Discussion

In a Type 2 SDT model, probability distributions over the stimulus are assumed to

directly give rise to Type 2 confidence, without invoking the notion of intermedi-

ate processing stages. Higham et al. (2009) identify this generation of confidence

from assumed stimulus distributions as the ‘direct translation hypothesis’. They

empirically tested this hypothesis by varying Type 1 response criteria in a memory

paradigm, noting that Type 2 sensitivity should be affected if direct translation

holds, a conclusion supported by the data (Higham et al. 2009; Experiment 3).

Building on this work, I show that the Type 2 model provides an accurate fit to

post-decision confidence data in a perceptual task. In addition, the average ROC

slope on normal-normal coordinates was found to be significantly less than 1, consis-

tent with model predictions. However, a Type 2 SDT model predicts that perceptual

performance should be yoked to metacognitive ability. Against this prediction, by

constraining perceptual performance to be near-threshold (71%) using a staircase

procedure, I show that there is considerable variation in the Type 2 ROC (Aroc)

despite perceptual performance (d′) remaining constant across individuals. This re-

sult suggests that Type 2 performance may be partially dissociable from Type 1

performance.

Indeed, there are clear examples, such as blindsight and subliminal perception,
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where commentaries and performance dissociate (Lau et al., 2006; Weiskrantz et al.,

1974; Wilimzig et al., 2008). For example, Lau et al. (2006) showed that the subjec-

tive level of visibility of a stimulus could differ in two different metacontrast masking

conditions, despite detection performance remaining identical. Similarly, recent hu-

man psychophysical data reveal dissociations between objective performance and

subjective confidence, suggesting a more complex relationship between Type 1 and

Type 2 processes (Wilimzig et al., 2008). Metacognitive monitoring can also be

manipulated by factors that are orthogonal to the task of interest: Bengtsson and

colleagues found that priming subjects as clever or stupid altered the monitoring

of errors, but not basic task performance, which was held constant through use of

a staircase procedure (Bengtsson et al., 2010); similarly, manipulating the ease of

processing can affect metacognitive reports while leaving task performance relatively

unaffected (Alter & Oppenheimer, 2009; Busey & Arici, 2009; Wenke et al., 2010).

Reaction time measures suggest that decision confidence is at least partly deter-

mined by additional processing following the decision itself (Baranski & Petrusic,

1998, 2001). In support of this additional processing having functional relevance, I

find that the extent to which post-decision reaction time is modulated by reported

confidence is predictive of metacognitive ability. High Aroc individuals show a qual-

itative pattern of slower RTs for intermediate confidence ratings. Similar to the

pattern observed in Chapter 4, this result suggests that high Aroc individuals treat

the Type 2 rating as a second-order decision, with greatest uncertainty seen under

equivocal evidence in favour of being correct or incorrect (equation 7.2). Similarly,

Baranski & Petrusic (1998) found an inverted-U relationship between confidence

and Type 2 RT when Type 1 decisions were made, as here, under time pressure.

However, the addition of a quadratic term to the multiple regression analysis (which

would be expected to capture the inverted-U effect) did not improve predictions of

Aroc, indicating further work is needed to determine the relationship between RT

and metacognitive ability.

Differences in the monitoring of correct, as opposed to incorrect, decisions

appears to underlie individual differences in metacognitive ability in the present

dataset. High Aroc individuals tended to use a greater proportion of high than low

confidence ratings when their decisions were correct; this sensitivity was largely ab-

sent in low Aroc individuals. In contrast, metacognitive sensitivity to incorrect, error

trials was approximately equal in the two groups. Similarly, transcranial magnetic

stimulation (TMS) of dlPFC has been shown to decrease metacognitive sensitivity

through a selective effect on correct, but not incorrect, trials (Rounis et al., 2010).

Together this data suggests the intriguing possibility that error monitoring (thought

to depend on the ACC and insula; Ridderinkhof et al. 2004; Ullsperger et al. 2010;

Yeung et al. 2004) is dissociable from metacognitive processes that track increasing

confidence in being correct. In the next Chapter 8 I go on to examine how individual
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differences in metacognitive ability identified here map onto individual differences

in brain structure, with a particular focus on the prefrontal cortex.



Chapter 8

Relating individual differences in

metacognitive ability to human

brain structure

Don’t you think if I were wrong I’d know it?

Sheldon Cooper, The Big Bang Theory

8.1 Introduction

In the previous Chapter 7 I identified a component of metacognitive ability that is

dissociable from perceptual task performance across individuals. In this chapter I

assess whether this ability has a distinct neural correlate by examining individual

differences in brain structure.

Little is known about the biological basis of metacognitive ability, here defined

as how well an individual’s confidence ratings discriminate correct from incorrect de-

cisions over time. I hypothesised that individual differences in metacognitive ability

would be reflected in the regional anatomy supporting this function, akin to simi-

lar associations between brain anatomy and performance noted in other cognitive

domains (Carreiras et al., 2009; Fuentemilla et al., 2009; Scholz et al., 2009; Tuch

et al., 2005).

Earlier patient studies describe candidate brain regions where damage is associ-

ated with poor introspective ability, in particular, a prefrontal-parietal network (Del

Cul et al., 2009; Fletcher & Henson, 2001; Simons et al., 2010). Theories of prefrontal

function have emphasised a role for anterior (rostrolateral) prefrontal cortex in car-

rying out second-order operations on internally generated information (Christoff &

Gabrieli, 2000; Fletcher & Henson, 2001), a core feature of metacognition. Con-

sistent with prefrontal cortex playing a causal role in metacognition, patients with

lesions to anterior prefrontal cortex show deficits in subjective reports compared

132
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to controls, after factoring out differences in objective performance (Del Cul et al.,

2009). Furthermore, impairing dorsolateral prefrontal cortex function with theta-

burst transcranial magnetic stimulation compromises the metacognitive sensitivity

of subjective reports of awareness, while leaving underlying task performance in-

tact (Rounis et al., 2010). I hypothesise that the local structure of these regions

(both grey matter volume and white matter integrity) might reflect an individual’s

metacognitive ability.

As described in Chapter 7, I quantified variability in metacognitive sensitivity

(which is specific to an individual) that was independent of both objective task

performance and subjective confidence (which vary on a trial-by-trial basis). Here, I

now ask whether this variability in metacognitive ability was predicted by variability

in brain structure using two distinct measures: grey matter (GM) volume measured

using MRI, and the fractional anisotropy of white matter (WM) measured using

diffusion tensor imaging (DTI).

8.2 Methods

8.2.1 Subjects

Details of participants are given in Chapter 7. One participant was excluded from

the analysis of brain structure due to aberrant psychophysical task performance

(Type 1 d′ > 3SD from the group mean; circled point in figure 7.6).

