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Abstract 

The number of protein sequences being deposited in databases is currently growing 

rapidly as a result of large-scale high throughput genome sequencing efforts.  A large 

proportion of these sequences have no experimentally determined structure.  Also, 

relatively few have high quality, specific, experimentally determined functions. 

Due to the time, cost and technical complexity of experimental procedures for the 

determination of protein function this situation is unlikely to change in the near 

future.  Therefore, one of the major challenges for bioinformatics is the ability to 

automatically assign highly accurate, high-specificity functional information to these 

unknown protein sequences.  As yet this problem has not been successfully solved to 

a level both acceptable in terms of detailed accuracy and reliability for use as a basis 

for detailed biological analysis on a genome wide, automated, high-throughput scale. 

This research thesis aims to address this shortfall through the provision and 

benchmarking of methods that can be used towards improving the accuracy of high-

specificity protein function prediction from enzyme sequences.  The datasets used in 

these studies are multiple alignments of evolutionarily related protein sequences, 

identified through the use of BLAST sequence database searches. 

Firstly, a number of non-standard amino acid substitution matrices were used to re-

score the benchmark multiple sequence alignments.  A subset of these matrices were 

shown to improve the accuracy of specific function annotation, when compared to 

both the original BLAST sequence similarity ordering and a random sequence 

selection model. 

Following this, two established methods for the identification of functional 

specificity determining amino acid residues (fSDRs) were used to identify regions 

within the aligned sequences that are functionally and phylogenetically informative.  

These localised sequence regions were then used to re-score the aligned sequences 

and provide an assessment of their ability to improve the specific functional 

annotation of the benchmark sequence sets. 

Finally, a machine learning approach (support vector machines) was followed to 

evaluate the possibility of identifying fSDRs, which improve the annotation 
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accuracy, directly from alignments of closely related protein sequences without prior 

knowledge of their specific functional sub-types.  The performance of this SVM 

based method was then assessed by applying it to the automatic functional 

assignment of a number of well studied classes of enzymes. 
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Chapter 1 Introduction and Background 

1.1 Protein Function 

The native state conformation of a protein is essential for its biological activity.  

Because the structure of the native state is defined by the amino acid sequence, it 

follows that the precise biological function of a protein is strongly dependant on both 

sequence and structural properties.  Protein function can be a difficult concept to 

rigorously and unambiguously define and categorise.  A general biological 

description of protein function usually involves a description on three levels: 

 Biological Function:  This describes the effects of the protein on the entire 

organism; 

 Cellular Function:  This level provides a description of the interactions and 

pathways that a protein is involved in on a cellular level; and  

 Molecular Function:  Providing a description of the precise biochemical activity 

of a protein at a molecular level. 

 

A number of functional classification schemes have been proposed towards solving 

the function categorisation problem, a number of which are described below.   

Functional Specificity 

The sub-categorisation of function leads to increasingly more detailed, specific 

descriptions of functions that proteins can perform.  Therefore, the concept of 

functional specificity can be thought of as a hierarchical classification, moving from 

a general, not very specific description (such as “enzyme”), to a progressively more 

detailed description of a protein (such as “alcohol dehydrogenase”).  It is this 

detailed form of description and classification that is of major interest in this thesis. 

1.1.1 Protein Function Classification Schemes 

Several schemes for the description and classification of proteins and their functional 

properties have been developed (Ouzounis et al., 2003; Whisstock and Lesk, 2003; 

Riley, 1998).  The aim of functional classification schemes is the descriptive 

categorisation of similar protein functions.  There have been attempts which both 
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concentrate on single organism categorisation (generally associated with a particular 

genome sequencing project) and also more general classification schemes that either 

apply to all types of proteins or a particular sub-type such as the enzymes.  I will 

concentrate below on two widely used schemes: the enzyme commission and gene 

ontology classification schemes.   

1.1.1.1 Enzyme Commission Classification Scheme 

The enzyme commission (EC) classification is a hierarchical classification scheme 

for the description of enzyme function and catalysed reactions.  This is a well 

established and widely used scheme, the specific details of which can now be found 

online (http://www.chem.qmul.ac.uk/iubmb/enzyme/).  A database resource, called 

ENZYME (Bairoch, 1993; Bairoch, 2000), is available, which provides links from 

the EC descriptions to associated protein sequence databases, such as UniProt 

(Apweiler et al., 2004).   

The structure of the EC naming scheme takes on the form of a four level hierarchy 

(EC A.B.C.D).  The top level (A) consists of six principal enzyme classes, these are: 

(1) EC 1 – the Oxidoreductases; (2) EC 2 – the Transferases; (3) EC 3 – the 

Hydrolases; (4) EC 4 – the Lyases; (5) EC 5 – the Isomerases; and (6) EC 6 – the 

Ligases.  The other levels are dependent on the principal class and sub-classify each 

into progressively more detailed specifics regarding the enzyme reaction catalysed. 

The problems associated with this classification scheme, with respect to its use as a 

description of protein function are well documented (Whisstock and Lesk, 2003; 

Babbitt, 2003).  The main point of caution is that the EC scheme nomenclature was 

designed as a way of describing the reactions catalysed and not specifically the 

sequence or structural features of the proteins which catalyse them.  A further point 

of note, especially important in terms of automated function prediction and 

annotation methods, is the “functional distance” between the specific functional 

descriptions (Pawlowski et al., 2000).  For example, when comparing proteins which 

have different substrates, it is not always clear from the description the precise 

degree of difference in the biochemical reactions or the functional properties of the 

proteins involved.  Generally this is overlooked and a simple correlation is assumed 

between the level of functional specificity and the number of matching values in the 

four-level EC hierarchy.  This problem of functional distance between alternate 

http://www.chem.qmul.ac.uk/iubmb/enzyme/
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protein functions is one that is important when considering the specific accuracy 

levels and therefore the benchmarking of protein function prediction methods.  

1.1.1.2 The Gene Ontology 

A more general and detailed classification scheme for all classes of proteins is 

provided by the gene ontology (GO) project (Ashburner et al., 2000).  The gene 

ontology is designed as a structured ontology with three sections describing the 

biological processes, cellular components and biological functions of the associated 

genes or gene products.  GO terms are represented by a directed acyclic graph 

(DAG) in which the level of functional specificity increases as the graph is 

descended from a more general classification at a „parent‟ node to a more specific 

function at a „child‟ node.  Figure 1.1 shows an overview of some of the terms at the 

top of the GO hierarchy for each of the three main categories.  A more detailed view 

of the ontology can be browsed using the interactive tools available online 

(www.geneontology.org). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Example showing a selection of gene ontology terms.  For 

clarity, not all possible gene annotations are shown at each level. 

Concerted efforts are currently underway to provide detailed GO annotations for 

genes and gene products in major sequence databases and for particular genomes 

(Gene Ontology Annotation (GOA) project (Camon et al., 2004)).  Also, evidence 

codes are being used in the gene ontology for recording the source of the 

annotations.  This is particularly important for judging the quality and reliability of 
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the annotated data, especially when benchmarking the reliability of automated 

methods.  There are a number of evidence codes provided for inferring the source, 

however, the most important distinction is between those that have arisen from 

expert human manual annotation and those from automated methods. 

The gene ontology is currently the most comprehensive general classification 

available for proteins and is becoming the standard for use in annotation projects and 

prediction experiments.  However, the complexity of the gene ontology requires 

careful consideration when measuring functional distances, especially with regards 

to the levels of functional specificity. 

1.1.2 Classification of Protein Sequence and Structure 

Through evolutionary analysis of the sequence and structural properties of proteins, 

patterns and relationships become apparent, allowing classification into families of 

homologous proteins (Orengo and Thornton, 2005).  In general it is possible to 

consider the classification of proteins using clustering algorithms based on sequence 

or structural similarity measures to define hierarchies.  The categories range from 

general, commonly shared properties at high similarity, to a finer granularity when 

considering lower levels of similarity.  With respect to understanding protein 

function these classifications can provide important information, as often there is 

correlation between sequence, structural and functional similarity (Todd et al., 1999).  

However, the level of sequence and structural similarity is not always a reliable 

measure of function, meaning more powerful methods of analysis are required, 

especially when considering specific detailed functional properties. 

1.1.3 Evolution and Protein Function 

Central to the creation of new protein functions are evolutionary mechanisms and 

homologous relationships.  The continuing accumulation of sequence and structural 

information is producing significant breakthroughs in the understanding and methods 

used for analysis of evolutionary aspects of protein sequence, structure and function.  

Some important concepts relevant to this area are described below.   

1.1.3.1 Evolutionary Divergence 

During gene replication, mutations can arise in the DNA sequences, producing either 

synonymous or non-synonymous substitutions.  Due to the redundancy of the genetic 
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code some mutations within codons will produce no change in the translated amino 

acid sequence (synonymous substitutions).  However, others will produce mutations 

in the translated amino acid sequences (nonsynonymous substitutions).  Synonymous 

substitutions are important when analysing changes in DNA sequences, especially 

when measuring rates of evolutionary change.  The emphasis of this work, however, 

is on the functions of proteins and therefore nonsynonymous mutations are those of 

most interest. 

The gradual accumulation of mutations from a common ancestor through the process 

of natural selection is known as divergence.  This is the mechanistic basis for both 

the diversity and similarity seen between groups of homologous proteins when they 

are classified into sequence, structural and functional families.  An understanding of 

the effects of these mutations is vital for studying changes of functional specificity 

between homologous proteins and the subsequent development of methods for 

accurate prediction of function from sequence. 

1.1.3.2 Gene Duplication 

A key mechanism in the development of new protein functions is that of gene 

duplication (Ohno, 1970; Taylor and Raes, 2004).  Whenever a duplication event 

occurs, a redundant copy of the gene is created within the organism.  Like other 

mutation events, gene duplication can be advantageous, deleterious or neutral.  In 

general a duplicated gene will be free from evolutionary constraints to undergo 

divergence, possibly leading to the development of a new specific function without 

impairing the fitness of the organism.   Although the gene pair will be related by a 

single common ancestor, the two copies may evolve along different pathways 

creating separation of function, leading to new protein sub-functionalisation. 

There are many reported examples of divergent evolution producing changes in the 

specificity of protein function (Whisstock and Lesk, 2003).  A commonly used 

example is that of the serine proteinases.  This is a good example of the possibilities 

of functional divergence because it shows examples of both the gradual change in 

specificity through gradual mutational divergence and also large changes in function 

through point mutations of small numbers of important functional residues (Patthy, 

1999). 
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1.1.3.3 Orthologous and Paralogous Relationships 

An important consideration when analysing the evolutionary history of genes, 

proteins and their functions is the effect of speciation.  Two definitions (Fitch, 1970) 

are required to describe the relationship between genes in different species and gene 

pairs within the same species: 

Orthologs:  Are genes in different genomes that have been created by the separation 

of species, through speciation; 

Paralogs:  Are genes in the same genome that have been created by gene duplication 

events. 

Identification and discrimination between orthologous and paralogous proteins is an 

important area for the study and prediction of specific protein functions and also to 

the field of comparative genomics.  The availability of complete genome sequences 

makes possible attempts to identify and classify orthologous proteins.  One approach 

to this is the clusters of orthologous groups (COGs) method (Tatusov et al., 1997; 

Tatusov et al., 2003), which uses an all-against-all BLAST based sequence similarity 

search to identify sets of proteins that occur in at least three different divergent 

genomes. 

Orthologous proteins generally carry out identical or at least very similar functions in 

their respective genome, because of this, their identification and categorisation can 

be of particular importance when considering methods for the prediction of function.  

Accurate differentiation of orthologs and paralogs at different evolutionary distances 

should provide important information for the separation of specific functional 

groupings. 

1.1.3.4 Sequence Similarity Database Searching 

Fast, reliable and efficient solutions are required to identify similarities and possible 

evolutionary relationships between large numbers of protein sequences.  Database 

search techniques have been developed for this purpose, taking a query sequence as 

input to provide similarity measures to all other sequences in the search database.  

The first methods developed for this purpose were FASTA (Pearson and Lipman, 

1988) and BLAST (Altschul et al., 1990), which provided improvements in speed 
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over dynamic programming methods.  The efficiency gains of these methods are 

provided by the use of heuristic “k-tuple” search techniques which look for matching 

patterns of consecutive characters of length k in the query and the search database 

sequences.  A local alignment from these seed patterns is then generated to provide 

similarity scores and identify high scoring pairs (HSPs) of sequences.   

An important feature of these methods is their use of a robust statistical framework 

for calculating the significance of matches between the query and aligned sequences.  

A value called the expect value (E-value) is used as the basis for this through the use 

of extreme value statistics.  It represents the number of times that you would expect 

to get the match score observed between a pair of sequences by chance, using a 

database of known size.  Parameters such as the database size and aligned sequence 

lengths affect this value and should be taken into account when interpreting the 

output (Jones and Swindells, 2002). 

To improve the sensitivity and allow the reliable identification of more distant 

sequence homologues, powerful profile-based search techniques have been 

developed.  These provide identification of possible homologues at lower values of 

sequence identity, within a region commonly known as the twilight zone (Feng and 

Doolittle, 1996).  Profile based (Gribskov et al., 1987) and probabilistic methods for 

sensitive database searching are based on the residue conservation patterns observed 

from multiple sequence alignments.  A widely used extension to the BLAST 

algorithm is PSI-BLAST (Altschul et al., 1997; Schaffer et al., 2001), which 

implements an algorithm that carries out iterated database searches using sequence 

profiles generated from position specific scoring matrices (PSSMs). 

Other sensitive search techniques have been developed that use hidden Markov 

models (HMM) (Eddy, 1996) to generate probabilistic models of residue 

conservation.  Although these methods are more sensitive than the PSSM based 

profile methods (such as PSI-BLAST) they are also more computationally 

expensive. 

1.1.3.5 Multiple Sequence Alignments 

Multiple sequence alignments (MSAs) provide a powerful method for the analysis of 

evolutionary relationships between families of protein sequences.  Columns of 



25 

 

conserved properties within multiple alignments generally indicate structurally and 

functionally important regions.  A number of methods have been developed towards 

improving the overall sensitivity of multiple alignment approaches (such as: 

CLUSTALW (Thompson et al., 1994); T-COFFEE (Notredame et al., 2000); and 

Gotoh, 1999).  The most commonly used is progressive alignment, which is based on 

heuristics that attempt to exploit evolutionary relationships between homologous 

sequences through the use of a guide tree.  The heuristic nature of these algorithms 

does not guarantee an optimised set of alignments but the advantages of speed and 

computational efficiency provided compensate for this. 

1.2 Automatic Protein Function Prediction 

Accurate, reliable and fully automated methods for the prediction of protein function 

are of major importance in the area of computational biology and bioinformatics 

analysis.  Its importance continues to grow in tandem with the continuing growth of 

available sequence data from high-throughput genome sequencing projects (Lander 

et al., 2001; Venter et al., 2001) and structural data from structural genomics projects 

(see website: http://sg.pdb.org).  The difference between available sequence and 

structural data is significant.  As of January 2009, there are 6,964,485 sequences in 

UniProt release version 39.6 (Apweiler et al., 2004) compared to 55,271 solved 

structures in the PDB (13-Jan-2009) (Berman et al., 2000).  With regards to available 

functional annotation data, statistics from the gene ontology annotation (GOA 

UniProt version 67.0) project (Camon et al., 2004) show that there are currently 

86,332 distinct proteins that have been manually annotated with GO functional 

terms.  There is clearly a need for automated annotation methods to supplement the 

data currently available.  A number of good reviews are available (Whisstock and 

Lesk, 2003; Rost, 2003; Valencia, 2005; Watson et al., 2005) covering a range of 

areas important for prediction and annotation.  Here, the aim is to provide a detailed 

discussion, related to my research, of previous work carried out on sequence based 

methods for protein function prediction.  Particular attention is focussed on methods 

for accurately discriminating specific functions between homologous groups of 

proteins. 
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1.3 Sequence Homology Based Function Prediction 

Methods 

1.3.1 Homology Transfer 

The principle method for identifying the function of an unknown protein sequence is 

through the use of database similarity search techniques such as BLAST (Altschul et 

al., 1990) or PSI-BLAST (Altschul et al., 1997).  A typical approach would be to 

assign the function of a closely related homolog to that of an unknown query, using a 

particular threshold of sequence similarity or statistical significance for deciding the 

reliability of the annotation transfer.   

1.3.1.1 Analysis of the Correlation between Sequence, Structure and 

Functional Similarity 

A number of research groups have systematically analysed the correlation between 

protein sequence similarity and the level of functional conservation.  Studies of this 

kind aim to provide a measure of the accuracy and error associated with using 

sequence similarity thresholds for the transfer of function.  The variation in the 

analytical methods used has led to discrepancy for specific thresholds between levels 

of sequence similarity measure and functional conservation (Valencia, 2005).  

However, a general trend is observed in all the results.  As the sequence similarity 

increases the level of functional conservation also increases, showing a correlation 

between similarity of sequence and function (Wilson et al., 2000).  Although this is 

also true for differing levels of functional specificity, in general, the more specific 

the level of function the higher the sequence similarity required for correlation and 

therefore accurate transfer of function. 

1.3.1.2 Analysis of Single-Domain Proteins 

An early study by Hegyi and Gerstein (1999) of the relationship between SCOP 

(Murzin et al., 1995) structural domains and their enzyme function (as specified by 

the enzyme commission (EC) classification scheme) showed a correlation between 

major SCOP fold classes and broad functional categories.  This analysis was then 

extended to other structural and functional classification schemes for a detailed 

analysis of the yeast genome, with an observed fold-function correlation for a 

number of functional properties.  Martin et al. (1998) also investigated the 
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relationship between general EC class and the CATH fold classification.  In this 

study it was found that the fold was related more closely to the ligand type rather 

than top level EC number classification. 

This work was followed by a number of studies that attempted to get firm threshold 

values for functional annotation transfer at varying levels of functional specificity.  It 

is difficult to make direct comparisons between all these due to the different methods 

and functional classification schemes used; however, a summary of these results 

highlights certain trends: 

 Wilson et al. (2000) showed (using a combined ENZYME and FLYBASE 

(Gelbart et al., 1994) functional classification scheme) that precise function was 

conserved down to 40% sequence identity and broad functional class down to 

around 25%. 

 Devos and Valencia (2000) used both EC numbers and Swiss-Prot keywords as 

measures of functional equivalence.  Concentrating on the EC conservation 

results (these are commonly used and therefore more easily comparable between 

other studies, also the change in level of specificity is easier to see) they state that 

above 70% sequence identity is required for reliable transfer of all 4 EC 

numbers, 50-70% for the conservation of the first 3 EC numbers, and that below 

30% assignments of function based on sequence identity become problematic.   

 Todd et al. (2001) carried out a similar study to Devos and Valencia, using single 

and multi-domain proteins from CATH (Orengo et al., 1997), with EC numbers 

as the measure of functional conservation.  The results show that the first three 

EC numbers are conserved with an accuracy of 90% above a 30% sequence 

identity threshold and that above 40% variation in the fourth EC number 

becomes rare. 

1.3.1.3 Extension of Analysis to Include Multi-Domain Proteins 

Due to the importance of multi-domain proteins, especially in eukaryotic genome 

analysis, some of the above methods have been extended to incorporate multi-

domain proteins.  Hegyi and Gerstein (2001) extended their earlier work (Hegyi and 

Gerstein, 1999) and that of Wilson et al. (2000), including both single and multi-

domain proteins in a similar analysis.  Multi-domain proteins were again taken from 
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Swiss-Prot and identified as those showing a match to at least two domains of known 

structure belonging to different SCOP superfamilies.  Functional categories were 

defined using Swiss-Prot keywords.  The results showed that there was significantly 

more conservation of accurate transfer of approximate function for the single (67%) 

domain proteins compared to the multi-domain (35%), although this value rose to 

80% when two domain folds are shared.  

Rost (2002) approached an analysis of sequence similarity and conservation of EC 

numbers in the Swiss-Prot database (Apweiler et al., 2004) with the aim of reducing 

the effect of the inherent bias in the sequence databases.  This bias is proposed to 

arise from experimental bias in the type of sequence data deposited and also high 

levels of sequence redundancy.  The results obtained by Rost show a clear difference 

to those of earlier studies, suggesting that the sequence identity threshold required 

for accurate functional annotation transfer is higher than previously reported.  With 

more than 70% sequence identity required for accurate transfer of all four levels of 

EC numbers. 

Tian and Skolnick (2003) followed this study, also using enzymes, taking into 

account bias in both functional and sequence properties.  This method proposed that 

a further bias exists in terms of the represented enzyme functional groupings in 

Swiss-Prot.  The figures they obtained were not as pessimistic as those of Rost 

(2002), but still showed less conservation than most of the other studies previously 

discussed - suggesting a 60% sequence identity threshold for accurate transfer of all 

four EC number levels. 

The studies of Rost (2002) and Tian and Skolnick (2003) both also looked at the 

correlation of BLAST and PSI-BLAST E-values with enzyme functional 

conservation.  These show the same general trend seen in the correlation with 

sequence identity.  As statistical significance of the matches decreases, the reliability 

of specific functional prediction also decreases, and even at particularly significant 

(low) E-values there are still examples that show incorrect functional conservation.  

These findings are particularly important because they show that even statistically 

very significant matches, obtained from powerful homology recognition techniques, 

can produce incorrect functional assignment. 
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Although arguments relating to the best datasets to use and the corresponding correct 

process for removal of bias will most probably continue, the general conclusion is 

clear.  Sequence similarity methods are generally a good indicator of general 

function, however, they become less reliable when either the level of specificity 

required is increased or the similarity is reduced.  Caution is therefore required when 

using simple transfer of homology techniques for functional annotation, especially 

when considering high specificity applications (Devos and Valencia, 2001).   

1.3.2 Sources and Extent of Database Annotation Errors 

A major concern of automatic annotation efforts is the proliferation of erroneous 

functional database annotations (Brenner, 1999; Devos and Valencia, 2001; 

Iliopoulis et al., 2003).  Possible reasons proposed for the source of the mistakes in 

annotation include: insufficient level of sequence similarity used for the annotation; 

typographical errors; and use of previous incorrect annotations for new annotation.  

An analysis of the propagation of database errors has been carried out using 

mathematical modelling techniques which suggests that the annotation errors may 

grow at an exponential rate with the growth of database sizes (Gilks et al., 2002).  

Guidelines for successful annotation strategies are described by Iliopoulis et al. 

(2003).  Probably the most important of these is the clear indication and reliability of 

the source annotation, which constitutes an important part of the GO annotation 

project and also the detailed information fields in Swiss-Prot.  Levels of reliability 

for automated annotation results can be given depending on whether the source 

annotation is from a manual expert annotation or a previous automated annotation.  

A further source of improvement to the quality of annotations, discussed by 

Ouzounis and Karp (2002), is the regular re-annotation of databases.  The time 

consuming nature of this type of procedure necessitates full automation providing 

further weight to the need for high-quality automated tools for functional annotation. 

1.3.3 Low Specificity Automated Function Prediction 

A number of methods have been proposed for automated high throughput annotation 

of genome sequences.  Generally these are based on the understanding that there are 

problems with the homology based approaches, however, for a large number of 

annotations, especially when considering more general, lower functional specificity, 

the accuracy is acceptable.     



30 

 

1.3.3.1 GeneQuiz 

One of the earliest automated functional annotation systems was GeneQuiz (Andrade 

et al., 1999) and consists of a combination of sequence similarity (BLAST and 

FASTA) and rule-based processing algorithms for annotation of both general and 

more specific functional class.  A web-site with details of full genome analyses is 

available (http://jura.ebi.ac.uk:8765/ext-genequiz/).  An overview of the system 

shows a general methodology common in many of the automated systems: 

 A sequence similarity threshold is initially applied to select the most similar 

sequence pairs to the unknown query sequence; 

 Analysis of existing functional annotations (in the case of GeneQuiz this is 

through rule based lexical analysis of functional keywords and EC numbers) is 

carried out to obtain a consensus result of the most reliable function descriptions 

to apply to the query sequence; 

 Application of annotation to query sequence, sometimes with an indication to the 

level of reliability of the assignment; 

 Option for further manual analysis and editing of the result through use of 

additional “support methods”, such as, multiple sequence alignments and motif 

database searches. 

Assignment of function using a method like GeneQuiz shows some improvement 

over “top-hit” homology transfer because the derived functional annotations are 

based on a combination of sequence similarity, database quality and source 

annotation quality. 

1.3.3.2 Automatic Annotation of TrEMBL Database 

An important system to consider is one underpinning the automated annotation of 

the TrEMBL (Apweiler et al., 2004) section of the UniProt protein database 

resource.  The algorithmic details and information flow of the system are described 

in detail elsewhere (Moller et al., 1999; Fleischmann et al., 1999; Kretschmann, 

2001), but a look at the overview of the methods used shows a similar (but more 

complex) integrated rule-based processing approach to that of GeneQuiz.  An 

important consideration in the design of this system was that the aim of TrEMBL is 
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to eventually move all sequences into the related Swiss-Prot database; therefore the 

rules used for automated annotation are used to help inform the manual annotation 

procedure. 

1.3.3.3 PEDANT (Protein Extraction, Description and Analysis Tool) 

The aim of PEDANT (Riley et al., 2005 – http://pedant.gsf.de) is to produce a 

software system capable of a number of genome scale sequence analysis tasks.  This 

includes automated analysis of protein function based on high-stringency BLAST 

sequence similarity searches to identify manually annotated homologous proteins for 

function transfer.  A number of different functional classification schemes are used, 

including EC numbers.  The system also assigns sequences according to COGs 

(Tatusov et al., 2003) and carries out sequence motif and pattern detection searches 

against a number of sequence motif databases.  Although the system provides 

methods to prevent proliferation of potentially incorrect automatic annotations it is 

still based on fairly simple sequence similarity based search techniques, and will 

therefore suffer from the problems already discussed when considering high-

specificity predictions. 

Recent efforts towards large-scale protein sequence annotation have concentrated on 

the gene ontology (GO) framework as the basis for the functional classification (for 

example: Xie et al., 2002; Martin et al., 2004).  Again, the main basis for these 

methods is the use of similarity based search techniques with additional filters to 

refine the predictions.  Xie et al. (2002) describe a method that incorporates a 

clustering algorithm based on the sequence identity and BLAST E-values to group 

proteins with potentially similar GO terms.  The reliance of this method on text-

parsing of annotation literature sources means that it is limited by the quality of the 

text processing engine and the availability of good literature sources.  

The GOtcha method (Martin et al., 2004) is compared to the top-scoring BLAST hit 

for each input sequence.  The key factors related to this method are the accuracy and 

confidence estimates provided for each annotation.  Overall though, the method is 

aimed at providing greater annotation coverage rather than a major improvement in 

the level of specificity of predictions.  
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1.3.3.4 General Limitations 

Most of the methods described above suffer from a number of limitations, especially 

when considering their application to high-quality, reliable and high specificity 

function annotations.  For some of the methods this is down to the fact that the 

inherent design is for increased coverage of annotations, at a cost of a fairly general 

level of specific functional classification.   

A number of approaches have been proposed for a more detailed analysis of protein 

function allowing the identification of specific functional sub-types from groups of 

closely related proteins.  Many of these methods aim to take advantage of 

information describing evolutionary relationships within protein families.  These will 

be the focus of the next section and are of most interest for this thesis. 

1.3.4 High-Specificity Phylogenetic Approaches to Protein Function 

Prediction 

One of the main limitations of sequence homology transfer methods, for function 

prediction, is their performance at identifying specific functional subfamilies in 

closely related families of sequences.  It has been shown that both phylogenetic 

reconstruction (Eisen, 1998; Eisen and Wu, 2002; Sjolander, 2004; Johnson and 

Church, 2000) and the identification of functionally determining residues 

(Livingstone et al., 1993; Casari et al., 1995; Hannenhalli and Russell, 2000; del sol 

Mesa, 2003; Lichtarge et al., 1996) in functionally related protein families, through 

the use of multiple sequence alignment (MSAs), can help towards improving the 

specificity of protein function predictions.  With the continued increase in available 

protein sequences and full genome sequence sets these evolutionary methods are 

becoming more powerful and important for function analysis. 

1.3.4.1 Phylogenetic Reconstruction Methods 

Increased sequence information has led to an increase in the use of molecular 

phylogenetic techniques for analysis and prediction of protein function from 

sequence.  There are three reviews of particular importance in this area (Eisen, 1998; 

Eisen and Wu, 2002; Sjolander, 2004), describing ways in which phylogeny can be 

most effectively combined with sequence analysis to improve methods for automated 

function prediction.  A closely related area of research, which is discussed in the next 
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section, uses phylogenetic information to identify functionally important amino acid 

residues. 

The review by Sjolander (2004) provides an overview and discussion (see figure 1.2) 

of the important stages for the prediction of function using molecular phylogeny.  

This methodology is an expanded form of that originally proposed by Eisen (1998).  

Not all stages in this methodology are investigated during the experiments in this 

thesis, however, it provides a good basis for discussion of some key areas and 

previous work, related to the prediction of protein function using molecular 

phylogeny based techniques. 

 

Figure 1.2.  Flowchart showing the key stages in molecular phylogenetic 

analysis of protein function.  Adapted from Sjolander (2004). 

1.3.4.2 Identification of Homologous Sequences 

The first stage is the collection of sequences homologous to the unknown query 

protein.  Three potential limitations are highlighted when using homolog detection 

for phylogenetic analysis; these are: (i) analysis of protein domains; (ii) possible 

inclusion of false positives (non-homologs); and (iii) profile drift due to iterated 

searches.  The effects of the second and third problems can be reduced by a number 

of means, the most obvious being the use of more conservative parameters when 

including related sequences in the iterated homology search.   

1.3.4.3 Multiple Sequence Alignment 

High quality MSAs are essential for the accurate and reliable algorithmic 

reconstruction of phylogenetic trees.  A number of applications are available for 
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multiple sequence alignment; some commonly used ones are: CLUSTAL-W 

(Thompson et al., 1994); T-COFFEE (Notredame et al., 2000); MAFFT (Katoh et 

al., 2002); and MUSCLE (Edgar, 2004).  When considering automated approaches, a 

compromise must be reached between the quality of the alignments and the 

computational efficiency.  A further, computationally less demanding source of 

multiple sequence alignments is from the output of PSI-BLAST through use of the   

–m 6 output parameter.  These are essentially a concatenation of the multiple pair-

wise sequence alignments identified by the sequence database search. 

Methods for assessing the quality and reliability of regions within multiple sequence 

alignments have been proposed (e.g. Tress et al., 2003).  This type of reliability 

analysis is important for the accurate detection of conserved functionally 

determining residues, which is discussed in detail below.  There have also been 

studies that look at reducing the level of sequence redundancy in multiple sequence 

alignments.  An interesting method based on the multi-dimensional QR factorisation 

of multiple sequence alignments has been proposed by Sethi et al. (2005).  This 

algorithm is specifically designed to reduce evolutionary redundancy in groups of 

homologous sequences to produce evolutionary optimal sequence sets for 

phylogenetic analysis. 

1.3.4.4 Phylogenetic Analysis and Tree Construction 

Algorithmic methods for phylogenetic tree construction are well studied.  Sjolander 

(2004) concludes that the computational efficiencies of distance based reconstruction 

algorithms (such as neighbour joining) compared to character based (such as 

maximum parsimony) make them more widely used and applicable to high-

throughput computational analysis.  A number of other factors can be highlighted 

regarding the problems in assessing the performance of different tree reconstruction 

methods, such as, PHYLIP (http://evolution.genetics.washington.edu/phylip.html).  

The main limitations are: (i) lack of non-simulated test data and (ii) the necessary 

trade-off that is required between fast efficient computational methods and 

robustness for high-throughput automated applications.  It is concluded that none of 

the methods show any particular advantage in all cases, with the use of phylogenetic 

bootstrap analysis (Felsenstein, 1985) combined with a number of multiple 

alignment and tree construction methods recommended. 
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An important step towards the inference of function from molecular phylogenetics is 

the overlay of existing experimental information onto the reconstructed phylogenetic 

tree containing query and related sequences.  A crucial factor is the use of good 

quality, manually verified, annotation data of the type available from databases like 

Swiss-Prot.  Introduction of evidence tags in the gene ontology to track the source of 

annotations is also an important development for these types of studies.   

1.3.4.5 Identifying Orthologous Relationships 

Eisen (1998), Eisen and Wu (2002) and Sjolander (2004) highlight the importance of 

distinguishing orthologs and paralogs in phylogenetic studies of protein function.  

This is an important task when considering high-specificity functional properties, 

because if an ortholog to the query function can be identified then it is likely that 

they will share identical (or at least very similar) specific functions.  The clusters of 

orthologous groupings (COGs) method is a resource of orthologous relationships 

between proteins.  Other methods developed for the identification of orthologs use 

phylogenetic reconstruction methods rather than the sequence similarity of COGs 

(Storm and Sonnhammer, 2002).  These methods are likely to give more specific 

functional information but may be limited for high-throughput methods by increased 

computational costs. 

1.3.4.6 Prediction of Function 

The final stage in the analysis process is the actual prediction of likely function for 

the unknown query protein sequence.  Information gained from the earlier stages of 

analysis should provide a culmination of evidence on which to base a reliable 

prediction of the unknown protein function.  The best way in which to reliably 

combine this information, to produce accurate high-specificity predictions, will form 

one of the main research topics of this thesis.  

A number of methods have been developed towards improving the level of 

automation and level of prediction specificity.  An early method - Bayesian 

Evolutionary Tree Estimation (BETE) (Sjolander, 1998) - was applied to SH2 

protein domains.  The method creates profiles of each sequence in a multiple 

alignment; an iterative partition algorithm then computes the total relative entropy 

(TRE) between each profile, progressively grouping together the pairs with the 

lowest TRE.  The aim of this is to find an optimal partition of the phylogenetic tree 
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of sequences, with the final sequence groupings corresponding to subfamily specific 

functional profiles.  A change in the subfamily annotation of Swiss-Prot for the 

SRC2_DROME protein was prompted by the analysis results from this method.  The 

BETE method has also been successfully used by Celera Genomics for annotation of 

functional subfamilies (Sjolander, 2004).  

Johnson and Church (2000) investigated the use of phylogenetic analysis to improve 

the identification of specific ligand-binding functions in two related protein families 

with similar folds but different binding site specificities.  This method was then 

applied to other unknown sequences to try to identify specific ligand-binding 

functions.  An interesting feature of this method is that the predictive power of the 

phylogenetic trees for the whole domain sequences and those of just the binding cleft 

were compared.  Analysis of the results showed that whole domain sequence 

similarity was not a good indicator of binding-site specificity.  In contrast the 

phylogenetic groupings from the binding-site sequence subset showed good 

differentiation of the different binding specificities.  A limitation of this method, 

especially in terms of extending it to a more general automated approach, is that 

prior knowledge of binding site locations is required for successful implementation.  

One way in which this information could be obtained is through the use of 

automated algorithms for the detection of functionally important residues.  These are 

discussed in detail below and form an integral part of this thesis. 

1.3.5 Identification of Function Determining Residues 

During evolutionary divergence of protein sequences functionally important residues 

are conserved due to the pressures of natural selection.  Methods for the 

identification and analysis of the particular amino acids and their physico-chemical 

properties within these conserved regions are particularly important for prediction of 

specific protein functions (Valdar, 2002). 

1.3.5.1 Entropy 

An important concept for the analysis of the level of conservation within regions of 

aligned sequence residues is entropy.  This is commonly defined using a measure of 

the average uncertainty of an outcome, from information theory, called the Shannon 

Entropy (Durbin et al., (1998)) (see equation 1.1). 
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                                               (equation 1.1) 

Where:       is the probability of observing the event,    , in a discrete set of k 

events.  In the context of amino acid conservation, where k is commonly taken to be 

20 (the number of standard amino acids), there is complete conservation of one 

amino acid type when the entropy is 0 and outcome, k, is certain.  Conversely, the 

entropy is maximised when all amino acids are equally likely and the outcome is 

maximally uncertain. 

1.3.5.2 Sequence Based Methods 

Early work in the analysis of residue conservation was carried out by Livingstone 

and Barton (1993).  This method carries out hierarchical clustering of MSAs into 

sequence subsets, based on criteria such as sequence identity and functional 

similarity.  Conservation scores for residues at each alignment position are then 

calculated through a simple analysis of the physico-chemical properties (Taylor, 

1986) of each of the residues.  The method was applied to an alignment of 67 SH2 

domains, which led to correct identification of phosphotyrosine-binding residues and 

also conserved secondary structure elements.   

A novel method - “SequenceSpace” - developed by Casari et al. (1995) represents 

each sequence in a multiple alignment as a vector in a multi-dimensional “sequence 

space”.  The key feature of this method is the use of principal component analysis to 

identify the characteristic residues and positions that define the functional 

specificities of each protein subfamily.  Projection of the conserved residues onto 

lower dimension clusters allows the degree of conservation of the residues to be 

visualised and measured by the distance of the sequence clusters (vector lengths) 

from the centre of the space of principle components.  An analysis of the Ras-Rab-

Rho superfamily is used as an example, showing how the direction of the vectors can 

be used to define the specific residues of importance for the function of each 

subfamily.  Also, an application of the method to the reduction of phylogenetic tree 

complexity by using only the identified subset of specific functional residues is 

shown.  The SequenceSpace method identified both the highly conserved 

phosphotyrosine binding residues and more specific peptide binding residues, 

therefore showing an increased specificity over that of Livingstone et al. (1993). 
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1.3.5.3 Comparative Analysis of Methods 

A study by Pazos et al. (1997) compared four methods for calculating tree-

determinant residues: (i) SequenceSpace; (ii) evolutionary trace (ET) (Lichtarge et 

al., 1996); (iii) a method for comparing subfamily conservation (Dorit et al., 1995); 

and (iv) a method using self-organising maps (SOM) of sequence clusters (Andrade 

et al., 1997).  SequenceSpace was shown to be the most effective for the 

determination of specific functional residues and the SequenceSpace and SOM 

methods were shown to be most stable to the inclusion of distantly related sequences 

within the multiple alignment. 

A more recent study (del sol Mesa et al., 2003) implemented three automatic 

methods for the prediction of functionally important residues from protein 

sequences.  The primary goal of this study was a systematic, statistical assessment, 

of the role that conserved “tree-determinant” residues can play in identifying 

functional specificity.  This type of analysis is of particular relevance because it 

concentrates on methods for automated high-specificity functional analysis.  The 

three implemented methods are: 

 “The Level Entropy Method” (S-method) – The main aim of this method is to 

study the conserved residues acting as specific functional tree-determinants using 

a phylogenetic tree of the protein family.  Different partitions of the tree are 

investigated and the relative entropy is measured to find the most stable tree-

level, which produces the most informative separation of sub-families.  The 

physico-chemical properties of the amino acids are not explicitly taken into 

account in this method;   

 “The Mutational Behaviour Method” (MB-method) – The aim of this method is 

to calculate the mutational behaviour of potential tree-determinant positions and 

compare them to that of the whole sequence family.  Mutational behaviour is 

determined by evolutionary constraints and assessed using correlation matrices 

and rank correlation criteria.  The aim of this study was to identify and separate 

functional families using conserved residues.  The hypothesis is that the 

mutational behaviour of the tree-determinant residues will be the same as the 

whole set of family sequences; and 
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 “SequenceSpace Automization Method” (SS-method) – This is an automated 

implementation of the SequenceSpace method of Casari et al (1995).  A 

geometric clustering algorithm calculates an optimal number of clusters from the 

initial PCA analysis and then attempts to identify positions relating to conserved 

residues between subfamilies. 

Each method was tested on two sets of non-redundant sequence families that have 

known, single chain, representative structures in the PDB.  One set contained 191 

families (binding sites associated with various heteroatoms) while the other contains 

112 (associated with annotated PDB SITE records).  With regards to the coverage of 

the three methods, it is noted that there are some constraints dictated by the number 

and level of conservation of the sequences representing each family grouping.  The 

MB-method is unaffected by this and will always be able to predict some tree-

determinants, whereas the SS-method and S-method are more sensitive to these 

factors.  The results of this study are judged on the proximity of the identified 

functional residues to either those heteroatoms deemed functionally important or 

PDB sites.  The results do not clearly stake a claim for any of the three methods over 

the other.  In-fact, as a general rule, it was found that the intersection of prediction 

results for two, or all three methods, increased the quality of the results.  The results 

were also complicated by their dependency on the type and size of the functional 

heteroatoms. 

A more recent study by Pazos et al. (2006) explores the extension of the MB-method 

to incorporate a functional similarity matrix into the correlation calculation of 

mutational behaviour of sequences.  This is essentially a supervised form of the MB-

method, with prior functional grouping, and is discussed in more detail in chapter 4 

of this thesis. 

The ConSeq method of Berezin et al. (2004) identifies functionally important 

sequence residues through the incorporation of the “Rate4Site” algorithm.  This 

algorithm uses the Maximum Likelihood method for phylogenetic tree 

reconstruction, which, unlike the neighbour-joining methods of phylogeny, takes 

into account the rate of evolutionary divergence at particular residue positions.  This 

is, however, quite a computationally expensive algorithm when compared to some 

the other methods previously discussed. 
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1.3.6 Profile-Based Methods for Identification of Functional 

Specificity 

A group of related methods are those that attempt to construct sensitive profiles for 

the specific identification of particular functional sub-types.  An early study on the 

use and generation of sequence profiles was published by Gribskov et al. (1987).  

Following on from this work a number of profile-based and HMM-based methods 

have been developed to assist the general functional annotation of protein sequences.   

These include the HMM-based approach of PFAM (Bateman et al., 2004), the 

profile-based motif approach of PRINTS (Attwood et al., 2003), and the integrated 

database of resources provided by tools such as InterPro (Hunter et al., 2009). 

These methods and their associated database resources are commonly used to help 

determine the function of unknown protein sequences.  However, due to the nature 

of these methods, they are usually more suited to the annotation of general protein 

function and care should be taken when annotating a more detailed, specific, level of 

function (Whisstock and Lesk, 2003; Friedberg, 2006).  The main considerations 

when using these types of approaches are the level of coverage that they provide 

when annotating function and also the number of sequence representatives used to 

generate the profiles or HMMs. 

For example, in the case of PFAM, the HMMs contained in the database are 

generated at a protein domain level and are clustered into PFAM families using 

homology based measures, rather than specific functional class.  Therefore, it is 

possible for single families of PFAM HMMs to contain sequences of different 

specific functional sub-classes.  The consequence of this, when using PFAM to 

assign specific enzyme function, is that although the number of false positive 

annotations at a more general level of enzyme classification should be reduced due 

to the increased sequence coverage, they are more likely to be unsuitable for 

determining more specific enzyme classes. 

It is these potential limitations of the general profile and HMM based approaches 

that led to the development of the BLAST-based methods of specific enzyme 

annotation investigated in this thesis.  They also led to the development of other 

more sophisticated profile and HMM based methods for the specific purpose of 

functional annotation that are discussed below. 
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Three particularly important approaches, with regard to protein function prediction 

and subsequent application to the improvement of the accuracy and level of 

specificity, are those of Hannenhalli and Russell (2000), Tian and Skolnick (2004), 

and Pazos and Sternberg (2004).  Each of these methods is quite distinct and has 

been applied to different datasets and functional classification schemes.  

Hannenhalli and Russell (2000) describe a method for the identification of functional 

sub-types and also functionally specific residue positions.  Given a multiple 

sequence alignment and information regarding the specific functional properties of 

each sequence a set of hidden Markov model (HMM) profiles can be constructed to 

represent each specific function.  Potential functional specificity determining 

residues are then identified using a relative entropy based measure, which takes into 

account the likelihood that particular amino acids will be specifically associated with 

one functional sub-type over the others.  A protein sequence of unknown specific 

function can then be compared to the specific profiles to identify the most probable 

specific function.  Four large enzyme families (nucleotidyl cyclases, eukaryotic 

protein kinases, lactate/malate dehydrogenases and trypsin-like proteases) with good 

experimental information, regarding the specific functional properties, were used to 

test the method.  Examples were chosen that could not be separated by simple 

sequence comparisons or phylogenetic tree comparison to demonstrate the power of 

the method, with accuracies (for the four enzyme families listed above) of 96% 

compared to 80% and 74% for sequence similarity and BLAST respectively.  This 

analysis was then extended to include 42 PFAM (Bateman et al., 2004) alignments 

and was also shown to outperform both BLAST searching and sequence similarities 

when identifying most of the specific functional subtypes. 

The method of Tian and Skolnick (2004) uses a combined system – EFICAz 

(Enzyme Function Inference by Combined Approach) - of four recognition methods 

to improve the accuracy of enzyme function predictions, they are: 

1. CHIEFc (Conservation-controlled HMM Iterative Procedure for Enzyme 

Family classification): This procedure consists of carefully built HMMs from 

multiple sequence alignments of each enzyme family.  A method, based on 

information theory, is then used to identify functionally discriminating 

residues (FDRs) for each enzyme family HMM derived by CHIEFc. 
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2. Pairwise Sequence Identity: A specific reliability threshold is used for each 

enzyme family. 

3. Recognition of FDRs in Multiple Pfam enzyme families: This uses the same 

Shannon entropy measure to identify FDRs as method (1) but PFAM 

alignments are used in place of the CHIEFc generated HMMs. 

4. Recognition of multiple high specificity PROSITE (Hulo et al., 2004) 

Patterns 

One of the main outcomes of this study is the importance, of the CHIEFc family 

FDR recognition method, to the high accuracy recognition results that are obtained.  

This is perhaps unsurprising as the CHIEFc method is purposely designed for the 

accurate recognition of specific enzyme functions, defined by their annotated EC 

numbers.  As a result of this and the added effects of the other three methods, the 

combined EFICAz approach shows high accuracy and high sensitivity during testing 

on enzyme sequences in Swiss-Prot and also when applied to automatic annotation 

of the E. coli K12 proteome.  A comparison of enzyme function annotations made by 

EFICAz and KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and 

Goto, 2000) for this genome showed that EFICAz predicted 114 more potential 

enzyme coding genes at the specificity level of four EC numbers.  The majority of 

these in KEGG are either partially annotated (with 54 out of 69 showing correlation 

with the partial annotations provided by EFICAz) or are marked as hypothetical 

proteins and did not have any annotation.  These results suggest that EFFICAz is 

applicable to automated genome annotation and able to make novel specific enzyme 

predictions. 

The approach developed by Pazos and Sternberg (2004), known as 

PHUNCTIONER, varies from the other two methods in that it uses multiple 

structural alignments with the resultant profiles as the basis of its predictions and 

recognition of functionally important areas.  Also, the profiles used in this study are 

based on the GO functional classification scheme.  Starting from a structural 

alignment, proteins with the same annotated GO terms are extracted and grouped 

together.  Profiles of the functionally conserved residues for each GO term are 

identified using a conservation score and high entropy positions are filtered out.  
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Position specific scoring matrices (PSSMs) are then created for each profile and the 

performance for prediction of GO terms is compared to the use of sequence identity.  

PHUNCTIONER is found to perform better than the sequence homology based 

method in most cases.  This is especially true in cases of low (generally less than 

20%) sequence identity.  A further application of PHUNCTIONER was a 

comparison to the SequenceSpace and the Mutational Behaviour (del sol Mesa et al., 

2003) methods for identification of functionally determining residues.  The findings 

indicate that the PHUNCTIONER method is able to identify residues that are related 

to more general lower-specificity GO functional classification, whereas 

SequenceSpace and the mutational behaviour method identify residues that are 

related to more specific functional properties. 

Each of these approaches show good application to the prediction of protein function 

and the identification of functionally determining residues for specific functional 

subtypes.  These methods all share a common limitation, which is their reliance on 

pre-determined functional sub-groups.  The implementation of all three of these 

methods depends on a prior knowledge and availability of a sufficient amount of 

annotated sequence or structural representatives, with the same function, on which to 

base the specific functional profiles. 

1.3.7 Sequence and Structure Based Methods 

The use of structural information in addition to sequence can provide added insight 

into the determination of specific functional residues and protein interfaces (Watson 

et al., 2005; Lichtarge and Sowa, 2002; Filizola and Weinstein, 2005).  These 

methods generally share similar features to the sequence based approaches, with the 

main difference being the requirement of representative, three-dimensional protein 

structures, for the final analysis of the results.  This is especially true for those 

methods that rely on the spatial clustering of residues (Lichtarge et al., 1996; 

Landgraf et al., 2001; Glaser et al., 2003) to assess the accuracy of predicted 

functional residues within biochemically active sites. 

1.3.7.1 Evolutionary Trace Method 

The evolutionary trace method (ET) (Lichtarge et al., 1996) uses evolutionary 

information available from multiple sequence alignments to map predicted, 
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functionally important residues, onto proteins of known structure.  Through use of a 

set of sequence percentage identity thresholds a multiple sequence alignment can be 

partitioned into clusters to form a dendrogram (phylogenetic tree).  A consensus 

sequence can be obtained for the set of sequences either between or within each 

cluster.  This identifies those residues that are indicative of either the general 

functional class (and therefore conserved in a larger number of proteins), or those 

that are only conserved within a subfamily (and therefore relate to the specific 

function of the subfamily cluster).  A number of extensions to the method have been 

proposed that provide more robust statistical analyses of the results and also 

improved levels of automation (Madabushi et al., 2002; Aloy et al., 2001).  

There are a number of other approaches which have looked at utilising structural 

information to improve the quality and specificity of functional site identification 

and protein function prediction (Watson et al., 2005).  The method of Landgraf et al. 

(2001) is described as an extension of the evolutionary trace, with one of the main 

differences being that phylogenetic relationships are not used as input.  The 

theoretical basis for not using phylogenetic information is that proteins with multiple 

functional clusters could be averaged out in the phylogenetic tree, or highly 

conserved residues associated with one function could overshadow those of a 

secondary function.  The evolutionary trace method is not designed to detect 

secondary functional clusters; therefore the authors use a form of correlated mutation 

analysis to highlight conserved clusters through regional similarity relationships.  

This 3D cluster analysis technique has structural information at the core of the 

functional analysis and is not of direct interest with regards to predicting function 

from sequence information.  However, the correlated mutation analysis that is part of 

this method is of interest and (as we have seen above) has been shown by del sol 

Mesa et al. (2003) and Pazos and Valencia (2006) to be successfully applicable to 

sequence based studies of functional specificity. 

Finally, an important consideration when attempting to identify functionally active 

conserved residues, from both sequence and structure, is the differentiation between 

those that are structurally and functionally important (Chelliah et al., 2004).  A 

method incorporated into ConSeq and ConSurf (Armon et al., 2001), which uses 

neural network predictions to differentiate between buried and exposed residues in 
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globular proteins, is one proposed solution to this.  However, this assumes that 

functional residues are always solvent accessible and all buried residues are 

associated with structurally conserved regions.  This is generally a difficult problem 

to solve, due to the unavoidable ambiguity in classification of residues that are 

responsible for structural or functional protein properties. 

1.4 Non-Homology Based Methods for Function Prediction 

It is worth briefly mentioning some methods for protein function prediction which 

are not based primarily on sequence homology detection.  One approach is that of 

Jensen et al. (2003), which uses derived physico-chemical sequence properties 

instead of sequence similarity.  These sequence features are then used as input to a 

system of neural networks for the prediction of GO classifications.  The advantages 

of this method are that it can predict functions for sequences with no known 

homologous relationships (orphan sequences); however, the limitation is that the 

predictions obtained are mostly low specificity general classifications.  Other 

approaches to non-homology based prediction of function through the use of protein-

protein interaction data have also been described (Marcotte, 2000).  A further 

method of interest in relation to sequence based homology prediction is that of 

Espadaler et al. (2005).  This method investigates a combined approach to the 

combination of sequence homology and protein-protein interaction data for use in 

improving structural and functional annotation. 

1.5 Overall Conclusions and Summary 

The comparison of the many different approaches to automated function prediction, 

especially those aimed towards improving the overall accuracy and specificity of the 

functional annotations is an inherently difficult task.  This is due to a number of 

contributing factors: 

 The lack of an unambiguous description of protein function, especially when 

trying to compare levels of specificity; and 

 The lack of benchmark datasets that can be used as a clear way to distinguish, 

compare and judge the performance of newly developed prediction methods 

(Tetko et al., 2005). 
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The efforts of the gene ontology consortium and the annotation projects such as 

GOA are making important contributions to the standardisation of how protein 

functions are described and annotated within sequence databases.  However, 

problems still remain, even with this scheme, as to how best to compare and measure 

the specific functional distance between two predicted functional terms.  For 

example, if the actual function of a protein is x and the predicted function is y, how 

should the resulting accuracy of this prediction be measured?  As has been discussed 

earlier, the EC scheme gives a widely used way of estimating this by treating the 

number of correctly predicted EC numbers as roughly comparable to levels of 

functional specificity.  This has a number of problems, (i) It is only applicable to 

enzymes and (ii) it is possibly too simplistic and will cause valuable information to 

be lost and not considered when assessing the results.  The problem is possibly more 

difficult when considering gene ontology terms.  Due to the graph-based architecture 

of the GO hierarchy an intuitive way of measuring functional distance may be to 

count the number of edges between terms, or possibly for comparing levels of 

specificity, the depth of the term-node in the graph could be used as a measurement.  

The subjective nature of defining protein function makes this a problem that may not 

be solvable in an exact way. 

