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Abstract 

Photodynamic therapy is a promising new strategy for the treatment of superficial 

skin infections and periodontitis. A limitation of antibiotic treatment for these 

diseases is that even after successful killing of the infecting organism, secreted 

virulence factors may still be present and cause significant damage to host tissues. If 

light-activated antimicrobial agents can inactivate microbial virulence factors in 

addition to killing the pathogenic microorganisms, this would represent an 

advantage of photodynamic therapy over conventional treatment options. The light-

activated antimicrobial agents methylene blue and tin chlorin e6 in combination 

with laser light of 665 and 633 nm respectively, were assessed for their antibacterial 

activity and ability to reduce the activity of selected virulence factors of 

Staphylococcus aureus and Porphyromonas gingivalis. In addition to successfully 

reducing the microbial burden, it was demonstrated that photosensitisation was 

able to cause significant reductions in the activity of a number of secreted and cell 

wall-associated virulence factors produced by these species when irradiated with 

laser light of the appropriate wavelength. Photosensitisation was also shown to 

reduce the biological activities of the proinflammatory cytokines tumour necrosis 

factor-alpha and interleukin-6, which are produced in response to infecting bacteria 

and are associated with damage to host tissues. The results of these studies indicate 

that light-activated antimicrobial agents may be useful in reducing the pathology 

associated with bacterial virulence factors and host-mediated inflammation when 

used as part of an antimicrobial treatment regimen.  
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1 Introduction  

1.1 Management of infectious diseases  

1.1.1 The “antibiotic era” 

Fleming’s famous discovery of penicillin in 1928 is generally hailed as the turning 

point in the war against infectious diseases; prior to the discovery of antibiotics, 

infectious diseases were the leading cause of death in the United States, and 

morbidity and mortality secondary to infection was a common occurrence (Demain 

& Sanchez, 2009; Yoshikawa, 2002). Although discovered over a decade earlier, it is 

the industrial manufacture of penicillin in the 1940s that truly heralded the 

beginning of the “antibiotic era” (Bentley, 2005). The discovery of penicillin was 

history-altering: commonly fatal infections were suddenly treatable; indeed, the 

availability of penicillin was considered a major turning point in the fortunes of 

Allied forces during World War II (Wainwright, 2004). Since the end of the pre-

antibiotic era, the average life expectancy has risen by 30 years, almost entirely 

attributable to the decline in mortality due to infectious diseases (Lederberg, 2000).  

 

During the golden age of the so-called antibiotic era, antibiotic discovery reached 

fever pitch; by 1957, the tetracycline, macrolide, aminoglycoside, glycopeptide, 

polyene, polymixin and semi-synthetic penicillin classes had all yielded budding new 

therapies (Owens, 2008). The number of new antibiotic classes peaked in the 1960s 

and 1970s (Ball, 2007); however, with the success of antibiotics also came a sense of 

complacency. By the mid-1960s, infectious diseases were believed to be mostly 

conquered and research funding was diverted to other areas (Lederberg, 2000). 

Consequently, the pace of antibiotic development slowed, and even at the 

beginning of the 1970s, concerns were raised over the decline in new antibacterial 

compound discovery (Bloom, 1971). The rate of antibiotic discovery has continued 

on its downward trajectory ever since; only five new antibacterial agents were 
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approved in the US between 2003 and 2007, a 50% reduction compared with 

applications approved between 1993 and 1997 (Spellberg et al., 2008). 

 

A number of factors have contributed to the decline in the development of new 

antibiotic agents; however, the lower return on investment for pharmaceutical 

companies compared with other disease areas is perhaps the highest contributing 

factor (Ball, 2007; Payne et al., 2007; Spellberg et al., 2008). There has been a clear 

switch in the pharmaceutical industry towards developing therapies for chronic 

diseases such as cancer and arthritis, which present more lucrative markets for 

pharmaceutical companies. Patients generally require a week of treatment for most 

antibiotics, compared with a year or more for cancer therapies and sometimes 

lifelong use in the case of antihypertensive agents (Ball, 2007; Katz et al., 2006). 

From a financial standpoint, the pharmaceutical industry clearly has more to gain 

from turning its sights elsewhere. 

 

Antimicrobial development has also become more complex, as increasing bacterial 

resistance to antibiotics limits exploitable target sites. Just two antibacterial agents 

with novel mechanisms of action, linezolid and daptomycin, have been developed in 

the last 20 years (Owens, 2008).  

 

1.1.2 The rise of antimicrobial resistance  

There is no doubt that the discovery and manufacture of antibiotics was crucial in 

the fight against infectious diseases; however, resistance to the newly-discovered 

antibacterial agents was swift in coming. The first case of resistance to penicillin was 

reported in 1940, three years before the drug was approved in the US (Bush, 2004). 

In fact, by just 1947, the rise in penicillin-resistant bacteria was described as 

“somewhat alarming” by one author (Barber, 1947).  
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The widespread use of penicillin led to the emergence of penicillinase-producing 

strains of Staphylococcus aureus in the mid 1940s, which had become pandemic by 

the 1950s (DeLeo & Chambers, 2009). By 1955, it was reported that almost 75% of 

Staphylococcus strains isolated from hospital patients were penicillin-resistant; the 

same year The New York Times sensationally declared that the “war on bacteria 

[was] seen as backfiring” (Creager, 2007). By 2004, it was estimated that over 70% of 

pathogenic bacteria were resistant to at least one antibiotic, and penicillin 

resistance as a result of -lactamase production is now almost 100% amongst 

staphylococci (Katz et al., 2006; Perera & Hay, 2005). 

 

Resistance to antibiotics can be classified as intrinsic or acquired; intrinsic resistance 

is generally due to the absence or bypassing of the antibiotic target site, whereas 

acquired resistance depends on the acquisition of genetic material that may encode 

inactivating enzymes, altered target site, or antibiotic exclusion mechanisms (Perera 

& Hay, 2005). It is generally considered that resistance to naturally-occurring 

antibiotics evolved in bacterial species that encountered these products in their 

natural environment, which acted as a reservoir for resistance determinants. 

Resistance was then transferred to pathogenic bacteria via the transfer of genetic 

material following the introduction of antibiotics into clinical and agricultural use, 

which provided a selective pressure for their maintenance in the bacterial 

population. Resistance to synthetic antibiotics is generally thought to arise as a 

result of mutations and then initially spread by vertical transmission and clonal 

dissemination. The rapid spread of antibiotic resistance to taxonomically divergent 

bacteria has been associated with horizontal gene transfer, which is enhanced by 

the use of antibiotics at sub-inhibitory concentrations (Aminov & Mackie, 2007; 

Demain & Sanchez, 2009).  

 

The rise of antimicrobial resistance is compounded by the inappropriate use of 

antibiotics (e.g. for viral infections), non-compliance of patients, and widespread 
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antibiotic use in animal husbandry (Dai et al., 2009). The inappropriate use of 

antibiotics is considered a particularly important factor in the rise of antimicrobial 

resistance; reports have documented inappropriate prescription rates varying from 

35 to 53% (Ball, 2007).  

 

1.1.3 The search for novel therapeutic strategies 

The global rise of antibiotic resistance has led to a major effort to develop new 

therapeutic strategies. Four new antibiotics have been approved in the last five 

years: tigecycline, daptomycin, linezolid and quinupristin-dalfopristin. However, 

these antimicrobial agents are costly, associated with adverse events, and of limited 

availability (Daum, 2007; Manfredi & Sabbatani, 2010). Other currently available 

antibiotics are associated with adverse effects such as gastrointestinal disturbance, 

rash, and photosensitivity, in addition to hepatic-, renal- and ototoxicity (Demain & 

Sanchez, 2009).  

 

Due to the threat of antibiotic resistance and the toxicity of current antibiotic 

therapies, there has been a drive towards discovering novel treatment options that 

have a more favourable safety profile and do not select for bacterial resistance. A 

novel therapy would ideally act on multiple targets in order to avoid the 

development of resistance. Although this can be achieved by using combinations of 

antibiotics with differing mechanisms of action, this approach is associated with high 

cost, and drug interactions and formulation issues must also be considered 

(Wainwright, 2010).  

 

The therapeutic avenues that are being explored in the search for new 

antimicrobials are many and varied. One novel antimicrobial strategy that has 

received much interest is the use of light in combination with a light-activated 

compound, termed photodynamic therapy (PDT), which will be discussed in more 

detail in later chapters.  
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In particular, alternative topical treatments for skin infections have been the subject 

of much investigation, in part due to the rise of meticillin-resistant S. aureus (MRSA). 

One such strategy is the use of antimicrobial peptides as topical agents in the 

treatment of skin infections (Schittek et al., 2008). Antimicrobial peptides form part 

of the innate immune system, and have been investigated due to their broad 

spectrum of activity and lower propensity to select for resistance (Sang & Blecha, 

2008). Bacteriophage therapy has also been suggested as a novel therapeutic option 

for bacterial infections, particularly for the treatment of chronic wound infections 

and for MRSA decolonization. The specificity of bacteriophages and their ability to 

rapidly kill bacteria regardless of antibiotic resistance phenotype has attracted 

interest in their therapeutic potential (Deresinski, 2009). Silver sulfadiazine is 

believed to be antibacterial due to the release of silver from the preparation and has 

also been investigated as a topical antibacterial agent; however it has been 

associated with burning sensations, rash and skin discolouration (Gelmetti, 2008).  

 

There has also been a renewed interest in “natural” topical antimicrobial 

approaches, such as honey and other bee-derived products such as propolis 

(Raghukumar et al., 2010). Honey has attracted particular interest due to its 

potential for use in wound and surgical infections; however, there is currently a lack 

of robust clinical data to support its use (Al-Waili, 2004; Kwakman et al., 2008; 

Moore et al., 2001). Another area that has received a resurgence of interest is the 

medical use of maggots for the treatment of bacterial wound infections. It has been 

suggested that larvae may be useful in the removal of necrotic tissue, the facilitation 

of healing, and the eradication of MRSA (Bowling et al., 2007). Maggot 

secretions/excretions have also been investigated for their ability to inhibit biofilm 

formation by various bacterial species, including S. aureus (Cazander et al., 2010). 

Although antimicrobial action has been observed, it is not clear whether the 
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maggots and/or their secretions/excretions have any direct antibacterial action and 

conflicting reports exist in the literature (Cazander et al., 2009; Jaklic et al., 2008).   

 

Although most current therapeutic strategies rely on direct bacteriocidal or 

bacteriostatic activity, the inactivation of virulence by targeting a microorganism’s 

pathogenicity determinants has arisen as an alternative approach for the treatment 

of bacterial infections. According to Escaich, virulence is defined as “the relative 

capacity of a microbe to cause damage in a host”. The definition of virulence 

therefore covers not only toxins, but also the mechanisms that contribute to 

colonisation of the host and allow a pathogenic organism to proliferate. As the 

targets are specific for mechanisms responsible for pathogenicity, a therapy aimed 

at inactivation of virulence should therefore not affect the normal microbiota of the 

host and would not select for resistance in other microorganisms (Escaich, 2008). By 

inhibiting the ability of the pathogen to damage the host, the immune system may 

then clear the infection (Clatworthy et al., 2007).  

 

Pathogenesis determinants may be divided into different groups, each of which 

represents a potential target for inhibitors of bacterial virulence: adhesion and 

colonisation, systems for nutrient acquisition and uptake, regulatory functions (e.g. 

quorum sensing), and resistance to the innate immune response (Escaich, 2010). 

Historically, the use of antibodies against diphtheria, tetanus and botulinum toxins, 

and the inhibition of Clostridium difficle toxin delivery by cholestyramine may be 

considered therapies targeted to virulence factors (Clatworthy et al., 2007).  

 

A number of strategies aimed at each of these groups are currently being 

investigated in the laboratory, and include peptidomimetic molecules to block pili 

synthesis, inhibition of iron uptake, synthetic ligands to block quorum sensing, and 

inhibition of antioxidant biosynthesis (Escaich, 2010). A major concern facing 

potential therapies targeted at specific bacterial virulence factors is one of economy. 
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An agent developed to inhibit a single virulence factor of a particular pathogen 

would have an extremely narrow range of activity, and would consequently offer 

little economic incentive for a pharmaceutical company (Clatworthy et al., 2007). 

Therefore, it would be desirable for a therapy targeting pathogenicity to inactivate 

several virulence factors. In addition, as many such strategies do not have direct 

antimicrobial action, a therapy that combines antibacterial activity and also reduces 

a pathogen’s virulence potential would be advantageous. 

 

The antibiotic polymyxin B has been shown to affect virulence potential by inhibiting 

the release of pertussis toxin from Bordetella pertussis (Craig-Mylius & Weiss, 2000); 

it also shows lipopolysaccharide (LPS) -neutralising properties, although its toxicity 

limits its clinical use as an antibacterial (Bhor et al., 2005). Sub-inhibitory 

concentrations of antibiotics have been shown to inhibit multiple virulence 

mechanisms, such as LPS and quorum sensing in Pseudomonas aeruginosa by the 

macrolides erythromycin and azithromycin, and inhibition of adherence to host cells 

by quinolones (Sonstein & Burnham, 1993; Tateda et al., 2007). However, the use of 

antibiotics carries the associated risk of the development of bacterial resistance, and 

at therapeutic concentrations, macrolide antibiotics are neither bacteriostatic or 

bacteriocidal against P. aeruginosa (Tateda et al., 2000). There is therefore a 

significant clinical need for a therapy that is both bacteriocidal and also inactivates 

bacterial virulence factors, without the concomitant risk of bacterial resistance.  

 

1.2 Photodynamic therapy 

In the search for novel antibacterial strategies, the use of light-activated 

antimicrobial agents has emerged as a promising candidate. Light has been used as a 

therapeutic agent since ancient times; its use can be traced back to ancient Egypt, 

India and China, where light was reportedly used to treat skin diseases, cancer and 

psychosis (Ackroyd et al., 2001).  
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The use of a photosensitising agent in combination with light was first believed to be 

employed in India over 3000 years ago for the treatment of vitiligo (Ackroyd et al., 

2001). The photodynamic killing of microorganisms was first demonstrated in 1900 

by Raab, who documented the antiprotozoal activity of acridine and visible light, and 

the term “photodynamic” was coined shortly afterwards in 1907 by Von Tappeiner 

and Jesionek (Dolmans et al., 2003). PDT has also received much interest as a 

therapeutic option for the treatment of cancer; the first documented use for this 

indication was in 1903, in which topical eosin and white light was used to treat skin 

tumours (Ackroyd et al., 2001).  

 

1.2.1 Mechanism of action 

Photodynamic inactivation relies upon the capacity of a dye, known as a 

photosensitiser, to be activated by light of a specific wavelength to generate 

reactive oxygen species that are toxic to microorganisms. Upon irradiation, the 

photosensitiser undergoes a transition from a low energy ground state to a higher 

energy triplet state, which can then react with biomolecules to produce free radicals 

(type I reaction), or with molecular oxygen to produce highly reactive singlet oxygen 

(type II reaction) (Maisch, 2007). These processes are outlined in Figure 1.1.  
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Figure 1.1 Mechanisms of photosensitiser action  

(Modified from Wainwright, 2000) 

 

Singlet oxygen produced by type II reactions can oxidise many biological structures 

such as proteins, nucleic acids and lipids. Although DNA damage has been shown to 

occur, it is not believed to be the principle cause of bacterial death; rather, death is 

thought to be due to damage to the cytoplasmic membrane and the subsequent 

leakage of cellular contents and inactivation of membrane transport systems and 

enzymes (Hamblin & Hasan, 2004). The diffusion of singlet oxygen is limited to a 

maximum of 30 nm, meaning that the localisation of the photosensitiser determines 

the site of action and reduces damage to host tissues at distant sites (Plaetzer et al., 

2009).  

 

Type I reactions cause membrane damage by the formation of lipid hydroperoxides 

and hydroxyl radicals, which can react with biomolecules or combine to produce 

cytotoxic hydrogen peroxide in situ; however it is the singlet oxygen-producing type 

II reactions that are generally considered to be the major pathways in photodynamic 
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killing (Wainwright, 2000). As the mechanism of action of microbial killing is non-

specific and multiple sites are affected, it is considered unlikely that resistance will 

evolve, thus representing a significant advantage over conventional antibiotic 

treatment where resistance is an ever-increasing problem (Wainwright, 2005).  

 

A very desirable feature for PDT is the potential for inactivation of virulence factors, 

particularly secreted proteins, by reactive oxygen species (Hamblin & Hasan, 2004). 

Inactivation of membrane enzymes and receptors is also possible due to type I 

reactions at the cytoplasmic membrane (Wainwright, 1998).  

 

The biological activity of certain virulence factors produced by some species of 

Gram-negative bacteria has been shown to be successfully reduced by 

photodynamic action. The inhibitory effect of red laser light and the photosensitiser 

toluidine blue O (TBO) on virulence factors from Escherichia coli, P. aeruginosa 

(Komerik et al., 2000) and Porphyromonas gingivalis (Packer et al., 2000) has 

previously been demonstrated; however the effect of photosensitisation on 

staphylococcal virulence factors has not yet been fully investigated. To date, 

photodynamic inactivation of biofilms is the only staphylococcal virulence 

determinant to have been reported in the literature (Sharma et al., 2008). In 

addition, MRSA has been shown to be susceptible to photodynamic inactivation 

(Griffiths et al., 1997), thus strengthening the position of photodynamic therapy as a 

promising new antimicrobial strategy for the treatment of staphylococcal infections.  

 

1.2.2 Light sources 

The light source used for PDT generally depends on the depth of tissue penetration 

required, as the depth of light penetration increases in the visible and near-infrared 

regions, and the optimum wavelength at which maximum singlet oxygen production 

is achieved from a particular photosensitiser (Mitton & Ackroyd, 2008). The light 

source can either be coherent (i.e. laser light), or non-coherent. 
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1.2.2.1 Laser light 

Laser is an acronym for Light Amplified by Stimulated Emission of Radiation, and is 

the most commonly used light source for PDT (Pervaiz & Olivo, 2006). Stimulated 

emission was first documented by Albert Einstein, and according to Silfvast & 

Robert, occurs “when a beam of light passes through a medium and stimulates 

atoms within the medium to radiate more light in the same direction, and of the 

same wavelength as the original beam.” A laser device utilises mirrors to further 

amplify the beam, which is then emitted from the device via a partially transmitting 

mirror or a mirror with a small hole (Silfvast & Robert, 2001).  

 

The light output from a laser device is collimated, coherent and highly 

monochromatic (Baxter, 1994). Monochromaticity and coherence are properties 

that make laser light an ideal light source for PDT: monochromaticity allows a laser 

to be matched to a photosensitising agent that has peak absorption at the 

wavelength of the laser light, and coherence allows the delivery of the laser light via 

fibre optics (Calin & Parasca, 2009). The high irradiance of laser light is also 

advantageous as shorter exposure times are required for a therapeutic effect. 

However, lasers are relatively expensive and high maintenance compared with non-

coherent light sources (Choudhary et al., 2009).   

 

The most commonly used lasers for PDT are pumped dye lasers, such as argon dye 

and potassium-titanyl phosphate dye lasers. Argon dye lasers have been much 

utilised, as the wavelength of the laser light may be altered to match the peak 

absorbance of a photosensitiser (Ackroyd et al., 2001). Argon dye lasers were used 

in early anticancer PDT investigations and were previously the standard in clinical 

PDT; however the cost, immobility, and size of the units limits their practicality, as 

does the requirement for an external cooling system and power source (Mang, 

2004; Mitton & Ackroyd, 2008).  
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Another commonly used laser is the helium-neon (HeNe) laser. The HeNe laser 

system was the first gas laser to be developed (in 1961), and emits red laser light 

with a wavelength of 633 nm. This laser has many applications in addition to PDT, 

including scanners, printers and surveying, and can be manufactured in a variety of 

sizes (Silfvast & Robert, 2001). The use of HeNe laser light has been well 

documented in antimicrobial PDT, in particular for the photodynamic inactivation of 

S. aureus and P. aeruginosa (Calin & Parasca, 2009). This wavelength is ideal for use 

in PDT as haemoglobin does not absorb in this region (Vladimirov et al., 2004). In 

addition, HeNe laser light does not penetrate far below the skin surface 

(approximately 0.5 mm), and therefore does not affect deeper tissues; it can also 

have beneficial biostimulatory effects on the epidermis and upper dermis (Hawkins 

& Abrahamse, 2005).  

 

Semiconductor diode lasers have been hailed as the “new generation of laser 

systems”, as this type of laser system is user-friendly, compact, lightweight, and 

easily portable (Mang, 2004). Diode lasers are now commonly used for PDT, and 

have the additional advantages of being relatively low cost and use normal mains 

voltage as a power source (Choudhary et al., 2009; Meisel & Kocher, 2005). Diode 

lasers have been commonly utilised in periodontal PDT investigations, but have also 

been used for dermatological indications (Fimple et al., 2008; Garcez et al., 2010; 

George & Kishen, 2008; Kim et al., 2007; Salah et al., 2009; Teichert et al., 2002). 

Diode lasers are approved for clinical use in certain therapeutic indications 

throughout Europe. As the wavelength cannot be altered, the laser system must be 

matched with a particular photosensitiser (Mitton & Ackroyd, 2008).  
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1.2.2.2 Incoherent light sources 

Natural light is incoherent, polychromatic and divergent (Wilson, 1993). One of the 

first documented uses of sunlight as a therapeutic agent is that of Herodotus in the 

2nd century BC, who believed exposure to sunlight was important for the restoration 

of health (Daniell & Hill, 1991). Photodynamic inactivation of microorganisms has 

been demonstrated using incoherent light sources such light-emitting diodes and 

tungsten, halogen and xenon lamps (Calin & Parasca, 2009). Incoherent light sources 

are easy to use and comparatively cheap (Ackroyd et al., 2001). Incoherent light has 

several advantages as a light source for PDT: the polychromatic nature of the light 

means that different photosensitisers with different absorption maxima may be 

used, and large illumination fields may be achieved for use over large areas, which is 

particularly relevant to dermatological indications. Incoherent light sources are also 

relatively cheap, easy to operate and are readily available (Choudhary et al., 2009). 

However, the disadvantages of incoherent light are low intensity, difficulties in 

management of light dose, and significant thermal effects (Pervaiz & Olivo, 2006). 

The low intensity of incoherent light means that long exposure times are generallly 

required for a therapeutic effect to be achieved (Wilson, 1993).  

 

1.2.3 Photosensitisers 

The use of an exogenous photosensitising agent can be traced back to India in 1400 

BC and the use of psoralens for the treatment of vitiligo (Daniell & Hill, 1991). 

Haematoporphyrin is believed to be the first modern photosensitiser to be 

discovered in the laboratory: it was first isolated in 1841; however, its properties as 

a photosensitiser were not discovered until 1911 (Mitton & Ackroyd, 2008). Most 

photosensitisers consist of a heterocyclic ring structure, with structural similarities 

to chlorophyll and haemoglobin (Ackroyd et al., 2001).   
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There are several photosensitisers currently approved for clinical use for certain 

cancer and dermatological indications, including: Photofrin (porfimer sodium), 

Levulan, Benzvix, Hexvix and Metvix, (5-aminolevulinic acid and various esters), 

Lutex (lutetium texaphyrin), Visudyne (verteporfin) and Foscan (5, 10, 15, 20-tetra(3-

hydroxyphenyl)-2,3-dihydroporphyrin) (Ackroyd et al., 2001; Detty et al., 2004). 

Methylene blue has been widely utilised in medicine for indications other than PDT, 

and is also commercially available for clinical use in periodontal and nasal 

decolonisation PDT applications (Jose et al., 2010; Street et al., 2009; Wainwright, 

2010).  

 

Favourable attributes for a photosensitiser to be used in an antimicrobial PDT 

regimen are: a broad spectrum of activity, activity independent of antibiotic 

resistance, selectivity for microorganisms over host tissues, low probability of 

selecting for resistance to PDT, low mutagenicity potential, availability of 

formulations for delivery, and the availability of a suitable light source (Jori et al., 

2006).  

 

1.2.3.1 Methylene blue 

Methylene blue is a phenothiazinium dye, and one of the photosensitisers described 

in this thesis. Methylene blue strongly absorbs light in the 600-700 nm region, giving 

the dye its characteristic colour, with maximum absorption occurring at 656 nm 

(Wainwright, 2000). Methylene blue was initially synthesised in 1876 for use in the 

textile industry, and was first employed in medicine in 1891 as a treatment for 

malaria (Wainwright, 2005). The structure of methylene blue is shown in Figure 1.2. 
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Figure 1.2 The chemical structure of methylene blue  

 

Phenothiazinium-based photosensitisers have a core structure consisting of a planar 

tricyclic heteroaromatic ring system and at physiological pH are generally cationic, 

allowing them to target the negatively-charged bacterial membrane (Phoenix & 

Harris, 2003). Cationic photosensitisers are useful for antimicrobial PDT as they are 

effective for the photodynamic killing of both Gram-positive and Gram-negative 

microorganisms. In addition, they are more selective for bacterial cells compared 

with mammalian cells as cationic molecules are taken up comparatively slowly by 

mammalian cells, and thus damage to host cells may be limited by carrying out PDT 

within a short time of applying the photosensitiser (Dai et al., 2009). 

 

The use of methylene blue is well established in medicine, where it is used for the 

routine staining of vital organs and the treatment of septic shock (Wainwright, 

2000). The concentrations used for staining are usually 1% w/v, which equates to 27 

mM. As the concentrations of photosensitiser required for the photodynamic 

inactivation of bacteria are in the micromolar range, this is favourable when 

considering toxicity concerns (Wainwright, 2000). The minimum lethal concentration 

of methylene blue for the photosensitisation of S. aureus has been reported to be 1 

µM, and therefore well below the concentrations used for medical staining 

procedures (Wainwright et al., 1997).  
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Methylene blue has been shown to cause photodamage to the outer membrane, cell 

wall, ribosomes and nucleic acids of bacteria (Wainwright, 2010). At increasing 

concentrations, methylene blue may aggregate and form dimers, which may cause a 

shift in the absorption maximum of the photosensitiser. It has been proposed that 

dimerisation is further induced at the bacterial cell surface due to electrostatic 

interactions between methylene blue and negatively charged polymers on the 

bacterial cell surface, and that these dimers are also involved in cell photodamage, 

as well as monomeric species (Usacheva et al., 2003).  

 

1.2.3.2 Tin chlorin e6 

The second photosensitiser used in the work described in this thesis was the anionic 

metalloporphyrin tin chlorin e6, the structure of which is shown in  

 

Figure 1.3. Chlorin e6 is a derivative of chlorophyll A and demonstrates maximum 

absorption at 654 nm (Detty et al., 2004). Tin chlorin e6 shows a prominent 

absorption peak at 634 nm and has been shown to have a 2-fold greater quantum 

efficiency of singlet oxygen generation compared with metal-free chlorin e6 (Gil-

Tomas et al., 2011; Rakestraw et al., 1990). The addition of tin to the chlorin 

structure increases the stability of the compound against photodecomposition, 

therefore increasing the lifetime of the photosensitiser upon illumination (Strong et 

al., 1994). Additionally, free chlorin is associated with long-term skin 

photosensitisation and high doses are required for therapeutic activity (Detty et al., 

2004).  
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Figure 1.3 The chemical structure of tin chlorin e6  

 

Tin chlorin e6 has been shown to be an effective photosensitiser for the 

photodynamic killing of meticillin-sensitive and meticillin-resistant S. aureus, 

(Embleton et al., 2002). It has also demonstrated activity against Gram-negative 

microorganisms, as antibody-conjugated tin chlorin e6 has been shown to be 

successful in the selective killing of P. aeruginosa (Friedberg et al., 1991; Lu et al., 

1992). Disruption and reduction in viability of biofilms formed by the Gram-negative 

periodontal pathogen Aggregatibacter actinomycetemcomitans has also been 

reported (Suci et al., 2010). The photosensitiser also has applications outside the 

field of antimicrobial PDT. A tin chlorin e6-monoclonal antibody-dextran conjugate 

has been used for the in vitro photolysis of malignant melanoma cells, suggesting it 

may also be of use in anticancer PDT (Rakestraw et al., 1990).  
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1.2.4 Clinical applications of PDT 

PDT has most extensively been studied for use as a treatment modality for various 

cancers and has been approved for clinical use in this setting. PDT using Photofrin 

(hematoporphyrin derivative) was first approved in Canada for the prophylaxis of 

bladder cancer in 1993; since then, PDT has been approved by regulatory bodies for 

various cancer indications in Europe, the US and Japan. PDT is also employed in the 

treatment of age-related macular degeneration and is being investigated for a 

number of other applications, including arthritis, cardiovascular diseases and 

dermatology (Dolmans et al., 2003).  

 

1.2.5 Antimicrobial photodynamic therapy 

Although the concept of antimicrobial photodynamic killing had been known since 

the time of Raab’s discovery, the advent of the antibiotic era prevented the 

potential of photodynamic therapy for the treatment of microbial infections from 

being realised (Jori, 2006). Currently, no antimicrobial PDT regimen has been 

approved by the US Food and Drug Administration for clinical use (Cassidy et al., 

2009). However, the Periowave and MRSAid systems have been approved in 

Canada and the European Union, which utilise laser light of 660-675 nm in 

combination with a formulation of methylene blue. The Periowave system is 

indicated for the treatment of chronic periodontitis in adults as part of a periodontal 

health maintenance program (Ondine Biomedical, 2010c), and the MRSAid system 

is approved for the nasal decolonisation of MRSA carriers (Street et al., 2009), 

(Ondine Biomedical, 2010b). The HELBO photodynamic system is also commercially 

available for periodontal PDT, which uses phenothiazine chloride as a 

photosensitising agent and diode laser light of 670 nm (Jose et al., 2010).  

 

The main issues that must be addressed in order for PDT to be successfully used in 

the treatment of localised bacterial infections are the selectivity of the treatment for 
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bacterial cells in order to avoid unacceptable damage to host cells, the efficacy of 

the treatment to sufficiently kill the pathogen, and the prevention of regrowth of 

the pathogen if eradication is not 100% (Dai et al., 2009). Repeat applications of PDT 

may be useful in preventing bacterial regrowth, and have not been associated with 

resistance (Lauro et al., 2002). The use of selectivity-enhancing agents to produce 

more targeted photosensitisers may help to overcome the issue of selectivity. The 

selectivity of a photosensitiser may be increased by conjugating an antibody or 

peptide to the molecule, or through the use of bacteriophages (Cassidy et al., 2009; 

Embleton et al., 2002; Embleton et al., 2005). However, it has been postulated that 

the light doses required for microbial killing have a negligible effect on neighbouring 

host tissues, and host tissues can also undergo repair if necessary following 

treatment (Wilson, 2004). 

 

The photodynamic killing of microorganisms has other applications beyond the 

direct treatment of infections. There has been interest in the incorporation of 

photosensitisers into antimicrobial coatings in order to reduce the incidence of 

nosocomial infections acquired as a result of contaminated surfaces in hospitals 

(Decraene et al., 2008b). Coatings containing the photosensitisers TBO and rose 

bengal have been shown to achieve significant killing of S. aureus when illuminated 

with a domestic light source, raising the possibility of self-disinfecting surfaces, 

which would be of great benefit in frequently contaminated environments such as 

hospital clinics (Decraene et al., 2008a).  

 

1.2.5.1 Skin and soft tissue infections 

Skin and soft tissue infections represent an area where new therapies are urgently 

required. Surgical wound infections are commonly associated with antibiotic-

resistant strains of bacteria, and account for a quarter of all nosocomial infections 

(Dai et al., 2009). The mainstays of treatment for infected wounds are antibiotics 

and surgical debridement; however, with the increasing problem of antimicrobial 
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resistance to antibiotics and the invasive nature of surgery, PDT could present an 

attractive alternative (Lipovsky et al., 2008).  

 

S. aureus is the most commonly isolated pathogen from skin and skin structure 

infections, being isolated in 46% of cases, and therefore represents a relevant target 

for the studies described in this thesis (Lee et al., 2005). Uncomplicated skin and skin 

structure infections include impetigo, cellulitis, folliculitis and abscesses (Lee et al., 

2005). Photodynamic therapy is particularly appropriate for the treatment of 

superficial staphylococcal infections, as the site of infection is likely to be accessible 

for topical application of a photosensitiser and its subsequent irradiation 

(Wainwright, 1998). The susceptibility of S. aureus to lethal photosensitisation has 

been well documented, and there is much scope for the investigation of the effect of 

photosensitisation on the activities of the numerous virulence factors produced by 

this pathogen. 

 

Complicated skin and skin structure infections are rapidly-spreading, associated with 

high morbidity and mortality rates, and usually require hospitalisation (Nichols, 

1999; Raghavan & Linden, 2004). Due to the serious nature of the infections, it is 

unlikely that PDT would be the only treatment modality employed; however, it could 

be useful for reducing the bacterial burden and consequently reducing the level of 

surgical debridement required (Dai et al., 2009). Broad-spectrum antibiotic therapy 

is often initiated empirically (Lee et al., 2005); as broad-spectrum antimicrobials can 

be associated with side effects, a more specific treatment would be advantageous to 

the patient (Demain & Sanchez, 2009).  

 

Topical mupirocin is generally the drug of choice for the treatment of skin infections 

and recommended for the decolonisation of the nares in patients colonised with 

MRSA (Coia et al., 2006; Jacobs et al., 2007). Traditional topical antimicrobial 

therapy also has associated problems. The use of topical antibacterial agents is 
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associated with several disadvantages, including the development of bacterial 

resistance, contact dermatitis, low penetration and the potential for disruption of 

the normal skin microbiota. High-level resistance to mupirocin has been well 

documented in both meticillin-sensitive and meticillin-resistant strains of S. aureus 

(Hogue et al., 2010; Liu et al., 2010; Perez-Roth et al., 2006; Rasmussen et al., 2010). 

Although less likely to select for bacterial resistance, some topical antiseptics (e.g. 

iodine and hydrogen peroxide) may be associated with host toxicity and/or 

hypersensitivity (Englander & Friedman, 2010; Gelmetti, 2008). Topical antibiotics 

are also used for the treatment of impetigo, and are the treatment of choice for 

external ear infections; these treatment areas therefore also represent 

circumstances in which novel antimicrobial strategies such as PDT may be employed 

(Gelmetti, 2008).   

 

The application of PDT to the treatment of superficial infections has several 

advantages over standard antibiotic therapy. PDT is fast-acting and selective; laser 

light may be applied only to the area of interest via a fibre optic, resulting in a beam 

size of only mm in diameter. The specificity of PDT may be further increased by the 

conjugation of antibodies to the photosensitising agent, which would allow more 

specific targeting of the causative organism and consequently less damage to host 

cells. The conjugation of targeting molecules to the photosensitiser has been 

successfully demonstrated for tin chlorin e6 (Embleton et al., 2002; Embleton et al., 

2005). However, this approach would be costly and would also require the infecting 

organism to be correctly identified prior to treatment. Zeina et al. found that 

treatment of keratinocytes with methylene blue and visible light did not result in 

DNA damage to the cells, indicating that the treatment is not associated with high 

levels of genotoxicity (Zeina et al., 2003). If PDT does not cause appreciable damage 

to human cells, then such targeting methods may not be necessary.  
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Photodynamic treatment is also associated with lower systemic toxicity compared 

with oral antibiotic agents. The photosensitiser may be applied topically, thus 

avoiding damage to cells at sites distant to the treatment area. In the case of 

antimicrobial PDT, the treatment does not rely on actively-growing cells to be 

effective, as the mechanism of killing is structural rather than related to the growth 

of the organism. Perhaps most crucially, the potential for resistance is very low 

compared with antibiotic therapy. As PDT is non-specific and multiple sites are 

affected, there is a low possibility that bacterial resistance would evolve 

(Wainwright, 2010).  

 

Laser light has been shown to induce epithelialisation and consequent wound 

closure; HeNe laser light in particular has been shown to cause tissue regeneration 

and high levels of mitosis in keratinocytes and fibroblasts, which may be beneficial in 

the healing of wounds following treatment (Hawkins & Abrahamse, 2005; Lipovsky 

et al., 2008) Irradiation with laser light has also been shown to induce activation of a 

number of cell types involved in bactericidal activity, such as leukocytes. Irradiation 

with low power laser light can cause photoreactivation of superoxide dismutase and 

stimulate the release of nitric oxide, thus enhancing the antimicrobial effect of 

photodynamic treatment (Vladimirov et al., 2004). HeNe laser light also does not 

penetrate tissue as deep as laser light of longer wavelengths, and therefore causes 

less damage to the skin and skin structures.  

 

1.2.5.2 Oral infections 

The treatment of oral infections represents the fastest-growing area of antimicrobial 

PDT. Three companies have marketed photosensitiser/laser systems for the 

treatment of periodontitis and endodontic infections, including the Periowave and 

HELBO systems, marketed by Ondine Biopharma and HELBO Photodynamic 

Systems, respectively (Dai et al., 2009; Jose et al., 2010). The periodontal pocket is 

easily accessible and therefore well-suited to treatment by PDT, and the rapid killing 
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of microorganisms associated with PDT overcomes the problem of maintaining high 

concentrations of the therapeutic agent in the disease lesion seen with antibiotic 

treatment (Wilson, 2004).  

 

Wilson et al. have shown that significant eradication of periodontopathogens from 

subgingival plaque can be achieved using the photosensitiser TBO and HeNe laser 

light, regardless of the presence of blood (Wilson et al., 1993c). Methylene blue is 

well-established as an effective photosensitiser for the photodynamic killing of P. 

gingivalis, an important periodontopathogen (Wilson et al., 1993a). Methylene blue 

has also successfully been shown to be effective in the killing of periodontal 

pathogens in biofilms (Dobson & Wilson, 1992; Fimple et al., 2008) . In addition, 

methylene blue-based PDT has been proposed for the treatment of oral candidiasis 

(Teichert et al., 2002). PDT has several applications in the field of periodontics, 

including the treatment of aggressive, refractory or recurrent periodontitis, as an 

adjunct to scaling and root planing, and disinfection of roots and furcation areas 

during surgical procedures (Jose et al., 2010).  

 

The use of PDT for endodontic disinfection (disinfection of root canals) has also been 

proposed as an adjunct to conventional endodontic treatment, and the combination 

of PDT and mechanical debridement plus antiseptic irrigation has been shown to 

significantly reduce bacterial load and bacterial regrowth in infected root canals 

compared with either treatment alone (Garcez et al., 2007). Methylene blue in 

combination with laser light of 665 nm has demonstrated efficacy against several 

endodontic pathogens in both planktonic phase and multispecies root canal biofilms 

(Fimple et al., 2008; Soukos et al., 2006). 

 

The issue of photosensitiser delivery for the photodynamic treatment of oral 

infections has been raised, as photosensitisers such as methylene blue would stain 

the buccal mucosa and teeth and be cosmetically undesirable (Cassidy et al., 2009). 
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However, PDT also has advantages over other treatments for periodontal disease 

such as scaling, mouth washes and surgery in that it is fast, relatively painless, does 

not require anaesthesia and does not interfere with taste (Jose et al., 2010; Soukos 

et al., 2005).  

 

PDT using a chlorin e6 conjugate in combination with endodontic treatment has 

recently been shown to significantly reduce the numbers of antimicrobial-resistant 

bacteria (predominantly Enterococcus, Prevotella and Porphyromonas species) in 

necrotic periapical lesions compared with endodontic treatment alone; in fact, 

complete eradication of bacteria was achieved following the combination treatment 

(Garcez et al., 2010). This study demonstrates that PDT may be of use in antibiotic-

resistant oral infections.   

 

1.3 Microbial species studied in this project 

The bacterial species studied in this project are S. aureus and P. gingivalis. Skin 

infections and periodontal diseases represent two diseases that are well-suited to 

treatment with light-activated antimicrobial agents; as previously discussed, S. 

aureus and P. gingivalis are considered important aetiological agents in skin 

infections and periodontitis, respectively. Therefore, these two species were the 

focus of this project.  

 

1.3.1 Staphylococcus aureus 

S. aureus is a facultatively aerobic, Gram-positive coccus belonging to the 

Staphylococcaceae family, so named due to its microscopic appearance as grape-like 

clusters (see Figure 1.4) (from the Greek staphule, meaning “bunch of grapes”) and 

the golden colour of colonies formed on agar (from the Latin aureus) as a result of 

carotinoid production (Bloch, 2001). Staphylococci are catalase-positive and 

differentiated from the Gram-positive, catalase-positive genus Micrococcus by a 
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lower G+C content (33-40 mol% compared with approximately 70 mol% for 

micrococci) (Götz et al., 2006). The main characteristics that distinguish S. aureus 

from other staphylococci are the production of coagulase and the ability to ferment 

mannitol; S. aureus is also -haemolytic due to the production of haemolysins, and 

can grow in high salt conditions of 7.5 to 10% sodium chloride (Somerville & Proctor, 

2009).   

