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Numerical study of flow through and around
a circular array of cylinders

A. NICOLLE† AND I. EAMES
University College London, Torrington Place, London WC1E 7JE, UK

(Received 7 February 2010; revised 5 November 2010; accepted 10 February 2011;

first published online 27 May 2011)

This paper describes a study of the local and global effect of an isolated group
of cylinders on an incident uniform flow. Using high resolution two-dimensional
computations, we analysed the flow through and around a localised circular array
of cylinders, where the ratio of array diameter (DG) to cylinder diameter (D) is
21. The number of cylinders varied from NC = 7 to 133, and they were arranged
in a series of concentric rings to allow even distribution within the array with
an average void fraction φ =NC(D/DG)2, which varied from 0.016 to 0.30. The
characteristic Reynolds number of the array was ReG =2100. A range of diagnostic
tools were applied, including the lift/drag forces on each cylinder (and the whole
array), Eulerian and Lagrangian average velocity within the array, and the decay
of maximum vorticity with distance downstream. To interpret the flow field, we
used vorticity and the dimensionless form of the second invariant of the velocity
gradient tensor. A mathematical model, based on representing the bodies as point
forces, sources and dipoles, was applied to interpret the results. Three distinct
flow regimes were identified. For low void fractions (φ < 0.05), the cylinders have
uncoupled individual wake patterns, where the vorticity is rapidly annihilated by
wake intermingling downstream and the forces are similar to that of an isolated
cylinder. At intermediate void fractions (0.05 <φ < 0.15), a shear layer is generated
at the shoulders of the array and the force acting on the cylinders is steady. For high
void fractions (φ > 0.15), the array generates a wake in a similar way to a solid body
of the same scale. For low void fraction arrays, the mathematical model provides
a reasonable assessment of the forces on individual bodies within the array, the
Eulerian mean velocity and the upstream velocity field. While it broadly captures the
change in the rate of decay of the maximum vorticity magnitude Ωmax downstream,
the magnitude is underpredicted.

Key words: computational methods, general fluid mechanics, wakes

1. Introduction
Within the context of industrial and environmental fluid mechanics, there are many

common situations where localised groups of bodies are fixed in an incident flow,
for example, offshore structures, shielded riser pipes, groups of islands or arrays of
turbines in a wind farm. In these examples, the flow is inertially dominated, turbulent
and unbounded. The bodies may have a complex geometrical form.

† Email address for correspondence: a.nicolle@ucl.ac.uk
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Figure 1. A schematic of a localised group of bodies in a uniform flow, along with the
notation used in this paper.

The literature on bounded flow past multiple bodies is extensive, particularly in the
context of heat exchangers. Far less research has been done on unbounded flows. The
effect of boundedness is critical as it tends to increase the mean flow through groups
of bodies, while for unbounded flows, the mean flow is decreased.

Most of the research on flow past groups of bodies has focused on the offshore
industry where cylinders are most commonly used as constituent bodies – for instance
as structural members. In the context of offshore risers, there are a number of
experimental studies of the force on square groups, e.g. a (9 × 9) array of cylinders
(Ball & Hall 1980). Much of this research was concerned with the forces on the group
but Pearcey et al. (1982) also carried out measurements on the individual cylinders
forming a square group (of 3×3). Ball & Hall (1980) investigated larger square arrays
of cylinders of up to 9 × 9 for different angles, but only related this to the total group
drag. Both studies were undertaken in a wind tunnel but did not characterise the flow
field.

The number of bodies which forms the group is denoted by NC as illustrated in
figure 1. Some numerical studies have examined flow past groups of bodies, usually
comprising a small number (NC < 10), with attention usually paid to the structure
of the flow. Chang, Yang & Chu (2008) applied Howe’s decomposition method to
look at how the flow signature from one cylinder affects downstream cylinders. A few
theoretical studies have considered localised fixed arrays of bodies within a uniform
flow, with most of the research limited to inviscid descriptions, such as Eames, Hunt
& Belcher (2004). Eames et al. (2004) analysed the mean properties of the flow of an
arbitrary shaped array, particularly the differences between Eulerian and Lagrangian
methods of averaging. One of the important issues concerning groups of bodies is
how the vortical flow signature from each body interacts and develops downstream.
Hunt & Eames (2002) examined vorticity annihilation due to wake interactions and
straining which suppresses far field flows. Moulinec, Hunt & Nieuwstadt (2004)
examined these processes numerically for periodic cylinder flows and confirmed a
rapid decrease in downstream vorticity maximum, which they interpreted as arising
from straining in the wake.

As the number of bodies (NC) within the array increases, the group begins to
resemble a porous medium. At this limit, it becomes less important to fully resolve
the flow around individual bodies whose effect on the ambient fluid can be represented
in terms of a distributed drag force. This approach is well known, particularly for
environmental flows, and has been applied by Taylor (1991).
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One must, however, conclude from a review of the literature that there is a
significant gap in studies of flows through and around localised groups of bodies.
Previous numerical studies have been limited to examining the wake structures of
small numbers of bodies fixed in a limited domain, while published experimental
work has focused on the array/cylinder forces but not the flow. At a fundamental
level, we need to better understand the effect of varying NC on the flow through
and around the group, and this, in turn, relates to the individual and collective wake
structures and force contributions from the bodies. To simultaneously capture forces
and flow field information for a large number of bodies in a uniform stream, we apply
numerical calculations of sufficient resolution that both the local and downstream
flows are fully resolved.

To allow fundamental analysis of this type of problem, accurate numerical results
are important which implicitly limits the applicability of this research to practical
engineering applications. Unlike the previously highlighted cases, which are three-
dimensional and relatively high Re, we focus here on two-dimensional flow past
a group of cylinders and limit our attention to when the local Reynolds number,
characterised by a constituent cylinder, is sufficiently high to generate a characteristic
von Kármán vortex street, whilst low enough to still be considered to be a two-
dimensional flow. The onset of three-dimensional flow characteristics might well
be anticipated due to the early triggering of three-dimensional vortices as a result
of the complex two-dimensional geometry. The limitations of this two-dimensional
approach are discussed in the conclusion § 6. To provide a means of evaluating and
understanding the numerical results, we develop a point force model that enables the
flow through and around the groups to be estimated.

The paper is structured as follows: in § 2, the numerical formulation and the cases
that are considered are described. The diagnostics which are applied to the data sets
are described in § 3. A point force model is discussed and developed in § 4 and applied
to interpret the numerical results in § 5. The general conclusions are discussed in § 6.

2. Numerical formulation
The purpose of the numerical study was to analyse the effect of void fraction φ

on the flow through and around a localised group of bodies and the forces acting
on them. This is shown schematically in figure 1. The choice of the cylinder array
configuration (of diameter DG) in a uniform flow U∞ is discussed in detail in § 2.1.
The Reynolds number characterising the group ReG =DGU∞/ν was sufficiently high
that vortex shedding occurred from individual cylinders at low void fractions.