8.2.2 Voxel-based morphometry analysis

Voxel-based morphometry (VBM) provides a quantitative measure (at each voxel)

of the tissue volume per unit volume of spatially normalised image (see Chapter

3). A 1.5T Sonata scanner (Siemens Medical Systems, Erlangen, Germany) was

used to acquire all images for each participant. T1-weighted anatomical whole-

brain scans were acquired for VBM analysis (176 slices, echo time = 3.56ms, TR =

12.24ms, voxel size 1mm isotropic). VBM preprocessing was carried out using SPM8

(http://www.fil.ion.ucl.ac.uk/spm). The images were first segmented into GM,

WM and cerebral spinal fluid in native space (Ashburner & Friston, 2005). The

GM segment images from this process were then rigidly aligned and subsequently

warped to an iteratively improved template using nonlinear registration in DARTEL

(Ashburner, 2007). DARTEL’s ‘Normalise to MNI’ module was then used to produce

smoothed normalised images. The DARTEL template was affine registered to MNI

space, and the GM images were transformed using the DARTEL flow-fields and this

affine transformation, in a way that preserved their local tissue volumes (equivalent

to a Jacobian ‘modulation’ step). Smoothing used a Gaussian kernel of 8mm full

width at half maximum.
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The pre-processed GM images were entered into a multiple regression model

in SPM8 to determine which brain regions showed significant covariation with the

SDT-based measures of metacognitive ability. I included Aroc, d
′, Type 2 criterion

(Broc; the overall tendency to use high confidence responses), the absolute (unsigned)

value of the Type I criterion (|c|) and gender (M = 1; F = 0) in the model. Type 1

criterion (c) measures the extent of the bias towards interval 1 or 2 on the perceptual

decision task, with greater bias reflecting suboptimal performance. Positive values

indicate bias towards interval 1, and negative values bias towards interval 2. I thus

entered the absolute value of c as a covariate of no interest, with higher values

indicating suboptimal performance bias towards either interval.

Adjustment for ‘global’ brain volume using proportional scaling was applied, re-

sulting in voxel values that were proportions of total GM volume. A binary mask

(SPM8 grey.nii template > 0.3) was used to restrict the search volume to changes in

GM. T -statistic maps reflecting the correlation between each regressor and regional

GM volume were created. Cluster-based statistics were used to locate significant

regions based on both their peak value and spatial extent after applying an ini-

tial cluster-defining threshold of P < 0.001. Due to structural images displaying

local variation in smoothness, standard applications of cluster-based random field

theory are inappropriate (Hayasaka et al., 2004). I thus applied non-stationary clus-

ter extent correction when calculating family-wise error (FWE) corrected P values

using the NS toolbox (http://www.fmri.wfubmc.edu/cms/NS-General). Compu-

tational simulations (Hayasaka et al., 2004) show that for designs with high degrees

of freedom and sufficient smoothness, as here, using a cluster defining threshold of

P < 0.001 with correction for non-stationarity provides adequate control over the

family-wise false positive rate (P < 0.05).

8.2.3 Diffusion tensor imaging analysis

The DTI dataset comprised of 68 images with 60 slices and 2.3mm isotropic resolu-

tion. The first 7 images were collected with b = 100 s/mm2. The diffusion encoding

directions were isotropically distributed on the surface of the sphere (Jansons &

Alexander, 2003) for the remaining 61 images and the b-value was 1000 s/mm2.

The echo time was 90ms, each 2D image slice took 150ms to collect, and the field

of view was 220mm. DTI data sets are often collected using echo-planar imaging

(EPI) methods which are affected by susceptibility-induced artefacts. To reduce the

extent of these artefacts two datasets were collected for each participant, with the

only difference being that the phase encoding direction was reversed for the second

run. This method ensures the susceptibility-induced distortions are equal and oppo-

site in the two datasets, providing the opportunity to correct their effect (Andersson

et al., 2003).

Diffusion-weighted images were first aligned using FSL’s eddycorrect (http:
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Figure 8.1: Image preprocessing pipeline for VBM and DTI analysis

//www.fmrib.ox.ac.uk/fsl/), and then combined into a single dataset with re-

duced susceptibility-induced artefacts. The main diffusion tensor was then fitted at

each voxel using FSL’s dtifit. From the tensor a rotationally invariant measure of

diffusion anisotropy can be calculated. One such measure is fractional anisotropy

(FA) with values ranging from 0 (representing isotropic, or undirected, diffusion) to

1 (representing a single preferred direction of diffusion). This measure has been used

extensively to investigate local WM integrity, as diffusion of water molecules is more

restricted perpendicular to, rather than along, neuronal fibres (see section 3.5). The

calculated FA map for each participant (in native space) was imported into SPM8

and coregistered to the WM segment image of the same participant created during

VBM analysis. Coregistration was carried out by maximising normalised mutual

information between the images. The DARTEL flowfields and affine (MNI) trans-

formation were then applied to each participant’s coregistered FA image, producing

normalised FA images in MNI space. Unlike the VBM normalisation (which pre-

served the original local tissue volume), the FA images were normalised in a way

that preserved their original voxel values (without ‘modulation’). Normalised FA

images were smoothed with the same 8mm full-width at half maximum Gaussian

kernel prior to statistical analysis. For one participant, DTI scans were unavailable,

leaving 30 subjects in the FA analysis.

Statistical analysis of FA proceeded in an identical fashion to that of GM volume

(see section 8.2.2). A multiple regression model was constructed consisting of Aroc,

d′, Type 2 criterion (Broc; the overall tendency to use high confidence responses) and

the absolute (unsigned) value of the Type I criterion (|c|). A binary mask (mean

normalised FA > 0.2) was used to restrict the search volume to changes in WM.

Statistical inference was conducted as for VBM. Probable tract labels were obtained

using the JHU White-Matter Tractography Atlas within FSL.
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Figure 8.2: Grey matter volume correlated with metacognitive ability. Upper row:
Axial ‘glass brains’ (viewed from above) showing areas where grey matter volume cor-
relates positively (left) and negatively (right) with Aroc. Regions circled are cluster-
level corrected for multiple comparisons across the whole brain volume. Lower row:
Projection of statistical (T ) maps for positive (hot colormap) and negative (cool col-
ormap) correlations with Aroc onto an inflated cortical surface T1-weighted template,
thresholded at T > 3 for display purposes.

8.3 Results

8.3.1 Grey matter

I examined for a relationship between brain structure and four different psycholog-

ical measures: the metacognitive ability (Aroc) of our participants, objective per-

formance on the perceptual task (d′ and c), and the tendency to use high or low

confidence responses on individual trials (Broc). Having removed the potentially

confounding factors (Smith et al., 2007) of overall brain size and gender (by en-

tering them as regressors of no interest), I found that an individual’s metacognitive

ability (Aroc) was significantly correlated with grey matter volume in right rostrolat-

eral prefrontal cortex (figure 8.2) (Brodmann area (BA) 10, peak voxel coordinates:

[24, 65, 18], Tmax = 4.8, P < 0.05, corrected for multiple comparisons). Notably, gray

matter volume in this region did not correlate with task performance as indexed by

d′ (r = 0.15, P = 0.42) or overall confidence (Broc; r = −0.023, P = 0.90). Gray

matter volume in a homologous region in left rostrolateral prefrontal cortex was also

correlated with Aroc, but did not survive correction for multiple comparisons across

the entire brain volume. Details of this and other clusters that did not survive a

whole brain correction are listed in table 8.1.

Thus, variability in introspective judgements of performance on a simple visual

detection task was predicted by variability in the anatomical structure of anterior

prefrontal cortex (BA 10) independently of both objective performance and level
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Regressor Voxels Z-score cluster
P -value

Peak voxel Laterality Label

Aroc

675 4.02 0.029 24,65,18 R BA 10
291 3.93 0.191 6,-57,18 L/R Precuneus
31 3.78 0.703 -20,-53,12 L BA10
25 3.45 0.829 36,39,21 R BA46
29 3.44 0.497 35,50,9 R BA46

Aroc

713 3.92 0.026 -56,-30,-26 L ITG
76 3.62 0.753 -63,-30,10 L STG
80 3.54 0.457 51,-33,-21 R ITG
15 3.22 0.995 -41,3,-48 L ITG

Broc 28 3.93 0.313 -33,-73,34 L BA19

−Broc
93 3.47 0.233 -59,-27,-14 L MTG
20 3.35 0.826 -66,-10,3 L STG

d′

82 3.77 0.175 -3,-84,-21 L/R Cerebellum
16 3.68 0.939 53,-25,-15 R MTG
389 3.66 0.112 60,-39,51 R Sup. parietal
47 3.45 0.817 6,-61,4 L/R Lingual gy.
18 3.26 0.953 -3,-9,66 L BA6

−d′ . . . . . . . . . . . . . . . . . .