 

Figure 1.4 Scanning electron micrograph of S. aureus  

Photograph courtesy of Janice Haney Carr, Public Health Image Library, Centers for 

Disease Control and Prevention (http://phil.cdc.gov/phil/).  

 

1.3.1.1 Interactions with humans 

S. aureus is an amazingly versatile opportunistic pathogen. Infections caused by S. 

aureus can range from superficial skin infections to severe, invasive diseases such as 

bacteraemia and necrotising pneumonia (Alekshun & Levy, 2006). There is also a 
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huge diversity in the organs affected by staphylococcal infections. Almost no organ 

or tissue is safe: S. aureus is responsible for disorders of the eye, skin, connective 

tissue, bone and joints, heart, lungs and gastro-intestinal and urinary tracts 

(Wertheim et al., 2005).  

 

Over 120 years after staphylococcal disease was described by Ogston in 1880, S. 

aureus remains an important human pathogen. Its success is highlighted by the fact 

that despite the development of antibiotic therapy, the frequency of staphylococcal 

infections has increased steadily with little change in the mortality rate (Lowy, 

1998). Developments in medicine can at least be partly attributed to this rise: S. 

aureus is the most common cause of surgical site infections in England and an 

increasing number of infections are related to the use of joint prostheses, 

immunosuppressants and catheter use (Casey et al., 2007). Indeed, S. aureus is the 

most frequent cause of hospital-acquired infections overall (Jones, 2003). A recent 

analysis of the burden of skin and skin structure infections caused by S. aureus in the 

US found that in addition to the increasing incidence of such infections, these 

infections were also associated with substantial treatment costs, on average costing 

approximately $4500 ± $11,000 per patient per episode (Marton et al., 2008). The 

SENTRY Antimicrobial Surveillance Program found S. aureus to be the most common 

causative agent of skin and soft tissue infections across all geographical regions 

surveyed in North and Latin America and Europe (Moet et al., 2007). S. aureus was 

found to be the most common causative agent of surgical site infections in the UK, 

causing 31% of such infections during the period 2009 to September 2010 (Health 

Protection Agency, 2010). 

 

What makes this pathogen even more remarkable is its ability to colonise the human 

body and, for the most part, remain a harmless commensal. In the general 

population mean carriage rates of almost 40% have been found, and it is estimated 

that 20% of the population are persistent carriers of S. aureus, with 60% being 
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intermittently colonised (Kluytmans et al., 1997). Carriage of S. aureus is principally 

localised to the anterior nares where it can either adhere to the epithelium directly 

or via mucus or serum constituents; it may also colonise the pharynx, axillae and 

perineum (Peacock et al., 2001).  

 

Despite this commensalism, it is thought that nasal carriage of S. aureus is a major 

risk factor for staphylococcal infection, as infection rates are higher in carriers and 

individuals are often infected with their own carriage isolate (Peacock et al., 2001). 

Autoinfection rates are estimated at 76-80% (Coates et al., 2009). In addition, nasal 

carriage also carries a risk for inter-patient transmission (Nashev et al., 2004). 

Colonisation with S. aureus is not generally a problem in healthy individuals; 

however infection may occur when there is a breach in the skin or mucous 

membranes, or if the immune system is compromised (Lindsay & Holden, 2006).  

 

1.3.1.2 Virulence factors and their role in disease 

The success of S. aureus as a human pathogen is facilitated by its vast arsenal of 

virulence factors, which are involved in almost all processes from colonisation of the 

host to nutrition and dissemination. Over 40 different virulence factors have been 

identified in S. aureus (Arvidson & Tegmark, 2001), a summary of which are shown 

in Figure 1.5. The genes encoding virulence determinants are carried on both the 

core genome, such as proteases and adhesin proteins, and mobile genetic elements 

including bacteriophages, pathogenicity islands and transposons, which encode 

genes for antibiotic resistance, superantigens, enterotoxins and leukocidins (Lindsay 

& Holden, 2004).  

 

It has been proposed that the environment which S. aureus colonises (i.e. the 

anterior nares) maintains the selective pressure to retain virulence factors by 

constantly challenging it with both the innate and acquired immune response. 

Increased virulence is also thought to enhance the transmission of the pathogen via 
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the production of infectious materials by the host, thus favouring the maintenance 

of such genes (Massey et al., 2006).  

  

Figure 1.5 A summary of some classes of virulence factors produced by S. aureus  

(Modified from Foster, 1996)  

 

Virulence factors have a huge role to play in every step of the infection process. The 

starting point for colonisation and infection is binding to host tissues, and S. aureus 

produces a wide range of proteins that facilitate binding to host extracellular matrix 

components such as fibronectin and collagen (Götz, 2004). Adherence of S. aureus 

to components of the extracellular matrix is mediated predominantly by proteins 

belonging to the MSCRAMMs (Microbial Surface Components Recognising Adhesive 

Matrix Molecules) family, which are cell wall-anchored surface proteins (Foster & 

Höök, 1998). It is thought that exposure of extracellular matrix molecules may be 

involved in colonisation of the nasal epithelium, and may be particularly relevant in 
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lesions caused by trauma to the nasal mucosa and dermis, such as those caused by 

nose-picking (Wertheim et al., 2006). Wall teichoic acids are also believed to play a 

major role in nasal colonisation by S. aureus and may interact with nasal epithelial 

cells (Burian et al., 2010; Weidenmaier et al., 2004). 

 

The binding of S. aureus to fibronectin has a suggested role in not only the 

colonisation of the anterior nares, but also adhesion to the airway epithelium, 

intravascular catheters and biomaterials (Menzies, 2003). Fibronectin-binding 

proteins are also believed to play a role in invasive staphylococcal disease, as the 

percentage of isolates positive for the fnbA gene, which encodes a fibronectin-

binding protein, has been found to be higher in invasive isolates compared with 

carriage isolates (Peacock et al., 2002). Fibronectin-binding proteins are believed to 

facilitate the invasion of osteoblasts, epithelial cells and endothelial cells (Ahmed et 

al., 2001; Lammers et al., 1999; Peacock et al., 1999).  

 

Once colonisation/infection has been initiated, the next challenge facing the 

bacterium is for nutrients. S. aureus produces a wide range of enzymes and toxins 

that are thought to be involved in the conversion of host tissues into nutrients for 

bacterial growth, such as haemolysins, proteases, lipases and hyaluronidase (Dinges 

et al., 2000). As well as degrading host proteins directly, proteases also have the 

ability to dysregulate the kallikrein-kinin pathway, resulting in increased vascular 

permeability and hence ensuring the supply of nutrients to the site of infection, in 

addition to having numerous modulatory effects on the host immune response 

(Travis et al., 1995). Proteases produced by S. aureus have been implicated in the 

pathogenesis of skin disorders such as atopic dermatitis (Miedzobrodzki et al., 

2002).  

 

In order to persist in the human host, not only does S. aureus have to acquire 

nutrients, it also faces the double challenge of the innate and acquired immune 
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systems. What makes S. aureus such a successful pathogen is its extensive array of 

virulence factors that facilitate avoidance of the host immune response. S. aureus 

produces a variety of toxins and proteins that kill leukocytes, inhibit neutrophil 

chemotaxis, resist phagocytosis, inactivate complement and neutralise host 

antimicrobial peptides (Foster, 2005). Many of these virulence factors are 

multifunctional; for example protein A, a cell wall-associated protein, not only elicits 

the release of proinflammatory cytokines from monocytes and fibroblasts (Fournier 

& Philpott, 2005), but also has the ability to bind the Fc portion of human IgG and 

consequently disrupt opsonisation (Forsgren & Sjoquist, 1966).   

 

1.3.1.3 The rise of meticillin-resistant Staphylococcus aureus 

Further compounding the problem of staphylococcal infection is the increasing 

resistance of S. aureus to antibiotics; and of particular concern is the rise of MRSA. 

MRSA was first reported in the United Kingdom just two years after the introduction 

of meticillin in 1959 (Elston, 2007). Horizontal transfer of the mecA gene, which 

encodes a penicillin-binding protein, results in resistance not only to meticillin, but 

also to broad spectrum -lactams such as the third-generation cephalosporins, 

cefamycins and carbapenems (Foster, 2004).  

 

The proportion of meticillin-resistant S. aureus isolates from blood cultures taken 

from cases of bacteraemia in England has risen dramatically from less than 5% in 

1990 to around 40% by the end of the 1990s (Health Protection Agency, 2007). In 

the US, it has been reported that 52% of S. aureus isolates from intensive care units 

and 42% of isolates from non-intensive care units are resistant to meticillin, with 

MRSA causing approximately 20% of all nosocomial skin and skin structure infections 

(Lee et al., 2005). According to the SENTRY Antimicrobial Surveillance Program, the 

overall rate of MRSA in North America during the period 1998 to 2004 was 35.9%, 

compared with 22.8% in Europe (Moet et al., 2007). During the 2009/2010 reporting 
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period, 32% of S. aureus strains isolated from surgical site infections in the UK were 

resistant to meticillin (Health Protection Agency, 2010).  

 

In 1984, it was discovered that the prevalence of MRSA in London hospitals was 

largely due to the spread of a single strain, subsequently designated epidemic 

MRSA-1 (EMRSA) (Johnson et al., 2005). Following this discovery, a number of 

distinct EMRSA strains have been identified, most notably EMRSA-15 and EMRSA-16, 

which have become the dominant strains in UK hospitals. EMRSA-15 and 16 are not 

only resistant to -lactam antibiotics, but frequently also erythromycin and 

ciprofloxacin (Johnson et al., 2001). EMRSA-16 has also been detected in the 

community, as well as in nursing and residential homes (Cox et al., 1995). 

 

Previously thought to be limited to the hospital setting, MRSA infections are also on 

the rise outside of the hospital (Kluytmans-Vandenbergh & Kluytmans, 2006). 

Although once primarily associated with hospital-acquired infections and infections 

in specific populations such as prison inmates, intravenous drug users and military 

recruits, MRSA infections are now seen in the wider community, affecting otherwise 

healthy people (Schraga, 2008). Community-acquired MRSA (CA-MRSA) first 

emerged as a significant public health threat in the late 1990s (Klevens et al., 2008). 

Although there is no universally accepted definition of CA-MRSA, classification is 

usually based on isolation of MRSA less than 24 to 72 hours following hospital 

admission. CA-MRSA is primarily associated with skin and soft tissue infections and 

the production of exotoxin production, such as the Panton-Valentine leukocidin 

(PVL). CA-MRSA isolates generally have a distinct pattern of antimicrobial resistance, 

with community strains typically showing resistance only to -lactams, compared 

with the multi-drug resistance profile usually seen in nosocomial isolates (Kowalski 

et al., 2005). The distinction between hospital- and community-acquired MRSA has 

started to become less clear, with CA-MRSA strains entering the hospital 

environment and acquiring new resistance patterns; indeed, CA-MRSA is now 
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endemic in many hospitals in the US. This is of particular concern as CA-MRSA tends 

to be more virulent and generally affects younger, otherwise healthy people 

(Deurenberg & Stobberingh, 2008; Klevens et al., 2008). 

 

As well as mortality rates of almost double those associated with meticillin-sensitive 

S. aureus infections, MRSA has put a considerable financial burden on both hospitals 

and society in general (Gould, 2006). Lodise and McKinnon found that patients with 

MRSA infections were at increased risk of delayed treatment with an appropriate 

antimicrobial, 1.5-fold longer length of hospital stay and a 2-fold increased cost of 

hospitalisation (Lodise & McKinnon, 2005). 

 

1.3.1.4 Management of infections 

Uncomplicated skin infections caused by S. aureus include impetigo, folliculitis, 

furunculosis and superficial cellulitis (Merlino & Malangoni, 2007). Impetigo is the 

most common bacterial skin infection, accounting for 50 to 60% of infections, and is 

the most common infectious skin infection in children, with incidence peaking 

between two and six years of age. A range of topical antimicrobials are available for 

the treatment of impetigo, including mupirocin, retapamulin, fusidic acid and 

bacitracin; however, these treatments are associated with adverse events such as 

irritation and contact dermatitis at the application site (Feaster & Singer, 2010). No 

recommended therapeutic strategy exists for the treatment of chronic furunculosis, 

which is often difficult to treat and may rely on long-term treatment with topical 

and systemic antibiotics. Eradication of staphylococcal carriage by decolonisation of 

the anterior nares is commonly used in an effort to prevent recurrence (Bernard, 

2008). 

 

Incision and drainage remain the mainstays of treatment for superficial cutaneous 

abscesses. In cases where MRSA is prevalent and cellulitis of the surrounding tissue 

is observed, treatment options include trimethoprim-sulfamethoxazole, clindamycin 
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and doxycycline (Schraga, 2008). In cases of cellulitis caused by meticillin-sensitive 

strains of S. aureus, semisynthetic penicillins or cephalosporins remain the 

treatment of choice (Merlino & Malangoni, 2007). Antibiotic treatment is also 

indicated in abscesses over 5 cm in length, in particular body sites such as the head 

and neck, or when systemic signs of infection such as fever are observed. In cases of 

impetigo, topical antimicrobial therapy with bacitracin, mupirocin or retapamulin is 

indicated (Daum, 2007). In cases of surgical site infections, removal of sutures and 

reopening of the incision is generally required, with antibiotic therapy indicated in 

cases where there are signs of systemic toxicity, necrosis or immunocompromise 

(Merlino & Malangoni, 2007).  

 

The optimal treatment regimen for staphylococcal skin and soft tissue infections has 

not been determined. Due to the prevalence of resistant strains of S. aureus, -

lactams can no longer be considered as an empirical treatment choice for skin and 

soft tissue infections. Although clindamycin has been shown to be effective, its use 

has been associated with rising rates of resistance and Clostridium difficile-

associated diarrhoea. Linezolid, whilst active against the majority of community-

acquired MRSA isolates, is costly and associated with haematological side effects. 

Rifampin has also been shown to be effective; however, the high frequency of 

mutations conferring resistance contraindicates use of this antibiotic alone. 

Doxycycline and minocycline are associated with side effects such as 

photosensitivity, and cannot be used in children under nine years of age due to the 

propensity for deposition in teeth and bones; in addition, there is a lack of available 

data to support their efficacy against community-acquired MRSA. The 

fluoroquinolones are not indicated for the treatment of skin and soft tissue 

infections caused by S. aureus due to the widespread prevalence of resistance 

(Daum, 2007). 
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In the hospital setting, vancomycin remains the antibiotic of choice for invasive 

staphylococcal infection, although intermediate resistance to vancomycin has been 

observed, as well as a shift towards decreased susceptibility, known as “MIC creep”. 

Tigecycline and daptomycin may also be efficacious in more severe S. aureus skin 

and soft tissue infections (Daum, 2007); however, tigecycline is expensive and both 

drugs can only be administered intravenously (Merlino & Malangoni, 2007).  

 

Several new antibacterial agents active against MRSA have been developed; 

however, their use is primarily reserved for severe, complicated skin and skin 

structure infections (Raghavan & Linden, 2004). There is therefore an urgent unmet 

need for novel therapeutic strategies against MRSA 

 

MRSA decolonisation has been proposed in order to prevent outbreaks and disease 

recurrence. In the UK, nasal decolonisation with mupirocin is recommended in 

patients colonised with MRSA (Coia et al., 2006); however the use of mupirocin is 

not without its problems. MRSA decolonisation is complicated by factors such as 

concomitant exposure to antibiotics that select for MRSA, and pre-existing 

conditions in colonised patients, for example skin lesions and catheterisation. 

Successful decolonisation also depends on the intensity of the decolonisation 

regimen and patient compliance (Kluytmans & Harbarth, 2009). Mupirocin 

resistance has also been noted in some strains of MRSA, most notably in USA300 

isolates, which raises concern over the use of mupirocin for nasal decolonisation 

(Daum, 2007). The MRSAid antimicrobial PDT system is being investigated in 

clinical trials for its ability to eradicate MRSA from the anterior nares. The PDT 

system is being evaluated as part of an extensive decolonisation regimen including 

antibacterial body wash and shampoo in an attempt to achieve sustained 

decolonisation (Street et al., 2009).  
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Relapse of nasal colonisation is common, adding to the problem of microbial 

resistance to mupirocin (Coates et al., 2009). In one study, hospitalised patients who 

had previously been colonised with MRSA had an approximately 5-fold greater risk 

of being colonised, compared with patients who had not previously been colonised 

(Robicsek et al., 2009a). Recolonisation is largely believed to be due to persistence 

of MRSA at extranasal sites, as recolonising strains are often identical to the initial 

strain; however, other risk factors such as residence in a long-term care facility also 

exist (Robicsek et al., 2009b). The recurrence rate of MRSA infection is thought to be 

at least 10%, although it is not clear whether this is due to reinfection by a new 

strain or autoinfection (Daum, 2007).  

 

Adding to the controversy regarding the efficacy of decolonisation, nasal 

decolonisation using mupirocin has been shown to delay the time to infection, but 

not reduce the overall infection rate (Robicsek et al., 2009b). In addition, the efficacy 

of decolonisation regimens in outpatients colonized with CA-MRSA has not been 

investigated (Kowalski et al., 2005). 

  

1.3.2 Porphyromonas gingivalis 

Porphyromonas gingivalis is a Gram-negative, non-motile, non-spore-forming, 

obligately anaerobic bacillus belonging to the Bacteroideaceae family, which can be 

found in the gingival sulcus, tongue, buccal mucosa and tonsillar area. Unlike most 

other members of the genus Porphyromonas, P. gingivalis possesses significant 

proteolytic activity (Cutler et al., 1995; Gibson & Genco, 2006). The bacterium also 

produces large amounts of cell-associated protoheme that gives colonies their 

characteristic black colour, which can be observed in Figure 1.6 (Holt et al., 1999).  
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Figure 1.6 The colony morphology of P. gingivalis 

Photograph courtesy of Dr Derren Ready, UCL Eastman Dental Institute 

 

1.3.2.1 Interactions with humans 

Although primarily associated with periodontal disease, P. gingivalis may also be 

found in healthy people (Cutler et al., 1995). During periodontitis, the proportion of 

P. gingivalis in the oral microbiota can rise significantly, and generally declines on 

return to oral health (Holt et al., 1999). It is thought that P. gingivalis primarily 

colonises new hosts via the transmission of saliva (Greenstein & Lamster, 1997). It 

has been observed that P. gingivalis genotypes cluster within families and thus 

hypothesised that the bacteria may be transmitted between family members; saliva 

and direct mucosal contact were considered the most likely primary routes of 

transmission (Van Winkelhoff & Boutaga, 2005). P. gingivalis is predominantly a late 

coloniser of the oral cavity, requiring other microorganisms to generate suitable 

conditions for colonisation via the creation of adherence sites, supply of growth 

substrates, and the reduction of oxygen (Lamont & Jenkinson, 1998). 
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Periodontal diseases are a collection of pathologies with similar symptoms and can 

be divided into a number of subcategories, of which one is periodontitis. 

Periodontitis is a polymicrobial inflammatory disease of the oral cavity, 

characterised by destruction of the periodontal tissues that support the teeth 

(Hajishengallis, 2009). The disease occurs as a result of microbial colonisation of the 

tooth at or below the gingival margin, and follows a population shift in the 

subgingival plaque towards proteolytic Gram-negative anaerobes, which are 

associated with disease initiation and progression (Socransky & Haffajee, 2002; 

Soukos et al., 2005). Plaque formation is the first step in the development of 

periodontitis and consists of a diverse microbial biofilm comprising of several 

hundred different bacterial species. In health, plaque is primarily composed of 

Gram-positive microorganisms such as Streptococcus and Actinomyces species. As 

gingivitis develops, an increase in anaerobic and Gram-negative species is observed, 

including Fusobacterium nucleatum and Capnocytophaga species. The progression 

to periodontitis is associated with an increase in P. gingivalis, Prevotella intermedia, 

Tanerella forsythia, Treponema denticola and Aggregatibacter 

actinomycetemcomitans (Dumitrescu, 2010).  

 

Periodontitis may be classified as aggressive periodontitis (previously named early-

onset periodontitis) or chronic periodontitis (previously named adult periodontitis); 

aggressive and chronic periodontitis may then be further subdivided into localised or 

generalised forms (Armitage, 2000). Chronic periodontitis is regarded as localised if 

 30 sites are affected, and generalised if > 30 sites are affected (Lindhe, 1999). 

 

Chronic periodontitis is the most common form of periodontitis, and is characterised 

by a significant increase in gingival crevicular exudate, bleeding, destruction of 

connective tissue and consequent bone resorption and tooth loss. P. gingivalis has 

been associated with the majority of patients with chronic periodontitis, and 

therefore is believed to be one of the primary aetiological agents (Dumitrescu, 2010; 
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Travis & Potempa, 2000). Although bacterial plaque is considered essential to the 

initiation of disease, the host immune response is critical in the pathogenesis of the 

chronic periodontitis (Lindhe, 1999). The host immune response is stimulated by an 

inflammatory cascade initiated by oral pathogens, and is believed to exacerbate 

tissue destruction in periodontal disease via the production of proinflammatory 

cytokines such as tumour necrosis factor-alpha (TNF-) and interleukin-1 (IL-1) 

(Graves & Cochran, 2003).  

 

Cytokines play an essential role in the regulation of the immune response and are 

produced by a number of cell types, including lymphocytes, macrophages, epithelial 

cells and fibroblasts; increased levels of the proinflammatory cytokines TNF-, IL-1 

and interleukin 6 (IL-6) have been detected in lesions associated with periodontitis 

(Takashiba et al., 2003). A summary of some of the mechanisms involved in host-

mediated tissue destruction is shown in Figure 1.7. In particular, the local production 

of proinflammatory cytokines has been strongly implicated in periodontal bone 

destruction via the induction and activation of osteoclasts; it is believed that IL-1 

and TNF- are co-produced and act synergistically to induce bone resorption 

(Assuma et al., 1998). Therefore, these proinflammatory cytokines also represent a 

target for PDT, as inactivation or reduction of their biological activity may reduce 

damage to host tissues and facilitate healing. 
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Figure 1.7 A summary of some of the mechanisms of host-mediated periodontal 

tissue destruction. 

(Adapted from Graves & Cochran, 2003)  

 

P. gingivalis has also been implicated in a number of conditions outside of the oral 

cavity, including pulmonary infections, appendicitis and otitis media (Van Winkelhoff 

& Slots, 1999). The invasion of epithelial cells and connective tissue by P. gingivalis 

and the resultant bleeding allows oral microorganisms entry to the bloodstream, 
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which may result in endocarditis. Although not directly implicated as a causative 

agent of endocarditis, P. gingivalis therefore plays a role in the aetiology of the 

disease (Meyer & Fives-Taylor, 1998). The bacterium has been identified in 

atherosclerotic plaques, although it is unclear whether P. gingivalis is the causative 

agent or simply invades damaged arteries (Seymour et al., 2007). In addition, 

periodontal disease has been associated with pre-term delivery and low birth weight 

(Lamont & Jenkinson, 1998).  

 

1.3.2.2 Virulence factors and their role in disease 

P. gingivalis produces an array of virulence factors, which are summarised in Figure 

1.8. These virulence factors include extracellular proteases, lipopolysaccharide (LPS), 

fimbriae, haemagglutinins and an invasin, which are all thought to be involved in the 

invasion of host tissues (Yilmaz, 2008). It has been demonstrated that virulence is 

not limited to one particular clonal type, supporting the hypothesis that P. gingivalis 

is an opportunistic pathogen, rather than certain strains being classed as pathogenic 

and others as commensal (Lamont & Jenkinson, 1998).  
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Figure 1.8 A summary of virulence factors produced by P. gingivalis.  

(Modified from Lamont & Jenkinson, 1998)  

 

P. gingivalis demonstrates multimodal adherence to many substrates, associated 

with both fimbriae and outer membrane proteins (Lamont & Jenkinson, 1998). The 

fimbriae of P. gingivalis are involved in adherence of the organism to host and 

microbial cells, bacterial internalisation, and the induction of proinflammatory 

cytokines such as IL-1, IL-6 and TNF- (Ezzo & Cutler, 2003). As summarised in 

Figure 1.7, these proinflammatory cytokines play an important role in the initiation 

of host-mediated tissue destruction, which exacerbates the damage directly caused 

by bacterial virulence factors.  

 

The proteolytic enzymes of P. gingivalis are multifunctional enzymes and have been 

proposed to play a role in almost every aspect of the bacterium’s interaction with 

the human host, from colonisation through to nutrition and the disease state. The 

proteolytic enzymes of P. gingivalis have been suggested as potential targets for 
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novel antibiotics due to their multifunctionality and importance in periodontal 

disease (Travis & Potempa, 2000).  

 

P. gingivalis produces a number of enzymes with proposed proteolytic functions, 

including the arginine-specific gingipains (arg-gingipains / gingipain R), lysine-specific 

gingipain (lys-gingipain / gingipain K), PrtT proteinase, tpr proteinase, collagenase, 

prolyl tripeptidyl protease (PtpA), dipeptidyl-peptidase IV (DPP IV), dipeptidyl 

peptidase VI, aminopeptidase P, oligopeptidase O, collagenase, and gelatinase 

(Potempa et al., 2000).  

 

The arg-gingipains are thought to play a role in colonisation of the host by cleavage 

of host proteins, resulting in exposed arginine residues that P. gingivalis can then 

use for attachment via its fimbriae (Curtis et al., 2001). The 

haemagglutinin/adhesion properties of the gingipains are also thought to be 

essential for the colonisation of host tissues. It is believed that the gingipains are 

involved in the colonisation of periodontal pockets and/or the gingival sulcus 

through the binding of gingipain complexes to extracellular matrix molecules such as 

fibronectin and fibrinogen  (Potempa et al., 2000). In addition, proteases are 

involved in the processing of other cell surface-associated virulence factors required 

for colonisation, such as the fimbriae (Curtis et al., 2001).  

 

The proteases are believed to be involved in nutrition, either via direct proteolytic 

activity or by the activation of host proteolytic enzymes. Lys-gingipain has been 

shown to be crucial for the acquisition of carbon, nitrogen and hemin, and is 

involved in the lysis of erythrocytes (Curtis et al., 2001). The bacterium has an 

essential requirement for hemin, and it is believed that the ability of its proteolytic 

enzymes to cleave transferrin and haemoglobin may be an important iron-

acquisition mechanism (Holt et al., 1999). Proteolytic enzymes released by P. 

gingivalis also have a number of effects on the host immune response, including 
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activation of the kallikrein/kinin pathway, complement and coagulation cascades, 

dysregulation of the fibrinogen cascade, and polymorphonucleocyte migration 

(Travis & Potempa, 2000). They can also activate host proteinases, which further 

degrade extracellular matrix components and thus further exacerbate host tissue 

damage (Potempa et al., 2000).  

 

The gingipains are reported to be responsible for 85% of P. gingivalis’s general 

proteolytic activity and have additional haemagglutinating, adhesin and 

haemoglobin-binding properties (Potempa et al., 2000). Lys-gingipain can hydrolyze 

many substrates in the human body, including IgG, IgA, type I collagen and 

haemoglobin (Curtis et al., 2001). Laminin, fibronectin, collagen types III, IV and V 

have also been identified as substrates for gingipains in vitro, and are believed to 

contribute to damage to basement membranes, extracellular matrix and host cells 

(Potempa et al., 2000).  

 

Although it is unknown precisely how many haemagglutinins are produced by P. 

gingivalis, it is thought that the bacterium produces at least eight haemagglutinating 

molecues, including those complexed with LPS and lipid on the cell surface and an 

extracellular exohaemagglutinin. The majority of non-protease haemagglutinating 

activity is believed to be associated with the haemagglutinins encoded by hagA, 

hagB, hagC, hagD and hagE (Lamont & Jenkinson, 2000). The haemagglutinins are 

thought to mediate binding of the bacterium to erythrocytes as well as to host 

epithelial cells. The haemagglutinins may also play a role in aiding colonisation of 

host tissues by facilitating the acquisition of iron or hemin (Holt et al., 1999). It is 

thought that P. gingivalis haemagglutinins cause lysis of erythrocytes via the 

formation of small pores (Shah et al., 1992). In addition, haemagglutinin B has been 

shown to induce production of the proinflammatory cytokines interleukin-12, 

interferon- and TNF-, suggesting an immunomodulatory role for the 

haemagglutinins (Zhang et al., 2005). 
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LPS is commonly believed to be the one of the most important virulence factors of 

periodontopathogens (Wilson, 2004). The LPS of P. gingivalis is generally considered 

to be distinct from the classic LPS of the Enterobacteriaceae and is believed to be 

less endotoxic, although conflicting reports have been published in both regards 

(Holt et al., 1999). Septic shock-like symptoms and lethality have been observed in a 

murine model, suggesting stimulation of the systemic immune response (Huang et 

al., 2006). In other reports, P. gingivalis LPS has been shown to strongly stimulate 

the local inflammatory response, but only minimally stimulate the systemic 

inflammatory response (Liu et al., 2008). P. gingivalis LPS has been shown to induce 

the production of IL-1, IL-1, IL-6, IL-8, TNF-, nitric oxide and prostaglandin E2, 

although once again, conflicting reports exist in the literature, and it may be 

concluded that LPS from different strains of the bacterium may have differing 

biological properties (Holt et al., 1999).  

 

In addition to the presence of surface-associated LPS, P. gingivalis releases large 

amounts of LPS in outer membrane vesicles, which have been shown to be able to 

penetrate periodontal tissue and elicit an innate immune response (Darveau et al., 

2004). The LPS of P. gingivalis is believed to cause local bone resorption via the 

direct activation of osteoclasts and by the stimulation of TNF- and IL1- release 

from macrophages, monocytes and fibroblasts, thus contributing to the tooth loss 

associated with advanced periodontal disease (Lamont & Jenkinson, 1998). In 

addition to the induction of bone resorption, P. gingivalis LPS has been shown to 

inhibit bone formation via the inhibition of bone collagen synthesis (Millar et al., 

1986). LPS from oral bacteria also stimulates antibody production by lymphocytes, 

thus exacerbating the immune response (Wilson, 1995).  
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1.3.2.3 Management of infections 

Mechanical removal of supra- and subgingival plaque by scaling and root planing 

and periodontal surgery is generally the first-line treatment for periodontal disease. 

Although the microbial burden can be reduced by 90% by such methods, it has been 

shown that the number of microorganisms associated with the tooth surface returns 

to near-baseline levels within three months of the procedure; in fact, it has been 

suggested that this recolonisation may occur as soon as 4-8 days post-treatment 

(Socransky & Haffajee, 2002).  

 

Topical antiseptic agents such as chlorhexidine are commonly used for the reduction 

of plaque accumulation. Chlorhexidine is available in a number of formulations, 

including mouth rinses, gels and varnishes, and demonstrates activity against Gram 

positive and Gram negative microorganisms due to membrane damage and loss of 

structural organization (Sreenivasan & Gaffar, 2002). A significant side effect of 

chlorhexidine is staining of teeth, and resistance to the agent has also been 

observed among oral microorganisms (Slots, 2002; Sweeney et al., 2004). It has been 

proposed that outer membrane vesicles produced by P. gingivalis may provide 

protection against chlorhexidine by binding to the agent (Grenier et al., 1995).  

 

Topical antimicrobial agents are also widely used for the prevention and/or 

treatment of periodontitis; however, the development of microbial resistance to 

these agents is a cause for concern (Sweeney et al., 2004; Wilson, 2004). A recent 

survey found periodontal microorganisms, including P. gingivalis, which were 

resistant to antibiotics commonly used for the treatment of periodontal disease. 

Approximately 25% of P. gingivalis isolates were resistant to amoxicillin and 

clindamycin, with resistance to metronidazole observed in 21% of isolates (Ardila et 

al., 2010).  
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A further issue associated with antibiotic treatment for periodontitis is the challenge 

of maintaining therapeutic drug concentrations in the periodontal pocket, due to 

the high flow conditions associated with saliva and gingival crevicular fluid. 

Disturbance of the commensal oral microbiota and consequent opportunistic 

infection is also a problem of antibiotic therapy (Wilson, 2004). Delivery systems, for 

example for the local delivery of tetracycline, minocycline and metronidazole, have 

also been developed in order to achieve sustained concentrations of the antibiotic; 

however, their variable efficacy has resulted in limited uptake by clinicians (Krayer et 

al., 2010). 

 

Compounding the issue of antibiotic delivery is the resistance of bacterial biofilms to 

antibiotics. Periodontal diseases are particularly associated with biofilm formation; 

when forming part of a biofilm, microorganisms are typically more resistant to 

antibiotics than planktonic cells. Some authors have suggested that biofilm-

associated organisms have 1000- to 1500-fold greater resistance compared with 

planktonic cells. It has been proposed that this greater level of resistance may be 

due to the slower growth rate seen in biofilms, which consequently reduces the 

susceptibility to some antibiotics. In addition, slow-growing biofilm-associated 

microorganisms often overexpress defence mechanisms such as shock proteins, 

multidrug efflux pumps and are associated with increased exopolymer production 

(Socransky & Haffajee, 2002). Treatment options for periodontal disease should 

therefore have activity against bacterial biofilms, not just planktonic cells.  
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1.4 Aims and objectives 

In the face of increasing antibiotic resistance and unfavourable adverse event 

profiles of existing antibiotic therapies, there exists a need for novel therapeutic 

strategies for both superficial staphylococcal infections and periodontal disease. A 

desirable feature for a novel antimicrobial strategy would be the ability to reduce or 

inactivate microbial virulence factors and undesirable inflammatory responses that 

contribute to the morbidity of the disease. PDT has emerged as a promising 

alternative to conventional antibiotic treatment, and may present solutions to these 

problems.  

 

Whilst the susceptibility of microorgansisms to photosensitisation has been 

demonstrated, there is relatively little published data on the effect of light-activated 

antimicrobials on the virulence factors of pathogenic microorganisms or their effect 

on inflammatory mediators. This thesis therefore has three main aims: 

 

1. To assess the effect of light-activated antimicrobial agents on the viability of P. 

gingivalis and meticillin-sensitive and meticillin-resistant strains of S. aureus  

 

2. To assess the effect of light-activated antimicrobial agents on key virulence 

mechanisms of S. aureus and P. gingivalis 

 

3. To assess the effect of light-activated antimicrobial agents on key modulators of 

inflammation 
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2 General materials and methods 

2.1 Light sources 

A Periowave diode laser (Ondine Biopharma Inc., Canada), which emits light with a 

wavelength of 665 nm was used for all methylene blue experiments. The laser 

system was set up so that the laser beam covered the entire well of a microtitre 

plate in which the experiments were performed. The power output of the laser was 

measured using a thermopile power meter (TPM-300CE, Genetic, Canada) and was 

found to be 73 mW. The beam diameter was measured and found to be 1.7 cm. 

 

A Helium/Neon (HeNe) gas laser (NEC Corporation, Japan) with a measured power 

output of 19 mW and a wavelength of 633 nm was used for all tin chlorin e6 

experiments. The diameter of the beam was 1.5 cm.  

 

For all experiments, the sample to be irradiated was placed in a well of a microtitre 

plate and the surrounding wells filled with tin foil in order to prevent leakage of 

laser light into adjacent wells (see Figure 2.1). In addition, the microtitre plates were 

covered in tin foil during the experiment so that only the well being irradiated was 

exposed to laser light.  

 

The light dose delivered during a specified period of irradiation was calculated using 

the following formula: 

 

Light dose (J) = power output (W) x irradiation time (seconds) 

 

For the 665 nm laser, light doses of 4.38, 8.76 and 21.9 J corresponded to irradiation 

times of 1.0, 2.0 and 5.0 minutes, respectively. For the 633 nm laser, light doses of 

4.38, 8.76 and 21.9 J corresponded to irradiation times of 3.8, 7.7 and 19.2 minutes, 

respectively. 
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Figure 2.1 Layout of microtitre plate for photosensitisation studies 

 

2.2 Photosensitisers 

2.2.1 Methylene blue  

Methylene blue (C16H18ClN3S.3H2O) was purchased from Sigma-Aldrich (UK). Stock 

solutions of 0.1 mg/ml were prepared in phosphate buffered saline (PBS) and kept in 

the dark at room temperature. Further dilutions were also made in PBS.  

 

2.2.2 Tin chlorin e6 

Tin chlorin e6 (SnCe6) (C34H31Cl2N4O6Sn.Na3) was purchased from Frontier Scientific. 

Stock solutions of 0.1 mg/mL were prepared in PBS and kept in the dark at room 

temperature. Further dilutions were also made in PBS. 
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2.3 Target organisms 

2.3.1 Staphylococcus aureus 

Staphylococcus aureus NCTC 8325-4, S. aureus LS-1, S. aureus LS-1∆hemB and 

EMRSA-16 (gifts from Dr Derren Ready, UCL Eastman Dental Institute, except for LS-

1∆hemB, which was constructed by Dr John Wright, UCL) were maintained by 

subculture on blood agar (Oxoid Ltd, UK), supplemented with 5% horse blood (E & O 

Laboratories Ltd, UK). S. aureus D1324 (a gift from Professor Richard Proctor) was 

maintained by subculture on blood agar (Oxoid Ltd, UK) containing 5 µg/ml 

erythromycin. Cultures were incubated aerobically at 37C. For experimental 

purposes, a few colonies were inoculated into 10 mL brain heart Infusion broth (plus 

5 µg/ml erythromycin for S. aureus D1324) (Oxoid Ltd, UK) and the cultures 

incubated aerobically overnight at 37C, with shaking, at 200 rpm.  

 

2.3.2 Porphyromonas gingivalis 

Porphyromonas gingivalis W50 (a gift from Dr Derren Ready, UCL Eastman Dental 

Institute) was maintained by subculture on Wilkins Chalgren agar (Oxoid Ltd, UK) 

supplemented with 5% horse blood (E & O Laboratories Ltd, UK) and incubated at 

37C in an anaerobic cabinet (10% carbon dioxide, 10% hydrogen and 80% nitrogen, 

Don Whitley Scientific Inc.). For experimental purposes, several colonies were placed 

into 10 mL liquid medium (BM broth) and incubated as previously for 48 hours.  
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BM broth was made according to the following recipe:  

 

Tryptone soya broth   10 g 

Proteose peptone   10 g  

Yeast extract    5 g  

Glucose    5 g 

Sodium chloride   5 g 

Cysteine-HCl    0.75 g 

Distilled water   1 L 

 

The pH of the broth was adjusted to 7.5 and the medium was sterilised by 

autoclaving at 121C for 15 minutes. Prior to use, the medium was supplemented 

with haemin (Sigma-Aldrich, UK) and menadione (Sigma-Aldrich, UK) so that the final 

concentrations were 5 µg/mL and 0.5 µg/mL respectively.  

 

2.4 Preparation of P. gingivalis W50 culture supernatant  

One hundred millilitres of BM broth (see section 2.3.2) was inoculated with several 

colonies of P. gingivalis W50 and incubated anaerobically at 37°C for 48 hours. After 

48 hours, 90 mL supplemented BM broth was inoculated with the 10 ml culture and 

incubated anaerobically at 37°C for 3 days. The culture was then centrifuged at 1370 

x g for 15 minutes and the supernatant removed. The supernatant was centrifuged 

again at 1370 x g for 15 minutes, following which the supernatant was collected and 

filtered through a 0.45 µM filter. Culture supernatants were stored at -20C until 

use.  
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2.5 Photosensitisation studies 

2.5.1 Light dose experiments 

For all light dose experiments, light doses of 4.38 J, 8.76 J and 21.9 J were used. A 

photosensitiser concentration of 20 µM (final concentration) was used unless 

otherwise stated. Controls were performed to investigate the effect of laser light 

alone (L+S-) and photosensitiser alone (L-S+). The reduction in activity/viability was 

calculated relative to untreated samples (L-S-). 

 

2.5.2 Photosensitiser dose experiments 

For all photosensitiser dose experiments, final photosensitiser concentrations of 1, 

5, 10 and 20 µM were used. A light dose of 4.38 J was used unless otherwise stated. 

Controls were performed to investigate the effect of laser light alone (L+S-) and 

photosensitiser alone (L-S+). The reduction in activity/viability was calculated 

relative to untreated samples (L-S-). 