The numerical study involved solving the Navier–Stokes and continuity equations,

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u, ∇ · u = 0, (2.1)

where u =(u1, u2) is the velocity field, p is the pressure and ν is kinematic viscosity.
The numerical technique is described in the Appendix. No-slip boundary conditions
were applied to the rigid surfaces of the bodies; shear free conditions were applied to
the bounding channel walls. On the inlet and outlet faces of the channel, the velocity
u = (U∞, 0) and pressure p = 0 were, respectively, prescribed.

2.1. Geometry

The constituent components of the array were selected to be cylinders as they have
well-understood flow characteristics (Zdravkovich 1997). The array was chosen to
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Case C1 C7 C20 C39 C64 C95 C133 CS1

NC 1 7 20 39 64 95 133 1
φ 0.0023 0.0159 0.0454 0.0884 0.1451 0.2154 0.3016 1
Rows 0 1 2 3 4 5 6 NA
Nodes 3.29m 3.73 m 3.76m 3.76m 3.76 m 3.75 m 3.74m 3.34m
Elements 6.58m 7.48 m 7.54m 7.53m 7.55 m 7.54 m 7.53m 6.68m

Table 1. Description of cylinder arrays investigated and information about mesh quality.
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Figure 2. Schematic of the computational domain where the circle represents the edge of the
cylindrical array. The inlet is on the left-hand side of the domain. The flow moves left to right
in the figure.

have the same circular geometry as its constituent components so that, as the void
fraction φ approached unity, the array became a solid cylinder. To enable the void
fraction to be varied over a significant range, the diameter of the array DG was
chosen to be considerably larger than the diameter of the constituent components D.
The number of cylinders in the array was NC = φ(DG/D)2, which varied from NC = 7
to 133. The cases considered are labelled CNC

except for φ = 1, when we use the label
CS1. The characteristics for each case are tabulated in table 1.

The cylinders were arranged in concentric rings (starting from the circumference of
the array) and filling inwards, with an additional cylinder at the centre. The cylinders
were not distributed randomly as this could have an undue bias on the results, when
NC is small. The separation between the concentric rings and between the cylinders
on each ring was the same. DG was chosen to be 21D through the optimisation of
the arrangements of cylinders in the arrays, which gave eight contrasting cylinder
configurations consistent with the uniform spread within the array. For an isolated
cylinder, Re = DU∞/ν was chosen to be 100, corresponding to a fully formed vortex
street. This resulted in a Reynolds number for the array of ReG =2100.

The geometry and size of the outer computational domain is shown schematically
in figure 2. To reduce the influence of the inlet, outlet and wall effects, the array
was centred at a distance DU = 950D from the inlet and on the centreline of the
channel. The channel had a width W = 500D and channel length from the centre of
the group to the channel outlet of DL =2500D. The array had a blocking ratio of
DG/W =0.042, which is small enough that the correction to the force on the array
was negligible (Blackburn 2006).
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2.2. Mesh specification

As the focus of this work was to conduct an accurate but geometrically simplified
numerical study using direct numerical simulation (DNS), particular care was taken
in defining the mesh characteristic length scales. The mesh resolution was varied
across the computational domain to optimise run time and take account of different
wake length scales. A mesh independent study was conducted on a single cylinder,
under similar flow conditions to those used in this numerical study. This anticipates
the worst case scenario as bodies within a group will generally be subjected to a
reduced flow field arising from blockage by the group.

The mesh independent study showed that, for the characteristic length scales used
in this work, the errors in the current calculations (for an isolated cylinder) were
no greater than 1.23 % and 0.08 % for lift and drag coefficients, respectively. A
comparison was made with the test cases for the drag coefficient, Strouhal number
and base pressure calculated by Codina et al. (2006), Nithiarasu & Zienkiewicz (2005),
Ramon (2002), de Sampaio et al. (1993) and Malan, Lewis & Nithiarasu (2002). These
are standard test cases for validating numerical schemes (Nicolle 2009).

The validation study identified the sensitivity of the Strouhal number to the
resolution of the wake region. As a consequence of this, the resolution in the wake
region was high, particularly behind individual bodies. The mesh elements had a
characteristic face length of 0.02D, 0.1D and 3.0D in the regions labelled CLS, DLS
and FFLS, respectively (indicated in figure 2).

Adjacent to the surface of the cylinders, the boundary layer was resolved using
a sub-region of fine elements, with a separate region making the transition to CLS.
The boundary layer region thickness is 0.1D with a typical element length scale of
0.005D, resulting in 20 elements across this region.

2.3. Implementation

The numerical simulations conducted were calculated using ACEfem. This code solves
unstructured meshes, essential for complex geometries, such as those studied here.
The meshes for the simulations were produced using Gmsh, written by Christophe
Geuzaine and Jean-Francois Remacle, which was custom compiled using Intel
compilers and 64-bit architecture.

ACEfem is a dynamic code which is formed from multiple modules. The code
is highly parallelised and designed to run on cluster architectures, using the MPI
protocol for communication. The numerical algorithms used PETSc version 2.3.3,
produced by Argonne National Laboratories, with additional libraries Intel MKL
10.01 and hyper preconditioners produced by Sandia National Laboratories. Load
balancing was achieved by distributing the mesh evenly amongst each of the processors
using ParMETIS library. This minimises intercommunication amongst processors by
reducing the number of edge cuts.

The calculations were carried out using a cluster formed of 640 nodes each having
two Xeon dual core processors with 16 GB of memory and connected by a double
data rate (DDR) low latency Infinipath network. Simulations were run using between
32 and 256 processors in an incremental fashion and utilised a quarter of a million
processor hours. As a result of the large simulation size, post processing was required
to be conducted in parallel using ACEfem. A core requirement of post processing was
the ability to be able to interpolate values from the velocity field. This was achieved
using a parallel data bin architecture, based on domain geometry, which reduced
search time, especially when generating graphical figures and streamline plots. Data
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were extracted from the simulations using a similar approach and saved in readable
files for interpretation using plotting tools.

3. Diagnostics
A range of diagnostic tools was applied to analyse the data from the numerical

simulations. These were defined at the outset and hard coded so that they were
computed in real time on the supercomputer.

3.1. Force diagnostics

The cylinders within the array were labelled i, where 1 � i � NC . The force on the ith
cylinder is defined by

Fi =

∫
Si

(pI − τ ) · n̂ dS, (3.1)

where τ is the stress tensor, I is the identity matrix, Si is the surface of the ith
cylinder and n̂ is the unit normal into the cylinder (Batchelor 1967; Legendre, Borée
& Magnaudet 1998). Drag and lift coefficients are usually defined in terms of an
upwind, undisturbed free stream velocity. Since there are a large number of cylinders,
the flow upwind of each cylinder is perturbed and, indeed, varied with time. Therefore,
it is more relevant to define the lift and drag coefficients, in relation to the flow incident
on the array U∞ x̂1. The drag and lift coefficients characterising the force on the ith
cylinder are defined, in this paper, as

CDi(t) =
Fi · x̂1

1
2
ρDU 2

∞
, CLi(t) =

Fi · x̂2

1
2
ρDU 2

∞
. (3.2)

The time averaged drag coefficient for an individual cylinder over a period T from
an initial time t0 is defined by

〈CDi〉 =
1

T

∫ T +t0

t0

CDi dt. (3.3)

For an individual body, the average maximum lift coefficient, 〈CLi〉max was obtained
by averaging the local maximum magnitude of the lift coefficient for each cycle in the
period from t0 to T + t0.