Table 8.1: Grey matter volume associated with SDT parameters across subjects.
Whole-brain corrected clusters (P < 0.05, corrected for multiple comparisons) are
indicated in bold type. For completeness, correlations that survive a height threshold
of P < 0.001, uncorrected, and an extent threshold of 10 voxels are also reported.

of confidence. While my primary question addressed positive dependence of gray

matter on Aroc, I also found that left inferior temporal gyrus showed a negative

correlation with metacognitive sensitivity (figure 8.2) (coordinates: [−56 − 30 −
26], Tmax = 4.66, P < 0.05, corrected for multiple comparisons), accompanied by a

similar region on the right that did not survive correction for multiple comparisons

(see table 8.1 for full details and coordinates).

8.3.2 White matter

I next analysed white matter microstructure based on the following considerations.

If the structure of anterior prefrontal cortex is functionally related to metacognitive

performance, then one would expect that white matter tracts connected with this

region would also show a similar microstructural correlation with expression of this

behavioural trait. Statistical analysis of white matter fractional anisotropy (FA)

proceeded in an identical fashion to that of GM volume. In a whole-brain analysis

of white matter microstructure, I found that FA in the genu of the corpus callosum

was positively dependent on Aroc (figure 8.3) (P < 0.05, corrected for multiple

comparisons). Neither objective performance (stimulus contrast or d′) nor overall

confidence (Broc) correlated with grey matter volume or white matter fractional
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Figure 8.3: The leftmost panel shows an axial glass brain indicating areas
where white matter fractional anisotropy (FA) correlates positively with Aroc. No
suprathreshold FA clusters were found for negative correalations with Aroc (see also
tables 8.1 and 8.2). The right panel shows a statistical (T ) map of voxel-wise correla-
tions between fractional anisotropy (FA) and Aroc, thresholded at T > 3 for display
purposes and overlaid on sagittal (left) and axial (right) slices of the average FA im-
age across subjects, at the x and z co-ordinates indicated. A region within the genu
of the anterior corpus callosum showed a correlation between FA and metacognitive
accuracy that was statistically significant after correcting for multiple comparisons
(P < 0.05).

anisotropy elsewhere in the brain (P > 0.05, corrected for multiple comparisons

(see table 8.2 for uncorrected correlations). I note that an absence of structural

correlations with these parameters may have been due to our design deliberately

minimising variability in both d′ and Broc in order to isolate the neural correlates of

introspective ability (Aroc).

8.3.3 Control analyses of grey and white matter correlations

I carried out additional analysis to rule out potential alternative interpretations of

the findings. One concern is that variation in underlying perceptual acuity could con-

found the anatomical variance ascribed to metacognitive ability (Aroc). Good per-

ceptual ability may be reflected in low mean stimulus contrast and/or low staircase

variability (though I note that extraneous environmental or ocular factors also affect

these variables). To rule out this interpretation, I computed the partial correlation

between brain structure and Aroc while controlling for both mean stimulus contrast

and the variability (SD) in the staircase required to achieve a constant level of perfor-

mance within each individual. Both the GM cluster in BA10 (r = 0.39, P = 0.036)

and the FA cluster in anterior corpus callosum (r = 0.74, P < 0.001) remained

significantly correlated with Aroc after controlling for mean contrast and staircase

variability.

This partial correlation analysis only examines the correlation of predefined re-

gions. As a further test, I constructed a second design matrix in which mean stimulus

contrast and staircase variability were directly entered as predictors of GM/FA, with

gender again present as a covariate of no interest. Neither measure correlated with

grey matter or FA at the statistical thresholds used in the main analysis (P > 0.05,

corrected for multiple comparisons), even when applying a mask (8mm sphere) to
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Regressor Voxels Z-score cluster
P -value

Peak voxel Laterality Label

Aroc

308 3.93 0.033 2 26 -2 L/R Corpus cal-
losum

66 3.58 0.492 29,-55,-2 R Post. corpus
callosum

31 3.54 0.502 -32,-67,0 L Inf. fronto-
occipital
fasciculus

26 3.48 0.680 -32,-55,14 L Longitudinal
fasciculus

13 3.44 0.824 35,-52,-15 R Inferior
longitudinal
fasciculus

11 3.39 0.631 -18,-52,28 L Cingulum
−Aroc . . . . . . . . . . . . . . . . . .
Broc . . . . . . . . . . . . . . . . . .

−Broc

128 4.24 0.226 -8,20,-9 L Corpus
callosum

49 3.91 0.132 26,-51,-9 R Post. corona
radiata

21 3.54 0.438 -18,29,24 L Cingulum

d′
74 3.89 0.251 -17,6,39 L Sup. corona

radiata
18 3.33 0.721 -18,-7,45 L Sup. corona

radiata
−d′ . . . . . . . . . . . . . . . . . .

Table 8.2: White matter fractional anisotropy associated with SDT parameters
across subjects. Whole-brain corrected clusters (P < 0.05, corrected for multiple
comparisons) are indicated in bold type. For completeness, correlations that survive
a height threshold of P < 0.001, uncorrected, and an extent threshold of 10 voxels
are also reported.
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Analysis Regressor Voxels Z-score cluster
P -value

Peak voxel Laterality Label

GM

Negative
mean
contrast

88 3.67 0.917 14,-10,24 R Caudate
51 3.56 0.783 -65,-57,4 L MTG
78 3.44 0.913 5,-76,21 L/R Calcarine

sulcus
80 3.38 0.908 3,36,42 L/R dmPFC
11 3.21 0.982 -14,29,-20 L OFC

Negative
SD

128 4.00 0.301 59,-42,1 R MTG
29 3.70 0.577 -51,33,36 L Inf.

parietal
34 3.36 0.938 47,-15,-48 R Postcentral

gy.
22 3.24 0.953 -44,-21,46 L Postcentral

gy.

FA
Negative
mean
contrast

. . . . . . . . . . . . . . . . . .

Negative
SD

30 3.86 0.942 -29,-15,48 L Sup.
corona
radiata

Table 8.3: GM and FA correlating with negative stimulus contrast and staircase
variability (low-level measures of perceptual performance). After correcting for mul-
tiple comparisons, no significant clusters were observed, but correlations that survive
a height threshold P < 0.001, uncorrected, and an extent threshold of 10 voxels are
reported for completeness.
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isolate voxels within the vicinity of the BA10 (GM) or the anterior corpus callosum

(FA) peak voxels. While I am cautious about interpreting uncorrected findings,

one result of potential interest is that GM volume in the medial calcarine sulcus,

consistent with the location of early visual cortex, showed increased volume in sub-

jects with greater perceptual acuity as defined by negative mean stimulus contrast

(P < 0.001, uncorrected). Table 8.3 details uncorrected results from these mod-

els for completeness. Together these control analyses indicate that the correlations

I observe between Aroc and structure relate to differences in metacognitive ability

rather than low-level differences in performance.

