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Abstract. Quantum phase-slip processes in superconducting nanowires of suitably small
cross-section have been proposed as the basis for a new current standard, based on physics
dual to that for the Josephson voltage standard. The practical realisation of such devices
presents several challenges. We consider the requirements which need to be met in constructing
a nanowire quantum-phase-slip device and in particular the need to maximise R¢, the normal-
state resistance of a length of nanowire equal to the superconducting coherence length. Titanium
and niobium-silicon are promising materials for the nanowires.

1. Introduction

In 2006 Mooij and Nazarov demonstrated that circuits containing quantum phase slip (QPS)
junctions are exactly dual to circuits containing Josephson junctions [1]. For example, a voltage-
biased circuit containing a QPS element, an inductance and a resistance in series is dual to
a current-biased circuit containing a Josephson element in parallel with a capacitance and a
resistance; this example has particular technological relevance since it raises the possibility of
a quantum current standard based on the dual of the Shapiro effect in Josephson junctions on
which the international voltage standard is now based.

There have been experimental efforts by a number of groups to realise nanowires in which
QPS can be observed, on a number of different materials. Several groups have reported
a larger resistance for T' < 7T, than would be expected in a homogeneous material from
thermally activated phase slips. Similar observations might, however, also arise due to sample
inhomogeneities. Observation of a critical voltage below which no current flows would be a less
ambiguous demonstration of QPS but to date, there has been only one isolated such report [3].
It is important, therefore, to carefully consider the experimental criteria needed to observe QPS.
Here we focus particularly on choice of nanowire material.

2. Candidate materials

A narrow wire along whose length occurs a sufficiently high rate I's of quantum phase slips
is suitable as a QPS element. 7T, should be high enough that measurements are possible at
temperatures significantly less than T,.. Phase slips occur over a lengthscale £ and nanowires
for devices should therefore have transverse dimensions less than . QPSs are expected to be
only weakly interacting [2] and therefore observable when Z. > R, = h/4e? = 6.45 kS, where

Z. = /L'/C" is the characteristic impedance of the nanowire, L’ is the kinetic inductance of



the nanowire per unit length and C’ is its capacitance per unit length. For a QPS device in
which Shapiro steps might be observed, the series inductance L should be much larger than
R,/2T's to make the charge a well-defined variable and the series resistance R large enough that
the damping parameter 8 = 272(2LTs/R,)(R,/R)? is < 1. It has been suggested [1] that
I's ~ 10" s~1 with achievable values of R and L would be suitable for a QPS device.

Experimental studies on Al (BCS coherence length {y = 1600 nm, 7, = 1.19 K), Ti (£, = 6200
nm, 7. = 0.4 K) and Nb-Si (typical {§x = 175 nm, T, = 1.5 K) are among those previously
reported [2, 3] — see the review by Arutyunov [2] for a detailed survey.

Theoretical analysis of the problem has generated a number of formulas for the QPS rate,
depending on the details of the situation and the underlying assumptions. One example [4] is
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where Ag is the superconducting energy gap, [ is the length of the wire, a ~ 1, b ~ 1 and Ry,
the normal-state resistance of a length £ of the superconducting nanowire. Note that, for a BCS
superconductor with T, = 1K, Ag/h = 2.3.10' s7!. A common feature of these formulas for the
QPS rate is the exponential factor dependent on R¢. Therefore, for making a QPS nanowire, it is
a crucial requirement that R¢/R, 2 1 otherwise the QPS rate will be exponentially suppressed.

3. Maximising R

To maximise R¢ = p&/A, we should clearly maximise the resistivity p and minimise the cross-
sectional area A. For a given material, p increases as the mean free path A decreases, i.e. as the
material becomes more dirty. For a free electron metal, p) is set by band-structure properties
of the material. Noting that the Ginzburg-Landau coherence length &g in the dirty-limit is
~ V&N, it follows that Re(A) ~ 1/v/X in the dirty limit.! Samples with small \ are therefore
the most suitable for QPS nanowires.

We can estimate the maximum obtainable resistivity of some candidate materials for QPS
nanowires. We use experimentally reported values for £ and pA [2, 3, 5, 6], assuming that this
product would remain constant even for short A and we assume that the shortest achievable
mean free path is 0.2 nm, of the order of the interatomic spacing. Assuming a cross-sectional
area A = 100 nm?, the maximum value of R¢/R, at low temperature is ~ 0.1 in Al, ~ 1 in Ti
and ~ 1 in NbSi. This suggests that, unless A can be further reduced, even the most resistive
Al nanowires will have R¢ too small for the QPS rate to be significant. Ti and NbSi nanowires
with very short A are more promising. Since 7, may be below its value for a pure, bulk material
in such dirty materials, the doping and composition need to be carefully controlled to obtain
the highest p while maintaining an acceptable T, and good sample homogeneity.
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! Additional scattering from the boundaries has been shown to cause increases in the resistivity of thin-film
samples when the thickness of the sample is ~ A. This effect should be small for samples in which the mean free
path is similar to the atomic spacing. Other changes away from the bulk 3-D properties due to the small sample
dimensions are possible, but are neglected here.