The drag and lift coefficients of the array are defined as

CDG(t) =

NC∑
i=1

Fi · x̂1

1
2
ρU 2

∞DG

, CLG(t) =

NC∑
i=1

Fi · x̂2

1
2
ρU 2

∞DG

. (3.4)

From (3.4), time averaged drag coefficient for the array is defined as

〈CDG〉 =
1

T

∫ T +t0

t0

CDG dt. (3.5)

For the array, the average maximum lift coefficient, 〈CLG〉max was obtained by
averaging the maximum magnitude of the sum for each individual lift component of
each cycle in the period from t0 to T + t0.
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3.2. Flow diagnostics

To analyse the flow characteristics, a set of diagnostic tools was employed. The first
technique was to analyse the distribution of the out-of-plane vorticity component
ω =(∇ × u) · x̂3 within and downstream of the array. To distinguish between regions
of the flow that were dominated by straining or rotation, we analysed the relative
strength of the symmetric and non-symmetric components of the velocity gradient
tensor defined by

Σ = 1
2
(∇u + (∇u)T), Ω = 1

2
(∇u − (∇u)T). (3.6)

A usual measure of the magnitude of these tensors is ||Σ ||2 = ΣijΣij and
||Ω ||2 = ΩijΩij. Straining and vortical regions within a flow can be distinguished
by calculating the second invariant of the velocity gradient tensor (Hunt, Wray &
Moin 1988). We apply the dimensionless (second invariant of the velocity gradient
tensor) measure,

E =
||Σ ||2 − ||Ω ||2

||Σ ||2 + ||Ω ||2
, (3.7)

which is bounded between −1 and 1 (Davidson 2004) and takes the values of −1,
0 and 1 for vortical, shearing and irrotational flows, respectively. Equation (3.7) is
a much more sensitive and precise indicator of whether fluid is irrotational rather
than thresholding vorticity. While this measure has been applied to many turbulent
flow studies (Jeong & Hussain 2006), it has not been widely applied to multi-body
flows.

3.3. Average Lagrangian and Eulerian velocity

Due to the unsteady nature of the velocity field, it is useful to analyse the local flow
in the array, using the time averaged velocity field defined as

〈u〉 =
1

T

∫ T +t0

t0

u dt. (3.8)

The averaging period (T ) was set on a case-by-case basis, taking into account both
the eddy shedding cycle of the array and any additional cycles that affect the wake
formation. The Eulerian averaged streamwise velocity is the spatial average of the
velocity field over the array of bodies (Eames et al. 2004) and is defined as

〈u1〉E =
1

Va(1 − φ)

∫
Va−Vb

〈u1〉 dV, (3.9)

where Va is the volume/cross-sectional area of the array. This was calculated from
the average velocity field within the circular perimeter formed around the array (of
radius DG/2).

The streamlines through the array were calculated by releasing Np marked fluid
elements (from x1k , x2k , where k = 1, . . . , Np) upstream of the array and integrating
the coupled equations,

dx1k

dt
= 〈u1〉(x1k, x2k),

dx2k

dt
= 〈u2〉(x1k, x2k), (3.10)

with respect to time. The history of the particle positions (x1k(t), x2k(t)) gives the
streamline through the average velocity field. The second piece of information which
is tracked is the time it takes for the fluid elements to be advected through the array
(Tk), measured from when they are within a distance DG/2 from the origin to when
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they leave the array. In addition, the entry and exit points of the fluid elements are
stored, providing the horizontal distance Lk . The fluid elements were released outside
the array to prevent any local bias caused by their release in the boundary layer of
the constituent cylinders.

The Lagrangian average horizontal velocity of a fluid element is Lk/Tk . The average
Lagrangian streamwise velocity in the array is defined by

〈u1〉L =

〈
Lk

Tk

〉
, (3.11)

where the average is taken over the fluid elements which enter the array (Eames et al.
2004).

4. Mathematical model
A mathematical model was developed to provide a framework to interpret the

numerical results. The basis of the model is a linear superposition of the effect of
blocking, drag and downstream velocity deficit on the ambient flow. Since there are
no dynamics in this model, the flow field is steady. The drag on the individual bodies
(and their dipole moments) was obtained from a consistent closed application of the
model itself.

4.1. Flow field

The steady flow past an isolated body, located at the origin, can be modelled (for
laminar wakes) by summing the contributions from the incident uniform flow, dipole
(blocking component), monopole (wake source component) and the wake deficit,

u(x1, x2) = U∞(1, 0)x̂1︸ ︷︷ ︸
uniform

+
Q(x1, x2)

2π(x2
1 + x2

2 )︸ ︷︷ ︸
source

+
µ

2π

(−x2
1 + x2

2 , −2x1x2)

(x2
1 + x2

2 )
2︸ ︷︷ ︸

dipole

− (1, 0)H(x1)
Q√

4πνx1/U∞
exp

(
−x2

2U∞

4νx1

)
x̂1︸ ︷︷ ︸

wake

. (4.1)

The above contributions are well known and described separately in Batchelor
(1967). The wake component is weighted with the Heaviside step function, defined by
H(x1) = 0 for x1 < 0 and 1 for x1 > 0. For an unbounded flow, the average drag force
on the body is related to the average momentum flux far downstream,

〈FD〉 = ρ

∫
〈u1〉(U∞ − 〈u1〉) dA = ρU∞Q − ρU∞

∫
(U∞ − 〈u1〉)2 dA, (4.2)

where the integration is taken across a plane perpendicular to the upstream flow,
and the downstream volume flux is

Q =

∫
(U∞ − 〈u1〉) dA. (4.3)

For planar isolated bodies, where vortex shedding occurs, the velocity deficit in the
wake is comparable to U∞ and the second term in (4.2) may be important. When
the downstream flow is laminar, for instance, created by wakes intermingling and
cancelling, the velocity deficit is negligible and the second term in (4.2) is much
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smaller compared to the first term. Under these conditions, the volume flux in the
wake is related to the average drag force through

Q =
FD

ρU∞
=

1

2
〈CD〉 DU∞ (4.4)

(Batchelor 1967, equation (5.12.15)). Equation (4.4) is only valid far downstream where
a body’s wake has become laminar and the wake Reynolds number has reduced. For
an isolated cylinder, the dipole moment is set to be equal to the inviscid value,

µ = 1
2
U∞πD2, (4.5)

corresponding to a cylinder (e.g. from Batchelor 1967, equation (7.9)). Even with
an attached wake, the dipole moment is largely unchanged (Hunt & Eames 2002).