8.4 Discussion

The central finding in this chapter is a delineation of a focal anatomical substrate

that predicts inter-individual variability in metacognitive ability. As with any corre-

lational method, I cannot establish whether the covariation I observed here between

brain structure and metacognition reflects a causal role. However, given a wealth

of evidence for changes in grey matter volume within and between individuals as-

sociated with a range of skills, these data indicate that underlying differences in

metacognitive ability may be similarly dependent on local brain anatomy.

How might these regions contribute to metacognition? Anterior subdivisions of

prefrontal cortex are implicated in high-level control of cognition (Boorman et al.,

2009; Burgess et al., 2007; Christoff & Gabrieli, 2000; Daw et al., 2006; Koechlin &

Hyafil, 2007; Ramnani et al., 2004), and are well placed to integrate supramodal per-

ceptual information with decision output (Ramnani et al., 2004), a process thought

to be key for metacognition (Cleeremans et al., 2007; Insabato et al., 2010). The

genu of the corpus callosum contains white matter fibres connected with the ante-

rior and orbital prefrontal cortices in humans (Park et al., 2008), consistent with

metacognitive ability being dependent not only on anterior prefrontal grey matter

but also on reciprocal projections to and from this area. I also found negative cor-

relations with Aroc in bilateral regions of anterior inferior temporal grey matter.

While I am cautious about interpreting the relevance of a decrease in grey matter

volume for increased metacognitive ability, I note these temporopolar regions are im-

plicated in both self-related (Frith & Frith, 2003) and higher-order visual (Gross &

Schonen, 1992) processing, and thus alterations in grey matter here might similarly

place functional constraints on perceptual metacognition. Our present findings may

reflect innate differences in anatomy, or alternatively reflect the effects of experience

and learning, as has been found in the sensorimotor domain (Draganski et al., 2004;

Scholz et al., 2009).

Dorsolateral prefrontal activity increases under conditions where subjective re-

ports match objective perceptual performance (Lau et al., 2006), suggesting a com-
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putational role in linking performance to confidence. Furthermore, convergent ev-

idence from studies employing TMS (Rounis et al., 2010), lesion (Del Cul et al.,

2009) and functional MRI (Yokoyama et al., 2010) approaches provide support for

the role of rostrolateral PFC as a mediator of metacognitive ability that is dissociable

from primary task performance. Given that the variation in metacognitive ability in

the present study was primarily driven by an effect on monitoring of correct trials,

anterior PFC may be particularly important for monitoring subjective confidence,

as opposed to errors (see also Rounis et al. 2010). However, based on these initial

studies, the anatomical specificity with which metacognition can be related to the

lateral PFC is still imprecise; for example, some studies have emphasised dorsolat-

eral PFC (BA 9/46; Rounis et al. 2010; Lau et al. 2006), whereas the present study

and others (Del Cul et al., 2009; Yokoyama et al., 2010) emphasise the importance of

rostrolateral BA10. Further studies, ideally employing functional MRI, are required

to precisely localise the activity relevant for metacognitive function.

In summary, these data provide an initial window onto the biological basis of

the ability to link objective performance to subjective confidence. The demonstra-

tion that this ability may be dependent on a restricted area of prefrontal cortex, an

area that is phylogenetically recent, is intriguingly consistent with a conjecture that

metacognitive function has been selected for during evolution (Metcalfe, 2008), fa-

cilitating computations that allow us to introspect about self-performance, or, more

prosaically, think about thinking.



Chapter 9

General discussion

9.1 Overview

The work contained in this thesis is concerned with analysing the neural basis of

simple visual decisions at two levels: that of (first-order) links between perception

and action, and second-order, or metacognitive, commentaries on these links. By

comparing these levels of analysis, I set out to form bridges between mechanism

on the one hand and subjectivity on the other. Below I discuss contributions, lim-

itations, and future work relevant to each of the three sections of my thesis – a

neuroimaging investigation of how the loss function is incorporated into the stages

of perceptual decision making, experiments examining how the basal ganglia mod-

ulate the link between decision and action, and theoretical and experimental work

on how metacognitive commentaries about decision-making are generated. In the

final section I consider how metacognition may be related to particular higher-order

aspects of consciousness, before concluding with a glance towards how I envisage

the evolution of the future of the field.

9.2 Integration of the loss function in perceptual

decision

9.2.1 Contributions

How the brain incorporates the loss function information into the perceptual decision

process is unknown (see section 2.3.5). A Bayesian ideal observer should incorporate

both a likelihood and a prior term when coming to a posterior belief about a partic-

ular state of the world (Kersten et al., 2004); this belief is then incorporated with

the knowledge of the expected value of each potential option to compute the optimal

course of action (Kording, 2007). However, whether this sequence of computations

is reflected in the brain is unknown; indeed, on one proposal the distinction between

values and priors is lost (Friston, 2009). Thus while integration of values and priors

143
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into perceptual decision-making is well-studied at the behavioural level (e.g. Lis-

ton & Stone 2008; Johnstone & Alsop 2000; Proshansky & Murphy 1942; Whiteley

& Sahani 2008), whether this integration affects neural mechanisms of perception,

decision and/or action is unclear.

In Chapter 4, I devised a task that could address this question using brain imag-

ing. Subjects were asked to categorise noisy images as either faces or houses, and

were informed about the monetary losses for making an incorrect response on each

category. On two-thirds of trials, these losses were asymmetric, such that faces were

associated with higher losses than houses, or vice versa. This manipulation sys-

tematically biased subjects’ decision-making towards the category associated with

lower losses, consistent with the adoption of an asymmetric decision criterion. By

using face and house stimuli, categories with dissociable perceptual representations

in ventral visual cortex, I asked whether this behavioural bias was associated with

shifts in activity at the level of category coding. I found no evidence for this; instead,

ventral visual activity tracked the perceptual input, correlating with the amount of

phase in the image informative of the face or house category. In contrast, during

asymmetric loss trials, activation increased in left inferior frontal gyrus (L-IFG),

posterior parietal cortex and the basal ganglia. This increase in activity was not

associated with a change in performance (d′) or reaction time, suggesting that it

reflects incorporation of the asymmetric loss function at a decision stage (see also

Ferrera et al. 2009; Rorie et al. 2010). By design, response hand was orthogonal

to the cost factor, allowing examination of effector-specific effects of cost, but none

were found. Together these findings are consistent with asymmetries in value be-

ing incorporated at a decision stage rather than impacting on perception (viz. the

computation of a posterior belief).

Since publication of results from this chapter (Fleming et al., 2010c), Summer-

field and colleagues have reported similar findings in a visual detection paradigm

(Summerfield & Koechlin, 2010). Using an evidence accumulation model of subjects’

reaction times, they found that asymmetric value shifted the baseline of accumula-

tion, consistent with similar analyses of monkey behavioural data (Feng et al., 2009;

Rorie et al., 2010). Shifts in decision criteria were tracked by the parietal cortex, but

did not affect activity in regions encoding sensory evidence, including fusiform and

middle occiptal gyri. Signal in parietal cortex increased as decision criteria became

more liberal in their yes-no task. In contrast, I observed signal increases in parietal

and inferior frontal cortex for any shift in criterion away from the neutral point, a

difference that may relate to the critical task features – yes/no and two-alternative

forced-choice – used in the two studies. However, the broad pattern of results –

effects on decision-making regions but not visual regions – is consistent with the

findings reported in Chapter 4.