 

2.6 Lethal photosensitisation of target organisms 

The target organisms were grown as described in sections 2.3.1 for S. aureus and 

2.3.2 for P. gingivalis. After incubation, cultures were centrifuged and the cells 

resuspended in PBS to an optical density of 0.05 at 600 nm, corresponding to 

approximately 1x107 colony forming units/mL (cfu/mL). Aliquots of 50 µL of the 

photosensitiser were added to an equal volume of the inoculum in triplicate wells of 

a sterile, flat-bottomed, untreated 96-well plate ,and irradiated with laser light of 

the appropriate wavelength (see section 2.1), with stirring. Three additional wells 

containing 50 µL photosensitiser and 50 µL of the bacterial suspension were kept in 

the dark to assess the toxicity of the photosensitiser alone (L-S+). Fifty microlitres of 

PBS was also added to 50 µL of the inoculum in a further six wells, three of which 



 

 - 78 - 

were irradiated with laser light as above (L+S-) and the remaining three were kept in 

the dark (L-S-).  

 

After irradiation/dark incubation, samples were diluted using serial 10-fold dilutions 

to a dilution factor of 10-4 and 10 µL of each dilution was spotted onto blood agar (S. 

aureus) or Wilkins Chalgren agar (P. gingivalis) supplemented with 5% horse blood in 

triplicate. For S. aureus, plates were incubated aerobically at 37C for 18 to 24 hours 

and for P. gingivalis, plates were incubated anaerobically at 37C for 5 days, 

following which the surviving colonies were counted and the number of surviving 

cfu/mL calculated.  

 

2.7 Azocasein hydrolysis assay 

2.7.1 Azocasein hydrolysis assay to assess V8 protease activity 

Endoproteinase Glu-C (also known as V8 protease) from Staphylococcus aureus V8 

was purchased from Sigma-Aldrich (UK) and stored at -20°C at a concentration of 1 

mg/mL in dH2O. A final concentration of 5µg/mL was obtained by diluting the 

enzyme in PBS. An equal volume of V8 protease was added to 50 µL of either 

photosensitiser (S+) or PBS (S-) in triplicate wells of a 96-well plate and samples 

were irradiated with laser light of the appropriate wavelength for each 

photosensitiser (L+) or incubated in the dark (L-).  

 

After irradiation, samples were removed added to 50 µL of 6% azocasein (w/v) in 0.5 

M Tris buffer, pH 7 (Sigma-Aldrich, UK) in 0.5 mL Eppendorf tubes. Samples were 

incubated in the dark for one hour at 37°C. The reaction was stopped with an equal 

volume of 20% acetic acid and the samples centrifuged for 10 minutes at 5590 x g. 

Seventy five microlitres of the supernatant was removed in duplicate from each 

sample and the optical density read at 450 nm using a Dynex plate reader. The 
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enzyme activity at one hour was calculated; one unit of activity was determined as 

that which caused a chance in absorbance of 0.001 in one hour at 450 nm.  

 

2.7.2 Azocasein hydrolysis assay to assess P. gingivalis W50 protease 

activity 

In 24-well plates, 300 µL of P. gingivalis W50 culture supernatant (see section 2.) 

was added to either PBS (S-) or photosensitiser (S+) in sextuplicate. Three wells were 

exposed to laser light, with stirring (L+) and the remaining 3 wells were incubated at 

room temperature in the dark (L-). 500 µL of the test sample was then added to 250 

µL 0.6% azocasein (w/v) in 0.5M Tris, pH 7.3 and incubated for 4 hours, with shaking, 

in the dark. Two hundred and fifty microlitres of BM plus 250 µL of PBS was used as 

a blank and treated as above. After 4 hours, 750 µL 20% acetic acid was added to 

stop the reaction and the tubes centrifuged for 10 minutes at 5590 x g. The optical 

density of 1 mL supernatant at 420 nm was read using a UNICAM UV500 UV-Visible 

spectrophotometer (ThermoSpectronic, Rochester, NY, USA) and the units of activity 

determined as that which caused a chance in absorbance of 0.001 in one hour at 

420 nm 

 

2.8 The effect of a singlet oxygen enhancer and scavenger on the 

efficacy of photosensitisation 

2.8.1 The effect of a singlet oxygen enhancer and scavenger on the lethal 

photosensitisation of target organisms 

S. aureus 8325-4 was maintained and grown for experimental purposes as described 

in section 2.3.1, with the following modifications. Cultures were centrifuged and 

resuspended in an equal volume of either sterile distilled water (H2O), deuterium 

oxide (D2O) or 10 mM L-tryptophan (Sigma Aldrich, UK). Photosensitisation 

experiments were carried out according to section 2.6, using methylene blue diluted 
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in PBS to give a final concentration of 5 µM for the D2O experiments and 10 µM for 

the L-tryptophan experiments. A light dose of 4.38 J of 665 nm laser light was used.  

 

2.8.2 The effect of a singlet oxygen enhancer and scavenger on the 

photodynamic inactivation of S. aureus V8 protease 

The V8 protease was suspended in PBS, deuterium oxide or 10 mM L-tryptophan 

(Sigma-Aldrich, UK). Photosensitisation was carried out using a 665 nm laser light 

dose of 4.38 J. For D20 experiments, a methylene blue concentration of 1 µM was 

used and for L-tryptophan experiments, a methylene blue concentration of 5 µM 

was used. Following photosensitisation, the azocasein hydrolysis assay performed as 

described in section 2.7.1.  

 

2.8.3 The effect of a singlet oxygen enhancer and scavenger on the 

photodynamic inactivation of P. gingivalis proteases 

Methylene blue was suspended in PBS, deuterium oxide or 10 mM L-tryptophan 

(Sigma-Aldrich, UK), and photosensitisation was carried out using 5 µM methylene 

blue and 21.9 J of 665 nm laser light. The azocasein hydrolysis assay performed as 

described in section 2.7.2. 
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2.9 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

analysis 

A 15% resolving gel was used for all sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS PAGE) experiments and was made as follows: 

 

Distilled water    4.6 mL 

30% acrylamide   10 mL 

1.5M Tris, pH8.8   5 mL 

10% SDS    0.2 mL 

10% ammonium persulfate  0.2 mL 

TEMED     0.008 mL 

 

A 5% stacking gel was added once the resolving gel had polymerised and was made 

as follows:  

 

Distilled water    3.4 mL 

30% acrylamide   0.83 mL 

1.0M Tris, pH 6.8   0.63 mL 

10% SDS    0.05 mL 

10% ammonium persulfate  0.05 mL 

TEMED     0.005 mL 

 

Sample buffer (Pierce, UK) was diluted 1 in 5 with sample and boiled for 5 minutes 

before being loaded onto the gel. A pre-stained protein marker (7-175 KDa) (New 

England Biolabs) was also run on each gel.  
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Approximately 500 mL Tris glycine electrophoresis buffer was added to the 

electrophoresis apparatus. A 5X stock solution was made and diluted to 1 in 5 prior 

to use. 

 

5X Tris glycine electrophoresis buffer: 

Tris base    15.1 g 

Glycine     94g 

 

Nine hundred millilitres of distilled water was added, followed by 50 mL 10% SDS. 

The volume was then adjusted to 1 litre with distilled water.  

 

The apparatus was connected to a power supply and run at a constant 40 mA until 

the dye front neared the bottom of the gel. Gels were fixed for 10 minutes in 40% 

methanol and 15% acetic acid, following which they were stained overnight with 

Brilliant Blue G (Sigma-Aldrich, UK). After overnight staining, gels were destained by 

placing in distilled water for approximately one hour and then visualised.   

 

2.10 Statistical analysis 

Data are expressed as means ± standard error. All statistical analyses were 

performed using SPSS 14.0 (LEAD Technologies, Inc.). For data with a standard 

distribution, results were analysed using the univariate ANOVA test with post-hoc 

Bonferroni (equal variance) or Games-Howell (unequal variance) analysis. A P value 

of less than 0.05 was considered statistically significant. For data with a non-

standard distribution, the Mann-Whitney U test was used to compare groups. A P 

value of less than 0.05 was considered statistically significant.  
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2.11 Chemical structures 

All chemical structures were drawn using ChemDraw Ultra 12.0 (CambridgeSoft 

Corporation).  
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3 The susceptibility of target organisms to lethal 

photosensitisation 

3.1 Introduction 

As a result of the global increase in antibiotic resistance, there is an unmet clinical 

need for novel therapeutic strategies. In addition to the burden of antibacterial 

resistance, the current methods of treatment may be invasive, cause host toxicity 

and damage to the normal microbiota (Feaster & Singer, 2010; Wilson, 2004). The 

use of light-activated antimicrobial agents has been proposed as a promising 

alternative treatment for a number of bacterial infections, in particular localised 

infections such as wounds, burns and periodontitis (Jori et al., 2006).   

 

Superficial skin infections are ideally suited to PDT as the site of infection is generally 

easily accessible for topical application of the photosensitiser and subsequent 

irradiation (Wainwright et al., 1998). The most frequently isolated pathogen from 

skin and skin structure infections is S. aureus, which is isolated in almost 50% of 

cases (Lee et al., 2005). The sensitivity of S. aureus to photodynamic killing using a 

variety of light sources and photosensitisers has been demonstrated (Omar et al., 

2008; Wainwright et al., 1997; Wilson & Pratten, 1994; Zeina et al., 2001). Recent in 

vivo studies have confirmed the potential of PDT as a potent antibacterial strategy 

active against both MSSA and MRSA (Dai et al., 2010; Zolfaghari et al., 2009).   

 

Periodontitis is also well-suited to treatment with PDT due to the accessibility of the 

periodontal pocket (Wilson, 2004). The use of PDT in periodontal disease is well 

documented, and the first antibacterial PDT systems have been licensed for this 

indication (Jose et al., 2010). Periodontitis is a complex polymicrobial disease, in 

which P. gingivalis is one of the major aetiological agents (Dumitrescu, 2010). In the 

disease state, the numbers of P. gingivalis present in the oral microbiota have been 
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observed to increase significantly (Holt et al., 1999). This pathogen also produces a 

number of virulence factors that play an important role in the pathology of 

periodontitis (Yilmaz, 2008).   

 

This chapter describes the effect of the photosensitisers methylene blue and tin 

chlorin e6 in combination with laser light of the appropriate wavelength on the 

viability of S. aureus and P. gingivalis W50. These bacterial species were chosen as 

target organisms due to their association with infections that are potentially 

treatable with antimicrobial PDT. For S. aureus, the susceptibilities of a meticillin-

sensitive strain (S. aureus 8325-4) and a meticillin-resistant strain (EMRSA-16) were 

investigated. Preliminary studies to investigate the mechanism of photodynamic 

killing were carried out using the singlet oxygen scavenger L-tryptophan and the 

enhancer of singlet oxygen lifetime, D2O.    
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3.2 Materials and methods 

3.2.1 The effect of photosensitiser dose on the lethal photosensitisation of 

S. aureus 8325-4 and EMRSA-16 

S. aureus 8325-4 and EMRSA-16 were maintained and grown for experimental 

purposes as described in section 2.3.1. Following overnight incubation, experiments 

to assess the effect of photosensitiser dose on the lethal photosensitisation of S. 

aureus 8325-4 and EMRSA-16 were performed as described in sections 2.5.2 and 

2.6. Experiments were performed three times in triplicate. 

 

3.2.2 The effect of laser light dose on the lethal photosensitisation of S. 

aureus 8325-4 and EMRSA-16 

Bacterial strains were grown and harvested as described in section 2.3.1. Following 

harvesting of the cells, the effect of 665 nm laser light dose on the lethal 

photosensitisation of S. aureus 8325-4 and EMRSA-16 was assessed as described in 

sections 2.5.1 and 2.6. Experiments were performed three times in triplicate. 

 

3.2.3 The effect of a singlet oxygen enhancer and scavenger on the lethal 

photosensitisation of S. aureus 8325-4  

Experiments to examine the effect of deuterium oxide and L-tryptophan were 

performed according to section 2.8.1. Experiments were performed twice in 

triplicate. 
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3.2.4 The effect of photosensitiser dose on the lethal photosensitisation of 

P. gingivalis W50 

P. gingivalis W50 was maintained and grown for experimental purposes as described 

in section 2.3.2. Experiments to assess the effect of photosensitiser dose on the 

lethal photosensitisation of P. gingivalis W50 were performed as described in 

sections 2.5.2 and 2.6.  Experiments were performed three times in triplicate.  

 

3.2.5 The effect of laser light dose on the lethal photosensitisation of P. 

gingivalis W50 

P. gingivalis W50 was grown and harvested for experimental purposes as described 

in section 2.3.2. The effect of 665 nm laser light dose on the lethal 

photosensitisation of P. gingivalis W50 was assessed; experiments were performed 

according to sections 2.5.1 and 2.6. Experiments were performed three times in 

triplicate. 

 

3.2.6 The effect of laser light dose on sample temperature 

In order to determine whether laser light dose had an effect on the temperature of 

samples, either PBS, 20 µM photosensitiser or 20 µM photosensitiser plus 12.5% 

human serum were exposed to laser light doses of 0, 4.38, 8.76 and 21.9 J, and the 

temperature recorded using a Fluke 179 True RMS multimeter. Experiments were 

performed in triplicate. 
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3.3 Results 

3.3.1 The effect of photosensitiser dose on the lethal photosensitisation of 

S. aureus 8325-4 

3.3.1.1 Methylene blue 

Figure 3.1 shows the effect of an increasing methylene blue dose on the lethal 

photosensitisation of S. aureus 8325-4. Photosensitisation of S. aureus 8325-4 using 

methylene blue and 665 nm diode laser light resulted in significant, photosensitiser 

dose-dependent killing of the microorganism. Photosensitisation using the highest 

concentration of methylene blue tested (20 µM) and 4.38 J of laser light resulted in a 

99.99% kill. This reduction in the number of viable bacteria was highly significant 

compared with the control (P <0.001; ANOVA). There was no effect of either 

photosensitiser or laser light alone.   
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Figure 3.1 Lethal photosensitisation of S. aureus 8325-4 with 1, 5, 10 and 20 µM 

methylene blue and 4.38 J of 665 nm laser light. 

An equal volume of either PBS or methylene blue (final concentrations ranging from 

1-20 µM) was added to 50 µL of the bacterial suspension and either kept in the dark 

() or exposed to 4.38 J of 665 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times in triplicate and the combined data 

shown. 

 

3.3.1.2 Tin chlorin e6  

Killing of S. aureus 8325-4 using tin chlorin e6 and 633 nm laser light was less 

effective than methylene blue and 665 nm laser light, as can be seen in Figure 3.2. A 

significant reduction in viability was only achieved using the highest concentration of 

tin chlorin e6 tested (20 µM), corresponding to a 92% reduction in the number of 

viable bacteria compared with the control (** P < 0.01; ANOVA). As seen previously, 
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there was no effect of either photosensitiser or laser light alone on the viability of S. 

aureus 8325-4.  

 

 

Figure 3.2 Lethal photosensitisation of S. aureus 8325-4 with 1, 5, 10 and 20 µM tin 

chlorin e6 and 4.38 J of 633 nm laser light. 

An equal volume of either PBS or tin chlorin e6 (final concentrations ranging from 1-

20 µM) was added to 50 µL of the bacterial suspension and either kept in the dark 

() or exposed to 4.38 J of 633 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. ** P < 0.01 (ANOVA). Experiments 

were performed three times in triplicate and the combined data shown. 
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3.3.2 The effect laser light dose on the lethal photosensitisation of S. 

aureus 8325-4 

3.3.2.1 Laser light of 665 nm 

Figure 3.3 shows the effect of 665nm laser light dose on the photodynamic killing of 

S. aureus 8325-4. Laser light alone had no effect on the viability of the bacteria; 

however, 20 µM methylene blue and laser light doses of 4.38 J, 8.76 J and 21.9 J all 

resulted in significant, light dose-dependent killing of S. aureus 8325-4. A 99.999% 

kill was achieved after treatment with 21.9 J laser light and 20 µM methylene blue.  

Figure 3.3 Lethal photosensitisation of S. aureus 8325-4 using 20 µM methylene 

blue and laser light doses of 4.38 J, 8.76 J and 21.9 J.  

An equal volume of either PBS () or 20 µM methylene blue () was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 665 nm laser 

light doses of 4.38 J, 8.76 J and 21.9 J respectively. After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times in triplicate and the combined data are 

shown.
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3.3.2.2 Laser light of 633 nm  

The effect of photosensitisation of S. aureus 8325-4 with tin chlorin e6 and laser 

light of 633 nm is shown in Figure 3.4. Treatment with 20 µM tin chlorin e6 and 633 

nm laser light resulted in a highly significant reduction in the number of viable 

bacteria, with a 99.93% kill being achieved after irradiation with 21.9 J of laser light 

(P < 0.001; ANOVA). Interestingly, irradiation of the bacteria with laser light in the 

absence of photosensitiser also resulted in significant killing when light doses of 8.76 

J and 21.9 J were used (P < 0.01 and < 0.001 for 8.76 J and 21.9, respectively).    
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Figure 3.4 Lethal photosensitisation of S. aureus 8325-4 using 20 µM tin chlorin e6 

and laser light doses of 4.38 J, 8.76 J and 21.9 J.  

An equal volume of either PBS () or 20 µM tin chlorin e6 () was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 633 nm laser 

light doses of 4.38 J, 8.76 J and 21.9 J. After irradiation/dark incubation, samples 

were serially diluted and the surviving CFU/mL enumerated. Error bars represent the 

standard deviation from the mean. ** P < 0.01, *** P < 0.001 (ANOVA). Experiments 

were performed three times in triplicate and the combined data are shown. 
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3.3.3 The effect of a singlet oxygen enhancer on the lethal 

photosensitisation of S. aureus 8325-4  

It can be seen from Figure 3.5 that suspension of bacteria in D2O rather than distilled 

water resulted in a highly significant enhancement of lethal photosensitisation using 

5 µM methylene blue and laser light (P < 0.001; ANOVA). Killing was increased from 

92.11% to 99.96% in the presence of D2O, approximately equivalent to a 2-Log10 

reduction in the number of viable bacteria. D2O alone did not have an effect on the 

viability of S. aureus 8325-4.  

 

Figure 3.5 The effect of a singlet oxygen enhancer on the lethal photosensitisation 

of S. aureus 8325-4. 

An equal volume of either PBS (S-) or 5 µM methylene blue (S+) was added to 50 µL 

of the bacterial suspension in either H2O () or D2O () and either exposed to 4.38 

J of 665 nm laser light (L+) or incubated in the dark (L-). After irradiation/dark 

incubation, samples were serially diluted and the surviving CFU/mL enumerated. 

Error bars represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed twice in triplicate and the combined data are shown.  
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3.3.4 The effect of a singlet oxygen scavenger on the lethal 

photosensitisation of S. aureus 8325-4 

Figure 3.6 shows that the singlet oxygen scavenger L-tryptophan inhibited the killing 

of S. aureus 8325-4 by methylene blue and laser light. Killing of S. aureus 8325-4 was 

reduced by approximately 2-Log10 in the presence of L-tryptophan; this reduction 

was found to be highly significant (P < 0.001; ANOVA). 

 

Figure 3.6 The effect of a singlet oxygen scavenger on the lethal photosensitisation 

of S. aureus 8325-4. 

An equal volume of either PBS (S-) or 10 µM methylene blue (S+) was added to 50 µL 

of the bacterial suspension in either H2O () or 10 mM L-tryptophan () and either 

exposed to 4.38 J of 665 nm laser light (L+) or incubated in the dark (L-). After 

irradiation/dark incubation, samples were serially diluted and the surviving CFU/mL 

enumerated. Error bars represent the standard deviation from the mean. *** P < 

0.001 (ANOVA). Experiments were performed three times in triplicate and the 

combined data are shown.  
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3.3.5 The effect of photosensitiser dose on the lethal photosensitisation of 

EMRSA-16 

3.3.5.1 Methylene blue 

Figure 3.7 shows that treatment of EMRSA-16 with 20 µM methylene blue and 4.38 J 

of 665 nm laser light resulted in approximately a 4-log10 reduction in viability 

(99.98% kill). This was equivalent to the kills observed with S. aureus 8325-4 using 

the same parameters, showing that this regimen was as effective against a 

meticillin-resistant strain of S. aureus as a meticillin-sensitive strain.  

Figure 3.7 Lethal photosensitisation of EMRSA-16 with 1, 5, 10 and 20 µM 

methylene blue and 4.38 J of 665 nm laser light. 

An equal volume of either PBS or methylene blue (final concentrations ranging from 

1-20 µM) was added to 50 µL of the bacterial suspension and either kept in the dark 

() or exposed to 4.38 J of 665 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. * P < 0.05, *** P < 0.001 (ANOVA). 

Experiments were performed three times in triplicate and the combined data 

shown.  
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3.3.5.2 Tin chlorin e6 

The effect of tin chlorin e6 dose on the lethal photosensitisation of EMRSA-16 is 

shown in Figure 3. 8. It can be seen that killing of EMRSA-16 was dependent on 

photosensitiser dose, with significant reduction in viability being achieved with 

doses of tin chlorin e6 of 5 µM and above. Treatment of EMRSA-16 with 20 µM tin 

chlorin e6 and 4.38 J of 633 nm laser light resulted in a 94% kill, comparable to the 

kills achieved for the meticillin-sensitive strain 8325-4 (92%).  

 

Figure 3. 8 Lethal photosensitisation of EMRSA-16 with 1, 5, 10 and 20 µM tin 

chlorin e6 and 4.38 J of 633 nm laser light. 

An equal volume of either PBS or tin chlorin e6 (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J of 633 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. ** P < 0.01 (ANOVA). Experiments 

were performed three times in triplicate and the combined data shown. 
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3.3.6 The effect of laser light dose on the lethal photosensitisation of 

EMRSA-16 

3.3.6.1 Laser light of 665 nm 

Figure 3.9 shows the effect of 665 nm laser light dose on the viability of EMRSA-16. 

Light doses of 4.38 J and above all resulted in a highly significant reduction in the 

number of viable bacteria when EMRSA-16 was irradiated in the presence of 

methylene blue (P < 0.001; ANOVA). After irradiation with 21.9 J laser light in the 

presence of 20 µM methylene blue an approximate 6-log10 reduction in viability was 

achieved, corresponding to a 99.999% kill, demonstrating the effectiveness of this 

regimen against MRSA. This was equivalent to the reduction in viability observed for 

the meticillin-sensitive strain.   
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Figure 3.9 The effect of 20 µM methylene blue and 665 nm laser light doses of 4.38 

J, 8.76 J and 21.9 J on the lethal photosensitisation of EMRSA-16.  

An equal volume of either PBS () or 20 µM methylene blue () was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 665 nm laser 

light doses of 4.38 J, 8.76 J and 21.9 J. After irradiation/dark incubation, samples 

were serially diluted and the surviving CFU/mL enumerated. Error bars represent the 

standard deviation from the mean. *** P < 0.001 (ANOVA). Experiments were 

performed three times in triplicate and the combined data are shown. 
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3.3.6.2 Laser light of 633 nm  

The effect of 633 nm laser light dose on the lethal photosensitisation of EMRSA-16 

can be seen in Figure 3.10. The results were similar to those observed with S. aureus 

8325-4; treatment of EMRSA-16 with 20 µM tin chlorin e6 and 21.9 J of laser light 

resulted in a 99.83% kill, comparable to the 99.93% kill observed for the meticillin-

sensitive strain. As also observed for S. aureus 8325-4, irradiation of EMRSA-16 with 

either 8.76 J or 21.9 J laser light in the absence of photosensitiser resulted in 

significant killing of bacteria; however, significantly less than the kills achieved with 

the same light dose in the presence of photosensitiser (P < 0.001; ANOVA).   

Figure 3.10 The effect of 20 µM tin chlorin e6 and 633 nm laser light doses of 4.38 

J, 8.76 J and 21.9 J on the lethal photosensitisation of EMRSA-16.  

An equal volume of either PBS () or 20 µM tin chlorin e6 () was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 633 nm laser 

light doses of 4.38 J, 8.76 J and 21.9 J. After irradiation/dark incubation, samples 

were serially diluted and the surviving CFU/mL enumerated. Error bars represent the 

standard deviation from the mean. * P < 0.05, *** P < 0.001 (ANOVA). Experiments 

were performed three times in triplicate and the combined data are shown.
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3.3.7 The effect of photosensitiser dose on the lethal photosensitisation 

of P. gingivalis W50 

3.3.7.1 Methylene blue 

The effect of methylene blue dose on the lethal photosensitisation of P. gingivalis 

W50 is shown in Figure 3.11. Killing of this microorganism using methylene blue and 

665 nm laser light was found to be highly effective and dependent on 

photosensitiser dose. Photosensitisation using 20 µM methylene blue in 

combination with 665 nm laser light achieved a highly significant reduction in the 

number of viable bacteria, corresponding to a 99.999% kill (P < 0.001; ANOVA). 

There was no effect of either laser light or photosensitiser alone on the viability of P. 

gingivalis W50. Statistically significant killing was achieved at a lower photosensitiser 

dose (5 µM) than that observed for S. aureus.  
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Figure 3.11 Lethal photosensitisation of P. gingivalis W50 with 1, 5, 10 and 20 µM 

methylene blue and 4.38 J of 665 nm laser light. 

An equal volume of either PBS or methylene blue (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J of 665 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times in triplicate and the combined data shown 

 

3.3.7.2 Tin chlorin e6  

Significant, photosensitiser dose-dependent killing of P. gingivalis W50 was achieved 

following treatment with tin chlorin e6 and 633 nm laser light, as can be seen in 

Figure 3.12. As observed for methylene blue, significant killing was achieved using a 

lower photosensitiser dose than necessary for S. aureus 8325-4 and EMRSA-16. A 

99.95% reduction in the number of viable bacteria was achieved following 

photosensitisation with 4.38 J of 633 nm laser light and 20 µM tin chlorin e6. Again, 
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there was no effect of either laser light or photosensitiser alone on the viability of P. 

gingivalis W50. 

 

Figure 3.12 Lethal photosensitisation of P. gingivalis W50 with 1, 5, 10 and 20 µM 

tin chlorin e6 and 4.38 J of 633 nm laser light. 

An equal volume of either PBS or tin chlorin e6 (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J 633 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. ** P < 0.01, *** P < 0.001 

(ANOVA). Experiments were performed three times in triplicate and the combined 

data shown. 
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3.3.8 The effect of laser light dose on the lethal photosensitisation of P. 

gingivalis W50 

3.3.8.1 Laser light of 665 nm 

Figure 3.13 shows the effect of 665 nm laser light dose on the photodynamic killing 

of P. gingivalis W50 in the presence or absence of 20 µM methylene blue. As can be 

seen, highly significant reductions in the number of viable bacteria were achieved 

following irradiation with light doses of 4.38 J and above. Percentage kills above or 

equal to 99.99% were observed for all three light doses (P < 0.001; ANOVA).  
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Figure 3.13 The effect of 20 µM methylene blue and laser light doses of 4.38 J, 8.76 

J and 21.9 J on the lethal photosensitisation of P. gingivalis W50.  

An equal volume of either PBS () or 20 µM methylene blue () was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 665 nm laser 

light doses of 4.38 J, 8.76 J and 21.9 J. After irradiation/dark incubation, samples 

were serially diluted and the surviving CFU/mL enumerated. Error bars represent the 

standard deviation from the mean. *** P < 0.001 (ANOVA). Experiments were 

performed three times in triplicate and the combined data are shown. 
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3.3.8.2 Laser light of 633 nm  

The effect of 633 nm laser light dose on the lethal photosensitisation of P. gingivalis 

W50 is shown in Figure 3.14. Similar to the results for 665 nm laser light, light doses 

of 4.38 J and above resulted in highly significant reductions in the number of viable 

bacteria in the presence of tin chlorin e6 (P < 0.001; ANOVA). Kills of greater than 

99.99% were observed for all three light doses. Unlike S. aureus 8325-4 and EMRSA-

16, laser light alone did not cause a significant reduction in the number of viable P. 

gingivalis W50.    

Figure 3.14 The effect of 20 µM tin chlorin e6 and laser light doses of 4.38 J, 8.76 J 

and 21.9 J on the lethal photosensitisation of P. gingivalis W50.  

An equal volume of either PBS () or 20 µM tin chlorin e6 () was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 633 nm laser 

light doses of 4.38 J, 8.76 J and 21.9 J. After irradiation/dark incubation, samples 

were serially diluted and the surviving CFU/mL enumerated. Error bars represent the 

standard deviation from the mean. *** P < 0.001 (ANOVA). Experiments were 

performed three times in triplicate and the combined data are shown. 
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3.3.9 The effect of laser light dose on sample temperature 

3.3.9.1 Laser light of 665 nm 

Following irradiation of PBS with 0, 4.38, 8.76 and 21.9 J 665 nm laser light, the 

average temperature of the samples was 25.3, 25.7, 26.1 and 26.7C, respectively.  

 

For 20 µM methylene blue, the average temperature following irradiation with 0, 

4.38, 8.76 and 21.9 J 665 nm laser light was 26.0, 26.2, 27.0 and 27.6C, respectively. 

For 20 µM methylene blue in the presence of 12.5% human serum (final 

concentration of 6.25%), the average temperature following irradiation with 0, 4.38, 

8.76 and 21.9 J 665 nm laser light was 25.6, 26.3, 26.6 and 28.0C, respectively.  

 

The average room temperature was recorded as 24.3C. 

 

3.3.9.2 Laser light of 633 nm 

Following irradiation of PBS with 0, 4.38, 8.76 and 21.9 J 633 nm laser light, the 

average temperature of the samples was 27.0, 28.1, 28.3 and 28.8C, respectively.  

 

For 20 µM tin chlorin e6, the average temperature following irradiation with 0, 4.38, 

8.76 and 21.9 J 665 nm laser light was 25.4, 26.6, 27.4 and 28.8C, respectively.  

 

The average room temperature was recorded as 23.3C. 
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3.4 Discussion 

The successful photodynamic killing of S. aureus (including MRSA) in vitro using a 

range of photosensitisers has been well documented (Bertoloni et al., 2000; Wilson 

& Yianni, 1995; Zeina et al., 2001) and the results presented here support these 

findings. Both a meticillin-sensitive and meticillin-resistant strain of S. aureus were 

shown to be susceptible to lethal photosensitisation by both regimens tested, with 

highly significant kills achieved for the two strains. The photodynamic killing of both 

S. aureus 8325-4 and EMRSA-16 was found to be dependent on photosensitiser dose 

and laser light dose. The combination of methylene blue and 665 nm laser light was 

found to be the most effective photosensitisation strategy, resulting in kills of 

99.999% for both the meticillin-sensitive and meticillin-resistant strain after 

treatment with 20 µM methylene blue and 21.9 J laser light. This light dose 

corresponds to a short irradiation time (5 minutes), which would be beneficial in a 

clinical setting.  

 

Laser light of 633 nm alone (i.e. in the absence of photosensitiser) was found to 

cause a significant reduction in the number of viable MSSA and MRSA. The 

antistaphylococcal effect of 633 nm laser light alone has been previously observed 

and may be due to the presence of endogenous photosensitisers that absorb light of 

this wavelength (Wilson & Pratten, 1994). S. aureus is known to produce a number 

of light-absorbing compounds including staphyloxanthin (Pelz et al., 2005) and 

porphyrins (Nitzan & Kauffman, 1999). As the average temperature recorded 

following the highest light dose used (21.9 J) was 28.8C, it can be concluded that 

the killing effect observed is not due to thermal killing of the bacteria.    

 

Investigation of the mechanism of photodynamic killing revealed that singlet oxygen 

is likely to be involved as lethal photosensitisation of S. aureus 8325-4 in the 

presence of an enhancer of singlet oxygen lifetime. Deuterium oxide significantly 
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enhanced the efficacy of photodynamic killing using methylene blue and 665 nm 

laser light. Equally, photosensitisation of S. aureus 8325-4 in the presence of a 

quencher of singlet oxygen (L-tryptophan) resulted in significantly lower killing of 

the microorganism. These findings are consistent with those of Omar et al., who 

reported similar results using indocyanine green and near-infrared laser light for the 

photodynamic killing of S. aureus 8325-4 (Omar et al., 2008). Singlet oxygen is 

generally thought to be responsible for the majority of oxidative damage sustained 

during lethal photosensitisation of microorganisms (Wainwright, 2000).  

 

Although a concentration of 20 µM methylene blue in combination with 665 nm 

laser light achieved a kill of 99.99% for both strains when irradiated with 4.38 J of 

laser light, EMRSA-16 was less susceptible than S. aureus 8325-4 at lower 

concentrations (5 and 10 µM). Grinholc et al. reported the reduced susceptibility of 

clinical meticillin-resistant strains of S. aureus compared with meticillin-sensitive 

strains to sensitisation with protoporphyrin diarginate and laser light of 624 nm. The 

reduced susceptibility of MRSA was proposed to be due to the presence of capsular 

polysaccharides that may affect penetration of the photosensitiser (Grinholc et al., 

2008). High-level meticillin resistance in S. aureus has also been correlated with 

increased cell wall cross-linking (Higashi et al., 1999). Thicker cell walls have been 

observed in MRSA compared with MSSA (Hiramatsu et al., 1997); therefore it is 

possible that these differences in the cell wall between MSSA and MRSA may 

contribute to the difference in susceptibility to lethal photosensitisation observed at 

lower photosensitisation concentrations. Higher concentrations of photosensitiser 

may overcome the protection afforded by these structural differences, as similar 

susceptibility to lethal photosensitisation was observed following treatment of 

MSSA and MRSA with 20 µM methylene blue and 665 nm laser light.  

 

Previous studies have shown that significant killing of S. aureus, including meticillin-

resistant strains, can be achieved in the presence of serum, designed to more closely 
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resemble wound conditions (Omar et al., 2008; Soncin et al., 2002; Wilson & 

Pratten, 1995). MRSA has also been shown to be successfully killed by methylene 

blue in vivo (Zolfaghari et al., 2009), albeit less effectively than in vitro; however this 

is to be expected, considering the complexity of the wound environment. It has 

been proposed that the efficacy of photodynamic killing in vivo may be enhanced by 

the use of targeted photosensitisers, thus increasing the specificity of PDT; indeed, 

the selective killing of MRSA using a tin chlorin e6 conjugate has been shown to be 

successful in preliminary tests (Embleton et al., 2002). The potential for the 

development of a targeted photosensitiser is extremely relevant as selective killing 

would reduce disruption of the commensal microbiota and damage to host tissues.  

 

The study reported herein has demonstrated the effectiveness of lethal 

photosensitisation for the photodynamic inactivation of MSSA and MRSA. 

Considering the increasing problem of antibiotic resistance among both nosocomial 

and community-acquired strains of S. aureus, PDT is an extremely relevant and 

promising alternative antimicrobial strategy. More research is required to examine 

the effectiveness of light-activated antimicrobials against MRSA in vivo, and there is 

much scope for the development of targeted light-activated antimicrobial agents. 

Topical antimicrobials are important in the treatment of infections caused by S. 

aureus (Wilson & Pratten, 1995) and due to their accessibility, superficial MRSA 

infections are ideally suited to treatment using PDT (Maisch, 2007).  

 

The Gram-negative bacterium P. gingivalis has previously been shown to be 

susceptible to photosensitisation using a range of photosensitisers (Meisel & Kocher, 

2005). In this study, P. gingivalis W50 was shown to be highly susceptible to lethal 

photosensitisation with both methylene blue and tin chlorin e6, with greater kills 

being observed than those seen with S. aureus for both photosensitisers. Gram-

negative bacteria are generally considered to be less susceptible to photodynamic 

killing than Gram-positive bacteria as the outer membrane of Gram-negative 
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bacteria acts as a permeability barrier (Maisch et al., 2004). In Gram-positive 

bacteria, due to the absence of the outer membrane, the relatively porous cell wall 

readily allows diffusion of small molecules such as some photosensitisers (< 60 kDa) 

through to the cell membrane where the formation of reactive oxygen species 

causes damage (Jori et al., 2006). It is therefore interesting that P. gingivalis W50 

was found to be more susceptible to lethal photosensitisation than the Gram-

positive S. aureus in this study. It has previously been postulated that uptake of 

cationic compounds may be higher in Gram-negative bacteria via binding to 

lipopolysaccharide (LPS) and consequent self-promoted uptake. In addition, the LPS 

is highly negatively charged, and therefore cationic photosensitisers may localise to 

the LPS and on irradiation cause damage to the outer membrane (Maisch et al., 

2004). 

 

A highly significant reduction in the number of viable bacteria was achieved at lower 

photosensitiser concentrations than observed for S. aureus (i.e. 5 µM). Bhatti et al. 

(Bhatti et al., 1997) reported highly successful photodynamic killing of this organism 

using toluidine blue O (TBO) and 4.4 J of 633 nm laser light; in fact, 100% killing of P. 

gingivalis was claimed to be achieved under these conditions. TBO, a 

phenothiazinium compound similar to methylene blue, has also been successfully 

employed in the killing of P. gingivalis in subgingival plaque samples (Wilson, 2004). 

It is thought that cationic photosensitisers (i.e. methylene blue) may be taken up by 

Gram-negative bacteria by a self-promoted uptake pathway (Jori et al., 2006). As 

methylene blue is cationic, this may account for the efficacy of photodynamic killing 

using this photosensitiser. It is also possible that the bacterium’s anaerobic 

requirements render it more susceptible to the effects of reactive oxygen species 

and this overcomes any protective effects provided by the Gram-negative cell 

envelope.    
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Photodynamic therapy is ideally suited to the treatment of periodontal diseases, of 

which P. gingivalis is a major aetiological agent, as “traditional” treatments such as 

antibiotics are difficult to maintain at a suitable concentration in the periodontal 

pocket (Jori et al., 2006) and may not penetrate bacterial biofilms (Maisch, 2007). 

The use of photosensitisers for the killing of bacteria within plaque biofilms is well 

documented in the literature (Konopka & Goslinski, 2007). Highly significant killing 

of P. gingivalis is possible in the presence of serum (Bhatti et al., 1997) and blood 

(Matevski et al., 2003), indicating that photodynamic killing of this organism may be 

possible in vivo. Photodynamic therapy has been shown to be effective in animal 

models of periodontitis (Komerik et al., 2003). Preliminary clinical studies have 

shown PDT to be as effective as scaling and root planing for the non-surgical 

treatment of aggressive periodontitis, and has the advantages of not requiring 

anaesthesia and a relatively short treatment time (de Oliveira et al., 2007).  

 

3.5 Summary 

Treatment of MSSA, MRSA and P. gingivalis with the light-activated antimicrobials 

methylene blue and tin chlorin e6 in combination with laser light of the appropriate 

wavelength resulted in a highly significant reduction in the viability of all strains. In 

addition, HeNe laser light alone is able to kill S. aureus species. Reports in the 

literature state that photodynamic killing of these organisms is possible in conditions 

designed to mimic the wound environment; therefore PDT shows great promise for 

the eradication of these microorganisms and the treatment of infections of which 

they are the causative organism.  
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4 Inactivation of key staphylococcal virulence factors using 

light-activated antimicrobial agents 

4.1 Introduction  

Staphylococcus aureus is an important opportunistic human pathogen, and has been 

found to be the most common cause of skin and soft tissue infections in Europe and 

the Americas (Moet et al., 2007). Due to the accessibility of skin and soft tissue 

infections, these infections have become a prime target for antimicrobial PDT 

(Wainwright, 2010). There has been much interest in the development of PDT for 

the treatment of staphylococcal skin infections, especially those caused by MRSA 

(Embleton et al., 2002; Grinholc et al., 2008; Wilson & Yianni, 1995; Zolfaghari et al., 

2009).  

 

The pathogenic potential of S. aureus is dependent on production of an extensive 

array of over 40 multifunctional virulence factors, which have been implicated in 

host colonisation and tissue damage, and modulation of the host immune response 

(Arvidson & Tegmark, 2001). Consequently, the ability of an antimicrobial therapy to 

inactivate or reduce the biological activity of S. aureus virulence factors would be a 

highly desirable property.  

 

S. aureus produces a number of cell surface-anchored binding proteins that mediate 

attachment to host extracellular matrix (ECM) proteins. Fibronectin is involved in 

wound healing and thrombosis, and is found in a soluble form in body fluids and in 

an insoluble form in the ECM (Potts & Campbell, 1994). The fibronectin-binding 

proteins A and B have been implicated in the adherence of S. aureus to host cells, 

plasma clots and biomaterials, and are also believed to act as invasions by 

facilitating the entry of S. aureus into host cells (Foster & Höök, 1998; Menzies, 

2003). In addition to the classic fibronectin-binding proteins, S. aureus also 
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expresses the cell envelope-associated ECM-binding protein homologue, which 

specifically binds human fibronectin (Clarke et al., 2002). Fibronectin-binding 

proteins are also thought to play a role in the binding of S. aureus to atopic skin, 

which is frequently colonised by this organism, and have been proposed as a 

therapeutic target for the reduction of staphylococcal colonisation in atopic skin 

disorders (Cho et al., 2001).  