A first order analysis can be obtained by summing up the contributions from the
bodies located at (x1i ,x2i) (i = 1, . . . , NC),

u(x1, x2) = U∞(1, 0)x̂1︸ ︷︷ ︸
uniform

+

NC∑
i=1

⎛
⎜⎜⎝ Qi(x − xi, x2 − x2i)

2π((x1 − x1i)2 + (x2 − x2i)2)︸ ︷︷ ︸
source

+
µi

2π

(−(x1 − x1i)
2 + (x2 − x2i)

2, −2(x1 − x1i)(x2 − x2i))

((x1 − x1i)2 + (x2 − x2i)2)2︸ ︷︷ ︸
dipole

− (1, 0)H(x − xi)
Qi√

4πν(x1 − x1i)/U∞
exp

(
−(x2 − x2i)

2U∞

4ν(x1 − x1i)

)
x̂1︸ ︷︷ ︸

wake

⎞
⎟⎟⎠,

(4.6)

where

Qi = 1
2
〈CDi〉DU∞. (4.7)

The monopolar contribution to the flow decays slowly with distance. The effect of
a steady lift force is not accounted for in the above model because it decays much
faster than the wake deficit created by the drag force. The effect of bounding channel
walls in the numerical simulations has a negligible influence on the flow near to the
array and on the downstream wake because DG/W =0.042. Within the group, the
dipole moment is defined in terms of the local velocity past the cylinder,

µi = 1
2
u1(xi)πD2, (4.8)

where the velocity is calculated at the cylinder centre (when it is removed).
The model requires the drag coefficients (for (4.7)) and dipole moments (defined by

(4.8)) on each body to be evaluated to close the problem. This was achieved using an
iterative method where the ith cylinder was removed from (4.6) and the flow at xi

calculated. The semi-empirical drag law,

CTi
=

⎧⎪⎨
⎪⎩

9.689Re−0.78
i

(
1 + 0.147Re0.82

i

)
, Rei < 5,

9.689Re−0.78
i

(
1 + 0.227Re0.55

i

)
, 5 < Rei � 40,

9.689Re−0.78
i

(
1 + 0.083Re0.82

i

)
, Rei > 40

(4.9)
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(x1i, x2i)

D

LWi

Figure 3. Schematic showing wake length in the array for an individual cylinder. The outer
circle represents the edge of the array.

(taken from Clift, Grace & Weber 1978) was applied to estimate force on the ith
cylinder, where Rei = |u(xi)|D/ν. The drag coefficient corresponds to the component
of the force on the cylinders, resolved in the streamwise direction and defined by
CDi =CT iu1(xi)/|u(xi)|.

The analytical model can be applied to analyse the effect of drag forces on the
Eulerian mean velocity within the array. From (3.9), the Eulerian average velocity
within the array is

V (1 − φ)〈u1〉E − V (1 − φ)U∞ =

∫
V −Vb

(
〈u1〉 − U∞

)
dV. (4.10)

The right-hand side of (4.10) describes the integral over the interstitial region within
the array and this can be rewritten as the sum of the integrals over the wake and
non-wake regions,∫

V −Vb

(
〈u1〉 − U∞

)
dV =

∫
in wakes

(〈u1〉 − U∞) dV +

∫
outside wakes

(
〈u1〉 − U∞

)
dV. (4.11)

The contribution from the ith body to the integral over the wake region is∫
in wakes

(〈u1〉 − U∞) dV = −
∫ LWi

0

Qi dx1. (4.12)

The length of the wake of the ith body within the array is defined to be
LWi =

√
D2

G/4 + x2
2i − x1i and is shown schematically in figure 3. The flow outside

the individual wake regions is irrotational. The total contribution from the source
flow terms is zero by cancellation between diametrically opposite cylinders within the
array. Eames et al. (2004) showed that, for an inviscid dipolar flow past an array of
cylinders in a circular array,

V (1 − φ)〈u1〉E − V (1 − φ)U∞ = 0. (4.13)

Combining the above equations,

(1 − φ)〈u1〉E − (1 − φ)U∞ = −

NC∑
i=1

∫ LWi

0

Qi dx1

V
. (4.14)
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The term on the right-hand side was first identified in a study of interstitial
velocity fields by Roig & Tournemine (2007, equation (4.7)) and Eames et al. (2007,
equation (7.49)). From (4.1), Qi is approximated as being constant along the wake
length. An estimate of the Eulerian mean velocity within the array is

〈u1〉E

U∞
=

1 − φ −

NC∑
i=1

LWiQi

V
1 − φ

, (4.15)

which can be evaluated using estimates of Qi and the known cylinder positions.
Equation (4.15) highlights the significant influence of viscous effects, exerting a drag
on the bodies and reducing the Eulerian mean velocity. The expression (4.15) is also
valid for flows past three-dimensional localised groups of bodies.

As we will see later, at low and intermediate void fractions the flow is characterised
by wake intermingling and a dominant vortex is not shed from the array. In this
regime, it is useful to apply a linearised vorticity equation to understand how the
vortical flow signature decays downstream. This is estimated by adding together the
contributions from all the bodies to give

ω(x1, x2) =

NC∑
i=1

H(x1 − x1i)
QiU∞(x2 − x2i)

2ν(x1 − x1i)

(
U∞

4πν(x1 − x1i)

)1/2

× exp

(
−U∞(x2 − x2i)

2

4ν(x − xi)

)
. (4.16)

The above expression for vorticity is consistent with the multibody flow model
described by (4.6) and provides a means of interpreting the numerical results.

5. Numerical results
5.1. Forces acting on individual cylinders in the array

Figure 4 shows force scatter plots for each array considered. The scatter plots give an
indication of the magnitude and mean direction of the forces acting on each cylinder.
The position and size of each cylinder is plotted in grey and the darker (red online)
region radiating from the centre of each cylinder is the scatter of the dimensionless
force. For comparison, a light grey (red online) line is plotted below each cylinder
array to indicate a drag coefficient of unity.

Figure 4(a), corresponding to case C7, shows a weakly interacting group of cylinders.
The two upstream cylinders show force scatter plots similar to that of an isolated
cylinder. This is expected, as the incident flow was unobstructed and uniform, and the
closest cylinder downstream was 10D away. The downstream cylinders experience a
drag force which is slightly smaller than for an isolated cylinder, but the lift force is
much larger because they are sitting in the wakes of the two upstream cylinders.

For array C20 (see figure 4b), cylinders are closer together and the interactive forces
are, therefore, stronger. Upstream cylinders experience a drag force similar to that
of an isolated cylinder, but the lift force, while still relatively small, is determined
by the position of the cylinders downstream. Cylinders located in the wake of other
cylinders (i.e. across the middle of the array) experience larger drag and lift forces as
a result of the accelerated flow induced between the upstream bodies. The cylinders
are still far enough apart that vortex shedding occurs, even though this is strongly
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(a) (b)

(c) (d)

(e) (f )

Figure 4. (Colour online) Force scatter plots for cases (a) C7, (b) C20, (c) C39, (d ) C64, (e)
C95 and (f ) C133. The light grey (red online) line below each plot shows unit force to enable
comparison to be made between figures. The circles correspond to the cylinder positions,
proportionately scaled. The flow is directed from left to right.
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coupled in some cases. The forces experienced by the downstream cylinders are not
symmetric because they are sensitive to the positions of upstream cylinders which are
not symmetrically placed.