For the bias towards the house category, I additionally noted that subjects who
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showed greater shifts in decision criteria also had greater activity in ACC. This

finding is echoed in a recent study demonstrating that event-related activity in the

ACC predicted an individual’s ability to use predictive (prior) information to adjust

a decision bound (Domenech & Dreher, 2010), suggesting this activity may gener-

alise to different causes of criterion shifts. The interactive role of ACC and more

dorsomedial activity found to correlate with decision difficulty in both Chapter 4

and other studies (e.g. Grinband et al. 2006; Noppeney et al. 2010; Summerfield &

Koechlin 2010; Thielscher & Pessoa 2007) remains to be determined. Activity cor-

relating with decision difficulty was not affected by asymmetries in value in Chapter

4, suggesting one function of this region may be to recruit lateral frontal cortex to

implement changes in decision criteria when uncertainty is high (Kouneiher et al.,

2009). However, here difficulty was correlated with reaction time, which was not

included as a covariate in the model in this study (cf. Chapters 5 and 6). As Nop-

peney and colleagues point out, ‘response times covary with many other cognitive

processes that are unrelated to multisensory evidence accumulation such as stimulus

processing times, working memory demands, etc.’ (Noppeney et al., 2010), and thus

the existence of a putative difficulty signal in perceptual decision-making remains

equivocal (Heekeren et al., 2008).

9.2.2 Future directions

A recent theoretical suggestion holds that cost functions and priors perform a com-

mon role in Bayesian inference (Friston, 2009; Friston et al., 2009). In other words,

cost is implemented ‘as if’ it were a prior expectation (and vice versa). I additionally

observed an increase in activity in the parahippocampal cortex to increases in value

for the house category, outside the stimulus-sensitive region of interest. This acti-

vation may reflect top-down activation of category-specific cortex (Ekstrom et al.,

2008; Philiastides & Sajda, 2007) potentially consistent with changes in expectation

(Summerfield & Koechlin, 2008; Egner et al., 2010), but the lack of a similar effect

for the face category is difficult to fit into this schema (although see section 4.5.2).

In contrast, several studies have reported robust effects of prior expectations on

activity in face- and house-specific ventral visual cortex (Summerfield et al. 2006a;

Egner et al. 2010; Puri et al. 2009; but see Wenzlaff et al. 2011). Further work is

required to explicitly examine the neural overlap between cost- and prior-induced

biases in visual decision-making, ideally through a factorial design, and ask whether

these biases may be incorporated at dissociable stages of the decision pathway.

The task in Chapter 4 required a forced choice between two categories, making

it difficult to draw inferences as to whether subjects’ perceptual experience was

affected by the asymmetry in loss function. Liston & Stone (2008) tackled this

question by asking observers to make a post-decision judgment during a spatial

saccade task. Observers were asked to saccade to the brighter of two targets (the
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‘motor’ response), which could appear to the left or right of fixation, and then make a

‘perceptual’ response using a keypress as to whether the chosen stimulus was brighter

or dimmer than a subsequently presented test stimulus. They found that a decision

bias induced by asymmetries in reward or probability associated with one side of

the screen also affected the perceptual judgment, making the targets seem brighter

and noisier. Other data suggest prior expectations alter the awareness of particular

stimulus attributes such as brightness and motion direction (Carrasco et al., 2004;

Sterzer et al., 2008). One key variable related to whether value affects perceptual

processing may be the extent to which asymmetry in costs co-opt visual attention to

induce biases towards one or other region of space (Maunsell, 2004; Serences, 2008;

Weil et al., 2010); in the present work and in Summerfield & Koechlin (2010), value

was associated with a particular category, rather than a region of space, perhaps

restricting the influence of the loss function to higher-level decision areas.

To the extent that the loss function is integrated at a post-perceptual stage,

this raises intriguing questions as to subjects’ knowledge of the antecedents of their

decision process under biased and unbiased conditions. In other words, do subjects

‘know’ that they are biased on a particular trial? If we asked for a rating of the

stimulus, rather than a reward-maximising response, would a different answer be

given? If priors and values do act at perceptual and post-perceptual stages of the

decision process respectively, one strong prediction from this work is that the influ-

ence of the former should be ‘cognitively impenetrable’ (Pylyshyn, 2003), whereas

the latter should be amenable to self-report. A separate analysis of the influence of

value and priors was not carried out by Liston & Stone (2008), but these conditions

may plausibly have differential effects on any subsequent ‘perceptual’ estimation. In

other words, subjects’ confidence in their response to a trial biased by an asymmet-

ric prior should be indistinguishable from an unbiased trial; in contrast, confidence

on a trial biased through asymmetric value may show tell-tale signs of a mismatch

between perception and action. This hypothesis remains to be tested, and could

usefully draw upon the methods for measuring metacognitive confidence outlined in

section 2.4.1 and Chapter 7.

9.3 Role of the basal ganglia in linking decision

and action

9.3.1 Contributions

A hallmark of human decision-making is flexibility. Performing a predictable se-

quence of actions such as driving is usually carried out smoothly and swiftly, without

the need for cognitive control. An unexpected change in the environment – a cat run-

ning into the road, say – wrenches us into immediate evasive action. This situation
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results in response competition – between the ongoing process of driving, and the

need to hit the brakes to avoid the cat. The neural mechanisms underlying switches

between automatic and controlled modes of action selection are unknown, but the

subthalamic nucleus (STN) and pre-SMA have been proposed as key nodes in this

process (Isoda & Hikosaka, 2007, 2008; Neubert et al., 2010; Redgrave et al., 2010).

Through multiplexing of various cortical and intra-basal ganglia inputs (Shepherd,

2004), the STN is uniquely placed to integrate cognitive and motor information in

the service of flexible action control (Frank, 2006; van den Wildenberg et al., 2010).

Further, deep-brain stimulation of the structure during treatment of Parkinsons dis-

ease can have the unwanted side effect of impairing cognitive control (Alberts et al.,

2008; Hershey et al., 2004; Frank et al., 2007; Ballanger et al., 2009). However, di-

rect evidence for the role of STN in action reprogramming in humans has remained

elusive.

In Chapters 5 and 6 I provide evidence that the BOLD signal in human STN is

increased during switches away from a default action. In Chapter 5 the default was

signalled by the computer, and accepting the default was associated with inaction,

making it difficult to interpret whether STN activity was specific to non-default ‘go’

responses, or non-default actions in general. In Chapter 6, I manipulated the default

through changing response frequency for both ‘go’ and ‘nogo’ responses, permitting

dissociation of the required action from changes in expectation. Here, STN activity

was seen to be modulated by violation of expectations both for ‘go’ and ‘nogo’

responses, supporting a role for this structure in the control of unexpected actions.

One influential account of these effects is that the need for cognitive control activates

hyperdirect afferents to increase STN activity, allowing more time for the correct

decision to be made, analogous to a raised decision threshold (Frank, 2006; van den

Wildenberg et al., 2010). A related set of studies has reported that striatal activation

is linked to changes in the profile of reaction times, consistent with a lowered decision

threshold (Forstmann et al., 2008, 2010). In Chapter 6 the striatum was found to be

marginally more active for low difficulty ‘go’ responses, potentially consistent with

this view. However, here a change in threshold was transient (on surprising trials),

whereas in the Forstmann et al. studies the speed-accuracy tradeoff was altered in a

tonic fashion, from block to block. It would be useful to explicitly compare the role

of STN and striatum under blockwise speed-accuracy tradeoff instructions using the

anatomically-targeted techniques employed in Chapter 6.