 

The binding of S. aureus to fibrinogen has also been implicated in colonisation of 

atopic skin (Cho et al., 2001). S. aureus binds to fibrinogen via cell wall-associated 

clumping factors A and B and fibronectin-binding protein A, and also secretes 

extracellular fibrinogen-binding protein (Efb) and extracellular adherence protein 

(Eap), which bind to fibrinogen in addition to several other plasma proteins, in the 

case of Eap (Foster & Höök, 1998; Götz, 2004; Rivera et al., 2007). Eap also mediates 

internalisation of S. aureus by host cells and also has immunomodulatory properties 

(Harraghy et al., 2003). Another staphylococcal protein with immunomodulatory 

functions is Protein A, which exists in both membrane-associated and secreted 

forms (Graille et al., 2000). Protein A binds the Fc region of IgG, binding the antibody 

in the wrong orientation and disabling recognition by neutrophils, thus escaping 

opsonisation and phagocytosis (Foster, 2005). Protein A also stimulates the release 

of proinflammatory cytokines from monocytes and fibroblasts and is believed to 

play a role in sepsis (Fournier & Philpott, 2005). 

 

S. aureus also secretes a number of toxins that are implicated in virulence. The 

bacterium produces several extracellular proteolytic enzymes, including serine-, 

cysteine- and metalloproteases, which are not affected by human plasma protease 

inhibitors (Dubin, 2002). These proteases are multifunctional enzymes, and have 

been proposed to be involved in host tissue destruction, avoidance of the host 

immune response, inactivation of host enzymes and regulation of bacterial adhesion 

(Dubin, 2003). The S. aureus serine protease, or V8 protease after the strain it was 
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first isolated from, was the first proteolytic enzyme to be purified from S. aureus 

(Drapeau et al., 1972). V8 protease is produced by the majority of human isolates of 

S. aureus, and as well as providing nutrients for the bacterium via the cleavage of 

host proteins, the V8 protease also enhances bacterial survival in the host by 

cleavage of immunoglobulins and inactivation of human 1-proteinase inhibitor 

(Arvidson, 2000). 

 

S. aureus produces several cytotoxins: the -, -, δ- and -haemolysins and the 

Panton-Valentine leukocidin. The -haemolysin is thought to be important in 

infection as it has a number of detrimental effects on host cells due to the disruption 

of ion transport across host cell membranes, ultimately leading to apoptotic cell 

death and oedema (Dinges et al., 2000). Alpha-haemolysin can cause cell death in 

different ways depending on the concentration of the toxin. At high concentrations, 

-haemolysin forms large pores in lipid bilayers that result in massive necrosis, 

whilst low doses result in the formation of small pores that result in apoptosis and 

DNA fragmentation (Essmann et al., 2003). S. aureus -haemolysin has recently 

been shown to be critical for dermonecrosis in an animal model of community-

acquired MRSA skin infection (Kennedy et al., 2010). In addition, the toxin is 

believed to play a role in facilitating escape of the bacterium from endocytic 

vesicles, and can also induce the expression of proinflammatory cytokines (Jarry et 

al., 2008; Rose et al., 2002).  

 

The role of sphingomyelinase (also known as  toxin or -haemolysin) is not yet fully 

understood (Dinges et al., 2000); however, the haemolysin has several proposed 

functions in human infection, particularly in protection against host defences. 

Selective killing of monocytes by -haemolysin has been reported and believed to be 

due to the generation of defects in the monocyte membrane (Walev et al., 1996). 

The toxin has been shown to be important for defence against T cell-mediated killing 

and inhibits production of chemokines and neutrophil migration (Collins et al., 2008; 
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Tajima et al., 2009). Sphingomyelinase also acts synergistically with S. aureus δ-toxin 

to enable escape of the bacterium from phagosomes and thus avoid killing (Giese et 

al., 2010).  

   

S. aureus produces a multitude of virulence factors, which have a wide range of 

activities and functions in the infection process. The photosensitisation of selected S. 

aureus virulence factors with the light-activated antimicrobial agents methylene 

blue and tin chlorin e6 in the presence of laser light of 665 nm and 633 nm 

respectively is described in the following chapter. The effect of concentrations of 

photosensitiser ranging from 1 to 20 µM and laser light on a selection of secreted 

enzymes and surface proteins was investigated.  
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4.2 Materials and methods 

4.2.1 Crystal violet assay to assess the effect of photosensitisation on the 

detachment of S. aureus from fibronectin 

The following assay was performed to assess the ability of photosensitisation to 

cause detachment of S. aureus from fibronectin-coated surfaces. Maxisorp 96-well 

plates (Nunc, UK) were coated with 200 µL of 0.1 mg/ml fibronectin in PBS (from 

human plasma; Sigma-Aldrich, UK) and incubated overnight at 4°C. The plates were 

washed four times with 200 µL PBS and the test wells blocked with 200 µL 1% 

bovine serum albumin (Sigma-Aldrich, UK) in PBS for one hour at 37°C. The plates 

were then washed four times with 200 µL PBS.  

 

S. aureus 8325-4 was grown aerobically in BHI broth (Oxoid Ltd, UK) at 37°C for 16 

hours in a shaking incubator at 200 rpm. Cultures were centrifuged and resuspended 

in an equal volume of PBS and the optical density was adjusted to 1 at 590 nm. The 

bacteria were titred by making serial dilutions in PBS and spotting 10 µL of the 

dilutions in triplicate onto triplicate 5% horse blood agar plates. Plates were 

incubated overnight at 37°C and the viable counts determined.  

 

Aliquots of 200 µL of the bacterial inoculum were added to duplicate wells of a 

Maxisorp 96-well plate pre-coated with fibronectin as described above, and 

incubated for 2 hours at 37°C. After incubation, plates were washed three times 

with 200 µL PBS to remove any unbound bacteria. One hundred microlitres of 

methylene blue (S+) or 100 µL PBS (S-) was added to the test wells and either 

exposed to 4.38 J of 665 nm laser light (L+) or incubated in the dark (L-), without 

stirring. After irradiation, the plates were washed three times with 200 µL PBS to 

remove any unbound bacteria. Each well was stained with 200 µL 0.1% crystal violet 

solution (Pro-Lab Diagnostics) for 10 minutes at room temperature and then washed 
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five times with 200 µL PBS. Plates were then dried at 37°C for approximately one 

hour. Following drying, 200 µL of  99.5% ethanol was added to each well and 

incubated at 4°C for four hours. The optical density of the wells at 590 nm was 

recorded using a Dynex plate reader.  

 

4.2.2 Viable count assay to examine the effect of sub-lethal 

photosensitisation on the detachment of S. aureus from fibronectin  

The following assay was performed to determine the effect of photosensitisation 

with sub-lethal concentrations of methylene blue on the fibronectin-binding 

properties of S. aureus. Maxisorp plates were coated, blocked and washed as 

described in section 4.2.1. Cultures of S. aureus 8325-4 (grown as previously 

described) were centrifuged and resuspended in an equal volume of PBS and the 

optical density was adjusted to 0.1 at 600 nm, giving an inoculum of approximately 

5x107 cfu/mL. The bacteria were titred by making serial dilutions in PBS and spotting 

10 µL of the dilutions in triplicate onto triplicate 5% horse blood agar plates. Plates 

were incubated overnight at 37°C and the viable counts determined.  

 

100 µL of the inoculum was added to the coated wells and the plates were 

incubated at 37°C for one hour. Unbound bacteria were removed by washing the 

plates four times with 200 µL PBS. One hundred microlitres of 0.25, 0.5 or 1 µM 

methylene blue (final concentration) (S+) or PBS (S-) was added to the wells, which 

were then irradiated with 4.38 J of 665 nm laser light (L+) or incubated at room 

temperature in the dark (L-). Any bacteria that had detached from the surface were 

removed by washing the plate three times with 200 µL PBS. One hundred microlitres 

of 0.25% trypsin in PBS was added to each well and the plates were incubated at 

37°C for five minutes, with shaking. Serial dilutions were made in PBS and 10 µL of 

each dilution was spotted in triplicate onto 5% horse blood agar plates, which were 

incubated overnight at 37°C and the viable counts subsequently determined.  
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4.2.3 LIVE/DEAD staining to assess the effect of photosensitisation on the 

detachment of S. aureus from fibronectin, fibrinogen and IgG 

To investigate the effect of lethal concentrations of methylene blue on the 

detachment of S. aureus from fibronectin, fibrinogen and IgG-coated surfaces, 

LIVE/DEAD staining was performed using the L7007 BacLight Bacterial Viability Kit 

(Invitrogen, UK). Cultures of S. aureus 8325-4 were grown as previously described 

and the inoculum adjusted to an optical density of 0.1 at 600 nm. Bacteria were 

allowed to bind to the coated wells of a Maxisorp plate as described in section 

4.2.2 and exposed to methylene blue and 665 nm laser light as described in section 

4.2.1. Unbound bacteria were removed by washing the plates four times with 200 µL 

PBS. Two hundred microlitres of 0.25% trypsin was added to remove the bound 

bacteria from the surface and the released bacteria were then stained with 

LIVE/DEAD stain and visualised as described below. The LIVE/DEAD staining 

procedure utilises a mixture of the SYTO 9 green fluorescent nucleic acid stain and 

the red fluorescent propidium iodide nucleic acid stain. SYTO 9 stains all bacteria 

regardless of membrane integrity, whereas propidium iodide can only penetrate 

bacteria with damaged membranes, causing a reduction in SYTO 9 fluorescence 

when both dyes are present. Consequently, bacteria with intact cell membranes 

fluoresce green and bacteria with damaged membranes fluoresce red (Molecular 

Probes, 2004). 

 

Equal volumes of Component A (containing 1.67 mM SYTO 9 dye and 1.67 mM 

propidium iodide) and Component B (containing 1.67 mM SYTO 9 and 18.3 mM 

propidium iodide) of the L7007 BacLight Bacterial Viability Kit were mixed 

thoroughly and 0.6 µL of the dye mixture was added to each well. The plates were 

incubated in the dark at room temperature for 15 minutes and then 5 µL of the 

stained bacterial suspension was trapped between a microscope slide and an 18 mm 
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square coverslip. The stained bacterial suspensions were observed using a 

fluorescence microscope and the live and dead cells at five different locations were 

enumerated to allow a mean value to be determined. Live bacteria fluoresce green 

whereas dead bacteria fluoresce red when visualised under the fluorescence 

microscope. The total number of cells bound (live plus dead) per mL was then 

calculated. 

 

4.2.4 Modified viable counting method to examine the fibronectin-binding 

capacity of remaining viable bacteria following photosensitisation  

To investigate the effect of photosensitisation on the capacity of any remaining 

viable bacteria to bind to fibronectin, the following assay was devised. Maxisorp 

plates were coated with either 0.1 mg/ml fibronectin (from human plasma; Sigma-

Aldrich, UK), fibrinogen (from human plasma; Sigma-Aldrich, UK) or IgG (from 

human serum; Sigma-Aldrich, UK), blocked and washed as previously described. 

Cultures of S. aureus 8325-4 were grown and the inoculum titred according to 

section 4.2.2.  

 

In duplicate wells of an uncoated 96-well microtitre plate, 150 µL of inoculum was 

added to either an equal volume of methylene blue (final concentrations of 1, 5, 10 

and 20 µM) (S+) or PBS (S-) and samples were either irradiated with 4.38 J of 665 nm 

laser light with stirring, or kept in the dark (L-). The surviving bacteria were titred by 

viable counting. One hundred microlitres was removed for the binding assay as 

detailed in section 4.2.2. Following incubation to allow binding, the bound bacteria 

were trypsinised so as to release them and titred by viable counting.  
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The percentage of surviving bacteria bound to the surface was calculated using the 

following formula: 

 

CFU/mL (viable count from binding assay)                             X 100 

Surviving CFU/mL (viable count post-photosensitisation) 

 

4.2.5 Azocasein hydrolysis assay to assess the effect of photosensitisation 

on the activity of S. aureus V8 protease 

Endoproteinase Glu-C (also known as V8 protease) from Staphylococcus aureus V8 

was purchased from Sigma-Aldrich (UK) and stored at -20°C at a concentration of 1 

mg/mL in dH2O. A final concentration of 5µg/mL was obtained by diluting the 

enzyme in PBS. An equal volume of V8 protease was added to 50 µL of either 

photosensitiser (S+) or PBS (S-) in triplicate wells of a 96-well plate and 

photosensitisation experiments were performed according to sections 2.5.1 and 

2.5.2. After irradiation, the azocasein hydrolysis assay was performed according to 

section 2.7.1.  

 

4.2.6 The effect of deuterium oxide and L-tryptophan on the photodynamic 

inactivation of V8 protease 

Experiments to assess the effect of an enhancer of singlet oxygen lifetime 

(deuterium oxide) and a singlet oxygen scavenger (L-tryptophan) were performed 

according to section 2.8.2. 

 

4.2.7 SDS PAGE analysis 

After photosensitisation or dark incubation as previously described, the V8 protease 

and -haemolysin were analysed by SDS PAGE. V8 protease samples were incubated 

on ice with 100 mM phenylmethanesulfonyl fluoride for 30 minutes prior to SDS 
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PAGE in order to minimise self-digestion. SDS PAGE was performed according to 

section 2.9. The expected molecular masses of the V8 protease and -haemolysin 

were given as 29 and 33 kDa, respectively, as specified by the manufacturer.  

 

4.2.8 Haemolytic titration to determine the effect of photosensitisation on 

the haemolytic activity of S. aureus -haemolysin 

Alpha-haemolysin from S. aureus (Sigma-Aldrich, UK) was reconstituted at a 

concentration of 0.5 mg/mL in sterile, deionised water plus sodium citrate buffer 

and stored at 2-8°C. For experimental purposes, -haemolysin was diluted in sterile 

PBS to a final concentration of 100 µg/mL. An equal volume of photosensitiser was 

added to 50 µL of -haemolysin in duplicate wells of a sterile, flat-bottomed, 

untreated 96-well plate and laser light dose and photosensitiser dose experiments 

were performed according to sections 2.5.1 and 2.5.2, respectively. Following 

photosensitisation, samples were removed and aliquoted into round-bottomed 96-

well plates for the haemolytic titration assay.  

 

Samples were serially diluted using doubling dilutions in PBS. Sterile, deionised 

water was used as a positive haemolysis control and sterile PBS as a negative 

haemolysis control. Defibrinated rabbit blood (E & O Laboratories, UK) was 

centrifuged at 503 x g for 10 minutes and the supernatant discarded. The cells were 

washed and resuspended in sterile PBS to a final concentration of 2%. Aliquots of 50 

µL of the erythrocyte solution were added to the serially diluted toxin and control 

wells and incubated in the dark at 37°C for 1 hour. After incubation, the haemolytic 

titre for each sample was determined as the reciprocal of the highest dilution giving 

rise to lysis.  
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4.2.9 The effect of human serum on the photosensitisation of S. aureus -

haemolysin 

Alpha-haemolysin was diluted to a final concentration of 100 µg/mL in either PBS or 

PBS plus 12.5% human serum (final concentration of 6.25%) (Sigma Aldrich, UK) in 

order to determine the effect of serum on the photoinactivation of the toxin. 

Human serum was added at a final concentration of 6.25 % to model in vivo 

conditions as this concentration provided a protein concentration similar to that 

found in an acute wound (Lambrechts et al., 2005). Alpha-haemolysin in either the 

presence or absence of human serum was exposed to 20 µM methylene blue and 

665 nm laser light doses of 4.38 J, 8.76 J and 21.9 J and the haemolytic titration 

assay was performed as previously described.  

 

4.2.10 Spectrophotometric assay to assess the effect of 

photosensitisation on S. aureus sphingomyelinase activity 

Sphingomyelinase (also known as -haemolysin or -toxin) from S. aureus was 

purchased from Sigma-Aldrich (UK) in buffered aqueous glycerol containing 0.25 M 

phosphate buffer, pH 7.5. For experimental purposes, the enzyme was diluted to a 

final concentration of 0.5 Units/mL in 250 mM Tris-HCl buffer with 10 mM 

magnesium chloride, pH 7.4 at 37°C. An equal volume of sphingomyelinase was 

added to either 25 µL of (S+) or 25 µL PBS (S-) and irradiation of the enzyme 

suspension was carried according to sections 2.5.1 and 2.5.2 for light-dose and 

photosensitiser-dose experiments, respectively.  

 

Following irradiation/dark incubation, 10 µL from each sample was removed and 

added to 190 µL of incubation buffer containing 0.02mg Trinitrophenylaminolauroyl-

Sphingomyelin (TNPAL-Sphingomyelin; Sigma-Aldrich, UK), 250 mM Tris-HCl, 10 mM 

MgCl2 and 1% Triton X-100 in 0.5 mL Eppendorf tubes and incubated in the dark at 

37°C for 5 minutes, with shaking. 150 µL of isopropanol:heptane:H2SO4 (40:10:1) was 
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added to stop the reaction and the tubes were placed on ice immediately after 

addition. One hundred microlitres of n-heptane (Sigma-Aldrich, UK) and 80 µL 

deionised water were then added and the samples were centrifuged for ten minutes 

at 5000 rpm. Following centrifugation, the tubes were left to settle at room 

temperature for 5 minutes, after which 60 µL of the upper layer was removed and 

the optical density at 330 nm recorded using a UV-visible spectrophotometer. A 

blank sample containing 10 µL incubation buffer instead of sphingomyelinase was 

used as a reference. The enzyme activity was calculated, with one unit of activity 

determined as that which caused a chance in absorbance of 0.001 in one minute at 

330 nm 

 

4.2.11 The effect of human serum on the photosensitisation of S. 

aureus sphingomyelinase 

Sphingomyelinase was diluted to a final concentration of 0.5 Units/mL in either 250 

mM Tris-HCl buffer with 10 mM MgCl2, pH 7.4 at 37°C or the buffer with the 

addition of 12.5% human serum (for a final concentration of 6.25%) (Sigma Aldrich, 

UK) in order to model acute wound conditions as previously described. Samples 

were exposed to 20 µM methylene blue and 665 nm laser light with energy densities 

of 4.38 J or 21.9 J. The spectophotometric assay for sphingomyelinase activity was 

performed as previously described.  
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4.3 Results  

4.3.1 Crystal violet assay to assess the effect of photosensitisation on the 

detachment of S. aureus from fibronectin 

Colonisation of host tissues is an important step in the infection process and 

therefore the binding of S. aureus to human proteins represents a relevant target for 

photodynamic inactivation. The crystal violet assay was thought to be a 

straightforward method for assessing the effect of lethal photosensitisation on the 

fibronectin-binding properties of S. aureus 8325-4; however the results obtained 

were unexpected and rendered this assay unsuitable for further investigation.  

 

As can be seen from Figure 4.1, the exposure of bacteria to 20 µM methylene blue 

and laser light resulted in an increase in the optical density at 590 nm compared 

with the control. As a known number of bacteria were bound to the fibronectin-

coated surface prior to irradiation, an increase in the numbers of bacteria binding to 

this surface was not possible as no more bacteria were added during the 

experiment. It is possible that binding of methylene blue to the bacteria was 

sufficiently high enough to alter the optical density at 590nm, although increases in 

the optical density were also observed following irradiation of the bacteria in the 

absence of photosensitiser.  

 

Due to the nature of the mechanism of killing by lethal photosensitisation, it is 

possible that in the presence of light and methylene blue, the process of 

photodynamic killing makes bacterial membranes more “leaky”. Consequently, the 

bacteria may take up more of the dye, resulting in an increase in optical density 

rather than the decrease expected if the process negatively affected fibronectin-

binding and hence detachment of the cells from the surface. Laser light alone has 

previously been shown to have a killing effect on S. aureus, possibly due to the 
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presence of endogenous photosensitisers (Wilson & Pratten, 1994). Such 

endogenous photosensitisers may account for the increase in optical density 

observed following irradiation with laser light alone. 

  

 

Figure 4.1 The effect of light dose on the detachment of S. aureus 8325-4 from 

fibronectin as determined by the crystal violet assay.  

An equal volume of either PBS () or methylene blue () was added to fibronectin-

coated wells that had been incubated with S. aureus to allow binding and wells were 

then either exposed to laser light of 665 nm or kept in the dark. Following 

irradiation, wells were washed to remove unbound bacteria and stained with crystal 

violet. Error bars represent the standard deviation from the mean. Experiments 

were performed twice in duplicate and the combined data are shown.  

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 4.38 8.76 21.9

O
D

 (5
90

 n
m

)

Light Dose (J)



 

 - 125 - 

 

4.3.2 Viable count assay to examine the effect of sub-lethal 

photosensitisation on the detachment of S. aureus from fibronectin  

In this part of the study the ability of photosensitisation to detach S. aureus which 

had bound to fibronectin was examined. Since the viable count assay relies on the 

retrieval and culture of bacteria attached to a surface, the cells must be viable to be 

enumerated in this manner. This presents a problem when combined with lethal 

photosensitisation as if a lethal dose is used, it will not be possible to distinguish 

between kill and detachment using this assay; therefore the effect of sub-lethal 

concentrations on the detachment of S. aureus 8325-4 from fibronectin-coated 

surfaces was investigated. Figure 4.2 shows that sub-lethal concentrations of the 

photosensitiser in combination with laser light did not cause detachment of bound 

S. aureus from fibronectin. 
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Figure 4.2 The ability of sub-lethal doses of methylene blue and 4.38 J laser light to 

detach bound S. aureus 8325-4 from fibronectin using the viable count method.  

An equal volume of either methylene blue or PBS was added to fibronectin-coated 

wells that had been incubated with S. aureus to allow binding and wells were then 

either exposed to laser light of 665 nm () or kept in the dark (). Following 

irradiation, wells were washed to remove unbound bacteria and stained with crystal 

violet. Error bars represent the standard deviation from the mean. Experiments 

were performed twice and the combined data are shown.  

 

4.3.3 LIVE/DEAD® staining to assess the effect of photosensitisation on the 

detachment of S. aureus from fibronectin, fibrinogen and IgG 

As the viable count assay was limited by its ability to only detect viable cells and 

could not be used for determining the effect of methylene blue and laser light under 

lethal conditions on the detachment of bacterial cells from ligand-coated surfaces, 

LIVE/DEAD staining using the BacLight Bacterial Viability Kit was performed. This 
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0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 0.25 0.5 1

%
 B

o
u

n
d

Concentration of methylene blue (µM)



 

 - 127 - 

therefore could be utilised to enumerate cells bound to a surface, even if the lethal 

photosensitisation process successfully killed the organism. Using this method, the 

effect of lethal photosensitisation on the detachment of S. aureus 8325-4 from 

fibronectin-, fibrinogen- and IgG-coated surfaces was assessed, as shown in Figure 

4.3, Figure 4.4 and Figure 4.5, respectively. Irradiation of the ligand-coated surfaces 

with laser light and methylene blue had no significant effect on the total 

detachment of viable and non-viable S. aureus 8325-4 from these ligands. 

 

Figure 4.3 The effect of methylene blue and 4.38 J of 665 nm laser light on the 

detachment of S. aureus 8325-4 from fibronectin-coated surfaces.  

An equal volume of either methylene blue or PBS was added to ligand-coated wells 

that had been incubated with S. aureus 8325-4 to allow binding and wells were then 

either exposed to 4.38 J of laser light () or kept in the dark (). Following 

irradiation/dark incubation, unbound bacteria were removed by washing the wells 

with PBS and the total bound bacteria enumerated by LIVE/DEAD® staining. Error 

bars represent the standard deviation from the mean. Experiments were performed 

twice and the combined data are shown.  
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Figure 4.4 The effect of methylene blue and 4.38 J of 665 nm laser light on the 

detachment of S. aureus 8325-4 from fibrinogen-coated surfaces.  

An equal volume of either methylene blue or PBS was added to ligand-coated wells 

that had been incubated with S. aureus 8325-4 to allow binding and wells were then 

either exposed to 4.38 J of 665 nm laser light () or kept in the dark (). Following 

irradiation/dark incubation, unbound bacteria were removed by washing the wells 

with PBS and the total bound bacteria enumerated by LIVE/DEAD® staining. Error 

bars represent the standard deviation from the mean. Experiments were performed 

twice and the combined data are shown.  
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Figure 4.5 The effect of methylene blue and 4.38 J of 665 nm laser light nm on the 

detachment of S. aureus 8325-4 from IgG-coated surfaces.  

An equal volume of either methylene blue or PBS was added to ligand-coated wells 

that had been incubated with S. aureus 8325-4 to allow binding and wells were then 

either exposed to laser light () or kept in the dark (). Following irradiation/dark 

incubation, unbound bacteria were removed by washing the wells with PBS and the 

total bound bacteria enumerated by LIVE/DEAD® staining. Error bars represent the 

standard deviation from the mean. Experiments were performed twice and the 

combined data are shown.  
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4.3.4 Modified viable counting method to examine the fibronectin-binding 

capacity of remaining viable bacteria following photosensitisation  

In this part of the study, the effect of pre-exposing S. aureus to photosensitisation 

on the capacity of remaining viable bacteria to bind to fibronectin was investigated. 

In order to be able to assess the effect of lethal concentrations of methylene blue on 

the capacity of S. aureus to bind to fibronectin, a new strategy was devised that was 

also based on the viable count assay. It was important to be able to distinguish 

between any decrease in binding from a reduction in the viable count due to lethal 

photosensitisation. Viable counts were taken after lethal photosensitisation and also 

after the binding assay, making it possible to calculate the percentage of viable 

bacteria bound compared with the number of viable bacteria remaining after 

photosensitisation. It is important to note that this modified method was used to 

evaluate the capacity of viable S. aureus post-lethal photosensitisation to bind to 

fibronectin, rather than the detachment of bacteria from fibronectin, which involved 

irradiation of bacteria already bound to human proteins.  

 

It can be seen from Figure 4.6 that whilst a dose-dependent decrease in fibronectin-

binding was seen when S. aureus was exposed to methylene blue and laser light, the 

photosensitiser alone also has a significant inhibitory effect on the binding of S. 

aureus to fibronectin-coated surfaces.  
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Figure 4.6 The effect of lethal doses of methylene blue and 4.38 J 665 nm laser 

light on the capacity of S. aureus 8325-4 to bind to fibronectin post-

photosensitisation as determined by viable counting.  

An equal volume of methylene blue or PBS was added to S. aureus 8325-4 and 

samples either exposed to 4.38 J of 665 nm laser light () or kept in the dark (). 

Following irradiation/dark incubation, bacteria were allowed to bind to a 

fibronectin-coated surface and the bound bacteria enumerated by viable counting. 

Error bars represent the standard deviation from the mean. * P < 0.05, ** P < 0.01 

(Mann-Whitney U Test). Experiments were performed three times and the 

combined data are shown.  
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4.3.5 The effect of photosensitisation on the capacity of remaining viable S. 

aureus to bind to fibrinogen and IgG-coated surfaces 

Once a suitable method for determining the effect of lethal concentrations of 

methylene blue on the capacity of any remaining viable S. aureus to bind to 

fibronectin-coated surfaces had been established, the effect of lethal 

photosensitisation on fibrinogen and IgG-binding was also investigated. The results 

are shown in Figure 4.7 and Figure 4.8, respectively. Again, a photosensitiser dose-

dependent inhibition of binding was observed in both the presence and absence of 

laser light, although it was only statistically significant at methylene blue 

concentrations of 10 µM and above in the absence of laser light. 
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Figure 4.7 The effect of methylene blue and 4.38 J of 665 nm laser light on the 

capacity of the remaining viable S. aureus 8325-4 to bind to fibrinogen.  

An equal volume of methylene blue or PBS was added to S. aureus 8325-4 and 

samples either exposed to 4.38 J of 665 nm laser light () or kept in the dark (). 

Following irradiation/dark incubation, bacteria were allowed to bind to the ligand-

coated surface and the bound bacteria enumerated by viable counting. Error bars 

represent the standard deviation from the mean. * P < 0.05, ** P < 0.01 (Mann-

Whitney U Test). Experiments were performed three times and the combined data 

are shown. 
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Figure 4.8 The effect of methylene blue and 4.38 J of 665 nm laser light on the 

capacity of the remaining viable S. aureus 8325-4 to bind to IgG.  

An equal volume of methylene blue or PBS was added to S. aureus 8325-4 and 

samples either exposed to 4.38 J of 665 nm laser light () or kept in the dark (). 

Following irradiation/dark incubation, bacteria were allowed to bind to the ligand-

coated surface and the bound bacteria enumerated by viable counting. Error bars 

represent the standard deviation from the mean. * P < 0.05, ** P < 0.01 (Mann-

Whitney U Test). Experiments were performed three times and the combined data 

are shown.  
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4.3.6 The effect of photosensitiser dose on the photodynamic inactivation 

of V8 protease 

4.3.6.1 Methylene blue 

The effect of methylene blue and 4.38 J of 665 nm laser light on the proteolytic 

activity of S. aureus V8 protease as determined by the azocasein-hydrolysis assay is 

shown in Figure 4.9. One unit of activity was defined as that which caused a change 

in absorbance of 0.001 in one hour at 450 nm. It can be seen that the activity of the 

V8 protease was inhibited in a photosensitiser concentration-dependent manner. A 

decrease in proteolytic activity of 75% was achieved with the highest concentration 

of methylene blue tested (20 µM) upon irradiation with 4.38 J of 665 nm laser light. 

Photosensitisation of EMRSA-16 using the same conditions resulted in an 

approximate 4-log reduction in viability, showing that inactivation of this enzyme is 

effective within the parameters required to kill a meticillin-resistant strain of S. 

aureus in vitro.  
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Figure 4.9 The effect of methylene blue and 4.38 J of 665 nm laser light on the 

proteolytic activity of V8 protease.  

An equal volume of either methylene blue or PBS was added to V8 protease and 

samples were either exposed to 4.38 J of 665 nm laser light () or kept in the dark 

(). The activity of the V8 protease was assessed using the azocasein hydrolysis 

assay. Error bars represent the standard deviation from the mean. *** P < 0.001 

(ANOVA). Experiments were performed three times and the combined data are 

shown.  

 

4.3.6.2 Tin chlorin e6 

The effect of tin chlorin e6 dose on the photodynamic inactivation of V8 protease is 

shown in Figure 4.10. As observed with methylene blue, tin chlorin e6 in the 

presence of laser light inhibits the proteolytic activity of V8 protease in a dose-

dependent manner. Photosensitisation with tin chlorin e6 resulted in a higher level 
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proteolytic activity as detectable by the azocasein hydrolysis assay (P < 0.001; 

ANOVA). Indeed, all concentrations of tin chlorin e6 tested causing a statistically 

significant reduction in activity compared with untreated samples.  

 

Figure 4.10 The effect of tin chlorin e6 and 4.38 J of 633 nm laser light on the 

proteolytic activity of V8 protease.  

An equal volume of either tin chlorin e6 or PBS was added to V8 protease and 

samples were either exposed to 4.38 J of 633 nm laser light () or kept in the dark 

(). The activity of the V8 protease was assessed using the azocasein hydrolysis 

assay. Error bars represent the standard deviation from the mean. * P < 0.05, *** P 

< 0.001 (ANOVA). Experiments were performed three times and the combined data 

are shown. 
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4.3.7 The effect of laser light dose on the photodynamic inactivation of V8 

protease 

4.3.7.1 Laser light of 665 nm 

Figure 4.11 shows the effect of 665 nm laser light doses of 4.38, 8.76 and 21.9 J on 

the activity of the V8 protease. Inactivation was light dose-dependent; complete 

inhibition of proteolytic activity was observed following irradiation with 21.9 J of 665 

nm laser light in the presence of 20 µM methylene blue. Irradiation of the V8 

protease in the absence of methylene blue did not have a significant effect on the 

activity of the enzyme. 
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Figure 4.11 The effect of 20 µM methylene blue and 665 nm laser light on the 

proteolytic activity of V8 protease.  

An equal volume of V8 protease added to either PBS () or 20 µM methylene blue 

() and samples were either irradiated with 4.38 J of 665 nm laser light or kept in 

the dark. Following irradiation, the activity of the enzyme was assessed using the 

azocasein hydrolysis assay. Error bars represent the standard deviation from the 

mean. *** P < 0.001 (ANOVA). Experiments were performed three times and the 

combined data are shown. 
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4.3.7.2 Laser light of 633 nm 

As treatment of V8 protease with 20 µM tin chlorin e6 and 4.38 J of 633 nm laser 

light completely inhibited the proteolytic activity of the enzyme, the photosensitiser 

and light doses were lowered in order to investigate the effect of light dose on the 

photodynamic inactivation of the enzyme. As shown by Figure 4.12, treatment of V8 

protease with 5 µM tin chlorin e6 and as little as 1.5 J of 633 nm laser light resulted 

in a highly significant reduction in activity, demonstrating the susceptibility of this 

enzyme to photodynamic inactivation using tin chlorin e6 (P < 0.001; ANOVA).  

 

Figure 4.12 The effect of 5 µM tin chlorin e6 and 633 nm laser light on the 

proteolytic activity of V8 protease.  

V8 protease was irradiated with 633 nm laser light in the presence of an equal 

volume of either PBS () or 5 µM tin chlorin e6 (). Following irradiation, the 

activity of the enzyme was assessed using the azocasein hydrolysis assay. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times and the combined data are shown. 
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4.3.8 The effect of a singlet oxygen enhancer on the photodynamic 

inactivation of V8 protease 

Deuterium oxide did not appear to enhance the photodynamic inactivation of V8 

protease by methylene blue and 4.38 J of 665 nm laser light, as can be seen in Figure 

4.13. As D2O prolongs the lifetime of singlet oxygen, this may suggest that the 

lifetime of singlet is unimportant in the reaction, or that other reactive oxygen 

species other than singlet oxygen are also involved.  

 

 

Figure 4.13 The effect of deuterium oxide on the photodynamic inactivation of S. 

aureus V8 protease.  

V8 protease suspended in either H2O () or D2O () was irradiated with 4.38 J laser 

light (L+) in the presence of either 1 µM methylene (S+) or PBS (S-) or incubated in 

the dark (L-). Following irradiation, the activity of the enzyme was assessed using the 

azocasein hydrolysis assay. Error bars represent the standard deviation from the 

mean. Experiments were performed twice in triplicate and a representative 

experiment is shown.  
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4.3.9 The effect of a singlet oxygen scavenger on the photodynamic 

inactivation of V8 protease 

The singlet oxygen scavenger L-tryptophan was found to have a protective effect 

against the effects of methylene blue and laser light. Figure 4.14 shows that the 

addition of L-tryptophan completely inhibited the photodynamic inactivation of V8 

protease, indicating the importance of reactive oxygen species in the photodynamic 

inactivation of this enzyme.  

Figure 4.14 The effect of L-tryptophan on the photodynamic inactivation of S. 

aureus V8 protease.  

V8 protease suspended in either PBS () or 10 mM L-tryptophan () and was 

irradiated with 4.38 J of 665 nm laser light (L+) in the presence of either 5 µM 

methylene (S+) or PBS (S-) or incubated in the dark (L-). Following irradiation, the 

activity of the enzyme was assessed using the azocasein hydrolysis assay. Error bars 

represent the standard deviation from the mean. Experiments were performed 

twice in triplicate and a representative experiment is shown.  
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4.3.10 SDS PAGE analysis of V8 protease 

SDS PAGE analysis (Figure 4.15) showed that after exposure to laser light and 

methylene blue, the bands derived from the V8 protease appeared to be 

progressively more smeared and of lower intensity with increased irradiation time, 

demonstrating that photosensitisation may cause a change in the protein, perhaps 

due to oxidation of the protein. A band of 29 kDa was expected for the V8 protease; 

however the gel showed some degradation of the V8 protease that could not be 

inhibited by the addition of a protease inhibitor. 

 

 

 

Figure 4.15 SDS PAGE analysis of V8 protease irradiated with methylene blue and 

665 nm laser light doses of 4.38 J, 8.76 J and 21.9 J. 

V8 protease was either kept in the dark (L-) or irradiated with 665 nm laser light 

doses of 4.38, 8.76 and 21.9 J (L+) in the presence of an equal volume of either PBS 

(S-) or 20 µM methylene blue (S+). Following irradiation, samples were analysed by 

SDS PAGE using a 5% stacking gel and 15% resolving gel under denaturing 

conditions. Lane 1: molecular weight marker, lane 2: L-S-, lane 3: L-S+, lane 4: L+S- 

(4.4 J), lane 5: L+S- (8.8 J), lane 6: L+S- (22 J), lane 7: L+S+ (4.4 J), lane 8: L+S+ (8.8 J), 

lane 9: L+S+ (22 J). The expected molecular mass of V8 protease was 29 kDa. 

    1          2          3         4         5         6          7         8        9    
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4.3.11 The effect of photosensitiser dose on the photodynamic 

inactivation of S. aureus -haemolysin 

In this assay, rabbit erythrocytes were incubated with serially diluted toxin and its 

ability to lyse the cells was determined by recording the haemolytic titre. The 

haemolytic titre was defined as the highest dilution giving rise to haemolysis. PBS 

does not lyse rabbit erythrocytes, and the intact cells settle at the bottom of the 

wells upon incubation at 37°C, acting as a negative control. When the cells are 

incubated with sterile, distilled water, disruption of their osmotic balance results in 

lysis, acting as a positive control. Treatment with α-haemolysin also results in the 

osmotic lysis of the cell.  
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4.3.11.1 Methylene blue 

Table 4.1 shows the effect of photosensitisation of α-haemolysin with 1, 5, 10 and 

20 µM methylene blue and 4.38 J of 665 nm laser light. Concentrations of 5, 10 and 

20 µM methylene blue completely inhibited the haemolytic activity (as detectable 

by this assay) of the enzyme, when exposed to laser light (L+); therefore inactivation 

of the toxin occurs even at photosensitiser doses that are sub-inhibitory to EMRSA-

16 (i.e. 5 µM). There was no effect on the activity of the haemolysin when the 

enzyme was incubated with the photosensitiser in the absence of laser light (L-).  

 

Concentration of methylene 

blue (µM) 

Haemolytic Titre 

L- L+ 

1 1/1024 1/256 

5 1/1024 1/2 

10 1/1024 < 1/2 

20 1/512 1/2 

 

Table 4.1 The effect of photosensitiser dose on the activity of α-haemolysin when 

treated with methylene blue and 4.38 J of 665 nm laser light  

An equal volume of either methylene blue or PBS was added to S. aureus α-

haemolysin and samples were either exposed to 4.38 J of 665 nm laser light (L+) or 

kept in the dark (L-). After irradiation/dark incubation, samples were serially diluted 

and an equal volume of 4% rabbit erythrocytes was added. Following incubation in 

the dark at 37°C for one hour, the haemolytic titre was recorded. The haemolytic 

titre was defined as the reciprocal of the highest dilution giving rise to haemolysis. 

Experiments were performed twice and a representative experiment is shown.  
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4.3.11.2 Tin chlorin e6 

The effect of tin chlorin e6 dose on the photodynamic inactivation of -haemolysin 

is shown in Table 4.2. Concentrations of tin chlorin e6 of 5 µM and above completely 

inhibited the haemolytic activity of the toxin when exposed to 4.38 J of 633 nm laser 

light. Neither tin chlorin e6 nor laser light alone had an effect on the activity of the 

toxin. Treatment of -haemolysin with 1 µM tin chlorin e6 in the presence of laser 

light resulted in a four-fold reduction in the toxin’s activity.  

 

Concentration of tin chlorin e6 

(µM) 

Haemolytic Titre 

L- L+ 

0 1/128 1/128 

1 1/128 1/32 

5 1/128 < 1/2 

10 1/128 < 1/2 

20 1/128 < 1/2 

Table 4.2 The effect of photosensitiser dose on the activity of α-haemolysin when 

treated with tin chlorin e6 and laser light of 633 nm  

An equal volume of either tin chlorin e6 (S+) or PBS (S-) was added to S. aureus α-

haemolysin and samples were either exposed to 4.38 J of 633 nm laser light (L+) or 

kept in the dark (L-). After irradiation/dark incubation, samples were serially diluted 

and an equal volume of 4% rabbit erythrocytes was added. Following incubation in 

the dark at 37°C for one hour, the haemolytic titre was recorded. The haemolytic 

titre is the highest dilution giving rise to haemolysis. Experiments were performed 

three times and a representative experiment is shown.  
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4.3.12 The effect of laser light dose on the photodynamic inactivation 

of S. aureus -haemolysin 

4.3.12.1 Laser light of 665 nm 

To investigate the effect of 665 nm laser light dose on the activity of α-haemolysin, 

the enzyme was exposed to 20 µM methylene blue and light doses of 1.5 J, 2.9 J and 

4.4 J, corresponding to 20, 40 and 60 seconds exposure to 665 nm laser light 

respectively. Table 4.3 shows that the activity of the enzyme was completely 

inhibited after exposure to a light dose as small as 1.5 J in the presence of 20 µM 

methylene blue. As previously observed, laser light alone had no appreciable effect 

on the activity of the α-haemolysin.  