For arrays C39 and C64, which have intermediate void fractions (see figures 4c and
4d ), the force on the individual cylinders is steady and the lift force acting on the
whole array is negligible. The aggregate drag force on the array is dominated by the
contributions from the upstream rows of cylinders, which experience a drag force
comparable to that of a single cylinder. The mean force on each cylinder is primarily
streamwise, indicating that the flow is largely through the array, rather than around
it.

For high void fractions, corresponding to C95 and C133 (figures 4e, 4f ), the lift
forces are significant and are mainly induced by the wake of the whole array. The
mean force on the upstream cylinders has a cross-stream component, indicating that
the flow diverges, as it passes through the front of the array. The reduction in the
streamwise force on the upstream portion of the array is due to significant blocking
by the array. The force scatter plots of the downstream cylinders have a butterfly-wing
shape due to the influence of a recirculating wake which is being shed alternately
from either side of the array.

The effect of increasing the void fraction (from C95 to C133) leads to a slight increase
in the scatter of the forces on the upstream cylinders and significantly increases the
magnitude of the forces on the downstream cylinders. The scatter of the forces on
the upstream cylinders increases because the wake is stronger and now has a greater
influence on the flow past interior cylinders.

Figure 5 shows a comparison between model predictions (from (4.6)) and numerical
calculations of the mean forces acting on the cylinders within the array. For all cases,
the forces on the upstream cylinders are well predicted because the influence of
downstream cylinders is not dependent on the details of the wake profile and only
depends on the dipolar or monopolar contributions. For low void fractions, the
agreement between the model and numerical calculations is good both in terms of the
magnitude and direction of the mean force. For intermediate void fractions, the model
is poor at predicting the magnitude of the forces on the cylinders sited at the sides of
the array. This is because the modelling approach is based on the vortical signature
of the wake being advected by the free-stream flow which cannot capture the shear
layer around the edge of the array. For high void fractions, the mean force on most
cylinders is well captured, except those at the sides of the array. The over-prediction
of the forces on the third row of cylinders (in the higher void fraction cases) arises
from the under-prediction of the initial individual wake width, so that these cylinders
tend to see the free-stream flow, rather than sit in the wake of the upstream cylinders.
Increasing the initial width of wakes improves the prediction of the cylinder drag but
has a negligible effect on predictions of the collective array drag.

Figure 6 shows the variation of the average cylinder drag coefficient with void
fraction. The average drag force decreases rapidly with void fraction (for φ < 0.2)
because, as the number of cylinders increases, the average flow within the array
decreases (as shown by (4.14)). For higher void fractions (0.2 <φ < 0.4), the mean
flow through the array is weakly dependent on the void fraction, which also explains
the weak dependence of the average drag force on φ in this region.

5.2. Forces acting on the whole array

Figure 7 shows the variation of the array drag and lift coefficients with time, with the
corresponding average drag and lift coefficients plotted in figure 8. The array Strouhal



14 A. Nicolle and I. Eames

(a) (b)

(c) (d )

(e) ( f )

Figure 5. Comparison between the predicted mean force on cylinders within each array and
the numerically evaluated force for (a–f ) the same as for figure 4. The small symbols black
(�) and red (×) correspond to the numerical and model predictions, respectively. The black
line below each plot represents a unit of force which is the same for each figure. The circles
correspond to the cylinder positions, proportionately scaled. The flow is directed from left to
right.
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Case C1 C7 C20 C39 C64 C95 C133 CS1

〈CDi〉 =
〈CDG〉
NC

0.0619 0.0530 0.0408 0.0249 0.0173 0.0173 0.0133 *

〈CDG〉 0.0619 0.3707 0.8155 0.9694 1.1063 1.6460 1.7678 1.6497
〈CLi〉max 0.0145 0.0065 0.0079 0.0001 0.0000 0.0038 0.0055 *
〈CLG〉max 0.0145 0.0453 0.1581 0.0006 0.0000 0.3604 0.7278 1.7353
〈StG〉 3.5503 3.3695 2.8897 1.1297 0.0000 0.2542 0.2547 0.2430

Table 2. Summary of the drag and lift coefficients and metrics for the cases investigated.
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Weakly
interactive

Shear layer Solid array

Figure 6. The variation of the average cylinder drag coefficient in the array, 〈CDi〉 (defined
by (3.3)) with φ plotted for both the numerical results (�) and predictions (+).

numbers, defined by StG = U∞Tp/DG, where Tp is the dominant period associated with
the lift force, are listed in table 2.

For low void fractions (C7 and C20, see figure 7a), the wake shedding from the
individual cylinders is generally in phase, leading to a Strouhal number of the array
typical of an isolated cylinder (case C1). This means that the array Strouhal number
is estimated to be StG = (D/DG)St ∼ 3.55, where St = 0.169 is the Strouhal number
typical of an isolated cylinder. This estimate compares well with the data presented
in table 2 for C7 and C20.

In C20, the array lift coefficient is proportionately larger than that in C7 (see
figure 8b) resulting in a peak. While the array lift coefficient increases with φ, the
average lift coefficients in C7 and C20 are comparable (table 2). This is explained as φ

is small in these cases and individual body wakes still are comparable in magnitude to
an isolated body. In addition, due to proximity to one another, these wakes become
phase locked and thus, contribute to the lift with minimal cancellation. The array
lift coefficient has a high StG indicative of phase locking of wakes shed by individual
cylinders (see figure 7b). On top of this, there is a modulation of CLG at a low
frequency (with StG estimated to be 0.2) which is more typical of shedding from the
array.

For intermediate void fractions (C39 and C64), the lift coefficient on the entire array
is small < 10−4 (see figure 8b and therefore omitted from figure 7b) and the drag force
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Figure 7. The time dependent array drag (CDG) and lift (CLG) coefficients (defined in (3.4))
are shown in (a) and (b) respectively. The legend in each figure shows the case presented.

is steady (figure 8a). The very small lift coefficient may arise from either the cylinders
not being symmetrically placed or the group’s wake being disturbed from downstream.
The published research on flows past bluff porous bodies with base bleed have mainly
focused on flat plates (Castro 1971; Huang, Kawall & Keffer 1996; Kim & Lee 2001).
However, some work done by Bhattacharyya, Dhinakaran & Khalili (2006) and Yu
et al. (2010) also studied numerically the flow past a porous cylinder and square, in
two dimensions for low Reynolds number Re < 40, 50, respectively. This work mainly
involved investigating industrial processes and, whilst these simulations were steady,
they demonstrated how the trailing vortices were displaced downstream for a lower
Darcy number. Castro (1971) studied the flow behind a porous plate and observed
a critical void fraction φ ≈ 0.2, when the vortex street behind the plate disappeared
because of the stabilising influence of base bleed. This is somewhat similar to what
is seen in cases C32 and C64. That value is higher than found in this work but as
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Figure 8. The array drag (〈CDG〉) and lift (〈CLG〉max) coefficients are plotted in (a) and (b),
respectively, as functions of void fraction (φ). The dashed line corresponds to the limit φ = 1,
while the symbols ◦ and + correspond to numerical results and model predictions respectively.

pointed out in Huang et al. (1996), the wake behaviour depends on body shape and
void fraction.