The default bias is pervasive in several everyday scenarios (Thaler & Sunstein,

2009). For example, altering whether organ donation requires an opt-out or opt-in

response (changing the default) produces a dramatic change in the proportion of a

country’s population agreeing to donate (Johnson & Goldstein, 2003). The studies in

this thesis are considerably simplified in comparison to this category of higher-level

default effect, which involves myriad factors including loss aversion and transaction
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costs (DeMartino et al., 2009; Tversky & Kahneman, 1991). However, the study

reported in Chapter 5 (Fleming et al., 2010b), along with a related recent study (Yu

et al., 2010), represent initial attempts to isolate the neural correlates of accepting or

rejecting a default option. Yu et al. (2010) manipulated the default in an gambling

task, showing that insula and striatum were associated with switching away from,

or sticking with, the default, respectively. In this experiment, participants were

presented with two cards that when flipped could result in either a win or a loss,

one of which was designated as the default. The discrepancies between the imaging

results in these two studies might be ascribed to the focus on perceptual difficulty

in the former case, and emotionally-laden processes in the latter. Consistent with

this interpretation, when explicit feedback is added to the perceptual task used in

Chapter 5, modulation of the default bias is associated with error-related insula

activity (Nicolle et al., 2011). Thus insula and striatal activity may modulate the

strength of the default bias, with action control circuitry (including STN) being

important in overcoming this bias. Further studies might usefully compare and

contrast the role of emotional and visuomotor neural circuitry in modulating the

default bias.

9.3.2 Future directions

One important distinction between studies that have studied perceptual ‘predic-

tion errors’ or violations of expectation (Strange et al., 2005; Näätänen et al., 1987;

Mars et al., 2008; Egner et al., 2010) and the study reported in Chapter 6 is that

the former focussed on the sensory-mnemonic neural coding of expectation viola-

tion, whereas the present work examines how violations of expectation are linked to

changes in action control. This link was also investigated by Bestmann et al. (2008),

who found that surprising events were associated with slowing of RTs and a decrease

in the excitability of the cortico-spinal motor tract using TMS, consistent with de-

creased drive to the motor system and a raised decision threshold (see section 2.2.5).

In a similar analysis using paired-pulse TMS, Neubert et al. (2010) found that the

right inferior frontal cortex and pre-SMA had inhibitory and excitatory effects on

motor-evoked potentials during switch trials, respectively. This study also found

that individual variability in the long-latency switch-related effect was associated

with white-matter fractional anisotropy from right IFC to STN. In contrast, the

short-latency effect size was associated with cortico-cortical white-matter fractional

anisotropy, suggesting two potential routes by which premotor regions can influence

motor output (see also Mars et al. 2009). Together, these studies suggest that corti-

cal regions detecting violations in expectation may influence action control through

a pathway that includes the STN. The inferior frontal cortex may be a key structure

mediating this link, given its dual role in attention and action control (Dodds et al.,

2010; Hampshire et al., 2007; Verbruggen et al., 2010).
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I observed an interaction between default-related activity with stimulus difficulty

in Chapter 5 but not 6. As discussed in section 6.4.2, differences in task design and

the demands placed on cognitive control may potentially explain this discrepancy.

More generally, the role of STN in responding to changes in task difficulty remains an

open question. Deep-brain stimulation studies have reported that STN DBS leads

to impairments on high-difficulty decision-making (Baunez et al., 2001; Frank et al.,

2007), but results in this field are not always consistent (cf. van den Wildenberg

et al. 2006). Indeed, detailed analysis of reaction times show a complex interactive

effect of DBS, with a detrimental effect on the accuracy of fast responses, but an

improvement for slower responses (Wylie et al., 2009). Crucially, the relationship

between BOLD signal, neural activity and the effects of deep-brain stimulation is

likely to be complex (Gradinaru et al., 2009); this relationship urgently needs to be

established if the results from DBS studies and fMRI studies are to be combined to

better understand STN function.

In Chapter 6, I assumed that participants’ expectations of a high or low p(go)

block were present on the first trial. An alternative approach is to use ideal observer

models to predict the expectations encoded by the subject at any particular point in

time (Strange et al., 2005; Mars et al., 2008; Bestmann et al., 2008). In the present

study such a model makes very similar predictions for subjective expectation to those

assumed by our factorial design, but potentially provides a different perspective on

cognitive control (Mars et al., 2010). In Bayesian approaches to decision-making

(Ma, 2010), our difficulty factor is neatly equated with the precision of the likelihood,

whereas changes in expectation are reflected in the prior (equation 2.2). A further

additional term that was not investigated here is entropy. Entropy reflects the

uncertainty over the prior – how sure am I that my expectation is correct (Behrens

et al., 2007; Bestmann et al., 2008; MacKay, 2003)? In future studies it would

be useful to separate expectation from entropy to assess whether, in information

theoretic terms, the STN response I observe here reflects a change in expectation

(surprise), or change in the precision of one’s expectation.

9.4 Metacognitive decision-making

9.4.1 Contributions

Since Nisbett & Wilson (1977) argued that we ‘tell more than we can know’ when

asked for verbal explanations of our cognitive processes, several studies have shown

that introspective access to the antecedents of our decision process is weak and

inaccurate (Johansson et al., 2005; Wegner, 2003). However, such studies contrive

to artificially induce mismatches between intention and outcome that do not occur in

the real world with any great frequency (Johansson et al., 2005). In contrast, other

work has shown that subjects make surprisingly accurate metacognitive judgments
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of their performance in simple decision tasks (Graziano & Sigman, 2009; Marti et al.,

2010). What mechanisms underlie these judgments, and why might they go awry in

certain scenarios?

One approach to answering this question is to build upon what is known about

the underlying mechanisms of simple decisions (section 2.3). There is usually a tied

relationship between performance and metacognition in real-world scenarios: if I

know that the answer is ‘Ashgabat’, then I will also be more likely to know I know

the answer1 (Kruger & Dunning, 1999). This tied relationship between performance

and metacognition may confound several studies of higher-order awareness (Lau,

2008). By establishing how confidence tracks local fluctuations in whether a deci-

sion was correctly or incorrectly executed, while still adjusting for overall differences

in performance between conditions using a staircase procedure, this relationship can

be broken, enabling an effective isolation of metacognitive capacity (Lau & Pass-

ingham, 2006). The method outlined in Chapter 7 combined dynamic adjustment

of performance with Type 2 signal detection theory to isolate individual differences

in the awareness of decision performance. Individual differences in metacognitive

ability were found that could not be explained by changes in decision performance.

In a recent study using a variant of the paradigm outlined in Chapter 7, Song

et al. (2011) found that while performance in two different perceptual tasks (con-

trast detection and orientation discrimination) was uncorrelated within individuals

(r = 0.05, P = 0.83), metacognitive ability remained stable (r = 0.71, P < 0.001).

Together these findings suggest that a ‘direct translation’ account of metacognitive

confidence is incomplete (Galvin et al., 2003; Higham et al., 2009). Instead, recent

theoretical models proposing a partially separable second-order stage of decision-

making can more naturally accommodate this dissociation between performance and

metacognition (Pasquali et al., 2010; Insabato et al., 2010; Pleskac & Busemeyer,

2010).