As we have seen in studies on the level of sequence similarity required for the simple 

transfer of function via homology, clear levels of sequence similarity required for 

specific levels of functional inference are difficult to agree upon.  These problems of 

firm comparisons are increased when comparing the many different techniques for 

improving the prediction of functional specificity or identifying functionally 

important residues.  This is particularly problematic when looking at ways to 

incorporate these techniques into an automated high-throughput approach to high-

specificity function prediction.  Mainly because the question of which methods to 

include to best achieve these aims is difficult to definitively answer. 

It has been shown that the incorporation of evolutionary analysis of protein families, 

through phylogeny, improves the accuracy of high-specificity function prediction in 

comparison to simple homology transfer methods (Eisen, 1998; Eisen and Wu, 2002; 

Johnson and Church, 2000; and del sol Mesa, 2003).  These methods also aid in the 

identification of functionally important amino acid residues.  However, there are 
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many difficulties still to be overcome for the development of methods and their 

integration into a fully automated solution to the problem of reliable, accurate, high-

specificity protein function prediction from sequence. 

The key aims of this literature review were: (i) to give a critical discussion of the 

area relating to automated prediction of protein function, with a concentration on 

methods that have been used to improve the accuracy and specificity of the 

prediction results; and (ii) the highlighting of current “state-of-the-art” automated 

methods for high-specificity function prediction from sequence.  The most 

satisfactory conclusion appears to be that there are a number of different methods 

that show varying levels of ability to predict specific functional properties.  The 

comparative analysis of Pazos et al. (1997) showed the superiority of the 

SequenceSpace method for determining specific functional subgroups, however, this 

method suffers from problems associated with the level of automation possible.  The 

later study of del sol Mesa (2003) implemented three automated methods (including 

a semi-automated form of SequenceSpace) for comparison and concluded that the 

best results are obtained from combinations of the methods.  The hidden Markov 

model based sub-profile method of Hannenhalli and Russell (2000) has also been 

shown to work well for both identifying specificity determining functional residues 

and application to functional sub-type prediction.  It is these two studies, along with 

the ideas contained in the sub-alignment phylogenetic reconstruction studies of 

Johnson and Church (2000) that will form an important part of this thesis. 

In conclusion, the best approach for a fully automated approach to high-specificity 

function prediction from sequence appears to be a combination of the optimal 

properties of a number of methods.  Using evolutionary information relating to the 

relationships between homologous protein sequences it should be possible to 

accurately identify specific functional details that have been acquired through the 

process of evolutionary divergence.   Approaches to combining these methods and 

extracting important algorithmic features in reliable, automated ways, form a major 

part of the research in this thesis.  These ideas and methods are then extended to 

investigate the feasibility of using machine learning techniques, namely support 

vector machines (SVMs), to identify the function specificity determining residues 
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(fSDRs) in a fully automated way, from multiple sequence alignments, without using 

any prior knowledge of the functional sub-types of the constituent sequences. 

1.6 Outline of Research Thesis  

The major aim of this research was the development and assessment of methods for 

use in an integrated and automated system for the prediction of detailed, specific, 

protein molecular functions, from sequence information.  In a review of the literature 

a number of methods have been described which investigate function prediction, 

using sequence information and algorithmic techniques, for improving the accuracy 

of specific functional inference.  However, to my knowledge, there are at present no 

methods that successfully combine these features into one high-throughput, accurate 

and robust fully automated system for the prediction of specific protein functions. 

The overall goal of this research was the development and investigation of methods 

for re-evaluating the sequence similarity of homologous proteins to generate an 

improved scoring method for assessing functional similarity.  An overview is 

presented, in figure 1.3, of the main stages involved in this process.  First, a 

sequence database homology search is carried out using a query protein sequence of 

unknown molecular function.  An MSA is returned from this along with an 

associated sequence similarity score (such as a BLAST E-value) for each sequence, 

which is used to order the sequences by similarity to the query.  Using a homology 

transfer method for function prediction, the query sequence would be assigned the 

same function as the most significant annotated sequence above a similarity 

threshold.  However, this will lead to incorrect annotations in circumstances where 

the most significant sequence is not the same specific function as the query.  A 

simplified example of this is shown in figure 1.3, where the query sequence (with 

function = func_B) shows a greater degree of sequence similarity to 3 sequences 

(seq1, seq2 and seq3) with function = func_A.    

In a case such as this, additional properties must be taken into account to provide an 

improved method for assessing functional similarity between the query and the 

group of sequences with function = func_B.  Methods are proposed that aim to 

automatically identify amino acids that are indicative of evolutionary conservation 

within groups of functionally specific proteins.  This can be thought of as a form of 

“phylogenetic filtering” of the aligned sequence columns, to create a more relevant, 
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functionally determining, sub-set of aligned residues.  The example in figure 1.3 

shows four aligned columns that have conserved residues within the specific 

functional groupings and variation between.   

It then becomes possible to calculate a new measure of sequence similarity - using 

only the sub-set of amino acids most likely responsible for determining the specific 

functional properties - and thus re-order (or cluster) the sequences to provide an 

improved measure of functional similarity.  From the example in figure 1.3, it can be 

seen that when only considering the four aligned columns containing the fSDRs, the 

query sequence is most closely related to the group of sequences with function = 

func_B and therefore predicted, correctly, to be of that specific function. 
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FUNCTION

QUERY … A N R K K P - M T I A S G Q V L D P I V G … ?????

seq1 … A N Q - K P G E S I G S G T V L D Y V L E … func_A

seq2 … R P Q K Q G G E T I G S G T L L D W V L E … func_A

seq3 … V R Q - K E G E S I G S G T N L D W I I E … func_A

seq4 … A P R K K P G M T I G S G T - L D P I V G … func_B

seq5 … R P R K K P G M T L G S V T T L D P V L G … func_B

seq6 … V A R - K P G M S I A S I G V L D P V L G … func_B

seq7 … V P Q - K P G E T I G S G T S L D W I V E … func_A

seq8 … A P Q - K P G E T I G S I T V L D W I I E … func_A

seq9 … R P R - K P G M T L G S V T M L D P L L G … func_B

seq10 … V P R K K P G M T L G S V T T L D P V - G … func_B

seq11 … A R Q - I P G E T I G S G T N L D W I V E … func_A
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(using residues in sub-alignment)

   - calculate functional similarity score

   - predict function of query
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seq6 … V A R - K P G M S I A S I G V L D P V L G … func_B

seq9 … R P R - K P G M T L G S V T M L D P L L G … func_B

seq10 … V P R K K P G M T L G S V T T L D P V - G … func_B
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QUERY sequence 

is assigned 
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Figure 1.3. Conceptual overview of the proposed methods of analysis 

and key areas of investigation carried out in this research thesis. 
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With regards to the automatic identification of functional specificity determining sets 

of residues, a disadvantage to the methods analysed in chapter 4, of this thesis, was 

their requirement for prior knowledge of the specific functional classifications of the 

sequences contained within the MSAs.  This limits the use of these methods to 

alignments of functionally well-characterised sequences, thus preventing a more 

general approach to the classification problem and limiting the possible uses to a 

much reduced sample space of functionally annotated sequences.  To circumvent this 

requirement it was suggested that machine learning methods, such as support vector 

machines (SVMs), could be used for the automatic identification of fSDRs in 

multiple sequence alignments.  The analysis, in chapter 5, investigates the feasibility 

of using SVMs towards automatically identifying fSDRs and thus the possibility of 

incorporating this identification into a fully automated system for improving the 

specific functional classification of enzyme sequences. 

The target audience of the methods analysed in this thesis is expected to be 

researchers and genome annotators, who are primarily interested in accurate, high 

specificity, functional genome annotation, when close homologs with differing 

specific functional properties are available to provide an evolutionary analysis.  

Although the analysis within this thesis concentrates on the functional classification 

of enzyme molecular function, it is expected that the methods would be generally 

applicable to other types of proteins.  To test this hypothesis, however, an alternative 

benchmark set of protein sequences and the use of relevant functional classification 

schemes would be required. 

In summary, the analyses presented in this thesis aim to investigate automatic, 

computationally efficient methods for the transformation of sequence similarity 

scores into a measure of functional similarity, which provides a reliable and accurate 

measure of specific enzyme functional classification.   
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Chapter 2 Investigation into the Functional 

Conservation of Enzyme 

Sequences and Dataset 

Definitions 

2.1 Introduction and Aims 

The work of Rost (2002), Tian and Skolnick (2003), and Todd et al. (2001), among 

others, shows that the level of correlation between protein function and sequence 

similarity measures follow a common relationship; where the accuracy for functional 

transfer becomes greater with a higher level of sequence similarity.  The work in this 

section aims to provide an initial investigation into the level of error involved when 

using homology based sequence similarity measures for the assignment of protein 

function and provide the source for the benchmark datasets of multiple sequence 

alignments used within this thesis.  An important factor of this work was the 

investigation of homology transfer when applied to the prediction of high-specificity 

protein function.  The functional classification chosen for this analysis was the 

Enzyme Classification (EC) scheme.  This method of classification was chosen 

because it has already been widely used with good success in the studies mentioned 

above (Rost, 2002; Tian and Skolnick, 2003; Todd et al., 2001) and provides a 

relatively simple and effective way of computationally measuring the level of 

functional specificity.  Through comparison of the number of shared EC numbers 

between the input query sequence and the homologous sequences obtained from a 

database similarity search, an understanding of the level of specific function 

prediction at varying sequence similarity thresholds can be obtained. 

Most previous studies of this type have aimed to identify detailed relationships 

between sequence similarities (such as percentage sequence identity or statistical E-

value scores) to obtain definitive threshold values for varying levels of sequence and 

functional conservation.  This study also provides an understanding of these 

properties but aims to concentrate on the areas of high functional specificity, by 

looking at the correlation between sequence homologues and the correlation to the 

conservation of all four numbers in the EC classification hierarchy.  A further aim is 
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to provide a set of benchmark examples where the high-scoring “top-hit”, to a 

“target” sequence, obtained from a PSI-BLAST homology search does not identify a 

protein sequence with the same specific function as the query sequence. 

2.2 Methods 

2.2.1 Collection of “target” Enzyme Sequences 

The method followed for the collection and identification of enzyme sequences for 

analysis is based on that of Tian and Skolnick (2003) and Rost (2002).  The Swiss-

Prot (version 46) section of the UniProt (Apweiler et al., 2004) (version 4.0) 

sequence database was used as the source of the analysis sequences.  From the 

Swiss-Prot database, which contained 168,297 sequences, a total of 43,572 enzyme 

sequences with fully annotated EC codes at all 4 levels of the hierarchy were 

identified.  These enzyme sequences in the “target” sequence set were identified in 

the following way: 

 All sequences that have annotated EC numbers in the “Description (DE)” field of 

their records in the Swiss-Prot database were identified, sequences which fulfil 

any of the following criteria were then removed from the final target set: 

1. They contain incomplete EC annotations and therefore undetermined 

numbers (e.g. EC 1.2.3.- would be classed as an incomplete annotation and 

therefore removed); 

2. They have multiple EC annotations and are therefore defined as 

multifunctional enzymes; 

3. Contain any of the following keywords in the “Description (DE)” or 

“Keyword (KW)” field of Swiss-Prot (“probable”, “hypothetical”, “putative”, 

“by homology”, “by similarity”); 

4. Are identified as fragments and therefore contain the keyword “fragment” in 

the Swiss-Prot “Description (DE)” field. 

This process identified 45,164 sequences.  All 100% identical sequences were then 

identified and a single, randomly selected, representative of each sequence cluster 

was kept in the dataset.  This reduced the target set by a further 1592 sequences to 
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produce the final enzyme sequence set of 43,572 sequences.  These sequences 

consist of 1901 distinct enzyme classes measured to all four levels of EC specificity.  

These were tagged and identified as “target” sequences in the sequence search 

database used in the next stage and are referred to as “target” sequences at later 

places in this thesis.  These criteria were used to ensure that all of the sequences 

added to the target set had associated functional annotation data which was complete 

and most importantly, of a high quality, obtained from the “gold-standard” 

annotations in the Swiss-Prot database. 

2.2.2 Identification of Homologous Sequences  

After identification and extraction of the fully annotated enzyme “target” sequence 

dataset a PSI-BLAST (Altschul et al., 1997) database search was carried out to 

identify homologues for each of the 43,572 target enzymes.  This was so that the 

level of functional inference from sequence similarity search measures could be 

assessed.  A PSI-BLAST search was carried out for each of the target enzyme 

sequences against the UniProt (Swiss-Prot + TrEMBL) database (version 4.0), which 

contained 1,757,967 sequences.  To improve database search efficiency and reduce 

the number of false positives, each input sequence was filtered using the SEG low 

complexity filter (Wootton and Federhen, 1996) and all of the sequences in the 

search database were filtered using the low complexity, trans-membrane and coiled-

coil filter options of the pfilt application (Jones and Swindells, 2002).  The sequence 

database search was carried out using 3 iterations of PSI-BLAST (version 2.2.10), 

using the default iteration inclusion value (-h parameter) of 0.001 and an output E-

value threshold of 10.  Also, the maximum number of sequences included in the 

BLAST search output and resultant multiple sequence alignments (MSAs), was set 

at 5000 using the –v and –b command line parameters.  Finally, with regards to 

composition-based sequence statistics - which are calculated from the sequence 

composition of the database sequences (Schaffer et al., 2001) - the default setting, 

which includes these calculations, was applied through the setting of the –t command 

line parameter (-t T).  All other search parameters were left unchanged from the 

default settings of PSI-BLAST (blastpgp) version 2.2.10. 

The resulting output list of detected homologues was then filtered to remove all 

sequences not identified as belonging to the functionally annotated “target” enzyme 
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sequence dataset.  This was so that comparisons could be made between the 

functions of the query sequences and those identified as homologues in the PSI-

BLAST search. 

2.2.3 Definition of EC Conservation Accuracy 

The method used to calculate the accuracy of specific EC functional conservation, 

with respect to sequence similarity measures, is described in equation 2.1.  This is 

based on the method used by Rost (2002), slightly adapted to take into account 

ranges of similarity thresholds. 











All

Matching
Accuracy *100    (equation 2.1) 

Where: “Matching” signifies the number of functionally matching sequence pairs 

within a defined range of sequence similarity threshold values; and “All” signifies 

the number of all sequence pairs within this same range. 

2.2.4 Calculation of Global Sequence Identity 

A full Needleman-Wunsch pair-wise sequence alignment algorithm (Needleman and 

Wunsch, 1970) was used to calculate a global percentage identity score between the 

query sequence and all “target” sequences identified in the database search.  The 

needle application from the EMBOSS (Rice et al., 2000) software suite was used 

with the default parameters: BLOSUM62 substitution matrix; gap open penalty of 

10.0; and gap extension penalty of 0.5.  

2.3 Results and Discussion 

2.3.1 Level of EC Functional Conservation 

A comparison between the level of EC functional conservation and sequence 

similarity measures (PSI-BLAST E-value and global sequence identity) was carried 

out to assess threshold levels for reliable, accurate transfer of specific enzyme 

function by homology.  The first step in the analysis of the data was an investigation 

of the level of functional conservation with respect to the observed PSI-BLAST E-

values between each of the identified query-target pairs.  The method described in 

section 2.2.3 was used to calculate the accuracy of functional transfer, within E-

value ranges, which were calculated by taking the minus of the log (to base 10) of 
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the E-value.  The results of this analysis are shown in the graph in figure 2.1 for the 

two levels relating to the most specific level of functional correlation available with 

the EC classification scheme.  These are: (i) the first three EC numbers are 

conserved (EC3: n.n.n.-); and (ii) all four EC numbers are conserved (EC4: n.n.n.n).  

It can be seen from figure 2.1 that as the level of functional specificity increases 

(from EC3: n.n.n.- to EC4: n.n.n.n), the accuracy of functional transfer using the 

PSI-BLAST E-value decreases.  Overall these results seem to agree quite closely 

with those of Rost (2002) in his study of 1
st
 iteration PSI-BLAST E-values.  The 

results show that even at very statistically significant E-values, commonly used for 

functional transfer (such as 10
-50

 => -log(E-value)=50), the accuracy of exact 

specific function prediction (all four EC numbers are conserved) is only just slightly 

greater than 90%.  Similarly, the results comparing EC conservation accuracy to 

sequence identity, in figure 2.2 show that even at levels above 50% identical 

residues, the accuracy of specific functional transfer is less than 100%.  

When considering the correlation between sequence identity and functional 

conservation, these results agree most closely with those of Todd et al. (2001).  The 

results reported by Rost (2002) are much more pessimistic and report that upwards 

of 70% sequence identity (local sequence identity reported from PSI-BLAST) is 

needed to transfer all 4 EC numbers with comparable levels of accuracy.  A more 

recent study by Tian and Skolnick (2003) reports yet another different threshold 

requirement of 60% sequence identity (global sequence identity) for at least 90% 

accuracy for the same level of specific function transfer between sequence pairs.  

The main differences between the results of these studies is thought to lie in the 

disparate way in which the datasets from each have been formed, especially with 

regards to the particular thresholds that have been applied for sequence and 

functional redundancy removal. 
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Figure 2.1. Graph showing the accuracy, using equation 2.1, of function 

prediction using PSI-BLAST E-values, obtained from sequence pairs in the 1
st
 

iteration of the database search results. Where, EC3:n.n.n.- are the results for 

the first three EC numbers predicted correctly; and EC4:n.n.n.n for all four EC 

numbers correctly predicted. 

 

Figure 2.2. Graph showing the accuracy, using equation 2.1, of function 

prediction using global sequence identity, obtained from sequence pairs in the 

1
st
 iteration of the database search results. Where, EC3:n.n.n.- are the results 

for the first three EC numbers predicted correctly; and EC4:n.n.n.n for all four 

EC numbers correctly predicted. 
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0

10

20

30

40

50

60

70

80

90

100

0-
5

10
-1

5

20
-2

5

30
-3

5

40
-4

5

50
-5

5

60
-6

5

70
-7

5

80
-8

5

90
-9

5

10
0-

10
5

11
0-

11
5

12
0-

12
5

13
0-

13
5

14
0-

14
5

15
0-

15
5

16
0-

16
5

17
0-

17
5

18
0+

-log[base10](E-value)

A
cc

u
ra

cy
 (

%
)

EC3:n.n.n.-

EC4:n.n.n.n

Accuracy of Enzyme Function Conservation vs Global Sequence Identity

0

10

20

30

40

50

60

70

80

90

100

0-
5

5-
10

10
-1

5

15
-2

0

20
-2

5

25
-3

0

30
-3

5

35
-4

0

40
-4

5

45
-5

0

50
-5

5

55
-6

0

60
-6

5

65
-7

0

70
-7

5

75
-8

0

80
-8

5

85
-9

0

90
-9

5

95
-1

00

Global Sequence Identity (%)

A
cc

u
ra

cy
 (

%
) EC3:n.n.n.-

EC4:n.n.n.n



58 

 

The aim of this study was not an exhaustive comparison between the many methods 

and previous studies carried out in this area because this has been discussed 

extensively in previous work.  However, the results shown in figure 2.1 and figure 

2.2 do achieve the aim of highlighting the problems, which have been previously 

reported (Todd et al., 2001; Rost, 2002; Tian and Skolnick, 2003), regarding the use 

of sequence homology for specific functional inference.  These are that it is not a 

simple matter to make a definitive prediction of enzyme function, based on simple 

sequence similarity measures and that the disparate nature of the datasets used makes 

it difficult to even agree on the best thresholds to use (Valencia, 2005). 

2.3.2 Functional Analysis of PSI-BLAST “top-hit” Sequences 

A common approach to assigning the function of an unknown protein sequence is 

through the transfer of function from a previously annotated homologous sequence 

with the most significant, “top-hit”, sequence similarity score.  This approach was 

used to assess the number of correct predictions that would be expected when 

simulating the prediction of the specific function of the “target” sequence set in this 

way.  As expected, the results showed that a majority of cases (42453 (out of 43572) 

in the first iteration and 41637 (out of 43572) in the final iteration) are examples of a 

correct prediction from the top PSI-BLAST hit (rank position one).  This was 

expected due to the large amount of potential sequence redundancy within the source 

Swiss-Prot database.  There are however a number of examples where this is not the 

case and the first correct specific functional sequence result occurs at rank position 

(ordered with respect to decreasing statistical significance of the sequence 

alignments) two or lower, with 354 and 1214 examples in the first and final 

iterations respectively.  A third case, which make up the remainder of the examples, 

is where no correct functional hits are found.  These types of examples are not 

considered further in this work as they are not suitable for use in the discrimination 

between the specific functional sub-types of sequence homologues.   

Interestingly, it is the 1
st
 iteration PSI-BLAST results which give the largest number 

of correct examples, with respect to a specific functional match at all 4 levels of the 

EC hierarchy.  Also, this means that in a number of cases the iterated PSI-BLAST 

process actually causes a deterioration of the functional accuracy of the “top-hit”.  

An interesting discussion on the effect of PSI-BLAST iteration on functional transfer 
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is provided by Tian and Skolnick (2003).  They show that the E-values of closely 

related query-sequence pairs (above 70% identity) tend to increase in later iterations, 

but decrease for those below 70%.  This result suggests that some thought must be 

made as to whether an iterated database search is the best approach to annotation of 

specific enzyme function, and if so, the E-values used to interpret the results must be 

carefully considered in the context of the iteration from which they came.   

The relatively low number of “incorrect” sequence examples is likely due to the 

inherent bias within the Swiss-Prot database and the associated “target” enzyme 

sequences.  Both Rost (2002) and Tian and Skolnick (2003) give detailed discussions 

of these estimated database redundancy issues.  For this study I have not pursued the 

effects of potential bias any further because it is not definitively clear if, or how, any 

potential sequence redundancy should be removed.  This is especially true when 

considering the use of multiple sequence alignments and the associated evolutionary 

information in later stages of this work, because the level of evolutionary divergence 

observed in certain sequence residues can be crucial when determining the specific 

functional sub-type.  Also, it was decided to concentrate on the alignments generated 

by the 1
st
 iteration of the PSI-BLAST sequence database search.  This is because of 

the results described above, related to the deterioration in functional inference in the 

later iterations and also because in this work it is the more closely related sequences 

that are of most interest.  Therefore, the use of an iterated search to identify and 

include more distantly related sequences, in the resulting MSAs, is of lesser 

importance for this study.  

2.4 Collection and Definition of Datasets 

One of the main aims of the “top-hit” functional analysis was the identification of a 

set of data that could be used as an experimental benchmark for comparing the 

performance of specific function prediction techniques investigated in this thesis.  It 

was decided that this data should consist of examples that show “incorrect” specific 

function prediction when transferring the function from the top “target” sequence hit 

from PSI-BLAST.  This was deemed an appropriate form of benchmark because it 

simulates real problem cases likely to be encountered by a researcher attempting to 

determine the specific function of an unknown protein sequence.  Therefore, any 
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automated approach which consistently improves on the accuracy of this simple 

homology based method should be highlighted by this benchmark. 

The approaches to the benchmark dataset collection are described below.  Two 

different methods are described.  This is because, due to limitations in the size and 

quality of the “initial” dataset, it was decided to develop an alternative method to 

collect a much larger set of “artificial” incorrect benchmark examples.  The data 

content of each of these datasets is a set of MSAs, generated by PSI-BLAST, 

through the use of the –m 6 command line parameter.  These MSAs were used for 

the benchmark studies because they are very computationally efficient to generate 

and are of a good quality. 

Unless stated otherwise all MSAs analysed are generated from the 1
st
 iteration of a 

PSI-BLAST database search (using the blastpgp executable - version 2.2.10), which 

is the same as a gapped-BLAST database search.  Therefore the notation: BLAST 

and PSI-BLAST is used interchangeably. 

2.4.1 Collection of the “Initial” Benchmark Dataset 

2.4.1.1 Method 

The initial approach taken to identify a benchmark dataset for use in testing and 

validation, focused on a selected subset of the “incorrect”, “top-hit” predictions, 

obtained from the BLAST analysis.  It was decided to extract this subset from the 

examples which showed incorrect “top-hit” prediction results in both the first and 

final PSI-BLAST iteration results.  This restriction was made because it meant that 

the sequence ranking and associated MSAs for both of the iterations could be 

compared if required in later studies.  Two further criteria were used in an attempt to 

improve the dataset quality:  (i) the removal of all examples that share zero EC 

numbers between the query and the highest ranked “target” sequence, to remove 

cases from the dataset which highlight potential problems related to potentially 

misleading functional distances in the EC nomenclature; and (ii) the removal of 

examples which had less than 5 sequences with the same specific function as the 

query in the multiple alignments. 
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2.4.1.2 Properties of the “Initial” Dataset 

The above steps led to a final dataset containing 126 sets of PSI-BLAST multiple 

sequence alignments.  These represent 76 distinct 4 digit EC classes, with all 6 of the 

general enzyme classes being represented.  This dataset will be referred to as the 

“initial” dataset in any later discussions involving its use. 

2.4.2 Collection and Definition of Expanded “Artificial” Benchmark 

Datasets 

2.4.2.1 Overview of “Artificial” Dataset Creation Method 

Due to the small size of the “initial” dataset described above, it was decided to create 

a second, expanded, benchmark dataset from the PSI-BLAST analysis, by using a 

much larger set of aligned target sequences.  The construction of this dataset was 

done via the post-modification of a subset of MSAs that satisfied particular criteria 

of the original 43,572 database searches.  Again, the main aim of this dataset was the 

collection of examples which show an incorrect specific functional comparison 

between the query and the most significant enzyme “target” sequence.  It is proposed 

that this situation can be simulated by removing all of the sequences found in the 

database search, which have the same specific EC function as the query and are 

classed as more significant than the first incorrect sequence hit.  An overview of the 

method is shown in figure 2.3.  After removal of these “correct” sequence hits, a set 

of examples remain that produce an “incorrect” prediction of function, when using 

the most significant remaining sequence from the BLAST output.  To provide 

reference to the fact that these datasets consist of ordered multiple sequence 

alignments - where the top-ranked (1
st
) sequence is always of a different “incorrect” 

specific function to the query sequence - datasets of this form are described as 

“All1stINCORRECT” throughout the thesis.  Although these are not examples of 

“naturally” occurring incorrect examples, from a protein sequence database search, 

they should be of a high enough quality to provide an accurate prediction 

benchmark.  Indeed, the nature of the Swiss-Prot database - from which the target 

enzymes were collected – is itself an “artificial” construct containing numerous 

biases from historical and research origins (Rost, 2002). 
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Figure 2.3. Overview of the process used to create the artificial 

“All1stINCORRECT” dataset examples.  The original BLAST output (left) 

shows an example where the three most significant sequences (seq_1, seq_2, 

seq_3) have the same function as the query but not as seq_4.  Removing these 

three sequences produces the modified “incorrect” BLAST output (right) where 

seq_4 is now the most significant, top-ranked, sequence hit. 

The source data for this dataset was the 43572 PSI-BLAST searches obtained from 

the target sequences.  All analysis of the output sequence properties is confined to 

the sequence homologs identified in the 1
st
 PSI-BLAST iteration.  The process was 

as follows: (i) 284 “empty-set” examples were removed (i.e. those that have no 

target sequences in the output); (ii) 15201 “all-correct” examples were removed (i.e. 

those that have only target sequences with the same specific function as the query in 

the output).  This identified a reduced set of 28087 examples.   

2.4.2.2 Method Used to Ensure a Minimum Level of Functional Diversity in 

the Benchmark Multiple Sequence Alignments 

Two further restrictions for inclusion – the “MSA functional diversity criteria” - were 

then applied: (i) only include examples with at least 10 target sequences with the 

same specific function as the query and are less significant than the first incorrectly 

matching target sequence.  This reduced the dataset to 6114 examples; and (ii) only 

include examples with at least 10 target sequences having a different specific 

function to that of the query.  This led to the identification of 4189 “artificial – 

All1stINCORRECT” examples that successfully satisfy all of the criteria set for the 

inclusion of MSAs within the benchmark datasets of PSI-BLAST generated multiple 

sequence alignments.  The choice of 10 sequence examples was partly arbitrary, but 

mainly influenced by the fact that it was the number used by Hannenhalli and 

Russell (2000) when selecting PFAM (Bateman et al., 2004) based MSAs, for a 

query    function A 

seq_1    function A 

seq_2    function A 

seq_3    function A 

seq_4    function B 

seq_5    function B 

seq_6    function A 

seq_7    function A 
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seq_10  function A 

: 
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seq_4    function B 
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seq_8    function C 
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similar analytical purpose.  This is an improved method of ensuring a degree of 

functional diversity within the MSAs, when compared to that used for the definition 

of the “initial” dataset.  

2.4.2.3 The “QUERY.enzymes.4189” Sequence Set 

This set of 4189 enzyme sequences that were used as the query sequences in the 

generation of these examples, will be referred to as the “QUERY.enzymes.4189” 

sequence set throughout this thesis.  They show a good distribution of 140 distinct 

EC classes measured to 4 levels of functional specificity and all 6 general EC classes 

are represented.  Further consideration of the over-representation of certain specific 

functions is addressed and discussed when required while interpreting particular 

results at later analysis stages in the thesis.   

The bulk of the benchmark analysis, results and conclusions in this thesis are from 

datasets that have been defined using this particular source set of 4189 query enzyme 

sequences.  In general, these consist of multiple sequence alignments that have been 

generated through the use of alternative PSI-BLAST sequence database search 

parameters, allowing comparative analysis between each of the datasets.  The 

procedures used to define these datasets are described in detail below. 

2.4.2.4 Methods Used to Define the “Artificial - All1stINCORRECT” Datasets 

of MSAs 

In this section the procedures are described that are used to define some benchmark 

datasets of MSAs that are repeatedly used throughout the experiments in this thesis.  

These are defined at this point to avoid unnecessary repetition at later stages.  An 

associated standardized naming convention, used to refer to each of the particular 

datasets, is also explained.  The core methodology used for the PSI-BLAST 

sequence database search was essentially identical to that previously discussed in 

this chapter.  There were a number of alterations to particular parameters, which are 

discussed at relevant points, and for clarity the full procedure that was followed is 

repeated below.   

The “QUERY.enzymes.4189” sequences were used as the input query protein 

sequences.  A PSI-BLAST database search was then carried out for each of the 4189 

target enzyme sequences against the UniProt (Swiss-Prot + TrEMBL) database 
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(version 4.0), which contained 1,757,967 sequences.  Each input sequence was 

filtered using the SEG low complexity filter (Wootton and Federhen, 1996) and all 

of the sequences in the search database were filtered using the low complexity, trans-

membrane and coiled-coil filter options of the pfilt application (Jones and Swindells, 

2002).  The sequence database search was carried out using 1 iteration of PSI-

BLAST version 2.2.10, using an iteration inclusion value (-h parameter) of 0.001 

and the default BLOSUM62 amino acid substitution matrix, with a gap open penalty 

of -11 and gap extension penalty of -1.  Also, the maximum number of sequences 

included in the BLAST search output and resultant MSAs, was set at 5000 using the 

–v and –b command line parameters.  Further, the data content of each of these 

datasets is a set of MSAs, generated by the 1
st
 iteration of PSI-BLAST, through the 

use of the –m 6 command line parameter.   

The resulting MSAs were then filtered to remove all sequences not identified as 

functionally annotated “target” enzyme sequences – “MSA target enzyme filtering”.  

Finally, each of the resulting 4189 BLAST MSAs were processed using the 

“All1stINCORRECT” artificial dataset post-modification procedure, followed by the 

“MSA functional diversity criteria”. 

A further two parameters were also used in the generation of the BLAST based 

MSAs.  These are: (i) whether composition-based statistics were utilised during the 

database search, through the setting of the –t command line parameter; and (ii) the 

level of the E-value output threshold parameter, which controls the sequences that 

are included in the final MSAs through the statistical significance of the sequence 

similarity between the query and target enzymes.  The particular values used for 

these parameters are defined with each of the specific dataset definitions given 

below. 

With regards to the use of composition-based statistics when generating the MSAs, a 

discussion related to the reasons for altering this parameter usage is provided in the 

next chapter. 

As for the output E-value threshold parameter, originally the default value of 10 was 

used.  However, due to the nature of the high-specificity function assignment goals 

of this thesis, it was later decided to use a more stringently filtered dataset of MSAs, 
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by applying a lower threshold of 0.001.  A lower E-value threshold provides 

alignments that contain sequences with more significant sequence similarity to the 

query sequence.  An outcome of this more stringent alignment filtering is that the 

MSAs will generally contain fewer sequence homologs and functional false 

positives.  It follows that the number of dataset examples that satisfy the “MSA 

functional diversity criteria”, used to ensure a minimum level of functional diversity 

within the MSAs of the datasets, is also reduced as the E-value output threshold is 

reduced. 

2.4.2.5 Dataset Naming Scheme 

To avoid confusion and increase clarity, each of the BLAST generated datasets of 

MSAs are named using a standardized naming scheme.  The elements of this have 

been chosen to highlight key dataset features and creation parameters that will be 

discussed at particular experimental stages during this study, namely: 

“All1stINCORRECT” - the MSAs have been modified using the 

“All1stINCORRECT” artificial dataset creation procedure; “tT” – composition-based 

sequence statistics have been used during the sequence database search through 

setting the –t parameter to T (true); “tF” – composition-based sequence statistics 

have NOT been used during the sequence database search through setting the –t 

parameter to F (false); “BLOSUM62” – refers to the particular amino acid 

substitution matrix used for the database search (in this example the BLOSUM62 

matrix); “masked” – the residues in the resultant MSAs still contain the sequence 

masking used to aid the database search; “unmasked” – all of the sequences in the 

MSAs were post-processed to replace all masked “X” amino acid residues with the 

original amino acid residues from the source, target, Swiss-Prot protein sequences, to 

generate “unmasked” MSAs; and “En” – indicates that the output E-value threshold, 

which controls the sequence similarity to the query sequence of the MSA sequences, 

is set as less than or equal to n. 

2.4.2.6 The “All1stINCORRECT – Using Composition-Based Statistics” 

Datasets 

Two datasets of key interest in this thesis have been created when using 

composition-based sequence statistics in the BLAST search.  These are both the 

masked and unmasked forms of the dataset that used the default E-value MSA output 
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threshold of 10.  These are referred to as the 

“All1stINCORRECT.tT.BLOSUM62.masked.E10” and 

“All1stINCORRECT.tT.BLOSUM62.unmasked.E10” datasets respectively.  After the 

application of the “MSA target enzyme filtering” and “All1stINCORRECT” artificial 

dataset post-modification procedures, followed by the “MSA functional diversity 

criteria”, both of these datasets contain the same 4189 MSA examples.  The 

properties of the 4189 query sequences that define these datasets have already been 

discussed in the earlier “QUERY.enzymes.4189” sequence set section. 

2.4.2.7 The “All1stINCORRECT – Without Composition-Based Statistics” 

Datasets 

Four additional datasets used in this thesis were created without using composition-

based sequence statistics in the BLAST search.  These are both the masked and 

unmasked forms of datasets that used E-value MSA output thresholds of 10 and 

0.001.   

After the application of the “MSA target enzyme filtering” and “All1stINCORRECT” 

artificial dataset post-modification procedures, followed by the “MSA functional 

diversity criteria”, the masked and unmasked datasets, which use the E-value<=10 

threshold, each contain the same 4054 MSA examples.  These are referred to as the 

“All1stINCORRECT.tF.BLOSUM62.masked.E10” and 

“All1stINCORRECT.tF.BLOSUM62.unmasked.E10” datasets. 

When using an E-value threshold <= 0.001, to define which sequences will be part of 

the generated MSAs, and the application of the “All1stINCORRECT” artificial 

dataset post-modification procedure and the “MSA functional diversity criteria”, the 

number of MSA examples in the datasets is reduced to 3527.  The masked and 

unmasked forms of these datasets are referred to as the 

“All1stINCORRECT.tF.BLOSUM62.masked.E0.001” and the 

“All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” datasets respectively (see 

Appendix I for more detailed description of these datasets).   

2.5 Conclusions 

The work in this chapter has aimed to serve two purposes.  Firstly, the collection of a 

large set of enzyme sequences, to allow a study of the functional conservation 
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accuracy of homology transfer, at high levels of functional specificity through the  

use of standard sequence homology measures.  Secondly, the use of this data to 

identify datasets that are suitable for the benchmarking of methods intended for 

improving the prediction of specific enzyme function. 

The assessment of the level of enzyme function conservation demonstrates that even 

close sequence similarity relationships do not suffice to allow confident transfer of 

specific function in all cases.  When placed in comparison to the many previous 

studies discussed above, some of which draw far more pessimistic conclusions for 

comparable sequence similarity thresholds, the need can be seen for more powerful 

methods of discriminating between very similar functional sub-classes.  It is the aim 

of this thesis to investigate some of these methods.  Through the use of multiple 

alignments of homologous sequences it is proposed that sequence features specific to 

a particular function can be used to separate the different functional types.  

Evolutionary relationships between groups of homologous sequences, with the same 

function, can be used to identify amino acid residues that play an essential role in the 

specific function of the proteins.  These are commonly referred to as functional 

specificity determining residues (fSDRs) and will form a central point of the work in 

this thesis. 

Benchmark datasets have been defined and identified from the analysis carried out 

above.  These are composed of examples where the most significant sequence match 

from a PSI-BLAST database search is not of the same specific function as the query 

sequence.  Therefore, they fulfill criteria for the assessment of alternative methods 

that are designed to improve the discrimination of specific functional classes when 

compared to simple threshold-based sequence similarity methods.  An “initial” 

dataset was first identified for use as a benchmark comparison dataset.  However, a 

larger series of “artificial” datasets were subsequently defined, which supersede the 

“initial” dataset and are used when assessing the performance of the methods in this 

thesis.  This is because they contain more sequence examples and enzyme functions 

on which to base the results, lending greater weight to any statistical conclusions 

drawn from these studies.  The larger datasets have also been constructed in a way to 

provide a guarantee of “sufficient” functional diversity within the aligned sequences 
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of the examples, with which to aid the analysis of the multiple alignments and the 

identification of particular inherent evolutionary relationships. 

In conclusion, the main goal of this research is to develop and analyse automated 

techniques for improved high-specificity function prediction, using groups of closely 

related aligned homologous enzyme sequences.  The initial studies carried out in this 

chapter show why this is an important and timely research problem and also define 

benchmark datasets to help achieve this goal. 
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Chapter 3 The Use of Alternative Amino Acid 

Substitution Matrices for 

Rescoring the Functional 

Similarity of Enzyme Sequences 

3.1 Introduction 

As shown in the previous chapter, it is not always the case that the most significant 

sequence hit, found through a database search, will have the same specific enzyme 

function as the query sequence.  Neither is a simple sequence similarity threshold 

sufficient for consistent, high accuracy, functional annotation of protein sequences.  

The aim of the work in this chapter is the investigation of different scoring metrics, 

for improved assignment of specific function, when compared to the results from a 

sequence similarity database search.  The hypothesis is that this may provide 

improved functionally specific ordering of the identified homologous sequences, 

based on additional sequence features to those used in the statistical homology 

measures of the original database search. 

It has been shown that simply using the most significant “top-hit” from a sequence 

database search for the prediction of a specific enzyme function can lead to 

significant levels of incorrect annotation.  It is therefore both important and timely, 

to investigate ways in which groups of sequence homologues identified in a database 

search, can be scored and re-ranked to improve, both the confidence and the 

accuracy of the predictions for the specific function of the query sequence. 

3.1.1 Overview of Alignment Rescoring Method 

A general conceptual overview and the aims behind the alignment re-scoring 

procedure used in this chapter are discussed in this section.  A diagrammatic 

overview of this procedure is shown in figure 3.1.  It should be noted that similar, 

comparable procedures, for the purpose of functionally re-scoring the sequence 

alignment ordering, are also used to analyse the performance of alternative methods 

that are investigated in later chapters. 
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The first three stages depicted in figure 3.1 are related to the collection and 

alignment of relevant sequence homologs.  This procedure is discussed in detail 

within chapter 2 and is also included in this overview diagram to provide context 

with respect to the functional re-ranking of the identified sequences.  An iterative 

procedure is then carried out to re-score each of the sequences in the multiple 

sequence alignment (MSA), using a particular scoring method.   

 

Query 

Sequences 

from dataset

PSI-BLAST 

database 

search

Output MSAs from database search

(ordered by statistical significance of alignment)

for each sequence n in MSA

{seq1; seq2; …; seqN}

Calculate 

new score for 

seqn

Re-order sequences using 

new score

Assign specific function 

to query sequence

 

Figure 3.1. Diagrammatic overview of the alignment rescoring 

procedure. 
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In this chapter, the re-scoring method comprises pair-wise comparisons between the 

query sequence and the high scoring “target” sequence homologs, from each of the 

MSAs in the benchmark datasets.  These pair-wise comparisons are carried out using 

well-established protein sequence alignment metrics.  Once all of the sequences 

within each MSA have been evaluated they can then be re-ordered, using the newly 

calculated score.  Predictions for the specific functional class of the query sequence 

can then be made based upon this new sequence ordering. 

3.1.2 Amino Acid Substitution Matrices 

An important consideration when aligning protein sequences and assessing their 

subsequent level of similarity, is the method used for scoring the similarity between 

each of the aligned amino acid residues.  Evolution determines the structural and 

functional features of proteins and it is the mutation of amino acid residues that is the 

main driving force.  It therefore follows that, in general, more similar protein 

sequences are closer in an evolutionary sense and hence show more closely 

correlated features of specific function.   

Analysis of the pattern and rate of change of amino acids during evolutionary 

divergence was first carried out by Dayhoff (1978).  Due to the fact that certain 

groups of amino acids display similar physical and/or chemical properties (Taylor, 

1986), the probability of mutations being accepted through natural selection is 

greater the more similar the properties are.  This becomes clear when considering the 

need for structural and functional continuity and the likely deleterious effects of a 

large change in observed amino acid properties during mutation, due to a disruption 

of function.   

Through the alignment of multiple sequences from large numbers of related proteins 

a probabilistic evolutionary model of the expected mutations from one amino acid to 

another can be developed.  A number of methods and datasets have been used to 

calculate scoring matrices for particular features and evolutionary distances between 

proteins (Dayhoff, 1978; Henikoff and Henikoff, 1992; Jones et al., 1992), some of 

which are discussed below.  The simple residue identity type of matrix is first 

described, followed by two commonly used methods; the percent accepted mutation 

(PAM) matrices (Dayhoff, 1978) and the BLOSUM series of matrices (Henikoff and 

Henikoff, 1992). 
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The form of an amino acid substitution matrix is usually that of a symmetrical matrix 

of 20 rows by 20 columns, one for each of the 20 common types of amino acid 

residues.  This leads to 210 distinct entries consisting of 190 row and column 

pairings where the amino acid residues are not the same and 20 further pairings 

along the matrix diagonal where they are.   

3.1.2.1 IDENTITY Matrix  

A simple form of substitution matrix is the identity matrix, which consists of a score 

of one between identical amino acids in an alignment and zero for all other residue 

comparisons.  Although there is no specific evolutionary theory associated with this 

type of scoring scheme, its simplicity and close association with the commonly used 

percentage identity measure between sequences means that it is sometimes used for a 

simple scoring of alignments.  The main problem with this matrix is that it rewards 

and penalises all matched and mismatched residues to the same degree.  This is done 

regardless of the similarities in physico-chemical properties of amino acids or their 

likelihood of mutation.  The following models of amino acid substitution scoring 

attempt to address these deficiencies. 

3.1.2.2 PAM Matrices 

The model for generating PAM substitution matrices was developed by Dayhoff 

(1978) using alignments of closely related groupings of homologous protein 

sequences with at least 85% sequence identity.  Due to the high level of sequence 

similarity within the groups any observed mutations of the amino acids did not 

significantly affect the function of the proteins.  The next step was to count the 

number of observed mutations between all pairs of amino acid types, within all the 

protein groups, allowing an empirical measure of the probability of mutation for 

each pair of amino acids to be calculated.  Finally this data was normalised to 

remove any bias caused by amino acid composition, mutation rate or sequence 

length.  These calculated amino acid relative mutabilities are those expected within 

the evolutionary time period defined as 1 PAM unit.  For ease of computation these 

are usually represented in the substitution matrix in their logarithm of odds (log-

odds) form, which describes the ratio of the observed frequency of amino acid 

substitutions divided by the frequency expected by chance.  Due to the fact that the 

model of evolutionary mutation used was a Markov process, it is possible to 
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calculate larger PAM-N distances through matrix multiplication of the values in the 

PAM-1 matrix.  

3.1.2.3 BLOSUM Matrices 

Another commonly used set of substitution matrices for protein sequence alignment 

and similarity scoring is the BLOSUM series (Henikoff and Henikoff, 1992).  The 

method used to generate these matrices shows a number of important differences to 

that of the Dayhoff PAM model of amino acid evolution and is based on a larger 

dataset of protein sequences.  Rather than start with very closely related sequences 

and extrapolate to more divergent ones, the Henikoffs approached the problem by 

starting with a more divergent set of protein sequences from more than 500 protein 

families.  Using these family alignments, “blocks” of sequence patterns, without 

gaps, were extracted from the particular families and added to a database.  The 

scoring matrices were then calculated using the log-odds of the types of substitutions 

found in the conserved pattern of blocks.  The different forms of BLOSUM-N 

matrices (such as BLOSUM62 and BLOSUM50, where N is 62 and 50 respectively) 

are calculated by first grouping all sequences, within a block, that show an aligned 

sequence identity above a particular threshold.  Each group is then represented by a 

single sequence with a weighted average of the observed amino acid substitutions 

within the group.  For example, the commonly used BLOSUM62 matrix consists of 

amino acid substitution data calculated from block patterns that have all sequences, 

with greater than or equal to 62% identity, clustered into one averaged sequence 

representative.  This reduces the contribution to the matrix from more closely related 

sequence members of an aligned protein family. 

It is important to note that it is not possible to extrapolate from one BLOSUM-N 

matrix to another as with the PAM matrices, because they are not based on an 

evolutionary Markovian model.  Therefore it is only possible to calculate BLOSUM-

N matrices from empirical data of aligned blocks of sequences of the required 

similarity levels as described above. 

It is has been found that the BLOSUM62 matrix generally gives the best overall 

performance for sequence alignment and sensitive sequence database searching, 

hence the reason that this matrix is currently used as the default amino acid 

substitution scoring model in BLAST and PSI-BLAST. 
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3.2 Methods 

3.2.1 Datasets 

In this section I will describe the benchmark datasets that are employed to assess the 

performance of each alignment re-scoring method.  The datasets consist of ordered 

sets of MSAs that are used to determine the specific enzyme prediction accuracy of 

each re-scoring method.  A number of alternative datasets are described, for which 

three main differences in their method of generation are highlighted.  These 

differences are related to the particular amino acid substitution matrices that are 

used, in the BLAST database search, to generate the MSAs in each of the datasets.  

Three different matrices (BLOSUM62, PAM160 and PAM30) are used to allow an 

investigation into the effect that their use as the database search matrices would have 

on the functional classification accuracy of the resulting MSAs.  In addition, they are 

used to assess the effects on the functional classification accuracies, of the order in 

which the particular database search and alignment re-scoring matrices are applied in 

the functional re-scoring assessment procedure.  The reasons for selecting these 

particular substitution matrices are discussed in detail, in both the relevant method 

and results and discussion sections below.  For the datasets in which the detailed 

methods are not specified below, the methods used to generate the datasets have 

been previously defined in detail in chapter 2. 

3.2.1.1 “Artificial” Dataset Using Composition-based Sequence statistics in 

BLAST Database Search 

Both the masked – “All1stINCORRECT.tT.BLOSUM62.masked.E10” – and the 

unmasked - “All1stINCORRECT.tT.BLOSUM62.unmasked.E10” – forms of the 

4189 BLAST generated MSAs from these datasets were used in the following 

analysis. 

3.2.1.2 Refinement of the “Artificial” Dataset by Removal of Effect Due to 

Composition-Based Sequence Statistics 

Additional datasets of MSAs were generated, without the use of composition-based 

sequence statistics during the sequence database search and with an output E-value 

threshold of 0.001 used to control the sequences included in the output MSAs.  Both 

the masked – “All1stINCORRECT.tF.BLOSUM62.masked.E0.001” – and the 
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unmasked - “All1stINCORRECT.tF.BLOSUM62.unamsked.E0.001” – forms of the 

3527 BLAST generated MSAs from these datasets were used in the following 

analysis (see Appendix I for more detailed description of these datasets).  

3.2.1.3 Generation of a Dataset of MSAs Using a PAM160 Sequence 

Database Search Matrix 

A dataset of MSAs was generated through the use of the PAM160 matrix in a PSI-

BLAST protein sequence database search.  The steps used in the methodology were 

as close as possible to those previously described when using the BLOSUM62 

substitution matrix.  For clarity, the PSI-BLAST search procedure and parameters 

used is repeated below.   

As before, the PSI-BLAST database search was carried out, for each of the 4189 

target enzymes in the “QUERY.enzymes.4189” sequence set, against the UniProt 

(Swiss-Prot + TrEMBL) database (version 4.0).  Each input sequence was filtered 

using the SEG low complexity filter (Wootton and Federhen, 1996) and all of the 

sequences in the search database were filtered using the low complexity, trans-

membrane and coiled-coil filter options of the pfilt application (Jones and Swindells, 

2002).  The sequence database search was carried out using 1 iteration of PSI-

BLAST (version 2.2.10), an output E-value threshold of 0.001 and the PAM160 

substitution matrix.  Composition-based sequence statistics were not used during the 

database search, hence the –t parameter was set as –t F.  

The version of PSI-BLAST used does not implicitly contain support for the PAM160 

substitution matrix.  Because of this it was necessary to determine the most suitable 

gap penalty parameters to use in the database search.  In comparisons, by Henikoff 

and Henikoff (1992), between the PAM and BLOSUM series of matrices, the 

PAM160 matrix is shown to be most closely comparable to the BLOSUM62 matrix.  

Using this information and that from Reese and Pearson (2002), which suggests 

similar effective gap penalties for the two matrices, I decided to use the same gap 

open and gap extension penalties, of -11 and -1 respectively, that were used in the 

database search with the BLOSUM62 matrix. 

An MSA post-processing procedure identical to that used for the BLOSUM62 

generated MSAs was then carried out.  Firstly, the resulting MSAs were filtered to 
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remove all sequences not identified as “target” enzyme sequences (see chapter 2).  

Next, each of the MSAs were processed using the “All1stINCORRECT” artificial 

dataset post-modification procedure and finally the “MSA functional diversity 

criteria” was applied (both of these procedures are defined in chapter 2).   

This resulted in a dataset consisting of 3100 PSI-BLAST generated MSAs, whose 

query sequences represent coverage of 88 distinct EC classes.  During associated 

analysis and discussion throughout this thesis, the sequence residue masked and 

unmasked forms of this dataset will be referred to as the 

“All1stINCORRECT.tF.PAM160.masked.E0.001” and 

“All1stINCORRECT.tF.PAM160.unmasked.E0.001” datasets respectively (see 

Appendix I for more detailed description of these datasets). 

3.2.1.4 Generation of a Dataset of MSAs Using a PAM30 Sequence 

Database Search Matrix 

One further dataset of MSAs was generated for analysis in this chapter.  In this case, 

a PAM30 substitution matrix was used in the PSI-BLAST sequence database search.  

Unless specified otherwise, the steps used in the generation of these PAM30 based 

MSAs are identical to those used in the PAM160 based BLAST MSAs, detailed 

above. 

The important difference in this dataset generation method was that a PAM30 

substitution matrix was used in the PSI-BLAST database search.  As with the 

PAM160 case, above, the version of PSI-BLAST used does not implicitly contain 

support for the PAM30 substitution matrix.  Therefore, it was again necessary to 

determine the most suitable associated gap penalty parameters for use in the database 

search.  The parameters decided upon were: -9 for the gap opening; and -1 for the 

gap extension penalty.  These were selected because two previous studies (Altschul 

et al., 2001; and Frommlet et al., 2004), which investigate the effects of sequence 

alignment scoring schemes on statistical alignment parameters, both recommend the 

use of these gap scoring parameters with the PAM30 substitution matrix.  

An MSA post-processing procedure, identical to that used for the PAM160 

generated MSAs, was then carried out.  This resulted in a dataset consisting of 2110 

PSI-BLAST generated MSAs, whose query sequences represent coverage of 82 
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distinct EC classes.  During associated analysis and discussion throughout this thesis, 

the sequence residue masked and unmasked forms of this dataset will be referred to 

as the “All1stINCORRECT.tF.PAM30.masked.E0.001” and 

“All1stINCORRECT.tF.PAM30.unmasked.E0.001” datasets respectively (see 

Appendix I for more detailed description). 

3.2.2 Calculation of Alignment Scores Using Non-Standard Amino 

Acid Substitution Matrices  

A method was developed for the parsing of the PSI-BLAST generated multiple 

alignments.  Each of the individual pair-wise alignments, between the query and high 

scoring “target” sequences from the database search, were then re-scored using a 

selected set of amino acid substitution matrices.  The substitution matrices used in 

the experimental analysis were: 

 IDENTITY matrix: This consisted of just two different score entries for all amino 

acid pairings s(i, j): 

 s(i, j) = 1 where i = j 

 s(i, j) = 0 where i ≠ j 

 PAM matrices: A number of PAM matrix evolutionary distances were used in 

this analysis, ranging from: PAM10 to PAM250 in increments of 10 PAM units. 