 

Light Dose (J) Haemolytic Titre 

S- S+ 

0 1/1024 1/1024 

1.5 1/1024 < 1/2 

2.9 1/1024 < 1/2 

4.4 1/1024 < 1/2 

Table 4.3 The effect of light dose on the activity of α-haemolysin when treated 

with 20 µM methylene blue  

An equal volume of either 20 µM methylene blue (S+) or PBS (S-) was added to S. 

aureus α-haemolysin and samples were either exposed to 665 nm laser light (L+) or 

kept in the dark (L-). After irradiation/dark incubation, samples were serially diluted 

and an equal volume of 4% rabbit erythrocytes was added. Following incubation in 

the dark at 37°C for one hour, the haemolytic titre was recorded. The haemolytic 

titre is the highest dilution giving rise to haemolysis. Experiments were performed 

twice and a representative experiment is shown.  
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4.3.12.2 Laser light of 633 nm  

Table 4.4 shows the effect of light dose on the inactivation of -haemolysin by 5 µM 

tin chlorin e6 and 633 nm laser light. It can be seen that even the lowest light dose 

tested (1.5 J) had an inhibitory effect on the -haemolysin, reducing its activity by 

eight-fold, whilst light doses of 2.9 J and 4.4 J in the presence of 5 µM tin chlorin e6 

completely inhibited the haemolytic activity of the toxin as detectable by this assay. 

 

Light Dose (J) Haemolytic Titre 

S- S+ 

0 1/128 1/128 

1.5 1/128 1/16 

2.9 1/128 < 1/2 

4.4 1/128 < 1/2 

 

Table 4.4 The effect of 633 nm laser light dose on the activity of α-haemolysin 

when treated with 5 µM tin chlorin e6  

An equal volume of either 5 µM tin chlorin e6 (S+) or PBS (S-) was added to S. aureus 

α-haemolysin and samples were either exposed to laser light of 633 nm (L+) or kept 

in the dark (L-). After irradiation/dark incubation, samples were serially diluted and 

an equal volume of 4% rabbit erythrocytes was added. Following incubation in the 

dark at 37°C for one hour, the haemolytic titre was recorded. The haemolytic titre is 

the highest dilution giving rise to haemolysis. Experiments were performed three 

times and a representative experiment is shown.  
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4.3.13 The effect of human serum on the photosensitisation of -

haemolysin 

The addition of 6.25% human serum did not affect the ability of photosensitisation 

to inactivate the -haemolysin, and complete inhibition of haemolytic activity was 

observed after treatment of the toxin with 20 µM methylene blue and a laser light 

dose of 4.38 J in the presence of serum. This finding is consistent with the 

inactivation of the toxin in the absence of serum.  

 

4.3.14 SDS PAGE analysis of -haemolysin 

SDS PAGE analysis (Figure 4.16) showed that bands derived from the α-haemolysin 

after photosensitisation with 20 µM methylene blue and 665 nm laser light became 

less well defined and smeared with increasing irradiation time compared with 

untreated samples. This result is similar to that observed for the V8 protease. 

 

 

Figure 4.16 SDS PAGE analysis of -haemolysin irradiated with 20 µM methylene 

blue and laser light doses of 4.38 J, 8.76 J and 21.9 J 

Alpha-haemolysin was either kept in the dark (L-) or irradiated with 665 nm laser 

light doses of 4.38, 8.76 and 21.9 J (L+) in the presence of an equal volume of either 

PBS (S-) or 20 µM methylene blue (S+). Following irradiation, samples were analysed 

by SDS PAGE using a 5% stacking gel and 15% resolving gel under denaturing 

conditions. Lane 1: molecular weight marker, lane 2: L-S-, lane 3: L-S+, lane 4: L+S- 

(4.38 J), lane 5: L+S- (8.76 J), lane 6: L+S- (21.9 J), lane 7: L+S+ (4.38 J), lane 8: L+S+ 

(8.76 J), lane 9: L+S+ (21.9 J). The expected molecular mass of -haemolysin was 33 

kDa.

      1          2           3          4          5          6           7           8          9 
30 kDa 
25 kDa 
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4.3.15 The effect of photosensitiser dose on the photodynamic 

inactivation of sphingomyelinase 

4.3.15.1 Methylene blue 

The activity of S. aureus sphingomyelinase was inhibited by treatment with 

methylene blue and laser light of 665 nm in a dose-dependent manner, as shown in 

Figure 4.17. One unit of activity was defined as that which caused a chance in 

absorbance of 0.001 in one minute at 330 nm. Interestingly, laser light alone 

appeared to have a slight effect on the activity of the enzyme, causing a decrease in 

activity of 10%, although this was not statistically significant (P > 0.05; ANOVA). 

Irradiation with 4.38 J of 665 nm laser light in the presence of 20 µM methylene blue 

achieved a 76% decrease in the activity of sphingomyelinase, which was comparable 

to the decrease in activity seen for the V8 protease (75%). These photosensitisation 

conditions correspond to an approximate 4-log reduction in viable EMRSA-16 and 

therefore inactivation of the sphingomyelinase was effective with light and energy 

doses required for the effective killing of bacteria.  
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Figure 4.17 The effect of methylene blue dose and 4.38 J of 665 nm laser light on 

the activity of S. aureus sphingomyelinase.  

An equal volume of either methylene blue or PBS was added to sphingomyelinase 

and samples were either exposed to laser light () or kept in the dark (). 

Following irradiation, the activity of the enzyme was assessed 

spectrophotometrically using the substrate TNPAL-Sphingomyelin. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times and the combined data are shown.  
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4.3.15.2 Tin chlorin e6 

Treatment with 4.38 J of 633 nm laser light and tin chlorin e6 was found to inhibit 

the activity of S. aureus sphingomyelinase in a dose-dependent manner as shown by  

Figure 4.18. Treatment of sphingomyelinase with 20 µM tin chlorin e6 and 4.38 J of 

633 nm laser light resulted in a highly significant decrease in activity of 93%, which 

was higher than that seen following treatment of the enzyme with the same doses 

of methylene blue and laser light of 665 nm (76%). 

 

Figure 4.18 The effect of tin chlorin e6 dose and 4.38 J of 633 nm laser light on the 

activity of S. aureus sphingomyelinase.  

An equal volume of either tin chlorin e6 or PBS was added to sphingomyelinase and 

samples were either exposed to 4.38 J of 633 nm laser light () or kept in the dark 

(). Following irradiation, the activity of the enzyme was assessed 

spectrophotometrically using the substrate TNPAL-Sphingomyelin. Error bars 

represent the standard deviation from the mean. * P < 0.05, *** P < 0.001 (ANOVA). 

Experiments were performed three times and the combined data are shown. 
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4.3.16 The effect of laser light dose on the photodynamic inactivation 

of sphingomyelinase 

4.3.16.1 Laser light of 665 nm 

The effect of 665 nm laser light dose on the photodynamic inactivation of 

sphingomyelinase is shown in Figure 4.19. After irradiation with 21.9 J of 665 nm 

laser light in the presence of 20 µM methylene blue, a 94% decrease in activity was 

observed (P < 0.001; ANOVA). Neither photosensitiser nor 665 nm laser light alone 

had an effect on the activity of the sphingomyelinase. 

 

Figure 4.19 The effect of 665 nm laser light dose on the activity of S. aureus 

sphingomyelinase.  

An equal volume of either methylene blue () or PBS () was added to 

sphingomyelinase and samples were either exposed to laser light or kept in the dark. 

Enzyme activity was assessed spectrophotometrically using the substrate TNPAL-

Sphingomyelin. Error bars represent the standard deviation from the mean. *** P < 

0.001 (ANOVA). Experiments were performed twice and the combined data are 

shown. 
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4.3.16.2 Laser light of 633 nm 

Figure 4.20 shows the effect of 633 nm laser light dose on the photodynamic 

inactivation of S. aureus sphingomyelinase. All laser light doses resulted in a 

significant reduction in the activity of the enzyme when it was irradiated in the 

presence of 20 µM tin chlorin e6 (P < 0.001; ANOVA). Neither laser light or tin 

chlorin e6 alone had a significant effect on the activity of sphingomyelinase (P > 

0.05; ANOVA).  

 

Figure 4.20 The effect of 633 nm laser light dose and 20 µM tin chlorin e6 on the 

activity of S. aureus sphingomyelinase.  

An equal volume of either tin chlorin e6 () or PBS () was added to 

sphingomyelinase and samples were either exposed to 633 nm laser light or kept in 

the dark. Following irradiation, the activity of the enzyme was assessed 

spectrophotometrically using the substrate TNPAL-Sphingomyelin. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times and the combined data are shown. 
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4.3.17 The effect of human serum on the photosensitisation of 

sphingomyelinase 

Irradiation of the sphingomyelinase in the presence of 6.25% human serum did not 

have an effect on the ability of photosensitisation to inactivate the enzyme. 

Photosensitisation using 20 µM methylene blue and the lowest laser light dose (4.4 

J) resulted in a decrease in the enzyme’s activity of 70% ± 12% in the presence of 

human serum, compared with a decrease of 76% ± 10% in the absence of serum. 

This difference was not found to be statistically significant (P > 0.05, ANOVA). 
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4.4 Discussion  

Treatment of S. aureus which had been allowed to bind to a fibronectin-coated 

surface with sub-inhibitory doses of methylene blue (i.e.  1 µM) and 4.38 J of 665 

nm laser light did not cause detachment of viable bacteria from fibronectin. It was 

hypothesised that photodynamic treatment of the bacteria may disrupt fibronectin-

binding protein-mediated adhesion of the bacterial cells and thus cause them to 

detach from fibronectin. However, no detachment of the cells was observed in this 

assay (Figure 4.2). 

 

The LIVE/DEAD staining procedure was performed to examine the ability of 

photosensitisation to induce the detachment of S. aureus from fibronectin-, 

fibrinogen- and IgG-coated surfaces. This assay allowed the quantification of both 

live and dead cells and was used to determine whether photosensitisation of 

bacteria caused detachment of viable and non-viable cells from ligand-coated 

surfaces. As the bacterium binds to these ligands via cell wall-associated proteins, it 

is possible that the reactive oxygen species formed during photosensitisation could 

disrupt the interaction of these binding proteins with their associated ligands and 

consequently cause the detachment of bacterial cells. However, no detachment of 

bacterial cells from fibronectin, fibrinogen or IgG was observed. It is possible that 

higher doses of either photosensitiser or laser light may be required to cause 

damage to the binding proteins involved in these processes and thus cause 

detachment of S. aureus from these ligands.     

 

The next set of experiments examined the effect of treatment with methylene blue 

and 665 nm laser light on the ability of any remaining viable bacteria to bind to host 

proteins post-sensitisation. Methylene blue in both the presence and absence of 

laser light was found to have a significant, dose-dependent inhibitory effect on the 
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binding of the remaining viable S. aureus to fibronectin-, fibrinogen- and IgG-coated 

surfaces. Methylene blue is a positively-charged dye, which is considered beneficial 

as it enables the targeting of the negatively-charged bacterial membrane. It is 

therefore possible that this photosensitiser-dependent inhibition of binding was due 

to a charge interaction between the bacterium and the photosensitiser, thus 

preventing binding of the organism to these proteins. This inhibition of binding to 

host proteins would be advantageous as if lethal photosensitisation was 

unsuccessful in killing the organism, the photosensitiser alone may be able to inhibit 

the binding of S. aureus to these proteins.  

 

The inhibitory effect of the methylene blue alone was most marked in the case of 

fibronectin-coated surfaces, for which significant inhibition of binding was seen 

when S. aureus 8325-4 was treated with 5 µM methylene blue in the absence of 

laser light. For fibrinogen and IgG-coated surfaces, inhibition of binding by the 

photosensitiser in the absence of laser light was only significant for concentrations 

of 10 µM and above. In addition, a significant inhibition of binding to fibronectin was 

observed when S. aureus 8325-4 was treated with 1 µM methylene blue, the lowest 

concentration tested, and irradiated with 4.38 J of 665 nm laser light, which was not 

observed for the fibrinogen and IgG-coated surfaces. A decrease in the percentage 

of surviving bacteria binding to fibronectin was also observed after treatment with 

4.38 J laser light in the absence of photosensitiser. This finding places particular 

emphasis on the ability of photosensitisation, and indeed methylene blue alone, to 

inhibit the binding of pre-photosensitised S. aureus to fibronectin.  

 

The binding of S. aureus to host extracellular matrix components represents an 

important step in both colonisation and infection. Both fibronectin and fibrinogen-

binding proteins have been implicated in the enhanced adhesion of S. aureus to 

atopic skin, where colonisation is thought to play an important role in the 

exacerbation of atopic dermatitis. Mutants deficient in either fibronectin-binding 
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proteins A and B or clumping factor A and B both demonstrated a significant 

reduction in binding to atopic skin compared with the parent strain (Cho et al., 

2001). PDT using the combination of methylene blue and laser light of 665 nm may 

therefore be of use in the treatment of skin disorders by decontaminating atopic 

skin. In fact, PDT has long been shown to be beneficial in the treatment of atopic 

disorders, for example the use of ultraviolet light and 8-methoxypsoralen for the 

treatment of atopic dermatitis (Morison et al., 1978). Clearly, the combination of the 

elimination of disease-exacerbating microorganisms and neutralisation of virulence 

factors would be extremely advantageous to the treatment of these diseases.  

 

The role of fibronectin-binding proteins A and B in the colonisation of nasal epithelia 

has also been suggested (Nashev et al., 2004). Consequently, the ability of 

photosensitisation to prevent new bacterial cells binding to fibrinogen may be 

beneficial in the decontamination of the nares. Nasal colonisation by S. aureus is 

believed to be a complex process involving a number of bacterial binding proteins. S. 

aureus wall teichoic acids have been shown to be essential for nasal colonisation in 

an animal model (Weidenmaier et al., 2004; Weidenmaier et al., 2008). The 

fibrinogen-binding protein clumping factor B has also been proposed as playing a 

key role in the process and identified as a target for decolonisation strategies 

(Schaffer et al., 2006; Wertheim et al., 2008). MRSA is an ever-increasing problem; 

elimination of the organism from the anterior nares using such a treatment could 

present an important step in the control of MRSA infections, particularly in the 

hospital setting. Eradication of MRSA from the anterior nares using a methylene 

blue-based PDT regimen has recently been shown to be successful in preliminary 

clinical studies (Street et al., 2009).   

 

S. aureus expresses several proteins with fibrinogen-binding abilities, such as 

fibronectin binding protein A, clumping factor A, extracellular adherence protein and 

extracellular fibrinogen binding protein, which are considered virulence 
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determinants due to their involvement in platelet and fibrin-platelet clot binding; 

deletion mutants also have reduced virulence in animal models of endocarditis and 

septic arthritis (Josefsson et al., 2001; Rivera et al., 2007; Sullam et al., 1996). 

Fibronectin-binding protein A and clumping factor A belong to the MSCRAMM family 

of cell wall-associated proteins and have been found to have similar mechanisms of 

binding to fibrinogen (Rivera et al., 2007). A dose-dependent inhibition of 

fibrinogen-binding was found when S. aureus 8325-4 was treated with methylene 

blue in both the presence and absence of 665 nm laser light, although significant 

inhibition was seen at lower concentrations of methylene blue (i.e. 5 µM) when 

irradiated with laser light compared with non-irradiated samples, suggesting 

photodynamic inhibition of binding may occur.  

 

Protein A is expressed on the surface of S. aureus and interacts with the Fc region of 

IgG molecules, binding them in the wrong orientation and thereby preventing 

phagocytosis of the organism by neutrophils (Foster, 2005). This antiphagocytic 

effect is believed to play a role in the virulence of S. aureus, and wild-type strains 

have been shown to cause more severe infections compared with protein A-

deficient mutants in an animal model (Palmqvist et al., 2002). Protein A-deficient 

mutants also show attenuated intracellular persistence (Kubica et al., 2008). As 

previously noted for fibronectin and fibrinogen-coated surfaces, methylene blue in 

the absence of laser light also had an inhibitory effect on the binding of S. aureus to 

IgG-coated surfaces, although again, significant inhibition of binding was achieved at 

a lower concentration of methylene blue when irradiated with laser light. The 

treatment of S. aureus 8325-4 with 20 µM methylene blue and 4.4 J laser light 

resulted in the complete inhibition of binding to IgG-coated surfaces, whilst 

treatment with 20 µM methylene blue in the absence of laser light resulted in 

almost complete inhibition of binding. The dose-dependent inhibition of IgG-binding 

by methylene blue and laser light suggests that as well as inactivating toxins, PDT 

(and indeed methylene blue alone) may also be able to counteract the evasion of 
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the immune response by staphylococci by preventing the interaction of protein A 

with the Fc portion of IgG. In contrast, methylene blue and laser light of 665 nm was 

not found to promote the detachment of pre-bound S. aureus from host proteins, 

suggesting that PDT may only be able to prevent colonisation at an early stage.  

 

Packer et al. demonstrated that proteolytic enzymes of the periodontal pathogen 

Porphyromonas gingivalis could be inactivated using the photosensitiser TBO and 

red laser light with a wavelength of 633 nm (Packer et al., 2000). The results 

presented in this chapter demonstrate that photodynamic inactivation of a 

proteolytic enzyme from a different bacterial species is possible, with a highly 

significant reduction in the activity of S. aureus V8 protease being achieved with a 

665 nm laser light dose as low as 4.38 J in combination with 20 µM methylene blue. 

This inactivation was found to be dose-dependent, with the highest concentration of 

methylene blue tested (20 µM) and irradiation with 21.9 J of 665 nm laser light 

achieving a 100 % reduction in activity compared with non-treated samples. 

Treatment of EMRSA-16 under the same conditions resulted in a 99.999% kill, 

indicating that inactivation of secreted proteases may be possible as well as 

eradicating infecting bacteria. The photodynamic inactivation of V8 protease using 

tin chlorin e6 and 633 nm laser light was also found to be photosensitiser and light 

dose-dependent. The combination of tin chlorin e6 and 633 nm laser light was more 

effective than equivalent doses of methylene blue and 665 nm laser light, as 

irradiation of the enzyme in the presence of 20 µM tin chlorin e6 resulted in the 

complete inactivation of proteolytic activity. The lowest concentration of tin chlorin 

tested (1 µM) had a significant inhibitory effect when irradiated with 4.38 J of 633 

nm laser light, which was not observed with the same concentration of methylene 

blue.  

 

Proteases are responsible for the destruction of host tissues both directly and 

indirectly; inactivation of these enzymes using PDT could therefore limit the damage 
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to the host, as well as killing the infecting organism. It has been suggested that the 

V8 protease plays an important role in the pathogenesis of S. aureus infections, as 

strains lacking this enzyme show reduced virulence in a number of infection models 

(Cheung et al., 1994; Shaw et al., 2004; Sifri et al., 2003). Of particular relevance is a 

murine abscess model, in which inactivation of V8 protease resulted in significant 

attenuation of virulence (Shaw et al., 2004); therefore the photodynamic 

inactivation of this enzyme may be able to reduce the virulence potential of S. 

aureus in other hosts.  

 

As staphylococcal proteases and the colonisation of atopic skin by S. aureus have 

been implicated in the pathogenicity of atopic dermatitis (Miedzobrodzki et al., 

2002), the inactivation of proteolytic enzymes could have particular relevance for 

the decontamination of infected lesions using PDT. Photosensitisation using the 

combination of methylene blue and laser light of 665 nm may therefore be of use in 

the treatment of atopic skin disorders, an area in which PDT has a successful history 

(Morison et al., 1978). Clearly, the combination of elimination of disease-

exacerbating microorganisms and neutralisation of virulence factors would be 

extremely advantageous to the treatment of these diseases.  

 

The treatment of -haemolysin with methylene blue and laser light resulted in an 

effective inhibition of haemolytic activity. Concentrations of methylene blue ranging 

from 1-20 µM all had an inhibitory effect on -haemolysin when irradiated with 

laser light, and -haemolysin was shown to be inactivated following 

photosensitisation with 4.38 J of 665 nm laser light in the presence of 20 µM 

methylene blue. Irradiation of -haemolysin with 633 nm laser light in combination 

with tin chlorin e6 yielded similar results. The results shown here demonstrate that 

-haemolysin is the most susceptible of the virulence factors tested, perhaps due to 

the nature of its amino acid composition, which may leave it more vulnerable to 

attack by reactive oxygen species. These data indicate that photodynamic 
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inactivation of this toxin is highly effective and as such, could significantly attenuate 

the virulence of S. aureus due to the multiple functions of -haemolysin as a 

virulence factor.  

 

The role of -haemolysin in the virulence of S. aureus has been demonstrated in a 

number of infection models such as mastitis (Jonsson et al., 1985) and pneumonia 

(Wardenburg et al., 2007). It has also been proposed that -haemolysin may play a 

role in colonisation of epithelia by attenuating bacterial clearance from the epithelial 

surface (Eichstaedt et al., 2009); this could therefore be of relevance to the 

decontamination of nasal epithelia using PDT. In addition, -haemolysin has 

immunomodulatory properties, notably its ability to trigger the release of pro-

inflammatory cytokines such as interleukin-1 (Bhakdi & Tranum-Jensen, 1991); 

thus inactivation of -haemolysin by PDT may also protect against harmful 

inflammatory processes as well as eliminating infecting organisms.  

 

The treatment of S. aureus sphingomyelinase with 665 nm laser light and methylene 

blue resulted in a significant, dose-dependent reduction in the enzyme’s activity. 

Laser light alone also appeared to reduce the activity of sphingomyelinase; however 

this was found to be not statistically significant. Irradiation of sphingomyelinase with 

4.4 J laser light in the presence of the highest concentration of methylene blue 

tested (20 µM) achieved a highly significant reduction in the activity of the enzyme 

(76%), which was comparable to the reduction in activity observed for the V8 

protease when irradiated for the same time period. This reduction in activity was 

increased to 94% after irradiation of the enzyme for 5 minutes with laser light of 665 

nm in the presence of 20 µM methylene blue. The combination of tin chlorin e6 and 

633 nm laser light was also found to be highly effective in the inactivation of 

sphingomyelinase activity, with a 93% reduction in activity being achieved with 20 

µM tin chlorin e6 and a light dose as low as 4.4 J.  
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Production of sphingomyelinase (-haemolysin) has been associated with severe, 

chronic skin infections, and strains of S. aureus producing high levels of this enzyme 

have been shown to cause more intense skin lesions than low-producing strains 

(Hedström & Malmqvist, 1982). Inactivation of these toxins may therefore be of 

relevance to the treatment of superficial staphylococcal skin infections. More 

recently, sphingomyelinase has been shown to be involved in protection against the 

host immune response by interfering with host signalling (Tajima et al., 2009). 

Sphingomyelinase has also been shown to kill proliferating T lymphocytes, 

supporting a role for this toxin in evasion of the host immune response (Huseby et 

al., 2007), Consequently, the photodynamic inactivation of sphingomyelinase during 

PDT could also reduce the immunomodulatory properties of S. aureus.  

 

The photodynamic inactivation of -haemolysin and sphingomyelinase was shown 

to be unaffected by the presence of human serum at concentrations resembling the 

protein content of an acute wound (Lambrechts et al., 2005), indicating that 

photodynamic therapy may be effective in inactivating these virulence factors in 

vivo. Together with the data showing that photodynamic treatment with methylene 

blue or tin chlorin e6 is an effective means of killing S. aureus, this supports the 

potential of PDT as a treatment for superficial staphylococcal infections. 

 

The precise mechanism of inhibition of these virulence factors has not yet been 

determined; however it is possible that the reactive oxygen species formed during 

photosensitisation can oxidise proteins, thereby disrupting their function (Hamblin 

& Hasan, 2004). Oxidation of active site groups has been suggested as the 

mechanism of action for the photodynamic inactivation of the proteolytic enzymes 

of P. gingivalis (Packer et al., 2000). SDS PAGE analysis of the V8 protease and -

haemolysin demonstrated that photosensitisation caused changes to the proteins 

which resulted in smearing of the protein bands. We propose that singlet oxygen 

may play a role in the inactivation of V8 protease as a protective effect is observed 
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when photosensitisation is performed in the presence of the singlet oxygen 

scavenger L-tryptophan; however an enhancer of the lifetime of singlet oxygen 

(D2O) does not increase inactivation, suggesting that other reactive oxygen species 

may be involved, and/or that inactivation of V8 protease may be independent of the 

lifetime of singlet oxygen.  

 

4.5 Summary 

Treatment with the light-activated antimicrobials methylene blue and tin chlorin e6 

in combination with laser light of the appropriate wavelength successfully inhibited 

the activity of a number of staphylococcal virulence factors. Considering the 

extensive damage virulence factors can cause to host tissues, the ability to inhibit 

their activity would be a highly desirable feature for any antimicrobial treatment 

regimen and would represent a significant advantage over conventional antibiotic 

strategies. Inactivation was shown to occur under conditions required to kill both a 

meticillin-sensitive and meticillin-resistant strain of S. aureus and was not found to 

be inhibited by the presence of human serum, suggesting that inactivation of these 

virulence factors may be possible in vivo.  
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5 Investigation of possible methods for the enhancement of 

photodynamic inactivation of S. aureus and staphylococcal 

virulence factors 

5.1 Introduction 

PDT causes oxidative damage via two distinct mechanisms, Type I and Type II 

reactions. Type I reactions occur when a photosensitiser reacts with substrates to 

form radicals or radical ions, whereas Type II reactions occur when the 

photosensitiser reacts with oxygen to produce singlet oxygen (Foote, 1991). The two 

reactions may occur simultaneously, although there is generally believed to be a 

shift from Type II to Type I reactions as a result of decreasing oxygen concentration 

in the course of PDT (Jakus & Farkas, 2005; Martins et al., 2004). 

 

The efficacy of photosensitisation is dependent on a number of factors, including the 

chemistry and formulation of the photosensitiser, the localisation of the 

photosensitiser in the target tissue, the light dose delivered, and the degree of 

oxygenation of the tissue (Konan et al., 2002). There has been considerable interest 

in various methods of enhancing the efficacy of PDT, including targeted 

photosensitisers, increasing the susceptibility of target cells, and formulations to 

increase accumulation of the photosensitiser at a specific site (Verma et al., 2007). 

The formulation of the photosensitiser can also be modified in order to enhance the 

photosensitiser’s photophysical properties (George & Kishen, 2008). The half-life of 

singlet oxygen generated is dependent on the photosensitiser solvent; the half-life 

of singlet oxygen is five-fold greater in ethanol compared with water (Meisel & 

Kocher, 2005). Therefore, it may be possible to enhance the lifetime of singlet 

oxygen and therefore increase the photooxidative damage and efficacy of PDT 

treatment by incorporating ethanol into the photosensitiser formulation.  
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Solvents incorporating ethanol and glycerol have been suggested for use in 

endodontic applications, as an aqueous formulation of methylene blue containing 

ethanol and glycerol (glycerol, ethanol and water in a 30:20:50 ratio; referred to as 

MIX) demonstrated greater in vitro penetration into dentinal tubules compared with 

water and glycerol alone. This formulation also demonstrated enhanced 

photodynamic killing of Enterococcus faecalis and Aggregatibacter 

actinomycetemcomitans (George & Kishen, 2007). The MIX formulation has also 

been shown to cause greater damage to the cell wall of E. faecalis compared with 

methylene blue dissolved in water alone, potentially due to the MIX formulation 

inhibiting the aggregation of methylene blue and resulting in better penetration of 

the photosensitiser into the bacterial cell (George & Kishen, 2008).    

 

The oxidative damage produced by photosensitisation may also be enhanced by the 

generation of additional reactive oxygen species via the use of additives such as 

ascorbate (Kramarenko et al., 2006b). Although typically protective against reactive 

oxygen species, antioxidants such as ascorbic acid (vitamin C) may also exhibit pro-

oxidant activity in the presence of certain catalytic metals. Type II reactions generate 

singlet oxygen, which can then interact with membrane lipids to form lipid 

hydroperoxides (Jakus & Farkas, 2005). The addition of ascorbic acid and iron (Fe2+) 

has been shown to enhance the Photofrin-induced photosensitisation of murine 

leukaemia cells. It was proposed that the enhancement was a result of a Fenton-

type chemical reaction between lipid hydroperoxides and iron that resulted in lipid 

radical formation (LO): 

 

Fe2+ + lipid hydroperoxide  Fe3+ + OH- + LO  

 

The formation of lipid radicals may then initiate a free radical chain reaction, and 

consequently further lipid peroxidation and cell membrane damage (Buettner et al., 
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1993). Free radicals generated in this manner may then react with oxygen to form a 

superoxide radical anion or other reactive oxygen species (Jakus & Farkas, 2005). 

 

Type I reactions may result in the generation of cytotoxic hydrogen peroxide as a 

result of hydroxyl radicals reacting with biomolecules (Wainwright, 2000). Ascorbate 

also reacts with the singlet oxygen generated by Type II reactions to produce 

hydrogen peroxide. Hydrogen peroxide has a considerably longer lifetime than 

singlet oxygen and consequently a greater diffusion distance; therefore, enhanced 

production of hydrogen peroxide via reactions with ascorbate may enhance the 

efficacy of PDT (Kramarenko et al., 2006a).  

 

An investigation into the enhancement of the lethal photosensitisation of S. aureus 

and the photodynamic inactivation of selected staphylococcal virulence factors is 

described in this chapter. The effect of solvent and the addition of ferrous sulphate 

and ascorbic acid on the efficacy of photodynamic inactivation using methylene blue 

in conjunction with laser light of 665 nm were investigated.  
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5.2 Materials and methods 

5.2.1 The effect of solvent on the lethal photosensitisation of S. aureus 

S. aureus 8325-4 and EMRSA-16 were maintained and grown for experimental 

purposes as described in section 2.3.1. Lethal photosensitisation of S. aureus 8325-4 

and EMRSA-16 was carried out as described in section 2.6, with the following 

modifications.  Methylene blue was suspended in either sterile, distilled water or 

MIX at a final concentration of 5 µM. MIX was prepared as described by George and 

Kishen and consisted of glycerol, ethanol and distilled water in a ratio of 30:20:50 

(George & Kishen, 2008).  

 

5.2.2 The effect of ferrous sulphate and ascorbic acid on the lethal 

photosensitisation of S. aureus 

S. aureus 8325-4 and EMRSA-16 were maintained and grown for experimental 

purposes as described in section 2.3.1. Lethal photosensitisation of S. aureus 8325-4 

and EMRSA-16 was carried out as described in section 2.6, with the following 

modifications. Fifty microlitres of methylene blue at a final concentration of 5 µM 

(S+) or PBS (S-) was added to an equal volume of the inoculum in sextuplicate wells 

of a sterile, flat-bottomed, untreated 96-well plate, three of which were irradiated 

with 4.38 J of 665 nm laser light, with stirring (L+) whilst the remaining three wells 

were incubated in the dark (L-). In addition, 50 µL of a 1:1 mixture of methylene blue 

(final concentration of 5 µM) and ascorbic acid/ferrous sulphate solution (final 

concentrations of 50 µM ferrous sulphate and 250 µM ascorbic acid or 100 µM 

ferrous sulphate and 500 µM ascorbic acid) were added to an equal volume of the 

inoculum in a further six wells and either irradiated as above or kept in the dark.  
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In addition, the optical density at 661 nm of the solution was measured in order to 

assess whether the addition of ferrous sulphate and ascorbic acid had an effect on 

light absorbance by methylene blue.  

 

5.2.3 The effect of ferrous sulphate and ascorbic acid on the inactivation of 

S. aureus V8 protease by methylene blue and 665 nm laser light 

Fifty microlitres of methylene blue at a final concentration of 5 µM was added to an 

equal volume of V8 protease (final concentration of 5 µg/mL) in sextuplicate wells of 

a sterile, flat-bottomed, untreated 96-well plate and either irradiated with 4.38 J of 

665 nm laser light (L+), with stirring or kept in the dark (L-). Fifty microlitres of a 1:1 

mixture of methylene blue (final concentration of 5 µM) and ascorbic acid/ferrous 

sulphate solution (final concentrations of 50 µM ferrous sulphate and 250 µM 

ascorbic acid) was added to an equal volume of V8 protease in a further six wells 

and irradiated or incubated in the dark as above. Fifty microlitres of PBS was added 

to an equal amount of V8 protease in a further six wells, which were treated as 

above (S-). After irradiation, the azocasein hydrolysis assay was performed as 

described in section 2.7.1.  

 

5.2.4 The effect of ferrous sulphate and ascorbic acid on the inactivation of 

S. aureus sphingomyelinase by methylene blue and 665 nm laser light 

Sphingomyelinase from S. aureus was diluted to a final concentration of 0.5 

Units/mL in 250 mM Tris-HCl buffer with 10 mM magnesium chloride, pH 7.4 at 

37°C. Twenty five microlitres of sphingomyelinase was added to an equal volume of 

either 5 µM methylene blue (S+) or 25 µL PBS (S-) and irradiation of the enzyme 

suspension was carried out as described previously with the appropriate controls (L-

S-, L-S+, L+S-). Twenty five µL of a 1:1 mixture of methylene blue (final concentration 

of 5 µM) and ascorbic acid/ferrous sulphate solution (final concentrations of 50 µM 

ferrous sulphate and 250 µM ascorbic acid) was added to an equal volume of 
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sphingomyelinase in a further three wells and irradiated for one minute. As 

additional controls, three wells containing a 1:1 mixture of ascorbic acid/ferrous 

sulphate solution (final concentrations of 50 µM ferrous sulphate and 250 µM 

ascorbic acid) and PBS were added to an equal volume of sphingomyelinase and 

kept in the dark (L-). After irradiation/dark incubation, the spectrophotometric assay 

for sphingomyelinase assay was carried out as described in section 4.2.11.  
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5.3 Results 

5.3.1 The effect of solvent on the lethal photosensitisation of S. aureus  

5.3.1.1 S. aureus 8325-4 

Figure 5.1 shows that no enhancement of photodynamic killing was observed using 

MIX as a solvent for methylene blue compared with distilled water; rather a 

significant protective effect was observed (P < 0.05; ANOVA).  
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Figure 5.1 The effect of solvent on the lethal photosensitisation of S. aureus 8325-4 

using methylene blue and 665 nm laser light.  

An equal volume of either PBS (S-), methylene blue in distilled water () or MIX () 

(S+) was added to 50 µL of the bacterial suspension and either kept in the dark (L-) 

or exposed to 4.38 J of 665 nm laser light (L+). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. * P < 0.05 (ANOVA). Experiments 

were performed twice in triplicate and the combined data are shown.  

* 
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5.3.1.2 EMRSA-16 

It can be seen from Figure 5.2 that using MIX as a solvent also did not result in 

increased photodynamic killing of EMRSA-16 using methylene blue and 665 nm laser 

light. A similar protective effect was observed for S. aureus 8325-4; however, unlike 

S. aureus 8325-4 the protective effect of MIX was not significant for EMRSA-16 (P > 

0.05; ANOVA).  

 

 

Figure 5.2 The effect of solvent on the lethal photosensitisation of EMRSA-16 using 

methylene blue and 665 nm laser light.  

An equal volume of either PBS (S-), methylene blue in distilled water () or MIX () 

(S+) was added to 50 µL of the bacterial suspension and either kept in the dark (L-) 

or exposed to 4.38 J of 665 nm laser light (L+). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. Experiments were performed 

twice in triplicate and the combined data are shown. 
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5.3.2 The effect of solvent on the inactivation of V8 protease 

Using MIX as a solvent for methylene blue caused a reduction of 80 % ± 19 % in the 

proteolytic activity of S. aureus V8 protease, compared with 68 % ± 17 % when H2O 

was used as a solvent. This difference was not found to be statistically significant (P 

> 0.05; ANOVA).  

 

5.3.3 The effect of ferrous sulphate and ascorbic acid on the lethal 

photosensitisation of S. aureus 

5.3.3.1 S. aureus 8325-4 

The addition of 50 µM ferrous sulphate and 250 µM ascorbic acid to 5 µM 

methylene blue resulted in approximately one-log10 increased kill compared with 5 

µM methylene blue alone when irradiated with laser light of 665 nm (see Figure 

5.3). This equated to a 97.14% kill versus 71.95% kill for methylene blue with and 

without the addition of ascorbic acid/ferrous sulphate respectively. This difference 

was found to be highly significant (P < 0.001; ANOVA). Whilst not as effective as the 

enhancement achieved with the addition of 50 µM ferrous sulphate and 250 µM 

ascorbic acid, the addition of 100 µM ferrous sulphate and 500 µM ascorbic acid 

resulted in an increased kill of 92.60% compared with methylene blue alone; 

however this difference was not statistically significant (P > 0.05; ANOVA).  
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Figure 5.3 The effect of FeSO4 and ascorbic acid on the lethal photosensitisation of 

S. aureus 8325-4 using methylene blue and 665 nm laser light.  

An equal volume of either PBS, 5 µM methylene blue (final concentration) or 5 µM 

methylene blue with the addition of FeSO4 and ascorbic acid (final concentrations of 

50 µM and 100 µM or 250 µM and 500 µM respectively) was added to 50 µL of the 

bacterial suspension and either kept in the dark () or exposed to 4.38 J of 665 nm 

laser light (). After irradiation/dark incubation, samples were serially diluted and 

the surviving CFU/mL enumerated. Error bars represent the standard deviation from 

the mean. *** P < 0.001 (ANOVA). Experiments were performed twice in triplicate 

and the combined data are shown. 
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5.3.3.2 EMRSA-16 

As shown by Figure 5.4, the addition of 50 µM FeSO4 and 250 µM ascorbic acid to 

methylene blue did not result in enhanced killing of EMRSA-16 compared with 

methylene blue alone. Treatment of EMRSA-16 with laser light and 5 µM methylene 

blue resulted in a 36% kill, compared with a 38% kill when treated with 5 µM 

methylene blue plus 50 µM FeSO4 and 250 µM ascorbic acid (P > 0.05; ANOVA).  

 

Figure 5.4 The effect of FeSO4 and ascorbic acid on the lethal photosensitisation of 

EMRSA-16 using methylene blue and 665 nm laser light.  

An equal volume of either PBS, 5 µM methylene blue (final concentration) or 5 µM 

methylene blue with the addition of FeSO4 and ascorbic acid (final concentrations of 

50 µM and 250 µM, respectively) was added to 50 µL of the bacterial suspension 

and either kept in the dark () or exposed to 4.38 J of 665 nm laser light (). After 

irradiation/dark incubation, samples were serially diluted and the surviving CFU/mL 

enumerated. Error bars represent the standard deviation from the mean. 

Experiments were performed twice in triplicate and the combined data are shown. 
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5.3.4 The effect of ferrous sulphate and ascorbic acid on the inactivation of 

staphylococcal virulence factors 

5.3.4.1 V8 protease 

Figure 5.5 shows the effect of FeSO4 and ascorbic acid on the photodynamic 

inactivation of S. aureus V8 protease by methylene blue and 665 nm laser light. The 

addition of FeSO4 and ascorbic acid did not result in increased photodynamic 

inactivation of V8 protease; on the contrary, it appeared to have a significant 

protective effect against the effect of photosensitisation (P > 0.05; ANOVA).  
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Figure 5.5 The effect of FeSO4 and ascorbic acid on the photodynamic inactivation 

of S. aureus V8 protease using methylene blue and 665 nm laser light.  

An equal volume of either PBS, 5 µM methylene blue (final concentration) or 5 µM 

methylene blue with the addition of FeSO4 and ascorbic acid (final concentrations of 

50 µM and 250 µM respectively) was added to V8 protease and samples were either 

exposed to 4.38 J of laser light () or kept in the dark (). The activity of the V8 

protease was assessed using the azocasein hydrolysis assay. Error bars represent the 

standard deviation from the mean. Experiments were performed twice in triplicate 

and the combined data are shown. 
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5.3.4.2 Sphingomyelinase 

As previously observed with the V8 protease, the addition of 50 µM ferrous sulphate 

and 250 µM ascorbic acid to methylene blue had a protective effect against the 

inactivation of sphingomyelinase by methylene blue and 665 nm laser light. Lethal 

photosensitisation of the sphingomyelinase in the presence of 5 µM methylene blue, 

50 µM ferrous sulphate and 250 µM ascorbic acid resulted in a 34% ± 5% reduction 

in activity compared with a 56% ± 10% reduction in activity when the enzyme was 

treated with 4.38 J of laser light and 5 µM methylene blue.   