In Chapter 8 I report data linking metacognitive ability to increased grey matter

volume in anterior prefrontal cortex, and increased fractional anisotropy in white

matter tracts that may project to anterior prefrontal regions. In line with a role for

anterior prefrontal cortex in metacognitive monitoring, Del Cul et al. (2009) found

that patients with lesions to this region had a deficit in subjective reports of stimulus

visibility, despite being performance-matched with controls. Since the publication

of the results in Chapter 8 (Fleming et al., 2010b), a functional imaging study has

reported a link between metacognitive ability (the link between performance and

confidence) and BOLD signal in right anterior prefrontal cortex, BA10 (Yokoyama

et al., 2010). However, the precise role of this activity remains to be determined:

one hypothesis (see section 9.4.2) is that this region integrates various sources of

uncertainty (perceptual, motor) in a higher-order frame of reference suitable for

1The question, of course, being ‘What is the capital of Turkmenistan?’.
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communication to others. Furthermore, the role of BA10 in comparison to more

posterior BA46, a region also implicated in metacognitive decision-making (Lau &

Passingham, 2006; Rounis et al., 2010; Middlebrooks & Sommer, 2010), remains to

be determined. In addition, measures of IQ or working memory ability were not

available for the sample tested in Chapter 7. It would be useful to relate metacogni-

tive ability to higher cognitive function in general, especially given that damage to

anterior prefrontal regions leads to a loss of fluid intelligence (Woolgar et al., 2010),

and ask to what extent it represents a modular function.

The accurate fit of the Type 2 SDT model suggests that confidence-in-accuracy

fluctuations are probabilistic, reflecting graded ‘evidence’ that a decision was cor-

rect or incorrect. A similar model of awareness of errors in a simple decision task

was recently proposed based on graded fluctuations in the error-related ERP (Stein-

hauser & Yeung, 2010). The individual variability in metacognitive ability reported

in Chapter 7 was primarily driven by differences in the efficacy of monitoring correct

decisions, rather than signalling errors. Similarly, Rounis et al. (2010) found that

TMS to dorsolateral PFC impaired monitoring of correct but not incorrect decisions.

Error awareness has been linked to insula and ACC activity (Steinhauser & Yeung,

2010; Ullsperger et al., 2010), whereas metacognitive confidence is associated with

anterior and lateral prefrontal cortex (Chapter 8 and Chua et al. 2009; Rounis et al.

2010; Yokoyama et al. 2010). To the extent that this neural dissociation reflects

separable systems, one might predict that decision confidence and error awareness

are dissociable both within and between individuals.

9.4.2 Future directions

As indicated in the previous section, an important next step is to carry out functional

studies that attempt to link ‘first-order’ decision-making mechanisms to activity,

perhaps in rostrolateral prefrontal cortex, that carries out second-order computa-

tions on this information, and relate this process to individual differences. The

studies of Middlebrooks & Sommer (2010); Rounis et al. (2010); Steinhauser & Ye-

ung (2010); and Yokoyama et al. (2010) represent significant first steps towards

achieving this goal. One important consideration is the method used to elicit sub-

jective beliefs about decision-making (section 2.4.1). It was argued in Chapter 7 that

given an arbitrary graded scale that can be mapped to changes in Type 2 criteria,

metacognitive ability can be recovered from the relationship between hits and false

alarms. However, this method assumes that subjects are motivated to use the scale

appropriately. Thus, adopting a graded but naturally incentivised method such as

post-decision wagering (Persaud et al., 2007) or quadratic scoring (Holt & Smith,

2009) may be preferable. If this approach is taken, it will be important to carefully

address concerns about loss aversion and the perhaps indirect mapping between

confidence and wagering (Clifford et al., 2008; Fleming & Dolan, 2010; Schurger &
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Sher, 2008).

To the extent that decision confidence reflects uncertainty in either sensory or

motor processing, techniques used to manipulate and separate these variables may

prove useful in unpacking the components of metacognitive confidence (Faisal &

Wolpert, 2009; Trommershauser et al., 2003). In addition, Bayesian models that nat-

urally specify how uncertainty is represented and used to adjust behaviour (Behrens

et al., 2007; Daunizeau et al., 2010; Yoshida & Ishii, 2006) form a useful point of

contact between work on decision-making on the one hand, and studies of metacog-

nition and consciousness on the other. These models assume that uncertainty over

particular states adjust how much one learns in a particular environment. If the en-

vironment is volatile, such that a subject is uncertain about his or her belief about

any one point in time, recent information is given more weight (Kalman, 1960).

How metacognitive commentaries may relate to such ‘ideal’ estimates of uncertainty

is unknown. Moreover, metacognitive commentaries about performance require ac-

cess to both belief and response uncertainty (figure 9.1). For example, just after

hitting a shot in tennis, you might have high confidence (low uncertainty) that the

spot you chose to aim at is out of reach of your opponent (your belief), but your

confidence in correctly executing the shot (your response) might be low. This dis-

tinction is often overlooked in the literature, where the term ‘decision confidence’

is applied to confidence about beliefs, responses or both. I believe it is crucial to

parse metacognitive confidence into its constituents to understand its neural basis,

and how metacognitive mechanisms drive changes in behaviour.

Evidence	
  
Decision	
  
variable	
  

Ac1on	
  
selec1on	
  

Uncertainty	
  

Priors/
values	
  

? Perception 

Uncertainty	
  

Commentary	
  

Figure 9.1: A conceptual model of the causal antecedents of metacognitive com-
mentaries during decision-making, adapted from figure 2.3. Dissociable uncertainties
about the different stages of the decision process (perception and action) are proposed
to be integrated in a higher-order frame of reference, and be available for verbal re-
port. That this commentary is itself a form of action selection is indicated by the
overlap between these processes at the right of the figure.
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For commentaries to integrate both belief and response uncertainty, the frame

of reference in which decision variables are coded may be crucial. For instance,

if information is maintained in segregated sensorimotor loops (Haber, 2003), a de-

cision could be made and initiated without this information being more generally

available for e.g. verbal report. It is currently an open question as to the extent to

which perceptual decisions rely on ‘embodied’ or domain-general circuitry (Freed-

man & Assad, 2011). There are initial lines of evidence supporting a central role

for the prefrontal cortex in representing sensory evidence in a more abstract frame

of reference. Heekeren et al. (2006) found using fMRI that that a network of left

posterior dlPFC, cingulate cortex, left IPS and left fusiform/parahippocampal gyrus

responded to changes in sensory evidence independent of response modality. Similar

results have been found for insular cortex (Ho et al., 2009; Tosoni et al., 2008), which

is intriguing in relation to the possible role of this structure in awareness of errors. In

value-based decision-making, a recent study has demonstrated a separation in the or-

bitofrontal cortex of regions showing response-independent and response-dependent

value coding (Wunderlich et al., 2009).

An important unanswered question is whether regions implicated in response-

independent coding are also involved in metacognitive decision-making. In addition,

if information is maintained in a response-independent frame of reference, the ex-

tent to which the loss function affects this response-independent belief state will

affect whether first-order biases are expressed at the level of metacognitive reports.

Usually, the information in first-order and metacognitive circuits will be highly cor-

related, due to the tied relationship between performance and metacognition high-

lighted above. However, in situations in which the low-level decision is affected by

(motoric) biases induced by asymmetric priors or rewards (Stanford et al., 2010),

they may be decoupled. It is an empirical question as to whether putative response-

dependent and response-independent processes will respond in a similar or dissimilar

manner to biasing influences such as aymmetric priors, one which maps onto ques-

tions of whether bias alters subjective (post-decision) report, or only affects the

first-order decision itself (see section 9.2.2).

