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Abstract 

The electrical properties of lateral ultrafine tungsten nanowires, which were grown by 

focused-ion-beam-induced deposition with 1 pA ion beam current, were investigated. 

Temperature-dependent electrical measurements show that the wires are conducting and have 

a superconducting transition with a transition temperature (Tc) about 5.1 K.  Resistance vs 

temperature measurements reveal that, with decreasing cross-sectional area, the wires display 

an increasingly broad superconducting transition. A residual resistive tail extending down to 

the low-temperature region is found only for the thinnest tungsten nanowire, which is 10 nm 

thick and 19 nm wide. The logarithm of the residual resistance of this wire appears as two 

linear sections as a function of temperature, one within 300 mK below Tc and the other 

extending down to the lowest measuring temperature of 4.26 K. Such features have 

previously been identified with phase slip processes. Our results are suggestive that the 

focused-ion-beam technique might be a potential approach to fabricate ultra-thin and ultra-

narrow nanowires for the study of superconducting suppression in nanoscale materials and 

for maskless superconducting device fabrication. 
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I. Introduction  
The superconductivity of a film or nanowire exhibits quasi-two-dimensional or quasi-

one-dimensional behaviors when the thickness of the superconducting film or the diameter of 

the superconducting nanowire is reduced to smaller than the Ginsburg-Landau phase 

coherence length ( ) and the magnetic penetration depth ( ).
1–4

 Below the superconducting 

transition temperature,  the resistance of a 1D wire is no longer zero. The nonzero dissipation 

may be due to thermally activated phase slip (TAPS) or quantum phase slip (QPS) 

processes.
5-6

 During a phase slip, the superconducting order parameter fluctuates to zero at 

some point along the wire; the relative phase across the point slips by 2 , resulting in a 

voltage pulse and the sum of many such pulses gives a resistive voltage.
7
A quick approach to 

probe such phenomena is to examine the temperature-dependent resistance (R-T) and 

transport (I-V) properties below and near Tc.
8-9 

The direct fabrication of nano-structures or the modification of existing structures 

using focused ion beams (FIB) has attracted remarkable interest in recent years. Such a 

technique offers the means to rapidly develop nanoscale devices in a single processing step 

in-situ without the demand of time-consuming mask fabrication or extensive prior sample 
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preparation. Most importantly, the growth is site specific and using ion beam current as low 

as 1 pA or lower, true nanoscale wires can be grown; what’s more, by simply changing the 

growth parameters, the composition, thickness and geometry of the deposits can be tuned. 
9-10

  

Tungsten is one of the most commonly used materials in FIB-CVD. Bulk tungsten has 

a resistivity of 5 μΩ cm; however, materials grown by the FIB-CVD process contain various 

impurities including carbon and oxygen from the precursor gas and gallium from the incident 

ion beam. As a consequence, such deposits have a resistivity of around 200 μΩ  cm. 

Fortunately, compared with the bulk counterpart, despite the increase in the room temperature 

resistivity, it has been proved to have a significantly enhanced superconducting transition 

temperature Tc above 5 K, a value technologically-useful above 4.2 K. This opens up the 

possibility of fabricating novel superconducting devices without mask and other conventional 

microfabrication techniques.  

Thus we have grown ultra-narrow and ultra-thin tungsten nanowires by FIB-CVD 

using a 1pA ion-beam current. Continuous lateral nanowires 19 nm wide and 10 nm thick 

were achieved.  The thickness and width of wires were controlled by setting different 

exposure times. The temperature dependent electrical properties were examined by 4-probe 

measurement after direct writing of the four-terminal configuration in a single FIB run. All 

the wires are conducting have a superconducting Tc above 5.0 K and can be repeatedly 

thermally cycled. The transition width was found to be strongly dependent on wire cross-

sectional area. The logarithm plot of the residual resistance of the narrowest wire shows two 

linear sections as a function of temperature, indicating possible phase slip processes. Our 

results suggest that the focused-ion-beam technique might be a potential approach to fabricate 

ultra-thin and ultra-narrow wires for the study of superconducting suppression in nanoscale 

materials, or for maskless superconducting device fabrication.  