 

There was no difference in the optical density at 661 nm between methylene blue 

alone and with the addition of either 50 µM ferrous sulphate/250 µM ascorbic acid 

or 100 µM ferrous sulphate/500 µM ascorbic acid. 
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5.4 Discussion 

It has been suggested that using MIX as a solvent for methylene blue may result in a 

better photooxidation potential, attributed to the prevention of photosensitiser 

aggregation and a proposed increased half-life of singlet oxygen due to the presence 

of ethanol in the formulation (George & Kishen, 2007). It has also been 

demonstrated that methylene blue dissolved in MIX resulted in a significantly 

greater killing of E. faecalis compared with methylene blue dissolved in water alone 

(George & Kishen, 2008). Therefore, it was hypothesised that the MIX solvent may 

have the potential to enhance the photodynamic killing of S. aureus and the 

photoinactivation of staphylococcal virulence factors. However, photosensitisation 

of S. aureus using MIX did not result in increased killing of either the meticillin-

sensitive strain 8325-4 or the meticillin-resistant strain EMRSA-16. On the contrary, 

a significant protective effect was observed in the case of S. aureus 8325-4.  

 

Using MIX as a solvent resulted in a slight enhancement of the photodynamic 

inactivation of V8 protease; however this was not found to be statistically 

significant. The results shown in this chapter do not support the hypothesis that 

using MIX as a solvent for methylene blue results in more efficacious photodynamic 

killing or enhanced photodynamic inactivation of staphylococcal virulence factors. 

Since previous experiments have shown that S. aureus is killed more effectively 

when irradiated in the presence of an enhancer of singlet oxygen lifetime (D20) 

(Section 3.2.1.1.2), it is possible that MIX does not prolong the half-life of singlet 

oxygen enough for it to have a significant effect in this system. In addition, the 

system used by George and Kishen used a higher concentration of methylene blue, a 

different final concentration of MIX components (bacterial cells were resuspended 

in MIX, whereas resuspended cells were added 1:1 to MIX in the test system 

described in this chapter), a different bacterium, a higher bacterial cell 
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concentration and a higher light dose than those used in this study, all of which may 

contribute to the observed lack of enhancement (George & Kishen, 2008).       

 

Ferrous sulphate and ascorbic acid were added to methylene blue following reports 

that these additives may enhance the photodynamic killing of oral squamous cell 

carcinoma cells (Kelley et al., 1997). It was proposed that cytotoxicity is enhanced in 

the presence of ferrous sulphate and ascorbic acid due to increased lipid radical 

production. The singlet oxygen produced by a triplet state photosensitiser reacting 

with molecular oxygen can then react with polyunsaturated fatty acids such as those 

in biological membranes to produce lipid peroxides. In the presence of ascorbic acid, 

ferric iron (Fe3+) is reduced to ferrous iron (Fe2+), which can then catalyse the 

production of free radicals from the lipid peroxides formed by the reaction of singlet 

oxygen with fatty acids, thus increasing cytotoxicity.  

 

The addition of ascorbate alone has also been reported to enhance the efficacy of 

photodynamic killing of breast cancer and leukaemia cells due to the ability of 

ascorbate to react with singlet oxygen (1O2) to produce hydrogen peroxide (H2O2), 

which has a longer half-life and greater diffusion distance than singlet oxygen 

(Kramarenko et al., 2006a; Kramarenko et al., 2006b; Rozanova Torshina et al., 

2007). The production of hydrogen peroxide in this manner is shown by the 

equation below: 

 

Ascorbate + 1O2 → H2O2 + dehydroascorbate 

 

Hydrogen peroxide can in turn react with biological structures resulting in the 

production of hydroxyl radicals, thus initiating a cytotoxicity cascade (Kramarenko et 

al., 2006b). The addition of ferrous sulphate and ascorbate to a photosensitiser 

formulation could therefore present a simple method of enhancing the efficacy of 

PDT.    
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The photodynamic killing of S. aureus 8325-4 was shown to be enhanced by 

approximately one log10 when methylene blue was irradiated with laser light in the 

presence of ferrous sulphate and ascorbic acid compared with methylene blue 

alone, suggesting that increased free radical production and consequently increased 

oxidative damage to the cell occurs in these conditions. This enhancement of 

photodynamic killing was statistically significant (P < 0.001;ANOVA).   

 

In contrast, the killing of EMRSA-16 was not found to be enhanced under these 

conditions. Meticillin-resistant S. aureus has previously been shown to be less 

susceptible to photodynamic killing than meticillin-sensitive strains (Embleton et al., 

2002; Wainwright et al., 1998). The reduced susceptibility of EMRSA-16 may be due 

to the presence of capsular polysaccharides that may affect penetration of the 

photosensitiser, and therefore limit the damage of reactive oxygen species. Thicker 

cell walls have been observed in MRSA compared with MSSA (Hiramatsu et al., 

1997); consequently this difference in the cell wall between MSSA and MRSA may 

play a role in the differing susceptibilities.  

 

In Gram-positive microorganisms, for singlet oxygen to react with fatty acids present 

in the bacterial cell membrane, it must first penetrate the cell wall. In the case of 

decreased uptake or binding, less damage to the cell wall would result in a lower 

level of oxidative damage from these secondary mechanisms of radical generation. It 

is possible that Gram-negative bacteria may be more susceptible than Gram-positive 

microorganisms to this method of enhanced cytotoxicity due to the reaction of 

singlet oxygen with components of the outer membrane (Dahl et al., 1989).    

   

Photosensitisation of the V8 protease and sphingomyelinase using methylene blue 

and laser light in the presence of ascorbic acid and ferrous sulphate did not result in 

increased photodynamic inactivation of these enzymes compared with methylene 
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blue alone. As the lipid peroxides key to the increased cytotoxicity of PDT in the 

presence of ferrous sulphate and ascorbate are formed by the reaction of reactive 

oxygen species with biomolecules (e.g. the bacterial cytoplasmic membrane), the 

lack of increased photodynamic inactivation of the V8 protease and 

sphingomyelinase may be due to the absence of lipid-containing biomolecules in the 

test system, which involved the purified enzymes only (Wainwright, 2000). It is 

therefore possible that in a whole cell system, increased photodynamic inactivation 

of staphylococcal enzymes may be achieved.  

 

However, Fenton-like reactions may also be initiated by the reaction of transition 

metals with hydrogen peroxide (as opposed to a lipid peroxides), and damage to 

proteins in this manner has been documented in cell-free systems (Dean et al., 

1997; Stadtman, 1990). Hydrogen peroxide may be generated as a result of the 

reaction of hydroxyl radicals produced by Type I reactions (Wainwright, 2000); 

therefore it is possible that initiation of Fenton-like reactions did occur in this 

system, but maybe not at high enough frequency to cause damage to the protein. As 

the enhancing effect of antioxidants on PDT is concentration dependent (Jakus & 

Farkas, 2005), enhancement of photodynamic inactivation may be achieved by 

optimisation of the concentration of ascorbate in the system.  

 

As previously stated, ascorbate alone can react with singlet oxygen to produce the 

longer-lived hydrogen peroxide; however it did not enhance the photodynamic 

inactivation of the V8 protease or sphingomyelinase in this system. It is possible that 

photodynamic inactivation of these enzymes is not mediated by hydrogen peroxide, 

rather by other reactive oxygen species. In addition, the protective effect against 

photodynamic inactivation observed when ferrous sulphate and ascorbic acid were 

added to the methylene blue solution may be due to the antioxidant properties of 

ascorbic acid.  Ascorbic acid is a powerful antioxidant, and reacts with reactive 
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oxygen species to produce a terminal, poorly-reactive semidihydroascorbate radical 

(Valko et al., 2006). As previously discussed, the enhancing effect of antioxidants is 

concentration-dependent; therefore there may be a threshold concentration where 

a switch from protection to enhancement is observed. Further research would be 

necessary to investigate this further.  

 

Other approaches to the enhancement of the activity of photosensitisation may also 

be investigated. It has been demonstrated that gold nanoparticles can enhance the 

TBO-mediated photodynamic killing of S. aureus (Gil-Tomas et al., 2007; Narband et 

al., 2008). It was proposed that the gold nanoparticles may enhance the light 

capture by TBO and direct the photodynamic reaction towards the generation of 

reactive oxygen species such as hydroxyl radicals rather than singlet oxygen. It is 

therefore possible that enhancement of the photodynamic inactivation of 

staphylococcal virulence factors may be achieved using such a system.  
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5.5 Summary 

Treatment of S. aureus 8325-4 with methylene blue in the presence of 50 µM 

ferrous sulphate and 250 µM ascorbic acid resulted in approximately one-log10 

increased kill compared with 5 µM methylene blue alone when irradiated with laser 

light of 665 nm. This enhancement of photodynamic inactivation was not observed 

for EMRSA-16, V8 protease or sphingomyelinase. MIX was found to be an ineffective 

solvent for methylene blue when used for the photodynamic killing of S. aureus 

species, as it provided a protective effect against lethal photosensitisation compared 

with methylene blue suspended in water alone. These results suggest that additives 

such as ferrous sulphate and ascorbic acid to the photosensitiser formulation may 

result in enhanced antibacterial activity for certain strains of S. aureus; however, 

enhanced photodynamic inactivation of S. aureus protease or sphingomyelinase 

may not occur at concentrations of the additives required for enhancement of 

bacterial killing. Further optimisation of the concentrations of these additives may 

result in more favourable results. There is also scope for further investigations using 

novel methods of enhancement such as the addition of gold nanoparticles to the 

photosensitiser formulation.     
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6 The susceptibility of Staphylococcus aureus small colony 

variants to lethal photosensitisation 

6.1 Introduction 

Small colony variants (SCVs) of S. aureus were first isolated from infected lesions in 

the 1950s (Goudie & Goudie, 1955; Hale, 1951; Sherris, 1952). SCVs of S. aureus are 

a naturally-occurring subpopulation found in certain infections and are 

characterised by a slow growth rate and small colony size relative to the parent 

strain (von Eiff, 2008). Chronic antibiotic exposure is also believed to result in the 

generation of SCVs, as they have been isolated from patient groups receiving long-

term antibiotic therapy, such as cystic fibrosis and osteomyelitis patients (Proctor et 

al., 1998). The most commonly encountered SCVs from clinical samples have 

deficiencies in either the electron transport chain or thymidine biosynthesis, 

although other types of SCVs such as auxotrophs for carbon dioxide have also been 

observed (Proctor et al., 2006).  

 

SCVs typically have a doubling time of approximately 180 minutes, compared with 

20 minutes for typical strains of S. aureus (Proctor et al., 1998). SCVs also have 

different colony morphology and biochemical profiles compared with the classic S. 

aureus phenotype; colonies are generally non-pigmented and non-haemolytic, and 

strains show slow coagulase activity and decreased sugar fermentation (Proctor, 

2000).  

 

S. aureus SCVs have been isolated from abscesses, soft tissue and joint infections, 

blood, and the pulmonary tract, and have been associated with infections that are 

persistent, recurrent and antibiotic-resistant (Goring et al., 2001; Proctor, 2000; 

Seifert et al., 1999; von Eiff et al., 2001). The slow growth rate of these organisms 

can cause difficulties in laboratory identification as they are easily overgrown by 
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other species in a mixed culture and therefore may be easily missed in patient 

samples, a problem compounded by their fastidious growth requirements and 

atypical colony morphology (Proctor et al., 1998; Proctor, 2000).  

 

The ability to form SCVs may be considered a virulence mechanism in itself, as SCVs 

are relatively unstable and may revert to a more virulent phenotype on completion 

of antibiotic therapy and/or once the host immune response has subsided, therefore 

acting as a defence mechanism against elimination (Proctor & Peters, 1998). This 

extraordinary ability of SCVs is exemplified by relapses of infection following 

extended disease-free periods and intensive parenteral antibiotic therapy (Proctor 

et al., 1995). 

 

SCVs often display lower susceptibility to antimicrobial agents such as 

aminoglycosides, due to the interruption of the electron transport chain as a result 

of auxotrophy for menadione, hemin or thymidine (von Eiff, 2008). Defects in the 

electron transport chain result in reduced uptake of cationic antibiotic compounds 

(Proctor & Peters, 1998). Resistance to -lactams has also been noted due to the 

slow growth rate of SCVs, and the consequent reduced cell wall division of small 

colony variants (Proctor & von Humboldt, 1998).  

 

Menadione and hemin are the most common auxotrophies observed in clinical SCVs 

(Jonsson et al., 2003). Although SCVs that are auxotrophs for hemin and menadione 

are phenotypically similar, differences in metabolism between the two types of SCV 

have been documented. Von Eiff et al. demonstrated that a mutant with an 

insertion in the menD gene had a more severe defect in carbon metabolism than a 

mutant with an insertion in the hemB gene, due to the increased number of 

metabolic pathways that utilise menadione compared with hemin (von Eiff et al., 

2006). In addition to differences in carbon metabolism, differences in gene 

expression have been observed between these two types of SCV, with the most 



 

 - 187 - 

significant differences in expression observed for genes involved in anaerobic 

respiration and fermentation (Kohler et al., 2008). SCVs with mutations in menD and 

hemB also differ in their ability to survive in host tissues; hemB SCVs have been 

primarily recovered from sites such as bone and sputum, whereas menD SCVs have 

been isolated from a wider range of tissues (Bates et al., 2003).   

 

SCVs have been associated with higher virulence than the parent strain. In a murine 

septic arthritis model, a hemB small colony variant was found to produce 

approximately 20 times more protease than the parent strain (Jonsson et al., 2003). 

Whilst mice inoculated with the hemB mutant had a significantly lower bacterial 

burden than those inoculated with the parent strain, the small colony variant was 

associated with a significantly higher severity of arthritis. It was proposed that the 

small colony variant was more virulence on a per organism basis than the parent 

strain. Increased production of other virulence factors has also been noted. Vaudaux 

et al. described increased expression of fibrinogen and fibronectin-binding proteins 

in a hemB small colony variant of S. aureus; adhesion to fibronectin and fibrinogen-

coated surfaces was significantly enhanced compared with the parent strain 

(Vaudaux et al., 2002).  

 

Due to the persistent nature of these organisms, often despite prolonged antibiotic 

treatment, novel therapeutic options are required for the effective elimination of 

SCVs. SCVs have been isolated from persistent, antibiotic-resistant skin infections, 

which represent one of the areas in which PDT is particularly relevant (Coman et al., 

2008; Seifert et al., 1999; von Eiff et al., 2001). In the following chapter, the 

susceptibility of two S. aureus SCVs to lethal photosensitisation using methylene 

blue and tin chlorin e6 in combination with laser light of the appropriate wavelength 

is described. SCVs with mutations in the hemB and menD genes were used for these 

experiments, as strains with these mutations are the most commonly observed 

isolates obtained from clinical samples (Jonsson et al., 2003).  
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6.2 Materials and methods 

6.2.1 The effect of photosensitiser dose on the lethal photosensitisation of 

Staphylococcus aureus small colony variants 

The strains used in this study were S. aureus LS-1 and its isogenic mutant with a 

deletion of the hemB gene (LS-1∆hemB constructed by Dr John Wright, UCL), S. 

aureus 8325-4 and its isogenic mutant with a disruption in the menD gene S. aureus 

D1324 (a gift from Professor Richard Proctor) (Bates et al., 2003). Bacteria were 

maintained as described in section 2.3.1 and lethal photosensitisation was 

performed as described in sections 2.5.2 and 2.6. 

 

6.2.2 The effect of laser light dose on the lethal photosensitisation of 

Staphylococcus aureus small colony variants 

The small colony variants and their parent strains were maintained as described in 

section 2.3.1. Experiments to determine the effect of laser light dose on lethal 

photosensitisation were performed as described in sections 2.5.1 and 2.6. 
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6.3 Results 

6.3.1 Staphylococcus aureus hemB small colony variant  

6.3.1.1 The effect of photosensitiser dose on the lethal photosensitisation of a S. 

aureus hemB small colony variant 

6.3.1.1.1 Methylene blue 

The effect of methylene blue dose on the lethal photosensitisation of S. aureus LS-1 

(parent strain) and S. aureus LS-1∆hemB when irradiated with laser light from a 

665nm diode laser can be seen in Figure 6.1 and Figure 6.2, respectively. Although 

photosensitisation with 20 µM methylene blue and 4.38 J of 665 nm laser light 

resulted in highly significant killing of both the parent strain and the small colony 

variant (P < 0.001; ANOVA), significantly less killing was observed for the small 

colony variant compared with the parent strain (P < 0.05; ANOVA). Lethal 

photosensitisation with this regimen resulted in an approximate 3.5 log kill for S. 

aureus LS-1, compared with a 2.5 log kill for S. aureus LS-1∆hemB. S. aureus LS-1 also 

appeared more susceptible to photodynamic killing at lower concentrations of 

photosensitiser (5 µM) compared with the hemB small colony variant; however 

there was no significant difference between the two strains (P > 0.05; ANOVA).  
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Figure 6.1 The effect of methylene blue dose on the lethal photosensitisation of S. 

aureus LS-1 

An equal volume of either PBS or methylene blue (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J of 665 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. * P <0.05, ** P < 0.01, *** P < 

0.001 (ANOVA). Experiments were performed three times in triplicate and the 

combined data shown. 

1

2

3

4

5

6

7

8

0 1 5 10 20

Concentration of methylene blue (mM)

L
o

g
1
0
 C

F
U

/m
L

*

**

***



 

 - 191 - 

 

 

Figure 6.2 The effect of methylene blue dose on the lethal photosensitisation of S. 

aureus LS-1∆hemB 

An equal volume of either PBS or methylene blue (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J of 665 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times in triplicate and the combined data 

shown. 
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6.3.1.1.2 Tin chlorin e6  

The effect of tin chlorin e6 dose on the lethal photosensitisation of LS-1 and the 

hemB mutant is shown in Figure 6.3 and Figure 6.4, respectively. As previously 

observed for methylene blue, highly significant kills were achieved for both LS-1 and 

S. aureus LS-1∆hemB when irradiated with laser light from a 633 nm laser in the 

presence of tin chlorin e6; however, a significant difference between the kills 

achieved using 20 µM tin chlorin e6 and 4.38 J of 633 nm laser light for S. aureus LS-

1 and LS-1∆hemB was also observed (P < 0.05; ANOVA). However, the small colony 

variant appeared to be more sensitive to tin chlorin e6 at lower concentrations 

compared with the parental strain, with significant kills being observed at 1 and 5 

µM tin chlorin e6 for the hemB small colony variant and not for the parental strain. 

The difference in kill between the two strains was significant for 1 µM tin chlorin e6, 

with a 28.67% kill being achieved with the hemB SCV compared with 19.39% for the 

parent strain (P < 0.05; ANOVA). Whilst a lower reduction in viable CFU/mL was 

observed for the hemB strain compared with the parent strain for 5 or 10 µM 

photosensitiser, this difference in susceptibility was not found to be significant (P > 

0.05; ANOVA). 
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Figure 6.3 The effect of tin chlorin e6 dose on the lethal photosensitisation of S. 

aureus LS-1 

An equal volume of either PBS or tin chlorin e6 (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J of 633 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. *** P < 0.001 (ANOVA). 

Experiments were performed three times in triplicate and the combined data 

shown.
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Figure 6.4 The effect of tin chlorin e6 dose on the lethal photosensitisation of S. 

aureus LS-1∆hemB 

An equal volume of either PBS or tin chlorin e6 (concentrations ranging from 1-20 

µM) was added to 50 µL of the bacterial suspension and either kept in the dark () 

or exposed to 4.38 J of 633 nm laser light (). After irradiation/dark incubation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. ** P < 0.01, *** P < 0.001 

(ANOVA). Experiments were performed three times in triplicate and the combined 

data shown. 
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6.3.1.2 The effect of laser light dose on the lethal photosensitisation of a S. 

aureus hemB small colony variant  

6.3.1.2.1 Laser light of 665 nm 

Figure 6.5 and Figure 6.6 show the effect of 665 nm laser light dose on the lethal 

photosensitisation of S. aureus LS-1 and S. aureus LS-1∆hemB, in the presence or 

absence of 20 µM methylene blue, respectively. Although highly significant kills 

were observed for both strains at all light doses, there was a highly significant 

difference in susceptibility between the strains for 4.38 J and 8.76 J of 665 nm laser 

light. There was no significant difference between the kills observed at 21.9 J of laser 

light in the presence of 20 µM methylene blue; however, a borderline significant kill 

was observed for the hemB small colony variant when it was treated with 21.9 J of 

665 nm laser light in the absence of photosensitiser, which was not observed for the 

parent strain (P = 0.049; ANOVA). 
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Figure 6.5 The effect of 665 nm laser light dose on the lethal photosensitisation of 

S. aureus LS-1 

An equal volume of either PBS () or methylene blue () (20 µM) was added to 50 

µL of the bacterial suspension and either kept in the dark or exposed to 4.38 J of 665 

nm laser light. After irradiation/dark incubation, samples were serially diluted and 

the surviving CFU/mL enumerated. Error bars represent the standard deviation from 

the mean. *** P < 0.001 (ANOVA). Experiments were performed three times in 

triplicate and the combined data shown. 
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Figure 6.6 The effect of 665 nm laser light dose on the lethal photosensitisation of 

S. aureus LS-1∆hemB 

An equal volume of either PBS () or methylene blue () (20 µM) was added to 50 

µL of the bacterial suspension and either kept in the dark or exposed to 4.38 J of 665 

nm laser light. After irradiation/dark incubation, samples were serially diluted and 

the surviving CFU/mL enumerated. Error bars represent the standard deviation from 

the mean. *** P < 0.001 (ANOVA). Experiments were performed three times in 

triplicate and the combined data shown. 

 

6.3.1.2.2 Laser light of 633 nm  

The effect of 633 nm laser light dose on the lethal photosensitisation of S. aureus LS-

1 and the hemB SCV mutant is shown in Figure 6.7 and Figure 6.8. Following 

irradiation with 4.38 J of 633 nm laser light in the presence of 20 µM tin chlorin e6, a 

significant difference in the reduction of viable CFU/mL was observed between S. 

aureus LS-1 and S. aureus LS-1∆hemB (P < 0.05; ANOVA). No significant difference 
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was observed between the kills obtained for the parent strain and the hemB small 

colony variant at higher light doses in the presence of photosensitiser. However, a 

highly significant kill of S. aureus LS-1 was observed for 21.9 J of 633 nm laser light 

alone (no photosensitiser), which was not observed for the hemB small colony 

variant.  

 

Figure 6.7 The effect of 633 nm laser light dose on the lethal photosensitisation of 

S. aureus LS-1 

An equal volume of either PBS () or tin chlorin e6 () (20 µM) was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 4.38 J of 633 

nm laser light. After irradiation/dark incubation, samples were serially diluted and 

the surviving CFU/mL enumerated. Error bars represent the standard deviation from 

the mean. *** P < 0.001 (ANOVA). Experiments were performed three times in 

triplicate and the combined data shown. 
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Figure 6.8 The effect of 633 nm laser light dose on the lethal photosensitisation of 

S. aureus LS-1∆hemB 

An equal volume of either PBS () or tin chlorin e6 () (20 µM) was added to 50 µL 

of the bacterial suspension and either kept in the dark or exposed to 4.38 J of 633 

nm laser light. After irradiation/dark incubation, samples were serially diluted and 

the surviving CFU/mL enumerated. Error bars represent the standard deviation from 

the mean. * P < 0.05, *** P < 0.001 (ANOVA). Experiments were performed three 

times in triplicate and the combined data shown. 
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6.3.2 Staphylococcus aureus menD small colony variant 

6.3.2.1 The effect of methylene blue and 665 nm laser light on the lethal 

photosensitisation of a S. aureus menD small colony variant 

The effect of 20 µM methylene blue and 4.38 J of 665 nm laser light on S. aureus 

8325-4 and its isogenic menD mutant is shown in Figure 6.9. No significant 

difference was observed between the kills achieved for the parent strain and the 

menD SCV (P > 0.05; ANOVA). 

Figure 6.9 The effect of methylene blue and 665 nm laser light on the lethal 

photosensitisation of S. aureus 8325-4 and the menD small colony variant 

An equal volume of either PBS (S-) or20 µM methylene blue (S+) was added to 50 µL 

of S. aureus 8325-4 () or the menD SCV (). The bacterial suspensions were either 

kept in the dark (L-) or exposed to 4.38 J of 665 nm laser light (L+). After irradiation, 

samples were serially diluted and the surviving CFU/mL enumerated. Error bars 

represent the standard deviation from the mean. Experiments were performed 

three times in triplicate and the combined data shown. 
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6.3.2.2 The effect of tin chlorin e6 and 633 nm laser light on the lethal 

photosensitisation of a S. aureus menD small colony variant  

The effect of lethal photosensitisation using 20 µM tin chlorin e6 and 4.38 J of 633 

nm laser light is shown in Figure 6.10. As observed for methylene blue, there was no 

significant difference in the susceptibility of the parental strain or the menD small 

colony variant to photodynamic killing (P > 0.05; ANOVA). 

 

Figure 6.10 The effect of tin chlorin e6 and 633 nm laser light on the lethal 

photosensitisation of S. aureus 8325-4 and S. aureus menD small colony variant 

An equal volume of either PBS (S-) or20 µM tin chlorin e6 (S+) was added to 50 µL of 

a suspension of either S. aureus 8325-4 () or the menD SCV (). The bacterial 

suspensions were either kept in the dark (S-) or exposed to 4.38 J of 665 nm laser 

light (S+). After irradiation/dark incubation, samples were serially diluted and the 

surviving CFU/mL enumerated. Error bars represent the standard deviation from the 

mean. Experiments were performed three times in triplicate and the combined data 

are shown. 
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6.4 Discussion 

Small colony variants of S. aureus may present a challenge for both clinicians and the 

diagnostic laboratory alike (Proctor & Peters, 1998). Due to the increased resistance 

to antibiotics typical of these strains, it would be advantageous to develop a 

therapeutic strategy with a differing mode of action to those antibiotics for which 

lower susceptibility is typically seen (Proctor et al., 1998). As the mechanism of 

action of PDT is non-specific, it may therefore represent a novel treatment option 

for superficial infections caused by S. aureus SCVs (Wainwright, 2005). In this 

chapter, the ability of light-activated antimicrobial agents in combination with laser 

light to induce the photodynamic killing of two strains of S. aureus SCVs was 

assessed 

 

In this study, both the hemin and menadione auxotrophic small colony variants of S. 

aureus were found to be susceptible to photodynamic killing with methylene blue 

and tin chlorin e6. The S. aureus hemB small colony variant was found to be less 

susceptible than its parent strain (S. aureus LS-1) to lethal photosensitisation using 

methylene blue and tin chlorin e6; however, highly significant kills were achieved 

using both photosensitisers. Significantly lower kills were observed for the hemB SCV 

following treatment with 20 µM methylene blue and 4.38 J of 665 nm diode laser 

light; kills of 99.98 and 99.73% were achieved for the parent strain and hemB SCV, 

respectively. With the highest light dose used (21.9 J), there was no significant 

difference between the kills observed for both strains, indicating that the decreased 

susceptibility of the SCV strain may be overcome by increasing the light dose.  

 

For tin chlorin e6, treatment with 20 µM photosensitiser and 4.38 J of 633 nm HeNe 

laser light also resulted in significantly less killing of the hemB SCV strain compared 

with the parent strain. Kills of 98.98 and 94.01% were observed for the parent strain 
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and SCV, respectively. As observed with 665 nm laser light, at higher doses of 633 

nm laser light there was no significant difference between the parent and the hemB 

SCV in their susceptibility to photodynamic killing. No significant difference between 

the viability of S. aureus LS-1 and the hemB SCV was observed following treatment 

with 8.76 J of 633 nm laser light and 20 µM tin chlorin e6, whereas the hemB SCV 

was significantly less susceptible than the parent strain to 8.76 J of 665 nm laser 

light and 20 µM methylene blue. 

 

Iradiation with 21.9 J of 633 nm laser light in the absence of a photosensitiser 

caused significant killing of S. aureus LS-1, but not of the hemB small colony variant 

(P < 0.001; ANOVA). This may be due to the presence of endogenous 

photosensitisers in the parent strain that are not produced or produced at lower 

concentrations in the hemB SCV. S. aureus is known to produce several light-

absorbing compounds, such as the carotenoid compound staphyloxanthin, that gives 

S. aureus colonies their distinctive golden colour (Pelz et al., 2005). A reduction in 

pigmentation is a well documented phenotype of S. aureus SCVs (Proctor, 2000); 

therefore this decrease may account for the different susceptibilities to laser light 

alone observed between the parent and SCV strains.  

 

The menD small colony variant was found to be equally susceptible to photodynamic 

killing using methylene blue and tin chlorin e6 as its parental strain (S. aureus 8325-

4). Treatment with 20 µM methylene blue and 4.38 J of 665 nm laser light resulted 

in kills of 99.99 and 99.96% for the parent strain and small colony variant, 

respectively. Following treatment with tin chlorin e6 and 633 nm laser light, kills of 

99.28 and 99.20% were achieved for the parent strain and small colony variant, 

respectively.   

 

Although primarily associated with exposure to aminoglycosides, in vitro exposure 

to triclosan, a commonly-used biocide, has also been shown to result in the 
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formation of SCVs, raising issues over the use of triclosan as a topical skin 

decolonisation agent (Proctor, 2000). It has been proposed that use of triclosan for 

this purpose could lead to a selective pressure in favour of small colony variants on 

the skin surface, which could potentially be transferred between patients, and also 

come into contact with wounds and thus initiate infection (Seaman et al., 2007b). 

Triclosan-impregnated polymers such as sutures may also provide a selective 

pressure for small colony variants, as well as an entrance route into the body where 

infection may be initiated (Seaman et al., 2007a). Bayston et al. found that triclosan-

containing silicone could induce the formation of small colony variants of meticillin-

resistant S. aureus, and warned of implications for the long-term use of triclosan-

containing polymers (Bayston et al., 2007). Given the findings reported in this 

chapter, PDT could potentially be used as an alternative method of skin 

decontamination in cases of SCV carriage.  

 

PDT has previously been proposed for the decontamination of the anterior nares in 

cases of MRSA carriage (Embleton et al., 2002; Street et al., 2009; Zolfaghari et al., 

2009); and cases of infections associated with concomitant colonisation of the 

anterior nares by S. aureus SCVs have been reported in the literature (Hale, 1951; 

Proctor et al., 1995; von Eiff et al., 2001). Decontamination of the nares may 

therefore be useful in such cases where the nares represent a reservoir of infection, 

and PDT may well be applicable in such cases.  

  

PDT could also be used to treat other skin areas and wounds infected with S. aureus 

SCVs, as SCVs have been implicated in numerous cases of skin and skin structure 

infections (Abele-Horn et al., 2000; Coman et al., 2008; Gomez-Gonzalez et al., 2010; 

Rahman, 1977; Sherris, 1952; von Eiff et al., 2001). The potential of PDT as a 

treatment modality for skin and skin structure infections is well recognised, and 

therefore could present an attractive alternative to antibiotics in skin infections 

caused by SCVs (Wainwright, 2010; Zeina et al., 2001).  
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The optimum treatment regime for infections caused by small colony variants of S. 

aureus has not yet been determined (von Eiff, 2008). Due the increased resistance of 

SCV strains to some conventional antibiotics, a therapy that has a non-specific mode 

of action rather than one that is dependent on growth of the organism would be 

desirable. As PDT is generally believed to exert its killing effect via non-specific 

membrane damage and thus resistance is unlikely to develop, PDT could represent a 

novel method of treating superficial infections (Hamblin & Hasan, 2004; Wainwright, 

2005). Consequently, PDT may be a potential treatment option for superficial 

infections caused by SCV strains of S. aureus, particularly in cases of antibiotic-

resistant strains.  

 

Meticillin-resistant SCVs of S. aureus have been observed and implicated in diverse 

types of infections (Bulger & Bulger, 1967; Coman et al., 2008; Gomez-Gonzalez et 

al., 2010; Seifert et al., 1999). It would be useful to assess the efficacy of 

photodynamic killing against meticillin-resistant SCVs, as PDT could be applicable in 

the eradication of these organisms. It has been shown in Chapter 3 that both 

photosensitisers used in this chapter are effective against MRSA; therefore it is 

possible that PDT could also be effective against meticillin-resistant SCV strains. 
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6.5 Summary 

Small colony variants of S. aureus are susceptible to photodynamic killing using the 

photosensitisers methylene blue and tin chlorin e6, in combination with laser light of 

the appropriate wavelength. Although the SCVs were less susceptible than their 

parent strains, highly significant kills were achieved using both methylene blue and 

tin chlorin e6, suggesting that PDT may be of use in the treatment of superficial 

infections caused by these organisms, especially considering their lower 

susceptibility to some antibiotics. Increasing the light dose delivered by the 665 nm 

and 633 nm lasers eliminated the difference in susceptibility between the SCVs and 

parent strains, demonstrating that it is possible to overcome the decreased 

sensitivity of the SCVs to photodynamic killing. In addition, PDT may also have a role 

in the decolonisation of the anterior nares, which have been found to be a reservoir 

of infection in cases of recurrent skin infections caused by SCVs (von Eiff et al., 

2001).  



 

 - 207 - 

7 Inactivation of key virulence factors of Porphyromonas 

gingivalis using light-activated antimicrobial agents 

7.1 Introduction 

Porphyromonas gingivalis is one of the major aetiological agents of periodontitis, an 

inflammatory disease of the periodontium that involves progressive bone, and 

eventually tooth, loss (Hajishengallis, 2009). P. gingivalis produces a number of 

virulence factors that are believed to play significant roles in the pathology of 

periodontitis, and may therefore represent targets for antimicrobial therapy (Yilmaz, 

2008).  

 

Lipopolysaccharide is considered a key virulence factor of periodontopathogens due 

to its ability to initiate the host inflammatory response (Wilson, 2004). LPS-mediated 

induction of cytokine production has been implicated in bone resorption, inhibition 

of collagen synthesis and the induction of destructive host metalloproteinases, 

which contribute to bone loss and inhibition of tissue repair (Lamont & Jenkinson, 

1998). P. gingivalis LPS is released in large quantities in outer membrane vesicles, 

which are able to penetrate periodontal tissue and elicit an immune response 

(Darveau et al., 2004); consequently LPS can continue to exert its destructive effects 

after antibiotic therapy has successfully eradicated the microorganism (Wilson, 

2004). 

 

The synthesis of large amounts of proteolytic enzymes is characteristic of P. 

gingivalis, and is one of the features that distinguishes it from other members of the 

genus Porphyromonas; consequently, the proteolytic activity of P. gingivalis has 

been identified as a potential target for novel therapeutic strategies (Cutler et al., 

1995). P. gingivalis produces a number of multifunctional enzymes with proteolytic 

functions, which are involved in host colonisation, microbial nutrition, host tissue 
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destruction and resistance to host defences (Potempa et al., 2000; Travis & 

Potempa, 2000).   

 

The haemagglutinins of P. gingivalis have been presented as putative virulence 

factors due to their role in hemin acquisition and colonisation of host tissues (Holt et 

al., 1999). Haemagglutinating proteins are also thought have immunostimulatory 

properties, and thus contribute to the pathology of periodontal disease via their 

induction of proinflammatory cytokine production (Zhang et al., 2005). The 

importance of P. gingivalis haemagglutinin in the pathology of bone loss has been 

demonstrated by the observation of lower bone loss in rats immunised with 

recombinant haemagglutinin B (Katz et al., 1999).  

 

PDT has several applications as a therapeutic option in periodontology, including 

disinfection of roots and the management and treatment of periodontitis (Jose et 

al., 2010). As PDT systems for periodontitis are commercially available, the effect of 

photosensitisation on virulence factors produced by the causative microorganisms 

of this disease represents an important area of interest. The photosensitisation of 

selected P. gingivalis virulence factors with the light-activated antimicrobial agents 

methylene blue and tin chlorin e6 in the presence of laser light of 665 nm and 633 

nm respectively is described in the following chapter. The effect of concentrations of 

photosensitiser ranging from 1 to 20 µM and laser light of the appropriate 

wavelength on a selection of secreted enzymes and surface proteins was 

investigated. In addition, preliminary investigations into the mechanism of 

photodynamic inactivation were performed. 
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7.2 Materials and methods 

7.2.1 Limulus Amebocyte Lysate assay for lipopolysaccharide activity 

Photosensitisation experiments were performed using 50 µl of 20 ng/mL P. 

gingivalis 1690 LPS (a gift from Professor Richard Darveau) for a final concentration 

of 10 ng/mL and either an equal volume of photosensitiser (S+) or pyrogen-free 

water (PFW) (S-). For methylene blue experiments, a final concentration of 67 µM 

was used and for tin chlorin e6, a final concentration of 59 µM was used. Samples 

were either exposed to 21.9 J of 665 nm laser light for methylene blue-treated 

samples, or 633 nm laser light for tin chlorin e6-treated samples. Experiments were 

performed in triplicate. For tin chlorin e6, only preliminary experiments were 

performed to determine if photosensitisation had any effect on the activity of LPS 

and therefore only L-S- and L+S+ samples were processed.  

 

 Following irradiation/dark incubation, the Limulus Amebocyte Lysate (LAL) test was 

performed as follows. An aqueous extract of amebocytes from Limulus polyphemus 

(Pyrotell reagent; Associates of Cape Cod Inc) was reconstituted with PFW. Control 

Standard Endotoxin (CSE; Associates of Cape Cod Inc) was used as a positive control 

for the LAL assay. CSE was reconstituted with 1 mL PFW to give a concentration of 

10 ng/mL and placed in a sonicating water bath for 15 minutes. After sonication, the 

CSE stock solution was vortexed for 30 seconds before making doubling dilutions 

ranging from 10 ng/mL to 0.156 ng/mL. The test solution of P. gingivalis LPS was 

diluted in a similar manner. Aliquots of 10 µL Pyrotell were spotted onto the lid of a 

pyrogen-free 96-well plate and 10 µL of each dilution of the CSE and P. gingivalis LPS 

were then added to the Pyrotell, starting from the most dilute. The lid was covered 

with another 96-well plate lid, placed in a moisture chamber and incubated at 37C 

for 60 minutes. Following incubation, 1 µL of 0.2% methylene blue in 70% ethanol 

was added to the top of each spot. A star-like formation by the methylene blue on 

top of the spot indicated a positive result. The assay endpoint was defined as the 
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lowest concentration of endotoxin required for a positive result, and the fold change 

in the concentration of P. gingivalis LPS required to cause a positive result compared 

with the negative control (L-S-) was calculated.  

 

7.2.2 Azocasein assay for protease activity 

P. gingivalis W50 culture supernatant was prepared according to section 2.4. 

Photosensitisation experiments and the azocasein hydrolysis assay for measuring 

total P. gingivalis W50 protease activity were performed as described in sections 2.5 

and 2.7.2, respectively. For photosensitiser-dose experiments, 21.9 J of laser light 

was used to irradiate the samples.  

 

7.2.3 The effect of deuterium oxide and L-tryptophan on the photodynamic 

inactivation of P. gingivalis W50 proteolytic activity 

Experiments to assess the effect of an enhancer of singlet oxygen lifetime 

(deuterium oxide) and singlet oxygen scavenger (L-tryptophan) on the proteolytic 

activity of P. gingivalis W50 were carried out according to section 2.8.3. 

 

7.2.4 Haemagglutination assay 

Photosensitisation experiments were performed according to section 2.5, using 50 

µL of P. gingivalis W50 culture supernatant (prepared according to section 2.4) and 

an equal volume of photosensitiser. Following irradiation/dark incubation, the 

haemagglutinating activity was assessed using the haemagglutination assay as 

described below.  

 

Rabbit blood (E&O laboratories) was centrifuged for 10 minutes at 5590 x g. Cells 

were washed with PBS and resuspended to a concentration of 2%. Following 

irradiation/dark incubation, samples were removed and placed into column 1 of a v-



 

 - 211 - 

bottomed 96-well plate and diluted using doubling dilutions in PBS so that the final 

volume in each well was 50 µL. PBS was used as a negative control for 

haemagglutinating activity. Aliquots of 50 µL of the rabbit erythrocyte solution were 

added to each well and the plates incubated at 37°C for 10 minutes with gentle 

shaking, in the dark. Plates were then incubated overnight at room temperature in 

the dark. Following overnight incubation, the haemagglutinating titre was defined as 

the highest dilution giving rise to haemagglutination. Haemagglutination appeared 

as a pink carpet of cells on the bottom of the plate. A negative result (no 

haemagglutination) appeared as a pellet of cells in the bottom of the well.  



 

 - 212 - 

7.3 Results 

7.3.1 The effect of photosensitisation on the activity of P. gingivalis 

lipopolysaccharide 

The effect of treatment of P. gingivalis 1690 LPS with methylene blue or tin chlorin 

e6, irradiated with laser light of the appropriate wavelength, is shown in Table 7.1. 