At high void fractions, (C95 and C133), the wake pattern begins to exhibit properties
similar to the wake of a solid cylinder CS1. For both arrays, the lift coefficient is
sinusoidal (figure 7b). The magnitude of the lift coefficient increases with φ towards
the value seen in CS1 (figure 8b). However, neither exhibited the same instability that
is seen in the lift coefficient in CS1, where the magnitude of this fluctuated erratically
by up to 50 %. This erratic behaviour is also evident in the drag force for CS1 shown in
figure 7(a). This instability has been identified by Singh & Mittal (2004) who carried
out highly resolved two-dimensional calculations at similar Reynolds numbers to case
CS1, investigating the two-dimensional effect on shear layer instabilities. The drag force
on C95 and C133 fluctuates at twice the frequency of the lift force but with a regular
amplitude. The erratic behaviour seen in CS1 is a feature of two-dimensional high Re

cylinder flow and results from instabilities in the shear layer affecting separation of
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the boundary layer on the wall. This behaviour possibly does not occur in C95 and
C133 because of the absence of a rigid bounding wall.

In both C95 and C133, the drag force is equivalent to or greater than that of case
CS1. This is believed to arise to some degree from the larger perimeter surface area
of the array but mainly from the wider shedding angle of the detaching shear layer
as can be seen clearly in figure 9. This effectively presents to the flow as a wider bluff
body than that of case CS1 where the shedding angle is almost parallel to the flow.

5.3. Flow diagnostics

The flow is discussed with reference to the vorticity field and dimensionless second
invariant of the velocity gradient tensor E. The instantaneous vorticity field is used to
interpret the wake signatures in the near and far field as the time-averaged vorticity
field tends to smear out important information about the structure of the flow,
particularly the attached wakes.

For an isolated cylinder C1 (figure 9a), positive and negative vorticity are shed
alternately and are then advected downstream. The characteristic Reynolds number
is Re = 100 and is sufficiently low that, within a distance of DRe, the discrete vortices
evident in the near field have diffused into one another to generate a laminar planar
wake characterised by adjacent strips of positive and negative vorticity, as shown
in figure 10(a). Similar features are seen in C7 and C20 (figure 9b, c) where vortices
are shed from each cylinder and advected downstream in a region of width DG. The
individual vortices shed from each cylinder merge and rapidly cancel, broadly over the
same distance as in C1. Beyond a distance of 500D, the vorticity appears to organise
into coherent lumps of positive and negative vorticity, as seen in figure 10(b, c).

For intermediate void fractions (C39 and C64), the vorticity field outside the array is
characterised by two intense and stable vortex sheets (of opposite sign) (figure 9d, e).
Beyond a critical distance downstream, the sheets are unstable and a von Kármán
vortex street is created further downstream (figure 10d, e). The critical distance is
determined by the bleed flow through the array, which decreases as φ decreases. While
the vorticity created by the individual cylinders is intense, their vorticity signature
does not survive as the flow passes through the array and is rapidly attenuated.
This local mechanism is likely to be due to vorticity annihilation, caused by wake
interactions (Hunt & Eames 2002).

For high void fractions (C95 and C133, figure 9f, g), the detached shear layer becomes
unstable close to the array. This results in a narrow region of intense vorticity behind
the array, which dominates any vorticity generated within the array (in C95 and
C133). Far downstream (figure 10f, g), the positive and negative regions of vorticity
are now widely separated and vorticity annihilation does not occur. The maximum
magnitude of the vorticity decreases slowly with downstream distance, due to the
diffusive growth of the vortical lumps. In both these cases, a clear and stable von
Kármán vortex street is produced, which is similar to that of a solid cylinder. On the
other hand, CS1 produces a vortex street (see figure 10h) which is not periodic, due
to the sensitivity of the point of separation from a rigid wall at such a high Reynolds
number.

The dimensionless measure of the second invariant of the velocity gradient tensor,
E, enables vortical, shearing and irrotational regions to be discriminated. These are
respectively coloured as blue, green and red in figure 11. Figure 11(a) shows case
C1, where the downstream vortex street is enclosed by a weak shear layer. A shear
layer can also be seen extending from the shoulders of the cylinder. In figure 11(b)
(case C7), the void fraction is still sufficiently low that the wakes are well separated
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 9. Near field view of the vorticity field, ω, for the arrays (a) C1, (b) C7, (c) C20, (d ) C39,
(e) C64, (f ) C95, (g) C133 and (h) CS1. The colours red and blue denote positive and negative
vorticity respectively, with green corresponding to irrotational fluid. The flow is directed from
left to right.
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(a)

(b)

(c)

(d)

Figure 10. For caption see next page.

by irrotational fluid, until far downstream where the array wake is formed by low
intensity vorticity. For higher void fractions (figure 11c, case C20), the vorticity in the
wake begins to be annihilated (at a distance of 2DG) downstream of the array, which
is now characterised by large pockets of irrotational fluid.

Figure 11(d ) shows the first case (C39) in which the array wake is fully established.
The flow is characterised by shear layers attached to the array, which are bounded by
an intense vortex sheet. A remarkable feature of this case is the extent of the areas of
vorticity and shear flow within the wake region, which can only be formed through
annihilation and accumulation of vorticity. Within the array, thin dividing regions of
irrotational flow form between the cylinders by a process of vorticity annihilation.
Figure 11(e) (case C64) shows similar features within the array. The entire wake
attached to the array is bounded by a coherent, thin vortex street. The flow within the
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(e)

( f )

(g)

(h)

Figure 10. Far field view of the vorticity field, ω, for the arrays (a) C1, (b) C7, (c) C20, (d ) C39,
(e) C64, (f ) C95, (g) C133 and (h) CS1. The colours red and blue denote positive and negative
vorticity respectively, with green corresponding to irrotational fluid. The flow is directed from
left to right.

wake forms two counter-rotating shear flows shown in green, apart from an almost
symmetrical, thin, irrotational, dividing region on the centreline. This indicates that
there is uniform circulation within the wake, with a shear velocity gradient through
this region of equal strength to the circulation. Downstream cylinders produce finger-
like shear layers extending a distance 7D downstream which are bounded by a region
where the flow is irrotational.

Cases C95 and C133 (figure 11f, g) can be viewed as typical of what would also
be expected from a solid cylinder (case CS1, figure 11h). The attached recirculating
region behind these arrays entrains irrotational fluid, causing the isolated roll-up of
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 11. The dimensionless second variant of the velocity gradient tensor, E, (3.7) is plotted
for the arrays (a) C1, (b) C7, (c) C20, (d ) C39, (e) C64, (f ) C95, (g) C133 and (h) CS1. The colours
red, blue and green correspond to E = −1, 1, 0 and relate to irrotational, vortical and shearing
motions. The flow is directed from left to right.

intensive vortex sheets, which are advected downstream. The flow signature from
the individual cylinders, for C95 and C133, are engulfed into the wake of the array
and quickly dissipated. From the shoulders of the arrays, a shear layer separates
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Figure 12. Variation of (a) Eulerian (+) and Lagrangian (�) average velocities with void
fraction and (b) the difference between the Eulerian and Lagrangian average velocities with
void fraction. In (a) the prediction (4.15) is plotted as (×).

which creates the vortex street downstream. The vortices are separated by a shear
layer.