 BLOSUM matrices: A variety of BLOSUM matrices were also used in the 

analysis: (BLOSUM30 to BLOSUM60 in increments of 5; BLOSUM62; 

BLOSUM70 to BLOSUM90 in increments of 5; and BLOSUM100) 

All of the PAM and BLOSUM series of matrices used were downloaded from the 

following website (ftp://ftp.ncbi.nih.gov/blast/matrices/).  The PAM matrices were 

calculated using "pam" Version 1.0.6 [28-Jul-93] and the BLOSUM matrices were 

calculated from the BLOCKS 5.0 database, at the required sequence cluster 

percentage level. 

3.2.2.1 Alignment Re-Scoring Procedure 

The procedure used in these experiments for re-scoring each pair-wise alignment, 

between query and target sequence in the MSAs, closely follows that shown in 

ftp://ftp.ncbi.nih.gov/blast/matrices/
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figure 3.1.  Each of the individual pair-wise alignments were extracted and all of the 

aligned residue pairs were then re-scored using the scores defined in each of the 

distinct substitution matrices described above.  It is important to note that it is the 

local alignments, generated by PSI-BLAST, that are used in this analysis and that no 

re-alignment of the sequences is carried out.  A simplified overview of this process, 

consisting of only two pair-wise alignments, is shown in figure 3.2.  This particular 

example shows two short alignments and the resulting score obtained from using the 

BLOSUM62 matrix to score each of the aligned residues between the query and 

sequence_n.  In this case the alignment score of the query with sequence_2 is greater 

than with sequence_1.  Therefore, using this scoring scheme, sequence_2 would be 

ranked as a closer specific functional match to the query than sequence_1. 

 

Figure 3.2. A simplified schematic overview, showing the way that pair-

wise sequence alignments are functionally re-scored, using different amino 

acid substitution matrices (in this particular case BLOSUM62 is used). 

3.2.2.2 Treatment of Insertions and Deletions 

Insertions and deletions of amino acids play an important role in protein evolution. 

They give rise to “gapped” sections to provide optimal alignments between 

sequences.  In this analysis two different approaches were taken to the treatment of 

gaps in the alignments when calculating the re-scored values. 

Un-gapped: This method scores all residues aligned to gap positions as 0 

Gapped: This method uses the same affine gap penalty model as that used in the 

BLAST algorithm and is defined below in equation 3.1 

extendopenn gngG *)1(                                (equation 3.1) 

where Gn is the overall gap penalty, gopen is the penalty for opening a gap, n is the 

number of consecutive gaps and gextend is the penalty for extending a gap.  In both the 

                                                    score 

Query              L  L  A  R  F  Q  V  R  M  G  P 

Sequence_1         I  L  G  Y  M  Q  F  R  K  G  P  

BLOSUM62 score     2  4  0 -2  0  5 -1  5 -1  6  7   25 

 

Query              L  L  A  R  F  Q  V  R  M  G  P 

Sequence_2         L  L  G  L  F  Q  N  R  Y  G  P 

BLOSUM62 score     4  4  0 -2  6  5 -3  5 -1  6  7   31 
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“un-gapped” and “gapped” form of analysis the starting and trailing gaps were 

removed from the ends of all the alignments before carrying out the rescoring 

calculations. 

3.2.3 Assessing Prediction Accuracy 

3.2.3.1 Top-hit Method 

To assess the improvement in prediction accuracy when re-scoring the MSAs, a 

simple “top-hit” approach was taken.  This is where the specific function of the 

query sequence is assigned the same specific function as the sequence with the 

highest score from the pair-wise re-scoring procedure.  If the specific functional 

classes are the same (to a degree of all 4 numbers in the EC hierarchy), then the 

result is defined as a “correct” prediction of specific function, otherwise the result is 

defined as an “incorrect” prediction.   

Exceptions to these outcomes are seen when a group of sequences have equal scores, 

producing a set of tied ranking positions.  A group of this kind contains two or more 

members that may (or not) have the same specific function.  If the members all have 

the same specific function, and it is the same as the query sequence, then this is 

classed as a correct prediction.  Alternatively, if none of them have the same specific 

function as the query then this is classed as incorrect.  A third case is where the 

sequences in the “tied-rank” group have two or more different functional classes and 

one of them is the same specific function as the query sequence; in this case it is not 

possible to differentiate between the correct and incorrect examples and therefore 

can be classed as “undecidable”.  For all practical purposes, these types of 

“undecidable” examples should be classified as “incorrect” when considering the 

functional prediction results, as they cannot be separated from those that are correct 

using the available information from the defined scoring scheme.  In this analysis, 

these “undecidable” examples are indeed treated as “incorrect” predictions. 

3.2.3.2 Definition of a Random Sequence Selection Model for Specific 

Function Prediction 

A random model of a simple naive prediction system was defined to provide a 

baseline comparison with the “top-hit” function prediction results obtained from the 

different re-scoring methods.  This was based upon the concept of randomly 
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permuting the ranked results of the sequence homologues in each of the MSAs in the 

dataset.  The prediction result was then determined to be correct or incorrect through 

functional comparison between the specific EC classification of the query sequence 

and the randomly permuted “top-hit”. 

A simple, computationally inexpensive way of modelling these random permutations 

is through the calculation of the probability of randomly selecting a functionally 

correct sequence (where all 4 levels of the EC hierarchy are equal between the query 

and randomly selected sequence) from each MSA.  The resulting probability 

calculation, for each MSA, is shown in equation 3.2. 

all

correct
correctrandom

n

n
P _

                                        (equation 3.2) 

Where: Prandom_correct is the probability of a randomly assigned, correct, functional 

prediction; ncorrect is the number of sequences in the MSA with the same (correct) 

specific function as the query sequence; and nall is the total number of sequences in 

the particular MSA of interest. 

3.2.3.3 Bootstrap Re-sampling Analysis of Results 

A computational statistical re-sampling method, known as the “bootstrap” (Efron 

and Gong, 1983), was used to allow the accurate calculation of statistical properties 

from data distributions that are not normally distributed.  The central limit theorem 

states that the distribution of a sample of calculated means approximates a normal 

distribution, when the number of data points is large.  Standard statistical 

calculations can then be made on the resulting, normally distributed, bootstrap re-

sampled data.  

Sample Mean 

The sample arithmetic mean, x , is calculated using equation 3.3 





n

i

ix
n

x
1

1
                                               (equation 3.3) 

where n  is the number of data points in the sample and ix  is the value of data point 

i . 
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Standard Error 

The standard error is a metric that is commonly used to approximate the dispersion 

of a sample statistic, such as the sample mean.  The bootstrap sample statistics were 

used in this calculation, following the method of Good (1999).  The standard error 

(se) can be defined as the square-root of the unbiased estimate of the sample variance 

(see equation 3.4). 

 statisticsbootstrapiancese _var                       (equation 3.4) 

Equation 3.5 shows the detailed method of calculation used to compute the standard 

error (se) of a sample containing B bootstrap values 









 




B

b

bb
B

se
1

2

ˆˆ
1

1
                                 (equation 3.5) 

Where 
b̂  is the bootstrap value, b, and b̂ is the mean of these bootstrap values. 

Outline of the Bootstrap Re-sampling Procedure 

The general bootstrap procedures used for the experimental analysis of both the 

random model and the alignment re-scoring methods are described below, where the 

number of bootstrap repetitions, B, is 10000 in all of the bootstrap calculations. 

Using the Random Model Data 

 For a dataset of N MSA examples, calculate the distribution of the N 

probabilities for “random correct prediction”, calculated using equation 3.2. 

 Bootstrap: (repeat steps 1 and 2, B times, storing the mean sample estimate from 

each bootstrap replicate in a vector, M, of length B) 

1. Randomly select n (where n=N/2) data-points, with replacement, from the 

original sample distribution of Prandom_correct values. 

2. Calculate, using equation 3.3, the mean of the Prandom_correct bootstrap sample 

values and add to vector M. 

 Finally, calculate the standard error (se) of the bootstrap statistics contained in 

M. 
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Using the Alignment Re-scoring Top-hit Prediction Data 

 For a dataset of N MSA examples, apply the re-scoring method, evaluate whether 

the functional “top-hit” prediction result is “correct” or “incorrect”.  The dataset 

will then consist of ncorrect and nincorrect examples. 

 Bootstrap (repeat steps 1 and 2, B times, storing the calculated sample estimate 

from each bootstrap replicate in a vector, M, of length B) 

1. Randomly select n (where n=N/2) data-points, with replacement, from the 

original sample distribution of N (ncorrect and nincorrect) examples. 

2. Calculate the fraction of correct examples in the bootstrap sample and add to 

vector M. 

 Finally, calculate the standard error (se) of the bootstrap statistics contained in 

M. 

3.2.4 Calculation of PAM Distance from Sequence Percentage Identity 

A PAM 1 mutation matrix is defined to be a specific measure of a unit of 

evolutionary distance.  Therefore, it is possible to define a function that calculates 

the relationship between PAM evolutionary distances and the changes in amino acid 

sequence identity.  In this chapter these calculations were carried out using the 

PerIdentToPam() function that is available in the Darwin interpreted computer 

language suite of software tools (Gonnet et al., 2000).  This function carries out an 

iterative procedure using Newton's method for solving equations (see the following 

section of the Darwin user manual for further details: 

http://www.inf.ethz.ch/personal/gonnet/DarwinManual/node155.html). 

3.2.5 Query Sequence Clustering 

The input query sequences that were used as input to the BLAST database search 

and MSA generation were clustered based on the level of sequence identity through 

the use of the CD-HIT algorithm (Li and Godzik, 2006).  The clustering was done 

for each of the separate query sequence sets identified by the three dataset generation 

methods described above.  A range of percentage sequence identity levels were used 

for the clustering (40% - 90% in intervals of 10%) and the recommended default 

parameters were used for all.  The longest sequence in each cluster was used as the 
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representative.  A summary of the cluster properties, at each defined level of 

sequence identity, is given in the relevant section of results. 

3.3 Results and Discussion 

3.3.1 Benchmark Prediction Results Using the Artificial Datasets 

An initial analysis of the 4189 MSA examples, in the 

“All1stINCORRECT.tT.BLOSUM62.masked.E10” dataset, was carried out to ensure 

the correct functioning of the alignment re-scoring algorithm.  The same amino acid 

substitution matrix, gap scoring algorithm and gap penalty values, as those employed 

for the BLAST generation of the alignments, were used for the alignment re-scoring.  

These were: BLOSUM62; the affine gap penalty scoring method described in 

equation 3.1; and a gap opening (gopen) value of -11 and gap extension (gextend) value 

of -1, respectively. 

As has been described previously, the way in which the MSAs in the artificial 

datasets have been modified ensures that none of them generate a correct “top-hit” 

functional prediction result, when considering all 4 levels of the EC classification 

scheme and the sequences have been ranked in ascending E-value order.  Therefore, 

the hypothesis was that by using a score matrix and gap penalty parameters in the re-

scoring algorithm, equivalent to those used in the sequence alignment during the 

BLAST database search, an identical sequence ranking should be observed for each 

of the MSAs.  This was however not the case, as a significant number (2045 out of 

4189, or a proportion of 0.49 correct predictions) of examples in the re-scored 

“All1stINCORRECT.tT.BLOSUM62.masked.E10” dataset, showed a correct 

functional sequence “top-hit” after the functional alignment re-ranking, when using 

the BLOSUM62 re-scoring matrix and the gapped scoring model.   

These results clearly show that the alignment re-scoring algorithm was not producing 

the expected results during the calibration of the benchmark dataset.  This was 

problematic because it indicated a possible flaw within the re-scoring algorithm, 

preventing the establishment of a true, reproducible, benchmark comparison between 

the BLAST generated predictions and those from the re-scored alignments.  The 

reasons for these discrepancies are investigated and discussed further in the 

following section. 
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3.3.1.1 Testing and Calibration of Benchmark Datasets Used for Assessing 

the Prediction Accuracy of the Functional Re-scoring Algorithm 

The alignment re-scoring algorithm was carefully tested to ensure that the expected 

alignment score, for each of the pair-wise alignments, was being calculated.  The 

results from this test showed that the algorithm was generating the expected results 

when using the specified gap scoring model and amino acid substitution matrix.  

However, comparisons between these calculated alignment scores, and the “raw” 

BLAST alignment scores, showed differences that caused the functional ranking 

discrepancies in the benchmark dataset. 

This finding indicated that the differences between the BLAST alignment scores and 

those calculated with my re-scoring algorithm must be explained by additional 

parameters in the BLAST alignment score calculations that were not being 

incorporated into the alignment re-scoring algorithm.  Analysis of the parameters 

used in the BLAST search highlighted the use of sequence composition-based 

statistics calculations (controlled through the use of the command line –t argument), 

during the generation of the BLAST alignments, as the reason for the observed 

discrepancies.  It was found – using the 

“All1stINCORRECT.tF.BLOSUM62.masked.E10” dataset - that, when compared to 

no use, composition-based statistics can generate slightly different alignment scores.  

This can lead to varying statistical significance scores and subsequent differences in 

the rankings of the sequence homologs identified with BLAST.    This was the 

reason for the observed differences between the “top-hit” function prediction results 

of the BLAST MSAs, when using composition-based statistics and those from the 

alignment re-scoring algorithm, when using identical substitution matrices and gap 

scoring models.    

To correct these differences I decided to define an alternative benchmark dataset of 

MSAs, still generated by BLAST, but without the use of composition-based 

statistics.  This solution was chosen because it allows for an exact reproduction of 

the aligned sequence ordering, and associated “top-hit” function prediction results, 

when using the re-scoring algorithm.  It also provides a simpler implementation for 

the alignment re-scoring algorithm because there is no requirement to explicitly 

calculate the additional effects due to the composition-based sequence statistics.   
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In summary, when composition-based statistics are not used to generate the 

alignments, the benchmark re-scoring results are equivalent between both the 

BLAST-based and alignment re-scoring methods, when using an equivalent 

substitution matrix, gap scoring model and penalties.  Therefore, for the remainder of 

this chapter, the experimental analysis only uses datasets that contain MSAs that 

have been generated without the use of composition-based sequence statistics.   Also, 

at this point, a decision was made to concentrate all further analysis on MSAs 

created through the use of a more stringent output E-value threshold of 0.001, 

namely the MSAs in the “All1stINCORRECT.tF.BLOSUM62.masked.E0.001” and 

the “All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” datasets.  This was 

found to not alter the general results and experimental trends observed during the 

following analysis. 

3.3.2 Definition of a Simple Random Sequence Selection Model for 

Function Prediction 

During the analysis in this chapter, comparisons are made between the function 

prediction results from alternative alignment re-scoring methods and those from 

associated random sequence selection models.  As described in the methods, the 

random model used for this comparison is based on the probability of randomly 

selecting a sequence, from a multiple alignment, that has the same specific function 

as the query sequence.  The aim of these comparisons is to assess the difference in 

prediction performance between the re-scored analysis results and the baseline 

provided by the random model.  Where necessary the random model is defined 

alongside the associated dataset and analysis under discussion.  Also, in table 3.1, a 

summary of the dataset size, bootstrap parameters and calculated mean and standard 

error (se) statistics is given for the random sequence selection models of each dataset 

used in this analysis.  

3.3.2.1 Probability Distributions and Bootstrapping of the Random Sequence 

Selection Model 

In general, the probabilities for the correct prediction of specific enzyme function, 

using a model of uniform random sequence selection from each of the MSAs in a 

dataset, follow a non-normal sample distribution.  Due to this, the bootstrap method 
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can be used (see methods) to calculate associated statistical properties of the 

distribution, such as the sample mean and standard error.   

When calculating the bootstrap statistics for the 

“All1stINCORRECT.tF.BLOSUM62.(un)masked.E0.001” datasets, the number of 

bootstrap replicates, B, used was 10000 and the sample size for each replicate was 

1764, which is approximately half of the 3527 MSA examples in the dataset.  The 

resulting statistics, shown in table 3.1, for the random sequence selection model for 

this dataset show a bootstrap mean of 0.502 and a standard error of +/- 0.006. 

Dataset No. of 

MSAs 

(N) 

(bootstrap) 

Sample 

Size (N/2) 

(bootstrap) 

mean +/- se 

All1stINCORRECT.tF.BLOSUM62.E10 4054 2027 0.475 +/- 0.006 

All1stINCORRECT.tF.BLOSUM62.E0.001 3527 1764 0.502 +/- 0.006 

All1stINCORRECT.tF.PAM160.E0.001 3100 1550 0.522 +/- 0.007 

All1stINCORRECT.tF.PAM30.E0.001 2110 1055 0.572 +/- 0.008 

Table 3.1. Summary of the dataset size, bootstrap sample size and 

calculated mean and standard error (se) statistics for the random sequence 

selection model for each associated dataset of MSAs used in this analysis. 

3.3.3 The Effect on the Top-Hit Prediction Performance of Using 

Alternative Substitution Matrices to Re-score the MSAs 

The aim of this section is to analyse the effect, on the performance of the “top-hit” 

function prediction results, of using alternative amino acid substitution matrices with 

the alignment re-scoring algorithm.  A thorough investigation of the IDENTITY 

matrix and the BLOSUM and PAM series of amino acid substitution matrices, 

defined in the methods, is carried out. 

Also studied are some of the additional parameters that may affect the alignment re-

scoring results, such as sequence residue masking and the gap scoring of the 

alignments.  Alongside these analyses are comparisons to the associated function 

prediction results, from the baseline random sequence selection model, of the dataset 

under investigation. 
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3.3.3.1 Comparison Between the Substitution Matrices When Using MSAs 

Containing Sequence Masking 

For this analysis the ”All1stINCORRECT.tF.BLOSUM62.masked.E0.001” dataset 

was used, with sequence residue masking still present in the functionally filtered 

MSAs.  The effect of the amino acid substitution matrices, on the alignment re-

scoring results, are compared using the gap scoring model of equation 3.1, with the 

same gap penalties as those used in the original BLAST search: gopen = -11 and 

gextend = -1 and also with an “un-gapped” scoring model where gopen = 0 and gextend = 

0.  Both the number, and proportion, of correct function prediction results for a 

representative set of IDENTITY, BLOSUM-N and PAM-N substitution matrices are 

shown in table 3.2.  All four levels of EC functional classification of the top scoring 

aligned sequences in each re-ranked MSA, are used to predict the specific enzyme 

function of the query sequences.  
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 Gapped (-11, -1) Un-gapped (0, 0) 

Re-score 

Matrix 

Number 

(proportion) 

Correct 

 

(bootstrap)  

mean 

proportion 

correct +/- se 

Number 

(proportion) 

Correct 

(bootstrap) 

mean 

proportion 

correct +/- se 

IDENTITY 1819 (0.52) 0.516 +/- 0.012 1844 (0.52) 0.523 +/- 0.012 

BLOSUM30 1507 (0.43) 0.427 +/- 0.012 1909 (0.54) 0.541 +/- 0.012 

BLOSUM40 1467 (0.42) 0.416 +/- 0.012 1945 (0.55) 0.552 +/- 0.012 

BLOSUM50 1306 (0.37) 0.370 +/- 0.011 1907 (0.54) 0.541 +/- 0.012 

BLOSUM60 809 (0.23) 0.229 +/- 0.010 1845 (0.52) 0.523 +/- 0.012 

BLOSUM62 0 (0.00) 0.000 +/- 0.000 1850 (0.52) 0.524 +/- 0.012 

BLOSUM70 1291 (0.37) 0.366 +/- 0.011 1882 (0.53) 0.533 +/- 0.012 

BLOSUM80 1544 (0.44) 0.438 +/- 0.012 1898 (0.54) 0.538 +/- 0.012 

BLOSUM90 1589 (0.45) 0.450 +/- 0.012 1882 (0.53) 0.534 +/- 0.012 

BLOSUM100 1744 (0.49) 0.494 +/- 0.012 1906 (0.54) 0.540 +/- 0.012 

PAM10 2002 (0.57) 0.568 +/- 0.012 2053 (0.58) 0.582 +/- 0.012 

PAM20 2018 (0.57) 0.572 +/- 0.012 2124 (0.60) 0.602 +/- 0.011 

PAM30 2043 (0.58) 0.579 +/- 0.012 2165 (0.61) 0.614 +/- 0.012 

PAM40 2032 (0.57) 0.576 +/- 0.012 2134 (0.61) 0.605 +/- 0.012 

PAM50 2049 (0.58) 0.581 +/- 0.012 2086 (0.59) 0.591 +/- 0.012 

PAM60 2017 (0.57) 0.572 +/- 0.012 2043 (0.58) 0.579 +/- 0.012 

PAM80 1946 (0.55) 0.552 +/- 0.012 1979 (0.56) 0.561 +/- 0.012 

PAM100 1828 (0.52) 0.518 +/- 0.012 1985 (0.56) 0.563 +/- 0.012 

PAM120 1780 (0.51) 0.505 +/- 0.012 1935 (0.55) 0.549 +/- 0.012 

PAM140 1721 (0.49) 0.488 +/- 0.012 1934 (0.55) 0.548 +/- 0.012 

PAM160 1712 (0.49) 0.485 +/- 0.012 1928 (0.55) 0.547 +/- 0.012 

PAM180 1635 (0.46) 0.464 +/- 0.012 1899 (0.54) 0.538 +/- 0.012 

PAM200 1600 (0.45) 0.453 +/- 0.012 1904 (0.54) 0.540 +/- 0.012 

PAM220 1660 (0.47) 0.471 +/- 0.012 1911 (0.54) 0.542 +/- 0.012 

PAM240 1658 (0.47) 0.470 +/- 0.012 1886 (0.54) 0.535 +/- 0.012 

Table 3.2. A comparison between the number, and proportion, of 

correct functional prediction results for a representative set of substitution 

matrices used for alignment re-scoring.  All results for the number of correct 

predictions are out of a possible 3527.  Also shown are the corresponding 

mean and standard error (se) results calculated from the bootstrap analysis.  

Results from both gapped and un-gapped gap re-scoring models are shown, 

where gap penalties of (gopen = -11 and gextend = -1) and (gopen = 0 and gextend = 0) 

were used respectively. 
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IDENITITY Matrix 

When using the IDENTITY matrix, with the “gapped (-11, -1)” gap scoring model, 

to re-score the MSAs in the ”All1stINCORRECT.tF.BLOSUM62.masked.E0.001” 

dataset, the proportion and number of correct predictions is 0.52 (1819/3527), see 

table 3.2.  

BLOSUM-N Matrices 

The results, in table 3.2, for the “gapped (-11, -1)” re-scoring analysis, clearly show 

that the expected minimum - of 0 correct predictions - is obtained when the 

BLOSUM62 matrix is used in the alignment re-scoring algorithm.  Also, as the N 

value of the BLOSUM-N matrices is both increased and decreased, the number of 

correct predictions increases.  This is, perhaps, to be expected, as the definition of 

the benchmark dataset only allows for the identification of examples that either 

improve, or do not alter, the accuracy of function prediction.  There also appears to 

be some correlation between an increasing number (or proportion) of correct 

predictions and the distance of the BLOSUM-N N value from the BLOSUM62 

matrix used to calibrate the dataset.  For the BLOSUM-N matrices, the maximum 

fraction of correct predictions, 0.49 (1744/3527), is obtained by re-scoring the 

alignments using the BLOSUM100 matrix. 

PAM-N Matrices 

The prediction results, in table 3.2, for the “gapped (-11, -1)” re-scoring analysis 

when using the PAM-N matrices show quite a different trend to those of the 

BLOSUM-N.  Most noticeably, there is no clear minimum for the matrices in the   

series that is comparable to that of the BLOSUM-N results.  This is most striking for 

the PAM160 matrix, which is the suggested PAM series equivalent to the 

BLOSUM62 matrix (Henikoff and Henikoff, 1992), because it does not show a 

comparable prediction performance, of 0 correct predictions, to that of BLOSUM62.  

The minimum fraction of correct predictions is observed with the PAM200 matrix, 

whereas, the maximum fraction of correct predictions, 0.58 (2049/3527), is obtained 

by re-scoring the alignments with the PAM50 matrix.   
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3.3.3.2 Applying Bootstrap Analysis to the Alignment Re-scoring Results 

To obtain a more statistically accurate assessment for the mean fraction of correct 

prediction results, and the associated standard error, a bootstrap analysis was carried 

out on the results from the ”All1stINCORRECT.tF.BLOSUM62.masked.E0.001” 

dataset.  The bootstrap parameters used were the same as those for the associated 

random model, where the number of replicates, B, was 10000 and the sample size of 

each replicate was 1764 - approximately half the number of MSA examples, 3527, in 

the dataset.  Unless otherwise stated, all remaining analysis comparisons and 

discussion in this chapter will refer to the bootstrapped form of the function 

prediction results. 

The bootstrap analysis results, with the mean and standard error (se) values for a 

representative set of the IDENTITY, BLOSUM-N and PAM-N substitution matrices, 

are shown in table 3.2.  With regards to the results from the “gapped (-11, -1)” gap 

scoring model, it can be seen that the mean and standard error for the BLOSUM62 

results is 0.  This is to be expected as all the examples are defined to be incorrect 

predictions with this score matrix, which leads to no variation in the sample 

distribution of predictions used for the bootstrap.  Overall, both with and without 

bootstrapping, the trends of the re-scoring results for all of the substitution matrices 

are similar.   

Maximum predictive performance is still seen when using the PAM50 matrix, with a 

mean proportion of 0.581 correct predictions.  Although there is now significant 

overlap, of the standard error bars, with the results from PAM10 to PAM40 and 

PAM60.  Each one of these “optimal” matrices shows a large improvement, in the 

proportion of correct predictions, when compared to the random sequence selection 

model, which has a mean value of 0.502, shown in table 3.1. 

3.3.3.3 Comparisons Between the Masked and Unmasked Alignments  

As discussed previously, sequence masking was used for the BLAST search and 

generation of the MSAs in the benchmark dataset.  To investigate the effects of 

sequence masking on the prediction results, the alignments were modified to replace 

all masked sequence residues, with the amino acid residues present in the associated 

source protein sequences extracted from the Swiss-Prot database.  The key 

observation to take from these alignment rescoring results, is the consistent 
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improvement in the proportion of correct functional “top-hit” predictions for all of 

the substitution matrices investigated, when comparing the respective results from 

the alignments containing un-masked with those containing masked sequence 

residues.  Overall, the trends in the prediction results are similar to those of the 

masked sequences, with significant improvement (within 1 standard error difference) 

shown for all of the matrices, except those results from using the PAM10 matrix.  

The remaining analyses focus on the results from re-scoring the un-masked versions 

of the MSAs from each dataset. 

The optimal predictive performance, for the 

”All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” dataset, is now seen when 

using the PAM30 matrix to re-score the unmasked sequence alignments, with a 

bootstrapped mean proportion of 0.606 correct predictions and a standard error of +/- 

0.012.  This provides a small increase, of 0.025, for the proportion of correct 

function predictions, when compared to the results from using the PAM50 matrix to 

re-score the masked alignments.  Also shown is an improvement, of 0.104, in the 

mean proportion of correct predictions, when compared to the random sequence 

selection model, mean value, of 0.502, shown in table 3.1. 

3.3.3.4 Comparison Between the “Gapped” and “Un-gapped” Models for 

Alignment Re-scoring 

All of the results shown so far incorporate a “gapped” scoring method into the 

alignment re-scoring algorithm, which uses an identical scoring model and 

parameters to that of the default gapped BLAST algorithm with the BLOSUM62 

search matrix.  In this section, the “un-gapped” method, which scores all residues 

aligned with gaps as 0, was used to calculate a comparable set of alignment scores 

(see methods).   

The results, shown in figure 3.3, provide a comparison between the use of the 

“gapped” and “un-gapped” models for scoring sequence alignment gaps in the 

“All1stINCORRECT.tF.BLOUSM62.unmasked.E0.001” dataset.  It can be seen from 

these results that a significant increase in the proportion of correct predictions is 

obtained when the “un-gapped” gap scoring model is used for the alignment 

rescoring.  This is true for the IDENTITY and all of the BLOSUM-N and PAM-N 

substitution matrices investigated.  The clearest example of this is in the difference 
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between the numbers of correct predictions when using the BLOSUM62 matrix with 

the “un-gapped” model.  When using gap-scores of gopen = -11 and gextend = -1, the 

masked dataset shows 0 correct predictions, whereas the unmasked dataset has a 

mean proportion of 0.218 correct predictions.  However, with the “ungapped” 

method (where gopen = 0 and gextend = 0), the mean proportion of correct predictions 

increases to 0.524 and 0.560, for the masked and unmasked alignments respectively.  

Further, for the BLOSUM-N matrices, a clear difference can be seen between the 

trends in prediction results for the gapped and un-gapped scoring models.  When 

using the un-gapped model there is little difference between the proportions of 

correct predictions for the different BLOSUM-N matrices, especially when taking 

the overlap of the standard error of the mean into consideration.  This is in contrast 

to the results, described above, for the gapped model of the BLOSUM-N alignment 

re-scoring.  The trends for the PAM-N matrices are similar overall to those seen in 

the gapped model but show a consistently improved performance.   

A further observation is highlighted by the comparison of these un-gapped prediction 

results to the associated random sequence selection model, where all of the mean 

values, for the proportion of correct predictions from the un-gapped BLOSUM-N 

and PAM-N re-scoring results, show a significant improvement when compared to 

the random model.  This is also the case for the results for the IDENTITY matrices 

and the gapped results from the PAM-N matrices, when N is less than 170. 

The optimal prediction result, for all matrices investigated when using the un-gapped 

model with unmasked sequence alignments, was 0.631, which was observed with the 

PAM30 matrix and can be seen in figure 3.3. 
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Figure 3.3. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the gapped (-

11,-1) and un-gapped (0,0) alignment re-scoring of the 

Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, when using the 

IDENTITY, BLOSUM-N and PAM-N substitution matrices.  Also shown is the 

associated random sequence selection model for the dataset, where the dotted 

lines show 1 standard error deviation from the mean. 

 

3.3.3.5 Comparison Between the Re-Scoring the Alignments from the 

“Original” and “Artificial” Datasets 

To assess whether these observed results were dependent on the nature of the 

“artificial – All1stINCORRECT” dataset of alignments, a control experiment was 

carried out.  In the previous section, it was shown that the PAM30 matrix was the 

optimally performing matrix for re-scoring the 3527 unmasked alignments from the 

“All1stINCORRECT” dataset.  However, due to the “artificial” nature of the 

benchmark dataset used it is not clear whether these results are concealing a potential 

decrease in performance when re-scoring alignments that already have a correct 

specific functional hit as the top-ranked sequence.  Therefore, the “original” BLAST 

MSAs (i.e., prior to the generation of the “artificial” dataset, described in section 

2.4.2) were re-scored using the PAM30 matrix.  These were then compared to the 
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results obtained from re-scoring the “original” unmasked MSAs with the 

BLOSUM62 matrix. 

When using gap-scores of gopen = -11 and gextend = -1, the unmasked “original” 

dataset showed 3459 (out of 3527) and 3465 (out of 3527) correct predictions, when 

re-scoring with the BLOSUM62 and PAM30 matrices, respectively.  In comparison, 

when using the “un-gapped” scoring model (gopen = 0 and gextend = 0) the unmasked 

“original” dataset showed 3454 (out of 3527) and 3463 (out of 3527) correct 

predictions, when re-scoring with the BLOSUM62 and PAM30 matrices, 

respectively. 

These results show that, for both the gapped and un-gapped models, there is a small 

increase in the proportion of correct predictions when using the PAM30 matrix 

instead of the BLOSUM62 to re-score the “original” alignments.  However, the key 

observation from these results is that the use of a PAM30 matrix, when compared to 

the BLOSUM62 matrix used in the BLAST search, does not have a detrimental 

effect when re-scoring alignments that contain a large proportion of examples that 

are originally “correct”.  This result, therefore, provides validation for the use of the 

“All1stINCORRECT” artificial datasets as a benchmark in this thesis. 

3.3.4 Investigation into the Effect of the Amino Acid Substitution 

Matrix Used in the BLAST Search on the Top-Hit Prediction 

Accuracy 

In the alignment re-scoring analysis discussed above, the BLOSUM62 amino acid 

substitution matrix was used in the BLAST sequence database search that generated 

the MSAs in each dataset.  It was shown that the overall optimum performance, for 

specific enzyme function prediction, was obtained from re-scoring the MSAs using 

the PAM30 substitution matrix.  To investigate whether this observed prediction 

improvement was due to the specific ordered combination of BLOSUM62 and 

PAM30 matrices, this analysis was followed by investigating the use of the PAM 

equivalent of the BLOSUM62 matrix in the BLAST search procedure. 
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3.3.4.1 Analysis of the Dataset Obtained from Using the PAM160 Matrix in 

the Sequence Database Search 

The PAM160 matrix is regarded as the closest PAM equivalent to the BLOSUM62 

matrix (Henikoff and Henikoff, 1992).  The following section analyses the effects of 

re-scoring the MSAs, from the “All1stINCORRECT.tF.PAM160.masked.E0.001” 

and “All1stINCORRECT.tF.PAM160.unmasked.E0.001” datasets, with the same set 

of non-standard amino acid substitution matrices used in the previous analysis of the 

”BLOSUM62 generated” datasets.   

The main purpose of this analysis is to ascertain whether similar trends of function 

prediction performance are seen, when using the PAM series equivalent of the 

BLOSUM62 matrix to generate the source dataset MSAs.  Specifically, whether 

there is a similar peak in performance when the lower N values (such as 30) of the 

PAM-N series matrices are used in the re-scoring.  The hypothesis is that this will 

test whether the enhanced prediction performance is due to: (i) a particular combined 

property of the BLOSUM62 and low PAM-N matrices; or (ii) due to a more general 

case of prediction enhancement that is present regardless of whether a BLOSUM or 

PAM series matrix is used for the generation of the BLAST-based MSAs. 

All of the following analysis was carried out on the “bootstrapped” form of the 

prediction results.  For the derivation of these, the number of bootstrap replicates, B, 

used was 10000 and the sample size for each replicate was 1550 - half the number of 

3100 MSA examples in the dataset.  The random sequence selection model, for the 

“All1stINCORRECT.tF.PAM160.(un)masked.E0.001” datasets, was calculated using 

the same bootstrap parameters.  The statistical parameters of which, are summarised 

in table 3.1. 

3.3.4.2 Comparisons Between the Re-scoring of the “Masked” and “Un-

masked” Alignments 

As in the previous analysis, a set of “unmasked” MSAs were generated, through the 

replacement of all masked sequence residues with the amino acid residues present in 

the associated protein sequences extracted from the Swiss-Prot database.  The 

general trends were recorded between the prediction results for the “masked” and 

“un-masked” sequence alignments.  These were observed to be very similar to the 

trends seen between the “masked” and “un-masked” datasets generated from using 
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BLOSUM62 as the BLAST search matrix.  Specifically, the prediction results for the 

un-masked datasets show a similar, consistent improvement, over the results from 

the masked datasets, when using identical substitution matrices for the alignment re-

scoring.  For brevity, these comparison results are not shown and the remainder of 

the analysis in this section will focus on the un-masked dataset of MSAs. 

3.3.4.3 Comparisons Between the “Gapped” and “Un-gapped” Models for 

Alignment Re-scoring 

Before discussing the comparisons between the results from the re-scoring of the 

alignments using the “gapped” and “un-gapped” scoring model, it is of interest to 

first look at the trends and results from re-scoring using just the “gapped” model.  As 

in the previous analyses the gap-score parameters of gopen = -11 and gextend = -1 are 

used with the gap scoring model defined in equation 3.1.  Again, these specific 

parameters were chosen because they are the same as those used in the BLAST 

sequence database search used to generate the MSAs.  

The “gapped” prediction results, for the 

“All1stINCORRECT.tF.PAM160.unmasked.E0.001” dataset, are shown in figure 

3.4.  It can be seen that the minimum prediction result, with a mean value of 0.202, is 

a result of using the PAM160 matrix to re-score the alignments.  This is expected 

because, due to the way in which the dataset has been defined when using the 

PAM160 matrix, all of the top ranking sequences show a different, “incorrect”, 

specific function to the query sequence.  This is a similar result to that shown 

previously, when re-scoring the 

“All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” dataset, with the 

BLOSUM62 matrix that was also used in the BLAST search to generate the MSAs. 

The key observation that we can take from these results is the presence of a clear 

peak in prediction performance, when using the PAM-N matrices of PAM10, 

PAM20 and PAM30 with the “un-gapped” alignment re-scoring model.  This is 

similar to the trend seen when re-scoring the 

“All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” MSAs, using equivalent re-

scoring parameters.  Thus, indicating that the use of a second, low PAM-N re-

scoring substitution matrix, improves the specific function prediction performance of 

BLAST MSAs generated from both BLOSUM62 and PAM160 matrices. 
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Comparison of the “gapped” prediction results with those from the “un-gapped” 

model (where the gap-score parameters gopen = 0 and gextend = 0) is shown in figure 

3.4.  These results show that, for most of the substitution matrices used, a significant 

increase in the proportion of correct predictions is obtained when the “un-gapped” 

gap scoring model is used for the alignment rescoring.  Interestingly, when using the 

PAM matrices, ranging from PAM10 to PAM70, there is no significant difference 

between the corresponding “gapped” and “un-gapped” results. 

With regards to the alignment re-scoring results obtained from the IDENTITY 

matrix, neither the gapped or un-gapped results are particularly large, with the 

proportion of correct predictions equivalent to and slightly larger than the associated 

random model values, respectively. 

When comparing these results with the random model, it is possible to see, from 

figure 3.4, that all of the prediction results from using the “un-gapped” model are 

significantly better.  Whereas in the case of the “gapped” model only one BLOSUM 

series matrix, BLOSUM100, and the PAM10 to PAM70 range of matrices show a 

clear, significant improvement, over the random sequence selection model. 

The optimal prediction result shows a mean value, for the proportion of correct 

predictions, of 0.611, which was obtained by using the PAM30 matrix with the 

“gapped” form of the alignment re-scoring algorithm.  There is, however, no 

significant difference between both the gapped and un-gapped function prediction 

results when using either of the PAM10, PAM20, or PAM30 substitution matrices. 
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Figure 3.4. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the gapped (-

11,-1) and un-gapped (0,0) alignment re-scoring of the 

Al1stINCORRECT.tF.PAM160.unmasked.E0.001 dataset, when using the 

IDENTITY, BLOSUM-N and PAM-N substitution matrices.  Also shown is the 

associated random sequence selection model for the dataset, where the dotted 

lines show 1 standard error deviation from the mean. 

3.3.4.4 Comparison Between Results from Re-Scoring the BLOSUM62 and 

PAM160  BLAST Generated Multiple Alignments 

To conclude this part of the analysis, let us compare the prediction results that were 

obtained from re-scoring the MSAs generated from using both the BLOSUM62 and 

PAM160 matrices in the PSI-BLAST database search.  It has been shown that there 

are similar peaks in function prediction results, for both the BLOSUM62 and 

PAM160 generated MSAs, when using the lower PAM-N matrices (where N is in 

the range between 10 and 50) to re-score the MSAs.  Specifically, in both datasets, 

the PAM30 matrix provides the largest proportion of correct specific enzyme 

function predictions.  In the case of the PAM160 generated alignments the “gapped” 

model was optimal, whereas for the BLOSUM62 generated alignments the “un-

gapped” model was shown to be optimal. 
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Overall, re-scoring the BLOSUM62 generated MSAs - 

“All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” - with a PAM30 matrix, 

when compared with the equivalent results from the PAM160 generated alignments - 

“All1stINCORRECT.tF.PAM160.unmasked.E0.001” - that have been re-scored 

using the PAM30 substitution matrix, shows: (i) a larger mean proportion of correct 

specific enzyme function predictions, of 0.631, when compared to 0.611; and (ii) a 

larger improvement over the associated random sequence selection model, of 0.129, 

when compared to 0.089. 

The main conclusion to draw from these results is that an improvement in specific 

function prediction results is observed, for both the BLOSUM62 and PAM160 

BLAST generated alignment datasets, when using an additional PAM30 re-scoring 

matrix.  This indicates that these results are not simply an artefact of the MSAs in the 

BLOSUM62 generated dataset.  Nor are they only due to the specific combination of 

using a BLOSUM62 matrix to generate the BLAST MSAs followed by a low PAM-

N matrix to functionally re-score the alignments.  This shows that the use of an 

additional, carefully selected, substitution matrix can provide a consistent 

improvement, in the annotation of specific enzyme function. 

3.3.4.5 Analysis of the Dataset Obtained from Using the PAM30 Matrix in 

the Sequence Database Search 

Following on from the previous analyses, which looked at the effects of functionally 

re-scoring BLAST alignments generated with equivalent BLOSUM and PAM amino 

acid substitution matrices, a set of experiments were carried out to compare the 

effect of functionally re-scoring BLAST alignments generated with a PAM30 search 

matrix.  The reason for selecting the PAM30 matrix to generate BLAST-based 

MSAs, was that it has been shown to be the best performing functional re-scoring 

substitution matrix, when applied to both the BLOSUM62 and PAM160 BLAST 

generated alignments, and could therefore be used to explore the following 

outcomes:  (i) whether the PAM30 generated MSAs would show a comparable peak 

in prediction performance when using a BLOSUM62 and/or PAM160 matrix in the 

alignment re-scoring procedure; (ii) whether the PAM30 generated MSAs would 

show a comparable peak in prediction performance when using matrices other than 

the BLOSUM62 or PAM160 matrices in the subsequent alignment re-scoring 
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procedure; or (iii) whether the PAM30 generated MSAs would show no comparable 

improvement in specific enzyme function prediction performance when using any of 

the alternative alignment re-scoring matrices. 

The working hypotheses used for this analysis were the following.  If outcome (i) 

was shown to be true, then it would suggest the presence of complementary 

information between the pair of BLAST creation and alignment re-scoring matrices.  

Thus resulting in an equivalent enhancement of function prediction performance, 

independent of the order in which the matrices are applied in the alignment creation 

and re-scoring procedures.  Outcome (ii) would indicate that the alignment re-

scoring process had a more unpredictable pattern of behaviour, which is dependent 

on the specific identity and ordering of the pair of matrices used in the alignment 

creation and subsequent re-scoring procedures.  And outcome (iii) would provide 

further evidence that MSAs, generated through BLAST database searches using 

either BLOSUM62 or PAM160 matrices, coupled with subsequent re-scoring with a 

PAM30 substitution matrix, show the most effective way of observing an 

improvement in the specific functional annotation of enzyme sequences. 

The All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, containing 2110 

MSAs, was used for the analysis in these experiments.  The bootstrap parameters 

were: B=10000 for the number of bootstrap replicates; and a bootstrap replicate size, 

1055, which is half the number of MSAs in the dataset under analysis.  The details of 

the random sequence selection model associated with this dataset is summarised in 

table 3.1. 

Like all previous analysis in this chapter, a series of comparisons were carried out to 

assess the differences between the alignment re-scoring function prediction results 

when altering the re-scoring matrices and gap scoring parameters.  I will summarise 

the trends observed and highlight the key findings from these parameter variations 

that are of relevance to a comparison between these prediction results and those 

obtained from the BLOSUM62 and PAM160 generated BLAST alignments. 
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Comparison Between the “Gapped” and “Un-gapped” Models for  Alignment 

Re-scoring 

A procedure similar to that used for the gapped and un-gapped re-scoring of the 

BLOSUM62 and PAM160 PSI-BLAST generated alignments was followed here.  

Here, the gap-score parameters of gopen = -9 and gextend = -1 are used in the gap 

scoring model that is defined in equation 3.1.  Again, these parameters were chosen, 

for use in the alignment re-scoring with the alternative substitution matrices, because 

they are the same as those used in the BLAST sequence database search that 

generated the alignments.  The “un-gapped” model again scores both the gopen and 

gextend gap-score parameters equal to 0 during the alignment re-scoring.  A 

comparison of the Al1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset re-scoring 

results is provided in figure 3.5. 

For the “gapped” prediction results, when using the PAM re-score matrices, there is 

a clear minimum seen, when applying the PAM30 matrix to the alignment re-scoring 

algorithm, which results in a bootstrap mean value of 0.227 for the proportion of 

functionally correct predictions.  This was expected, due to the way in which the 

“All1stINCORRECT.tF.PAM30.unmasked.E0.001” dataset was defined.  As in the 

previous analyses of BLOSUM62 and PAM160 BLAST generated datasets, there is 

a sharp increase in correct predictions when using matrices of both lower and higher 

“N” (BLOSUM-N or PAM-N) values than the particular type of matrix used for the 

dataset generation.  For the PAM10 matrix and the PAM-N matrices, with N values 

greater than 150, the results approach a level of specific function prediction that is 

close to that of the random sequence selection model.  

With respect to the BLOSUM series of matrices, the results for the “gapped” model 

show that the proportion of correct predictions, for all of the BLOSUM matrices, are 

within or below the standard error range of the associated random sequence selection 

model.  Therefore, there is not a minimum of a comparable magnitude to the PAM30 

matrix result, or a clear maximum corresponding to the BLOSUM62 re-score results. 

Interestingly, for this dataset, the overall maximum proportion of correct predictions, 

of 0.621, is obtained when re-scoring with the IDENTITY matrix, using the gapped 

(-9, -1) form of the alignment re-scoring method. 
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A brief analysis of the results from using the “un-gapped” alignment of re-scoring, 

shows a broadly flat distribution of mean values for the proportion of correct 

predictions.  This is the case when using both the BLOSUM and PAM series of 

matrices in the re-scoring algorithm.  The results range from a minimum mean 

prediction value of 0.567, for the BLOSUM75 matrix, to a maximum mean 

prediction value of 0.577, for the BLOSUM60 matrix, when using the BLOSUM-N 

matrices.  And similar results that range from a minimum mean prediction value of 

0.553, for the PAM10 matrix, to a maximum mean prediction value of 0.575, for the 

PAM140 matrix, when using the PAM-N matrices to re-score the alignments.  The 

corresponding un-gapped re-scoring results for the IDENTITY matrix are found to 

be less than the results for the random sequence selection model. 

 

Figure 3.5. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the gapped (-9,-

1) and un-gapped (0,0) alignment re-scoring of the 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, when using the 

IDENTITY, BLOSUM-N and PAM-N substitution matrices.  Also shown is the 

associated random sequence selection model for the dataset, where the dotted 

lines show 1 standard error deviation from the mean. 
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In summary, when re-scoring the PAM30 based BLAST MSAs, there are no trends 

in either the “gapped” or “un-gapped” results, when using the PAM-N or BLOSUM-

N re-score matrices, that show a significant prediction peak that is comparable to the 

results obtained from re-scoring the BLOSUM62 or PAM160 generated BLAST 

MSAs.  There is, however, a clear peak when using the IDENTITY matrix with the 

gapped form of the alignment re-scoring algorithm, which is a new observation for 

the All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, when compared to the 

alignment re-scoring results obtained from the previous datasets. 

3.3.4.6 Comparison Between Results from Re-Scoring the BLOSUM62, 

PAM160 and PAM30 BLAST Generated Datasets 

It is now possible to compare and contrast the enzyme function prediction results 

obtained from re-scoring the MSAs, generated via PSI-BLAST, using the 

BLOSUM62, PAM160 and PAM30 substitution matrices in the sequence database 

search.  For clarity, I have chosen to only include in this comparison a representative 

subset of results from each of the datasets analysed.  These selected subsets are: (i) 

the “un-gapped” re-scoring results from the 

“All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” dataset; (ii) the “un-

gapped” re-scoring results from the 

“All1stINCORRECT.tF.PAM160.unmasked.E0.001” dataset; and (iii) the “gapped” 

re-scoring results from the “All1stINCORRECT.tF.PAM30.unmasked.E0.001” 

dataset.  These were chosen because they highlight the key alignment re-scoring 

trends and results from each of the three datasets and alternative substitution 

matrices investigated. 

The proportion of correct predictions of enzyme function obtained from re-scoring 

the alignments from these three selected subsets, along with the associated random 

sequence selection models, are shown in figure 3.6a, along with an enlarged view of 

the results when using the IDENTITY and PAM-N matrices, shown in figure 3.6b.  

In both figures, the different re-scoring methods are shown on the horizontal axis and 

the proportion of correct results for the specific enzyme function prediction shown 

on the vertical axis. 
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Figure 3.6 (a) 
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Figure 3.6. A comparison of the proportion of correct enzyme function 

predictions for each of the specified substitution matrix re-scoring methods.  

The proportions of correct predictions are the bootstrap mean values, shown 

with the corresponding standard error bars.  Results are shown for the un-

gapped (0,0), un-gapped (0,0) and gapped (-9,-1) alignment re-scoring of the 

Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001, 

Al1stINCORRECT.tF.PAM160.unmasked.E0.001 and 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001  datasets, respectively.  Also 

shown are the associated random sequence selection models for each these 

datasets, where the dotted lines show 1 standard error deviation from the 

mean. (a) Shows all the results for the IDENTITY, BLOSUM-N and PAM-N 

substitution matrices and also the random sequence selection model.  (b) Shows 

an enlarged view of just the IDENTITY and PAM-N matrix re-scoring results 

and the random sequence selection model. The legend information shown in (a) 

is also relevant for (b). 

This comparison provides an overview of some of the key points that have been 

discussed so far.  We can best see from figure 3.6(b) that “un-gapped” re-scoring of 

the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 alignments, with the 

PAM30 substitution matrix, produces the largest proportion of 0.631 correct 

predictions.  In addition, this PAM30 re-score result shows a larger difference than 

any of the other methods, of 0.129, between the mean value of the re-score 

prediction result and the mean of the associated random sequence selection model.  

Also, figure 3.6(a) shows the difference between the general trends in prediction 

Figure 3.6 (b) 
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results between the three MSA generation methods investigated.  In the case of the 

results from the un-gapped re-scoring of both the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and 

All1stINCORRECT.tF.PAM160.unmasked.E0.001 datasets, the peaks in prediction 

performance when using the lower PAM-N matrices are clear.  These peaks start to 

become apparent when re-scoring with PAM-N matrices with N values of 70 and 

below.  In contrast, the ”All1stINCORRECT.tF.PAM30.unmasked.E0.001” 

generated results do not show any similar peaks with any of the comparable 

BLOSUM-N or PAM-N re-score methods used.  But, these results do show an 

improved predictive performance when using the IDENTITY in the alignment re-

scoring algorithm, which is almost comparable to that of the un-gapped PAM30 re-

scoring results from the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

dataset. 

3.3.5 Effect from Clustering the Dataset Query Sequences 

A series of sequence clusters were defined, using six thresholds of sequence 

percentage identity (90%, 80%, 70%, 60%, 50%, and 40%), by clustering the query 

sequences used to create each of the three BLAST-generated sets of MSAs (see 

Appendix I for more detailed description of these datasets).  The aim of this was to 

investigate the effect that any potential bias, due to sequence redundancy within the 

query sequences used to create the benchmark datasets, may have on the accuracy 

and trends of the alignment re-scoring prediction results.  To some extent, this 

consideration has already been factored into the previous analysis through the 

repeated bootstrap sampling of the prediction results.  A summary of the sequence 

identity clustering thresholds and the number of sequence clusters generated is given 

for each of the datasets, in table 3.3, where a 100% identity threshold refers to the 

dataset compositions prior to any CD-HIT sequence clustering.  The number of 

sequence clusters produced at each threshold, for each distinct dataset, also defines 

the number of MSAs that constitute the datasets at each of the sequence identity 

thresholds. 
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% identity threshold 40% 50% 60% 70% 80% 90% 100% 

Dataset: All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

sequence clusters 721 1038 1392 1701 2131 2622 3527 

Dataset: All1stINCORRECT.tF.PAM160.unmasked.E0.001 

sequence clusters 608 869 1174 1440 1826 2270 3100 

Dataset: All1stINCORRECT.tF.PAM30.unmasked.E0.001 

sequence clusters 403 582 766 925 1191 1503 2110 

Table 3.3. A summary of the number of clusters generated for each of 

the three datasets at each of the specified sequence identity clustering 

thresholds. 

For each set of “clustered” sequence alignments within each dataset, a repeat of the 

previous alignment re-scoring experimental analysis was carried out, using the same 

IDENTITY, BLOSUM and PAM substitution matrices.  Overall, the prediction 

results from the alternatively clustered subsets of the three MSA datasets were found 

to show similar trends to the previously discussed results, obtained without query 

sequence clustering.  A point of note is that the standard error deviation becomes 

progressively larger as the sequence identity threshold used in the clustering is 

lowered.  This is to be expected because it causes the number of examples in the 

datasets to decrease, which means that the bootstrap statistics are calculated on 

progressively smaller sample distributions.  An example of this can be seen in figure 

3.7, which shows how the proportions of correct predictions are altered when using 

the un-gapped re-scoring model on the alignments from the sequence identity 

clustered subsets of the ”All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” 

dataset.  For clarity, only the results from the 40%, 60%, 80%, and 100% sequence 

identity clustered subsets are shown.  These results show that the overall trends in 

the prediction results, through consideration of the mean proportions, are similar for 

each of the cluster thresholds used.  It can been seen, however, that as the clustering 

threshold is lowered, the best performing re-scoring method on this particular dataset 

becomes the PAM40, rather than the PAM30 matrix, previously identified when re-

scoring the un-clustered sets of MSAs.  Also, these results highlight the increasing 

lengths of the standard error bars as the sequence threshold is lowered, which leads 

to greater overlap between results from alternative re-scoring methods. 
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Figure 3.7. Comparison of the proportion of correct predictions from the 

un-gapped alignment re-scoring results from a selection (40%, 60%, 80%, and 

100%) of the sequence clustered subsets of the 

”All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” dataset. 