Irradiation of P. gingivalis LPS with diode laser light of 665 nm in the presence of 67 

µM methylene blue significantly inhibited the LPS activity by 4-fold compared with 

the untreated control (P < 0.001; ANOVA). Treatment of P. gingivalis 1690 LPS with 

59 µM tin chlorin e6 and 21.9 J of 633 nm HeNe laser light had no effect on the 

concentration of endotoxin required for a positive result compared with the control.  

 

 Median fold decrease  

 Methylene blue Tin chlorin e6  

L-S+ 0  Not tested 

L+S- 0  Not tested 

L+S+ 4 *** 0  

 

Table 7.1 The effect of methylene blue or tin chlorin e6 and 21.9 J of laser light on 

the activity of P. gingivalis 1690 LPS  

An equal volume of either methylene blue (final concentration of 67 µM), tin chlorin 

e6 (final concentration of 59 µM) (S+) or PFW (S-) was added to P. gingivalis 1690 

LPS and samples were either exposed to 21.9 J of 665 nm laser light (for methylene 

blue-treated samples) or 633 nm laser light (for tin chlorin e6-treated samples) (L+) 

or kept in the dark (L-). The LPS activity was assessed using the Pyrotell LAL assay. 

*** P < 0.001 (ANOVA). Experiments were performed three times and the combined 

data are shown. 
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Experiments performed using the standard doses of the methylene blue and tin 

chlorin e6 described in previous chapters (maximum final concentration of 20 µM) 

demonstrated that these concentrations of photosensitiser did not affect the 

activity of the LPS as assessed by the Pyrotell LAL assay (data not shown).  

 

7.3.2 The effect of photosensitiser dose on the photodynamic inactivation 

of P. gingivalis proteases 

7.3.2.1 Methylene blue 

The effect of photosensitisation with methylene blue and laser light of 665 nm on 

the protease activity of P. gingivalis W50 culture supernatant is shown in Figure 7.1. 

It can be seen that when irradiated with 21.9 J laser light of 665 nm, all 

concentrations of methylene blue tested (final concentrations of 1 to 20 µM) caused 

a highly significant reduction in the proteolytic activity compared with untreated 

samples (P < 0.001; ANOVA). The highest reduction in activity observed was 65% 

compared with the untreated control.  
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Figure 7.1 The effect of methylene blue dose and 21.9 J of 665 nm laser light on 

the proteolytic activity of P. gingivalis W50 supernatants.  

An equal volume of P. gingivalis W50 culture supernatant was added to either 300 

µL PBS or 20 µM methylene blue and either kept in the dark () or exposed to 4.38 J 

of 665 nm laser light (). Following irradiation, the protease activity was assessed 

using the azocasein hydrolysis assay. Error bars represent the standard deviation 

from the mean. *** P < 0.001 (ANOVA). Experiments were performed three times 

and the combined data are shown. 

 

7.3.2.2 Tin chlorin e6  

The effect of photosensitisation with tin chlorin e6 and 633 nm laser light on the 

protease activity of P. gingivalis W50 culture supernatant is shown in Figure 7.2. 

Irradiation of the culture supernatant in the presence of all concentrations of tin 

chlorin e6 (1 to 20 µM) resulted in a highly significant reduction in the proteolytic 

activity compared with the untreated control. The maximum inhibition of activity 

observed using these conditions was 88%; this was considerably higher than the 
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inactivation seen using the methylene blue and the 665 nm laser light regime. The 

633 nm laser light alone also appeared to have an inhibitory effect on the proteolytic 

activity of the culture supernatant, although this was not consistently observed.  

 

Figure 7.2 The effect of tin chlorin e6 dose and 21.9 J of 633 nm laser light on the 

proteolytic activity of P. gingivalis W50 supernatant.  

An equal volume of P. gingivalis W50 culture supernatant was added to either 300 

µL PBS or 20 µM tin chlorin e6 and either kept in the dark () or exposed to 4.38 J 

of 633 nm laser light (). Following irradiation, the protease activity was assessed 

using the azocasein hydrolysis assay. Error bars represent the standard deviation 

from the mean. ** P <0.01, *** P < 0.001 (ANOVA). Experiments were performed 

three times and the combined data are shown. 
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7.3.3 The effect of laser light dose on the photodynamic inactivation of P. 

gingivalis proteases  

7.3.3.1 Laser light of 665 nm  

The effect of 665 nm laser light dose on the proteolytic activity of P. gingivalis W50 

culture supernatant is shown in Figure 7.3. A significant reduction in proteolytic 

activity was observed for all light doses tested when the culture supernatant was 

irradiated in the presence of 20 µM methylene blue, with highly significant 

reductions observed for light doses ≥ 8.76 J (P < 0.001; ANOVA). Irradiation with 21.9 

J of 665 nm laser light in the presence of 20 µM methylene blue resulted in a 66% 

reduction in the proteolytic activity compared with the untreated control. 
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Figure 7.3 The effect of 20 µM methylene blue and 665 nm laser light dose on the 

proteolytic activity of P. gingivalis W50 culture supernatant.  

An equal volume of P. gingivalis W50 culture supernatant was added to either 300 

µL PBS () or 20 µM methylene blue () and either kept in the dark or exposed to 

665 nm laser light. Following irradiation, the protease activity was assessed using 

the azocasein hydrolysis assay. Error bars represent the standard deviation from the 

mean. * P < 0.05, *** P < 0.001 (ANOVA). Experiments were performed three times 

and the combined data are shown. 

 

7.3.3.2 Laser light of 633 nm  

Figure 7.4 shows the effect of 633 nm laser light dose on the proteolytic activity of 

the culture supernatant. A highly significant reduction in proteolytic activity was 

observed following treatment of the culture supernatant with 20 µM tin chlorin e6 

and all light doses tested (P < 0.001; ANOVA). Irradiation with 21.9 J of 633 nm laser 

light in the presence of 20 µM tin chlorin e6 resulted in a 74% reduction in the 
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proteolytic activity, compared with the 66% reduction in activity observed using 20 

µM methylene blue and 665 nm laser light. In addition, a highly significant 

inactivation of proteolytic activity was observed following treatment with 20 µM tin 

chlorin e6 and 4.38 J of laser light, which was not achieved using the same 

concentration of methylene blue.  

Figure 7.4 The effect of 633 nm laser light dose on the proteolytic activity of P. 

gingivalis W50 culture supernatant.  

An equal volume of P. gingivalis W50 culture supernatant was added to either 300 

µL PBS () or 20 µM tin chlorin e6 () and either kept in the dark or exposed to 633 

nm laser light. Following irradiation, the protease activity was assessed using the 

azocasein hydrolysis assay. Error bars represent the standard deviation from the 

mean. *** P < 0.001 (ANOVA). Experiments were performed three times and the 

combined data are shown. 
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7.3.4 The effect of a singlet oxygen enhancer and scavenger on the 

photodynamic inactivation of P. gingivalis proteases 

Figure 7.5 shows the effect of the singlet oxygen lifetime enhancer D2O and the 

singlet oxygen scavenger L-tryptophan on the photodynamic inactivation of P. 

gingivalis W50 proteases using 5 µM methylene blue and 21.9 J of 665 nm laser 

light. Whilst the addition of D2O resulted in a small reduction in proteolytic activity 

after treatment with methylene blue and laser light of 665 nm, it did not 

significantly enhance the inactivation of proteolytic activity (P > 0.05; ANOVA). In 

contrast, L-tryptophan significantly reduced the effectiveness of photodynamic 

inactivation by methylene blue and laser light of 665 nm (P < 0.01; ANOVA).  
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Figure 7.5 The effect of a singlet oxygen enhancer and scavenger on the 

photodynamic inactivation of P. gingivalis W50 proteases.  

P. gingivalis W50 culture supernatant was irradiated with 21.9 J of 665 nm laser light 

in the presence of 5 µM methylene blue dissolved in PBS, D2O or 10 mM L-

tryptophan. Following irradiation, protease activity was assessed using the azocasein 

hydrolysis assay. Error bars represent the standard deviation from the mean. ** P < 

0.01 (ANOVA). Experiments were performed three times and the combined data are 

shown. 

 

7.3.5 The effect of photosensitiser dose on the photodynamic inactivation 

of P. gingivalis haemagglutinin 

7.3.5.1 Methylene blue 

Table 7.2 shows the effect of methylene blue dose on the haemagglutinating activity 

of P. gingivalis W50 culture supernatant. When irradiated with 21.9 J of 665 nm 

laser light, a methylene blue dose-dependent decrease in haemagglutinating activity 

was observed. Significant reductions in activity were observed following 
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photosensitisation using 10 and 20 µM methylene blue, which resulted in median 6- 

and 8-fold reductions in the haemagglutinating titre of the supernatant compared 

with the untreated control, respectively (P < 0.001; ANOVA). Neither laser light nor 

methylene blue alone had an effect on the activity of the supernatant. 

 

Photosensitiser 

concentration (µM) 

Median haemagglutinating titre 

L- L+ 

0 1/1024 1/1024 

1 1/1024 1/512 

5 1/1024 1/256 

10 1/1024 1/128 

20 1/1024 1/64 

Table 7.2 The effect of methylene blue dose on the activity of P. gingivalis W50 

haemagglutinin activity.   

An equal volume of either PBS or 20 µM methylene blue was added to 50 µL P. 

gingivalis W50 culture supernatant and samples were either exposed to 21.9 J 665 

nm laser light (L+) or kept in the dark (L-). Following irradiation/dark incubation, the 

haemagglutinating activity was assessed using the haemagglutination assay. The 

haemagglutinating titre was calculated as the reciprocal of the lowest concentration 

of culture supernatant causing haemagglutination. Experiments were performed 

three times and the combined data are shown. 

 

7.3.5.2 Tin chlorin e6 

The effect of tin chlorin e6 dose on the haemagglutinating activity of P. gingivalis 

W50 culture supernatant is shown in Table 7.3. Tin chlorin e6 had a dose-dependent 

inhibitory effect on haemagglutinating activity when irradiated with 21.9 J of 633 nm 

laser light; all doses of tin chlorin e6 resulted in a highly significant reduction in 

activity compared with the control (P < 0.001; ANOVA). Photosensitisation using 20 
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µM tin chlorin e6 and 21.9 J of 633 nm laser light was significantly more efficacious 

than the equivalent doses of methylene blue and 665 nm laser light, which resulted 

in 14- and 8-fold reductions in activity, respectively (P < 0.001; Mann-Whitney U 

test). There was no effect of photosensitiser or laser light alone on the 

haemagglutinating activity of the culture supernatant. 

 

Photosensitiser 

concentration (µM) 

Median haemagglutinating titre 

L- L+ 

0 1/512 1/512 

1 1/512 1/128 

5 1/512 1/16 

10 1/512 1/8 

20 1/1024 1/4 

Table 7.3 The effect of tin chlorin e6 dose on the activity of P. gingivalis W50 

haemagglutinin activity.   

An equal volume of either PBS or 20 µM tin chlorin e6 was added to 50 µL P. 

gingivalis W50 culture supernatant and samples were either exposed to 21.9 J of 

633 nm laser light (L+) or kept in the dark (L-). Following irradiation/dark incubation, 

the haemagglutinating activity was assessed using the haemagglutination assay. The 

haemagglutinating titre was calculated as the reciprocal of the lowest concentration 

of culture supernatant causing haemagglutination. Experiments were performed 

three times and the combined data are shown.  
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7.3.6 The effect of laser light dose on the photodynamic inactivation of P. 

gingivalis haemagglutinin 

7.3.6.1 Laser light of 665 nm laser light 

The effect of 665 nm laser light dose on the haemagglutinating activity of P. 

gingivalis W50 culture supernatant is shown in Table 7.4. Irradiation of culture 

supernatant in the presence of 20 µM methylene blue resulted in a light dose-

dependent inactivation of activity, with a 10-fold reduction in activity observed with 

the highest light dose tested (21.9 J). All laser light doses tested resulted in a highly 

significant reduction in haemagglutininating titre compared with the untreated 

control when the culture supernatant was irradiated in the presence of methylene 

blue (P  0.001; ANOVA). A laser light dose of 21.9 J also had a small inhibitory effect 

in the absence of photosensitiser, causing a median 2-fold reduction in activity; 

however, this was not significant (P > 0.05; ANOVA). There was no inhibitory effect 

of methylene blue in the absence of laser light. 
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Light dose (J) 
Median haemagglutinating titre 

S- S+ 

0 1/256 1/256 

4.38 1/256 1/128 

8.76 1/256 1/64 

21.9 1/128 1/8 

 

Table 7.4 The effect of 665 nm laser light dose on the activity of P. gingivalis W50 

haemagglutinin activity.   

An equal volume of either PBS (S-) or 20 µM methylene blue (S+) was added to 50 µL 

P. gingivalis W50 culture supernatant and samples were either exposed to 4.38, 8.76 

or 21.9 J of 665 nm laser light or kept in the dark. Following irradiation/dark 

incubation, the haemagglutinating activity was assessed using the 

haemagglutination assay. The haemagglutinating titre was calculated as the 

reciprocal of the lowest concentration of culture supernatant causing 

haemagglutination. Experiments were performed three times and the combined 

data are shown. 
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7.3.6.2 Laser light of 633 nm  

Table 7.5 shows that treatment of P. gingivalis W50 culture supernatant with 20 µM 

tin chlorin e6 and 633 nm laser light resulted in a significant, laser light-dose-

dependent reduction in haemagglutinating activity (P < 0.001; ANOVA). 

Photosensitisation with 21.9 J 633 nm laser light and 20 µM tin chlorin e6 resulted in 

a significantly greater reduction in activity (14-fold) than that observed for 

equivalent doses of methylene blue and 633 nm laser light (10-fold) (P < 0.01; 

ANOVA). A 2-fold reduction in activity was observed when the supernatant was 

treated with 21.9 J of laser light in the absence of photosensitiser (S-) (P > 0.05; 

ANOVA). There was no inhibitory effect of tin chlorin e6 in the absence of light.  

 

Light dose (J) 
Median haemagglutinating titre 

S- S+ 

0 1/512 1/512 

4.38 1/512 1/128 

8.76 1/512 1/32 

21.9 1/256 1/4  

 

Table 7.5 The effect of 633 nm laser light dose on the activity of P. gingivalis W50 

haemagglutinin activity.   

An equal volume of either PBS (S-) or 20 µM tin chlorin e6 (S+) was added to 50 µL P. 

gingivalis W50 culture supernatant and samples were either exposed to 4.38, 8.76 

or 21.9 J of 633 nm laser light or kept in the dark. Following irradiation/dark 

incubation, the haemagglutinating activity was assessed using the 

haemagglutination assay. The haemagglutinating titre was calculated as the 

reciprocal of the lowest concentration of culture supernatant causing 

haemagglutination. Experiments were performed three times and the combined 

data are shown. 
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7.4 Discussion 

Secreted bacterial products and/or surface-associated components are believed to 

be the primary cause of tissue destruction in chronic periodontal disease. Surface-

associated material of P. gingivalis has been shown to stimulate bone resorption, 

inhibit bone formation, and inhibit the proliferation of osteoblasts, keratinocytes 

and monocytes (Wilson et al., 1993b).  

 

Photodynamic therapy is well-suited to the treatment of periodontal diseases, as 

conventional treatments such as antibiotics are difficult to maintain at a suitable 

concentration in the periodontal pocket (Jori et al., 2006). A photosensitiser can be 

applied to the periodontal pocket, and laser light delivered via a fibreoptic can be 

placed directly into the periodontal pocket (Packer et al., 2000). In addition, 

antibiotics may not penetrate bacterial biofilms (Maisch, 2007); however, it has 

been well documented that light-activated antimicrobial agents can achieve killing 

of bacteria within plaque biofilms (Konopka & Goslinski, 2007).  

 

The killing of P. gingivalis by both methylene blue and tin chlorin e6, in combination 

with laser light of the appropriate wavelength, has been described in Chapter 3. As 

photodynamic killing of the organism was found to be highly successful, the ability 

of the photosensitisers to inactivate virulence mechanisms of P. gingivalis would be 

advantageous. 

 

LPS is considered to be one of the most important virulence factors of 

periodontopathogens (Wilson, 2004). P. gingivalis LPS can stimulate the release of a 

number of effector molecules such as the proinflammatory cytokines TNF-, IL-6 

and IL-1, and prostaglandin E2. These molecules contribute to the inflammation 

and bone resorption seen in chronic periodontitis both directly and indirectly 
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(Wilson, 1995). LPS plays a direct role in bone resorption by the activation of 

osteoclasts and inhibition of osteoblast differentiation (Lamont & Jenkinson, 1998; 

Xing et al., 2010). LPS from P. gingivalis has also been shown to inhibit bone collagen 

synthesis, and consequently bone formation (Millar et al., 1986). In addition, LPS can 

stimulate an IgG response, which has been associated with persistent alveolar bone 

resorption and prolonged periodontal destruction (Sakai et al., 2001). 

 

Outer membrane vesicles containing LPS are released by P. gingivalis. These vesicles 

are able to penetrate periodontal tissue where they contribute to the innate 

immune response against P. gingivalis, which is believed to be partly responsible for 

the destruction associated with periodontal disease (Darveau et al., 2004). 

Therefore, these vesicles also represent a target for PDT as the LPS does not have to 

be associated with the bacterium to cause deleterious effects.  

  

P. gingivalis 1690 LPS was found to be susceptible to photodynamic inactivation by 

methylene blue and laser light of 665 nm; however treatment with tin chlorin e6 

and HeNe laser light had no effect on its activity. A median 4-fold reduction in 

activity was observed following treatment of the LPS with a relatively high 

concentration of methylene blue (67 µM) and 21.9 J of 665 nm laser light. It is 

thought that photosensitisation induces protein-protein and protein-lipid 

crosslinking in the bacterial membrane (Bhatti et al., 2002); such cross-linking may 

therefore occur when the LPS is irradiated with methylene blue and laser light and 

consequently inhibit its biological activity. Lipid peroxidation may also occur as a 

result of singlet oxygen generation (Wolnicka-Glubisz et al., 2009). 

 

P. gingivalis LPS activity was inactivated to a lesser degree than that seen for other 

virulence factors. Lipopolysaccharides are large, comparatively complex molecules; 

the lower susceptibility of LPS to photodynamic inactivation could be due to a lower 

availability of oxidisable amino acids compared with the other proteinaceous 
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virulence factors investigated, for example the cysteine proteases, which have 

oxidisable amino acids at the active site.  

 

Komerik et al. demonstrated that photosensitisation of Escherichia coli LPS using 

toluidine blue O (TBO) and 633 nm HeNe laser light decreased the bioactivity of LPS 

in a photosensitiser and light dose-dependent manner. It was proposed that the 

reduction in activity may be accompanied by structural changes to the LPS that may 

also affect the barrier function of the Gram-negative outer membrane (Komerik et 

al., 2000). Although a dose-dependent inactivation of P. gingivalis was not observed 

in the experiments documented in this chapter, it is possible that this may be 

achieved using higher concentrations of photosensitiser and/or laser light. The LPS 

of E. coli and P. gingivalis have been shown to differ in their amino acid composition, 

which may account for the difference in their susceptibilities to photodynamic 

inactivation (Koga et al., 1985).   

 

Although little research has been done on the direct inactivation of the biological 

activity of P. gingivalis LPS, there has been much interest in novel periodontitis 

therapies that reduce the negative effects of LPS, such as the release of 

proinflammatory cytokines by LPS-stimulated cells, especially using “non-traditional” 

approaches. For example, turmeric, elderflower, cranberry and Japanese apricot 

extracts have all been shown to have anti-inflammatory effects on cells treated with 

LPS (Bodet et al., 2006; Chen et al., 2008; Harokopakis et al., 2006; Morimoto et al., 

2009). The anti-inflammatory effect of photodynamic treatment is discussed further 

in chapter 8. 

 

P. gingivalis proteases are multifunctional enzymes that have been proposed as 

virulence factors due to their role in the degradation of host periodontal tissue, 

activation of host degradative enzymes, and the deregulation of host inflammatory 

processes (Kuramitsu et al., 1995). The extracellular cysteine proteases of P. 
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gingivalis, such as the gingipains, are considered key virulence factors of the 

bacterium (Potempa et al., 2003); P. gingivalis also produces several other enzymes 

with proteolytic activity such as periodontain, collagenase, protease-

haemagglutinin, peptidase and an endothelin converting-like enzyme (Curtis et al., 

2001). 

 

The proteases of P. gingivalis are able to degrade host proteins such as collagen, 

extracellular matrix components such as fibronectin, immunoglobulins, cytokines, 

complement factors and coagulation factors (Kadowaki et al., 2000). Specifically, the 

arg- and lys-gingipains have been shown to confer resistance to complement, and 

are essential for the growth of P. gingivalis in the presence of human serum (Grenier 

et al., 2003). 

 

Extracellular Arginine-specific proteases are considered important virulence factors 

in periodontal disease; three forms of arg-specific proteases have been identified in 

P. gingivalis W50 culture supernatants (Rangarajan et al., 1997). Arg-gingipains have 

been shown to be responsible for major damage caused to human gingival 

fibroblasts (Grenier et al., 2003). A role for arg-gingipains in the colonisation of host 

tissues has also been suggested as a protease-deficient mutant was showed to have 

significantly lower attachment to human epithelial cells and less attachment to host 

matrix proteins (Tokuda et al., 1996).  

 

Gingipains also have haemagglutinating, adhesion and haemoglobin-binding activity 

(Potempa et al., 2000). In addition, gingipains play a role in the processing and/or 

maturation of other virulence factors such as fimbriae, haemagglutinins and the 

haemoglobin receptor protein (Kadowaki et al., 2000).  

 

Several studies have shown the importance of gingipains in the virulence of P. 

gingivalis. Inhibition of P. gingivalis W50 protease activity in a murine virulence 
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model significantly reduced the ability of the bacterium to produce lesions and 

mortality (Kesavalu et al., 1996). Kesavalu et al. also demonstrated that a protease-

depleted mutant was significantly less virulent than the parent strain. 

Immuninisation against gingipains has been shown to provide protection against 

lesion development and mortality in murine lesion models (Genco et al., 1998; 

Yonezawa et al., 2001).  

 

The proteases of P. gingivalis have been suggested as a potential target for 

periodontitis therapy due to their contribution to the pathology associated with the 

disease (Imamura, 2003). Kadowaki et al. suggested the attenuation of P. gingivalis 

virulence may be achieved by the use of proteinase inhibitors or gingipain-specific 

antibodies (Kadowaki et al., 2000).  

 

The proteolytic activity of culture supernatants of P. gingivalis W50 was shown to be 

inhibited by both methylene blue and tin chlorin e6 when irradiated with laser light 

of the appropriate wavelength. Photodynamic treatment with both photosensitisers 

significantly reduced the proteolytic activity of the supernatant compared with 

untreated samples. With the highest combination of photosensitiser and light dose 

tested (20 µM photosensitiser and 21.9 J laser light), methylene blue and tin chlorin 

e6 caused reductions in proteolytic activity of 66% and 74%, respectively. These data 

show that significant inhibition of proteolytic activity can be achieved at 

photosensitiser and light doses that also effectively kill P. gingivalis; at these doses, 

both methylene blue and tin chlorin e6 killed > 99.99% of bacteria. Photosensitiser 

concentrations as low as 1 µM were also shown to have a highly significant 

inhibitory effect on the proteolytic activity of the organism, demonstrating that 

inactivation of proteolytic enzymes may occur even at photosensitiser 

concentrations at which killing of P. gingivalis is not achieved. 
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The addition of an enhancer of singlet oxygen lifetime did not significantly increase 

photodynamic inactivation, suggesting that either singlet oxygen may not be the 

major reactive oxygen species involved in inactivation, or that the inactivation is not 

dependent on the lifetime of the singlet oxygen. L-tryptophan was found to 

significantly reduce the efficacy of the photodynamic inactivation. Although L-

tryptophan is not specifically a singlet oxygen scavenger, the results demonstrate 

the importance of reactive oxygen species in the photodynamic inactivation of these 

enzymes. These results are similar to those observed for the S. aureus V8 protease, 

as described in sections 4.3.2.3 and 4.3.2.4. 

 

Braham et al. have recently demonstrated that photosensitisation of P. gingivalis 

with a commercial formulation of methylene blue and laser light of 670 nm can 

inactivate proteolytic activity as well as effectively killing the organism (Braham et 

al., 2009). In addition, Packer et al. have shown that proteolytic enzymes of P. 

gingivalis W50 are susceptible to photodynamic inactivation by TBO and HeNe laser 

light, observing a light dose-dependent inactivation of activity. It was proposed that 

photodynamic inactivation of proteolytic enzymes was due to oxidisation of active 

site thiol groups, as the majority of the proteolytic activity of P. gingivalis is 

attributed to arginine- and lysine-specific cysteine proteases (gingipains) (Packer et 

al., 2000). The lys- and arg-gingipains have been identified as the major photolabile 

proteins in P. gingivalis (Bhatti et al., 2001). It has been shown that photodynamic 

treatment can cause cysteine residues to cross-link via the formation of covalent 

bonds (Shen et al., 1996); therefore proteolytic enzymes may be inactivated by the 

photodynamic oxidisation of active site cysteine residues.  

 

Photodynamic inactivation has also been shown to be effective for the proteolytic 

enzymes of other microorganisms. It has been shown that a highly significant 

reduction in the proteolytic activity of Pseudomonas aeruginosa can be achieved 

using TBO and 633 nm laser light (Komerik et al., 2000). Methylene blue and laser 
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light of 665 nm has also been shown to significantly reduce the activity of the V8 

protease of S. aureus (Tubby et al., 2009); tin chlorin e6 has also been shown to have 

similar activity when irradiated with 633 nm laser light (section 4.3.2).  

 

Other methods of inhibiting the proteolytic activity of P. gingivalis proteases have 

also been investigated. Derivatives of catechins, components of green tea, have 

been shown to have an inhibitory effect on arginine-specific gingipains, and to a 

lesser extent, the lysine-specific gingipain (Okamoto et al., 2004). Kadowaki et al. 

have also investigated synthetic compounds and substances derived from 

Streptomyces spp for their ability to inhibit arg-gingipains (Kadowaki et al., 2003; 

Kadowaki & Yamamoto, 2003; Kadowaki et al., 2004).  

 

P. gingivalis is known to produce a number of haemagglutinins; at least eight 

molecules with haemagglutinating activity have been identified (Lamont & 

Jenkinson, 2000). Although the precise number and specific function of these 

proteins is unknown, they have been proposed as virulence factors due to their roles 

in hemin acquisition and modulation of the immune response (Katz et al., 1999; 

Zhang et al., 2005).  

 

Haemagglutinating activity is associated with virulence as protoheme is a necessary 

requirement for P. gingivalis, and thought to be derived from erythrocytes in the 

periodontal pocket; therefore the ability to agglutinate and lyse erythrocytes is 

important for survival of the bacterium (Kadowaki et al., 2000). Haemagglutinins 

from P. gingivalis are thought to lyse erythrocytes via the formation of small pores 

(Shah et al., 1992). A further virulence mechanism has been proposed for 

haemagglutinin B, which has been shown to induce production of the 

proinflammatory cytokines IL-12, interferon- and TNF- (Zhang et al., 2005). 

Haemagglutinin B is a nonfimbrial adhesin that is expressed on the surface of P. 

gingivalis. Immunisation with haemagglutinin B has been shown to significantly 
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reduce periodontal bone loss in a rat oral infection model (Katz et al., 1999). 

Immunization against haemagglutinins has also been shown to prevent 

recolonisation in human periodontitis patients, emphasising the potential 

importance of haemagglutinins as a virulence factor (Booth et al., 1996).  

 

Both photosensitisation regimens were shown to inactivate P. gingivalis W50 

haemagglutinating activity, and inactivation was dependent on both photosensitiser 

concentration and laser light dose. The haemagglutinating activity was not effected 

by treatment with either photosensitiser or laser light alone, except for the highest 

light doses tested for 633 nm and 665 nm laser light, which both resulted in a small, 

2-fold reduction in activity, although this was not found to be statistically significant 

(P > 0.05; ANOVA). Tin chlorin e6 was found to be the most effective photosensitiser 

when irradiated with 633 nm laser light; a maximum reduction in activity of 14-fold 

was observed, compared with the 10-fold reduction observed following treatment 

with methylene blue and laser light.  

 

The photodynamic inhibition of haemagglutination observed may be partly due to 

inactivation of proteases with haemagglutinating activity. Cysteine proteases from P. 

gingivalis have been associated with haemagglutinating activity, and gingipains have 

been found in complexes with haemagglutinins (Curtis et al., 2001; Pike et al., 1994). 

Photosensitisation has been shown to destroy the haemagglutinin domain of the 

PrpRI protease of P. gingivalis (Bhatti et al., 2001); therefore, it is possible that the 

activities of multiple proteins with haemagglutinating activity may be inhibited by 

the action of light-activated antimicrobial agents.  

 

Although the specific inactivation of haemagglutinins has not been extensively 

studied, Tezuka et al. have shown that the haemagglutinating activity of P. gingivalis 

can be inhibited by immunisation against haemagglutinin A (Tezuka et al., 2006). 

Similar results using antibodies have also been published (Abiko et al., 2001; Tagawa 
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et al., 2004). Another approach using synthetic peptides to inhibit P. gingivalis 

haemagglutinating activity has also been demonstrated, and proposed as a novel 

therapeutic strategy against P. gingivalis-induced periodontal disease (Chang et al., 

2004).  

 

7.5 Summary 

Treatment with methylene blue and 665 nm laser light resulted in inhibition of the 

activity of P. gingivalis LPS, proteases and haemagglutinins. Both methylene blue 

and tin chlorin e6 significantly inhibited the proteolytic and haemagglutinating 

activities of P. gingivalis W50 culture supernatants when irradiated with laser light; 

however, only methylene blue and laser light of 665 nm was able to reduce the 

biological activity of P. gingivalis LPS. In addition, a higher concentration of 

methylene blue was required for inactivation of the biological activity of LPS 

compared with P. gingivalis protease and haemagglutinating activity. As the 

virulence factors of P. gingivalis are strongly implicated in the pathogenesis of 

periodontal disease, the ability of photodynamic treatment to inactivate these 

virulence determinants is a highly desirable property and would represent an 

advantage over conventional periodontitis therapies.  
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8 Assessment of the ability of light-activated antimicrobials 

to inactivate key modulators of the immune response 

8.1 Introduction 

The proinflammatory cytokines tumour necrosis factor-alpha (TNF-) and 

interleukin-6 (IL-6) play key roles in the pathology associated with inflammation 

(Watkin et al., 2007). Whilst proinflammatory cytokines are part of the normal host 

immune response to infection, excessive production and exposure to these 

cytokines can cause damage to host tissues and have deleterious effects on the 

healing process. TNF- is predominantly produced by macrophages, and is involved 

in a number of inflammatory processes such as the recruitment of neutrophils and 

monocytes, stimulation of chemokine production, and apoptosis of target cells, 

whilst IL-6 has proinflammatory functions such as the induction of acute phase 

protein production, T cell activation, and B cell proliferation and antibody secretion 

(Elgert, 2009). IL-6 is produced by a number of cell types, including monocytes, 

fibroblasts and keratinocytes (Kishimoto, 1989).  

 

Proinflammatory cytokines are believed to play an important role in the pathology 

associated with periodontitis due to their multimodal destruction of host tissue, 

which ultimately results in alveolar bone loss (Graves & Cochran, 2003). TNF-, and 

IL-6 have been detected in periodontitis lesions (Takashiba et al., 2003); therefore, 

the local inactivation of these cytokines may be beneficial in the treatment of 

periodontitis and may contribute to the healing of the disease.  

 

P. gingivalis is an important periodontal pathogen and produces a number of 

virulence factors that are believed to contribute to periodontal destruction via 

induction of proinflammatory cytokine production (Wang & Ohura, 2002). P. 

gingivalis LPS can stimulate a number of cell types to produce proinflammatory 
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cytokines, including macrophages and gingival fibroblasts. Gingival fibroblasts are 

responsive to stimulation with P. gingivalis LPS and are believed to play a major role 

in the pathogenesis of periodontitis due, to production of IL-1, IL-6 and interleukin-8 

(IL-8) (Tabeta et al., 2000). Gingival fibroblasts from inflamed tissues have been 

shown to produce significantly higher levels of interleukin-1, IL-6 and TNF- 

compared with gingival fibroblasts from healthy tissues (Wang et al., 2003). 

Macrophages are also strongly associated with the progression of periodontal 

disease and are found in high numbers in gingival tissues; these cells have been 

shown to produce a variety of cytokines and chemokines upon stimulation with P. 

gingivalis LPS or whole bacterial cells (Zhou et al., 2005). Oral epithelial cells may 

also produce proinflammatory cytokines, and have been shown to produce IL-6 

upon stimulation with the arg-protease of P. gingivalis (Lourbakos et al., 2001).   

 

P. gingivalis haemagglutinins are also implicated in the overproduction of cytokines 

that is observed in periodontal disease. Haemagglutinin B has been shown to induce 

the production of cytokines, in particular TNF-, from macrophages in vitro (Zhang 

et al., 2005). Significantly higher levels of interferon- have also been observed 

following stimulation of lymphoid cells with haemagglutinin B (Katz et al., 1999). 

 

Steffen et al. observed that heat-killed cells of P. gingivalis induced the production 

of significantly higher levels of IL-6 and IL-8 compared with viable bacteria, 

demonstrating that proinflammatory cytokine production can occur even after the 

bacterium has been killed (Steffen et al., 2000). LPS and bacterial proteases have 

both been found to exert effects on the host after eradication of the infecting 

bacterium, which may account for this phenomenon (Wilson, 1995). Consequently, a 

treatment that had the ability to inactivate locally-produced cytokines, as well as kill 

pathogenic bacteria and inactivate bacterial virulence factors may be of use in the 

treatment of periodontitis.  
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Proinflammatory cytokines have also been proposed as mediators of pathology in 

inflammatory skin disorders such as psoriasis and atopic eczema, and anti-cytokine 

therapy has consequently been explored as a potential treatment for these diseases 

(Belloni et al., 2008; Ettehadi et al., 1994; Pereira et al., 2006). These inflammatory 

skin diseases are commonly associated with colonisation of the skin by S. aureus, 

which is believed to exacerbate the conditions (Tomi et al., 2005). Consequently, a 

treatment which not only had anti-inflammatory properties but also antimicrobial 

action may also show promise for the treatment of such skin disorders.  

 

S. aureus superantigens, -haemolysin and Protein A are all thought to interact with 

keratinocytes and cause the production of proinflammatory cytokines (Portugal et 

al., 2007). It has been demonstrated that S. aureus -haemolysin can induce the 

production of IL-6 and to a lesser extent, TNF-; sphingomyelinase (-haemolysin) 

has also been found to induce inflammation by lysing cells containing inflammatory 

mediators (Fournier & Philpott, 2005). The -haemolysin of S. aureus can cause 

inflammation via the formation of pores in host cell membranes and subsequent 

host cell lysis, and by the stimulation of cellular signalling cascades that result in the 

release of proinflammatory cytokines (Haslinger et al., 2003).  

 

Other staphylococcal products such as peptidoglycan and teichoic acids have also 

been shown to induce TNF- and IL-6 production in vitro (Wang et al., 2000). In 

addition, S. aureus invasion of osteoblasts results in the release of IL-6 and 

consequent exacerbation of bone destruction (Liang & Ji, 2007). The induction of 

proinflammatory cytokine release can therefore be considered one of the virulence 

mechanisms of S. aureus. Inactivation of these cytokines may consequently be 

beneficial in the treatment of staphylococcal infections for which PDT is indicated, 

such as superficial skin infections.  
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Due to the deleterious effect proinflammatory cytokines may have on host tissues in 

infections such as periodontitis and staphylococcal skin infections, it would be 

desirable to reduce their local activity as well as killing the infecting 

microorganism(s). Such a reduction in inflammatory activity may result in less 

damage to host tissues and aid the healing process. This chapter describes the effect 

of light-activated antimicrobial agents on the biological activities of TNF- and IL-6.  

 

8.2 Materials and methods 

8.2.1 Maintenance of cell lines 

8.2.1.1 L929 fibroblast cell line 

The mouse L929 fibroblast cell line was purchased from the European Collection of 

Cell Cultures and maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-

Aldrich, UK) supplemented with 10 % foetal calf serum, 2 mM L-glutamine and 100 

U/mL penicillin/streptomycin. Cells were seeded at a density of approximately 4x105 

cells/mL and incubated at 37°C in an atmosphere of 95% air and 5% CO2 using a 

humidified incubator.  

 

8.2.1.2 B9 hybridoma cell line 

A B9 mouse B cell hybridoma cell line was purchased from the European Collection 

of Cell Cultures. The cell line was maintained in Iscove’s Modified Dulbecco’s 

Medium (IMDM) (Invitrogen) supplemented with 5 % foetal calf serum, 50 µM 2-

mercaptoethanol (Invitrogen) and 50 pg/mL IL-6 (Invitrogen) at a density of 1x103 – 

9x105 cells/mL and incubated at 37°C in an atmosphere of 95% air and 5% CO2 using 

a humidified incubator.  
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8.2.2 L929 fibroblast bioassay to determine the effect of photosensitisation 

on the activity of TNF-  

50 µL of photosensitiser was added to an equal volume of TNF- (final concentration 

of 1 ng/mL in DMEM, Biosource) and photosensitisation studies were performed as 

described in section 2.5, with the following modification: DMEM was used instead of 

PBS for S- tests. Following irradiation/dark incubation, TNF- activity was assessed 

using the L929 fibroblast bioassay as described below. Experiments were performed 

three times in triplicate.   

 

L929 cells were maintained according to section 8.2.1.1. A 100 µL aliquot of a 

fibroblast suspension containing 4 × 105 cells/mL was added to each well of a 96-

well flat-bottom microtitre plate and incubated overnight at 37°C in an atmosphere 

of 95% air and 5% CO2 using a humidified incubator. Following photosensitization 

experiments, the growth medium was then aspirated and replaced with 50 µL fresh 

medium. A 50 µL test sample was added to each row and serially diluted in 

supplemented DMEM (as described in section 8.2.1.1) using doubling dilutions. 

Following dilution, 50 µl of 8 µg/mL actinomycin D-mannitol (Sigma-Aldrich, UK) 

solution was added to each well to sensitise the cells to TNF-induced lysis. The plates 

were then incubated for 18 hours in a 37°C, 95% air and 5% CO2 humidified 

incubator.  

 

After incubation, the supernatant was aspirated from each well and the L929 cells 

washed once with 200 µL of tissue culture grade PBS. A 50 µL aliquot of 0.05% 

crystal violet in 20% ethanol was added to each well and the plates incubated for 10 

minutes at room temperature. The plates were rinsed with water to remove the 

crystal violet and allowed to dry overnight, following which, 100 µl of 100% 

methanol was added to each well to elute the stain. The absorbance at 590 nm 

(OD590) was then measured using a Dynex microtitre plate reader. Control wells 

containing DMEM only (no TNF-) were used as a measure of maximal crystal violet 
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uptake, i.e. 0% cell lysis, and wells in which 100% cell lysis was observed were used 

as blanks. The concentration of TNF- required to cause 50% lysis of L929 cells (LD50) 

was calculated. Wells that exhibited an OD590 closest to 50% of the arithmetic mean 

were considered to represent 50% lysis of the L929 cells.   

  

8.2.3 B9 cell proliferation assay to determine the effect of 

photosensitisation on the activity of IL-6  

Aliquots of 100 µL tin chlorin e6 were added to an equal volume of IL-6 (final 

concentration of 0.25 ng/mL in B9 medium without IL-6) and photosensitisation 

studies were performed as described in section 2.5, using B9 medium instead of PBS 

for S- tests.  Following irradiation/dark incubation, IL-6 activity was assessed using 

the B9 cell proliferation assay as described below. Experiments were performed 

three times in triplicate.    

 

B9 cells were maintained according to section 8.2.1.2. B9 cells were plated in 

triplicate in flat-bottomed 96-well microtitre plates at a density of 1 x 104 cells per 

well. Test solutions of IL-6 were serially diluted in B9 medium (without IL-6) using 

doubling dilutions to a final concentration of 2 pg/mL, following which, 100 µL of 

each dilution was added to 100 µL B9 cell suspension. The cells were then incubated 

in the dark for 48 hours at 37°C in an atmosphere of 95% air and 5% CO2 using a 

humidified incubator. Cell proliferation was assessed using Methylthiazolyldiphenyl-

tetrazolium bromide (MTT) (Sigma-Aldrich, UK). Microtitre plates were centrifuged 

at 145 x g for 10 minutes and the supernatant removed and discarded. Cells were 

resuspended in 200 µL fresh B9 medium (without IL-6) and 22 µL 5 mg/mL MTT in 

PBS was added to each well. Plates were incubated at 37C for 2 hours in the dark, 

after which they were centrifuged at 145 x g for 10 minutes. Eighty microlitres of the 

supernatant was then removed and discarded, and 100 µL dimethylsulfoxide (Sigma-

Aldrich, UK) was added to dissolve the tetrazolium product. The optical density at 
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590 nm was read using a Dynex microplate reader using 650 nm as the background 

control. Wells containing medium only were used as blanks and untreated IL-6 wells 

were used as a measure of maximum proliferation. The concentration of IL-6 

required to cause 50% proliferation of B9 cells (ED50) was calculated.  