5.4. Lagrangian and Eulerian average velocities

Figure 12(a) shows the variation of the Eulerian and Lagrangian averaged streamwise
velocities as a function of void fraction and contrasts the numerical calculations with
the model prediction (4.15). The agreement between the predictions of 〈u〉E and the
numerical results is good for φ < 0.15. The multipole model is based on low void
fractions where the wake width is zero at xi which means, for close body spacing, that
the velocity deficit is over predicted. This explains why the mean flow is lower than
the results for the full numerical calculations. The conclusion is that the mean flow is
largely dominated by the wakes which tend to reduce the flow between the bodies and
this effect is larger than the inviscid kinematic effect of the bodies blocking the flow.
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Figure 13. Variation of centreline velocity with distance upstream of the array for contrasting
void fractions. The key indicates the number of cylinders in the array. Numerical and predicted
profiles are plotted in (a) and (b), respectively.

The Eulerian and Lagrangian averaged velocities in the array depend on the shape
of the array and give different assessments of the flow field. An inviscid analysis by
Eames et al. (2004) predicts this difference to be 1.0φ, which is close to the calculated
value 1.5φ reported in figure 12(b). For low void fractions, the difference between the
Lagrangian, Eulerian and predictions is small.

5.5. Upstream velocity perturbation

Figure 13 shows the centreline streamwise velocity (u1), upstream of the array, for
varying void fractions. The flow is irrotational and slows down, due to the blocking
effect of the entire array and the drag force from the bodies. Within a distance ∼D of
the front of the array, the flow is influenced by the placement of individual cylinders.
For case CS1, the flow is completely blocked at x = −DG/2, as a consequence of the
kinematic condition applied on the surface of the cylinder. Comparison between the
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Figure 14. Variation of the minimum upstream centreline velocity as a function of void
fraction. The symbols correspond to numerical calculations (�) and predictions (+) from
(4.6).

numerical calculations and model predictions (figure 13a, b, respectively) shows good
agreement.

A detailed comparison is made by comparing the centreline velocity at the edge of
the array (figure 14). The model gives a good prediction for φ < 0.15. The discrepancy
seen between the numerical and model results, for high φ and for the solid cylinder
(CS1), is due to the model being a point force and dipolar representation, which is
valid only for well-separated cylinders.

5.6. Vorticity decay within the wake

The decay of the vorticity maximum, defined as Ωmax(x1) = max−w < x2 <w|ω(x1, x2)|,
with distance downstream from the array, provides an indication of the structure
of the vorticity in the wake, particularly the separation of the positive and negative
components of vorticity. The variation of Ωmax with downstream distance is shown in
figure 15, for distances beyond the edge of the array. The two main processes which
lead to Ωmax decreasing with downstream distance are (a) diffusion which causes
Ωmax to decay as x

−1/2
1 and (b) vorticity annihilation caused by positive and negative

vorticity intermingling causing Ωmax to decay rapidly as x−1
1 .

Adjacent to the sides of the array, a steady shear layer is created, corresponding
to vorticity of one sign. Along these shear layers, the vorticity spreads in the same
manner as a passive contaminant leading to a x

−1/2
1 decay. However, the vorticity

field behind an isolated body is characterised by a bipolar source (corresponding to
the cross-product of the point force action of the body), with the combined action of
vorticity annihilation and diffusion leading to a faster x−1

1 decay (e.g. see (4.16)).
To enable the numerical results to be interpreted, figure 15 includes two lines with

gradients −1/2 and −1. Figure 15(a) shows the decay of Ωmax with downstream
distance for C1, C7 and C20. The low Reynolds number (Re = 100) for case C1, means
that positive and negative vortex lumps are shed at a high frequency which results
in them being much closer. Beyond a distance 40D downstream, the vortex lumps
have diffused into one another generating a laminar wake characterised by adjacent
positive and negative vortex sheets. The intensity of the maximum vorticity in the
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Figure 15. The variation of the maximum vorticity Ωmax with downstream distance is shown
for (a) C1, C7 and C20, (b) C39 and C64, (c) C95, C133 and CS1 and (d ) model predictions

for low fraction cases from (4.16). The two straight lines correspond to the decay laws x
−1/2
1

and x−1
1 .

sheets reduces at a rate of x−1
1 as a consequence of vorticity annihilation. Cases C7

and C20 are similar with the maximum vorticity decaying as x−1
1 as a consequence of

vorticity annihilation caused by wake intermingling, but beyond a distance of 250D,
vorticity can be seen to form into weak vortex lumps, whose maximum vorticity
decays more slowly with time.

Both C39 and C64 (figure 15b) have a shear layer that separates from the shoulders
of the array and continues downstream, until it becomes unstable and rolls up into a
von Kármán vortex street. In the initial region, the stable shear layers are separated
from one another. This prevents annihilation and means that there is only diffusive
reduction from the shear layers, leading to a x

−1/2
1 decay in Ωmax. However, this

decrease is considerably more rapid than for vortex lumps because the area over
which diffusion occurs is much larger. At a distance downstream of 3DG (C39) or
5DG (C64), the rate of diffusion reduces as the vortex sheets roll up into more slowly
diffusing discrete vortex lumps.

At high void fractions (C95 and C133), the array of bodies alternately sheds large
scale coherent vortices with positive and negative vorticity. The vortices are initially
well separated (by a distance DG) so that vorticity annihilation is negligible. The
maximum magnitude of vorticity Ωmax decays slowly due to the vortex patches growing
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in size by diffusion. The circulation of a vortex patch is defined as Γ = λΩmaxπR2
p ,

where the vortex radius is Rp . Since Γ is conserved, and R2
p increases linearly due

to diffusion, then Ωmax ∼ Γ/λ(R2
p0 + 2νx1/U∞), where Rp0 is the initial radius of the

shed vortices. Far downstream, beyond a distance x1 ≈ D2
GU∞/ν ≈ DGReG, the vortex

patches intermingle when they have grown sufficiently large by diffusion that they
can interact. Since the distance over which vorticity can diffuse (within a distance
x1 < 1000D) is much smaller than the initial size of the vortices, the decrease in the
Ωmax is small in this region, as shown in figure 15(c).

When the flow is not dominated by vortex shedding from the array, the model
assumptions become more appropriate and can account for the reduction of Ωmax

through diffusion and annihilation (which are linear processes). Figure 15(d ) shows
the prediction of Ωmax from (4.16) for the low void fraction cases. The model predicts
a rapid x−1

1 decay of Ωmax for C1, C7 and C20, whose trend agrees with figure 15(a).
The separation between the cylinders means that the model captures the shear layers
ultimately generated for cases C7–C64, where Ωmax decreases as x

−1/2
1 . The steady

model cannot capture wake instabilities or when vortical lumps are created and is no
longer appropriate far downstream for cases C39–C64.