A comparison is shown, in figure 3.8, between the results from re-scoring the three 

BLAST generated datasets after a 40% sequence identity threshold has been applied 

to the constituent query sequences.  These results provide an overview of the results 

obtained from both the gapped and un-gapped scoring models, when using the 

IDENTITY, BLOSUM and PAM matrices.  Also shown are the associated random 

model statistics for each one of the three clustered datasets. 
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Figure 3.8. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the 

Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001, 

Al1stINCORRECT.tF.PAM160.unmasked.E0.001 and 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001 datasets, after a 40% sequence 

identity threshold has been applied to the query sequences.  Also shown are the 

associated random sequence selection models for each of these datasets, where 

the dotted lines show 1 standard error deviation from the mean. 

The results from the 40% sequence identity threshold are shown because they were 

found to display the largest deviation from the results seen previously when no 

sequence clustering was used.  Although, from the comparisons in this graph it can 

be seen that the overall trends in the re-scoring results are broadly comparable to 

those obtained from the datasets where no sequence identity clustering has been 

applied.  A good example of this is seen when analysing the results from re-scoring 

the ”All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” and 

”All1stINCORRECT.tF.PAM160.unmasked.E0.001” alignments with the PAM-10 to 

PAM-50 set of matrices, which show comparable improvements in performance. 

There are, however, some notable exceptions to this, primarily concerning the results 

from re-scoring the ”All1stINCORRECT.tF.PAM30.unmasked.E0.001” dataset when 
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a 40% sequence cluster threshold has been applied.  These are highlighted in more 

detail below, with the aid of figure 3.9.  This graph provides a clearer comparison 

between the PAM-N and IDENTITY re-scoring matrix results.  Comparisons are 

shown between the re-scoring results from the 

”All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001” and 

”All1stINCORRECT.tF.PAM30.unmasked.E0.001”datasets, with two sequence 

identity cluster thresholds (100% and 40%), when using the IDENTITY and 

PAM10-N matrices with both gapped and un-gapped scoring models.  With regards 

to the gapped form of the re-scoring algorithm, it can be seen that the proportion of 

correct predictions is consistently greater for the MSA subset clustered at 40% query 

sequence identity than for the un-clustered (100%) dataset.  In contrast, the results 

from the un-gapped re-scoring model are generally more closely correlated when the 

query sequence clustering is applied. 

Of particular interest is the relatively large increase in the proportion of correct 

predictions seen when applying the PAM150 and PAM160 re-scoring matrices, with 

the gapped scoring model, to the 40% query sequence clustered subset of the 

“All1stINCORRECT.tF.PAM30.unmasked.E0.001” dataset.  This is an interesting 

observation because it shows the possible start of a peak in prediction performance, 

when using the PAM-N matrix (PAM160) that is most closely related to the 

BLOSUM62 matrix used to generate the BLAST MSAs in the comparison dataset.   

These results slightly contradict the previous comparisons between the results from 

the three BLOSUM62, PAM160 and PAM30 BLAST generated MSA datasets, 

without taking into consideration any query sequence clustering.  The lack of a 

corresponding prediction peak when re-scoring the 

”All1stINCORRECT.tF.PAM30.unmasked.E0.001” dataset with BLOSUM62 or 

PAM160 initially indicated that there was no complementary improvement in 

specific enzyme prediction performance, when reversing the order of application of 

the BLAST search and re-scoring substitution matrices.  The new observations, 

shown in figure 3.9, indicate that there may be some level of complementary 

information in the PAM30/PAM160 pair of matrices that was previously being 

masked by the potential query sequence redundancy of the dataset.  This is not as 

clear as the corresponding performance peaks with lower PAM-N re-score matrices.  
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Also, when re-scoring the 40% sequence identity clustered 

”All1stINCORRECT.tF.PAM30.unmasked.E0.001” MSAs, with a BLOSUM62 

matrix, an expected peak is not seen.  Furthermore, the sharp decrease in correct 

predictions when using the PAM170 matrix could be an indication that we are 

simply seeing an artefact of the 40% sequence clustered subset of the 

”All1stINCORRECT.tF.PAM30.unmasked.E0.001” dataset.  It is also possible to see 

that the IDENTITY matrix continues to produce the largest number of correct 

predictions regardless of the threshold of query sequence identity applied to the 

”All1stINCORRECT.tF.PAM30.unmasked.E0.001” dataset.  These results are shown 

in more detail in table 3.4. 

 

Figure 3.9. A comparison of the proportion of correct predictions 

obtained for each of the IDENTITY and PAM-N matrix re-scoring methods.  

The proportions of correct predictions are the bootstrap mean values.  Results 

are shown for the Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001 datasets, after both 100% and 

40% sequence identity thresholds have been applied to the query sequences. 

To conclude this analysis, a summary is given in table 3.4, which highlights the re-

scoring methods that provide the largest number of correct specific enzyme function 

predictions for each of the datasets and the associated query sequence clustered 
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subsets (of 100%, 80%, 60% and 40%) investigated.  A number of observations can 

be drawn from these results.  Each of the three datasets of MSAs that were 

investigated, show that similar re-scoring matrices provide the optimal level of 

specific enzyme function annotation, when applying different sequence identity 

clustering thresholds to the query sequences.  In the case of the results for the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, the optimal results are 

obtained when using either a PAM30 matrix (with 100% sequence identity 

clustering) or a PAM40 matrix, with an un-gapped (0,0) gap-scoring method.  

Similarly, the optimal results for the 

All1stINCORRECT.tF.PAM160.unmasked.E0.001 dataset are seen when using either 

a PAM20 or PAM30 re-scoring matrix, but in this case there is also an additional 

variation, with the sequence identity clustering threshold, in the gap scoring model 

that provides these results.  Finally, the results for the 

All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset show that the IDENTITY 

matrix, with a gapped (-9,-1) gap scoring model, is generally the best re-scoring 

method.  Overall, the results from re-scoring the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, consistently show a 

larger mean proportion of correct enzyme function predictions, with the largest value 

of 0.652 seen for the subset of MSAs generated when the query sequence cluster 

threshold is 40% and a PAM40 re-scoring matrix with an ungapped (0,0) scoring 

model is used. 
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BLAST search 

matrix used to 

generate 

dataset 

Optimal 

re-score 

matrix 

Gap Penalties 

(gopen, gext) 

 (bootstrap)  

mean 

proportion 

correct +/- se 

Number 

Correct (out 

of) 

Query sequence cluster threshold = 100% 

BLOSUM62 PAM30 (0, 0) 0.631 +/- 0.012 2226 (3527) 

PAM160 PAM30 (-11, -1) 0.611 +/- 0.012 1894 (3100) 

PAM30 IDENTITY (-9, -1) 0.621 +/- 0.015 1310 (2110) 

Query sequence cluster threshold = 80% 

BLOSUM62 PAM40 (0, 0) 0.632 +/- 0.015 1347 (2131) 

PAM160 PAM20 (0, 0) 0.604 +/- 0.016 1103 (1826) 

PAM30 IDENTITY (-9, -1) 0.585 +/- 0.020 697 (1191) 

Query sequence cluster threshold = 60% 

BLOSUM62 PAM40 (0, 0) 0.645 +/- 0.018 898 (1392) 

PAM160 PAM20 (0, 0) 0.621 +/- 0.020 729 (1174) 

PAM30 PAM160 (-9, -1) 0.607 +/- 0.025 465 (766) 

Query sequence cluster threshold = 40% 

BLOSUM62 PAM40 (0, 0) 0.652 +/- 0.025 470 (721) 

PAM160 PAM20 (-11, -1) 0.648 +/- 0.028 394 (608) 

PAM30 IDENTITY (-9, -1) 0.634 +/- 0.034 256 (403) 

Table 3.4. A summary of the re-scoring methods that give the optimal 

specific enzyme functional predictive performance for each of the MSA datasets 

and a selected set of associated query sequence clustered subsets.  The column 

- BLAST search matrix used to generate dataset – specifies the amino acid 

substitution matrices used in the sequence database search to generate the 

particular dataset of MSAs under consideration.  The columns – optimal re-

score matrix and gap penalties – show the re-score methods and gap scoring 

models that give the best predictive performance for the dataset under 

investigation.  Bootstrap values for both the mean proportion, with standard 

error (se), and number of correct predictions are shown for each identified 

method. 
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Overall, the additional results obtained in this section - from clustering the query 

sequences used to generate the MSAs in the datasets - indicate that the potential 

sequence redundancy is not distorting the true trends in the alignment re-score 

prediction results.  Some notable exceptions to this have been highlighted, such as 

the results seen for the All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, 

when the query sequence identity cluster threshold is 40%, which may be worthy of 

further study.   

3.3.6 Investigation of Potential Correlation Between the Conservation 

of Enzyme Functional Specificity and the PAM Evolutionary 

Distance 

The aim of this section is to investigate whether there is any correlation between the 

optimal re-scoring lower PAM-N (such as PAM30) substitution matrices and the 

conservation of specific enzyme function at the associated PAM evolutionary 

distances.  This was done by using the sequence identities, calculated in the analysis 

of chapter 2 – section 2.3.1, shown in figure 2.2, as input to the PerIdentToPam() 

function from the Darwin application.  This data was used because it provides a 

large-scale study of the relationships between pair-wise sequence similarity (and 

hence PAM evolutionary distance) and enzyme functional class conservation.  

Therefore providing a logical extension of the function conservation studies 

presented in chapter 2.  The outcome of this was figure 3.10, which shows the 

variation of enzyme function conservation, with respect to the PAM evolutionary 

distance, between pairs of aligned enzyme sequences.  Because this thesis is 

focussed on high functional specificity, the analysis is restricted to the accuracy of 

conservation at the first three and all four levels of the EC functional classification 

hierarchy.   
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Figure 3.10. Graph showing the functional conservation accuracy, using 

PAM distances between enzyme sequence pairs from the 1
st
 iteration of the 

database search results. Where, EC3:n.n.n.- are the results for the first three 

EC numbers predicted correctly; and EC4:n.n.n.n for all four EC numbers 

correctly predicted. 

When considering the results for the conservation of all 4 levels of EC numbers 

(EC4: n.n.n.n), a functional conservation accuracy of 95-100% is observed when the 

PAM distance is less than 100.  Between PAM distances of 100 and 200 the 

accuracy decreases to approximately 40-45%, where it remains for PAM distances 

greater than 200.  These results indicate that there is no clear, unique correlation 

between the low PAM10-PAM50 evolutionary distances and the accuracy of specific 

enzyme function conservation, which is what might possibly be expected from the 

outcome of the PAM matrix re-scoring results.  There is however, a clear decrease in 

accuracy when the PAM distance is 100 and greater.  This could be of relevance 

because this is the PAM distance at which the peaks in function prediction 

performance begin to become apparent when re-scoring the PAM160 and 

BLOSUM62 generated MSAs.  However, this particular signal is perhaps not strong 

or convincing enough to provide a reason for the specific function prediction 

improvements shown for the alignment re-scoring when using the lower N-value 

(such as PAM10-PAM50), PAM-N matrices. 
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3.4 Conclusions 

In this chapter a number of automated approaches have been presented that 

investigate the utilisation of alternative amino acid substitution matrices for 

improving the specific functional classification of enzyme sequences.  The aim of 

this work was mainly two-fold: (1) to assess any improvement in the function 

prediction accuracy of a PSI-BLAST generated sequence significance ordering, 

through the use of additional amino acid substitution matrices to functionally re-

score the aligned sequences; and (2) to identify any general, significant trends in the 

analyses that are correlated with the variation of the substitution matrices used. 

Three methods for generating datasets of multiple sequence alignments have been 

investigated.  Each dataset was the result of a gapped BLAST sequence database 

search that used one of either: BLOSUM62; PAM160; or PAM30 as the search 

amino acid substitution matrix.  The constituent MSAs were then modified, to define 

a series of benchmark datasets, where the enzyme sequence with the most significant 

sequence similarity to the query protein is classified as functionally incorrect.  The 

purpose of these benchmark sets was to assess the effect of subsequent sequence re-

scoring and re-ranking methods on the accuracy of specific enzyme function 

annotation.  An IDENTITY matrix and a wide selection of BLOSUM and PAM 

amino acid substitution matrices were employed to carry out this analysis.  Also 

investigated were the effects on the functional re-scoring results of: sequence residue 

masking; gap score penalties; and the generation of MSA subsets using clusters 

based on the sequence identity of the query sequences. 

Initially, the analysis focussed on the sequence alignments obtained from using a 

BLOSUM62 matrix in the gapped BLAST search – the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  From these it was 

shown that the MSAs containing un-masked amino acid residues gave consistently 

larger proportions of correct function predictions, irrespective of the particular 

substitution matrix re-scoring method used.  Similarly, the “un-gapped” form of the 

alignment re-scoring algorithm, in which all residues aligned with gaps were scored 

as zero, consistently outperformed the method that used identical gap penalties to 

those used in the original BLAST search.  Overall, the best performing method for 

specific functional classification of these MSAs is the one which uses the PAM30 
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matrix and an “un-gapped” gap scoring model, without sequence residue masking.  

This resulted in a maximum mean value, for the proportion of correct specific 

functional classifications, of 0.631 (or 2226/3527 correct classifications).  In 

addition, there is a more general trend towards improved classification results when 

using PAM-N matrices that have progressively lower N values, culminating in the 

optimal peak observed with the PAM30 matrix.  This trend is seen for both the 

gapped (-11, -1) and un-gapped (0, 0) alignment re-scoring results. 

Further, a control experiment was carried out to assess whether the results were also 

valid when using the original “non-artificial” dataset of alignments.  In this, the 

PAM30 matrix continued to show an improvement in the number of correct 

predictions, when compared to the BLOSUM62 matrix.  This showed that the 

PAM30 matrix does not have a detrimental effect when re-scoring alignments that 

contain examples that are originally “correct” and helps to validate the use of the 

“All1stINCORRECT” artificial dataset as a benchmark dataset in this thesis. 

Following on from these observations, an analysis was conducted to assess whether 

the above phenomena of improved functional classifications were a unique property 

of the sequence alignments in the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  One way in which 

this was approached was by using the PAM series equivalent of a BLOSUM62 

matrix, which is PAM160, when generating the benchmark MSAs.  These 

alignments were then subjected to an identical set of re-scoring analyses, where 

similar trends were observed.  Also, the optimum number of correct specific enzyme 

function classifications occurred when using the same PAM30 substitution matrix 

that produced the maximum for the BLOSUM62 based alignments.  A difference in 

the case of the PAM160 alignments was that it was the gapped (-11, -1), rather than 

un-gapped (0, 0), re-scoring model that gave the maximum proportion of correct 

classifications, equal to 0.611 (or 1894/3100 correct classifications).  However, it 

was shown that the comparable PAM30 re-score results from the un-gapped model 

were almost identical and fall within one standard error of deviation of the gapped 

results.  Although the maximum proportion of correct predictions is larger in the 

BLOSUM62 than the PAM160 generated MSAs, with a small difference between 

the means, of 0.020, these analyses do indicate that the re-scoring of multiple 
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sequence alignments with low N value PAM matrices, specifically a PAM30 matrix, 

results in an increased number of correct specific enzyme sequence classifications, 

when compared to the other substitution matrices investigated.  This suggests that 

the lower PAM-N matrices do show a general improvement in specific functional 

classification of enzyme sequences, when either a BLOSUM62 or PAM160 matrix is 

used to generate the datasets, and the results are not simply due to an artefact of the 

BLOSUM62 substitution matrix used in the BLAST MSA generation. 

To complete this analysis, the same process was again followed, using PAM30 as the 

substitution matrix in the BLAST sequence database search.  The aim of this was to 

assess whether there would be a comparable improvement, in correct function 

prediction results, when using a low PAM-N matrix for the initial MSA generation, 

followed by a BLOSUM62 or PAM160 matrix for alignment re-scoring.  The results 

from this analysis did not show a comparable peak in prediction results when using 

either the BLOSUM62 or PAM160 matrices to re-score the PAM30 generated 

MSAs.  In-fact, there were no clear peaks of specific function prediction 

improvement for any of the BLOSUM-N or PAM-N substitution matrices 

investigated.  However, when using the IDENTITY matrix, with the gapped (-9, -1) 

scoring model, an optimal value of 0.621 for the mean proportion of correct 

functional predictions was observed.  This result is comparable to the two optimal 

results, described above, from re-scoring the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and 

All1stINCORRECT.tF.PAM160.unmasked.E0.001 datasets. 

A further study was then carried out to investigate the effect that any potential 

sequence redundancy, within the query sequences used to create the benchmark 

datasets, may have on the accuracy and trends of the alignment re-scoring prediction 

results.  For this, a number of sub-datasets, on which the alignment re-scoring 

experiments were repeated, were generated using a variety of sequence identity 

thresholds.  The outcome of these additional analyses showed similar results and 

trends for each of the sequence identity cluster thresholds used.  An exception to this 

was seen when the MSAs were used from the subset of the 

All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, defined using a 40% 



119 

 

sequence identity threshold, where an increase in specific functional classification 

accuracy is seen when using a PAM160 re-score matrix.   

In general, the results obtained from the alignment re-scoring experiments indicate 

that the order in which the particular pair of matrices are applied, for MSA 

generation and subsequent re-scoring, is important for improving the specific 

enzyme classification.  This is shown by the fact that there was mostly no 

complementary improvement in performance, when reversing the order of 

application of the BLOSUM62 matrix for BLAST MSA generation and PAM30 for 

subsequent sequence alignment re-scoring.  Although, the exceptions seen for the 

40% sequence identity clustered subset of MSAs, indicate that there may be some 

complementary information in the pair of BLOSUM and PAM matrices used and 

this phenomenon could be worthy of further study. 

A possible explanation for these observations may be found in the intended uses for 

the particular types of amino acid substitution matrices and therefore the methods 

used to generate them.  The BLOSUM series of matrices are generally used (and 

found to be optimal) in sequence database searches, such as BLAST, because they 

tend to generate better quality alignments and provide improved levels of homology 

detection.  This is in contrast to the PAM matrices which are often used to assess the 

evolutionary origin of sequences and for modelling evolutionary changes across a 

family of proteins (Mount, 2004).  Therefore, the optimal performing PAM matrices 

may be related to the level of evolutionary distance between the homologous 

sequences in the specific alignments, thus, providing additional information that 

improves the specific functional classification of the more closely related sequence 

homologues.  The results from the comparisons between PAM evolutionary distance 

and the accuracy of specific EC conservation indicate a possible correlation of this 

type.  However, the correlation signal is quite weak and further study would be 

required before any firm conclusions could be stated regarding these results.  

It has also been shown that the results from re-scoring the alignments containing no 

sequence residue masking are a consistent improvement over those containing the 

residue masking used in the original database search.  A possible reason for this 

performance improvement could be that the sequence masking, used in the sequence 

database search, improves the homolog detection, by reducing the false positives 
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identified from similarities to masked sequence regions of low information content, 

whereas the subsequent re-scoring of the un-masked locally aligned sequence 

regions provides additional sequence information that improves the specific 

functional ordering of the homologous enzyme sequences. 

In summary, the results presented in this section highlight some areas of 

improvement for the accuracy of specific functional assignment, when compared to 

the sequence similarity based, statistical significance ordering of a BLAST database 

search.  For the BLOSUM62 and PAM160 BLAST generated MSAs, there is a 

definite trend towards an increase in correct prediction results when using the lower 

evolutionary distances of the PAM-N matrices, where a maximum is observed for 

the PAM substitution matrix of 30/40 PAM units.  The next chapter aims to improve 

on these results by implementing a more refined procedure, based on sequence 

evolution and additional phylogenetic information, for the selection of particular 

residues to use in the sequence scoring function. 
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Chapter 4 Identification of Functional 

Specificity Determining Residues 

4.1 Introduction 

In the previous chapter, methods based on alternative amino acid substitution 

matrices, were investigated for re-scoring the functional similarity of aligned 

homologous enzyme sequences.  However, these approaches did not take in to 

consideration the particular amino acid residues that are most likely to be responsible 

for the specific functional behaviour of the proteins.  In this chapter, the aim is to 

investigate and benchmark a selection of methods that have been developed to do 

precisely that and then investigate their use for the improvement of specific enzyme 

function annotation.     

The hypothesis used in these approaches is based on the knowledge that the 

functional divergence of proteins is determined by selective pressures during 

molecular evolution.  In general, new functions arise in paralogous proteins through 

the fixation, via natural selection, of a number of key amino acid mutations that are 

functionally beneficial (Ohno, 1970; Taylor and Raes, 2004; Conant and Wolfe, 

2008).  This is a particularly important means for the diversification of the substrate 

binding specificity and the biochemical mechanisms of enzymes.  Closely related 

enzyme sequences, such as those used in this study, are therefore well suited to the 

identification of amino acid changes that highlight functional differences.  This is 

especially true when considering the (often small number of) mutations responsible 

for thermodynamically favourable binding of a particular substrate instead of other 

substrates that are chemically similar. 

Considering these observations, regarding the mechanism for the evolution of 

specific protein functions, it would appear important to develop computational 

methods to identify these particular residues.  An additional driving force is the fact 

that it is time-consuming and economically expensive to identify each of these 

residues through experimental methods (Saghatelian and Cravatt, 2005).  Most 

computational approaches to this problem are based on comparisons between 

multiple sequence alignments (MSAs) containing groups of functionally identical or 
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similar sequences.  Due to the fact that divergent evolution is believed to be much 

more common than convergent evolution of function (Patthy, 1999) these sequences 

are generally obtained through homology recognition techniques. 

In this chapter, I have implemented and investigated the performance of two 

methods for the identification of residues that determine functional specificity.  Both 

of these have been previously published and take quite different approaches to 

solving the problem.  The methods chosen and discussed below are: (i) the “func-

MB” method (Pazos et al., 2006); and (ii) the “profile-HMM” based method 

(Hannenhalli and Russell, 2000).  In an earlier study (del sol Mesa et al., 2003), three 

methods for identifying functionally determining residues were compared.  A 

benchmark was devised that used the distances from predicted residues to bound 

ligands and hetero atoms to assess the accuracy.  It was concluded that there was 

little difference between the performances of the three methods and furthermore, 

suggested that a combined approach would be expected to be optimal.  It was 

therefore decided to investigate a modified form of the MB method used in that 

study, which was later described by Pazos et al. (2006).  A non-parametric rank 

correlation coefficient is used in this method to assess the correlation between 

specific function and amino acid similarities.  This method was chosen over the 

others because, it was relatively simple to fully automate - which is in contrast to the 

SequenceSpace based method - and also because it contained an implicit 

representation of the sequence phylogeny. 

The profile-HMM method was chosen primarily because it has been used previously, 

with some success, for the identification of residues determining specific function 

and the subsequent prediction of function using a subset of these residues.  This 

method uses the probability of observing certain residues, within specific functional 

groupings, to identify the residues most likely to be responsible for the definition of 

specific functions, meaning that this approach is quite different to the non-parametric 

rank-order correlation based MB methods. 

The main aims for the work in this chapter were primarily three-fold: 

1. The implementation and investigation of methods for identifying fSDRs in 

groups of functionally related enzyme sequences; 
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2. The provision of a benchmark that compares the ability of selected fSDR 

subsets, from each of these methods, to improve the functional clustering and 

specific function prediction accuracy for enzyme sequences; and 

3. Demonstrate the performance of the methods when applied to a well-studied 

example of enzymes that have differing substrate specificities. 

These studies have also been designed to enable the definition of a “gold-standard” 

subset of computationally identified fSDRs.  That is, they provide an optimal 

predictive performance, with regards to their use in the assignment of correct 

specific enzyme function to the query sequence.  This dataset of fSDRs are then used 

in the experiments of chapter 5, to investigate the feasibility of using machine 

learning techniques to identify fSDRs in MSAs, without prior knowledge of the 

functional sub-types of the constituent sequences of the alignments. 

4.2 Methods 

4.2.1 Datasets 

As in the previous studies, presented in chapter 3, the datasets used for the following 

experimental analysis consist of multiple alignments of enzyme sequences.  Two 

datasets of MSAs were used for the studies contained within this chapter.  To assess 

the performance of the fSDR based sub-alignment re-scoring methods, the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, which consists of 

3527 BLAST generated MSAs, was used in the following analysis.  Additionally, a 

single MSA from the “initial” dataset is used to provide a detailed investigation of a 

specific example, which contains aligned sequences from the lactate and malate 

dehydrogenase classes of enzymes.  The methods used to generate both of these 

datasets are the same as those used previously in this thesis and are defined in detail 

in chapter 2.   

4.2.2 The Functional Mutational Behaviour “func-MB” Method 

The idea behind this method was originally inspired by the mutational behaviour 

(MB)-method described by del sol Mesa et al. (2003).  In this method, a rank 

correlation coefficient is used to identify positions, within a multiple protein 

sequence alignment, that show correlation with the mutational behaviour of the 
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whole group of homologous sequences.  The hypothesis being that a larger 

correlation coefficient indicates aligned positions that most closely resemble the 

mutational pattern of the sequence family, hence identifying the positions most 

important to the specific phylogenetic relationships between the sequences.  An 

extension of this method, which was recently studied by Pazos et al. (2006), 

investigates the correlation between the specific functional class and the individual 

residues in an aligned column.  The method is referred to as the Xdet method in the 

original paper by Pazos et al. (2006), but will be referred to as the “func-MB” 

method in this thesis, so as to maintain a similar naming scheme with the previously 

published “MB-method”, which has been discussed in other parts of this thesis.  The 

aim of the func-MB method is to identify the residues that have a mutational 

behaviour closely correlated to variations in specific functional properties.  The 

implementation details, which differ slightly to those described by Pazos et al. 

(2006), are described below. 

4.2.2.1 Implementation of the func-MB Method 

For each pair of sequences in the MSA, a matrix of values, S, was constructed to 

represent the specific “functional similarity” (or distance) between them.  

Calculation of the functional similarities was done by looking at the number of EC 

code description levels each of the compared enzyme sequences had in common.  

For example, if all 4 EC numbers were conserved between a pair of sequences then 

the associated matrix value would be „4‟, conservation of the first 3 numbers yields a 

value of „3‟, with values of „2‟ and „1‟ being used for conservation of 2 and 1 EC 

number respectively.  Finally, a value of „0‟ was used when the 1st EC number was 

not common between the sequences.  A matrix of these values was calculated once 

for a particular MSA. 

Then, for each of the aligned columns, a corresponding “amino acid similarity 

matrix”, A, is calculated, with the same number of elements as the functional 

similarity matrix, to measure the similarity between each of the residue pairs.  An 

amino acid substitution matrix is used as a measure of “mutational similarity” 

between each of the amino acid pairs in the columns.  Both the BLOSUM62 and 

PAM30 substitution matrices were used in the work presented here, but any other 

measure of similarity can be easily integrated into this method. 
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To calculate the correlation between the functional and residue similarities, the 

Spearman-rank order correlation coefficient, ci, (Press et al., 1992) was calculated 

for each of the aligned columns, i, in the MSA, using the following equation:  

   
          

   
        

           
 

   
          

 

   

                  (equation 4.1) 

where the rank order of amino acid similarity in sequence x and sequence y, at 

position i, is represented by Axyi ; the rank order of functional similarity in sequence x 

and y is represented by Sxy ; and the average rank position of these amino acid and 

functional matrices is given by A  and S  respectively. 

4.2.3 The Functional Profile-HMM Based Method 

An alternative method for identifying functionally specific residues has been 

proposed by Hannenhalli and Russell (2000).  The basis of this method is the 

identification of amino acids that are more likely to be conserved within groups of 

sequences with the same function, but differ between them.  Starting from an 

alignment of sequences, containing proteins of different molecular functions, a set of 

alignments are created, each containing only sequences with a single specific 

function.  A hidden Markov model (HMM) profile was created for each of these 

functional sub-alignments using the hmmbuild application provided with the 

HMMER application (version 2.3.2 – http://hmmer.wustl.edu).  The default 

parameters were used in the creation of all profiles.   

The profiles output by hmmbuild are in log-odds form.  Because the aim of this 

method is to calculate the probability of a particular type of amino acid occurring in 

one profile, compared to all others, these scores were converted into probabilities.  

For each aligned column, i (with a match state in the profile HMM), the probability 

of occurrence of amino acid, x, in specific function s, was calculated, 
s

xiP , .  From the 

resulting probability profiles, the relative residue conservation between profiles was 

calculated using the relative entropy (Durbin et al., 1998) of each alignment position, 

defined as follows: 

http://hmmer.wustl.edu/
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where, the relative entropy for a specific function s, at position i is defined as 
s

iRE

and is calculated from the summation of the contribution from all residue types x at 

this position.  The union of all specific functional types, except for s, is denoted by ŝ, 

with the probability of occurrence of amino acid x at position i in this combined 

alignment, represented by 
s

xiP
ˆ

, .  The relative entropy of an alignment position can be 

thought of as a measure of the degree of conservation at that position, in a specific 

function s, when compared to all other functions, ŝ.   

Two further calculations were required to assess the importance of each alignment 

position.  The first determines the cumulative relative entropy, CRE, at each 

alignment position, i:   


s

s

ii RECRE                                       (equation 4.3) 

which aims to assess the discriminatory role of alignment position i, when summing 

the relative entropy contributions over all the specific functional types.  Finally, a Z-

score is used to assess the overall significance of the cumulative relative entropies, 

when considered in context to all the aligned positions in the MSA.   




 i

i

CRE
Z                                       (equation 4.4) 

Where, μ and σ are the mean and standard deviation of the CRE for all positions in 

the multiple sequence alignment.  A larger Z-score indicates greater significance for 

that aligned column and therefore indicates it is more likely to be a determinant of 

specific function. 

4.2.4 The Sub-Alignment Re-scoring Procedure 

This section provides a description of the methods used to select sub-sets of the 

aligned columns, from each of the MSAs in a particular dataset, that are predicted to 

determine specific enzyme function (fSDRs).  First, however, a description is 

provided of the procedure that is subsequently used to functionally re-score the 
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aligned sequences through the incorporation of those selected sub-sets of aligned 

columns. 

4.2.4.1 The fSDR-based Sub-alignment Functional Re-scoring Procedure 

The previously described method, of section 3.2.2.1 (see also the method flowchart 

in figure 3.1), is built upon here to propose an alternative method for sequence re-

scoring and re-ranking to determine the functional similarity between a query 

sequence and related, aligned enzyme sequences.  This method is based on the re-

scoring of sub-alignments of amino acid residues that have been extracted from the 

full MSAs in the input datasets.  An overview of this procedure is shown below in 

figure 4.1.  This shows a simplified overview of the proposed method for the 

identification of fSDRs and their subsequent use in generating a functionally more 

informative sub-alignment of amino acids for use in improving classification 

accuracy. 

 

Figure 4.1. Simplified overview diagram of the proposed fSDR-based 

sub-alignment generation, extraction and functional re-scoring procedure. 

In this method an MSA of evolutionarily related sequences is obtained from a 

sequence database search, the columns (c4 and c8 in the example shown in figure 4.1) 

containing potential fSDRs are identified and then extracted to generate a “sub-

alignment” of sequences.  These consist of the same number of aligned sequences as 
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the full MSA, but a smaller, selected subset, of the aligned columns.  Each of the 

individual pair-wise sub-set of alignments, between the query and aligned enzyme 

sequences, are then evaluated using the scores from the amino acid substitution 

matrix used for the sequence re-scoring.  For these studies the BLOSUM62 and 

PAM30 substitution matrices were used to score the pair-wise residue similarities, 

however, only the results from using the PAM30 matrix are shown in the following 

analyses.  After the re-scoring of the sub-alignments has been completed the 

sequences are then re-ordered and their specific functional similarity to the query 

sequence is assessed.  The simplified example, shown in figure 4.1, highlights the 

key concepts behind this approach.  It shows a hypothetical situation in which the 

original functional sequence ordering from the database search generates a (“rank 

global”) sequence ordering where the top-ranked sequence (s1) has a different 

function (fB) to that of the query sequence (Q), which has function (fA), and therefore 

results in an incorrect functional classification.  However, once the sequences have 

been re-ranked, using the identified fSDRs (“rank fSDRs”), the top-ranked sequence 

now shows the same specific function as the query and therefore results in an 

improved and correct functional classification of the query sequence. 

4.2.4.2 Methods for Selecting Aligned Subsets of fSDRs 

Three methods were used to select subsets of aligned residue columns from each of 

the MSAs in the dataset, for use in the subsequent fSDR-based sub-alignment re-

scoring procedure:  (i) the selection of aligned columns using a cut-off threshold, 

obtained from the column score – the “column score threshold” method; (ii) the 

selection of N aligned columns, using the N highest ranking column scores – the 

“top-N” method; and (iii) the selection of aligned columns using the top X 

percentage of the highest ranking column scores – the “top-X percent” method.  In 

all three, the column scores are the values obtained from either the Spearman-rank 

order correlation coefficient or the Z-score, depending on whether the fSDR 

identification method used was the func-MB or profile-HMM, respectively. 

4.2.5 The Treatment of Gaps in the Sequence Alignments 

There are three stages in the sub-alignment re-scoring procedure where the methods 

used for scoring gaps in the sequence alignments must be considered.  Each stage is 
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defined separately below and where necessary the particular fSDR column 

identification method of relevance is indicated. 

4.2.5.1 The Aligned Column Gap Percentage Threshold of Inclusion 

A method for the pre-filtering of aligned columns from the MSAs was used, based 

on the percentage of gap residues that are contained within a particular column of all 

types of aligned residues.  This method removes all aligned columns from the MSA, 

prior to the application of the fSDR identification methods, which contain more than 

a defined percentage of gaps.  This is referred to as the “column gap percentage 

threshold (colgap_percent)” and where relevant the specific thresholds used are 

stated alongside the discussion of the results. 

4.2.5.2 Gap Score Penalty Used for Calculating the Amino Acid Similarity 

Matrix in the func-MB Method 

When defining the amino acid similarity matrix, A (see equation 4.1), required for 

calculating the aligned column correlation coefficients for the func-MB method, it is 

necessary to consider aligned residue pairs that may contain gaps.  For the following 

analysis, the method of Pazos et al. (2006) was used, where a gap score of 0 was 

used for scoring all of the aligned amino acid pairs that contain gaps. 

4.2.5.3 Gap Score Penalty Used for the Sub-Alignment Re-scoring  

In the following analysis, a single gap penalty of 0 is used for all aligned residue 

pairs that contains gaps when re-scoring the fSDR-based sub-alignments of 

sequences. 

4.2.6 Methods for Assessing the Accuracy of fSDR-Based Prediction 

of Specific Enzyme Function 

4.2.6.1 Top-hit Method 

The “top-hit” assessment method was again used to assess the functional 

classification accuracy resulting from the functional re-scoring of the enzyme 

sequences, when using fSDR-based sequence sub-alignments.  It is conceptually the 

same method as that used previously in chapter 3 (section 3.2.3.1).  This classifies a 

prediction as correct if the specific enzyme functional class of the query sequence is 
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the same as that of the sequence with the highest score, after the sub-alignment based 

functional sequence re-ranking. 

4.2.6.2 Calculation of the Proportion of “Correct” Specific Enzyme 

Predictions 

The same method as that in chapter 3 was used for calculating the proportion of 

“correct” specific enzyme predictions (or classifications) obtained from the “top-hit” 

assessment method.  This is defined as proportioncorrect  in equation 4.5, where: correctn  

is the number of “correct” predictions observed from the “top-hit” assessment 

method and N is the number of MSA examples in the dataset that were used in the 

analysis. 

N

n
correct correct

proportion                                       (equation 4.5) 

4.2.6.3 Bootstrap Re-sampling Analysis of Top-hit Results 

The same bootstrap statistical re-sampling method (Efron and Gong, 1983), which 

was previously described in chapter 3 - section 3.2.3.3, is again used in this chapter 

to analyse the statistical significance of the functional classification results obtained 

from the fSDR-based sub-alignment sequence re-scoring.   

4.2.6.4 Definition of a Random Sequence Selection Model for Specific 

Enzyme Function Assignment 

A random sequence selection model was again used to provide a baseline 

comparison with the “top-hit” function prediction results obtained from the fSDR-

based sub-alignment re-scoring result.  This was identical to the method described in 

chapter 3 (section 3.2.3.2), which is based upon the concept of randomly permuting 

the ranked results of the sequence homologues in each of the MSAs in the dataset.  

The functional classification result was then determined to be correct or incorrect 

through functional comparison between the specific EC classification of the query 

sequence and the randomly permuted “top-hit”.  For a detailed definition of this 

selection procedure please refer back to section 3.2.3.2, in chapter 3.   
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4.2.6.5 Random Selection of Subsets of Aligned Residue Columns 

An additional random model – the “random column selection method” - was also 

used for the assessment of the fSDR-based sub-alignment functional classification 

results in this chapter.  This method implements a randomised procedure for aligned 

column selection, using a similar logic to the identification of the fSDR-based 

subsets of aligned residue columns described above.  However, for this random 

selection no regard was given to the actual likelihood of the columns being 

associated with specific enzyme functional properties (i.e. they are not necessarily 

high scoring fSDRs).  So, unlike with the profile-HMM and func-MB methods, the 

columns were (randomly) selected without first ranking them based on the calculated 

fSDR significance scores.  Therefore, from each one of the “complete” MSAs, a 

subset of n aligned amino acid columns was randomly selected (using a uniform 

distribution to randomly select aligned columns from the MSA), without 

replacement.  The number, n, of aligned columns was selected in the same way as for 

the fSDR-based “top-N” and “top-X percent” column selection methods described 

above, in section 4.2.4.2.  Leading to a randomly selected (“random-N” or “random-

X percent”) sub-alignment of sequences, containing n aligned columns of amino 

acids.  This type of model does not naturally lend itself to producing a randomly 

selected subset of aligned columns that are directly comparable to the “column score 

threshold” method of sub-alignment generation and therefore one is not provided. 

4.2.7 Query Sequence Clustering 

An identical procedure to that used in chapter 3 (section 3.2.5) was followed to 

analyse the effects of query sequence identity clustering on the enzyme functional 

classification accuracies.  The clustering was again done through the use of the CD-

HIT algorithm (Li and Godzik, 2006), on the 3527 query sequences that were used to 

generate the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset of MSAs.  

A range of percentage sequence identity levels were used for the clustering (from 

40% to 90% in intervals of 10%) and the recommended default parameters, for the 

CD-HIT application, were used for each sequence identity threshold levels.  Again 

the longest sequence was used as the representative from each cluster.  A summary 

of the cluster properties, at each defined level of sequence identity for the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, is provided in table 

3.3. 
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4.3 Results and Discussion 

4.3.1 Benchmark of Functional Re-scoring Prediction Results Using 

the fSDR-based Sub-Alignments 

This section provides a large-scale investigation into how effective the func-MB and 

profile-HMM fSDR identification methods are for improving the classification 

accuracy of the specific function of enzyme sequences.  This builds on the results 

from the previous analyses, presented in chapter 3, which investigated the effects of 

using all of the aligned sequence information, and alternative amino acid substitution 

matrices, to functionally re-score the aligned enzyme sequences.   

The 3527 MSAs from the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

dataset were used as the benchmark dataset in all of the following analyses.  This 

particular dataset was chosen for two reasons.  Firstly, this dataset was one of those 

used previously in the alternative amino acid re-scoring experiments, discussed in 

chapter 3, allowing a direct comparison between those results and the ones obtained 

in the following fSDR-based functional re-scoring experiments.  Secondly, this 

dataset was selected over the others investigated in chapter 3 because it was shown 

to give the largest overall improvement in specific enzyme function classification 

accuracy, when using a PAM30 amino acid substitution matrix to re-score the 

aligned sequences. 

For this analysis, both the func-MB and profile-HMM methods for fSDR aligned 

column identification were applied to each of the MSAs in the dataset.  Selected 

subsets of these columns were then used to re-score the similarity of the aligned 

sequences to the query, allowing assessment of the accuracy of this approach for 

specific enzyme classification.  Comparisons were then made between the 

classification results from using these fSDR-based subsets, with those previously 

obtained from re-scoring all of the aligned sequence residues with alternative amino 

acid substitution matrices. 

The selection of the particular columns to include in the subsets of aligned residues 

was controlled by a number of alternative methods.  For both the func-MB and 

profile-HMM methods, three approaches were used to select the columns for 

inclusion - based on the significance based ordering of the Spearman-rank order 
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correlation coefficients and Z-scores, from each of the fSDR identification methods 

respectively.  Each of the selection methods aim to identify slightly different subsets 

of aligned columns and therefore investigate the best method and associated 

parameters for improving the enzyme classification accuracy. 

One method used was the “top-N” method, which selects a set of aligned columns of 

fixed size, N, based on the ranking of the aligned column scores from the fSDR 

identification methods.  A number of values of N were used for each of the MSAs in 

the dataset and the overall effect on the specific enzyme classification performance 

was assessed for each.  A similar method – the “top-X percent” method - was used to 

select a subset of aligned columns based on a percentage, X, of all aligned columns 

in each of the MSAs.  Therefore, this method, unlike the “top-N” method, will not 

generally select the same number of aligned columns for each of the applied subset 

X percentage selection thresholds.  Finally, a method was used that applies a 

threshold based on the calculated value of the aligned column correlation 

coefficients, or Z-scores, from the associated fSDR identification methods, to 

generate the sub-alignments.  Again, as in the “top-X percent” method, this “score 

threshold” selection criteria may generate different numbers of columns in each sub-

alignment obtained from the MSAs in the dataset. 

The assessment method used for the correct classification of specific enzyme 

function, when using selected sub-sets of fSDR columns, was the same “top-hit” 

sequence re-scoring method that was used in chapter 3.  For both of the fSDR 

identification methods the bootstrap form of the results were analysed, which allows 

robust calculation of the mean proportion of correct functional classifications, and 

the associated standard errors, for each of the functionally re-scored subsets of fSDR 

sub-alignments. 

4.3.1.1 The func-MB Method 

When using the func-MB method to identify potential functional specificity 

determining residues it was expected that the way in which gaps are treated in the 

multiple sequence alignments could make an important contribution to the particular 

columns identified.  There are three stages in the func-MB based analysis procedure 

where the gap handling has been considered:   
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 The selection of which aligned columns should be included when calculating the 

fSDR significance score – “the column gap percentage threshold of inclusion”; 

 The way in which gaps were scored during the calculation of the fSDR 

correlation scores for the func-MB method; and 

 The way in which gaps were scored during the re-scoring of the enzyme 

sequences in the fSDR-based sub-alignments. 

A number of gap percentage thresholds were used; ranging from no filtering 

(colgap_percent = 100%) to the removal of all columns containing any gaps 

(colgap_percent = 0%), in intervals of 10%.  This provides a pre-filtering step for 

each of the input MSAs.  

When constructing the residue correlation matrices for the aligned columns a score 

of 0 was used for the similarity between any amino acid residues aligned with gaps.  

This was selected because it was the value used in the study by Pazos et al. (2006). 

In the case of the third point, for the following studies it was decided to use a score 

of 0 for all of the pair-wise sequence re-scoring comparisons between any of the 

amino acid types and alignment gaps.  This value was chosen for the sequence 

alignment re-scoring stage of the analysis because of the reasons provided earlier in 

the methods section of this chapter.  

The “Top-N” Method for fSDR-based Sub-Alignment Generation 

For the “top-N” method of fSDR selection and sub-alignment generation a series of 

thresholds for the value of N were used.  The effects (on the proportion of correct 

classifications of enzyme function) of gradually increasing the number of aligned 

columns, selected from each MSA for inclusion in the resulting sequence sub-

alignments, are shown in figure 4.2.  That is, the horizontal axis represents the 

number of columns, N, of aligned residues that were included in the sub-alignments 

for functional re-scoring.  These were selected through the use of an ordered ranking 

of the Spearman-rank order correlation coefficients calculated by the func-MB 

method, from which the fSDRs with the highest N (“top-N”) correlation coefficients 

were used to generate the sub-alignments of N aligned columns.  These results also 

show the effects of varying the aligned “column gap percentage threshold of 
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inclusion”, which serves the purpose of removing aligned columns with particular 

proportions of alignment gaps prior to the functional re-scoring analysis.  All of the 

results show the bootstrap values of the mean proportion of correct functional 

assignment and the bootstrap calculation of the standard error deviation from the 

means.  To maintain a consistent comparison with the previous bootstrap analyses 

carried out in this thesis, the parameters for the number of bootstrap repetitions, B, 

was 10000 and the bootstrap sample size of each replicate was 1764 - approximately 

half the number of MSA examples, 3527, in the dataset.  Also highlighted in figure 

4.2 are the bootstrap statistics for the random sequence selection model associated 

with the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset that is being 

analysed.  This is the same random sequence selection model that was used and 

defined in chapter 3 (see section 3.3.2). 
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Figure 4.2. A comparison showing the proportion of correct functional 

predictions obtained as the “top-N” threshold, used to select the subsets of 

fSDRs used in the functional re-scoring, was varied.  The horizontal axis – 

“Spearman-Rank Order Correlation Coefficient „top-N‟ Threshold” – 

represents the number of aligned columns, with the N highest scoring 

Spearman-rank order correlation coefficients, that were included in the 

sequence sub-alignments.  The proportions of correct predictions are the 

bootstrap mean values, shown with the corresponding standard error bars.  

Enzyme classification results are shown for re-scoring the 

colgap_percent=0%, colgap_percent=20%, colgap_percent=40%, 

colgap_percent=60%, colgap_percent=80% and colgap_percent=100% 

filtered variations of sequence sub-alignments.  Also shown is the associated 

random sequence selection model for the dataset, where the dotted lines show 1 

standard error deviation from the mean. 

From these results, shown in figure 4.2, it can be seen that when using a small sub-

set of aligned columns (for example, when N=5) a minimum is observed in the 

proportion of correct predictions.  As the number of columns included in the re-

scored sub-alignments is increased, the number of correct enzyme classifications 

also increases until a maximum is reached, after which point the classification 

accuracy gradually decreases while the number of included columns in the alignment 

subset continues to be increased.  The actual value of N at which the maximum 

proportion of correct enzyme classifications is obtained is dependent on the value of 

the “colgap_percent” threshold of inclusion.    Figure 4.2 shows that the trends, 
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with respect to the correlation between sub-alignment size N and the resulting 

proportion of correct predictions, are very similar for each of the different “column 

gap percentage threshold of inclusion” thresholds used for the MSA filtering.  A 

further, more detailed, analysis of these results is provided below and summarised in 

table 4.1. 

Before this, a number of more general observations related to the results from the 

top-N sub-alignment re-scoring results, shown in figure 4.2, can be explored.  It can 

be seen that the proportions of correct functional predictions, when using the most 

stringent threshold for pre-filtering aligned columns from the MSAs that contain 

gaps (colgap_percent = 0%), are considerably less than those when using a higher 

threshold (such as colgap_percent = 20% and greater).  An explanation for this 

difference can be provided through a more detailed analysis of the underlying data 

that was used to calculate the bootstrapped proportions of correct and incorrect 

enzyme classifications after sequence re-rescoring. 

When re-scoring and subsequently re-ranking the sequences contained within each of 

the sub-alignments, there are a number of possible outcomes when considering a 

“top-hit” approach to assessing the accuracy of the resulting specific functional 

classification.  These outcomes can be categorised into 2 general states (either: (i) a 

“correct”; or (ii) an “incorrect” functional classification) but on closer inspection 

they can also be considered to possess six distinct properties: (i) “top-rank (correct)” 

– where the top ranked sequence has the same (“correct”) specific enzyme class as 

the query and has a unique score when compared to the other re-scored sequences; 

(ii) “top-rank (incorrect)” - where the top ranked sequence has a different 

(“incorrect”) specific enzyme class to the query; (iii) “tied-rank same-function 

(correct)” – where the top ranked sequence shares the same “tied” score (and 

therefore rank) with one or more other sequences, which all have the same 

(“correct”) enzyme functional class as the query; (iv) “tied-rank different-function 

(correct and incorrect)” => “undecidable (incorrect)” – where the top ranked 

sequence has the same “tied” score (and therefore rank) with one or more other 

sequences, which have both the same (“correct”) and different (“incorrect”) enzyme 

functional classes as the query.  This in essence means that the sequence re-scoring 

result is “undecidable” when using the available information and therefore must be 
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classed overall as an “incorrect” classification result; (v) “tied-rank different-

function (incorrect)” – where the top ranked sequence has the same “tied” score (and 

therefore rank) with one or more other sequences, which all have a different 

(“incorrect”) functional class when compared with the query; and (vi) “empty subset 

(incorrect)” – where the criteria for fSDR-based aligned column selection does not 

select any columns for inclusion in the sequence sub-alignment.  This therefore 

means that no sequence re-scoring can be carried out due to the fact that the sub-

alignment is “empty” and the classification result is by definition “incorrect”. 

If these six more detailed classification outcomes are analysed for the top-N results 

presented in figure 4.2, it becomes possible to get an understanding of the reasons 

for the comparatively poor performance of the colgap_percent = 0% classification 

results.  The variation in these properties with each value of N used to generate the 

“top-N” sub-alignments is shown in figure 4.3.  This clearly shows that the number 

of “empty subset (incorrect)” examples increases as the “column gap percentage 

threshold (colgap_percent)” parameter is made more stringent (i.e. decreased).  This 

is especially prominent for the results shown when using the most restrictive gap 

inclusion threshold of colgap_percent = 0%.  On reflection this is perhaps not a 

particularly surprising observation, because such a stringent threshold does not allow 

for a single gap to be present in the aligned columns selected for the sequence sub-

alignments.  It therefore follows that there will be increasing numbers of MSAs in 

the analysed dataset that do not contain any aligned columns that satisfy the gap 

percentage pre-filtering criteria, culminating in the extreme case of no gaps allowed 

in any of the selected columns.  This hypothesis is borne out by the results in figure 

4.3(f) where a colgap_percent threshold of 0% results in 14% (494 out of 3527) of 

the generated sub-alignments being “empty”.  In contrast, as the colgap_percent 

threshold is increased to 10% then only 5% (176 out of 3527) of MSAs generate 

“empty” sub-alignments, and further, once the colgap_percent threshold is at 50% 

and above, hardly any (i.e. approximately 0%) “empty” sub-alignments are being 

generated. 
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Figure 4.3. A series of graphs showing the variation of the proportions of 

observed predictions with the specified top-N sub-alignment threshold, for the 

six distinct prediction outcomes (a) shows the “top-rank (correct)” results; (b) 

shows the “top-rank (incorrect)” results; (c) shows the “tied-rank same-

function (correct)” results; (d) shows the “undecidable (incorrect)”results; (e) 

shows the “tied-rank different-function (incorrect)” results; and (vi) shows the 

“empty subset (incorrect)” results.  For each of these graphs the results for re-

scoring the colgap_percent=0%, colgap_percent=10%, colgap_percent=50% 

and colgap_percent=100% pre-filtered sequence sub-alignments are shown. 
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It is possible that this phenomenon could be due to a number of factors, such as the 

level of evolutionary diversity included within the sequence alignments or 

potentially misaligned sequences - leading to the incorrect placement of gaps.  These 

possible contributing factors are not explored any further here, but they may be 

features worthy of further study when considering the selection of particular columns 

for inclusion in sequence sub-alignments. 

A further point to make (with regards to the lower proportions of “correct” enzyme 

classifications that are observed when the colgap_percent threshold is decreased) 

relates to the method of calculation used for the proportions of correct predictions.  

The presence of the “empty” sub-alignments (described above) suggests an 

alternative method for calculating these proportions, using a modified value for N in 

equation 4.5.  Where, instead of simply using the dataset size, a more refined (“re-

normalised”) form of calculation could use the number of dataset examples minus 

the number of “empty” sub-alignment examples for which it is not possible to 

calculate a re-scored classification result.  This modified form of equation 4.5 is 

presented in equation 4.7  

)( _ subsetempty

correct

proportion
nN

n
correct


                                       (equation 4.7) 

where: correctn  and N are the same as in equation 4.5 and subsetemptyn _  is the number of 

MSA examples that generate “empty subset (incorrect)” results.  

The corresponding proportion of correct classifications obtained from using the 

method in equation 4.7 are shown (in parenthesis) in table 4.1, alongside those 

calculated through the use of equation 4.5.  It can be seen that for these re-

normalised results the proportion of correct classifications increases for all of those 

sub-alignments that have had a more stringent colgap_percent threshold applied (i.e. 

colgap_percent <= 40%), due to the presence of a certain number of “empty subset” 

examples.  It should, however, be noted that, by definition, the actual number of 

correct classifications, at each top-N threshold, was unchanged.  

These results show that the difference between the optimal classification accuracies 

for the sub-alignments, which have been pre-filtered with a more stringent gap filter, 
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is greatly reduced when applying this alternative accuracy assessment method.  In 

particular, for the colgap_percent=0% sub-alignments, the difference between the 

optimal correct proportions and those of the overall optimal performance (i.e. where 

colgap_percent=60%) is reduced from 0.150 to 0.049.  Likewise, for the 

colgap_percent=10% results, the difference is reduced from 0.070 to 0.031.  This is 

still a statistically significant difference, due to the standard error deviation of 0.011 

(see table 4.6), but it does highlight a potentially informative alternative method for 

comparing the results of the classifications. 