II. Experimental details  
 A commercially available FIB (Carl Zeiss XB1540) system utilizing a beam of 30 

keV singly-charged Ga
+
 ions was used. Tungsten hexacarbonyl (W(CO)6) gas was injected in 

the vicinity of the focused beam scanned area through a nozzle and was absorbed onto the 

surface of the sample. As the beam was scanned over the surface of the sample in the desired 

pattern, the precursor was decomposed into volatile and non-volatile components. The non-

volatile component was deposited on the sample surface whilst the volatile product was 

removed via the instruments vacuum system. The base pressure before introducing the 

precursor gas was 2.4  10
-6

 mbar. During deposition the system pressure was in the range of 

7.4 - 8.3  10
-6

 mbar. Gold contact patterns were formed onto Si substrates with a 200-nm-

thick oxidized silicon layer by conventional photolithography-based processes before the W 

deposition.
11 

Lateral nanowires with various widths and thicknesses were deposited with a 1 pA 

ion-beam probe with ion beam exposure time of 10, 15, 25, 35, 40 and 50s, respectively.  A 

larger ion beam current, 20 pA in our experiment was then used to deposit strips as 

connecters to the large Au contact pads to form a four-terminal device configuration for 

electrical properties measurements. The width and height of nanowires were measured by in-

situ SEM and by atomic force microscope (AFM). The microstructure was analyzed by 

transmission electron microscopy (TEM) for wires deposited on holey carbon TEM grids 

using the identical condition using for transport property measurement. The chemical 

composition was obtained by energy dispersive X-ray spectroscopy (EDS) attached to the 

TEM. Current-biased transport measurements were performed with the sample mounted on a 

“dip-stick” immersed in a liquid-helium storage dewar. Transport measurements were 
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performed with a home-made current source and voltage amplifier. All the data acquisition 

and analysis were controlled by a LabView-based platform.
10

 

 

III. Results and discussion 
 Figure 1 (a) shows a typical SEM top view image of nanowires deposited using a 1 

pA ion beam current with various ion beam exposure times. Specifically the widths were 11, 

19, 32, 44, 52 and 61 nm for wires deposited with ion beam exposure time of 10, 15, 25, 35, 

40 and 50 s, respectively. The wire peak height and width versus the ion beam exposure time 

is shown in Fig. 1 (b). Nanowires deposited with exposure time less than 10 s were not 

continuous. For accurate fine-line deposition, it is necessary to use small beam spot size, 

since larger beam spot size corresponds to larger ion beam current, which leads to an 

irregular periphery of the deposited area; it also causes line width broadening.  To deposit 

fine and continuous nanowires with size at the resolution limit for the facility, experiments to 

adjust the beam dwell time, beam spot overlap and other growth parameters are currently 

underway. 

 

 
 

Fig. 1. (a) SEM top view image of lateral tungsten nanowires grown with a 1 pA ion beam 

current, using exposure time of 10, 15, 25, 35, 40 and 50s respectively; (b) wire width and 

peak height (measured by atomic force microscope) as a function of the exposure time. 

 

 Temperature-dependent resistivity measurements were performed for nanowires with 

width of 19, 32, 44, 52 and 61 nm and corresponding thickness of 10, 16, 23, 30, 33 nm, 

respectively. Thinner and narrower lateral wire can be made though at this stage SEM reveals 

that it is not continuous and, likewise, electrical measurement shows a very large resistance 

beyond the electronic meter range in this work.  The 19 nm wide and 10 nm thick wire is 

conducting with a room temperature resistivity of 330  cm. Figure 2 shows a typical four-

terminal configuration formed on the 19 nm wide and 10 nm thick nanowire.  

 

 
 

Fig. 2 SEM top view image of a typical four terminal configuration of a lateral tungsten 

nanowires that is 19 nm wide and 10 nm thick for electrical property measurement. 