 

8.2.4 Photosensitisation experiments for SDS PAGE analysis 

Photosensitisation experiments were performed using 25 µL of TNF- (final 

concentration of 40 µg/mL) or IL-6 (final concentration of 20 µg/mL), which was 

added to an equal volume of methylene blue (final concentration of 20 µM) (S+) or 

PBS (S-). Laser light dose experiments were then performed according to section 

2.5.1. After photosensitisation or dark incubation, samples were analysed by SDS 

PAGE, performed according to section 2.8.  
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8.3 Results  

8.3.1 The effect of photosensitiser dose on the photodynamic inactivation 

of TNF-  

8.3.1.1 Methylene blue  

The effect of methylene blue and diode laser light of 665 nm on the biological 

activity of TNF-α is shown in Table 8.1. Neither photosensitiser nor laser light alone 

had a significant inhibitory effect on the activity of TNF-α (P > 0.05; Mann-Whitney U 

Test); however, treatment with methylene blue and 665 nm laser light resulted in a 

reduction in biological activity that increased with methylene blue concentration. 

Irradiation of TNF-α in the presence of concentrations of methylene blue ≥ 5 µM 

resulted in a significant increase in the LD50 (P < 0.01; Mann-Whitney U Test). 

Treatment of the TNF-α with 20 µM methylene blue and 21.9 J laser light resulted in 

more than a 10-fold increase in the concentration of TNF-α required to achieve the 

LD50 compared with the untreated control.   
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Concentration of methylene 

blue (µM) 

Median LD50 (ng/mL) 

L- L+ 

0 0.08 0.09 

1 0.12 0.14 

5 0.08 0.19 ** 

10 0.11 0.41 ** 

20 0.10 > 1 ** 

 

Table 8.1 The effect of photosensitiser dose on the biological activity of TNF- 

when treated with methylene blue and laser light  

An equal volume of either methylene blue (1 to 20 µM) or L929 medium was added 

to 50 µl TNF- and samples either exposed to 21.9 J 665 nm laser light (L+) or 

incubated in the dark (L-). Following irradiation/dark incubation, TNF- activity was 

assessed using the L929 bioassay. ** P < 0.01, Mann-Whitney U Test. Experiments 

were performed three times in triplicate and the combined data are shown. 

 

8.3.1.2 Tin chlorin e6  

The effect of tin chlorin e6 dose on the biological activity of TNF- is shown in Table 

8.2. Neither photosensitiser nor laser light alone had a significant inhibitory effect 

on the activity of the TNF- (P > 0.05; Mann-Whitney U Test). Treatment of the 

cytokine with ≥ 5 µM tin chlorin e6 and laser light of 633 nm caused a highly 

significant increase in the LD50 compared with the untreated control (P < 0.001; 

Mann-Whitney U Test). Treatment with ≥ 10 µM tin chlorin e6 and 633 nm laser 

light resulted in the complete inactivation of activity as detectable by this assay, 

whilst 5 µM tin chlorin e6 in the presence of laser light caused a 15-fold increase in 
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the concentration of TNF- required to achieve the LD50 compared with untreated 

samples, demonstrating that TNF- was highly susceptible to photodynamic 

inactivation with this photosensitiser. 

 

Concentration of tin chlorin e6 

(µM) 

Median LD50 (ng/mL) 

L- L+ 

0 0.04 0.05 

1 0.04 0.04 

5 0.04 0.60 *** 

10 0.04 >1.0 *** 

20 0.05 >1.0 *** 

 

Table 8.2 The effect of photosensitiser dose on the biological activity of TNF- 

when treated with methylene blue and laser light  

An equal volume of either tin chlorin e6 (1-20 µM) or L929 medium was added to 50 

µl TNF- and samples either exposed to 21.9 J 633 nm laser light (L+) or incubated in 

the dark (L-). Following irradiation/dark incubation, TNF- activity was assessed 

using the L929 bioassay assay. *** P < 0.001, Mann-Whitney U Test. Experiments 

were performed three times in triplicate and the combined data are shown. 

 

8.3.2 The effect of laser light dose on the photodynamic inactivation of 

TNF- 

8.3.2.1 Laser light of 665 nm 

The effect of 665 nm laser light dose on the biological activity of TNF- is shown in 

Table 8.3. Only a laser light dose of 21.9 J in combination with methylene blue had a 

significant inhibitory effect on the biological activity of the TNF- (P < 0.001; Mann-
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Whitney U Test). Laser light in the absence of photosensitiser did not significantly 

affect the biological activity of the cytokine (P > 0.05; Mann-Whitney U Test). 

Despite the highly significant reduction in activity observed following 

photosensitisation with 21.9 J 665 nm laser light and 20 µM methylene blue, a lower 

level of inactivation was observed for this set of experiments compared with the 

methylene blue dose response experiments, suggesting some variability in the test 

system.  

 

Light dose (J) Median LD50 (ng/mL) 

S- S+ 

0 0.05 0.07 

4.38 0.06 0.10 

8.76 0.04 0.10 

21.9 0.05 0.18 *** 

 

Table 8.3 The effect of laser light dose on the biological activity of TNF- when 

treated with methylene blue and 665 nm laser light  

An equal volume of either 20 µM methylene blue (S+) or L929 medium (S-) was 

added to 50 µl TNF- and samples either exposed to 4.38 J, 8.76 J or 21.9 J 665 nm 

laser light or incubated in the dark. Following irradiation/dark incubation, TNF- 

activity was assessed using the L929 bioassay assay. *** P < 0.001, Mann-Whitney U 

Test. Experiments were performed three times in triplicate and the combined data 

are shown. 
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8.3.2.2 Laser light of 633 nm 

Table 8.4 shows the effect of 633 nm laser light dose on the photodynamic 

inactivation of TNF-. Laser light doses ≥ 4.38 J completely inhibited the biological 

activity of the TNF- as detectable by this assay when the cytokine was irradiated in 

the presence of 20 µM tin chlorin e6. Neither laser light nor photosensitiser alone 

had a significant inhibitory effect on the biological activity of TNF- (P > 0.05; Mann-

Whitney U Test). 

 

Light dose (J) Median LD50 (ng/mL) 

S- S+ 

0 0.04 0.04 

4.38 0.04 >1.0 *** 

8.76 0.04 >1.0 *** 

21.9 0.04 >1.0 *** 

 

Table 8.4 The effect of laser light dose on the biological activity of TNF- when 

treated with tin chlorin e6 and 633 nm laser light  

An equal volume of either 20 µM tin chlorin e6 (S+) or L929 medium (S-)was added 

to 50 µl TNF- and samples either exposed to 4.38 J, 8.76 J or 21.9 J 633 nm laser 

light or incubated in the dark. Following irradiation/dark incubation, TNF- activity 

was assessed using the L929 bioassay assay. *** P < 0.001, Mann-Whitney U Test. 

Experiments were performed three times in triplicate and the combined data are 

shown. 
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8.3.3 SDS PAGE analysis of TNF- 

SDS PAGE analysis (Figure 8.1) showed that after photosensitisation with 20 µM 

methylene blue and 665 nm laser light, more bands derived from TNF- were 

apparent on the gel. The higher molecular weight bands present after 

photosensitisation were approximately 2- and 3-times the weight of the untreated 

TNF- (approximately 30 and 45 kDa respectively, compared with 15 kDa for the 

untreated protein), suggesting that photosensitisation may cause cross-linking of the 

cytokine. 
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Figure 8.1 SDS PAGE analysis of TNF- irradiated with 20 µM methylene blue and 

665 nm laser light doses of 4.38 J, 8.76 J or 21.9 J.  

 

Tumour necrosis factor- was either kept in the dark (L-) or irradiated with laser 

light doses of 4.38 J, 8.76 J or 21.9 J (L+) in the presence of an equal volume of either 

PBS (S-) or 20 µM methylene blue (S+). Following irradiation, samples were analysed 

by SDS PAGE using a 5% stacking gel and 15% resolving gel under denaturing 

conditions. Lane 1: molecular weight marker, lane 2: L-S-, lane 3: L-S+, lane 4: L+S- 

(4.38 J), lane 5: L+S- (8.76 J), lane 6: L+S- (21.9 J), lane 7: L+S+ (4.38 J), lane 8: L+S+ 

(8.76 J), lane 9: L+S+ (21.9 J). The apparent molecular mass of TNF- was 

approximately 15 kDa. The molecular mass of TNF- was 17.5 kDa according to the 

source (Invitrogen). 
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8.3.4 The effect of photosensitiser dose on the photodynamic inactivation 

of IL-6 

8.3.4.1 Methylene blue  

Preliminary studies showed that methylene blue interfered with both the MTT assay 

and B9 cell proliferation; consequently the investigation of the effect of 

photosensitisation on IL-6 bioactivity using this photosensitiser could not be 

performed.  

 

8.3.4.2 Tin chlorin e6  

The effect of photosensitiser dose on the photodynamic inactivation of IL-6 is shown 

in Table 8.5. Tin chlorin e6 concentrations ≥ 5 µM had a significant inhibitory effect 

on the biological activity of IL-6 when irradiated with 21.9 J 633 nm laser light (P < 

0.05; Mann-Whitney U Test). Treatment of IL-6 with tin chlorin e6 in the absence of 

laser light did not have a significant effect on the activity of the cytokine (P > 0.05; 

Mann-Whitney U Test). 
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Concentration of tin chlorin e6 

(µM) 

Median ED50 (ng/mL) 

L- L+ 

0 0.01 0.01 

1 0.01 0.03 

5 0.01 0.04 * 

10 0.01 > 0.06 *** 

20 0.01 0.06 ** 

 

Table 8.5 The effect of photosensitiser dose on the biological activity of IL-6 when 

treated with tin chlorin e6 and 4.38 J 633 nm laser light.  

An equal volume of either tin chlorin e6 (1 to 20 µM) or B9 medium (without IL-6) 

was added to 100 µL IL-6 and samples either exposed to 4.38 J 633 nm laser light 

(L+) or incubated in the dark (L-). Following irradiation/dark incubation, IL-6 activity 

was assessed using the B9 cell proliferation assay. * P < 0.05, ** P < 0.01, *** P < 

0.001, Mann-Whitney U Test. Experiments were performed three times in triplicate 

and the combined data are shown. 
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8.3.5 The effect of laser light dose on the photodynamic inactivation of IL-6 

Treatment of IL-6 with 20 µM tin chlorin e6 and laser light doses ≥ 8.76 J resulted in 

the complete inhibition of bioactivity as detectable by the B9 cell proliferation assay, 

as can be seen in Table 8.6. The increase in the ED50 was highly significant compared 

with the untreated control (P < 0.001; Mann Whitney U Test).  

 

Light dose (J) Median ED50 (ng/mL) 

S- S+ 

0 0.02 0.03 

4.38 0.02 > 0.06 *** 

8.76 0.03 > 0.06 *** 

21.9 0.02 > 0.06 *** 

 

Table 8.6 The effect of laser light dose on the biological activity of IL-6 when 

treated with 20 µM tin chlorin e6 and 633 nm laser light.  

An equal volume of either 20 µM tin chlorin e6 (S+) or B9 medium (without IL-6) (S-) 

was added to 100 µL IL-6 and samples either exposed to 4.38 J, 8.76 J or 21.9 J 633 

nm laser light or incubated in the dark. Following irradiation/dark incubation, IL-6 

activity was assessed using the B9 cell proliferation assay. *** P < 0.001, Mann-

Whitney U Test. Experiments were performed three times in triplicate and the 

combined data are shown. 
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8.3.6 SDS PAGE analysis of IL-6 

SDS PAGE analysis (Figure 8.1) showed that bands derived from IL-6 after 

photosensitisation with 20 µM tin chlorin e6 and 633 nm laser light became less 

well-defined, and more smeared with increasing irradiation time compared with 

untreated samples. After treatment with 20 µM tin chlorin e6 and 21.9 J laser light, 

the band derived from the IL-6 was almost undetectable, suggesting a major effect 

of photosensitisation on the protein. IL-6 bands also appeared slightly less defined 

after treatment with laser light in the absence of photosensitiser, suggesting some 

effect of laser light alone on the cytokine, although there was no significant loss in 

the biological activity (see Table 8.6).  

 

 

 

 

 

Figure 8.2 SDS PAGE analysis of IL-6 irradiated with 20 µM tin chlorin e6 and 633 

nm laser light doses of 4.38 J, 8.76 J or 21.9 J.  

Interleukin-6 was either kept in the dark (L-) or irradiated with 633 nm laser light 

doses of 4.38 J, 8.76 J or 21.9 J (L+) in the presence of an equal volume of either PBS 

(S-) or 20 µM tin chlorin e6 (S+). Following irradiation, samples were analysed by SDS 

PAGE using a 5% stacking gel and 15% resolving gel under denaturing conditions. 

Lane 1: molecular weight marker, lane 2: L-S-, lane 3: L-S+, lane 4: L+S- (4.38 J), lane 

5: L+S- (8.76 J), lane 6: L+S- (21.9 J), lane 7: L+S+ (4.38 J), lane 8: L+S+ (8.76 J), lane 9: 

L+S+ (21.9 J). The apparent molecular mass of IL-6 was approximately 20 kDa. The 

molecular mass of IL-6 was 21.3 kDa, according to the source (Invitrogen).  
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8.4 Discussion 

Methylene blue and tin chlorin e6 were both shown to have an inhibitory effect on 

the biological activity of TNF- when irradiated with laser light of the appropriate 

wavelength. Photodynamic inactivation was more effective using tin chlorin e6 and 

633 nm laser light, with an >25-fold increase in concentration of cytokine required 

to produce a LD50 being observed after photosensitisation with 20 µM tin chlorin e6 

and a low laser light dose (4.38 J). This observed difference between the two 

treatments may be due to the difference in charge between the two 

photosensitisers and consequent differences in binding of the photosensitisers to 

the cytokines. IL-6 was also shown to be susceptible to photodynamic inactivation 

using tin chlorin e6, with high levels of inactivation being achieved following 

treatment with photosensitiser concentrations ≥ 10 µM.   

 

TNF- is one of the cytokines implicated in the pathology of psoriasis (Ettehadi et 

al., 1994; Trent & Kerdel, 2004), and IL-6 levels have also been shown to be 

increased in psoriasis plaques (Grossman et al., 1989). As psoriasis patients have 

also been shown to be frequently colonised by toxigenic S. aureus, (Tomi et al., 

2005), PDT may be well suited for the decontamination of psoriatic lesions as it may 

be able to reduce inflammation, as well as killing S. aureus (Chapter 3) and 

inactivating its toxins (Chapter 4). PDT has already been used with some success for 

the treatment of psoriasis; however the use of topical photosensitisers has not yet 

been fully explored (Fritsch et al., 1998).  

 

S. aureus colonisation has also been proposed to play a role in promoting 

inflammation in atopic dermatitis, a chronic inflammatory skin disorder, and atopic 

skin has been shown to be highly colonised compared with healthy subjects (Birnie 

et al., 2008); therefore decolonisation of atopic skin may be beneficial to the 

treatment of this disorder. As corticosteroids have been shown to improve eczema 

and decrease staphylococcal colonisation of atopic skin, inflammation is thought to 
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be involved in the pathology of this condition (Nilsson et al., 1992). However, topical 

corticosteroids have been frequently associated with a number of side effects, and 

drug tolerance can occur, particularly when used to treat chronic conditions such as 

psoriasis (Fisher, 1995). It would therefore be desirable to reduce both inflammation 

and skin colonisation with a therapy that is not associated with such side effects. 

PDT is not associated with tolerance due to its mechanism of action, and would 

therefore seem a potential candidate for the treatment of this disease, particularly 

in cases where skin colonisation by S. aureus is problematic for the patient. In 

addition, staphylococcal proteases have been implicated in the pathogenesis of 

atopic dermatitis (Miedzobrodzki et al., 2002); as PDT has been shown to inactivate 

the V8 protease of S. aureus (Chapter 4), this therapy could be extremely beneficial 

as it has the potential to target multiple factors involved in the pathology of this 

disease. Skin disorders are well-suited for treatment with PDT as they are easily 

accessible for topical photosensitiser application and laser light delivery 

(Wainwright, 2010).    

 

Anti-TNF- therapies such as anti-TNF- antibodies and soluble TNF- receptor 

agonists have been shown to be successful in vivo for the treatment of psoriasis 

(Ogilvie et al., 2001; Ryan et al., 2009; Trent & Kerdel, 2004), and inhibition of TNF- 

(simultaneously with interleukin-1) has been shown to significantly reduce tissue 

inflammation and destruction in experimental periodontitis (Assuma et al., 1998; 

Delima et al., 2001). Despite these therapies showing efficacy, the use of anti-TNF- 

therapies have been associated with severe side effects such as increased risk of 

opportunistic infections, lymphoproliferative diseases and reactivation of diseases 

such as multiple sclerosis and tuberculosis due to the systemic suppression of TNF- 

(Nash & Florin, 2005). TNF- plays an important role in the host defence against 

infection as well as mediating the inflammation typical of chronic inflammatory 

diseases such as psoriasis (Saraceno & Chimenti, 2008); therefore the inhibition of 

TNF- activity at a specific site would be highly desirable in order to avoid therapy-
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induced immunodeficiency. The localised nature of PDT would be well-suited for this 

purpose as it would not affect TNF- activity at sites distal to the treatment site.   

 

P. gingivalis LPS mediates inflammation by the induction of IL-6 and TNF- 

production (Zhang et al., 2008). TNF- has been implicated in the tissue destruction 

and bone loss that occurs in periodontal disease (Graves & Cochran, 2003), and 

raised TNF- levels have been shown in patients with aggressive periodontitis 

(Bastos et al., 2009). Production of TNF- by gingival T cells in periodontitis patients 

has been demonstrated and is induced by P. gingivalis LPS, in addition to other P. 

gingivalis virulence factors and periodontal pathogens (Baker, 2000). One of the 

major destructive effects of TNF- in periodontitis is its ability to stimulate 

fibroblasts to produce proteinases that degrade extracellular matrix components 

(Takashiba et al., 2003). As photodynamic treatment has been shown to inactivate 

proteolytic enzymes from both S. aureus (Chapter 4) and P. gingivalis (Chapter 6), it 

is possible that photosensitisation may also be able to inactivate host proteinases. 

PDT may therefore be able to limit tissue destruction due to the inactivation of both 

TNF- and host proteinase activity. Further experiments would be useful to 

determine the effect of photodynamic treatment on host proteinases. 

 

IL-6 levels in gingival crevicular fluid have been shown to be significantly elevated in 

periodontitis patients compared with healthy subjects (Mogi et al., 1999) and this 

cytokine is associated with bone resorption and consequent tooth loss (Baker, 

2000). P. gingivalis LPS has been shown to induce the production of IL-6 in human 

gingival fibroblasts and is thought to be responsible for sustaining the inflammatory 

response in periodontal disease (Ara et al., 2009). Inhibition of IL-6 and TNF- (along 

with other proinflammatory cytokines) has been suggested as a potential adjunctive 

therapy for periodontitis, and various attempts to inhibit production of these 

cytokines in vitro have been reported (Bodet et al., 2008; Chen et al., 2008; 

Zdarilova et al., 2009); however these strategies rely on the direct treatment of 
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cytokine-producing cells. Photodynamic inactivation of the pre-formed cytokine in 

situ would result in less disturbance to host cells. Anti-IL-6 antibodies have been 

shown to inhibit cytokine-mediated bone resorption (Mundy, 1991), suggesting that 

inactivation of pre-formed cytokines is possible.  

 

The mechanism of inactivation of these cytokines has not been fully determined; 

however SDS PAGE analysis suggests that photosensitisation may cross-link TNF- 

molecules, resulting in the higher molecular weight bands that can be seen in Figure 

8.1. In its active form, TNF- exists as a homotrimer, and this homotrimeric 

structure is essential for the cytokine’s biological activity (Tang et al., 1996). The SDS 

PAGE technique used in this chapter disrupts quaternary protein structure; 

therefore the TNF- homotrimer would be broken up into the 17.5 kDa monomers 

by the procedure. Figure 8.1 shows that TNF- was present in L+S+ samples as 

dimers and trimers, which were observed in greater quantities compared with the 

control samples. It is therefore possible that photosensitisation caused further 

cross-linking of the monomers that was resistant to the denaturation process; 

however, it remains to be determined whether such an increase in cross-linking 

would affect the activity of the cytokine. TNF- contains photooxidisable amino 

acids, which may cross-link via covalent bonds (Shen et al., 1996). As the trimeric 

form of TNF- is associated with biological activity, further analysis is necessary to 

elucidate the mechanism of inactivation.  

 

IL-6 is a single chain glycoprotein, typically present in a heterogeneous mixture of 

forms with molecular weights ranging from 21 to 30 KDa as a result of post-

translational modification, although higher molecular weight oligomeric complexes 

have also been observed (Simpson et al., 1997). IL-6 bands appeared less defined 

after photosensitisation, indicating that changes to the protein had occurred. The 

four cysteine residues in IL-6 and the disulphide bonds formed between these 

residues are critical for its biological activity (Snouwaert et al., 1991). As cysteine 
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residues have been shown to be photooxidisable, oxidisation of these amino acids 

may play a role in the photodynamic inactivation of this cytokine (Shen et al., 1996).  

 

Further investigations into the mechanism(s) of photodynamic inactivation of these 

cytokines are necessary to determine the effect of photosensitisation on the 

structure of the molecules. Native PAGE or the use of zymograms may be useful as 

these techniques are non-denaturing and the effect on photosensitisation on the 

native structure of the proteins may be observed.     

 

8.5 Summary 

Photosensitisation of the proinflammatory cytokines TNF- and IL-6 resulted in a 

significant reduction in their biological activities. Both methylene blue and tin 

chlorin e6 were shown to significantly reduce the activity of TNF- when irradiated 

with laser light of the appropriate wavelength. Treatment with tin chlorin e6 and 

633 nm laser light was shown to be more effective than methylene blue for the 

photodynamic inactivation of TNF-, with an over 25-fold decrease in activity being 

observed after treatment with 20 µM photosensitiser and a low laser light dose of 

4.38 J. Although it was not possible to assess the effect of methylene blue on the 

activity of IL-6, tin chlorin e6 was shown to significantly reduce the biological activity 

of this cytokine when irradiated with 633 nm laser light. Neither laser light nor 

photosensitiser alone had a significant inhibitory effect on the activities of either 

cytokine. These results suggest that PDT may be able to reduce the biological activity 

of proinflammatory cytokines and therefore reduce the destructive inflammation 

associated with inflammatory disorders for which PDT is indicated as a potential 

treatment. 
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9 Conclusions 

Light-activated antimicrobial agents are a promising novel antimicrobial strategy, in 

particular for the treatment of superficial, localised infections such as staphylococcal 

skin infections and periodontal disease due to the accessibility of these infections 

and the susceptibility of the causative microorganisms (Wainwright, 1998). The 

results presented in this thesis confirm that effective killing of S. aureus and P. 

gingivalis can be achieved using light-activated antimicrobial agents, and indicate 

that photodynamic treatment may also result in the inactivation of virulence factors 

implicated in the initiation and progression of disease. In addition, it has been 

demonstrated that light-activated antimicrobial agents may be able to reduce the 

activity of inflammatory mediators associated with disease pathology.  

 

Highly significant reductions in the number of viable S. aureus and P. gingivalis were 

achieved using tin chlorin e6 or methylene blue in the presence of laser light. 

Methylene blue was found to be more efficacious than tin chlorin e6, with 20 µM 

methylene blue and 4.38 J of 665 nm laser light resulting in ≥ 99.99% kills of both 

microorganisms, compared with 92, 94 and 99.95% kills for MSSA, MRSA, and P. 

gingivalis, respectively when the same concentration of tin chlorin was used. The 

difference in efficacy observed between the two photosensitisers may be due to 

differences in their charge, as the cationic methylene blue may bind to the 

negatively-charged bacterial membrane more effectively than the anionic tin chlorin 

e6.  

 

The treatment of periodontitis, in which P. gingivalis is considered a major 

aetiological agent, is well-suited to treatment using light-activated antimicrobials 

(Jori et al., 2006). PDT has been shown to be non-inferior to scaling and root planing 

for the treatment of aggressive periodontitis in pilot clinical trials; however, the 

trials were limited by small size and were inadequately powered to detect significant 
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differences between the treatments (Azarpazhooh et al., 2010). Large-scale trials are 

therefore required to further investigate the efficacy of PDT in the clinical setting. As 

antimicrobial resistance has been documented in P. gingivalis, it would also be 

useful to investigate the susceptibility of antibiotic-resistant strains of P. gingivalis to 

photodynamic inactivation (Ardila et al., 2010).  

 

The ability to effectively kill antibiotic-resistant bacteria would be highly 

advantageous, if not a requirement, for a novel antimicrobial strategy. The results 

presented in this thesis demonstrate that both meticillin-sensitive and meticillin-

resistant strains of S. aureus are highly susceptible to photodynamic killing using 

methylene blue and tin chlorin e6. Irradiation with 21.9 J of 665 nm laser light in the 

presence of 20 µM methylene blue resulted in 99.999% kills for both MSSA and 

MRSA. Percentage kills of 99.93 and 99.83% were observed for MSSA and MRSA 

respectively, following photosensitisation using equivalent doses of tin chlorin e6 

and 633 nm laser light. It was also shown that small colony variants of S. aureus 

were susceptible to lethal photosensitisation using methylene blue and tin chlorin 

e6. These variants often show reduced susceptibility to antibiotics, and so PDT may 

present a potential treatment option for infections caused by these strains (Proctor 

& von Humboldt, 1998; von Eiff, 2008). 

 

The meticillin-resistant strain of S. aureus used for experimental purposes in this 

thesis was EMRSA-16, an important cause of hospital-acquired MRSA infections in 

the UK (Johnson et al., 2001). A recent study by Zolfaghari et al. demonstrated that 

methylene blue and 670 nm laser light can successfully kill EMRSA-16 in vivo 

(Zolfaghari et al., 2009); however, further in vivo studies would be useful to confirm 

these findings. In addition, with the current rise in CA-MRSA, further studies to 

determine the susceptibility of CA-MRSA strains to lethal photosensitisation would 

also be useful, especially as CA-MRSA infections typically present as abscesses and 

foliculitis, which are easily accessible for treatment with PDT (Elston, 2007).   
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Both methylene blue and tin chlorin e6 were also successful in inactivating or 

reducing the biological activity of key virulence factors of S. aureus and P. gingivalis 

at concentrations and light doses relevant for microbial killing. It was demonstrated 

that photosensitisation significantly reduced the ability of S. aureus to bind to 

human extracellular matrix components, although it was not effective at causing the 

detachment of S. aureus cells which were already bound to human extracellular 

matrix components. 

 

 Furthermore, photosensitisation with methylene blue and tin chlorin e6 reduced 

the activity of enzymes and toxins required for microbial nutrition and disease 

pathology such as the V8 protease. In addition, photosensitisation was also shown 

to be able to reduce the activity of S. aureus alpha- and beta-haemolysins, which are 

associated with evasion of the host immune response (Collins et al., 2008; Jarry et 

al., 2008; Tajima et al., 2009). Therefore, photosensitisation may have the potential 

to reduce another aspect of the pathogen’s virulence by increasing its susceptibility 

to killing by the host immune system. Inactivation of these virulence factors 

occurred in the presence of human serum, indicating that inactivation of virulence 

factors may be relevant in vivo. 

 

Several novel approaches aimed at inhibiting the virulence of S. aureus are currently 

being explored. The disruption of quorum sensing has been proposed as a 

mechanism to reduce the virulence of S. aureus, as many of the secreted virulence 

factors of this organism are regulated by these systems, for example the accessory 

gene regulator system, which regulates expression of proteases, haemolysins and 

cell surface-associated binding proteins (Kaufmann et al., 2008; Otto et al., 1999; 

Park et al., 2007). Disruption of S. aureus quorum sensing mechanisms has been 

shown to reduce pathogenicity in animal models of abscess infection (Wright et al., 

2005); however, this approach does not have direct antimicrobial action. In addition, 
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the inhibition of quorum sensing in S. aureus has been associated with an 

upregulation of protein A expression, which is also involved in virulence. In contrast, 

light-activated antimicrobial agents can reduce the activity of the virulence factors 

described in this thesis and also kill the microorganism(s) which produces them, thus 

giving photosensitisation the advantage of antimicrobial plus anti-virulence action. 

 

Another interesting strategy aimed at reducing the virulence of staphylococci 

involves polyphenol compounds isolated from green tea and their derivatives. Such 

compounds have been found to reduce the activity of S. aureus coagulase and 

haemolytic activity, prevent biofilm formation in Staphylococcus epidermidis, and 

increase susceptibility of resistant strains to certain antibiotics (Bernal et al., ; Blanco 

et al., 2005; Shah et al., 2008; Sudano Roccaro et al., 2004). However, it has been 

proposed that these compounds exert their inhibitory effect on virulence by 

preventing secretion of the proteins rather than direct inhibition of activity. 

Although the prevention of secretion of virulence factors would be beneficial, the 

inactivation of preformed, secreted virulence factors would also be desirable as 

once secreted, such virulence factors may continue to cause deleterious effects after 

eradication of the bacterium.      

 

The proteolytic enzymes of P. gingivalis are considered to play a major role in the 

virulence of the bacterium (Potempa et al., 2003). A highly significant reduction in 

proteolytic activity was achieved following photosensitisation with methylene blue 

and tin chlorin e6, showing that PDT may be able to substantially reduce the tissue 

destruction associated with these enzymes. Photosensitisation with toluidine blue O 

and 633 nm laser light was previously shown by Packer et al. to be an effective 

inhibitor of P. gingivalis proteolytic activity (Packer et al., 2000). The proteases of P. 

gingivalis have been a target for several other anti-virulence-based strategies. Curtis 

et al. observed reduced virulence of P. gingivalis in the presence of an inhibitor of 

lys-gingipain (Curtis et al., 2002). As P. gingivalis produces several proteolytic 
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enzymes that are considered part of its virulence arsenal, the inhibition of activity of 

more than one class of proteolytic enzyme would be advantageous. Other protease 

inhibitors, including green tea derivatives, have also been shown to inhibit activity of 

the gingipains, although selectivity for a particular enzyme was also observed (Bania 

et al., 2008; Okamoto et al., 2004).   

 

Although the LPS of P. gingivalis was found to be less susceptible to photodynamic 

inactivation compared with the other virulence factors described in this thesis, a 

small reduction was observed following treatment with higher doses of methylene 

blue. Komerik et al. previously demonstrated that a reduction in the biological 

activity of P. gingivalis LPS was achievable using toluidine blue O and 633 nm laser 

light (Komerik et al., 2000); therefore, it is possible that higher levels of inactivation 

may be achieved with further optimisation of the photosensitiser and light dose. 

Other attempts to reduce the bioactivity of LPS from periodontal pathogens have 

been reported. There has been much interest in the investigation of the ability of 

extracts from foodstuffs and plants to reduce LPS-mediated inflammation (Bodet et 

al., 2006; Bodet et al., 2008; Chen et al., 2008; Inaba et al., 2005; La et al., 2010; 

Zdarilova et al., 2009). However, this approach focuses on the ability of the 

compounds to prevent production of proinflammatory cytokines rather than 

inactivation of the biological activity of the LPS. Since such extracts would exert their 

effect upon host cells, they may be associated with toxicity. The inactivation of the 

bioactivity of LPS would be more favourable because such compounds would be less 

likely to have toxic side effects.  

 

While this thesis demonstrates that methylene blue and tin chlorin e6 show in vitro 

efficacy for the inactivation of important virulence factors from both S. aureus and 

P. gingivalis, further studies are required to assess the activity of these 

photosensitisers in vivo. Although the inactivation of S. aureus - and -haemolysins 

was demonstrated in the presence of human serum, a wound infection, for example, 
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represents a much more complex milieu. The ability of photodynamic treatment to 

reduce the activity of microbial virulence factors in animal and human tissue models 

would need to be investigated further; however, in such complex environments it 

may be more difficult to accurately evaluate the activities of virulence factors before 

and after treatment. It would also be useful to assess the in vitro ability of 

photosensitisation to inactivate virulence factors produced by clinical strains of S. 

aureus and P. gingivalis obtained from patient samples, as the activities may be 

different from those of purified enzymes and enzymes produced by laboratory 

strains. Differences in pathogenicity between laboratory reference strains and 

clinical isolates may arise due to loss of pathogenicity characteristics in strains 

adapted to the laboratory (Fux et al., 2005).    

 

As a consequence of the emergence of CA-MRSA, it would also be beneficial to 

assess the ability of PDT to inactivate virulence factors associated with these strains. 

CA-MRSA strains are characteristically associated with production of Panton-

Valentine leukocidin (PVL), which is considered to be the major virulence factor of 

these isolates (Elston, 2007). Further studies to assess the ability of 

photosensitisation to reduce the activity of PVL would therefore be useful. Alpha-

hemolysin is also believed to play an important role in CA-MRSA infections as 

virulence is substantially decreased in -haemolysin-negative CA-MRSA in animal 

models (Deleo et al., 2010). The results presented in this thesis demonstrate that 

the activity of -haemolysin can be reduced by light-activated antimicrobial agents; 

consequently the ability of PDT to inactivate this virulence factor would be a 

favourable addition to the killing of CA-MRSA. 

 

Proinflammatory cytokines, whilst an essential component of the immune system, 

may also have a deleterious effect on human tissue when dysregulated in the 

disease state. IL-6 and TNF- are believed to play key roles in the pathology 

associated with inflammation, and have been shown to be induced by S. aureus and 
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P. gingivalis (Portugal et al., 2007; Watkin et al., 2007; Zhang et al., 2008). The 

experiments described in this thesis demonstrate that photodynamic treatment is 

able to inactivate the biological activities of TNF- and IL-6. Tin chlorin e6 was the 

most active photosensitiser, resulting in > 25-fold increase in the LD50 for TNF- and 

complete inactivation of detectable IL-6 activity following irradiation with a low dose 

of 633 nm laser light. A local reduction in the activities of these cytokines may help 

to reduce the destruction associated with their overproduction. As previously 

discussed, there has been much interest in the anti-inflammatory activity of plant 

extracts, although these compounds have generally only been shown to inhibit the 

production of proinflammatory cytokines rather than reduce the biological activity 

of the cytokines. Methods of inactivating preformed cytokines have mostly focussed 

on monoclonal antibodies and soluble cytokine receptors, which are usually 

administered systemically and associated with serious side effects (Belloni et al., 

2008; Ellerin et al., 2003; Nash & Florin, 2005). Consequently, the use of these 

therapies is only relevant to serious diseases that require systemic therapy.        

 

Further studies are required to investigate the ability of photosensitisation to reduce 

the biological activity of proinflammatory cytokines in vivo and to assess any 

potential adverse effects resulting from such inactivation. The localised nature of 

PDT is advantageous, as treatment should not have a systemic effect on host 

cytokines at distant sites and should therefore not be associated with such side 

effects. The use of a topical light-activated antimicrobial agent that can also cause a 

local reduction in the activity of proinflammatory cytokines could therefore present 

a promising treatment option for superficial bacterial infections that are associated 

with inflammation-induced pathology. However, a successful reduction of biological 

activity in vivo would consequently also depend on close proximity of the cytokine to 

the photosensitiser molecules due to the short lifetime and diffusion of singlet 

oxygen.  
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The light-activated antimicrobial agents methylene blue and tin chlorin e6 were both 

shown to successfully kill P. gingivalis and S. aureus and reduce the activity of a 

selection of their virulence factors at concentrations and light-doses that may be 

clinically relevant. Methylene blue is approved for clinical staining procedures at 1% 

w/v (27 mM); the concentrations of photosensitiser used in the experiments 

described in this thesis were in the micromolar range, and therefore may be 

considered to have a safe toxicological profile (Wainwright, 2000). The Periowave 

system, which is licensed for oral disinfection in Canada and the European Union, 

utilises methylene blue at a concentration of 0.005% w/v in PBS plus a 

mucoadhesive, equivalent to a photosensitiser concentration of 135 µM (Cassidy et 

al., 2009; Ondine Biomedical, 2010a). As methylene blue was shown to successfully 

kill P. gingivalis and reduce the activity of some of its virulence factors at lower 

concentrations, it is possible that a reduction in virulence may be observed with the 

commercial formulation.  

 

Although the toxicity of tin chlorin e6 has not been fully determined, porphyrins are 

associated with low in vivo toxicity. Other metalloporphyrin photosensitisers have 

been used clinically and toxicity was generally only observed following relatively 

high doses (Stojiljkovic et al., 2001). The major toxicity concern with chlorins is long-

term skin photosensitivity (Detty et al., 2004); however, as photosensitivity is 

observed following systemic administration, the topical use of the photosensitiser 

may avoid such systemic adverse events. Tin chlorin e6 is well suited for conjugation 

to targeting molecules due to reactive carboxy groups on side chains outside of its 

polycyclic core, and conjugation to a variety of moieties has been demonstrated 

(Embleton et al., 2005; Narband, 2009; Rakestraw et al., 1992). Consequently, 

targeting of the photosensitiser to bacterial cells may lower the toxicity to human 

cells.     
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The low irradiation times required for the successful killing of these microorganisms 

and reduction of their virulence potential are ideal for the clinical setting, as a short 

treatment duration would cause less discomfort for the patient and would minimise 

damage to host tissues. Although complete bacterial eradication was not observed 

with the photosensitiser concentrations and light doses investigated in this thesis, 

repeat treatment or further optimisation of the doses may achieve complete 

microbial killing. Methylene blue has been used successfully in clinical studies for the 

photodynamic decolonisation of MRSA from the anterior nares; indeed, the 

MRSAid system has also been approved in Canada and the European Union for this 

purpose and uses methylene blue and 670 nm diode laser light (Street et al., 2009). 

The MRSAid system involves an irradiation time of 10 minutes (Ondine Biomedical, 

2010b); as the results presented in this thesis demonstrate that staphylococcal 

virulence factors are susceptible to methylene blue-based photodynamic 

inactivation using shorter irradiation times, it is therefore likely that inactivation of 

these virulence factors would occur during such a treatment. The Periowave oral 

photodisinfection system utilises a shorter irradiation time of one minute per 

treatment site (Ondine Biomedical, 2010d); an equivalent irradiation time using the 

665 nm laser described in this thesis (4.38 J) caused a significant reduction in the 

activity of P. gingivalis proteolytic and haemagglutinating enzymes, and therefore 

such reduction in activity may occur when the treatment is used in vivo.  

 

The lack of specificity of PDT may cause damage to host tissues, although it has been 

proposed that the light doses required for microbial killing would not significantly 

affect adjacent host cells (Wilson, 2004). It has recently been demonstrated that 

treatment with 118 µM methylene blue and 360 J/cm2 670 nm laser light did not 

cause any tissue necrosis in a murine model (Zolfaghari et al., 2009). Nevertheless, 

the specificity may be increased by the conjugation of targeting molecules such as 

antibodies. This approach has been successfully investigated in vitro for 

antimicrobial PDT using bacteriophages and antibodies as targeting agents 
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conjugated to tin chlorin e6 (Embleton et al., 2004; Embleton et al., 2005). In vivo 

studies for anticancer PDT have also been performed using antibody-conjugated 

photosensitisers, demonstrating that this approach may be successfully employed in 

animal models (van Dongen et al., 2004).    

 

In summary, photosensitisation has the potential to not only reduce the bacterial 

burden in superficial skin and oral infections, but also to reduce the pathology 

associated with bacterial virulence factors and proinflammatory cytokines. Further 

research is necessary to evaluate this potential in vivo. Additional studies may also 

be required to determine strategies to enhance the activity and selectivity of light-

activated antimicrobial agents in order to maximise the therapeutic potential of 

PDT.
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Publications arising from this work 

 

Tubby, S., Wilson, M. & Nair, S. P. (2009). Inactivation of Staphylococcal Virulence 

Factors Using a Light-Activated Antimicrobial Agent. BMC Microbiol 9, 211. 

 

This publication is included at the end of this volume for reference. 
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