With the aid of the results shown in figure 4.3, it is now possible to explore the 

reasons for the slightly counter-intuitive observations, seen in figure 4.2, which show 

a clear minimum in the proportion of  correct enzyme classifications when using the 

smallest subset (N=5) of aligned columns.  This was surprising because it was 

expected that the subsets consisting of aligned columns, with the strongest 

correlations between amino acid type and enzyme function, would show the most 

accurate separation of the specific functional classes in the MSA and therefore the 

largest proportion of “correct” “top-hit” functional classifications.  This was, 

however, not the case, mostly due to the larger proportion of examples with an 

“undecidable (incorrect)” result, when using the top-5 rather than the top-10 ranked 

column correlation coefficients.  Where, for all of the colgap_percent thresholds 

investigated there was a sharp reduction in “undecidable (incorrect)” examples and a 

corresponding increase in “top-rank (correct)” examples when re-scoring sub-

alignments generated from the top-5 and top-10 ranked correlation coefficients, 

respectively. 
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colgap_percent  

(%) 

(optimal)  

“top-N” (N) 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

0 15 0.617 (0.718) 2176 

10 15 0.697 (0.736) 2458 

20 15 0.722 (0.747) 2546 

30 20 0.746 (0.751) 2631 

40 30 0.759 (0.764) 2677 

50 30 0.764 (0.764) 2695 

60 30      0.767 (0.767) (*) 2705 

70 30 0.764 (0.764) 2695 

80 30 0.765 (0.765) 2698 

90 30 0.765 (0.765) 2698 

100 30 0.765 (0.765) 2698 

Table 4.1. A comparison between the optimal bootstrap results (mean 

proportion and number of correct “top-hit” specific enzyme predictions) and 

the top-N subset size that generates them, for each of the colgap_percent 

thresholds applied. All results for the number of correct predictions are out of a 

possible dataset size of 3527. (*) indicates the overall maximum predictive 

performance.  The values in parenthesis are the corresponding “re-

normalised” proportions (see text) of correct classifications calculated with 

equation 4.7. 

The results, shown in table 4.1, provide a summary of the optimal functional re-

scoring results for each of the “colgap_percent” alignment pre-filter thresholds, 

along with the number of high scoring aligned columns (fSDRs), N, which 

contribute to the re-scored sequence sub-alignments without re-normalisation.  Both 

the mean proportion and number of correctly classified enzyme functions are shown 

for comparison, where all results refer to the bootstrap form of the “top-hit” assessed 

prediction results.  It can be seen from the results in table 4.1 that, overall, the 

optimal predictive performances of the sub-alignment methods show a minimum (of 

0.617 (2176/3527)) when using the colgap_percent threshold of 0%, with sub-

alignments containing the top-15 scoring columns.  And a maximum (of 0.767 

(2705/3527)) when using a larger threshold of colgap_percent = 60%, with sub-

alignments containing the top-30 scoring columns.  Further, none of the different 

sub-alignment re-scoring methods and associated parameters show an improvement 

in performance when more than 30 of the high scoring fSDR columns are included in 

the sequence sub-alignments. 
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The “Top-X Percent” Method for Sub-Alignment Generation 

The next method investigated for the automatic selection of which aligned columns 

should be included in the sequence sub-alignments for functional re-scoring was the 

“top-X percent” method.  This differs from the “top-N” method described above, 

because the number of columns in each of the resulting sub-alignments is selected 

based on a specified percentage, X, of the columns with the highest scoring 

Spearman-rank order correlation coefficients.  Therefore, unlike the “top-N” method, 

the “top-X percent” method, in general, selects varying numbers of columns for each 

sub-alignment, dependent on the particular percentage selection threshold, X,  used 

for the inclusion of fSDRs and the query sequence length.  The variations in the 

bootstrapped mean values for the proportions of correct enzyme classifications, 

when using the “top-X” percentage threshold, are shown in figure 4.4.  The 

horizontal axis in this graph represents the percentage, X, of aligned columns of 

residues that were included in the sub-alignments for functional re-scoring.  These 

were selected through the use of an ordered ranking of the Spearman-rank order 

correlation coefficients, calculated by the func-MB method, from which the fSDRs 

with the highest X% (“top-X percent”) of correlation coefficients were used to 

generate the sequence sub-alignments.  Comparisons are also shown between these 

results when using different colgap_percent alignment pre-filtering thresholds, 

ranging (as in the top-N results) from a value of 0% to 100%.   

Overall, the results were similar to those shown for the “top-N” method, in terms of 

the proportions and numbers of correct classifications resulting from the “top-hit” 

assessment of the sequences within the re-scored sub-alignments.  Initially, when 

including a small percentage (i.e. when X is less than 5%) of the top-scoring 

columns in the sub-alignments, the accuracy of classifications was generally low.  

This observation was mostly due to an increase in the number of “empty subset 

(incorrect)” examples, when low percentage threshold values were used.  This was 

true for each of the colgap_percent thresholds, apart from the exceptional results 

obtained from using a colgap_percent threshold of 0%.  For brevity, a presentation 

of these more detailed results, showing the variation of the six outcomes of the “top-

hit” functional assessment method, has not been included here. 
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An additional point of note is the behaviour of the re-scoring “top-hit” prediction 

results when all of the columns (i.e. X = 100%) are used to generate the sequence 

“sub-alignments”.  As can be seen in figure 4.4, the actual proportion of correct 

predictions varies depending on the colgap_percent threshold, however, it shows 

that as expected the result for the colgap_percent = 100% sub-alignment re-scoring 

is (approximately – due to minor bootstrap variations) the same as the PAM30 

UNGAPPED (0,0) re-scoring results that were observed for the same dataset, in 

chapter 3. 

 

Figure 4.4. A comparison showing the proportion of correct functional 

predictions obtained as the “top-X percent” threshold, used to select the 

subsets of fSDRs used in the functional re-scoring, was varied.  The horizontal 

axis – “Spearman-Rank Order Correlation Coefficient „top-X percent‟ 

Threshold” – represents the percentage of aligned columns from each MSA, 

with the highest scoring Spearman-rank order correlation coefficients, that 

were included in the sequence sub-alignments.  The proportions of correct 

predictions are the bootstrap mean values, shown with the corresponding 

standard error bars.  The enzyme classification results are shown for re-

scoring the colgap_percent=0%, colgap_percent=20%, colgap_percent=40%, 

colgap_percent=60%, colgap_percent=80% and colgap_percent=100% 

filtered sequence sub-alignments.  Also shown is the associated random 

sequence selection model for the dataset, where the dotted lines show 1 

standard error deviation from the mean. 

(%) 
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A summary of the optimal functional re-scoring results for each of the 

“colgap_percent” alignment pre-filter thresholds, along with the percentage of high 

scoring aligned columns (fSDRs), X, that contribute to the re-scored sequence sub-

alignments, is shown in table 4.2. As for the “top-N” sub-alignment results, both the 

mean proportion and number of correctly classified enzyme functions, obtained from 

using the “top-hit” assessment method after fSDR-based re-scoring of the sequence 

sub-alignments, are shown for comparison.  As usual, all results refer to the 

bootstrap form of the prediction results.  It can be seen from the table that, overall, 

the optimal predictive performances of the sub-alignment methods show a minimum 

(of 0.592 (2088/3527)) when using the colgap_percent threshold of 0%, with sub-

alignments containing the top-50% of high scoring columns and a maximum (of 

0.769 (2712/3527)) when using a larger threshold of colgap_percent = 90%, with 

sub-alignments generated through the inclusion of the top-8% of aligned columns.  

There is, however, only a difference of 10 correct predictions in performance 

between this and the next lowest result of 0.766, when using the top-7% of high 

scoring aligned columns and a colgap_percent threshold of 60%. 

colgap_percent 

(%) 

(optimal)  

“top-X percent” (X) 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

0 50% 0.592 2088 

10 15% 0.691 2437 

20 9% 0.711 2508 

30 10% 0.739 2606 

40 8% 0.751 2649 

50 8% 0.761 2684 

60 7% 0.766 2702 

70 8% 0.763 2691 

80 9% 0.763 2691 

90 8%      0.769 (*) 2712 

100 5% 0.752 2652 

Table 4.2. A comparison between the optimal bootstrap results (mean 

proportion and number of correct “top-hit” specific enzyme predictions) and 

the “top-X percent” subset size that generates them, for each of the 

colgap_percent thresholds applied. All results for the number of correct 

predictions are out of a possible dataset size of 3527. (*) indicates the overall 

maximum predictive performance. 
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The func-MB “column score threshold” Method for Sub-Alignment Generation 

One further method, based on the func-MB fSDR calculation method, was used for 

selecting aligned columns for the inclusion in sequence sub-alignments.  This 

utilised a varying threshold, which was applied to the Spearman-rank order 

correlation coefficients that were calculated for each of the aligned columns.  

Therefore, only aligned columns with correlation coefficients greater than or equal to 

the particular threshold were included in the sequence sub-alignments used for the 

subsequent functional re-scoring stage.  The threshold was varied from a value of 0.0 

(essentially a random correlation between the residue similarities and specific 

enzyme function) to a value of 1.0 (indicating perfect rank correlation between the 

residue similarities and specific enzyme function).  A graph of these results is shown 

in figure 4.5.  This graph shows that there is a rapid decrease in the sub-alignment re-

scoring accuracy (as measured by the proportions of “correct” predictions) when 

using a progressively higher threshold for the correlation coefficients associated with 

each aligned column. 

To a certain extent these results were expected because, as the lower limit for 

correlation coefficient defined inclusion to the sub-alignments is made more 

stringent, there will be fewer available columns that fulfil the selection criteria.  The 

sharpness, however, of the decline in functional re-scoring accuracy (using the “top-

hit” assessment method), when applying a correlation coefficient threshold greater 

than 0.2, is perhaps surprising.  This observation, seen for all colgap_percent 

thresholds, shows that, in general, even though the correlation coefficients are of less 

significance, the “top-hit” based classification performance increases by including 

these less correlated columns in the re-scored sub-alignments.  Therefore, it shows 

that, although the nature of the relationship between residue similarity and specific 

function is generally (i.e. across all 3527 MSAs in the dataset) quite noisy and weak, 

there is some informative signal present, but it is clearly not as clean and simple a 

relationship (with regards to the “top-hit” re-scoring accuracy) as might be initially 

expected and hoped for when using the current dataset. 
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Figure 4.5. A comparison showing the proportion of correct functional 

predictions obtained as the Spearman-Rank order correlation coefficient 

threshold, used to select the subsets of fSDRs used in the functional re-scoring, 

was varied.  For this, the aligned columns included in the sequence sub-

alignments were those with an associated Spearman-Rank order correlation 

coefficient greater than or equal to the threshold value shown on the horizontal 

axis.  The proportions of correct predictions are the bootstrap mean values, 

shown with the corresponding standard error bars.  The enzyme classification 

results are shown for re-scoring the colgap_percent=0%, 

colgap_percent=20%, colgap_percent=40%, colgap_percent=60%, 

colgap_percent=80% and colgap_percent=100% filtered sequence sub-

alignments.  Also shown is the associated random sequence selection model for 

the dataset, where the dotted lines show 1 standard error deviation from the 

mean. 

 

 

 



148 

 

A more detailed analysis of these results, shown in figure 4.6 (using a similar 

analysis to that provided in figure 4.3 for the “top-N” results), highlights some of the 

reasons for this sharp decrease in prediction accuracy as the threshold is increased.  

It is clear, from figure 4.6, that the main cause for the decline in the number of 

“correct” functional “top-hit” classifications (after sub-alignment re-scoring) is the 

rapid increase in the number of “empty subset (incorrect)” examples as the aligned 

column inclusion threshold is increased.  There is also an additional contribution 

from increasing numbers of “undecidable” examples, which occur as the correlation 

coefficient threshold is increased above 0.2.  Therefore, the increase in “incorrect” 

enzyme classifications is contributed to by both the “empty” sub-alignments 

(generally after a correlation coefficient threshold of 0.3-0.4) and the “undecidable” 

examples, whereas the “correct” examples from “tied – same function” do not show 

a compensatory increase.  These results indicate that a Spearman-rank order 

correlation coefficient threshold, greater than 0.2, does not (in general) include 

enough columns to informatively discriminate between the “undecidable” examples, 

when using the “top-hit” method to assess the accuracy of the functionally re-scored 

sub-alignments of enzymes. 
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Figure 4.6.  A series of graphs showing the variation of the proportions 

of observed predictions with the specified Spearman-rank order „correlation 

coefficient‟  sub-alignment threshold, for the six distinct prediction outcomes 

(a) shows the “top-rank (correct)” results; (b) shows the “top-rank 

(incorrect)” results; (c) shows the “tied-rank same-function (correct)” results; 

(d) shows the “undecidable (incorrect)”results; (e) shows the “tied-rank 

different-function (incorrect)” results; and (vi) shows the “empty subset 

(incorrect)” results.  For each of these graphs the results for re-scoring the 

colgap_percent=0%, colgap_percent=10%, colgap_percent=50% and 

colgap_percent=100% pre-filtered sequence sub-alignments are shown. 
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Again, a summary of the optimal results for each of the analysed colgap_percent 

thresholds is provided (see table 4.3).  These results essentially reinforce the 

observations above, which show that the optimal “top-hit” based functional re-

scoring results are obtained when using sequence sub-alignments containing only 

fSDRs with correlation coefficients (calculated via the func-MB method) that are 

greater than or equal to 0.2.  This was true for all colgap_percent thresholds, except 

those of 0%, with an overall maximum number and proportion of correct predictions, 

of 0.719 (2536/3527), resulting when colgap_percent = 80%.  Although, it can be 

seen that there is little difference between the results once the colgap_percent 

threshold reaches 50%.  

colgap_percent (%) (optimal) 

“column score 

threshold” 

(Spearman-rank 

order correlation 

coefficient) 

(bootstrap) mean 

proportion of 

correct predictions 

(bootstrap) mean 

number of correct 

predictions 

0 0.0 0.573 2021 

10 0.2 0.673 2374 

20 0.2 0.674 2377 

30 0.2 0.691 2437 

40 0.2 0.711 2508 

50 0.2 0.715 2522 

60 0.2 0.716 2525 

70 0.2 0.716 2525 

80 0.2      0.719 (*) 2536 

90 0.2 0.718 2532 

100 0.2 0.718 2532 

Table 4.3. A comparison between the optimal bootstrap results (mean 

proportion and number of correct “top-hit” specific enzyme predictions) and 

the “func-MB column correlation score” threshold used to generate the 

sequence sub-alignments that generate them, for each of the colgap_percent 

thresholds applied. All results for the number of correct predictions are out of a 

possible dataset size of 3527. (*) indicates the overall maximum predictive 

performance. 

4.3.1.2 The Profile-HMM Method 

Following on from the methods of selection used above, for the func-MB method of 

fSDR identification, a comparable set of analyses were carried out for the profile-

HMM method.  Again, three alternative methods were used for selecting aligned 
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columns to be included in the sequence sub-alignments.  These were the “top-N”, 

“top-X percent” and the “profile-HMM column score threshold” methods.  Each of 

these are based on the same selection procedure as the func-MB method, except that 

in the following analysis the aligned column selection is based on relative ranking of 

the columns based on the Z-scores (rather than the Spearman-rank order correlation 

coefficient) calculated by the profile-HMM fSDR identification method. 

For the profile-HMM method, the parameters used in the implementation of 

Hannenhalli and Russell (2000) were applied in this study, therefore the default 

settings of hmmbuild were used, which meant that all columns with greater than 50% 

gap residues were not included in the profiles generated for each of the functional 

sub-classes.  It may, however, in future work be informative to investigate changes 

to the hmmbuild gap percentage inclusion threshold when carrying out further 

analysis.  As in the func-MB method for sequence sub-alignment generation, it was 

decided to use a score of 0 for all comparisons between any amino acid types and 

gaps during the functional sequence re-scoring phase of the analysis.   

The profile-HMM “top-N”, “top-X Percent” and “column score threshold” 

Methods for Sub-Alignment Generation 

Presented in this section are the results - from using the profile-HMM “top-N”, “top-

X Percent” and “column score threshold” methods - for the functional re-scoring of 

the enzyme sequence sub-alignments, generated by the profile-HMM based method 

for fSDR identification.  The “top-hit” assessment method, with bootstrapping, was 

used to determine the accuracy of the resulting specific enzyme classifications. 

Results for the variation in the proportions of correct predictions with varying sub-

alignment threshold selection parameters, for the “top-N” and “top-X” percent 

profile-HMM sub-alignment selection methods, are shown in figure 4.8 and figure 

4.9, respectively.  For brevity, a similar graphical comparison of the results for the 

enzyme “top-hit” classification accuracy with variation of the Z-score threshold is 

not shown.  It is, however, worth noting that they were observed to follow a pattern 

similar to that seen when a threshold was applied to the func-MB column scores 

(using the Spearman-rank order correlation coefficients) for sub-alignment 

generation (see figure 4.5).  That is, they exhibit a rapid decrease in the number (and 

proportions) of correct classifications as the (Z-score) fSDR column score threshold 
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is increased.  This decrease occurs after an initial peak, showing a proportion of 

0.665 (2345/3527) correct predictions, when the Z-score threshold used for sequence 

sub-alignment generation was greater than or equal to 0.5.  As in the func-MB 

threshold analysis, this behaviour was mainly due to the increasing number of 

“empty subset (incorrect)” examples in the sequence sub-alignment re-scoring 

procedure.  A summary of these results, along with the best performing “top-N” and 

“top-X percent” sub-alignment selection methods (for the profile-HMM based fSDR 

selection method) is provided in table 4.4.  

Sub-alignment 

Selection Method 

(optimal) 

Sub-alignment 

threshold 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

top-N N = 35      0.673 (*) 2374 

top-X percent X = 30% 0.664 2342 

Z-score column 

score threshold 

0.5 0.665 2345 

Table 4.4. A summary of the optimal bootstrap results (mean proportion 

and number of correct “top-hit” specific enzyme predictions) for the profile-

HMM based fSDR sub-alignment re-scoring.  The thresholds at which these 

results are obtained are shown for each of the “top-N”, “top-X percent” and 

“Z-score column score threshold” sub-alignment selection methods 

investigated.   All results for the number of correct predictions are out of a 

possible dataset size of 3527. (*) indicates the overall maximum predictive 

performance. 

It can be seen from these results, in table 4.4, and the comparisons of different 

methods, shown in both figure 4.8 and figure 4.9, that the profile-HMM method 

generally performs worse, when using this particular dataset, than the comparable 

enzyme classifications obtained from the func-MB based sub-alignment re-scoring.  

It is not immediately clear why there is such a difference in performance between the 

methods and thus further study into the optimisation of the parameters associated 

with the profile-HMM method as well as a more sophisticated filtering procedure for 

the input MSA data, prior to the application of the profile-HMM fSDR identification 

method, may be worthwhile. 

4.3.1.3 Investigating the Random Selection of Aligned Columns 

A method was implemented to calculate the specific enzyme functional classification 

accuracy from sequence sub-alignments that had been generated through random 

selection of aligned columns from the MSAs in the dataset.  The aim of this was to 
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provide a comparison with both the profile-HMM and func-MB based sub-alignment 

re-scoring classification accuracies and also an assessment of their significance.  The 

reasoning being that if the enzyme classification accuracy from the fSDR-based sub-

alignment re-scoring was consistently better than that from the comparable randomly 

selected sub-alignments, then it would show that the fSDR-based sub-alignment 

selection procedure was providing additional information for the improvement of 

functional classification. 

As stated in the methods, both the “random-N” and “random-X percent” aligned 

column selection methods, were used to generate the sequence sub-alignments.  

However, for this random selection no regard was given to the actual likelihood of 

the columns being associated with specific enzyme functional properties (i.e. they 

are not necessarily high scoring fSDRs).  So, unlike with the profile-HMM and func-

MB methods, the columns were (randomly) selected without first ranking them based 

on the calculated fSDR significance scores. 

The results for both the “random-N” and “random-X percent” sub-alignment re-

scoring are shown in figure 4.7(a) and figure 4.7(b), respectively.  Both show the 

effects (on the proportions of correct enzyme predictions) of applying different 

colgap_percent MSA pre-filtering thresholds, before the random column selection 

was carried out.  The “random-N” results show similar behaviour for each of the 

applied colgap_percent thresholds, with overall maximum values of approximately 

0.6 seen for the proportions of correct (“top-hit” based) enzyme functional 

predictions.  With regards to the “random-X percent” results, it can be seen that they 

gradually tend towards the functional classification accuracies for the “X = 100% – 

all columns selected in the sequence sub-alignment” results, as the percentage of 

randomly selected columns is increased.  This is to be expected, because the random 

selection of all columns is the same as any other selection method for all aligned 

columns, when using a gap-scoring function (such as the 0 gap penalty used in this 

sequence re-scoring study) that does not depend on the sequential ordering of the 

adjacent, aligned, amino acid residues (unlike that of an affine gap scoring function 

with non-zero gap penalty parameters).  Finally, as with the “top-rank” fSDR-based 

sub-alignment re-scoring, there were notable exceptions (especially prominent for 

the “random-X percent” results) seen when using the pre-filter gap threshold of 0%. 
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Figure 4.7. A comparison of the proportion of correct predictions 

obtained at each of the (a) “random-N” and (b) “random-X percent” 

thresholds used for random sequence sub-alignment generation.  For both of 

these graphs, the proportions of correct predictions are the bootstrap mean 

values, shown with the corresponding standard error bars.  The enzyme 

classification results are shown for re-scoring the randomly selected aligned 

columns from the MSAs that have been filtered using colgap_percent 

thresholds of 0-100% (in intervals of 10%).  Also shown are the associated 

random sequence selection models for the dataset, where the dotted lines show 

1 standard error deviation from the mean. 

figure 4.7 (b) 

figure 4.7 (a) 
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Also shown on both of these graphs is a comparison to the simple random sequence 

selection model, which was introduced in chapter 3.  This has the same values - at all 

sub-alignment fSDR column selection thresholds and for both the “top-N” and “top-

X percent” rescoring results - because it is only dependent on the enzyme 

classifications of the constituent sequences in the MSAs of the associated dataset.  

From these results, it can be seen that, in general, the functional re-scoring results 

from random column selection, show a larger number of correct specific enzyme 

classifications than the associated random sequence selection approach.  This was 

expected to a certain extent because it was shown, in the previous chapter, that the 

functional re-scoring results were better when using all of the aligned columns (with 

a PAM30 matrix and gap scoring penalties of 0) rather than random sequence 

selection.  Therefore, although smaller (randomly selected) subsets of these columns 

are being assessed, in this case the resulting subsets of aligned residues are still 

functionally more informative than a randomly selected sequence from the MSAs. 

4.3.1.4 Comparisons between the Enzyme Sequence Sub-Alignment 

Functional Re-scoring Methods  

To conclude this analysis, comparisons are shown between the different methods that 

have been investigated so far for the large-scale functional re-scoring and specific 

classification of enzyme sequences.  The results from both the func-MB and profile-

HMM methods, for “top-N” and “top-X percent” fSDR-based sequence sub-

alignment selection and functional re-scoring, are compared, see figure 4.8 and 

figure 4.9 respectively.  With regards to the func-MB calculated results, the particular 

colgap_percent thresholds were selected that gave the best overall classification 

performance.  Therefore, for the “top-N” comparisons the results when using 

colgap_percent = 60% were selected (see the optimal overall enzyme classification 

accuracy results in table 4.1) and for the “top-X percent” comparisons those from 

using colgap_percent = 90% (see the optimal overall enzyme classification accuracy 

results in table 4.2).  Also included in both of these comparisons were: the optimal 

predictive performance from the “column score threshold” studies, where the 

Spearman-rank order correlation coefficient threshold was 0.2 (see table 4.3 - where 

colgap_percent = 80%) and the Z-score was 0.5 (see table 4.4), for the func-MB and 

profile-HMM based methods respectively; the functional re-scoring results from the 

“random-N” and “random-X percent” sub-alignments; the random sequence 
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selection model (introduced in the analysis provided in chapter 3); and the PAM30 

UNGAPPED (0, 0) method, which was shown to be the best performing functional 

re-scoring method from the alternative amino acid substitution studies analysed in 

chapter 3, when using all aligned amino acid residues of the multiple sequence 

alignments for the functional re-scoring assessment. 

 

Figure 4.8. A comparison of the proportion of correct predictions 

obtained for the following selection of “optimal” functional sequence re-

scoring methods: (i) the func-MB “top-N” method, using a colgap_percent 

threshold of 60%; (ii) the profile-HMM ”top-N” method; (iii) the optimal func-

MB “column score threshold” method, where the spearman-rank order 

correlation coefficient is >= 0.2, using a colgap_percent threshold of 80%; (iv) 

the optimal profile-HMM “column- score threshold” method, where the Z-

score is >= 0.5; (v) the PAM30 UNGAPPED (0,0) re-scoring method, which 

was identified as optimal performing in chapter 3; (vi-vii) the “random-N” 

column selection methods, using colgap_percent thresholds of 50%, 60% and 

80%; and (ix) the random sequence selection method.  Where shown the error 

bars refer to 1 standard error deviation from the mean of the bootstrapped 

results, otherwise, just the mean value of the bootstrapped results are shown to 

improve clarity. 

For the “random-N” and “random-X percent” column selection methods the 

colgap_percent = 50% threshold results are shown, to allow direct comparison with 

those results from the profile-HMM method, and the colgap_percent thresholds of 
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60% and 90% are included for comparison to the optimal func-MB based “top-N” 

and “top-X percent” methods, respectively.  All of the results shown are from using 

the “top-hit” assessment method to calculate the specific functional classification 

accuracy after re-scoring and re-ordering the aligned enzyme sequences, and as usual 

they are represented by the bootstrap calculations. 

From the functional re-scoring results, of both the “top-N” and “top-X percent” sub-

alignment selection methods, a number of interesting observations can be made.  It 

can be seen, in both figure 4.8 and figure 4.9, that the re-scoring results for the 

optimal func-MB fSDR identification methods show an improvement over those of 

the optimal profile-HMM fSDR identification methods.  The differences in accuracy 

between the bootstrapped mean of the proportion (and number) of correct enzyme 

classifications are: 0.094 (331), for the func-MB “top-30” and profile-HMM “top-35” 

results; 0.105 (370), for the func-MB “top-8 percent” and profile-HMM “top-30 

percent” results; and 0.054 (191), for the func-MB “Spearman-rank order correlation 

threshold = 0.2” and profile-HMM “Z-score threshold = 0.5” results.  Further, it is 

also possible to see a clear and significant improvement, in correct enzyme “top-hit” 

classifications, when using the optimal fSDR-based sub-alignments of enzyme 

sequence (especially in the case of the func-MB method), rather than the PAM30 

UNGAPPED (0, 0) method, which was identified as optimal in chapter 3 when using 

all of the aligned sequence residues to assess the functional classification accuracy of 

the sequence re-scoring procedure.  The largest improvement, in proportion (and 

number) of correct predictions, seen between these methods, is 0.136 (479), when 

using the func-MB “top-8 percent” sub-alignment re-scoring method. 

Comparisons between the fSDR-based sub-alignment re-scoring methods and the 

two alternative random models (i.e., the random sequence selection model that was 

introduced in chapter 3, and the “random-N” and “random-X percent” random 

column selection methods that were introduced in this chapter) clearly show 

significant improvements in specific enzyme classification accuracies when using 

the best performing sub-alignment methods.  This is especially true for the func-MB 

method, which has been shown to be a better performing method overall for this 

benchmark dataset.  Furthermore, the consistent improvement seen with the fSDR-

based sub-alignment selection re-scoring methods, when compared to the 
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comparable random columns sub-alignment selection re-scoring methods, indicates 

that there is a clear, significant and functionally informative advantage to using 

fSDR-based sequence sub-alignments to re-evaluate the specific enzyme function of 

an unknown query sequence. 

 

Figure 4.9. A comparison of the proportion of correct predictions 

obtained for the following selection of “optimal” functional sequence re-

scoring methods: (i) the func-MB “top-X percent” method using a 

colgap_percent threshold of 90%; (ii) the profile-HMM ”top-N” method; (iii) 

the optimal func-MB “column score threshold” method, where the spearman-

rank order correlation coefficient is >= 0.2, using a colgap_percent threshold 

of 80%; (iv) the optimal profile-HMM “column- score threshold” method, 

where the Z-score is >= 0.5; (v) the PAM30 UNGAPPED (0,0) re-scoring 

method, which was identified as optimal performing in chapter 3; (vi-vii) the 

“random-N” column selection methods, using colgap_percent thresholds of 

50%, 80% and 90%; and (ix) the random sequence selection method.  Where 

shown the error bars refer to 1 standard error deviation from the mean of the 

bootstrapped results, otherwise, just the mean value of the bootstrapped results 

are shown to improve clarity. 

Also, the func-MB results of figure 4.9 show that even when including a quite large 

percentage of aligned columns in the sequence sub-alignments (such as 50% or 

75%),  there is still some (albeit much smaller) improvement observed in the overall 

(%) 
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accuracy of the predictive performance.  This is encouraging and to be expected, 

because any amount of enrichment of the aligned columns, with regards to the 

correlation between residue similarities and specific function, would be expected to 

improve the functional information signal in the resulting sequence sub-alignments.  

This is indeed shown (again in figure 4.9) by the gradual improvement in functional 

classification accuracy as the percentage of lesser correlated aligned columns, 

included in the re-scored sequence sub-alignments, is decreased, resulting in an 

optimal performance at the already stated threshold of  the top-8%.  These results, 

therefore, show that the specific enzyme functional classification accuracy clearly 

benefits from the use of a particular, optimally defined, sequence sub-alignment of 

functionally important residues (especially when using the func-MB method for 

fSDR identification).  The most pertinent of these results are summarised for 

comparison in table 4.5. 

Functional Re-

scoring Method 

(optimal) 

Sub-alignment 

threshold 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

func-MB 

(colgap_percent=90%) 

top-8%      0.769 (*) 2712 

profile-HMM top-35 0.673 2374 

PAM30 UNGAPPED 

(0,0) 

n/a 0.631 2226 

random-N 

colgap_percent=50% 

colgap_percent=60% 

colgap_percent=80% 

 

N = 65 

N = 75 

N = 75 

 

0.628 

0.627 

0.615 

 

2215 

2211 

2169 

random-X percent 

colgap_percent=50% 

colgap_percent=80% 

colgap_percent=90% 

 

X = 50% 

X = 35% 

X = 75% 

 

0.627 

0.630 

0.635 

 

2211 

2222 

2240 

random sequence 

selection 

n/a 0.502 1771 

Table 4.5. A summary of the optimal bootstrap results from the 

functional re-scoring assessments analysed in this chapter (mean proportion 

and number of correct “top-hit” specific enzyme predictions).  Where relevant, 

the sub-alignment selection methods and associated thresholds at which these 

results were obtained are shown.  All results for the number of correct 

predictions are out of a possible dataset size of 3527. (*) indicates the method 

with the overall maximum predictive performance.  
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In conclusion, these comparisons show that when using fSDR-based sequence sub-

alignments, improvements are observed for the predictive performance of specific 

enzyme function classification, when using the “top-hit” assessment method.  This is 

shown especially clearly when contrasting the best results from the func-MB method 

of sub-alignment generation and those from the PAM30 UNGAPPED (0, 0) method, 

which uses all aligned columns of residues to re-score the functional similarity of the 

aligned sequences.  The detailed results for each of these approaches are summarised 

for comparison in table 4.5. 

4.3.1.5 The Effects from Clustering the Dataset Query Sequences 

In this section a procedure similar to that described in chapter 3 (section 3.3.5) was 

carried out.  This involved the definition of a series of sequence clusters using CD-

HIT (Li and Godzik, 2006) - with six thresholds of sequence percentage identity 

(90%, 80%, 70%, 60%, 50%, and 40%) - by clustering the query sequences used to 

create the MSAs contained in the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  As before, the aim 

was to provide an investigation (additional to the bootstrap re-sampling) into the 

effect that any potential bias, due to sequence redundancy within the query 

sequences used to create the benchmark dataset, may have on the accuracy and 

trends of the enzyme function prediction results from the fSDR-based sub-alignment 

re-scoring.   

A summary of the sequence identity clustering thresholds and the number of 

sequence clusters generated for this particular dataset was given in table 3.3; where a 

100% identity threshold refers to the dataset compositions prior to any CD-HIT 

sequence clustering.  The number of sequence clusters produced at each threshold, 

for each distinct dataset, also defines the number of MSAs that constitute the datasets 

at each of the sequence identity thresholds. 

The above func-MB, profile-HMM and random column selection analyses were 

repeated for each set of the clustered sequence alignments, identified in table 3.3, for 

the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  For the bootstrap 

re-sampling analysis of the results a sample selection size of half the number of 

dataset MSA examples was used for each of the associated clustered datasets. 
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The Effects on the func-MB “top-N”, “top-X Percent” and “column score 

threshold” Methods for Sub-Alignment Generation  

Repetition of the fSDR-based sub-alignment re-scoring experiments was carried out 

for each set of MSAs in the clustered sub-sets of data.  To allow direct comparison 

between these results and those shown above, which did not include any query 

sequence identity clustering, identical column selection methods and colgap_percent 

thresholds for MSA pre-filtering were applied.  All three of the func-MB based 

column selection methods (i.e. the top-N; top-X percent; and the Spearman-rank 

order correlation coefficient threshold methods) were investigated, and the 

proportion of correct enzyme classifications compared at each cluster percentage 

threshold.  In general, the overall trends and accuracies of correct prediction were 

similar to the results obtained without any prior clustering of the query enzyme 

sequence set. 

Results from the re-scoring of the “top-X percent” func-MB generated sub-

alignments are shown in figure 4.10.  This shows the proportion of correct (specific 

enzyme) predictions that were observed when re-scoring the sub-alignments created 

from the MSAs contained within the datasets associated with the 40%, 60%, 80% 

and 100% query sequence identity clustering process.  For clarity, only the results 

from the functional re-scoring of the sub-alignments, generated after application of 

the colgap_percent=90% threshold for the pre-filtering of aligned columns with a 

specified number of gaps, are shown.  This particular threshold was selected because 

it gave the best predictive performance in the analysis above, where no sequence 

clustering was done, and therefore allows a direct comparison between the results.  

As before, the results show the mean proportion of correct (specific enzyme) 

predictions and one standard error deviation from the mean, for each of the 

investigated sub-alignment generation thresholds. 
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Figure 4.10. A comparison between the proportion of correct predictions 

obtained at each of the spearman-rank order correlation coefficient “top-X 

percent” thresholds used for func-MB fSDR-based sequence sub-alignment 

generation.  The enzyme classification results are shown for re-scoring the 

query sequence identity (seqID) clustered datasets of MSAs (using thresholds of 

seqID=40%, seqID=60%, seqID=80%, and seqID=100%), which have had a 

colgap_percent=90% aligned column gap threshold filter applied prior to 

sequence sub-alignment generation.  The proportions of correct predictions are 

the bootstrap mean values, shown with the corresponding standard error bars.    

From figure 4.10, it can be seen that in general there is a decrease in the observed 

proportion (and therefore number) of correct enzyme classifications, when re-scoring 

the fSDR-based sub-alignments from the clustered sub-datasets with aligned column 

sub-set sizes generated using a selection threshold below X=15%.  This is shown in 

more detail in the inset graph of figure 4.10.  In contrast, above this percentage 

threshold, the clustered datasets (in particular those from using a 40% and 60% 

sequence identity clustering threshold) generally out-perform those using 80% and 

100% (i.e. no clustering).   

These results indicate that the overall specific classification results may contain a 

certain degree of bias from particular families of closely related enzyme sequence 

families that are responding favourably to the specific combination of func-MB sub-

(%) 
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alignment selection parameters.  Even though the relationship becomes slightly less 

clear and the predictive signal reduced, there is still significant improvement to be 

gained from using a sub-alignment of sequences based on the func-MB method of 

functional residue selection.  This is shown in table 4.6, which shows that the 

optimal performing func-MB fSDR-based re-scoring methods consistently give a 

larger number of correct enzyme classifications, when compared to the comparable 

results presented in chapter 3 that use all available aligned amino acid residues to 

assess the functional similarities.  This is the case for all three of the func-MB 

column selection methods and also each of the query sequence identity clustering 

thresholds that were investigated. 

The Effects on the profile-HMM “top-N”, “top-X Percent” and “column score 

threshold” Methods for Sub-Alignment Generation 

A similar analysis was also carried out using the profile-HMM method for fSDR 

identification.  Some of the resulting effects on the classification accuracy are shown 

in figure 4.11 and the optimal results are summarised in table 4.6.  An interesting 

observation from these results is that as the query sequence identity clustering 

threshold is reduced, in general, the proportion of correct classifications increases.  

This is perhaps best demonstrated with the “Z-score threshold based sub-alignment” 

results, shown in figure 4.11, which shows a clear improvement (when using a Z-

score threshold of 1.0 and 1.5) for the 40% and 60% query sequence identity 

clustered datasets.  It is clear, however, from table 4.6, that the func-MB based re-

scoring method continues to correctly classify the specific function of the query 

sequence in more comparable cases and that unfortunately the profile-HMM method 

continues to not perform as well as was first expected on this data. 
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Figure 4.11. A comparison between the proportion of correct predictions 

obtained at each of the Z-score thresholds used for profile-HMM fSDR-based 

sequence sub-alignment generation.  The enzyme classification results are 

shown for re-scoring the query sequence identity (seqID) clustered datasets of 

MSAs (using thresholds of seqID=40%, seqID=60%, seqID=80%, and 

seqID=100%).  The proportions of correct predictions are the bootstrap mean 

values, shown with the corresponding standard error bars. 

The Effects on the “random-N” and “random-X Percent” Methods for Sub-

Alignment Generation  

To complete this analysis, the random column selection methods were also applied 

to these clustered subsets of sequence alignments.  The results from functionally re-

scoring both the “random-N” and “random-X percent” generated alignments showed 

no significant difference between the different levels of sequence identity clustering, 

for all column selection thresholds.  For brevity and to avoid repetition these results 

are not shown here. 
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func-MB method Profile-HMM method amino acid 

matrix method top-N top-X percent column score top-N top-X percent column score 

Query sequence cluster threshold = 100% 

(optimal) 

sub-alignment threshold 

top-30 

colgap=60% 

top-8% 

colgap=90% 

>= 0.2 

colgap=80% 
top-35 top-30% >= 0.5 PAM30 (0, 0) 

(bootstrap) mean proportion 

correct +/- se 
0.767 +/- 0.011 0.769 +/- 0.010 0.719 +/- 0.011 0.673 +/- 0.011 0.664 +/- 0.011 0.665 +/- 0.011 0.631 +/- 0.012 

Number Correct (out of 3527) 2705 2712 2536 2374 2342 2345 2226 

Query sequence cluster threshold = 80% 

(optimal) 

sub-alignment threshold 

top-30 

colgap=60% 

top-8% 

colgap=90% 

>= 0.2 

colgap=80% 
top-25 top-15% >= 0.5 PAM40 (0, 0) 

(bootstrap) mean proportion 

correct +/- se 
0.763 +/- 0.013 0.767 +/- 0.013 0.723 +/- 0.014 0.676 +/- 0.014 0.664 +/- 0.014 0.664 +/- 0.014 0.632 +/- 0.015 

Number Correct (out of 2131) 1626 1634 1541 1441 1415 1415 1347 

Query sequence cluster threshold = 60% 

(optimal) 

sub-alignment threshold 

top-30 

colgap=50% 

top-9% 

colgap=80% 

>= 0.2 

colgap=80% 
top-30 top-15% >= 0.5 PAM40 (0, 0) 

(bootstrap) mean proportion 

correct +/- se 
0.759 +/- 0.016 0.759 +/- 0.016 0.723 +/- 0.017 0.698 +/- 0.017 0.685 +/- 0.018 0.690 +/- 0.018 0.645 +/- 0.018 

Number Correct (out of 1392) 1057 1057 1006 972 954 960 898 

Query sequence cluster threshold = 40% 

(optimal) 

sub-alignment threshold 

top-30 

colgap=100% 

top-8% 

colgap=90% 

>= 0.1 

colgap=60% 
top-20 top-15% >= 1.0 PAM40 (0, 0) 

(bootstrap) mean proportion 

correct +/- se 
0.748 +/- 0.023 0.740 +/- 0.023 0.713 +/- 0.024 0.695 +/- 0.024 0.681 +/- 0.024 0.685 +/- 0.025 0.652 +/- 0.025 

Number Correct (out of 721) 540 534 514 501 491 494 470 

Table 4.6. A summary of the re-scoring methods that give the optimal specific enzyme functional predictive performance for each of the 

sub-alignment selection methods and a selected set of associated query sequence clustered subsets.  The column - amino acid matrix method – 

specifies the optimal amino acid substitution re-scoring matrices and gap penalties previously identified in chapter 3 (see table 3.4).  Bootstrap 

values for both the mean proportion, with standard error (se), and number of correct predictions are shown for each method. 
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4.3.2 Lactate/Malate Dehydrogenase Example 

To complete this part of the study into the possible use of automatically predicted 

functional specificity determining residues for the improvement of specific enzyme 

functional assignment, a detailed study of a well characterised example enzyme class 

was carried out.  This provides an opportunity to look at the more detailed aspects of 

the sub-alignment re-scoring process, in a single specific example, which removes 

some of the potential complications from using the larger sample dataset size of 

MSAs in the earlier aggregated study. 

For this, an example involving the experimentally and computationally well-studied 

lactate and malate dehydrogenases (LDH/MDH) was selected.  These enzymes are 

found in a wide range of organisms, often showing quite divergent sequences, 

although they do, however, share a common substrate binding site and overall 

catalytic mechanism (Goward and Nicholls, 1994; Wilks et al., 1988).  Experimental 

studies, involving the rational redesign of protein sequences, have shown that the 

substrate binding specificity can be altered through the mutation of just one key 

residue in the binding site (Goward and Nicholls, 1994; Wilks et al., 1988), while 

some of the other substrate binding residues are completely conserved.  This is 

therefore a good example of subtle protein sequence changes causing important 

differences in specific biochemical enzyme function, which cannot easily be 

identified by standard “whole” sequence similarity methods.  A further attraction for 

investigating this group of enzymes is that they have been studied previously in both 

of the studies by Pazos et al. (2006) and Hannenhalli and Russell (2000).   

For this particular example a multiple sequence alignment was obtained from the 

“initial” dataset and was therefore generated through a PSI-BLAST database search 

using an E-value threshold for sequence inclusion of 10.  The input query sequence 

used was represented by the UniProt database entry with accession code O08349.  

This protein has a length of 294 amino acids and an EC classification of 1.1.1.37 

(malate dehydrogenase). 

The alignment contained sequences from four specific enzyme functional classes:  (i) 

158 sequences with (L)-lactate dehydrogenase activity, using NAD(+) as a 

coenzyme (EC 1.1.1.27); (ii) 128 sequences with malate dehydrogenase activity, 

using NAD(+) as a coenzyme (EC 1.1.1.37); (iii) 6 sequences with malate 
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dehydrogenase activity, using NADP(+) as a coenzyme (EC 1.1.1.82); and (4) one 

sequence representative of the enzyme EC 1.2.1.12, which appears to be functionally 

quite different to the other three, sharing only the use of a NAD(+) coenzyme and 

the general dehydrogenase enzyme class.  The EC 1.2.1.12 annotated enzyme 

sequence has an insignificant E-value of 4.1 and a small percentage of alignment 

overlap with the query sequence of less than 50%.  Also, its EC function only shares 

a general functional class with the other enzymes in the alignment and therefore is 

not very close in terms of functional specificity.  Each of these factors suggests that 

it is a false positive database hit and should be removed from the analysis to prevent 

noise from distorting the quality of the scores obtained in the fSDR selection.  It is 

worth noting that this particular sequence would have been removed from the 

alignment by the use of a more stringent E-value threshold filter, such as that applied 

to the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset used in some 

earlier analyses in this thesis. 

A further feature of this alignment is slightly more subtle and presents an interesting 

case for consideration that could also occur in other examples.  Of the three 

remaining functions, EC 1.1.1.27 and EC 1.1.1.37 have distinct substrate binding 

specificities, but the same coenzyme binding specificity.  In contrast, EC 1.1.1.37 

and EC 1.1.1.82 have the same substrate binding specificities, but distinct coenzyme 

binding specificity.  These changes in functional detail have been experimentally 

verified and involve very few amino acid mutations in each case (Goward and 

Nicholls, 1994).  This highlights the potential complications that can affect the 

automated analysis of functional sequence details.  It also shows some of the 

functional subtleties that can be hidden in schemes of functional classification, such 

as the EC system.  Some of these points are explored further below.   

4.3.2.1 Analysis of the Identified Functional Specificity Determining 

Residues (fSDRs) 

The columns identified with the highest scores, calculated using the rank correlation 

coefficient for the func-MB method and the Z-score for the profile-HMM method, are 

shown in table 4.7.  All columns with greater than 50% gaps were not included in 

the func-MB calculation and all gap comparisons were scored as 0 in the amino acid 

similarity correlation matrix.  Listed in the table are the top 5 fSDR column scores 
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from each method.  These were calculated using all the aligned sequences, which 

contained the four specific functions described above and therefore no pre-filtering 

of the alignment was done. 

Rank (method) Score Alignment position 
Residues in 

malate<->lactate 

1 (profile-HMM) 3.505 233 (107) M <-> E 

1 (func-MB) 0.850 233 (107) M <-> E 

2 (profile-HMM) 3.376 215 (102) R <-> Q 

2 (func-MB) 0.740 249 (not obvious) 

3 (profile-HMM) 1.856 322 N <-> N  

3 (func-MB) 0.690 215 (102) R <-> Q 

4 (profile-HMM) 1.781 212 (102) (not obvious) 

4 (func-MB) 0.661 1032 P <-> (I, V) 

5 (profile-HMM) 1.759 324 (not obvious) 

5 (func-MB) 0.622 995 (A, S) <-> T 

Table 4.7. A comparison between the top-5 ranked scores from the func-

MB and profile-HMM, fSDR identification methods.  “Alignment position” 

represents the column number in the BLAST alignment and the number in 

brackets (where comparable) is the cross-reference to the corresponding 

alignment position used by Hannenhalli and Russell (2000).  Where clearly 

distinguishable, the main residue type in the alignments of the malate and 

lactate dehydrogenases is shown. 

It can be seen, through manual inspection of the MSAs, that both methods identify 

the main, experimentally verified (Wilks et al., 1988), specificity determining 

residue switch between Arginine (R) and Glutamine (Q) in the malate and lactate 

dehydrogenases respectively.  This residue occurs at position 215 in the BLAST 

MSA and corresponds to alignment position 102 in the study by Hannenhalli and 

Russell (2000) and position 95 in the study by Pazos et al. (2006).  When cross-

referenced to the query sequence O08349, this position relates to residue number 81 

and is annotated in the UniProt FT field as a substrate binding site.  Interestingly, 

both methods report the highest scoring alignment position to be at 233 (107 in 

Hannenhalli and Russell (2000)), relating to a switch from predominantly 

Methionine (M) to Glutamic acid (E) residues in the malate and lactate 

dehydrogenases respectively.  No specific experimental evidence seems to be 

available to quantify the effect on catalysis caused by this switch.  However, it does 

occur in the region of the substrate binding site and would therefore be expected to 

play some part in the specific substrate recognition. 



 

 

169 

Hannenhalli and Russell suggest in their study that a Z-score above 3.0 is usually a 

good indicator of functionally specific alignment positions.  Pazos et al. (2006) don‟t 

mention a particular threshold value for the correlation coefficient, although they do 

suggest using 0.6 in their earlier study of the MB-method (del sol Mesa et al., 2003).  

If these thresholds are applied to the scores in table 4.7, we can see that all five of 

the func-MB scores are above 0.6, but only the top two Z-scores are above 3.0.   

To investigate this further, the profile-HMM method was used to re-calculate the 

fSDR scores when: (i) removing the sequence with function EC 1.2.1.12; and (ii) 

only using the aligned sequences with enzyme functions EC 1.1.1.27 and EC 

1.1.1.37.  The first case aims to investigate effects of unrelated specific functions and 

sequence profiles of small sequence sample sizes on the Z-scores.  The second case 

explores the difference between Z-scores (especially for the R<->Q change) when 

the potentially confusing case of two different functional classes (EC 1.1.1.37 and 

EC 1.1.1.82) with the same substrate binding specificity, but different functional 

class, is removed.  The results in table 4.8 compare the findings for these two cases 

and the unfiltered sequence alignment results from table 4.7).   The top-5 identified 

columns and the corresponding Z-scores are shown. 

 
Unfiltered EC 1.2.1.12 removed 

EC 1.1.1.27 and EC 

1.1.1.37 only 

Column 

score rank 
Z-Score 

Alignment 

position 
Z-Score 

Alignment 

position 
Z-Score 

Alignment 

position 

1 3.505 233 (107) 5.619 1032 6.170 215 (102) 

2 3.376 215 (102) 4.613 215 (102) 5.180 233 (107) 

3 1.856 322 4.585 233 (107) 5.080 1032 

4 1.781 212 (102) 3.129 995 2.676 397 

5 1.759 324 2.676 397 2.928 249 

Table 4.8. A comparison of the effect of sequence alignment pre-

filtering on the top-5 identified fSDR columns and the corresponding Z-scores 

calculated with the profile-HMM method. 

When removing the sequence with function EC 1.2.1.12 it can be seen that the two 

alignment positions (233 and 215) with highest Z-score (from the unfiltered data) are 

still identified, but with increased Z-scores.  This is also true for the case where only 

the sequences with functions EC 1.1.1.27 and EC 1.1.1.37 are used.  These results 

would seem to indicate that, as expected, the fSDR score signals improve as 
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sequences that may cause functional signal noise complications are removed from 

the analysis. 

It would also seem from these results that the profile method is sensitive to 

functional groups with very few sequence examples and also a low percentage of 

aligned residues.  This appears to be due to the way in which the relative entropy 

calculations require a consensus match emission state for a particular position in all 

of the individual functional alignments and the limited amount of enzyme sub-class 

specific sequence information from which to build the HMM profiles.  This 

highlights a potential limitation of the method and further study targeted towards 

improving the results from potentially problematic alignments, with poorly aligned 

sequences containing large gapped regions and enzyme sub-classes with few 

sequence examples, would be useful.  As an example, we can see in table 4.8 that 

when the EC 1.2.1.12 example is removed from the alignment, alternative high 

scoring alignment positions are obtained that previously occurred in a region of the 

MSA that was not aligned with this sequence.  These aligned columns are 1032 and 

995 and are also identified by the func-MB method (see table 4.7).  We can therefore 

see from these results that the identified fSDR results from the func-MB method, 

without any alignment pre-filtering, are comparable to those of the profile-HMM 

method after some filtering.  This indicates that the func-MB method may be less 

sensitive than the profile-HMM method to some of the potential alignment problems 

and is a likely contributing factor to the improved overall re-scoring results seen for 

the func-MB method when compared to the profile-HMM method in the earlier, 

larger analysis of the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.   

4.3.2.2 Effects on Functional Rank-Ordering and Grouping 

A major aim of this study is the incorporation of information gained from identifying 

a set of functionally specific amino acids, into a method for improving automatic 

functional classification of an unknown enzyme sequence.  In this section, a detailed 

analysis is carried out into the effects on the functional rank-ordering of aligned 

enzyme sequences, when using alternative sub-alignment based re-scoring methods.  

For this particular example, the LDH/MDH sequence alignment (obtained from 

query sequence O08349 in the “initial” dataset), with no pre-filtering of the 

alignments, was again used. 
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When carrying out a PSI-BLAST database search, using query sequence O08349, 

the most significant hit (with E-value = 1x10
-52

) is to a lactate dehydrogenase instead 

of a malate dehydrogenase and is therefore functionally incorrect at the 4
th

 EC 

number, which denotes substrate specificity.  The highest ranked sequence with the 

“correct” function is at rank 35 with an E-value of 1x10
-43

.  A more detailed analysis 

of the distribution of the ranking positions, for the sequences with correct (EC 

1.1.1.37) and incorrect (EC 1.1.1.27) functions, shows that the ordering is almost the 

inverse of that required to enable a correct prediction based on homology transfer.  

Figure 4.12(a) highlights this problem with a smoothed density distribution of the 

rank positions for the sequence homologs with the “correct” and “incorrect” 

functional classifications from the BLAST output, showing the majority of the 

correct predictions at the lower ranked positions.  A similar, although slightly 

improved, situation is also observed in the functional rank distributions when using 

the PAM10 (0, 0) (i.e. using a gap score of 0) substitution matrix (which was found 

to be optimal for re-scoring the initial dataset – data not shown) to re-rank the 

sequences.  These observations, coupled with knowledge of the substrate binding 

requirements, show that this is a prime example of a situation where additional 

information is required to correctly assign the specific enzyme function. 

When using sequence sub-alignments, generated from the top-5 highest scoring 

columns identified by both the func-MB and profile-HMM fSDR identification 

methods, a significant improvement in the rank distributions of the correct sequences 

is observed.  This is shown in figure 4.12(b).  A comparison between these ranking 

distributions and those from the BLAST and PAM10 (0, 0) results are shown in 

figures 4.12(c) and figure 4.12(d).   The distributions of the rankings for the 

“correct” functional sequences, in Figure 4.12(c), clearly move towards higher 

ranking positions when only the amino acids from the top-5 scoring aligned columns 

are used for re-scoring.  Conversely, the distribution of the “incorrect” functional 

sequences, shown in figure 4.12(d), show a clear movement towards the lower 

ranking positions when the fSDR identification methods are used.  Therefore, it can 

be seen from these graphs that both the func-MB and profile-HMM methods provide 

significant improvement - in the ordering of the sequences with the same “correct” 

functional classifications as the query - when compared with the other sequence 
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similarity re-scoring methods, such as BLAST and the PAM10 substitution matrix, 

which use all of the aligned sequence residue information. 