 

A constant current of 1.0 A was applied to the two outer terminals and the voltage was 

measured between the other two terminals. All the nanowires show superconducting 
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transitions above 5.0 K; here Tc is defined as the temperature at which the resistivity falls to 

50% of its value at the onset of the transition.  

The temperature-dependent normalized resistivity for the 19, 32 and 61 nm wide 

nanowires is shown in Fig. 3 (a). It can be seen that the transition width of the 19 nm wide 

sample is much wider than that of the 61 nm wide one. The error bars in Fig. 3(b) correspond 

to the width of the superconducting transition. It is worth noting that with decreasing cross-

sectional area, the wires display increasingly a broad resistive transition. For wire with width 

larger than 60 nm, the transition width maintains an approximately constant value. We have 

performed TEM measurements, which confirm that the nanowires do not display any long-

range order – rather there are nanocrystallites with grain size on the order of 1 nm. We have 

also done both electron-energy loss and energy dispersive x-ray spectroscopy on our 

nanowires, which show that the composition is 48 at% tungsten, 30 at% carbon, 16 at% 

gallium and 6 at% oxygen. Thus FIB-deposited tungsten nanowires are different from bulk 

crystalline tungsten in terms of compositional and structural properties besides the 

dimensionality.    

 

 
 

Fig. 3. (a) The temperature dependent normalized resistance of the tungsten nanowires that is 

61 nm wide; (b) superconducting transition temperature (Tc) and transition width ( Tc) as a 

function of the cross-sectional area (Acs) of the nanowires.

 

A residual resistive tail extending down to the low-temperature region is found for 

wires with width of 19 nm. When the logarithm of the residual resistances is plotted vs 

temperature, there appear two distinct linear sections (as shown in Fig.4), one within 300 mK 

below Tc and the other extending down to the lowest measuring temperature of 4.26 K. This 

is in contrast to the resistance for wires with width larger than 61 nm, which drops 

precipitously to a constant small value at Tc near 5.1 K. A similar broadening of the transition 

has been reported on Sn
12

 and GeMo
13

 nanowires and was interpreted as being a consequence 

of a TAPS process near Tc and QPS in the lower temperature region.
7,12 

However, we have 

not ruled out the possibility that the resistive tail is somehow associated with inhomogeneities 

present in the wires on a length scale of around 10 nm. 
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Fig. 4. Normalized resistance vs temperature of the 19, 32 and 61 nm wide nanowires with 

normalized resistance in the log plot, showing distinct transition characteristics. 

 

To further understand these interesting electrical properties in FIB-deposited 

nanowires, lower temperature I-V measurements are necessary and would be very helpful. It 

is reported that the I-V characteristic of a one-dimensional nanowire shows distinct linear 

branches when the current is reduced with phase-slip centres.
12

 Though TAPS and QPS 

phenomena have been reported on nanoobjects made by techniques such as growth of 

crystalline Pb and then using FIB milling to cut it into nano bridge structure
14

, 

electrodeposition of Sn nanowires into anodized alumimun oxide templates
12

, the growth 

process and device fabrication is complicated. By using FIB-CVD, we are able to direct-write 

maskless superconducting device structures; we hope our work will inspire further theoretical 

and experiment effort towards the one-step fabrication of superconducting devices, such as a 

single photon detector based on the hot-spot formation caused by TAPS.  

 

IV. Conclusion  
In summary, using the technique of FIB-CVD, we have grown ultra-thin and ultra-

narrow tungsten lateral nanowires with width and thickness comparable to the phase 

coherence length ( ) of the bulk material. The electrical transport properties of nanowires 

with thickness of 10 nm, about 2  (for FIB deposited tungsten,  is 5.9 nm)
15

 and reaching 

the 1D limit, were found to be distinctly different from those with thickness of 33 nm, in a 

similar way to results previously interpreted as evidence of phase slip processes
16

. Our results 

suggest that FIB-CVD could be a potential approach to grow nanoscale materials for the 

observation of superconducting quantum phenomenon and to fabricate maskless 

superconducting devices in a single writing step.  
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