6. Conclusion
In this paper, we have described a detailed numerical study of the effect of void

fraction on two-dimensional flows past circular arrays of cylinders. Three distinct
flow regimes have been identified:

(a) For low φ (φ < 0.05), the flow interactions are weak within the array and force
characteristics on each cylinder are similar to an isolated body. The wake of the
group is composed of the identifiable individual wakes of the bodies making up the
array. These rapidly dissipate through an annihilation process, as they are advected
downstream, leading to a rapid decrease in the maximum vorticity.

(b) At moderate φ (between 0.05 and 0.15), a stable wake forms behind the array,
which is stabilised by a bleed flow. The flow is locally steady and the lift force is
negligible. Vorticity annihilation occurs between the cylinders. The maximum vorticity
decays slowly with distance by the diffusive thickening of the attached shear layers.
The shear layers become unstable some distance downstream and roll up to generate
a vortex street.

(c) At high φ ( > 0.15), the array begins to behave in a similar way to a solid
cylinder. The signatures of the individual cylinders within the array are annihilated
by wake interactions. The downstream flow consists of a vortex street where the
maximum magnitude of vorticity decays slowly downstream.

To interpret the results of the numerical calculations, we developed a mathematical
model which incorporates source and dipole contributions (from drag and inviscid
blocking) and a wake model. The drag on the individual bodies within the array
was estimated from the model. Predictions of mean drag coefficient, the distribution
of mean forces within the array, the Eulerian mean average velocity and upstream
velocity were compared with the numerical results. The comparison was reasonable
for low void fractions. The model also shows that for localised groups of bodies, the
mean flow within an array is dominated by the velocity deficit created by the wakes.

The numerical calculations give insight into the general processes that are common
to many multibody flows. Previous discussions had focused on the effect of local
strain in annihilating vorticity, for instance, in pipe bundles. We have applied a flow
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diagnostic, commonly applied to turbulent flows, which has shown that the flow at
the boundaries between body wakes becomes irrotational. This suggests that vorticity
annihilation occurs largely through wake interactions.

A limitation in this work is the use of two-dimensional numerical calculations to
model flows that are likely to become, to a degree, three-dimensional. For an individual
body within the array, the Reynolds number characterising the flow is <100 as a
result of the retarded free stream flow within the array. Given this, for an individual
element in the array, the two-dimensional assumption based on the low Reynolds
number provides a leading order description of the flow and force characteristics.
However, while this Reynolds number is considerably less than required to generate
a three-dimensional wake for an isolated element, early tripping arising from the
complex array geometry cannot be anticipated.

The flow around the array, as a whole, will certainly have a three-dimensional
component, as the Reynolds number is much greater than the typically accepted
transition value of Reynolds number ≈190. Whilst the flow characteristics described
above are still valid, it is likely that the array drag is then over predicted as a result of
the two-dimension calculations. To understand these issues better, it will be necessary
to study the three-dimensional flow through and around groups of bodies, where the
additional effect of vortex stretching is likely to have an important dynamical effect
on the flow. The main difficulty in doing this is that the computational size becomes
a limiting factor.

This work has enabled a more developed appreciation of the characteristics of the
flow field in multibody situations. Significant future developments can be expected
with advances in modelling techniques and as greater computational resources become
available.

We thank Dr Jeremy Yates and Clare Gryce for help with access to Legion and
support in terms of resources. Department of Health funding for ‘Transmission of
pathogens in the healthcare environment: an intensive study of transmission by
hand, cleaning materials and air to inform national policy on cleaning methodology
and design of wards, equipment and furniture’ during 2008-2010 (led by Dr
Wilson, UCLH) provided partial support for A.N. during the completion of this
paper.

Appendix
We describe the numerical formulation applied in this paper.

Step 1
The Navier–Stokes equation (2.1) was solved using a characteristic-based-split (CBS)
algorithm based on the projection method of Chorin (1968), as described in
Zienkiewicz & Codina (1995) and Zienkiewicz, Taylor & Nithiarasu (2005). In this
method, an intermediate velocity field is introduced to uncouple the momentum and
continuity equations; a characteristic method is used to stabilise the non self-adjoint
operators in the CBS formulation which is written as

ũ − u(n)

	t
= −u(n) · ∇u(n) + ν∇2u(n) +

1

2
	tu(n) · ∇

(
u(n) · ∇u(n)

)
, (A 1)

where ũ is the intermediate velocity field.
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Step 2
Taking the divergence of the momentum equation and integrating from time tn to
tn + 	t , gives

	t∇2p(n) = −ρ∇ · ũ. (A 2)

Step 3
The pressure calculated in Step 2 is used to correct the intermediate velocity so that
it is solenoidal, resulting in

u(n+1) − ũ = −	t

ρ
∇2p(n). (A 3)

To solve the three-step problem, a set of basis functions [N] = [Ni, Nj , Nk] is
introduced which depends on x1 and x2 and {u1}, {u2} and { p} are 3 × 1 vectors
of unknowns (e.g. {u1} =[u1i

, u1j
, u1k

]T). In our formulation we applied linear basis
functions. Within the triangular element, the velocity components and pressure are
approximated by

ui = [N]{ui}, ũi = [N]{ũi}, p = [N]{ p}, (A 4)

for i = 1, 2. Here ∂[N]/∂x1 = b/2A and ∂[N]/∂x2 = c/2A, where A is the area of the
local element. Boundary conditions are imposed by row and column inserts into the
global mass and diffusion matrices. The finite element method results in the following
sets of equations, which were applied on an elemental basis.

Step 1

[M]
{ũi} − {ui}n

	t
= −[C]{ui}n − ν[K ]{ui}n − [K S]{ui}n + ν[F]{ui}n. (A 5)

Step 2

[K ]{ p}n = − ρ

	t
[[G1]{ũ1} + [G2]{ũ2}] + [F]{ p}n. (A 6)

Step 3

[M]{ui}n+1 = [M]{ũi} − 	t[Gi]{ p}n/ρ, (A 7)

The local formulations on each element requires the evaluation of the following
matrices and vectors:

[M] =
A

12

⎡
⎢⎣

2 1 1

1 2 1

1 1 2

⎤
⎥⎦, [C] =

[M]

2A

(
{u1}nb + {u2}nc

)
, (A 8)

[F] =
1

2A

∫
Γe

(
NTn1 dΓ b +

∫
Γe

NTn2 dΓ c
)

, (A 9)

[K S] =
[M]{u1}	t

8A2

[
{u1}TbTb + {u2}TbTc

]
+

[M]{u2}	t

8A2

[
{u1}TcTb + {u2}TcTc

]
.

(A 10)

[K ] =
1

4A

[
bTb + cTc

]
, [G1] =

1

6

⎡
⎣1

1
1

⎤
⎦ b, [G2] =

1

6

⎡
⎣1

1
1

⎤
⎦ c. (A 11)
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To ensure numerical stability, the global time step must be shorter than minimum
diffusive or advective times (on the size of the elements). Following Zienkiewicz et al.
(2005, p. 112), the global time step was set as

	t = S min

(
hn

u
,
h2

n

ν

)
, (A 12)

where the safety factor is S =0.5. Here u =
√

u2
1 + u2

2 and hn is a characteristic length-
scale of a element, defined here as hn = min (2 × element area/opposite side length)
where the minimum is calculated over each side of the elements.
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