 

Figure 4.12. Graphs showing the variation of ranking distributions when 

using different alignment scoring methods: (a) distribution of functionally 

“correct” and “incorrect” rank positions from the original 1
st
 iteration PSI-

BLAST results; (b) distribution of functionally “correct” and “incorrect” rank 

positions when using the func-MB and profile-HMM “top-5” results; (c) 

overlay of “correct” ranking distributions from BLAST, PAM10 (0, 0), func-

MB top-5 and profile-HMM top-5 results; (d) overlay of “incorrect” ranking 

distributions from BLAST, PAM10, func-MB top-5 and profile-HMM top-5 

results. 

Further verification of this improvement in the grouping of sequences with the 

correct specific function, is shown by the data in table 4.9.  Here, a more detailed 

analysis has been carried out, which measures the number of functionally “correct” 

sequences (the “enrichment”) occurring in the top 10, 20, 30, 40 and 50 rank 

(d) 

(a) 

(c) 

(b) 
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positions after alignment re-scoring.  Again, the data used is from the lactate/malate 

dehydrogenase alignment data, described above, with no pre-filtering of the 

alignments.  The re-scoring methods compared are: BLAST; global sequence 

identity (seqID); PAM10 (0, 0) substitution matrix; func-MB and profile-HMM ”top-

N” methods (where N=5, 10, 20, and 30).   

  
Number of sequences (N) with correct functions in 

the top-N ranked positions after functional re-scoring 

re-scoring method Top hit? 10 20 30 40 50 

BLAST No 0 0 0 2 2 

seqID No 3 6 7 10 11 

PAM10 (0, 0) No 4 10 17 21 23 

func-MB top-5 Yes 9 19 29 39 48 

func-MB top-10 Yes 8 9 13 14 15 

func-MB top-20 Yes 9 14 18 20 24 

func-MB top-30 Yes 1 4 4 4 4 

profile-HMM top-5 Yes 10 20 30 39 49 

profile-HMM  top-10 Yes 10 19 29 38 47 

profile-HMM  top-20 Yes 7 17 27 34 42 

profile-HMM  top-30 Yes 5 15 22 28 31 

Table 4.9. Comparison between the level of “enrichment” of correct 

prediction results in the top 10, 20, 30, 40 and 50 rank positions, after re-

scoring the aligned sequences using the methods listed.  The “Top hit?” 

column indicates whether the top ranked sequence position shows a correct 

specific functional hit to the query.  The alignment data used is from the 

lactate/malate dehydrogenase alignment from the “initial” dataset with no 

sequence pre-filtering. 

The main outcome of this comparison is the large improvement in the number of 

correct predictions in the top ranking positions, when using the fSDR-based amino 

acid subset to re-rank the aligned sequences, compared to the “whole” alignment 

sequence similarity methods (such as BLAST, seqID and PAM10).  Both the func-

MB and profile-HMM methods show that almost all the top 50 rank positions are 

populated by correct functional predictions, when the top-5 scoring fSDR columns 

are used for re-scoring.  This is a very promising result, because it shows the 

potential of the fSDR identification methods for improving the functional re-ordering 

of the sequences using this particular example.  Therefore, it provides further 

evidence for the use of the proposed fSDR-based sequence sub-alignment re-scoring 

method for the improvement of specific enzyme functional assignment. 



 

 

174 

A final point is that, as the number of aligned fSDR positions included in the subset 

increases, the corresponding amount of top ranking enrichment tends to decrease 

when using both methods.  This is to be generally expected because, as the fSDR 

score value decreases, the ability of the residues in the aligned sequence subset, to 

separate the specific functional classes, will be reduced.  This must, however, be 

qualified with some caveats.  Firstly, table 4.9 shows that each methods is quite 

sensitive to the particular number of columns included in each of the sub-alignments 

(for example, the func-MB top-20 method appears to be performing slightly better 

than the top-10, whereas the top-30 is significantly worse than both).  Also, the 

optimal top-N values (of N=30 and N=35 for the func-MB and profile-HMM 

methods respectively) obtained from the earlier large-scale study of the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, are not always likely 

to be optimal for a single specific example.  This is especially important when taking 

into consideration a more detailed assessment scheme, such as top-rank enrichment, 

in comparison with the “top-hit” method and also highlights potential limitations in 

the use of single, averaged thresholds obtained from all the MSA examples in a 

large-scale analysis.   

4.4 Conclusions 

In this chapter, two different methods, for the automatic identification and scoring of 

aligned amino acids that are expected to play a role in determining functionally 

specific protein properties, have been described and compared.  These potential 

fSDRs, identified by both the func-MB and profile-HMM methods, were then used to 

generate sub-alignments of enzyme sequences, of varying sizes, via a number of 

aligned column selection methods.  The sub-alignments were then functionally re-

scored, using the PAM30 amino acid substitution matrix and the resulting functional 

classification accuracy was assessed using the “top-hit” method.  In addition to this, 

a comparable method for the random selection of aligned columns was developed 

and the functional classification performance of the resulting sub-alignments was 

assessed and compared to the fSDR-based methods.  Finally, a detailed analysis of 

fSDR identification and their subsequent use in functional re-scoring was carried out 

for a multiple sequence alignment of the well-studied lactate and malate 

dehydrogenases.  
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The optimal functional re-scoring results, from the func-MB method, show a 

significant improvement in the level of enzyme classification accuracy, when 

compared to all of the other methods investigated.  This is the case for all three of the 

sequence sub-alignment selection methods, in particular those using small subsets of 

residues predicted to be correlated with specific function.  Overall the best results are 

obtained through use of the “top-N” (where N=30) and “top-X percent” (where 

X=8%) methods of residue selection, where the proportion (and number) of correct 

predictions is 0.767 (2705/3527) and 0.769 (2712/3527), respectively.  These are 

obtained through use of an alignment pre-filtering method that removes all aligned 

columns with a percentage of gaps greater than 60% and 90% respectively.  

Although, in general, there is no significant difference between the optimal results 

for any of the pre-filtered alignments, once the colgap_percent threshold is greater 

than or equal to 50%.  These results represent a significant improvement over those 

obtained from using the PAM30 UNGAPPED (0,0) method of re-scoring, which uses 

all of the aligned amino acids in the functional assignment procedure and was found 

to be optimal in the analysis presented in the previous chapter.  

With regards to the other colgap_percent thresholds that were investigated, there was 

a clear minimum, in classification performance, when setting the threshold to 

preclude all columns from the sub-alignments that contain any gaps.  This result was 

expected to a certain degree, because the stringent alignment pre-filtering process is 

likely to cause the inclusion of a larger number of well conserved columns in the 

top-ranked set used for the functional re-scoring.  The effect of this was the observed 

decrease in classification accuracy due to fewer columns that are sufficiently diverse 

and strongly correlated with the functional specificities of the aligned enzyme 

sequences.  Also, the use of a strict filtering method, such as this, for the presence of 

aligned gap residues, means that alignments which have a greater degree of sequence 

diversity will in general have fewer columns of amino acids without any gaps in the 

alignment.  This results in the observed sharp increase in the number of “empty 

subset (incorrect)” examples when the colgap_percent threshold is lowered towards 

0%.  

It has been shown that when using the “top-hit” assessment method for the large-

scale analysis of the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, 
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the profile-HMM method of sub-alignment generation does not perform as well as 

the func-MB method.  This is the case for the functionally specific assignment 

accuracies obtained from each of the three thresholding methods used for sub-

alignment generation.  The optimal profile-HMM method – from the “top-N” (where 

N=35) columns selection method - shows an improvement (of 4.2% or 148 correct 

classifications) over that of the “all aligned amino acids” PAM30 UNGAPPED (0,0) 

re-scoring method.  Although this is a statistically significant improvement (when 

considering a deviation of one standard error from the means of the bootstrap results) 

it is relatively small and is especially disappointing when viewed in comparison to 

the 13.8% (or 486 correct classifications) improvement in correct assignments when 

using the best func-MB based method.   

It is not clear why the profile-HMM method for fSDR-based identification did not 

provide a larger improvement in performance, when re-scoring the generated 

sequence sub-alignments.  Further study is required into the limitations of this 

method and the ways in which to obtain a better general improvement in specific 

enzyme classification accuracy through the use of this method.   

When comparing the classification results obtained from functionally re-scoring the 

two fSDR-based sub-alignment generation methods, with those from the equivalent 

random column selection methods, a general improvement is seen.  This is especially 

prominent for the fSDR selection thresholds used to generate the sub-alignments that 

produced the largest number of correct classifications.  It was also shown that the 

random column selection model introduced in this chapter, generally results in a 

greater number of correct enzyme classifications than the previously described 

model of random sequence selection. 

As in the previous chapter the effect of any potential sequence redundancy, within 

the query sequences used to create the benchmark datasets, was again investigated.  

A comparable sequence clustering method was used to assess the accuracy of the 

sub-alignment based functional classifications.  As before, a number of sub-datasets 

(on which the alignment re-scoring experiments were repeated) were generated by 

applying a variety of sequence identity clustering thresholds to the query sequences.  

There was an overall reduction in the optimal number of correct classifications 

observed when applying the func-MB re-scoring method to the MSAs obtained from 



 

 

177 

the more stringently clustered sequence identity thresholds, such as 40%.  In 

contrast, the profile-HMM method showed small improvements when comparing the 

results from using the MSAs obtained from progressively more stringent sequence 

identity clustering thresholds.  These results, however, do not alter the conclusions 

that have already been drawn – that the classification results from using the func-MB 

re-scoring methods consistently outperform those from the comparable profile-HMM 

methods and, in general, similar results and trends were observed for each of the 

sequence identity cluster thresholds used.   

The detailed study of the alignments of lactate and malate dehydrogenase sequences 

demonstrated, through a relevant experimentally well-studied example, how fSDR-

based aligned subsets of residues can be used to improve the ranking enrichment of 

specific functions, when compared to the ranks generated by BLAST and other 

sequence similarity measures.  These results show that there is significant 

improvement in the functionally specific sequence grouping and ordering, when 

using only the amino acids in the identified high-scoring fSDRs for functional 

scoring.   

This particular example was chosen because the substrate binding specificity and 

other functional details of these enzymes has been well studied experimentally, 

which provides valuable experimental verification for some of the identified 

residues.  Also, this example showed a good example of a case where the BLAST 

generated functional ranking results were the opposite of that required to make a 

correct specific functional assignment.  This was clearly shown in figure 4.12, where 

the rank distributions of the functionally correct enzyme sequences are essentially 

inverted when only a subset of high scoring specificity determining residues were 

used to functionally score and order the aligned sequences, rather than the functional 

ordering generated by the original BLAST sequence similarity search.  Although this 

is only one example, it clearly shows the potential of the approach for improving 

problematic specific functional classifications.  It also highlighted a number of 

interesting factors regarding the operation of the methods and the sort of 

considerations necessary for further study and alternative methods for assessing the 

functional classification quality of the re-ranked sequences.  In particular, whether 

any pre-filtering of the sequences in the multiple alignments should be carried out 
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before running fSDR score calculations and also, whether the relative ranking of 

sequences, other than the “top-hit”, should be considered when assessing the 

functional classification accuracy.  

In summary, the results in this chapter show a proof-of-concept for the use of a 

subset of amino acids – that are predicted to be indicative of specific protein 

functions - for improving the functional classification accuracy for enzyme 

sequences, when compared to standard sequence similarity measures.  The large-

scale benchmark study has shown that this approach does, in general, improve the 

classification accuracy when using functionally informative sub-alignments instead 

of functional scoring measures that use all of the aligned residues in BLAST 

generated sequence alignments.  The following chapter aims to investigate ways to 

improve the methods used to assess the functional classification and enable the 

definition of a dataset of automatically identified fSDRs.  The aim of which is their 

use in the training and validation of a machine learning approach for the automatic 

identification of functionally specific residues in sequence alignments and their 

subsequent use in the assignment of specific enzyme function. 
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Chapter 5 Towards the Automatic 

Identification of Functional 

Specificity Determining Residues 

Using Support Vector Machines 

5.1 Introduction 

In the previous chapter it was shown that functional specificity determining residues 

(fSDRs) could be used to significantly improve the classification of specific enzyme 

functional classes.  These automatically identified fSDRs were used to define and re-

score sub-alignments of enzyme sequences and the resulting classification accuracies 

were favourably compared to the functional re-scoring when using all aligned 

residues.  There are, however, limitations to these methods of functional 

classification, for which possible solutions are presented and analysed in this 

chapter.   

The main disadvantage of the two previously studied func-MB and profile-HMM 

methods for automatic identification of fSDRs, is the need for prior knowledge of the 

specific functional classes of the aligned sequences.  This is problematic because it 

limits their use to alignments of functionally well-characterised sequences, thus 

preventing a more general approach to the classification problem and limiting the 

possible uses to a much reduced sample space of functionally annotated sequences.  

In an attempt to circumvent this requirement, it is proposed that machine learning 

methods could be used for the automatic identification of fSDRs in multiple 

sequence alignments (MSAs).  The analysis in this chapter investigates the 

feasibility of this approach through the use of support vector machines (SVMs) 

(Vapnik, 1995) to discriminate between aligned columns of amino acids that are 

important for the determination of a specific function (fSDRs), or not (“non-

fSDRs”).  Support vector machines are classifiers that provide a means for 

distinguishing between different classes data.  Features representing the input data 

are transformed into a multi-dimensional feature space through the use of kernel 

functions, which can be either linear or non-linear in form.  It is then possible to 

identify a hyper-plane that provides an optimal separation of the two classes of 



 

 

180 

“positive” and “negative” data examples, which results in an associated set of unique 

kernel parameters found during the SVM training.  In this chapter, the information 

contained within the aligned residues, associated with the two classes of positive 

(fSDR) and negative (non-fSDR) data, was encoded into input feature vectors, 

without reference to the functional classes of the associated protein sequences.  

Unfortunately, there is not a well-established, large-scale and experimentally verified 

dataset of function specific residues that is suitable for this purpose.  An enzyme 

specific database of catalytic residues, called the catalytic site atlas (CSA) (Porter et 

al., 2004), has been developed but it is not designed to catalogue the residues 

responsible for determining the substrate specificity of enzymes.  Rather, this 

database concentrates on the identification and detailed classification of enzyme 

residues that are thought to be directly involved in the reactions catalysed by the 

associated enzymes.  Because of this, these residues tend to be quite conserved 

across sequence homologs and are generally more indicative of the general enzyme 

functional class, rather than the specific functional sub-classes that are of interest in 

this thesis. 

Therefore, it was necessary to first define a suitable benchmark dataset for these 

studies.  For this, a method was developed for automatically characterising the 

aligned columns of amino acids in each MSA as either important for the 

determination of a specific function (fSDRs) or not (non-fSDRs).  A modified form 

of the fSDR-based, sub-alignment, re-scoring method (which was introduced in the 

previous chapter) was used for this.  For this, the previously studied “top-hit” 

functional assessment method was extended to include a measure of the “functional 

enrichment” of the top ranked enzyme sequences after re-scoring.  Thus, allowing a 

suitable set of aligned fSDR columns to be identified for this particular problem.   

To my knowledge, no previous studies have addressed this important problem by 

first using automated methods - to define a benchmark dataset of function specificity 

determining residues - and then using SVMs for their identification within multiple 

sequence alignments.  There are, however, a number of previous studies (Gutteridge 

et al., 2003; Petrova and Wu, 2006; Tang et al., 2008) that have used machine 

learning approaches, such as artificial neural networks (NNs) and SVMs, for the 

classification of residues contained within the CSA database.  These studies 
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demonstrated the feasibility of using machine learning methods for CSA 

identification from protein sequence and structural information.  Although the 

identification of CSA residues is not the same problem as identifying specificity 

determining residues; these studies do provide inspiration for appropriate methods to 

use for pre-processing the data, prior to SVM training, as well as techniques for 

assessing the quality of the prediction results. 

The fully automated identification of functional residues within proteins continues to 

be a challenging area of study.  An equally important and related problem is the 

improved classification accuracy of the specific functional properties of enzymes, 

and other proteins, in a fully automated way.  The following analysis aims to provide 

some novel ideas for building datasets and the use of SVMs towards solving these 

problems.  

5.2 Materials and Methods 

5.2.1 Datasets of Multiple Sequence Alignments 

As in the previous studies, presented in chapters 3 and 4, datasets of multiple 

sequence alignments (MSAs) were used as the basis of the studies contained within 

this chapter.  Two datasets of MSAs were primarily used.   

5.2.1.1 The “targets_only” Dataset of MSAs 

The All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, which was used 

in the previous chapter and consists of 3527 BLAST generated MSAs, was used in 

the following analysis for the assessment of the performance of the fSDR-based sub-

alignment re-scoring methods.  These alignments can be thought of as the 

“targets_only” dataset of MSAs because they have been filtered to only include 

sequences that have an annotated “target” enzyme functional classification (EC 

number) in the Swiss-Prot database (see section 2.4.2 for details).   

5.2.1.2 The “BLAST - raw output” Dataset of MSAs 

Additionally, a second set of MSAs were used for the SVM analyses in this chapter.  

These differ from the “targets_only” dataset in that they have had no sequence 

filtering applied to the MSAs obtained from the BLAST sequence database searches.  

In particular the MSAs were not subject to the “MSA target enzyme filtering” 
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process or the “All1stINCORRECT” artificial dataset post-modification procedure, 

which were previously defined in chapter 2.  Therefore, these alignments are 

referred to, throughout this chapter, as the “BLAST - raw output” dataset of MSAs. 

5.2.2 The “Rank Enrichment” Method for Assessing the Accuracy of 

fSDR-Based Classification of Specific Enzyme Function 

An additional method for assessing the performance and accuracy of specific 

enzyme functional classification, using fSDR-based alignment re-scoring, was 

investigated.  This aims to build upon the limitations of the “top-hit” method, used 

previously (see section 3.2.3.1 and section 4.2.6.1), by incorporating a measure of 

the ability of the functional re-scoring methods to group enzyme sequences that have 

the same functional specificity as the query sequence, in the top ranking positions 

after re-ranking using the alignment re-scoring procedure.  

The proposed “rank enrichment” method aims to provide a score that calculates a 

measure of the overall change in the rank-ordering of sequences with the same 

specific enzyme functional classification as the query sequence.  In order to achieve 

this, a method was implemented to calculate the number of “correct” (i.e. sequences 

with the same specific enzyme EC classification as the query sequence) sequences 

present in the top ranking, N, positions, after the application of a particular functional 

alignment re-scoring method.  This is formally represented in equation 5.1. 

positionsrank

correct

score
N

N
E

_

                                    (equation 5.1) 

Where: scoreE  is the “functional enrichment score”, which measures the enrichment 

level of the number of sequences with “correct” functional classifications - 

represented by correctN  - that occur in the top ranking positions of interest - 

represented by positionsrankN _ .  The scoreE  is bounded between a minimum of 0.0, 

which is obtained when none of the sequences in the positionsrankN _  show a correct 

functional match to the query, and a maximum of 1.0, which is observed when all of 

the sequences in the positionsrankN _  show a correct functional match to the query (i.e. 
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when 
correctpositionsrank NN _

).  Two examples that demonstrate the calculation of 

these functional enrichment scores are shown in figure 5.1. 

 
Figure 5.1. Two examples showing the way in which functional 

enrichment scores are calculated.  On the left, only one sequence occurs with 

the same function as the query in the top-10 (i.e. 10_ positionsrankN ) ranking 

positions, leading to a score of scoreE = 0.1.  On the right, nine sequences are 

now found in the top-10 ranking positions, leading to an improved score of 

scoreE = 0.9. 

In the following studies, two values were used for the positionsrankN _  parameter, these 

were: 10_ positionsrankN ; and MSAinsequencescorrectpositionsrank NN ____  .  The value of 10 

was used because it provides a calculation of the proportion of correct sequences 

occurring within the top-10 ranked positions after alignment re-scoring.  Due to the 

way in which the functional class composition of the sequences within the MSAs of 

the “targets_only” dataset was defined (see chapter 2, section 2.4.2), this was an 

appropriate number of rank positions to consider.  Each MSA in this dataset was 

defined to contain at least 10 sequences with an annotated EC classification identical 

to the query sequence.  Therefore, the use of the top-10 ranked positions in the 

enrichment score, scoreE , calculation ensures that it is theoretically possible for every 

MSA to return the maximum possible score of 1.0, where all 10 top ranked positions 

are populated with functionally “correct” sequences.  The alternative value that was 

used for positionsrankN _ , was MSAinsequencescorrectN ___ , which equals the number of 

sequences, in each MSA, with the same specific EC classification (i.e. “correct”) as 

the query sequence.  This means that this value will be variable between the different 

MSAs that constitute the analysed dataset, dependent upon the number of “correct” 
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functional sequences contained within each alignment.  This form of the functional 

enrichment score aims to provide a description of how the alignment re-scoring 

methods affect the rank ordering and functional grouping of the “correct” enzymes 

that occur in the lower ranking positions (i.e. the sequences with “correct” functional 

classifications that are ranked outside the top-10 places).  Also, this additional way 

of calculating scoreE  provides a means to differentiate between functional re-scoring 

methods that result in the same enrichment score, for a particular MSA example, 

when using only the top-10 ranked positions.   

Again, this method creates a bounded value, between 0.0 and 1.0, for the enrichment 

score.  Where the minimum is obtained when none of the sequences in the 

positionsrankN _  show a correct functional match to the query, and a maximum of 1.0, 

when all of the sequences in the positionsrankN _  show a correct functional match to the 

query (i.e. when correctpositionsrank NN _ ).  So, in this instance, a value of 1.0 can only 

be observed when all of the sequences that have the same functional classification as 

the query (i.e. MSAinsequencescorrectN ___ ) are ranked above all the other sequences in the 

alignment that have “incorrect” classifications.  

5.2.3 The Functional Alignment Re-scoring Procedures 

The analyses within this chapter use the alignment re-scoring procedures previously 

described in both chapters 3 and 4 (see sections 3.2.2 and 4.2.4 respectively).  The 

results from using these methods to functionally re-score the “targets_only” set of 

alignments were then analysed and their functional enrichment scores compared. 

5.2.4 Definition of a Benchmark Dataset of Functional Specificity 

Determining Residues (fSDRs) within Enzymes 

For these studies it was necessary to obtain a benchmark dataset of fSDRs that could 

be used for the training and validation of the optimal SVM parameters.  There is no 

pre-existing data source that could be used as a “gold-standard” for a large-scale 

investigation of this type - which involves the automatic identification of amino acid 

residues that determine function specific sequence properties.  Therefore, for these 

studies, it was necessary to develop a method for the selection and definition of a 

benchmark dataset of fSDRs for SVM training and validation.  Due to the limitations 
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of available experimentally verified data, it was decided to use an automated method 

for this selection procedure and therefore this dataset can be thought of more as a 

“silver-standard” benchmark dataset of automatically selected fSDRs.  The methods 

used in this selection procedure are outlined in detail below. 

5.2.4.1 The Aligned Column Gap Percentage Threshold of Inclusion 

For the analysis carried out in this chapter, a single percentage threshold was used 

for the removal of aligned columns from the sequence alignments, prior to the 

functional re-scoring of the sequences.  This was described previously, in chapter 4 

– section 4.2.5.1, as the “column gap percentage threshold (colgap_percent)” 

method.  As before, the application of the colgap_percent threshold was only 

relevant to the func-MB and the “random column selection method” (see chapter 4 – 

section 4.2.6.5) methods of alignment re-scoring.  For the following analyses a 

colgap_percent threshold of 10% was used.  This particular threshold was selected 

because it was the same threshold as that used to pre-filter the MSAs in the study by 

Pazos et al. (2006), which first discussed the func-MB method of fSDR 

identification.  A discussion of the possible limitations to this single threshold 

approach is provided later, in section 5.3.4. 

5.2.4.2 Identification of the Optimally Performing Sub-sets of fSDR Columns 

in Each MSA 

A method was used to identify fSDRs that generate the optimal functional 

enrichment scores, scoreE , in each multiple alignment.  For this, equation 5.2 was 

used to calculate the difference in enrichment scores between the enzyme sequence 

ordering obtained from the original BLAST generated MSAs, in the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, and those from the re-

scored sequence ordering.   

62___

_

BLOSUMBLAST

score

methodfSDROPTIMAL

scorescoreenrichment EEdiff                (equation 5.2) 

Where, for each MSA in the dataset: scoreenrichmentdiff _  represents the difference 

between the enrichment score from the optimal fSDR-based re-scoring method(s), 

represented by 
methodfSDROPTIMAL

scoreE __
; and that from the original BLAST generated 
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sequence ordering, which uses the BLOSUM62 substitution matrix and gapped 

alignment scoring), represented by 
62_ BLOSUMBLAST

scoreE .  Because the aim was to identify 

the best performing fSDR subsets in each of the MSAs, the enrichment score 

differences were calculated for all of the func-MB and profile-HMM based sub-

alignment generation and re-scoring methods that were studied in the previous 

chapter.   

The enrichment score differences were calculated using the difference in functional 

composition of the top-10 ranking positions (i.e. where 10_ positionsrankN  in equation 

5.1).  The distribution of these optimal score differences, for all of the 3527 MSAs, 

are shown in the black bars of the histogram in figure 5.2.  This figure shows that 

there are a majority of examples with a positive scoreenrichmentdiff _
 value.  From 

equation 5.2, it can be seen that these are the examples that show an improvement in 

the number of “correct” enzyme functional sequences in the top-10 ranking positions 

of the re-scored alignments, when using the identified optimal fSDR-based re-

scoring methods.  The examples which have a zero scoreenrichmentdiff _  value represent 

those examples where there is no change in the enrichment score when using the 

“optimal” fSDR-based re-scoring methods.  Also, the small numbers of examples 

with negative scoreenrichmentdiff _  values are those that show a reduction in the number 

of “correct” enzyme sequences in the top-10 ranking positions, with respect to the 

original BLAST MSAs, when the “optimal” fSDR-based re-scoring method is used. 
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Figure 5.2. Histogram showing the differences, scoreenrichmentdiff _ , 

calculated with equation 5.2, between the optimal top-10 functional enrichment 

scores and those from the original BLAST MSAs, in the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset. Where the black 

bars represent the number of dataset examples with the specified 

scoreenrichmentdiff _
 values, regardless of the 

methodfSDROPTIMAL

scoreE __
 score (i.e. 

methodfSDROPTIMAL

scoreE __
(all values)); and the specified scoreenrichmentdiff _

 values, 

when the optimal 
methodfSDROPTIMAL

scoreE __
 score is greater than or equal to 0.9 (i.e. 

methodfSDROPTIMAL

scoreE __
>=0.9).  

It can be seen, from figure 5.2, that there are a clear majority of dataset examples 

with an improved (i.e. positive) scoreenrichmentdiff _  value, when using the optimal 

fSDR-based re-scoring methods.  However, this does not ensure any particular level 

of correct functional sequence enrichment in the top-10 ranking positions.  Because 

the main aim of this analysis was the identification of a benchmark dataset of fSDRs 

that provide a clear differentiation between specific enzyme functions, only the 

aligned columns from the MSA examples that had an enrichment score of 

methodfSDROPTIMAL

scoreE __
 >= 0.9, after sub-alignment re-scoring and ranking with the 

optimal fSDR-based methods, were considered for inclusion.  Although this was a 

somewhat arbitrary threshold, it was decided that this was a suitable threshold of 

enrichment as it ensures that at least 9 of the top 10 ranking sequences are of the 

same “correct” specific enzyme function as the query sequence and therefore 

provides a 90% chance of a correct specific enzyme functional classification via 

scoreenrichmentdiff _

methodfSDROPTIMAL

scoreE __ (all values) 

methodfSDROPTIMAL

scoreE __ >= 0.9 
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annotation transfer from the top-10 ranking sequence homologs after re-scoring.  

These examples are shown for comparison in figure 5.2 and are represented by the 

grey bars. 

Applying this enrichment score threshold meant that only a subset of the MSAs were 

included in the dataset from which the positive and negative classes, of fSDR and 

non-fSDR aligned columns respectively, were selected.  From this data, a subset of 

2959 MSAs satisfy both the enrichment score based selection criteria, of 

methodfSDROPTIMAL

scoreE __
 >= 0.9, and also the criteria which ensures that the 

scoreenrichmentdiff _  value, relative to the original BLAST alignment sequence ordering, 

is greater than zero and therefore an improvement. 

Once these 2959 MSAs had been identified, an additional stage was incorporated 

into the selection process for identifying the optimal subset of fSDRs.  The purpose 

of this second selection step was the provision of a method for distinguishing 

between sub-alignment re-scoring methods that had equal values of the 

methodfSDROPTIMAL

scoreE __
 enrichment score, when considering only the top-10 re-scored 

sequence ranking positions.  An additional functional enrichment score was used for 

this, which took into consideration the change (and hence improvement) in the 

ranking of the enzyme sequences with the “correct” functional classifications, 

outside of the top-10.  As described earlier, this was done by using 

correctpositionsrank NN _ , in equation 5.1, when calculating the functional enrichment 

scores for each re-scored alignment.  

After the application of this additional MSA selection procedure, examples were 

identified that continued to generate the same optimal, functional enrichment scores, 

methodfSDROPTIMAL

scoreE __
, when using more than one different sub-alignment re-scoring 

method.  For each of these examples, the re-scoring method which utilised the 

largest number of fSDR columns was identified and the associated fSDR columns 

were also identified for inclusion in the positive fSDR dataset.  It was decided to 

include the largest possible subset of aligned columns in the positive (fSDR) dataset 

because it would maximise the amount of information available to the positive 

dataset for the training and validation of the SVMs.  As a consequence the expected 
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(and indeed observed) disparity in the numbers of positive to negative class 

examples in the training and validation datasets was reduced.   

Also, it was difficult to justify the use of any other method of positive class (fSDR) 

selection.  This was primarily because a method that uses fewer fSDR columns, to 

achieve the same level of functional enrichment creates a situation where the 

negative set of non-fSDR columns contains examples that are positive (fSDR) 

examples if a different column selection method, with an identical enrichment score 

assessment criteria, is used.  This could result in sub-optimal SVM learning through 

the inclusion of ambiguously classified positive data examples in the negative (non-

fSDR) dataset.  A possible solution to this could be the creation of a third set of 

aligned columns – the “unclassifiable” set - that are not considered as either part of 

the positive or negative set and therefore not used for the SVM training.  It was 

decided that this would add an extra level of complexity to the selection of fSDRs 

and therefore, to keep the fSDR selection approach as simple as possible, was not 

used in this analysis. 

These selection criteria were applied to the dataset of MSAs, and the associated 

methods for selecting the optimal subset of aligned columns (the fSDRs) were 

identified.  The resulting fSDR and non-fSDR columns from each MSA example 

were separated into the positive and negative datasets, respectively, ready for 

encoding and use in the SVM analysis.  

5.2.5 Removal of “Non-specific Serine/Threonine Protein Kinase” 

Query Sequence MSA examples 

Analysis of the EC functional classes represented by the query sequences used to 

generate the 3527 MSAs in the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

dataset, revealed that a number of classes were represented a relatively large number 

of times.  In particular, the EC 2.7.1.37 class, which specifically denotes enzyme 

sequences as belonging to the “non-specific serine/threonine protein kinase” 

functional class, was the functional annotation for 841 of the 3527 query sequences 

used to generate the dataset.  The MSA examples generated by these query 

sequences were removed from the dataset of MSAs from which the SVM training 

and validation datasets of fSDRs were extracted.  After this, a dataset of 2686 MSA 

examples remained.   
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The reason for this removal was that the sequences within these examples were only 

showing a general kinase functional relationship, and not the detailed differences in 

specificity, when being functionally re-scored to predict the EC class.  Therefore, 

these MSAs were possibly more suitable examples for correctly predicting the 1
st
 or 

2
nd

 EC class numbers, rather than all 4 levels required in a high-specificity enzyme 

functional annotation task.   

5.2.6 Creation of SVM Cross-Validation Training Datasets 

When carrying out training and validation for machine learning model parameter 

optimisation, it is important to have sufficiently non-redundant datasets to prevent 

over-training on many similar data examples.  Also, it is important to define separate 

groups of non-redundant datasets for both the training and the independent validation 

stages.  This is commonly achieved through the use of n-fold cross-validation.  In 

this section the steps are described for the removal of sequence redundancy and the 

definition of cross-validation datasets for the training and validating the SVMs. 

5.2.6.1 Query Sequence Clustering  

Sequence identity based clustering was used to reduce the potential sequence-level 

redundancy of the query sequences used to generate the 2686 MSAs identified 

previously.  The same query sequence clustering procedure as that used in the 

previous two chapters (see sections 3.2.5 and 4.2.7) was again followed.  The CD-

HIT algorithm (Li and Godzik, 2006) was applied to the query sequences, using a 

range of percentage sequence identity clustering thresholds, with the recommended 

default parameters.  See table 3.3 for a summary of the cluster properties, at each 

defined level of sequence identity, for the query sequences associated with the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset. 

With regards to the SVM training and validation datasets, the main purpose of this 

sequence clustering was the overall reduction in sequence redundancy of the query 

sequence datasets.  This has the associated effect of limiting any potential 

redundancy within the datasets of aligned residues (both fSDR and non-fSDR) 

extracted from the MSAs and therefore limits the potential for the SVM to over-learn 

an over-represented subset of data.  Because of this, only the most stringent sequence 

identity threshold, of 40%, was used to reduce the redundancy of the dataset for the 
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subsequent SVM analysis.  This resulted in a dataset containing 357 query enzyme 

sequences that represent 84 specific EC classes (see Appendix I for further 

description of this dataset). 

5.2.6.2 Additional BLASTCLUST Query Sequence Clustering to Define the 

Non-Redundant Cross-Validation Datasets 

An additional step to reduce the sequence redundancy was then applied to the 357 

query enzyme sequences identified above.  For this, the BLASTCLUST (Altschul et 

al., 1990) sequence clustering application was used.  A stringent E-value based 

threshold, of 0.01, was used to cluster the query sequences by setting the 

BLASTCLUST –e parameter to be 0.01.  This was done to remove any significant 

level of sequence homology that may have remained between the sequences assigned 

to different cluster groupings after the initial CD-HIT 40% sequence identity 

clustering.  The outcome of the BLASTCLUST clustering process was 58 sequence 

clusters, with the smallest and largest clusters containing 1 and 47 query sequences, 

respectively.   

A commonly used method for assessing the performance of machine learning 

classification methods (such as SVM) is that of n-fold cross-validation.  For this, n 

equally sized datasets are defined and then used for training and validation purposes.  

A 5-fold cross-validation procedure was used to assess the SVM analysis carried out 

in this chapter.  To do this, the 58 BLASTCLUST generated sequence clusters were 

randomly partitioned into five (approximately) equal sized groupings of sequence 

clusters, therefore ensuring no significant level of sequence homology between any 

sequences in the distinct groupings.  Due to the fact that it was not possible to get 

exactly equal numbers of sequences into 5 groupings, from a dataset of 357, three of 

the groups contained 71 query sequences and the two remaining groups contained 

72.  These five dataset groupings are referred to as “GROUP_1” to “GROUP_5”.  

Finally, an all against all BLAST comparison, with an E-value threshold of 0.01, was 

carried out for each of the sequences in one group against those in the other four.  

This was done to ensure that the BLASTCLUST method had not missed any 

significant sequence homology between the five groups.  The result of this analysis 

showed that there was indeed no significant sequence similarity overlap between the 

sequences in the five datasets. 
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5.2.6.3 Creation of the SVM Training and Testing Datasets 

The purpose of the 5-fold cross-validation SVM training and testing procedure is the 

provision of a series of five separate training and testing datasets.  These provide a 

method of optimising the machine learning parameters – using the training datasets - 

and a separate means of evaluating the performance of the learned parameters using 

additional data - the test datasets - that has not been used in the training.  A 

commonly used method of partitioning the data into five pairs of (training and 

testing) subsets was followed here, which involves successively partitioning 4/5 of 

the data into the training data, with the remaining 1/5 of the data held back for use in 

testing. 

Therefore, for the SVM analysis in this chapter, the five groups of MSAs 

(GROUP_1 to GROUP_5, defined above) were combined to form five distinct pairs 

of training (TRAIN_1_2_3_4 to TRAIN_2_3_4_5) and testing (TEST_1 to TEST_5) 

datasets.  A detailed breakdown of the positive (fSDR) and negative (non-fSDR) 

SVM class compositions identified in these pairs of datasets is provided in table 5.1. 

5.2.6.4 Random Balancing of the Positive and Negative SVM Classes 

It can be seen from table 5.1 that there is a disparity in the number of positive 

(fSDR) and negative (non-fSDR) examples in the SVM datasets.  The non-fSDR 

columns occur at a greater frequency than the fSDR examples in all five of the 

testing and training datasets.  When considering the data in table 5.1 (obtained from 

using an E-value sequence inclusion threshold of 10
-3

) the average ratio of negative 

to positive classes was 15.4 and 12.9 in the testing and training datasets, 

respectively.  Datasets of this type are referred to as class “un-balanced” in the 

following discussion. 

To improve the computational efficiency of the SVM training process, an additional 

set of training datasets was defined, which contained approximately equal numbers 

of fSDR (positive) and non-fSDR (negative) SVM class examples.  Similar 

approaches have been used in a number of previous SVM and NN based studies 

(Gutteridge, et al., 2003; Petrova and Wu, 2006; Tang et al., 2008) on un-balanced 

datasets.  To create these “balanced” datasets, each of the constituent MSAs was 

subjected to a procedure, which randomly selected from the negative class examples, 

a subset equal (where possible) to the number of positive (fSDR) examples within 
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the MSA.  There were a small number of instances where complete equality was not 

possible, due to the fact that there were originally more positive than negative 

columns identified in a particular MSA and therefore it was not possible to select 

enough non-fSDR columns to compensate for this.  This accounts for the ratios of 

positive to negative examples, in the randomly “balanced” datasets shown in table 

5.1, being, in general, slightly less than 1.  To improve the representative sampling 

of the negative class examples selected by the random balancing procedure, it was 

repeated five times for each of the MSA examples.  Thus generating five randomly 

balanced sets of data associated with each training dataset. 

With regards to training and testing the SVMs, the randomly balanced datasets are 

used in the training stage and the un-balanced versions of the associated testing 

datasets are used to assess the performance of the generated SVM models. 

5.2.6.5 The Composition of the fSDR and non-fSDR Classes in the 5-fold 

Cross-Validation Datasets of Multiple Sequence Alignments 

It is now possible to provide a final breakdown of the number of positive (fSDR) and 

negative (non-fSDR) classes that were found within the SVM training and testing 

datasets, defined above.  This is best done through analysis of the data summary 

provided in table 5.1, which provides a comparison between the data composition of 

the ten individual sets of training and testing datasets.  The table includes the 

following information for each dataset: (i) the “number of MSA examples” that 

constitute each of them; (ii) the “total number of aligned columns” contained within; 

(iii) the number of positive (fSDR) and negative (non-fSDR) aligned columns 

identified in each; and (iv) a comparison of the ratio between the number of negative 

and positive class examples within each.  Also shown is a comparison between the 

number of non-fSDR columns (and subsequent ratios) in the datasets, both before 

(“un-balanced”) and after (“randomly balanced”) the process of randomly balancing 

the number of positive and negative classes within each dataset.  Further, the 

composition of the datasets is shown for two alternative E-value thresholds used for 

controlling sequence inclusion within the MSAs.  The details and relevance of these 

different thresholds is provided later in this chapter, in the results and discussion of 

the SVM analysis. 
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It can be seen that there is quite a wide variation in the ratio of negative (non-fSDR) 

to positive (fSDR) class examples in the individual groups of testing datasets (i.e. 

GROUP_1 to GROUP_5).  Due to the way in which these groupings of MSAs were 

constructed, through the BLASTCLUST based non-redundant clustering and 

subsequent random partitioning of these clusters, it was not possible to avoid this 

outcome.  It can, however, be seen that in the larger, combined sets of training 

datasets the ratio of un-balanced class differences is less wide spread and therefore 

more comparable between the different datasets. 
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Dataset 
Number of 

MSA 

Examples 

Total Number 

of Aligned 

Columns 

POSITIVE 

(fSDR) Columns 

NEGATIVE 

 (non-fSDR) Columns 

Ratio of classes 

(NEGATIVE/POSITIVE) 

Un-balanced 
Randomly 

Balanced 
Un-balanced 

Randomly 

Balanced 

10
-3 

10
-15 

10
-3

 10
-15

 10
-3

 10
-15

 10
-3

 10
-15

 10
-3

 10
-15

 

GROUP_1 (TEST_1) 71 50213 1682  1605 48531  48608 1682 1605 28.9 30.3 1.00 1.00 

GROUP_2 (TEST_2) 72 37909 4515  3810 33394  34099 4349 3644 7.4 8.9 0.96 0.96 

GROUP_3 (TEST_3) 71 35834 2558  2408 33276  33426 2402 2264 13.0 13.9 0.94 0.94 

GROUP_4 (TEST_4) 72 32807 1598  1509 31209  31298 1547 1462 19.5 20.7 0.97 0.97 

GROUP_5 (TEST_5) 71 28944 3127  2780 25817  26164 2982 2659 8.3 9.4 0.95 0.96 

TRAIN_1_2_3_4 286 156763 10353  9332 146410 147431 9980 8975 14.1 15.8 0.96 0.96 

TRAIN_1_2_3_5 285 152900 11882  10603 141018 142297 11415 10172 11.9 13.4 0.96 0.96 

TRAIN_1_2_4_5 286 149873 10922  9704 138951 140169 10560 9370 12.7 14.4 0.97 0.97 

TRAIN_1_3_4_5 285 147798 8965  8302 138833 139496 8613 7990 15.5 16.8 0.96 0.96 

TRAIN_2_3_4_5 286 135494 11798  10507 123696 124987 11280 10029 10.5 11.9 0.95 0.95 

Table 5.1. A breakdown of the number of positive (fSDRs) and negative (non-fSDRs) aligned columns that contribute to each of the SVM 

training and testing datasets.  This table includes the following information for each dataset: (i)  the “number of MSA examples” that constitute 

each of them; (ii) the “total number of aligned columns” contained within; (iii) the number of positive (fSDR) and negative (non-fSDR) aligned 

columns identified in each; and (iv) the ratio of the number of negative and positive class examples within each.  Also shown is a comparison 

between the number of non-fSDR columns (and subsequent ratios) in the datasets before (“un-balanced”) and after (“randomly balanced”) the 

process of randomly balancing the number of positive and negative classes.  Also shown are comparisons between the dataset contents when 

using two E-value thresholds (10
-3

 and 10
-15

) to control sequence inclusion in the MSAs.  These are indicated by the column headings of 10
-3

 and 

10
-15

 respectively. 
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5.2.7 SVM software, kernels and learning parameters used 

For the SVM analysis, the SVM
light

 (Joachims, 1999) and SVM
perf

 (Joachims, 2006) 

software applications were used.  Two different learning kernels were used; with the 

radial basis function (RBF) kernel used in SVM
light

 and the linear kernel used in 

SVM
perf

.  The SVM
perf

 application was used for the linear kernel based learning 

because it provides significant improvements in computational efficiency when 

compared to the linear kernel learning capabilities of SVM
light

.  However, these same 

improvements are not available for RBF kernel based learning and therefore SVM
light

 

was used for this purpose.  A grid search optimisation of the C and gamma learning 

parameters was carried out for the relevant SVM kernels, using the guidelines 

suggested by Hsu et al., (2008), to optimise the learning models generated during the 

SVM training. 

5.2.8 SVM Feature Vector Encoding 

Below are descriptions of the methods that have been used to encode the aligned 

column information into the necessary SVM feature vector format for input into the 

SVM
light

 and SVM
perf

 applications.  The following feature encoding was carried out in 

the same way for both the positive (fSDR) and negative (non-fSDR) subsets of data, 

which consist of aligned columns of amino acids taken from the MSAs that 

constitute the training and testing datasets. 

5.2.8.1 The Amino Acid Composition 

A feature vector was calculated to represent the amino acid composition of each 

aligned column of residues.  This was represented by a vector of length 22, which 

represented the fractional occurrence of each of the 20 standard amino acid types, as 

well as two additional fractional occurrences for the number of gaps and also the 

number of unidentified, masked “X” residues within each of the aligned columns 

being encoded.  All of these values were calculated as fractional frequencies of 

occurrence and therefore they all lie within the range from 0.0 to 1.0, inclusive.  This 

feature vector is referred to as the “amino acid composition (AA_composition)” 

where relevant during this analysis.  
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5.2.8.2 The Number of Amino Acid Types 

Another feature used to represent the aligned residues, was “the number of amino 

acid types (NumberOfAATypes)”, which describes the number of distinct amino acid 

types within a particular aligned column.  For the encoding of this feature only the 

occurrence of the 20 standard amino acid types within the aligned column was 

considered.   

Initially, a simple count of the number of distinct amino acid types found within an 

aligned column of interest was considered, therefore generating a feature vector with 

a discrete and bounded value, ranging from 0 to 20, inclusive.  Where: 0 signifies 

that there are no standard amino acid types occurring in the column (and therefore 

could contain either all “X” residues, or a mixture of gaps and “X” residues), and 20 

signifies that all of the standard amino acid types occur, at least once, within the 

aligned column.  The NumberOfAATypes feature was then modified, to incorporate a 

threshold, based on the percentage frequency of occurrence of the amino acid types 

found within the aligned column of interest.  This will be referred to as the 

“NumberOfAATypes_threshold_X%” feature, where X represents the applied 

percentage threshold.   

Formally, the percentage frequency of occurrence of each distinct amino acid type, 

AAf , with respect to all the residues in the aligned column, was calculated.  Then, for 

each of the distinct amino acid types within the aligned column, if the percentage 

frequency of occurrence, AAf , was greater than or equal to the applied percentage 

threshold of occurrence, X, the amino acid type was classed as occurring within the 

aligned column and therefore was included in the NumberOfAATypes_threshold 

feature value for the column.  For example, consider a column containing 100 

aligned residues and 4 distinct residue types, with frequencies of occurrence of 65, 

30, 3 and 2.  If a percentage threshold of X=5% was then applied, the resulting 

NumberOfAATypes_threshold feature would have a value of 2, because only 2 of the 

amino acid types occur with a percentage frequency greater than or equal to the 

specified threshold of 5%. 

This modification to the NumberOfAATypes feature (i.e. use of a threshold) aims to 

reduce noise in the feature from relatively small instances of an amino acid type 
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within an aligned column.  A more detailed discussion of the threshold selection is 

provided below, in section 5.3.2.4. 

Finally, for the purposes of SVM optimisation, it is generally recommended to have 

all feature values of comparable numerical magnitude and range.  Therefore, to be 

comparable to the AA_composition feature values, the NumberOfAATypes feature 

was subsequently re-scaled to a value within the range of 0 to 1. 

5.2.9 Assessment of the SVM Model Classification Performance 

Three measurements were used to assess the predictive performance of the SVM 

classifiers.  These were: the true positive rate (TPR); the false positive rate (FPR); 

and the Matthews correlation coefficient (MCC), and are defined below in equations 

5.3, 5.4 and 5.5, respectively. 

FNTP

TP
TPR


                                      (equation 5.3) 

TNFP

FP
FPR


                                      (equation 5.4) 

)()()()(

)()(

FPTNFNTNFNTPFPTP

FNFPTNTP
MCC




          (equation 5.5) 

Where TP, FP, TN, and FN represent the number of examples that are correctly 

classified as belonging to the positive class (i.e. true positives), the number that are 

incorrectly classified as belonging to the positive class (i.e. false positives), the 

number correctly classified as belonging to the negative class (i.e. true negatives), 

and the number incorrectly classified as belonging to the negative class (i.e. false 

negatives), respectively.  As in the studies of Petrova and Wu (2006) and Gutteridge 

et al. (2003), because of the un-balanced nature of the testing datasets the MCC is 

used to assess the performances of the SVM classifications. 

Also, the chi-squared test, with one degree of freedom, is used to assess the 

statistical significance of the MCC values, using equation 5.6 (which is defined in 

Baldi and Brunak (2001)). 

 22 MCCN                                       (equation 5.6) 
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Where: N is the total number of predictions made by the classifier; and the chi-

square statistic measures whether the prediction is significantly better than random 

(i.e., an MCC value of 0). 

5.3 Results and Discussion 

Before presenting the results obtained from using SVM classifiers to automatically 

identify fSDRs, an analysis is shown that introduces the use of the “functional rank 

enrichment” method to assess the level of correct specific functional classification.  

This method, described earlier, incorporates a measure of the functional re-scoring 

method‟s ability to group enzyme sequences - with the same functional specificity as 

the query sequence - in the top ranking positions.  The results presented in the 

following section are an extension of the “top-hit” based functional re-scoring results 

that were obtained from the experiments in the previous two chapters.  They also 

serve to show the reasoning behind the methods used to define the dataset of positive 

(fSDR) and negative (non-fSDR) examples that were used in the subsequent analysis 

of the SVM classifiers in this chapter. 

5.3.1 Using the “Functional Rank Enrichment” Method for Assessing 

Specific Enzyme Functional Classification 

The following analysis is used to investigate an alternative to that of the “top-hit” 

functional assessment method that has been used previously in this thesis (see 

sections 3.2.3.1 and 4.2.6.1).  The methods for assessing the functional classification 

and differentiation between specific enzyme sub-classes used in this part of the 

analysis were developed to include a measurement of the changes in specific 

functional grouping after re-scoring of the sequence alignments.   

A large-scale study was carried out into the functional enrichment scores obtained 

from re-scoring selected sub-alignments of the MSAs contained within the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  Both the func-MB and 

profile-HMM methods for computational fSDR identification were used, along with 

the three column selection methods used in the previous chapter (see section 4.2.4.2) 

for the associated fSDR-based sub-alignment generation.  This analysis allowed a 

comparison between the enzyme enrichment scores resulting from the best 

performing methods from each of the alignment re-scoring methods. 
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5.3.1.1 Comparisons Between Functional Enrichment Scores 

To maintain consistency of approach with the work carried out in the previous 

chapter, in which the “top-hit” method of functional assessment was used, the 

functional enrichment scores were calculated for the re-scored sequence alignments 

obtained from these previous analyses.  Both the func-MB and profile-HMM fSDR 

identification methods were compared and each of the “top-N”, “top-X percent” and 

“column score threshold” methods of aligned column selection, and subsequent 

sequence sub-alignment generation, were studied.  The PAM30 amino acid 

substitution matrix was again used to calculate and re-order the resulting pair-wise 

amino acid comparisons, with all residue-residue pair comparisons involving gap 

characters scored as zero.       

The functional enrichment scores for the 3527 MSAs in the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset were first calculated.  

Figure 5.3(a) shows a comparison between re-scoring the sub-alignments, when 

using the “top-X percent” method of sub-alignment generation.  The figure provides 

a breakdown of the functional enrichment scores, scoreE , calculated from the top-10 

ranking positions (i.e. from using a value of 10_ positionsrankN  in equation 5.1) after 

sub-alignment re-scoring.  Ten distinct score ranges are shown that represent the 

scoreE  values between 0 and 1.0.  An identical range of “top-X percent” column 

selection thresholds were applied to both the func-MB and profile-HMM fSDR 

scoring methods, allowing a comparison between the number of dataset examples 

that result in specific enrichment scores from each of these methods.   

A key observation from figure 5.3(a) relates to the correlation between the “top-X 

percent” threshold and the fractions of examples with a top-10 functional enrichment 

score that is greater than or equal to 0.9.  The func-MB and profile-HMM methods 

both show larger fractions of examples in this highest enrichment score range as the 

re-scored sub-alignments are generated with progressively lower percentage 

selection thresholds.  This is because they contain smaller numbers of aligned 

columns that are more highly correlated with the specific functions of the aligned 

enzyme sequences.  Therefore, resulting in an enhanced number of functionally 
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“correct” enzyme sequences (nine or more in this case) within the top-10 ranking 

positions, after alignment re-scoring.   

Regarding the func-MB method, the optimal performance within this enrichment 

score range was obtained by re-scoring the sub-alignments generated from the 

highest scoring 5% (top-5%; X=5%) of the fSDRs (as calculated from their 

Spearman rank-order correlation coefficients).  Whereas, for the profile-HMM 

method, the top-7% (X=7%) of the fSDRs, as calculated from the associated Z-

scores, produced the optimal performance.  These two optimal re-scoring methods 

resulted in 45% (1601 out of 3527) and 43% (1534 out of 3527) of the dataset 

examples with a functional enrichment score greater than or equal to 0.9, when 

considering the func-MB and the profile-HMM based methods, respectively.  This 

shows that the func-MB method shows slightly more examples than the profile-HMM 

method in this functional enrichment score range.  However, the overall results are 

closely comparable between the two sub-alignment generation methods for all of the 

enrichment score ranges. 