9.4.3 Linking metacognition to consciousness

Several of the studies of metacognitive function that have been reviewed both in the

present chapter and Chapter 2 have been couched in terms of visual awareness (Del

Cul et al., 2009; Lau & Passingham, 2006; Persaud et al., 2007; Rounis et al., 2010).

This is perhaps not surprising; ‘in an important sense, consciousness is knowing that

you know while you know’ (Metzinger, 2010). For a science of this higher-order

aspect of consciousness, it is crucial to recognise that knowing that you know is usu-

ally confounded by changes in performance (Lau, 2008). By clamping performance

at a constant level, either within or between subjects, one can in principle study
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higher-order aspects of consciousness in relative isolation.

Different constructs of consciousness map differently onto first- and second-order

decision processes. For example, first-order confidence in the brightness of a stimulus

might be associated with increased access (Block, 2005) to the phenomenology of

brightness. This ability to make a first-order judgment might, somewhat counter-

intuitively, relate to a higher-order thought in Rosenthal’s theory of consciousness,

in that the higher-order thought enables access to the quality of brightness (see

Rosenthal 2005 for further discussion). In contrast, second-order confidence in a

decision process is perhaps more akin to self-consciousness (Snodgrass et al., 2009),

or access to ones own mental states that arises due to monitoring of those states

(Lycan, 1995). Thus metacognitive content may be quite separate from first-order

access to consciousness (Seth, 2008). To what extent this theoretical separation

occurs in the brain remains an empirical question.

I predict that the coding of beliefs in a response-independent framework is crucial

for self-awareness. In other words, introspective ability requires a partial separation

of perception and action. By maintaining information in a response-independent

frame of reference, one breaks the boundaries of embodied sensorimotor loops, per-

haps endowing the organism with a perspective. As the late Susan Hurley has written

(Hurley, 2002):

Having a perspective means in part what you experience and perceive

depends systematically on what you do, as well as vice versa, and that

you can keep track of some of the ways in which this is so, even if not

in conceptual terms. In this sense having a perspective involves self-

consciousness.

Such coding would permit multiple response systems to access the same information,

including the motoric machinery underlying verbal reports. This proposal shares

much in common with the idea that information becomes conscious by virtue of its

presence in a ‘global workspace’ (Baars, 1993; Dehaene et al., 2003), but grounds

the workspace in circuits involved in first-order decision-making.

Finally, it will be important to ask whether metacognitive functionality confers

an evolutionary advantage (Metcalfe, 2008). Why might response-independent cir-

cuitry have evolved? One hint can be drawn from the previous quotation. To keep

track of errors in behaviour may require access both to one’s belief about what

should have happened, and a degree of certainty that the right response has been

made (figure 9.1; although see Rosenthal 2008). Similarly, flexibility in being able

to act upon information with any one of multiple effectors or cognitive processes

may be increased by coding of information in a higher-order frame of reference. On

this view, conscious information is exactly that information that is made available

to multiple cognitive processes at a given point in time (Baars, 1993). This higher-

order coding may in addition facilitate communication of mental states to others
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via verbal reports, allowing use of this sharing of confidence to mutually improve

collective performance (Bahrami et al., 2010). Whether this latter ‘function’ of con-

sciousness is a by-product, or primary driver, of higher-order thought is an open

question.

9.5 Conclusions

She raised one hand and flexed its fingers and wondered, as she had

sometimes before, how this thing, this machine for gripping, this fleshy

spider on the end of her arm, came to be hers, entirely at her com-

mand. Or did it have some little life of its own? She bent her finger

and straightened it. The mystery was in the instant before it moved, the

dividing moment between not moving and moving, when her intention

took effect. It was like a wave breaking. If only she could find herself at

the crest, she thought, she might find the secret of herself, that part of

her that was really in charge.

Atonement, Ian McEwan

The idea that the human mind is composed of mechanisms that can be decom-

posed into stages, or interacting parts, has occupied generations of thinkers. In

particular, the beguiling idea that a ‘self’ somehow sits between our perceptual ap-

paratus and a motor system that acts as a wellspring of voluntary action, is both

pervasive and intuitive (Cisek, 1999). Children are known to perceive the world and

others in it in a naturally dualistic fashion (Bloom, 2004). Modern neuroscience and

experimental psychology instead tell us that how things seem to us is often a poor

guide to reality. Instead, ever-more complex and large-scale theories of the brain

are emphasising the dynamic nature of competition for control of behaviour, and

myriad interactions between expectations and perception.

However, what we, as social agents, know and are able to communicate about

this process should not be ignored. By mapping self-reports onto the neural archi-

tectures that are being described for other types of decision, processes underlying

self-awareness can be reframed in mechanistic terms. By maintaining a pivotal

viewpoint both downwards, to a reductionist approach to perception and action,

and upwards, to theories of higher-order thought and consciousness, we may be able

to connect these two levels of analysis. This thesis has barely scratched the surface

in this regard. Doing so will not only allow identification and characterisation of

circuitry specific to higher-order aspects of human cognition, but may also refine

our concept of the human mind and its mechanistic basis.
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List of Abbreviations

Abbreviation Details

ACC Anterior cingulate cortex
ANOVA Analysis of variance
BOLD Blood-oxygen level-dependent
DBS Deep-brain stimulation
dlPFC Dorsolateral prefrontal cortex
dmPFC Dorsomedial prefrontal cortex
DTI Diffusion-tensor imaging
DV Decision variable
EEG Electroencephalography
EPI Echo-planar imaging
FA Fractional anisotropy
FEF Frontal eye fields
FFA Fusiform face area
FG Fusiform gyrus
fMRI Functional magnetic resonance imaging
FOK Feeling of knowing
FWE Family-wise error
GABA Gamma-aminobutyric acid
GM Grey matter
GPe Globus pallidus externa
GPi Globus pallidus interna
gy. gyrus
HRF Haemodynamic response function
IFC Inferior frontal cortex
IFG Inferior frontal gyrus

inf. inferior
IPS Intraparietal sulcus
ITG Inferior temporal gyrus
LIP Lateral intraparietal area
MFG Middle frontal gyrus
MNI Montreal Neurological Institute
MOG Middle occipital Gyrus
MTG Middle temporal gyrus
OFC Orbitofrontal cortex
p. pars
PDW Post-decision wagering
Pe Error-related positivity
PFC Prefrontal cortex
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Abbreviation Details

PHG Parahippocampal gyrus
post. posterior

PPA Parahippocampal place area
pre-SMA pre-supplementary motor area
QSR Quadratic scoring rule
RDK Random dot kinematogram
ROC Receiver operating characteristic
RT Reaction time
SAT Speed-accuracy tradeoff
SDT Signal detection theory
SEM Standard error of the mean
SMA Supplementary motor area
SNc Substantia nigra pars compacta
SNr Substantia nigra pars reticulata
SOG Superior occipital gyrus
SPL Superior parietal lobule
SPM Statistical parametric mapping
SSRT Stop-signal reaction time
STG Superior temporal gyrus
STN Subthalamic nucleus
sup. superior
SVC Small volume correction
TE Echo time
TMS Transcranial magnetic stimulation
TR Repetition time
VBM Voxel-based morphometry
vlPFC Ventrolateral prefrontal cortex
vmPFC Ventromedial prefrontal cortex
VTA Ventral tegmental area
VTF Vibrotactile frequency
WM White matter
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