Analysis of the enrichment score ranges between 0.1 and 0.9 ( 9.01.0  scoreE ), 

generally shows a different trend to the results seen in the 0.19.0  scoreE  score 

range.  That is, in all of these individual score ranges there are consistently more 

examples observed when re-scoring the sub-alignments generated from larger 

percentages of aligned columns (e.g. when the “top-X percent” threshold is 

X=100%, rather than a lower value of X=10%).  This is to be expected and is mainly 

due to the way in which the functional enrichment score data has been partitioned 

and presented in figure 5.3(a).  This presentation means that each individual method 

of threshold selection that is shown has to have a total number of examples equal to 

the total number of examples in the dataset under investigation (or, the summed 

fraction of dataset examples, for each re-scoring method must equal 1.0). 

When analyzing the results from the poorest performing functional enrichment score 

range, where 1.0scoreE , exceptions to the previously observed trends occur and the 

data interpretation becomes less clear.  There are a relatively large number of 

examples within this score range, when compared to the other score ranges below 

0.9.  This can be partly explained by the fact that it is the enrichment score range in 
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which any “empty subset (incorrect)” examples will appear, which are defined as 

having an scoreE  of 0.   
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Figure 5.3. A comparison of the number of dataset examples obtained in each of the defined ranges of functional enrichment scores, when 

using the “top-X percent” method of sub-alignment re-scoring, from func-MB and profile-HMM identified fSDRs.  Also shown are the results 

from the BLOSUM62 (-11,-1) and PAM30 (0,0) methods of alignment re-scoring.  (b) Highlights the results for which the functional enrichment 

score was >=0.9. Also shown are the results for re-scoring with the comparable “random-X percent” sub-alignment generation methods.   

(a) (b) 
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This is, however, a somewhat disappointing result; especially considering the fact 

that the number of examples resulting in these poor functional enrichment scores 

does not appear to be reduced by using smaller sub-alignments of more highly 

correlated fSDRs.  In fact, for both the func-MB and profile-HMM methods, a slight 

tendency to the opposite trend is shown.  The presence of these under-performing 

cases; coupled with the observation that even the best performing single sub-

alignment re-scoring method only results in 45% of the dataset examples, when 

9.0scoreE , suggested that an alternative approach should be followed for the 

definition of an optimal dataset of fSDRs, for use in the SVM analysis.  This 

approach was explained in detail, in section 5.2.4.2, and provides a more exhaustive 

search space for finding the optimal subset of fSDRs than a single threshold for 

fSDR selection could.  Therefore, this approach provides a benchmark set of fSDRs, 

for the SVM classification experiments, that has the best possible functional 

enrichment scores and also maximizes the number of examples from which the SVM 

data is comprised. 

Also shown in figure 5.3(b) are the functional enrichment results from re-scoring 

sequence sub-alignments that have been generated through the “random column 

selection method”, previously described in section 4.2.6.5.  To provide a comparison 

with the results from the func-MB and profile-HMM generated sub-alignments, the 

same “top-X percent” thresholds (of: X=1-10% (by 1%); X=15%; and X=100%) are 

shown for all methods.  Although this only compares a selection of top-X percent 

thresholds, it successfully illustrates the generally observed behaviour for the 

random column selection method in the enrichment score range of 0.19.0  scoreE .  

That is, much larger numbers of examples with high functional enrichment scores 

are observed when using the high scoring fSDRs, identified with the profile-HMM 

and func-MB methods, rather than the randomly generated equivalents.  Therefore, 

these results show that there is no clear correlation between the sub-alignment size 

and improved ranking performance, for “correct” enzyme sequences, when re-

scoring randomly selected columns from the sequence alignments. 

For brevity, a detailed analysis of the functional enrichment scores obtained from the 

“top-N” and the “column score threshold” re-scoring methods (described in the 

previous chapter) is not provided.  The optimal performing results for these methods 
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are, however, shown in table 5.2.  In summary, the results from these other two 

methods show similar trends to those seen with the “top-X percent” sub-alignment 

generation methods, and also the comparable “top-hit” assessment results seen in the 

previous chapter.  That is, for the “top-N” column selection method, a generally 

improved performance was observed when using smaller subsets of fSDRs that are 

most highly correlated with the specific functional classes.  And the “column score 

threshold” based results show a peak in peak performance, before a rapid 

deterioration due to the increasing numbers of “empty set (incorrect)” examples at 

high column scores.  

5.3.1.2 Comparison Between the Functional Enrichment Score Results for 

the Optimal Alignment Re-Scoring Methods 

To complete this analysis of the functional enrichment score improvements, 

comparisons between the optimal methods are given in table 5.2.  This table 

summarises the fraction (and number) of dataset examples that result in an 

enrichment score greater than or equal to 0.9.  The optimal methods shown were 

taken from each of the “top-N”, “top-X percent” and the “column score threshold” 

methods, used with the func-MB and profile-HMM methods for scoring potential 

fSDRs.  Also shown, in table 5.2, are the results from using the PAM30 (0,0) method 

of “un-gapped” sequence alignment re-scoring.  This was shown to be the best 

performing functional re-scoring method from the alternative amino acid substitution 

studies, analysed in chapter 3.  Finally, a contrast is provided to the sequence 

ordering of the functionally “correct” enzymes in the original “artificial” dataset of 

BLAST generated MSAs (i.e. from the 

All1stINCORRECT.tF.BLOSUM62.masked.E0.001 dataset).  This is  denoted in the 

table as “BLOSUM62 (-11,-1)”, referring to the fact that the BLOSUM62 matrix 

was used in the sequence database search and that the gap penalties used were -11 

and -1. 

These results show that the number of examples with an enrichment score greater 

than or equal to 0.9 was similar for five of the optimally performing sub-alignment 

re-scoring methods.  These were: the func-MB “top-5 percent” and profile-HMM 

“top-7 percent” methods, with dataset fractions of occurrence of 0.45 (1601/3527) 

and 0.43 (1534/3527), respectively; the func-MB “top-10” and profile-HMM “top-



 

 

206 

15” methods, with dataset fractions of occurrence of 0.45 (1594/3527) and 0.43 

(1531/3527), respectively; and the profile-HMM “Z-score threshold >= 2.0” method, 

with a dataset fraction of occurrence of 0.43 (1533/3527).  The remaining sub-

alignment re-scoring result, using the func-MB “Spearman-rank order correlation 

threshold >= 0.2” method, shows a slightly lower optimal value for the dataset 

fraction of occurrence, of 0.37 (1304 out of 3527). 

 

 

fraction (number)                      

of dataset examples             

(when 0.19.0  scoreE ) 

func-MB 

top-N top-10 0.45 (1594) 

top-X percent top-5% 0.45 (1601) 

column score >=0.2 0.37 (1304) 

Profile-HMM 

top-N top-15 0.43 (1531) 

top-X percent top-7% 0.43 (1534) 

column score >=2.0 0.43 (1533) 

amino acid 

matrix 

PAM30 (0, 0) 0.20   (718) 

BLOSUM62  (-11, -1) (*) 0.05   (162) 

Table 5.2. A summary of the sub-alignment re-scoring methods that 

generate the largest number of examples with a functional enrichment score 

greater than or equal to 0.9 (when 
positionsrankN _

=10).  The fraction (and number) 

of dataset examples within this enrichment score range are shown for each 

method.  The “amino acid matrix” re-scoring methods show comparable 

results for the optimal amino acid substitution re-scoring matrices and gap 

penalties previously identified in chapter 3 (see table 3.4).  (*) indicates the 

sequence ranking results for the original BLAST 

All1stINCORRECT.tF.BLOSUM62.masked.E0.001 MSAs (i.e. generated 

through a residue masked sequence database search with the BLOSUM62 

matrix and gap penalties of -11 and -1).     

All six of these sub-alignment methods show a clear improvement when compared to 

the PAM30 (0,0) and BLOSUM62 (-11,-1) methods, which result in dataset fractions, 

within the 0.19.0  scoreE  score range, of 0.20 (718/3527) and 0.05 (162/3527), 

respectively.  Therefore, these results demonstrate a consistent improvement in the 

number of examples with high functional enrichment scores, when re-scoring sub-

alignments of residues that are predicted to be functionally important.  With the 

largest overall improvements, of 883 dataset examples (or 25% of the total dataset) 

and 1439 dataset examples (or 40% of the total dataset), seen when comparing the 
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functional re-scoring results of the func-MB “top-5 percent” method to those of the 

PAM30 (0,0) and BLOSUM62 (-11,-1) methods, respectively. 

In conclusion, the functional enrichment score improvements shown are closely 

comparable to those seen in the previous chapter, when using the “top-hit” method of 

assessment for specific functional classification.  That is they show that enrichment 

of the “correct” functional sequences is much improved when using sub-alignments 

of functionally important residues to re-score and re-rank the aligned sequences; 

rather than using all aligned residues or randomly selected sub-alignments of 

residues.  However, they also demonstrate that a single fSDR selection method is not 

optimal for all of the MSA examples.  This highlighted the need for a more flexible 

approach when defining an optimally performing dataset of fSDRs for use in SVM 

experiments.  Hence the development of the more exhaustive process for identifying 

optimally performing sub-sets of fSDR columns, which was previously described in 

section 5.2.4. 

5.3.2 Analysis of the SVM Classification Performance 

To conclude the enzyme functional classification studies presented in this thesis, a 

set of analyses were carried out to investigate the use of support vector machines 

(SVMs) for the identification of functionally specific residues in aligned sequence 

homologs.  The previous work in this chapter has outlined the collection and 

definition of the training and testing datasets of fSDRs for this task.   

These initial SVM experiments concentrate on a small number of simple protein 

sequence features that were expected to be of importance for the determination of 

specific enzyme functional properties.  Therefore, the following results and 

conclusions are intended as initial studies into the feasibility of using the defined 

datasets, with a selection of commonly used SVM kernels and learning parameters, 

for the identification of fSDRs from multiple alignments of sequences without prior 

knowledge of their specific functional classifications. 

5.3.2.1 Datasets 

The feature vector encoding for the training and testing of the SVM classifiers was 

carried out using the MSAs from the “BLAST - raw output” dataset.  This data was 

used because it was expected that it would provide additional evolutionary sequence 
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information when compared to the MSAs of the “targets_only” dataset and therefore 

enhance the machine learning performance.  This is because the “targets_only” 

MSAs only contain sequences from a carefully selected set of fully annotated 

enzyme sequences.  Whereas the “BLAST - raw output” alignments generally 

contain a larger sample of sequence homologs.  Also, the overall aim of the SVM 

analysis is the development of an automated classification system that can identify 

functionally informative regions within a multiple sequence alignment without any 

prior knowledge of the functional classification of the constituent protein sequences.  

Therefore, it was deemed sensible that data of this form, with a minimum amount of 

alignment pre-processing, was used in these studies towards the development of the 

classifiers.  To aid the SVM learning, and improve computational efficiency, all of 

the following experiments use the “randomly balanced” form of the datasets for 

training the SVMs.  The un-balanced form of the encoded MSA data is used to 

assess the classification performance of the learned models on each of the test 

datasets.  This is to ensure that the classification performance is assessed on the type 

of alignment data that would be expected in a novel fSDR classification problem. 

5.3.2.2 Optimisation of the SVM Learning Parameters 

The performances of both the linear and radial basis function (RBF) learning kernels 

were investigated, using the SVM
perf

 and SVM
light

 software applications, respectively.  

In the case of the linear kernel based learning, the C parameter (i.e. the –c command 

line parameter in SVM
perf

) was progressively altered between a minimum value of 

1x10
-5

 and a maximum value of 1x10
7
, to provide a thorough analysis of the SVM 

performance.  For each C parameter used, the classification performance of the 

resulting SVM models was assessed for each of the 5-fold cross-validation datasets.  

When using the RBF kernel, both the C and gamma parameters (i.e. the –c and –g 

command line parameters respectively, in SVM
light

) were systematically varied to 

carry out a thorough analysis of the pairs of learning parameters.  For this, a grid 

search method was used; where exponentially growing sequences of C and gamma 

parameters were used, with C = 2
-5

, 2
-3

, ..., 2
15

 and gamma = 2
-15

, 2
-13

, ..., 2
5
 (Hsu et 

al., 2008).   

To assess the fSDR classification performance of the SVM training parameters the 

Matthews Correlation Coefficient (MCC) was calculated for each of the SVM 
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models.  The classification performance of the resulting SVM models was assessed 

for each of the five cross-validation datasets.  For each set of training parameters the 

MCCs obtained from the classification performance on the associated test sets were 

averaged.  The cross-validation was then repeated for each of the five training sets of 

randomly balanced fSDR and non-fSDR aligned columns of residues.  It was then 

possible to identify the learning parameters (for both linear and RBF kernels) that 

provided the optimal classification performance.  This was done by identifying the 

SVM parameters that provided the largest MCC value when averaged across the five 

cross-validation datasets and the five randomly balanced training sets.   

5.3.2.3 The Effect of the Amino Acid Composition Features on the SVM 

Classification Performance 

SVM training was carried out using the 22 “amino acid composition 

(AA_composition)” features as the input feature vectors, which were calculated from 

each of the “BLAST - raw output” alignments in the 5 groups of training and testing 

datasets.  The classification statistics for each of the models were averaged (using the 

mean) across the randomly balanced training and test set groupings.  The optimal 

results are shown in the AA_composition (E-value <= 0.001) section of table 5.3. 

Comparisons between the RBF and linear kernel classification results showed that 

better MCC scores are generally observed when using the RBF kernel when training 

the SVMs.  The parameters found to give the best overall fSDR classification 

performance with the RBF kernel, were C=0.125 and gamma=8.0.  Analysis of 

these results shows that a large number of false positive predictions were being made 

by the fSDR classifiers, resulting in a large average false positive rate of 0.33.  This 

was the case for all five of the cross-validation datasets, with some variation 

depending on the particular test set used for the assessment, with a minimum FPR of 

0.22 and a maximum of 0.40.   

With regards to the MCC results, it can be seen that although the MCC values are 

generally quite low, with an average of 0.30, the results do show that the SVM 

classification is performing better than a random predictor, due to the MCC values 

being greater than 0.  This is true even for the lowest MCC value, of 0.18, seen with 

the TEST_4 dataset.  Nevertheless, the relatively low MCC results and the high rate 
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of false positives are disappointing.  Because of this, further analysis of the input 

data and the investigation of other possible features for encoding the functionally 

specific information were investigated to try to aid the classification process. 

5.3.2.4 Analysis of the Sequence Alignment Data and Additional Features 

The poor quality of the SVM classification results – using the AA_composition 

features calculated from the “BLAST - raw output” MSAs - led to the consideration 

of using additional features for encoding the sequence alignment information and 

also the analysis of the signal quality of the input sequence alignment data.  For this, 

an investigation of the benefits resulting from the use and incorporation of the 

NumberOfAATypes feature, into the SVM based classification of fSDRs, was carried 

out.  Also investigated was the effect of altering the E-value threshold used for 

controlling the inclusion of sequences in the MSAs. 

Analysis of the NumberOfAATypes  

The NumberOfAATypes SVM feature vector was generated by calculating the 

number of distinct types of the 20 standard amino acid residues occurring in the 

fSDR or non-fSDR aligned columns.  A comparative analysis of the distributions of 

the number of amino acid types in both the fSDR (positive SVM class) and non-

fSDR (negative SVM class) columns was then carried out.  When considering the 

data from the “BLAST - raw output” MSAs, the analysis showed that both the fSDR 

and non-fSDR columns contained a relatively high frequency of occurrence of 

examples with large numbers (i.e. greater than 15) of distinct amino acid types.  This 

was a surprising observation because it was expected that the non-fSDR columns 

would show an increased tendency to contain larger numbers of amino acid types 

than the “positive” fSDR columns.  This is because the fSDR columns were 

identified as those that provide an optimal level of rank-order improvement of 

aligned sequences with “correct” specific enzyme functional classes and were 

therefore expected to display a smaller number of amino acid types, in general, than 

the non-fSDR columns which have no correlation to the functional specificity.  

This observation led to a hypothesis that the input sequence alignments (and 

therefore the encoded data from the fSDR and non-fSDR aligned columns) may 

contain a relatively large amount of noise, which could be causing SVM 
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classification problems.  To investigate this, two methods were used.  Firstly, a more 

stringent (i.e. lower) E-value was used to control the sequences included within the 

encoded MSAs; and secondly, a percentage threshold was applied to the calculation 

of the number of distinct amino acid types within each aligned column.  

The Application of an Additional E-value Sequence Inclusion Threshold 

before Encoding the Multiple Sequence Alignments 

The sequence alignments used so far in the SVM analysis were taken from the 

“BLAST - raw output” dataset.  In contrast, the majority of the analysis that has been 

previously carried out in this thesis was derived from the more carefully defined 

MSAs of the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, which 

contain only well annotated “target” enzyme sequences.  Therefore, it is possible that 

the use of the “BLAST - raw output” alignments, containing less well-defined 

sequences from the full UniProt database, may lead to an increased source of 

alignment errors and unwanted noise.  Possible reasons for this are: the inclusion of 

non-enzyme sequence homologs; an increased number of false positive homologs; 

and poorer alignments due to sequence fragments and sequencing errors.  Also, in 

general there will be a larger number of sequences within each MSA, leading to an 

increased probability of more distinct amino acid types occurring within each 

aligned column, regardless of the expected correlation to enzyme functional 

specificity.  

In an attempt to reduce the impact of these sources of potential alignment problems, 

it was decided to investigate the effect - on the NumberOfAATypes SVM feature and 

the SVM classification results - of using a more stringent (i.e. lower) E-value 

threshold to control the sequences included within the alignments.  For this a number 

of progressively lower thresholds, from 10
-5

 to 10
-60

, were considered and a value of 

10
-15

 was selected.  The main reason for selecting this threshold was that it was 

previously shown, in figure 2.1, that the use of an E-value threshold of less than or 

equal to 10
-15

, resulted in the presence of enzyme sequences sharing three levels of 

the EC classification hierarchy (with the query sequences) with an accuracy of 

greater than 90%.  Therefore, increasing the likelihood of more closely related 

functional homologs occurring within each MSA, while also ensuring that some 

functional diversity was present within the remaining aligned enzyme sequences. 
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The “BLAST - raw output” alignments were therefore filtered to include only protein 

sequences that had been identified in the sequence database search, with an 

associated BLAST E-value score of less than or equal to 10
-15

.  These filtered MSAs 

are referred to as the “BLAST - raw output (10
-15

)” dataset.  An analysis of the 

number of distinct amino acid types, occurring within the identified fSDR and non-

fSDR aligned columns, was then carried out using the MSAs from this dataset.  This 

allowed the effect of the E-value filter, on the distributions of the number of amino 

acid types in the data used for the positive and negative SVM classes, to be 

examined.   

This comparison, between alignments from using the 10
-3 

and the 10
-15

 thresholds, 

showed some small variations in the number of amino acid types counted within the 

fSDR and non-fSDR aligned residue columns.  In particular, the frequency of 

occurrence of examples with more than 15 distinct types was reduced when the more 

stringently filtered “BLAST - raw output (10
-15

)” dataset was analysed.  This was 

expected, due to the expected reduction in false positive homologs and the number of 

sequences in each MSA, and was observed in both the fSDR and non-fSDR 

examples.  Also, the “BLAST - raw output (10
-15

)” dataset showed a shift towards 

more examples with very few (e.g. only one) amino acid types present.  Again, this 

observation was expected to a certain degree in both fSDR and non-fSDR data 

examples.  This is because the number of aligned sequences was generally reduced, 

causing an associated reduction in the sequence and functional diversity of the more 

closely related sequences remaining in the alignments.   

Updating the Positive (fSDR) SVM Class Examples 

A number of minor modifications to the positive and negative SVM class partitions 

(defined for the E-value<=10
-3

 filtered dataset) were necessary.  This is because 

some of the fSDR columns were found to be “fully conserved” and therefore not 

providing any informative value for determining the functional specificity.  

Therefore it was decided to redefine them as negative (non-fSDR) examples when 

encoding the SVM feature vectors using the “BLAST - raw output (10
-15

)” dataset.  

A further consideration for the more stringently filtered dataset was the level of 

functional diversity in the aligned sequences.  To assess this, the number of EC 

classes represented by the enzyme sequences in each of the MSAs was calculated.  
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Using this, those that only contained sequences with the same specific EC class as 

the query were considered to display no “functional diversity” and therefore all 

aligned columns that were previously identified as fSDRs were subsequently altered 

to be non-fSDRs.  Comparisons between the breakdown of fSDR and non-fSDR 

aligned columns, identified in each of the “BLAST - raw output” and the modified 

“BLAST - raw output (10
-15

)” datasets are shown in table 5.1.  

Investigating the Use of a Percentage Occurrence Threshold Version of the 

NumberOfAATypes Feature 

A method was implemented to try and improve the ability of the NumberOfAATypes 

feature to differentiate between the fSDRs and non-fSDRs.  This involved applying a 

series of percentage thresholds to the number of distinct amino acid types occurring 

in each of the aligned columns.  It was decided to explore the application of a 

threshold to this information because the “un-thresholded” form of the amino acid 

occurrence frequencies showed a poor level of differentiation between the fSDR and 

non-fSDR columns.  This was primarily due to the occurrence of examples with 

large numbers of distinct residue types in both the fSDR and non-fSDR data.  

A Specific Example Highlighting the Use a Percentage Threshold 

To highlight the reasoning behind the use of a percentage occurrence threshold, it is 

useful to focus on a specific example.  For this, an alignment of lactate and malate 

dehydrogenases (LDH/MDH) was again investigated.  The MSAs analysed were 

taken from the “BLAST - raw output (10
-15

)” dataset and the ”targets_only” dataset 

with an E-value sequence threshold of 10
-15

 applied.  The input query sequence used 

to generate these MSAs was represented by the UniProt database accession code of 

O08349, which has an EC classification of 1.1.1.37 (malate dehydrogenase). 

In the MSAs from the “targets_only” and “BLAST - raw output (10
-15

)” datasets, 

there were 210 and 420 aligned sequences, respectively; and they represented only 2 

fully annotated EC classes (EC 1.1.1.27 and EC 1.1.1.37).  For these particular 

MSAs there were 5 columns identified as fSDRs.  However, for this analysis it is 

sufficient to concentrate on one of these, the experimentally well studied arginine 

(R) and glutamine (Q) residues that contribute towards determining substrate binding 

specificity in malate and lactate dehydrogenase enzymes, respectively.  These 
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residues are generally found aligned to the arginine (R) occurring at residue number 

81 in the query, MDH, sequence. 

When looking at the number of distinct amino acid types within this column of 

aligned residues, it was found that the “targets_only” and “BLAST - raw output (10
-

15
)” data contained 9 and 16 different types of amino acids, respectively.  This was a 

surprisingly high number, especially for the “targets_only” MSA, because it only 

contained sequences from two specific enzyme functional classes and therefore was 

expected to contain only (or close to) the two R and Q residue types.  Indeed, these 

were the predominant residue types found in the aligned column, accounting for over 

90% of all the aligned residues, with 27% (56/210) arginine and 65% (137/210) 

glutamine residues.  There were, however, a remaining 7 amino acid types that had 

low frequencies of occurrence.  Additionally, when considering the equivalent 

column of residues in the “BLAST - raw output (10
-15

)” MSA, there were 14 

different types of amino acid occurring at a low frequency. 

Both of these observations highlight the difficulties associated with potentially 

misleading information and signal noise, which could arise from using a simple 

feature (such as a count of the number of amino acids in an aligned column) in the 

SVM classification.  For this reason, it is suggested that a percentage threshold, 

applied to the number of aligned amino acid types, may reduce the potential signal 

noise that arises from residues with a relatively low frequency of occurrence, which 

appears to be inherent within this type of sequence alignment data. 

ROC Analysis to Determine the Optimal Percentage Threshold 

A series of different percentage thresholds, between 1% and 40%, were applied to 

the number of distinct amino acids in the fSDRs and non-fSDRs, identified in the 

MSAs from the “BLAST - raw output (10
-15

)” dataset.  To assess which of these 

thresholds would best differentiate between the two classes of aligned residues a 

receiver operator characteristic curve (ROC) based analysis was carried out.  In 

terms of maximising the area under the ROC curves (AUC), and therefore the 

predictive differentiation between the two classes of columns, these analysis results 

showed that a threshold of 12% was optimally performing, with a calculated AUC of 

0.73.  In comparison, the AUCs when using thresholds of 0% (i.e. no threshold), 1%, 
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5%, 10%, and 20% were 0.62, 0.65, 0.70, 0.72 and 0.71, respectively.  Selected ROC 

curves associated with these results are shown in figure 5.4. 

 

Figure 5.4. ROC curves for the number of amino acid type thresholds of: 

1%; 5%; 10%; 12%; 15%; and 20%. 

It is also worth noting the results of applying a percentage threshold of 12% to the 

residues aligned with query sequence (O08349) residue 81 in the LDH/MDH 

examples discussed above.  For the MSAs, from both the “targets_only” and 

“BLAST - raw output (10
-15

)” datasets, only 2 amino acid types (R and Q) occur 

with a frequency of occurrence larger than the 12% threshold.  This is an 

encouraging result as these are the two residue types that dominate substrate 

specificity within this particular group of enzymes. 
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5.3.2.5 The Effect of the E-value Based Sequence Filter and the 

NumberOfAATypes_threshold_12% Feature on the SVM 

Classification Performance 

To conclude this analysis, the effects on the SVM classification performance are 

investigated when using the more stringently filtered “BLAST - raw output (10
-15

)” 

dataset of sequence alignments and also the additional 

NumberOfAATypes_threshold_12% feature.  Two separate SVM training runs were 

carried out and the results are shown in table 5.3.  Firstly, to provide a comparison 

between the previous SVM prediction results from the “BLAST - raw output” 

dataset (i.e. with an E-value sequence inclusion filter of 0.001), the same 22 

AA_composition features were encoded from the “BLAST - raw output (10
-15

)” 

MSAs.  An identical 5-fold cross-validation procedure was followed for the SVM 

training and testing and the results shown in the “AA_composition (E-value <= 10
-

15
)” section of table 5.3.   
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Dataset TPs FPs TPR FPR MCC 

AA_composition (E-value <= 0.001) 

TEST 1 1470 10591 0.87 0.22 0.28 

TEST 2 4183 11678 0.93 0.35 0.38 

TEST 3 2356 9857 0.92 0.30 0.34 

TEST 4 1265 11815 0.79 0.38 0.18 

TEST 5 2924 10447 0.94 0.40 0.33 

cross-validation average  RBF (C=0.125 , gamma=8.0) 0.89 0.33 0.30 

AA_composition (E-value <= 10
-15

) 

TEST 1 1287 9159 0.80 0.19 0.27 

TEST 2 3131 12475 0.82 0.37 0.28 

TEST 3 1980 10367 0.82 0.31 0.27 

TEST 4 1063 9986 0.70 0.32 0.17 

TEST 5 2443 11026 0.88 0.42 0.27 

cross-validation average  RBF (C=2.0, gamma=8.0) 0.81 0.32 0.25 

AA_composition + NumberOfAATypes_threshold_12% (E-value <= 10
-15

) 

TEST 1 1375 11159 0.86 0.23 0.26 

TEST 2 3558 15875 0.93 0.47 0.28 

TEST 3 2110 11463 0.88 0.34 0.28 

TEST 4 994 10576 0.66 0.34 0.14 

TEST 5 2673 13657 0.96 0.52 0.26 

cross-validation average  RBF (C=128.0, gamma=0.000195) 0.86 0.38 0.24 

Table 5.3. A comparison of the SVM classification results (TPs, FPs, 

TPR, FPR, and MCC) for the three sets of input feature vectors used.  For each 

of the three SVM training runs the averaged results from the five datasets of 

“randomly balanced” data are shown.  Results are shown for the five 

individual TEST sets of the 5-fold cross-validation training sets.  Also shown 

are the averaged FPR, TPR and MCC results for the 5-fold cross-validation, 

along with the SVM learning kernel parameters that produced the classification 

results. 
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These results were somewhat surprising because they show a decrease in the quality 

of the fSDR classification from the optimised SVM models.  As before, the 

optimally performing SVM models were selected via the highest observed MCC 

values.  The RBF kernel was again found to be optimal.  Both the MCC and true 

positive rates were found to be worse than when using the “AA_composition (E-

value <= 0.001)” input features; whereas there was a slight improvement in false 

positive rate.  In particular: the average MCC decreased from 0.30 to 0.25; the 

average TPR decreased from 0.89 to 0.81; and the average FPR decreased from 0.33 

to 0.32.  It is not clear why this should be.  One possibility may be that the use of a 

more stringent E-value based sequence inclusion threshold, while aiming to 

minimise signal noise from alignment problems of more distant sequence homologs, 

inadvertently reduced the sequence and functional diversity of the information 

contained within the encoded alignments to the detriment of the functionally specific 

information. 

Finally, the AA_composition and NumberOfAATypes_threshold_12% features, 

encoded from the “BLAST - raw output (10
-15

)” alignments, were combined to form 

an SVM input feature vector of length 23 for each of the aligned columns of 

residues.  The aim of this was to assess the effect that this additional input feature 

would have on the classification performance of the SVMs.  Again, the 5-fold SVM 

cross-validation procedure was followed and the results are shown in the 

“AA_composition + NumberOfAATypes_threshold_12% (E-value <= 10
-15

)” section 

of table 5.3.  These results show that there was an improvement in the TPR (from 

0.81 to 0.86), but a corresponding deterioration in FPR (from 0.32 to 0.38), when 

compared to the “AA_composition (E-value <= 10
-15

)” results.  Also, a slight 

decrease is observed in the average MCC, from 0.25 to 0.24.  

This result appears to demonstrate that the NumberOfAATypes_threshold_12% 

feature does not provide any additional information for the purposes of SVM based 

differentiation between these fSDR and non-fSDR columns.  In-fact, it appears to 

have a negative effect on the SVM classifiers when considering the change in MCCs 

and FPRs.  Due to this result, further investigations of the 

NumberOfAATypes_threshold_X% feature – such as the combination with the 

“AA_composition (E-value <= 0.001)” input feature vectors - were not carried out.   
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In summary, these studies have investigated the feasibility of using SVMs towards 

the classification of functionally specific residues in protein sequence alignments.  

They have used simple measures of the amino acid composition, and the number of 

amino acid types, within each aligned column of residues and compared the use of 

alternatively filtered MSAs.  In general, the relatively low MCCs and the large 

number of false positives that were observed for each SVM experiment in this 

chapter were disappointing.  In previous studies for identifying catalytic residues (in 

the CSA database) through the use of machine learning techniques (such as NNs and 

SVMs), similar results were reported.  For example, Petrova and Wu (2006) report 

an MCC of 0.23, a TPR of 0.90 and a FPR of 0.13, when using SVMs to identify 

CSA residues.  Also, an earlier study by Gutteridge et al. (2003) that uses neural 

networks for the same problem, reports an MCC of 0.28 and a high number of 

detected false positives, where 56% of catalytic residues were identified correctly, 

but only 1 in 7 of the positive classifications are correct.  Both these MCC values are 

lower than the 0.30 observed for the “AA_composition (E-value <= 0.001)” input 

feature vectors in this chapter.  Although these are not directly comparable to the 

studies of functionally specific residues contained in this chapter, they do possibly 

demonstrate some of the inherent difficulties in accurately differentiating between 

functionally (catalytic or specificity determining) and non-functionally important 

residues. 

It must be concluded, however, that these poor classification results present 

problems for the incorporation into an accurate, automated, method for improving 

the functionally specific ordering and classification of homologous enzyme 

sequences.  Further work is clearly needed in this area and a more detailed 

discussion of other possible avenues of study for this SVM based classification are 

provided in the further work section of this thesis. 
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5.3.3 Additional Investigation of the Performance of the SVM 

Classifier  

In this section an analysis of the performance of the SVM classifier is carried out to 

investigate the functionally predictive performance on sequences taken from three 

well-studied classes of enzymes.  These are: the lactate/malate dehydrogenases 

(LDH/MDH), which have been used in previous examples in this thesis; the 

nucleotidyl cyclases (cyclases); and the serine proteases.  The functional rescoring 

results from both the “top-hit” and the functional enrichment, of the top-10 enzyme 

sequences, are considered in this analysis. 

5.3.3.1 Generation of the SVM Classifier 

The following method was used to generate the SVM model used for the 

classification of the fSDRs in the three enzyme examples presented below.  Using 

the 5-fold cross-validation results, shown in table 5.3, it was decided to use the 

“AA_composition (E-value <= 0.001)” feature vectors as input for the SVM model 

generation.  This particular dataset and feature vectors were selected for the SVM 

model generation because they showed the largest average MCC value (0.30) of the 

three alternative feature encoding methods that were investigated (see table 5.3). 

To generate the SVM classification model to be used for the fSDR classifications, a 

combined input dataset of the randomly balanced data was used.  It was necessary to 

use the randomly balanced sets of fSDR and non-fSDR data, because the cross-

validation (and hence the optimisation of the SVM learning parameters) was done 

with this.  Although five sets of randomly balanced datasets were used in the cross-

validation procedure, only one was used for the SVM model generation.  The 

randomly balanced dataset with the largest MCC value was selected for this purpose.  

However, the small difference between the set with the largest MCC value, of 0.302, 

and that with the lowest MCC value, of 0.301, would suggest that there would be no 

significant difference in the predictive performance of the resulting SVM classifiers 

generated with any of these five datasets.   

Finally, the randomly balanced data from the 357 MSAs, defined as belonging to 

GROUP_1 to GROUP_5, were encoded using the “AA_composition (E-value <= 

0.001)” method of calculating feature vectors.  This combined dataset was then used 
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to generate an SVM classifier, using SVM
light

 with an RBF kernel and learning 

parameters of C=0.125 and gamma=8.0.  These particular learning parameters were 

used because they were shown, in table 5.3, to produce the optimal predictive 

performance, when considering the MCC values, in the cross-validation of the SVM 

parameters. 

5.3.3.2 Analysis of the Performance of the SVM Classifier on Three Enzyme 

Examples 

To conclude this section of the thesis, the SVM classifier was used to automatically 

identify potential fSDRs within three previously well-studied families of enzymes 

coupled with an analysis of their use in the classification of specific enzyme 

function.  These three types of enzymes were selected because their mechanisms and 

substrate binding properties have been previously investigated using both 

experimental (Fersht, 1999) and computational methods (Hannenhalli and Russell, 

2000; Pazos et al., 2006).   

For this analysis, the fSDRs predicted by the SVM classifier were first compared to 

those experimentally identified as being important for determining specificity.  The 

predicted fSDRs were then used to generate sequence sub-alignments, which were 

subsequently re-scored to allow an assessment of their use in assigning specific 

enzyme function classifications.  The resulting re-scoring results were then 

compared to a number of alternative functional re-scoring methods that have been 

previously discussed within this thesis.   

The methods that were compared were: (i) “BLAST” – which uses the significance 

ordering of a BLAST database search; (ii) “PAM30 (0,0)” – which uses a PAM30 

amino acid substitution matrix with both gap opening and gap extension set to 0 (see 

chapter 3); “func-MB top-10” - which uses the aligned residues with the top-10 

ranking Spearman-rank order correlation coefficients as calculated by the func-MB 

method - with a colgap_percent threshold of 10% (see chapter 4); “func-MB top-30” 

- which uses the aligned residues with the top-10 ranking Spearman-rank order 

correlation coefficients as calculated by the func-MB method - with a colgap_percent 

threshold of 50% (see chapter 4); “optimal” – which uses the sequence sub-

alignment that was found to give the optimal functional enrichment score 
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performance after re-scoring (see section 5.2.4.2); and “SVM predicted” – which 

uses the sub-alignments generated from the residues predicted as fSDRs by the SVM 

classifier.  Two further “randomised” methods were also compared: the “random 

column selection”, which used (1000) repeated random selections of n aligned 

columns of residues to generate the sequence sub-alignments for re-scoring; and 

“random sequence selection”, which compares the probability of randomly selecting 

a functionally correct sequence from the MSA.   

The reasons for selecting these particular methods for comparison were as follows.  

The “BLAST” method provides a baseline comparison to a gapped BLAST sequence 

database search and the “PAM30 (0,0)” method shows the functional classification 

performance after re-scoring the BLAST generated MSAs with a PAM30 matrix.  As 

in previous sections of this thesis, the “PAM30 (0,0)” was used because it was 

shown to be the optimally performing method in the studies presented in chapter 3.   

The two methods based on the func-MB method of sub-alignment selection were 

selected because they have been previously identified as providing optimal 

functional re-scoring performance, when using sequence sub-alignments that have 

been identified via automatic fSDR identification methods.  The “func-MB top-30” 

method was chosen because it was shown to be the best performing of the automatic 

fSDR identification methods (see table 4.6) – when using the “top-hit” method of 

assessing functional re-scoring success.  A colgap_percent threshold of 50% was 

applied to the MSAs in these comparisons because it was found that there was no 

significant difference in the functional classification accuracy when using thresholds 

greater than this.  An additional func-MB based method (“func-MB top-10”) was 

also used in the comparison because it was shown to perform well when using the 

“functional enrichment” method of assessing the success of functionally specific 

alignment re-scoring.  A colgap_percent threshold of 10% was applied to the MSAs 

in these comparisons.  This was also used in the earlier benchmark analysis of the 

functional enrichment scores obtained from applying the func-MB method of sub-

alignment identification.  Although other methods of sub-alignment selection give 

comparable functional re-scoring results, they were not found to be significantly 

different in performance and were therefore not investigated further in this 

comparison. 
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The “optimal” method provides a comparison to the aligned residues and sub-

alignment re-scoring results obtained from using the optimally performing sub-set of 

residues.  Finally, the “random column selection” and “random sequence selection” 

methods were used to provide comparisons equivalent to the “random” methods used 

in previous chapters in this thesis. 

For each of these methods (except for the “random sequence selection”) the success 

of functional classification was assessed in terms of both the “top-hit” assessment 

method and the level of functional enrichment of the top 10 ranking sequences (see 

section 5.2.2).  For each of the examples, the SVM classifications were made using 

the data encoded from the “BLAST - raw output” form of the MSA and the 

assessment of the functional re-scoring was carried out on the MSAs from the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  

5.3.3.3 Lactate/Malate Dehydrogenases 

The first example that was investigated was taken from the lactate and malate 

dehydrogenase (LDH/MDH) families of enzymes.  They are a divergent set of 

enzymes that are generally difficult to separate into the two specific functional sub-

types using simple measures of sequence similarity.  Both LDH and MDH enzymes 

have a well defined substrate binding site and an experimentally determined 

substrate specificity switch, from MDH to LDH, where arginine is replaced with 

glutamine in the equivalent Arg-102 residue position - described by Fersht (1999).  

The example shown, used the UniProt sequence O08349 [MDH_ARCFU] as the 

query sequence to generate the MSA.  This is an example of a malate dehydrogenase 

(EC 1.1.1.37), which has a sequence length of 294 residues and an associated crystal 

structure in PDB, with identifier, 2x0i. 

SVM Classification and Functional Re-scoring Results 

The SVM classifier identified 146, out of 294, residues to be relevant for 

determining the functional specificity of the aligned LDH and MDH sequences.  

This prediction consisted of 5 true positives (TPs), 141 false positives (FPs), 148 true 

negatives (TNs) and 0 false negatives (FNs), when compared to the five “optimal” 

positive fSDR residues that were identified for this sequence.  The resulting MCC 

value was 0.132, which is low, but better than expected from a random classifier, 
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which would be expected to have an MCC of 0.  Using equation 5.6, a chi-squared 

statistic of 5.123 and a p-value of 0.0236 is observed for this MCC value.   

A subset of the multiple sequence alignment, generated by BLAST with O08349 

[MDH_ARCFU] as the query sequence, is shown in figure 5.5(a) – using the jalview 

software (Waterhouse et al., 2009).  The actual number of sequences in the MSA 

was much larger than shown in the figure, for clarity only a subset of the sequences 

is shown here.  The query sequence is shown in the centre, with a number of aligned 

MDHs (EC 1.1.1.37) above and LDHs (EC 1.1.1.27) below.  The sub-set of aligned 

residues that are shown, define: the columns of residues that were aligned to the five 

residues that were defined as fSDRs by the “optimal” method.  These are highlighted 

using the “Taylor” colour scheme, defined in the jalview software used to illustrate 

the MSA; with the corresponding residue indices, in the 2x0i crystal structure, shown 

above; the section of the MSA that is associated with the active site loop, described 

by Fersht (1999), which is contained in the orange box and corresponds to 13 

residues (98-110 in 2x0i and 77-89 in O08349); the residue positions that were 

positively classified as fSDRs by the SVM, are indicated by an (*) above the aligned 

residues.  Also shown, in figure 5.5(b), is the crystal structure of the enzyme 2x0i – 

generated using PyMol (DeLano, 2008) - with a number of residues highlighted.  

This also highlights the five “optimal” fSDR residues as defined by the func-MB 

method.  These are labelled as ARG-102, MET-107, LEU-110 and, in blue, as ALA-

237, PRO-250.  The active site loop is shown highlighted in orange and the residues 

(in addition to the 5 TPs) that were classified as fSDRs by the SVM are highlighted 

in pink.  The enzyme NADH cofactor is shown in grey. 
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Figure 5.5. (a) Selected columns and sequences from a jalview generated MSA subset of lactate/malate dehydrogenases. The five aligned 

residues highlighted in the Taylor colour scheme, and marked with the residue index of the structure shown in (b), are those defined as 

“optimal”. Residues marked with an (*) indicate a positive SVM prediction. The orange box indicates the “Fersht active site loop region” (see 

text). All sequences show associated UniProt identifiers and EC classifications and “>>” denotes deleted sections of the MSA. (b) PyMol 

crystal structure of enzyme 2x0i, showing: (i) SVM TPs (red and blue); (ii) SVM FPs (pink); (iii) TNs (green); (iv) “Fersht active site loop 

region” (orange and red); and (v) the five optimal fSDRs (labelled in white). The NADH cofactor is shown in grey space-fill representation. 
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The ARG-102 and MET-107 residues, which relate to residues ARG-81 and ARG-

85 in the O08349 sequence in UniProt, were also both identified as specificity 

determining sites in the studies by Pazos et al. (2006) and Hannenhalli and Russell 

(2000).  These positions clearly show a preference for: arginine (R) in MDHs and 

glutamine (Q) in LDHs, at position 102; and methionine (M) in MDHs and glutamic 

acid (E) in LDHs, at position 107.  A further residue (LEU-110) was highlighted, by 

the func-MB method, as an fSDR in the active site loop region.  Interestingly this 

was not highlighted as one of the high-scoring specificity determining residues in the 

studies by Pazos et al. (2006) and Hannenhalli and Russell (2000); it can, however, 

be seen that there is a clear preference for aspartic acid (D) in the MDHs and leucine 

(L) in the LDHs.  Although the MDH query sequence shows a leucine in this 

position, the associated Spearman-rank order correlation coefficient of all the aligned 

residues, of 0.81, was the second highest in this MSA and therefore identified as a 

high-scoring fSDR. 

The other two “optimal” fSDR residues (ALA-237 and PRO-250) are outside the 

active site loop region and were not highlighted by the previous studies.  They do not 

show quite as clear a distinction between the two enzyme sub-groups but there does 

appear to be a tendency for tyrosine (Y) and isoleucine (I) in positions 237 and 250, 

respectively, of the LDHs.  Their relatively close proximity to the NADH cofactor 

suggests that they may be involved in its binding. 

The false positive residue predictions (except for those in the active site loop, which 

are highlighted in orange) made by the SVM are shown in pink, in figure 5.5(b).  

These and the 5 true positive residue positions were then used to generate a sequence 

sub-alignment, which was subsequently re-scored using a PAM30 substitution 

matrix.  The results from this and the other re-scoring methods are shown in table 

5.5.  These results show that using the residues predicted by the SVM gives a 

functional enrichment score of 0.9 (i.e., 9 out of the top-10 ranked sequences, after 

re-scoring, had an MDH EC classification, of 1.1.1.37) and a functionally correct 

“top-hit” classification of the query sequence.  This shows an improvement over all 

the other methods except for the “optimal” method.  In particular it improves on both 

the BLAST and PAM30 (0,0) methods, which did not show any functionally correct 

MDH classified sequences in the top-10.  Further, it can be seen that the SVM 
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method performs better than the random column selection methods, in terms of both 

“top-hit” classification and the level of enrichment of the functionally correct 

sequences after re-scoring.  In particular, when 146 columns were repeatedly 

randomly selected from the query sequence, an average functional enrichment score 

of 0.14 was observed and a functionally correct “top-hit” based classification was 

made in only 13.7% of the randomly selected sub-alignments. 
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5.3.3.4 Nucleotidyl Cyclases 

The second example was taken from the nucleotidyl cyclase group of enzymes, 

which consist of the adenylyl cyclases (ACs) and the guanylyl cyclases (GCs).  They 

are a well-studied family of membrane associated enzymes that, in the case of the 

adenylyl cylases, synthesise cyclic-AMP from an ATP substrate; and in the case of 

the guanylyl cyclases, synthesise cyclic-GMP from a GTP substrate.  Two enzyme 

classification numbers are used to describe these groups of enzymes: (i) EC 4.6.1.1 

denotes an adenylyl cyclase enzyme; and (ii) EC 4.6.1.2 denotes an enzyme of type 

guanylyl cyclase.  Mutagenesis studies, carried out by Tucker et al., (1998), showed 

that it was possible to alter the substrate specificity, from an adenylyl to a guanylyl 

cyclase, by the mutation of only two residues.  Both of these residue changes were 

required to confer the change in specificity and they are discussed in more detail in 

the example below. 

For this example the UniProt sequence P0A4Y0 [CYA1_MYCTU] was used as the 

query sequence to generate the MSA.  This sequence is annotated as an adenylyl 

cyclase (EC 4.6.1.1), has a sequence length of 443 residues and an associated PDB 

crystal structure, with identifier 1yk9.  Only the catalytic domain of the sequence 

(residues 245-428) is present in the crystal structure, as the first half of the sequence 

is part of a trans-membrane region.  The MSA used to assess the functional re-

scoring was taken from the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

dataset and contained 77 sequences; of which 34 were classified as EC 4.6.1.1 and 

43 classified as EC 4.6.1.2.  The “BLAST - raw output” MSA, used for the SVM 

vector encoding and classification, contained 586 sequences.  

SVM Classification and Functional Re-scoring Results 

From this sequence alignment the SVM classifier identified 154 of the 443 query 

sequence residues as being associated with determining the functional specificity of 

the aligned cyclases.  This consisted of: 6 TP; 148 FP; 289 TN; and 0 FN 

classifications, when compared to the six “optimal” positive fSDR residues that were 

identified for this sequence.  In this example the residues for “optimal” re-scoring 

performance were identified as those selected by the profile-HMM method, with a Z-

score threshold of greater than or equal to 2.5.  As in the LDH/MDH example above, 

the resulting MCC value of 0.161 was low, but was again shown to be performing 
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better than a random classifier.    In-fact, using equation 5.6, a chi-squared statistic 

of 11.483 and a statistically significant p-value of 0.0007 was observed for this MCC 

value.  Again, all of the “optimal” specificity determining residues were correctly 

identified by the SVM. 

A subset of the MSA is shown in figure 5.6(a).  The query sequence (P0A4Y0 

[CYA1_MYCTU]) is shown in the centre, with the guanylyl cyclases above and the 

adenylyl cyclases below.  For clarity, a reduced, representative set of the sequences 

within the alignment are shown.  The sub-set of aligned residues that are shown, 

define: (i) the six columns of residues that were defined as fSDRs by the “optimal” 

method.  Again, these are highlighted using the jalview “Taylor” colour scheme, 

with residue indices, corresponding to the 1yk9 crystal structure, shown above; (ii) 

the residues that were sequentially mutated in the study by Tucker et al., (1998) are 

shown in the orange box, which correspond to 5 residues, from 365 to 359 in 1yk9 

and P0A4Y0). 

Figure 5.6(b) shows the structure of 1yk9, with a number of residues highlighted.  

Those highlighted in red are the six “optimal” fSDR residues defined by the profile-

HMM method; they are labelled, as GLU-293, ILE-295, GLU-296, ARG-361, CYS-

365 and TRY-367.  The residues mutated in the Tucker et al., (1998) study are 

shown highlighted in orange, with the residues (in addition to the 6 TPs) that were 

classified as fSDRs by the SVM highlighted in pink.  It should be noted that there 

are some discrepancies between the residue types in the UniProt sequence and the 

PDB sequence, in particular: at position 296 there is a Glu (E) instead of a K (Lys) in 

the structure; and at position 365 there is a Cys (C) instead of an Asp (D) in the 

structure.



 

 

230 

 
Figure 5.6. (a) Selected columns and sequences from a jalview generated MSA subset of nucleotidyl cyclases. The six aligned residues 

highlighted in the Taylor colour scheme are those defined as “optimal” fSDRs. Residue indices shown above the MSA correspond to the 

sequence shown in (b). The orange box indicates the five residues mutated in the study by Tucker. All sequences show associated the UniProt 

identifiers and EC classifications, with “>>” denoting deleted sections of the MSA. (b) PyMol crystal structure of enzyme lyk9, showing: (i) 

SVM TPs (red); (ii) SVM FPs (orange and pink); (iii) TNs (green); (iv) “Tucker mutated residues region” (orange and red – residues: CYS-365 

and TRP-367);  (v) and the six optimal fSDRs (labelled in white). 
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All of the “optimal” residue positions, except for GLU-293, were also identified as 

specificity determining in the study carried out by Hannenhalli and Russell (2000).  

It can be seen, in figure 5.6(a), that the six highlighted columns show a preference 

for a different residue type in both the ACs and GCs; thereby demonstrating their 

importance for determining the specific functional sub-type of the enzymes and 

showing that residues of biological significance are being correctly identified.  That 

is, the two residue positions (296 and 365) identified, by Tucker, as being of key 

importance for determining functional specificity were also found to have the largest 

Z-scores. 

The 148 false positive classifications made by the SVM are highlighted in pink, on 

the structure shown in figure 5.6(b).  The results from functionally re-scoring the 

aligned sequences, using a sub-alignment of the residues aligned to the 154 (6 TPs 

and the 148 FPs) positive SVM residue classifications and a PAM30 matrix, are 

provided in table 5.5.  Disappointingly, these show that the sub-alignments 

generated by the SVM classified residue positions are only performing at a level 

comparable to the random column selection method.  That is, a functional 

enrichment score of 0.6 (6 correct sequences in the top-10) was seen, when using 

both the SVM predicted residues, and an average of randomly selecting 154 residues 

(using 1000 iterations) from the P0A4Y0 sequence.  Also, this random selection 

method gives a correct “top-hit” prediction of specific function, in 68.8% of the 1000 

iterations, whereas the sub-alignment from the SVM predicted residues gives an 

incorrect “top-hit” assignment.     

Although this example demonstrates a lower level of success than the previous 

LDH/MDH example (and the serine protease example discussed next), it does show 

a marked improvement over the functional ranking of the sequences generated by the 

original BLAST search method.  This resulted in a functional enrichment of just 0.1 

and a functionally incorrect “top-hit”.  It should be noted that for this example (and 

the LDH/MDH example) the results from the BLAST method are not affected by the 

“artificial” dataset creation method, described in section 2.4.2.  That is, the “top-hit” 

and functional enrichment scores reported in table 5.5 were observed in the original 

gapped BLAST database search.  Therefore, this result shows that although the SVM 

classification method is not performing as well as the other re-scoring methods, for 
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this cyclase example, it is showing clear improvement when compared to the 

BLAST method, which is an encouraging result.  

5.3.3.5 Serine Proteases 

The final example that was investigated was from the trypsin-like serine protease 

superfamily of enzymes.  The trypsin-like serine proteases are a well-studied 

superfamily of proteins, with an enzyme classification of EC 3.4.21.-, which 

encompass a number of more specific functional sub-types; three of which are: 

trypsin (EC 3.4.21.4); chymotrypsin (EC 3.4.21.1); and elastase, which is 

represented by two EC classes (EC 3.4.21.36 and EC 3.4.21.37).  These sub-types 

are generally found to have similar kinetic properties and catalytic mechanism 

(Fersht, 1999), which involves the hydrolysis of a specific peptide bond in the 

protein substrate.  The difference between the substrate specificity of the three sub-

types described above is related to the structure of the binding pocket.  The trypsins 

generally contain a charged aspartate residue, which allows the binding and 

subsequent cleaving (via the serine in the catalytic triad) of peptide bonds next to 

lysine or arginine residues.  In the case of chymotrypsins the aspartate is generally 

mutated to a serine to allow the binding of the large hydrophobic residues.  Finally, 

the elastases provide specific binding of smaller hydrophobic residues, such as 

alanine, due to steric hindrance provided by a valine residue at the entrance to the 

binding pocket. 

For this example, a trypsin sequence (with the UniProt identifier P00775 

[TRYP_STRGR] and an associated PDB structure of 1os8), with a specific enzyme 

classification of EC 3.4.21.4, was used as the query sequence.  The resulting BLAST 

MSA contained 2171 sequences, 229 of which had complete Swiss-Prot designated 

enzyme annotations.  Due to the evolutionarily diverse nature of this serine protease 

superfamily, this alignment contained sequences with 38 specific functional sub-

classes.  All of these were of the EC classification type: EC 3.4.21.-.  Most of these 

were present in only small numbers of sequences; four classes had more than 10 

sequence representatives in the MSA, these were: trypsin (EC 3.4.21.4); 

chymotrypsin (EC 3.4.21.1); kallikrein (EC 3.4.21.35); and tryptase (EC 3.4.21.59), 

which had 54, 13, 27 and 12 sequences representatives respectively.   The functional 
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class composition of this MSA is in contrast to the LDH/MDH and cyclase examples 

discussed earlier, which both contained only two specific sub-types. 

SVM Classification and Functional Re-scoring Results  

When applying the SVM classifier to the encoded sequence information, an MCC 

value of 0.454 was observed, from a total of 178 SVM predicted residues.  This 

constituted a total of 84 TPs, 94 FPs, 80 TNs and 1 FN, when compared to the 85 

residues (from a total sequence length of 259) that were identified as “optimal” 

fSDRs, via the func-MB method, with a Spearman-rank order correlation threshold 

of greater than or equal to 0.1.  It can be seen that the predictive performance of the 

SVM, as measured by the MCC value, was better than the two previous examples.  

Although a significant number of false positive residues were identified by the SVM 

as functionally specific, the resulting functional enrichment score from re-scoring the 

alignment with these identified residues, was 0.9 (i.e., 9 out of the top-10 ranked 

sequences after sub-alignment re-scoring showed the same specific functional class 

as the query).  When assessing the statistical significance of this MCC value, using 

equation 5.6, a chi-squared statistic of 53.38 and a very statistically significant p-

value of much less than 0.0001 was observed.  This was a promising result and is 

compared to the other methods, in table 5.5, and discussed in more detail below. 

As for the previous two examples, an MSA and crystal structure are shown, in figure 

5.7(a) and (b), respectively.  The MSA shows a sub-alignment of the 85 “optimal” 

residues, coloured using the “Taylor” colour scheme in the jalview software.  To 

improve clarity, where the aligned residues are not sequential, no delimiters (i.e., the 

“>>” notation in figures 5.4(a) and 5.5(a)) are shown.  The sequences shown in this 

alignment are grouped into five specific functional sub-classes, they are: (i) 

chymotrypsins (EC 3.4.21.1); (ii) trypsins (EC 3.4.21.4); (iii) elastases (EC 

3.4.21.36/37); (iv) kallikreins (EC 3.4.21.35); and (v) tryptases (EC 3.4.21.59).  

These display the diversity of the aligned sequences and the difficulty in defining a 

sub-set of aligned residues that can determine the functional specificity differences 

within such a diverse protein family.    
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Figure 5.7. (a) A jalview generated sub-alignment showing the 85 

“optimal” fSDRs (highlighted in the Taylor colour scheme) and selected 

sequences from five functional sub-classes of serine proteases. All sequences 

show associated UniProt identifiers and EC classifications. (b) PyMol crystal 

structure of enzyme 1os8, showing: (i) SVM TPs (red); (ii) SVM FPs (pink); 

(iii) SVM TNs (green); and (iv) SVM FNs (blue). 



235 

 

It can be seen, in figure 5.7(b), that the “optimal” fSDRs (highlighted in red) and the 

SVM predicted residues (TPs, FPs and FN residues are highlighted in red, pink and 

blue, respectively) are not located in a specific area of the protein structure.  This is 

in contrast to the LDH/MDH and nucleotidyl cyclase examples, which showed a 

tendency for the small number of “optimal” fSDRs to be found in the enzyme 

binding sites.  One reason for this difference may be the increased diversity of the 

serine proteases and the much larger number of specific functional sub-classes 

contained within the alignment, meaning that larger numbers of residues were 

required to describe the differences between the specific functional sub-types. 

To conclude this analysis of the serine proteases a more detailed view of the 

functional re-scoring results (obtained from a selection of the re-scoring methods 

shown in table 5.5), is shown in table 5.4.  This table shows a comparison of the top 

10 ranked sequences, after five (BLAST, PAM30 (0,0), func-MB top-10, optimal, 

SVM predicted) of the functional scoring methods have been applied.  For each of 

the methods, the sequence identifiers and the 4
th

 terms from the serine protease EC 

classification of EC 3.4.21.-, are shown.  The proteins with the same specific 

function as the query (TRYP_STRGR) are shown in green, with a 4 to indicate that 

the EC classification was EC 3.4.21.4.  The proteins with a different EC 

classification to the query are shown in red. 
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BLAST PAM30 (0,0) func-MB (top-10) Optimal SVM predicted 

KAL_MOUSE 34 TRY1_ANOGA 4 TRYZ_DROER 4 TRYB_DROER 4 TRYB_DROME 4 

KAL_RAT 34 TRYB_DROME 4 UROK_BOVIN 73 TRYA_DROME 4 TRY1_ANOGA 4 

TRY7_ANOGA 4 TRYT_SHEEP 59 TRYZ_DROME 4 TRY1_ANOGA 4 TRY1_CHICK 4 

KAL_HUMAN 34 TRY1_CHICK 4 UROK_PIG 73 TRYB_DROME 4 TRY2_CHICK 4 

FA11_MOUSE 27 TRY2_CHICK 4 TRY4_ANOGA 4 TRYA_DROER 4 TRYA_DROER 4 

TRY1_XENLA 4 MCT7_MOUSE 59 TRY7_ANOGA 4 TRYG_DROME 4 
TRYD_DROM

E 
4 

TRY1_CHICK 4 CTR2_CANFA 1 TRY4_LUCCU 4 TRYD_DROME 4 
TRYG_DROM

E 
4 

TRY1_ANOGA 4 TRY1_XENLA 4 TRY3_HUMAN 4 TRY1_XENLA 4 TRYT_SHEEP 59 

TRY2_CHICK 4 TRYD_DROER 4 TRYP_CHOFU 4 TRYX_GADMO 4 TRYD_DROER 4 

TRY4_ANOGA 4 TRYT_MERUN 59 TRYX_GADMO 4 TRYD_DROER 4 TRYB_DROER 4 

Table 5.4. Table showing the top-10 ranked sequences, for the methods: 

BLAST; PAM30; func-MB top-10; optimal; and SVM (see text for method 

descriptions). The sequences are shown in rank order, from 1 to 10, descending 

the page, with green indicating a functionally specific correct match to the 

query (TRYP_STRYGER – EC 3.4.21.4) and red an incorrect match. The 

UniProt identifier is shown for each sequence, alongside the number (X) of the 

more general, EC 3.4.21.X, serine protease functional classification. 

These comparisons show that the quality of specific functional classification (with 

regards to the functional enrichment score and “top-hit” assessment methods) 

increases in the order of: BLAST; PAM30 (0,0); func-MB (top-10); SVM predicted; 

and “optimal”.  To some extent this was expected as the methods which use a 

functionally informative sub-set of residues, such as func-MB (with a small subset of 

highly correlated residues) and the “optimal” fSDRs, have been shown to provide 

better functional classification and re-scored sequence rankings than the BLAST and 

PAM30 (0,0) “whole alignment” methods.  However, a promising outcome from this 

result was the observation that the use of residues, predicted by the SVM method, 

was more effective than all of the others (except for the “optimal” subset of fSDRs) 

when considering the number of functionally correct sequences in the top-10, after 

re-scoring.  Further, it can also be seen, in table 5.5, that the SVM method, with a 

functional enrichment score of 0.9, is also performing considerably better than the 

random column selection method (when n=178), which showed an average 

functional enrichment score of 0.65. 
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Method 

LDH/MDH 

O08349 

[MDH_ARCFU] 

Nucleotidyl Cyclases 

P0A4Y0 

[CYA1_MYCTU] 

Serine Proteases 

P00775   [TRYP_STRGR] 

“top-hit” enrichment “top-hit” enrichment “top-hit” enrichment 

BLAST NO 0 NO 0.1 NO 0.6 

PAM30 (0,0) NO 0 YES 0.8 YES 0.6 

func-MB 

top-30 
YES 0.2 YES 1.0 NO 0.7 

func-MB 

top-10 
YES 0.9 YES 1.0 YES 0.8 

Optimal YES 1.0 YES 1.0 YES 1.0 

SVM 

predicted 
YES 0.9 NO 0.6 YES 0.9 

R
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n
d
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m
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m

n
 

se
le

c
ti

o
n

 (
n

) 10 40.7% 0.37 (avg) 50.8% 0.50 (avg) 25.9% 0.30 (avg) 

30 35.2% 0.29 (avg) 57.1% 0.53 (avg) 38.6% 0.40 (avg) 

SVM 13.7% 0.14 (avg) 68.8% 0.60 (avg) 75.5% 0.65 (avg) 

Random 

sequence 

selection 

0.42 NA 0.44 NA 0.25 NA 

Table 5.5. The performance of the functional re-scoring methods 

(described in the text) for each of the three enzyme examples. For each of these 

the “top-hit” classification result and functional “enrichment” score, from the 

top-10 ranked sequences, is shown. A “top-hit” result of “YES” or “NO” 

indicates a correct or incorrect specific functional match, respectively. For the 

“Random column selection (n)” method the “top-hit” result refers to the 

percentage of correct “top-hits” observed from 1000 repeated iterations and 

the “enrichment” is the average functional enrichment score obtained in 1000 

repeated iterations, where n is the number of aligned residues randomly 

selected in the MSA subsets. “Random sequence selection” refers to the 

probability of randomly selecting a functionally correct sequence from the 

MSAs. For the BLAST method the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset sequence 

ordering was used. 
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The results from the three example enzymes investigated in this section show that 

the SVM method of automatically predicting functional specificity determining 

residues is, in general, identifying functionally informative subsets of residues from 

the MSAs.  This is seen, in particular, for the examples from the LDH/MDH and 

serine protease classes of enzymes.  Both of these show that the functional re-scoring 

results, from using the SVM predicted subset of aligned residues, are better than (or 

equal to) all of the other methods (except for “optimal”) for identifying functional 

specificity determining subsets of amino acids.  This is especially pronounced when 

they are compared to the results from the “whole sequence” re-scoring methods, of 

BLAST and PAM30 (0,0).  Those methods, like the SVM method, do not use the 

functional class of the aligned sequences as a pre-requisite for performing the 

alignment re-scoring and are therefore most closely comparable.  In addition, the 

observation that the SVM method is performing at least as well as the func-MB based 

methods is very encouraging and shows that the SVM based method is able to 

perform comparably to methods that use additional functional information to aid the 

fSDR predictions. 

The example from the nucleotidyl cyclases was less successful, with the residues 

identified by the SVM method only resulting in a functional enrichment score of 0.6 

and an incorrect “top-hit” sequence.  This example did, however, still show an 

improvement in the level of functional sequence enrichment, over the original 

functional sequence ordering from the BLAST database search.  This can still be 

regarded as a positive result and shows that the SVM method is not reducing the 

level of functional specificity determining information and providing a worse result, 

when compared to the BLAST and random column selection results. 

In summary, two of the three examples showed a marked improvement over the 

BLAST and PAM30 (0,0) methods, as well as equivalent or improved results when 

compared to the two func-MB methods shown in table 5.5.  These are promising 

results that provide evidence for the advantages of using an SVM classifier to 

identify functionally specific residues, coupled with their subsequent use to improve 

the automatic assignment of enzyme function using only protein sequence based 

information. 
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5.3.4 Observations Regarding the colgap_percent Threshold Used in 

this Analysis  

To complete this initial analysis of methods for the automatic identification of fSDRs 

using SVMs, it is important to address potential limitations of the single 

colgap_percent threshold, of 10%, that was used for the analysis of the func-MB and 

the “random column selection method” methods of aligned column selection and 

functional re-scoring.  In retrospect, it may be that a value of 10% was not the best 

choice of the colgap_percent threshold for this purpose.  This is highlighted by the 

results obtained in chapter 4 (see, for instance table 4.5 and table 4.6), which 

investigated the (func-MB based) functional re-scoring and sub-alignment selection 

methods that provided the best specific enzyme functional predictive performance.  

These showed that the optimal results, when using the “top-hit” functional 

assessment criteria, were achieved with varying colgap_percent thresholds that were 

dependant on the method of aligned column selection used to generate the sequence 

sub-alignments.   

An alternative approach to the use of a single colgap_percent threshold, such as the 

10% used in this analysis, could be through the implementation of a more 

sophisticated selection procedure for identifying the optimally performing set of 

fSDRs.  In such a method, the identification of the fSDRs for inclusion in the SVM 

datasets would be carried out through an analysis of the functional enrichment score 

improvements when applying all of the analysed colgap_percent thresholds, rather 

than a single, fixed threshold that was used here.  Alternatively, a higher single 

colgap_percent threshold of 50% may have been more appropriate.  Firstly, because 

it is comparable to that used in the profile-HMM sub-alignment re-scoring method 

and also because thresholds above 50% were shown, in chapter 4, to have a minimal 

effect on the “top-hit” functional classification accuracy, when using the different 

func-MB sub-alignment selection methods.   

It may be beneficial, in further studies, to extend this analysis to include a more 

detailed and thorough examination of the data in the ways suggested above.  

Including an analysis of both the functional enrichment scores and the resulting 

SVM classification performance, when using the “optimal” subset of fSDRs 
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obtained from altering the colgap_percent threshold prior to identifying the fSDR 

datasets. 

Although there are possible ways in which the selection of the colgap_percent 

threshold could have been improved, it does not make the results obtained in the 

current analysis, from the use of a single threshold value of 10%, invalid.  This is 

because the methods that have been used to identify the optimally performing sub-

sets of fSDR (and non-fSDR) columns from each of the MSAs were designed to be 

optimal, regardless of the colgap_percent thresholds applied.  Therefore, the 

subsequent analysis was optimal and valid for the particular datasets of fSDRs 

identified.  The use of alternative, higher, colgap_percent thresholds may however, 

have identified some functional enrichment score improvements for certain MSA 

examples, thereby providing possible improvements to the SVM classification 

performance.   

5.4 Conclusions 

The aims of the analysis within this chapter were mainly twofold.  To identify an 

optimally performing dataset of functional specificity determining residues (fSDRs) 

and to then use these to investigate methods for their automatic identification, from 

multiple alignments of homologous sequences, without prior knowledge of their 

functional classes. 

To aid the identification of a benchmark dataset of fSDRs, a method for assessing 

the change in the rank-ordering of functionally “correct” sequences, from a series of 

sub-alignment based sequence re-scoring experiments, was implemented.  This 

“functional enrichment score” was then used in conjunction with the func-MB and 

profile-HMM methods to identify potential functional specificity determining 

residues from sequence alignments where the specific functional sub-classes are 

known.  It was shown that the use of a single threshold, for the selection of the 

fSDRs, was not optimal and therefore a more exhaustive method was implemented 

to search for those columns of residues (i.e., fSDRs) that provided an optimal rank-

ordering of functionally “correct” enzyme sequences.  This was based primarily on 

the functional enrichment of the top-10 ranking positions, but was also supplemented 

by more detailed selection criteria where necessary.  
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It has been acknowledged that some aspects of this fSDR selection process could be 

improved, for example by a more thorough search of the alignment re-scoring results 

obtained from using different levels of the colgap_percent threshold, rather than the 

10% used in this study.  However, until a large-scale, well defined and 

experimentally verified dataset of residues that determine enzyme functional 

specificity is available, it is suggested that a computational optimisation and 

selection process such as that used in this analysis is a valid alternative. 

After identifying the fSDRs in each of the relevant sequence alignments, a non-

redundant set of 357 alignments was partitioned into five cross-validation datasets.  

Because the number of positively identified fSDRs was considerably smaller than 

the non-fSDRs, it was decided to create five “randomly balanced” datasets 

containing equal numbers of fSDR and non-fSDR examples.  This approach was 

inspired by previous SVM studies, involving the identification of catalytic residues 

within datasets of disparate numbers of positive and negative class examples.  And 

was designed to dramatically improve the computational time and the SVM 

optimisation during training. 

Initially, the aligned columns of fSDRs and non-fSDRs were encoded using the 

composition of the aligned residues.  A 5-fold cross-validation training procedure 

was then carried out to assess the SVM parameters that generated the best models for 

the automatic differentiation between the two classes.  Due to the un-balanced nature 

of the number of fSDRs and non-fSDRs in the testing datasets, averaged MCC 

values were used to determine the optimally performing SVM parameters.  The 

resulting SVMs were shown to be generating poor predictions of the fSDR class of 

aligned residues, with an MCC, of 0.30, observed for the 5-fold cross-validation 

using the five randomly generated balanced sets of training data.  Although this 

MCC indicates that the classifier was performing better than random, it was apparent 

that the large number of false positives being incorrectly classified as fSDRs was 

having a detrimental impact on the overall predictive performance of the classifiers. 

In attempts to counteract these high rates of false positive detection, two approaches 

were investigated.  Firstly, a more stringent E-value threshold, of 10
-15

, was used to 

control which sequences would be included within the MSAs that were used as the 

source of the encoded SVM features.  The aim of this was to improve the quality of 
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the input alignment data by reducing any potential noise contributed via false 

positive homologous sequences and sequence alignment errors.  Secondly, the use of 

an additional input feature to the SVM was investigated.  This was based upon an 

analysis of the number of distinct types of amino acids contained within the fSDRs 

and non-fSDRs.  During the analysis of this feature it was shown, through the 

analysis of the well-studied substrate specificity determining residues of lactate and 

malate dehydrogenases, that a percentage threshold may improve this feature by 

reducing signal noise from residues that occur with relatively low frequencies. 

Disappointingly, neither the more stringent E-value threshold nor the additional 

input feature was able to improve upon the earlier fSDR classification results.  In 

fact they were both found to have a detrimental impact on the overall MCC values.  

In future work, further exploration of these results should be carried out, along with 

the investigation of additional input features.  The large number of false positives 

that were identified by the SVMs is a problem that would benefit from further 

investigation, especially with regards to their use in a fully automated system for the 

recognition of functional specificity determining residues.  The results, from using 

these quite simple input features to the SVM, suggest that there may be a high degree 

of ambiguity between the fSDRs and non-fSDRs that is causing the high levels of 

incorrect false positive classifications.  This could be due to a number of factors, 

such as: the methods used to define the “optimal” fSDRs in each alignment; the lack 

of informative content in the input features used; and the quality of the sequence 

alignments used in the feature encoding.  These are all important areas that would 

benefit from further study and are addressed in more detail in chapter 7 (further 

work).  

To complete this study, the performance of the SVM classifier on the functional 

scoring of three well-studied enzyme classes was compared to a number of other 

methods.  Two of the these examples showed a marked improvement over the 

BLAST, PAM30 (0,0), and random selection methods; as well as equivalent or 

improved results when compared to the two func-MB methods, which have been 

shown to generally out-perform the other methods throughout this thesis.  Although, 

as expected, the SVM method did show a tendency to predict many potentially false 

positive residues, these results did show that the sub-alignments identified by the 
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SVM classifier can be used to improve the functionally specific ranking of aligned 

enzyme sequences, in a fully automated system. 

In conclusion, this chapter has described an automatic method for defining a dataset 

of functional specificity determining residues within alignments of protein 

sequences.  This was necessary due to the current lack of a large-scale, 

experimentally verified benchmark dataset containing this information.  Initial 

experiments were carried out that looked towards using support vector machines for 

the automatic classification of these functionally determining residues, from multiple 

alignments of homologous sequences.  The overall classification results were found 

to be quite disappointing, especially with regards to the high rate of observed false 

positive predictions.  The MCC values, although low, do however, indicate the 

SVMs are performing better than a random classifier and therefore show that further 

analysis of the SVM features should be able to improve the predictive performance. 

Promising results were also obtained from the detailed investigation of three enzyme 

classes.  These showed the advantages of using an SVM classifier to identify 

functional specificity determining residues, which can then be subsequently used to 

improve the automatic assignment of enzyme function, using only protein sequence 

based information, without any prior knowledge of the specific functional properties 

of the aligned sequences.  These were all key goals of this thesis and show the 

further success that could be obtained from this method of functionally specific 

assignment. 
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Chapter 6 Summary and Conclusions 

 

Due to the continuing growth of available protein sequence data from high-

throughput genome sequencing projects and structural information from structural 

genomics initiatives; there is an important requirement, in bioinformatics and the 

biological sciences in general, for accurate, reliable and fully automated methods for 

the prediction of protein function.  The time-consuming and expensive nature of 

experimentally assigning protein function continues to exacerbate this situation.  

These observations have driven the main aims of this thesis, which were the 

development and investigation of methods for improving the computational 

prediction of high specificity protein function.  This effort has concentrated on 

approaches that make use of sequence information, from evolutionary related 

enzymes, to automatically assign high specificity details of the molecular function of 

enzymes.  As noted previously, the difference between available protein sequence 

and structural data is significant.  This disparity led to the decision to limit the 

functional classification task in this thesis to the use of protein sequence information 

because of its much wider availability with respect to that of experimentally 

determined protein structures.   

In pursuit of these goals, four key areas of study were identified.  First, a benchmark 

set of enzyme sequences, with a well-defined, specific, functional classification, 

which consist of multiple sequence alignments (MSAs) of evolutionarily related 

proteins were identified and defined.  Following this, an investigation into the effect 

of alternative models of amino acid substitution – on the specific functional ordering 

of aligned enzyme sequences – was carried out.  The third area of study looked into 

the use of methods, designed to score and identify residues that are closely related to 

the functional specificity of proteins (fSDRs), to improve the functional re-scoring 

and re-ordering of these enzymes.  Finally, the possible use of these fSDRs to 

implement an automated method based on machine learning techniques, for the 

identification of functionally informative sections of aligned sequence homologs, 

was investigated. 

This chapter provides a summary and explores the conclusions that can be drawn 

from the experimental outcomes of each of these studies.  The salient points of 
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interest from the studies in each of the thesis chapters are described here within 

separate sections, which are structured according to the thesis chapter from which 

the experimental conclusions are drawn.  In each section, a discussion of the main 

conclusions is presented, as well as a section that describes the practical 

incorporation of the findings into a fully automated, computational system for high 

specificity assignment of protein functions, using only sequence information. 

6.1 Chapter 2 – Investigation into the Functional 

Conservation of Enzyme Sequences and Dataset 

Definitions 

This thesis started with the collection of a large set of functionally well annotated 

enzyme sequences from the Swiss-Prot protein sequence database.  These sequences 

were then used to provide a study of the accuracy of the functional conservation of 

enzyme classes when using standard sequence similarity based measures of 

homology, to assign functional annotations to closely related sequences.  It was 

shown during this assessment that even close relationships of sequence similarity, 

such as a sequence identity level of greater than 40%, do not, in general, provide 

confident transfer of specific enzyme molecular function.  It was noted that 

conclusions of this nature had previously been reached from other studies carried out 

in this area.  Although there is debate in the literature as to the exact level of 

accuracy that can be attributed to sequence similarity based methods of functional 

annotation, it is clear that there is certainly room for improvement.  This is especially 

the case when considering the high specificity aspects of functional classification.  

The results presented in chapter 2 demonstrate this, showing that as sequence 

similarity between proteins is reduced, the level of functional conservation, and 

therefore the accuracy of functional annotation via measures of sequence homology, 

is also reduced. 

It was these outcomes, from assessing the performance at higher levels of functional 

specificity, using comparisons between the variation in the 3
rd

 and 4
th

 levels of the 

enzyme commission (EC) scheme of the sequence‟s enzyme functional descriptions, 

that highlighted the need for more powerful methods of discrimination between 

similar functional sub-classes.  Towards this goal, a benchmark set of enzyme 

sequences were defined to enable an assessment of the effect that each of the 
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alternative methods investigated within this thesis had on improving the specific 

functional similarity between enzyme sequences.   

The form of the benchmark dataset was that of a set of multiple sequence alignments 

of closely related protein sequences, which were generated through the use of a PSI-

BLAST sequence database search.  A major criterion for this benchmark dataset was 

the ability to provide a comparison between methods of improved functional 

classification, when using the “top-hit” method of assigning functional specificity.  

That is, the specific function of the sequence deemed to be of greatest functional 

similarity to the “unknown” query sequence would be directly transferred to the 

query sequence.  For this purpose, it was decided that the baseline method of 

comparison should be that of the ability of the PSI-BLAST sequence similarity based 

rankings, to assign enzyme function, with a specificity of all four levels of the EC 

classification scheme.  Therefore, examples were selected that showed the 

occurrence, in all cases, of an enzyme at the highest level of sequence similarity, but 

with a specific function different to the query.   

However, due to a limitation in the number of available examples of this type, a 

larger set of “artificial” sequence alignments were identified through the use of a 

method that progressively removed the most significantly similar sequences with an 

identical function to that of the query sequence.  This expanded dataset provided a 

much larger number of sequence examples, and associated enzyme functions, on 

which to base the results and associated statistical inferences.   

In conclusion, the initial studies that were carried out in this part of the thesis were 

able to illustrate the importance and timely nature of the research problem, showing 

the need for improved methods to reliably assign specific properties of molecular 

function, in an accurate and automated system.   

6.2 Chapter 3 – The Use of Alternative Amino Acid 

Substitution Matrices for Rescoring the Functional 

Similarity of Enzyme Sequences 

The observation that a simple sequence similarity threshold was not sufficient for 

consistent, accurate, functional annotation of enzyme sequences, led to the aim of 

developing methods that could provide improved power when discriminating 
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between sub-types of specific function.  The studies, presented within chapter 3, 

looked at using non-standard amino acid substitution matrices towards the goal of 

rescoring the functional similarity of enzyme sequences.  This approach investigated 

the use of a range of BLOSUM and PAM matrices, as well as a residue IDENTITY 

matrix, to calculate a modified sequence similarity score between the query sequence 

and associated enzyme homologs within each of the MSAs in the benchmark 

datasets.  This recalculated similarity score was then used to re-rank the aligned 

sequences and provide an assessment of the effect that each of the alternative amino 

acid scoring matrices had on the level of correct functional classification.  The “top-

hit” method of assessing the functional assignment accuracy was used throughout 

this analysis. 

Three alternative methods for generating datasets of multiple sequence alignments 

were used in these studies.  In each of these, a residue-masked, gapped BLAST 

sequence database search was used to generate multiple alignments of homologous 

sequences; for which, one of either: BLOSUM62; PAM160; or PAM30 was used as 

the search amino acid substitution matrix.  Suitable gap-scores were researched and 

used for each matrix.  The resulting MSAs were subsequently modified to form three 

“artificial” datasets, for which the sequence with the most significant level of 

sequence similarity to the query (used in the database search) was functionally 

“incorrect” (i.e., annotated with a different specific function to the query enzyme 

sequence). 

Initially, the dataset formed from using a BLOSUM62 matrix was analysed, using a 

gap opening and extension penalty of -11 and -1, respectively, for the gapped 

BLAST alignments.  The outcome of these studies showed that, in general, MSAs 

containing un-masked amino acid residues resulted in consistently larger proportions 

of correct, specific, functional assignments,  when they were used in the alignment 

re-scoring.  This result was observed regardless of the parameters used for the 

alignment re-scoring, or the parameters used for the generation of the three analysed 

datasets.  It is thought that the reason for this observed improvement, in assigning 

functional similarity when not including masked residues, may be explained by the 

intended use of sequence masking.  In general, it is recommended that sequence 

regions of low information content should be masked when carrying out sequence 
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database searches.  This aims to reduce the number of false positive homologous 

sequences that are identified, whereas it is thought that the un-masked sequence 

residues provide additional functional information, resulting in improved specific 

functional ordering of the aligned enzymes. 

Studies using the un-masked form of this dataset subsequently showed that the 

PAM30 substitution matrix, with an “un-gapped” gap scoring model, provided the 

largest proportion of correct functional classifications.  This resulted in an observed 

bootstrap mean value of 0.631, that is, 2226 out of 3527 correct classifications of 

specific enzyme function.  When compared to the optimally performing BLOSUM 

series matrix, which was BLOSUM-100, this showed a percentage increase of 

14.1%, or 482 correct classifications.  Furthermore, there was a general trend 

towards improved levels of correct functionally specific classifications when re-

scoring the alignments with PAM-N matrices with progressively lower N values.  

With an optimal performance observed with the PAM30 matrix.   

To assess whether these results were uniquely related to the particular dataset of 

MSAs used (i.e., the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset), 

two alternative sets of sequence alignments were generated and investigated.  In 

particular, this was done to investigate whether the observed improvement in 

functional classification was due to the specific ordered combination of the matrix 

used in the gapped BLAST database search and that used for the subsequent 

functional alignment re-scoring. 

First, a PAM160 matrix, with gap opening and extension penalties of -11 and -1, 

respectively, was used to generate the sequence alignments from the database search.  

This matrix (and gap penalties) was used because it was identified as the closest 

PAM equivalent to the BLOSUM62 matrix, which was used to generate the previous 

dataset.  An identical set of non-standard amino acid substitution matrices were used 

to functionally re-score these alignments.  It was found that a similar functional re-

scoring outcome was obtained for the alignments generated with a PAM160 matrix 

as was obtained from the BLOSUM62 based alignments.  Specifically, there was a 

very similar peak in correct functional “top-hit” performance when the PAM-N 

series matrices, with low N values (such as 30), were used for the re-scoring.  This 

resulted in a bootstrapped mean proportion of correct predictions equal to 0.611, 
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which corresponded to 1894/3100 correct classifications of specific enzyme 

function.  This result suggested a conclusion of a general, and comparable, 

improvement in the specific functional classification of enzyme sequences when 

using “low” PAM-N substitution matrices (such as PAM30) to functionally re-score 

BLAST alignments that were generated with either BLOSUM62 or PAM160 

matrices.  

Following this, a PAM30 matrix, with gap opening and extension penalties of -9 and 

-1, was used to create a further comparison dataset of BLAST-based MSAs.  These 

sequences were again re-scored using the same substitution matrices.  The aim of 

this third set of analyses was an investigation into the effect that the order, in which 

the PAM30 and BLOSUM62/PAM160 matrices were applied in the BLAST-based 

alignment generation (and subsequent functional re-scoring), had on the resulting 

level of correct functional classifications.  The results showed that there were no 

peaks in functional classification performance, when using either the BLOSUM62 or 

PAM160 matrices to re-score the PAM30 BLAST-generated MSAs.  This led to the 

conclusion that the improvements in functional classification were due to the 

particular ordered combination, of the BLOSUM62 or PAM160 substitution matrices 

used for the alignment generation, and the PAM30 (and other lower PAM-N 

matrices) used for the subsequent alignment re-scoring.  

It was postulated that the observed results were possibly due to the intended usage of 

the different types of amino acid substitution matrices.  For instance, it was noted 

that a common use of the BLOSUM62 matrices is in sequence database search 

applications, such as PSI-BLAST.  This is primarily because this particular 

substitution matrix has been shown to provide optimal performance for sequence 

homology detection, when searching over a diverse sequence space, while also 

providing high quality alignments.  Also, it was suggested that the PAM matrices 

that performed best when functionally re-scoring the alignments, may be associated 

with the evolutionary distance between the homologous sequences.  Therefore, the 

lower PAM-N matrices could, in general, be providing additional evolutionary 

information, which improved the separation of the functionally specific properties of 

the closely related enzyme homologs that were identified in the database search.   
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These results were supplemented through a reduced set of enzyme query sequences 

that were clustered, at differing levels of sequence identity, with the aim of 

investigating the effect that potential sequence redundancy (within the benchmark 

datasets) may have had on the accuracy and trends seen in the functional re-scoring 

results.  From this investigation it was shown that, in general, similar results and 

trends in the classification results were obtained when using comparable re-scoring 

matrices with each of the clustered sets of query sequences.  An approach to 

automatically assigning a specific molecular function to an unknown enzyme 

sequence, using these findings, is shown in the “PAM30” branch of figure 6.1, which 

is discussed in more detail, in section 6.5. 

In conclusion, the experimental outcomes, from functionally re-scoring multiple 

alignments of homologous enzyme sequences, show that there is significant evidence 

for using additional PAM matrices to improve the assignment of functionally 

specific enzyme properties.  In particular, the PAM-N matrices, with lower 

evolutionary distances, showed a general tendency towards increasing levels of 

correct functional classification.  This was clearly seen when functionally re-scoring 

alignments (which were generated via gapped BLAST with a BLOSUM62 (or 

PAM160) substitution matrix) using a PAM30 matrix.  Although, there was 

significant improvement in the accuracy of specific functional classification when 

adopting this approach; there was still room for improvement in the overall 

proportion of correct classifications arising from any one method.      

6.3 Chapter 4 – Identification of Functional Specificity 

Determining Residues 

In an attempt to improve on the levels of correct functional classification achieved 

through the use of additional substitution matrices, a more refined process of 

functionally re-scoring sets of aligned sequence homologs was assessed in chapter 4 

of the thesis.  For this, automatic methods for the scoring and identification of 

functionally important amino acids were implemented.  It was decided that two 

previously studied methods for this purpose would be investigated; they were the 

func-MB method and the profile-HMM method.  A key hypothesis behind this 

approach was that, through the identification of subsets of aligned residues that were 

closely correlated to the functionally specific properties of the enzyme sequences, it 
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would be possible to generate more accurate automatic assignments of specific 

function.  In contrast, the methods described in chapter 3, used all of the amino acids 

that were aligned in the multiple sequence alignments, returned from the gapped 

BLAST database search, rather than a functionally correlated subset. 

Both the func-MB and profile-HMM methods of fSDR identification were used to 

score the columns of amino acids that were aligned to the query enzyme sequences, 

in each MSA, from the benchmark dataset.  For the func-MB method, the outcome 

was a set of aligned column scores represented by the Spearman-rank order 

correlation coefficient.  This was calculated through a comparison between the 

correlation of the aligned residue similarities and the specific enzyme functional 

class of the aligned sequences.  Whereas, the profile-HMM method used a scoring 

system that takes into account the variation in relative entropy, of each of the aligned 

residues, when taking into consideration the specific functional sub-types.  The basis 

of this was the scoring of amino acid positions, using a Z-score, which calculated the 

relative degree of residue conservation within enzyme groupings with the same 

specific functions.  In turn, this enabled a ranking of residues that were most likely to 

be conserved within groups of aligned sequences with the same function, but differ 

between them. 

These scores, associated with the potential fSDRs, were then ranked and a number of 

approaches, with varying thresholds, were used to generate sub-alignments from 

each of the MSAs in the benchmark dataset.  It was then possible to re-score the 

aligned sequences using only those aligned amino acids within the selected sub-

alignments.  For this, a PAM30 amino acid substitution matrix was used and the 

resulting accuracy of specific enzyme classification was determined via the “top-hit” 

method of assessment.  An additional method, designed to randomly generate sub-

alignments of aligned residues, was also compared to the results from each of the 

func-MB and profile-HMM based methods, as well as those from the amino acid re-

scoring outcomes from the analyses of chapter 3.  

When investigating the functional classification accuracy resulting from the func-MB 

method, there was significant improvement observed when compared to the other 

methods of functional re-scoring looked at in this chapter.  In particular, the best 

results were obtained when using the “top-N” and “top-X percent” methods of 
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selecting sub-sets of aligned residues were used, for which N=30 and X=8%, 

respectively.  Both of these thresholds, for selecting sequence sub-alignments, 

provided very similar levels of correct enzyme predictions after functional sequence-

based re-scoring was carried out and then assessed using the “top-hit” method.  The 

overall optimal result was shown when re-scoring the sequence sub-alignments 

constituting the top-8% of aligned residues, as calculated from the Spearman-rank 

order correlation coefficients, which showed a (bootstrap mean) proportion (and 

number) of correct functional assignments of 0.769 (2712/3527).  However, these 

were not significantly different to those of the top-30 method.  It was also concluded 

that, in general, there was no significant difference in the functionally specific re-

scoring results when using any pre-filtered alignments that have an applied 

colgap_percent threshold of 50%, or more. 

It was shown, in comparable studies, that when the profile-HMM method was used 

as the basis for scoring the potential fSDRs - and therefore defining the sequence 

sub-alignments to be used in the functional re-scoring – the accuracy of “top-hit” 

based enzyme classification was less than that of the func-MB method.  It was 

concluded that further study is required to fully understand the reasons behind the 

relatively disappointing results, when using the sub-alignments generated through 

use of the profile-HMM scored fSDRs, rather than those from the func-MB method. 

Although the optimal results seen from re-scoring the sequence alignments with the 

profile-HMM method were not as impressive as those of the func-MB method, they 

were still a significant improvement upon the best “non-fSDR” based methods of 

sequence alignment re-scoring.  This was seen when comparing with the optimal re-

scoring results, from chapter 3, which used all of the amino acids in the multiple 

alignments to functionally re-score each of the enzyme sequences.  For instance, the 

optimal profile-HMM method, which used the columns with the top-35 Z-scores to 

form the sub-alignments from each of the dataset MSAs, showed an improvement of 

4.2% (i.e., an additional 148 correct classifications) when compared with the  

PAM30 UNGAPPED (0,0) method of alignment re-scoring, described in chapter 3.   

This limited, yet still important observation, added weight to the overall conclusion 

drawn from this area of research; which was that the use of a functionally correlated 

subset of amino acids generally provides an improved method for the assignment of 
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specific enzyme function.  This was most clearly seen with the large improvement - 

of 486 correct functional classifications, which corresponds to a difference of 13.8% 

- when using the highest scoring 8% (or top-30) of the aligned residues calculated 

from the func-MB method, rather than the PAM30 (0,0) method of alignment re-

scoring, described in chapter 3. 

As in the analyses of chapter 3, a series of sequence identity clustering thresholds 

were applied to the query sequences that provided the source of the benchmark 

dataset of MSAs.  This resulted in a number of sub-datasets of MSAs, which 

provided a means to investigate the potential effects that sequence redundancy, 

within those query sequences, may have on the measured levels of functional 

classification accuracy.  A repeat of the sequence sub-alignment based functional re-

scoring, using each of these sub-datasets of MSAs, showed slight variations in 

results from using both the func-MB and profile-HMM based methods.  Namely, as 

more stringent sequence identity clustering thresholds were used on the query 

sequences; the observed specific functional classification accuracies were shown to 

tend towards increases for the profile-HMM based re-scoring method, and decreases 

for the func-MB based method.  These slightly contrasting results did not, however, 

detract from the main conclusions drawn from this area of study: that the func-MB 

based method of sub-alignment generation, and subsequent re-scoring, consistently 

outperforms the comparable profile-HMM based method; and that there is a general 

improvement in the accuracy of specific enzyme functional classification when 

relatively small sub-sets of functionally correlated amino acids are used for the 

purpose of functionally re-scoring and re-ranking alignments of homologous 

sequences. 

To conclude the studies in this chapter, an in-depth analysis of the experimentally 

and computationally well-studied family of lactate and malate dehydrogenases 

(LDH/MDH) was presented.  These enzymes provided a good example of the 

variations, in substrate binding specificity, which can result from evolutionary 

divergence in small areas of the protein sequence, while also providing experimental 

verification for some of the predicted fSDRs.  This example clearly showed the 

benefits of using sub-alignments of sequence residues - that were highlighted to be 

well correlated with the substrate specificity of these enzymes – to provide marked 
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improvements in the functional ranking (and grouping) of sequences with the same 

specific function as the query enzyme.  This was shown through the use of both the 

func-MB and profile-HMM based methods of fSDR identification; with clear 

improvements over the original BLAST sequence ordering seen for both of the 

methods. 

These observations suggested an alternative, improved, approach for automated 

functional assignment, when compared to both the BLAST and the PAM30 (0,0) 

functional re-scoring methods.  In particular, the func-MB method showed the largest 

improvement in correctly assigning specific functional classifications after re-

scoring.  The use of this automated approach is highlighted in figure 6.1, in the 

“func-MB” branch of the flowchart, and is discussed in more detail below, in section 

6.5. 

6.4 Chapter 5 – Towards the Identification of Functional 

Specificity Determining Residues Using Support 

Vector Machines 

It was concluded that it is beneficial to use sub-alignments of predicted fSDRs to 

improve the functional assignment accuracy of enzyme sequences.  However, 

implicit within the func-MB and profile-HMM based automated approaches is a prior 

knowledge of the specific functional classes of the aligned protein sequences.  

Therefore, it was proposed that alternative methods should be explored, which had 

the aim of identifying functionally important sub-sets of amino acids, which could be 

subsequently used to improve the functional assignment of  specific functional 

information – without prior knowledge of the functional classes of the aligned 

sequence homologs.  For this purpose it was suggested that a machine learning based 

approach, such as support vector machines (SVMs), could be appropriate. 

It was first necessary to gather appropriate data for the training and validation of an 

SVM based method that could identify functionally specific residues, within MSAs.  

For this, a method was described that identified a, mutually exclusive, set of fSDRs 

and non-fSDRs from each of the multiple sequence alignments.  A “functional 

enrichment score” was used to identify the aligned residues that gave an optimal 

rank-ordering of the enzyme sequences, with the same “functionally correct” specific 
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EC classification as the query sequence.  Both the func-MB and profile-HMM 

methods, for scoring and identifying possible functionally informative residues, were 

used as the basis for generating a number of sequence sub-alignments from each of 

the MSAs.  These sub-alignments were then re-scored and their “functional 

enrichment scores” were compared.   

Through this analysis it was shown that the use of a single threshold, for selecting 

the predicted fSDRs that form these sub-alignments, was not optimal.  This led to the 

implementation of a method that systematically compared the “functional 

enrichment scores” that were obtained from applying the: “top-N”; “top-X percent”; 

and “column score threshold”, sub-alignment selection criteria (described in chapter 

4) to the scores calculated with the func-MB and profile-HMM methods.  The 

functional enrichment score calculations were based primarily on the number of 

sequences in the top-10 ranking positions, after alignment re-scoring, with the same 

“correct” enzyme class as the query.  The result of this was a thorough comparison 

between the functional re-scoring performances of each of the alternative sequence 

sub-alignments. This allowed the definition of an optimal set of fSDRs (and 

therefore also the non-fSDRs) associated with each of the MSAs in a benchmark 

dataset of function specificity determining residues.   

A stringent sequence clustering procedure was used to remove any potential 

sequence redundancy from the multiple sequence alignments.  This was important 

because the sets of fSDRs and non-fSDRs that were extracted from these alignments 

were to be used as the training and validation datasets for the parameter optimisation 

of the SVM.  The resulting 357 multiple sequence alignments were then partitioned 

into five, non-redundant, cross-validation datasets.  It was observed that the balance 

between the number of fSDRs (positive SVM classes) and non-fSDRs (negative 

SVM classes) was unequal, with a much larger number of negative than positive 

class examples.  This was not unexpected, as it was previously shown that a general 

performance increase, in functional classification accuracy, was seen when using 

relatively small subsets of fSDRs to re-score and assign specificity.  In order to 

improve SVM optimisation and improve computational training times, a similar 

approach taken by previous studies in a related area, which had used machine 

learning techniques to identify catalytic residues, was followed.  This involved 
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randomly selecting an equal number of fSDR and non-fSDR examples from each of 

the MSAs in the 5-fold cross-validation training datasets. 

Features that were expected to describe the functionally informative relationships, 

between the aligned sequence homologs, were used to explore the feasibility of the 

proposed SVM-based approach to fSDR identification.  To assess the performance 

level of the classifiers, a 5-fold cross-validation procedure was used to identify the 

optimal SVM learning kernels and associated parameters.  Although the SVM 

training was carried out using the “randomly balanced” datasets, it was noted that it 

was important to assess the classifier performance on the full “un-balanced” test 

datasets of MSAs.  This was because this is the form of the data that would be used 

as input to the SVM in a real biological example, which required the classification of 

functionally determining residues.  The un-balanced nature of the positive (fSDR) 

and negative (non-fSDR) examples in the test datasets meant that a Matthews 

Correlation Coefficient (MCC) was used as the measure of classification 

performance. 

The composition of the types of aligned amino acids (AA_composition), as well as 

measures of the number of distinct amino acids types (NumberOfAATypes and 

NumberOfAATypes_threshold_X%) occurring within each of the aligned columns of 

fSDRs and non-fSDRs, were used to encode the feature vectors for input to the 

SVMs.  Two alternative forms of the multiple sequence alignments were used as the 

input for encoding these feature vectors.  They were those generated from using an 

E-value threshold of either 10
-3

 or the more stringent threshold of 10
-15

 during their 

generation via a BLAST database search.  The lower threshold was selected, in 

conjunction with an analysis of the distributions obtained from analysing the 

properties of the NumberOfAATypes feature vector, with the aim of reducing the 

number of more distantly related sequence homologs present in the alignments.  The 

reasoning behind this was that it may reduce the number of false positive detections 

of fSDRs, made by the SVM classifiers (when using the 10
-3

 threshold); by reducing 

the level of potential signal noise contained within the sequence alignments. 

Interestingly, it was shown that the best MCC classification results were obtained 

from the SVM classifiers when using the AA_composition feature vectors, encoded 

from the alignments generated using the less stringent E-value threshold of 10
-3

.  
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Although the SVM classification results were shown to feature a relatively large 

number of false positive fSDR predictions; an overall MCC of 0.30 was observed.   

This was considerably better than a random classifier and comparable to other 

studies that have used machine learning methods to identify catalytically important 

residues from multiple sequence alignments.  It can, therefore, be concluded that an 

SVM-based approach - to the problem of automatically identifying residues that 

determine functional specificity - provides a novel and successful approach to this 

important area of study. 

An additional assessment of the SVM-based classification method was carried out 

through a detailed investigation of its application to three well-studied classes of 

enzymes.  These were: the lactate/malate dehydrogenases; the nucleotidyl cyclases; 

and the serine proteases.  For each of these, an SVM was used to identify a set of 

potential function specificity determining residues.  These were then used to form 

sequence sub-alignments, which were functionally re-scored using a PAM30 amino 

acid substitution matrix.  The performance of this sequence re-scoring was assessed 

through comparison with a number of methods that have been studied throughout 

this thesis.  It was shown that, in general, the SVM-based method was performing 

well when compared to these alternatives.  In particular, the serine protease and 

lactate/malate dehydrogenase examples showed a clear improvement in comparison 

to the both the “whole” alignment (i.e., BLAST and PAM30 (0,0)) and the random 

selection methods.  In addition, the results for these two examples were shown to be 

equal to, or better than, the two func-MB based methods that were used in the 

comparison.  This was a particularly encouraging result and provides important 

evidence for the use and continued study of the SVM-based method for the 

automatic assignment of functional specificity to enzyme sequences. 

6.5 Summary of Methods 

To conclude this thesis, a summary of the key methods that have been investigated 

and their potential application to the task of annotating the specific molecular 

function of an enzyme sequence, is given.  An overview of the key methods and their 

practical application is shown in the flowchart of figure 6.1.  The figure shows three 

alternative routes that could be followed to help determine the specific functional 

class of an unknown sequence.  The initial step for each of these three methods is the 
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generation of a multiple sequence alignment, via a gapped BLAST database search, 

using the unknown protein.  Before the sequence database search is carried out a 

residue masked form of the database should be generated, using the pfilt application.  

Also, figure 6.1 highlights the BLAST search parameters that were used to generate 

the MSAs that have been analysed throughout the thesis and from which the results 

and conclusions have been drawn.  They were, the use of: a single search iteration; a 

BLOSUM62 amino acid substitution matrix; gap scoring penalties of -11 (gap 

opening) and -1 (gap extension); an E-value threshold of 0.001 to determine the 

sequences that should be included in the MSA; and the application of the SEG low 

complexity residue filter to the query sequence.  Once the MSA has been generated, 

the flowchart shows three alternative methods (the “select method” junction) that can 

then be followed to assess the specific functional class of the query sequence.   

The PAM30 (0,0) Method 

One method, denoted by the “PAM30 (0,0)” branch of the diagram, shows the 

application of the PAM30 amino acid substitution matrix to functionally re-score the 

aligned sequences.  This method refers to the optimal alignment re-scoring method 

that was identified in the analyses of chapter 3.  After generation of the MSA, any 

masked sequence residues should be replaced with the residues present in the source 

sequences.  The MSA can then be re-scored (using a PAM30 substitution matrix, 

with both gap opening and extension penalties of zero) and the sequences re-ordered 

accordingly.  Functional classification of the unknown sequence can then be carried 

out, via annotation transfer, from the sequence with the “top-hit” (after re-scoring) to 

the unknown query.     

The func-MB Method 

The “func-MB” branch of figure 6.1 provides an alternative method for the 

automatic functional classification of the unknown query sequence.  This method 

refers to the optimal func-MB sub-alignment re-scoring method, which was 

identified in the analyses of chapter 4.  After generation of the MSA, a series of 

steps are carried out to identify the aligned residues that are predicted to be most 

closely correlated with the specific molecular function of the aligned sequences.  

Any residue masking is first replaced with the amino acids present in the source 

sequences.  Following this, because the func-MB method requires prior knowledge of 
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the specific functional sub-classification of all the aligned sequences, it is necessary 

to remove those sequences which do not have complete, specific, functional 

annotations (i.e., complete annotation at all four levels of the EC classification 

scheme) from the MSA.  A further filter should then be applied to the MSA to 

remove all aligned columns with a proportion of gaps greater than 50%.  For each of 

the remaining columns of residues, aligned to the query sequence, a Spearman-rank 

order correlation coefficient is calculated for the correlation between the residue 

similarity and the specific functional similarity of each of the aligned sequences.  

From this, the residue positions with the highest correlation coefficients can be 

identified and subsequently used to extract a sequence sub-alignment that is enriched 

with high ranking function specificity determining residues.  It was shown, in the 

results of chapter 4, that the columns with the top-30 (or top-8%) largest correlation 

coefficients should be used to form these sub-alignments. 

Once the sub-alignment of fSDRs has been defined, the same sequence re-scoring 

procedure as used in the PAM30 (0,0) method, should be followed.  That is, a 

PAM30 amino acid substitution matrix, with gap penalties of zero, should be used to 

score and re-rank the functional similarity of the aligned sequences to the query.  

Functional classification of the unknown query sequence can then be carried out via 

annotation transfer from the highest ranking (“top-hit”) sequence, after re-scoring.   

In chapter 5, an alternative “functional enrichment score” method of assessing the 

level of correct functional classification was also investigated.  This was primarily 

used to identify a benchmark set of fSDRs; however, it can also be used to add an 

additional level of validation to the functional assignment of an unknown query 

sequence.  It was shown that only the residues with the ten largest correlation 

coefficients are required to form sub-alignments that generate the largest proportion 

of functionally correct sequences in the highest ranking positions, after alignment re-

scoring.  Therefore, in the practical application of this method, if the majority of 

sequences in the first 10 ranking positions, after alignment re-scoring, have the same 

specific function as the “top-hit” from re-scoring the sub-alignment of the top-30 

fSDRs, further confidence will be added to the likelihood of a correct functional 

classification of the query. 
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The SVM Method 

The “SVM” branch, in figure 6.1, highlights the stages required to apply the SVM 

classification method to the problem of automatically determining the specific 

molecular function of an unknown protein sequence.  First, the SVM input is 

encoded directly from all of the sequences within the BLAST generated MSA, using 

the AA_composition feature vector.  The best performing SVM classifier, defined in 

chapter 5, is then used to identify the residues in the query sequence that are 

predicted to be function specificity determining (fSDRs).  A sequence sub-alignment 

of these “positive” SVM-predicted fSDRs should then be extracted and any residue 

masking should be replaced with the amino acids present in the source sequences.  

Finally, a PAM30 amino acid substitution matrix, with gap penalties of zero, should 

be used to re-score and re-rank the functional similarity of the sequences, in the sub-

alignment, to the query.  Functional classification of the unknown query sequence 

can then be carried out.   

As with the “func-MB” method, the confidence of a correct functional classification 

will be increased if a majority (ideally, 90% or greater) of sequences, with the same 

specific molecular function, are observed with the closest similarity to the query 

sequence.  Also, if the “top-hit” sequence has the same specific functional class as 

this majority group, further confidence can be attached to the transfer of this specific 

molecular to the function of the unknown query sequence. 
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Figure 6.1. A flowchart showing an overview of the alternative functional re-

scoring methods that have been researched in this thesis.  It shows a summary of 

the practical stages required to assign a specific molecular function to an 

enzyme sequence of unknown function. 

1. Re-score sequences using a PAM30 (0,0) 

substitution matrix 

2. Determine specific function using: 

a. “top-hit” method; or 

b. Functional enrichment score method 

1. Encode SVM features from 

MSA 

2. Run SVM classifier 

3. Identify positive fSDR 

classifications 

4. Extract sequence             

sub-alignment 

select method 

1. Generate residue masked sequence database (using pfilt) 

2. Generate MSA using a PSI-BLAST sequence database search, with: 

 One search iteration; 

 BLOSUM62 matrix; 

 Gap penalties of -11 and -1; 

 E-value threshold of 0.001 

 SEG query sequence masking 

assign specific 

function 

1. Remove residue masking 

2. Identify sequences with 

complete functional 

annotations 

3. Apply colgap_percent filter 

4. Calculate Spearman-rank 

order correlation 

coefficients 

5. Identify columns with the 

top-30 (or top-10) highest 

correlation coefficients 

6. Extract sequence            

sub-alignment 

SVM 

PAM30 (0,0) 

func-MB 

Remove residue masking 
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6.6 Towards Implementation of a Production System 

To provide the wider biological research community with access to the prediction 

methods investigated in this thesis, it is proposed that a public domain web-based 

system should be developed.  This would provide a user-friendly interface allowing 

submission of an unknown sequence, in FASTA format, for specific functional 

analysis and subsequent annotation.  Depending on the processing times, which 

would require benchmarking, the results would be returned directly on the web-page 

or via an e-mailed link to the results.   

The key stages that would need to be implemented for this automated function 

prediction system are described in the flowchart shown in figure 6.1.  After sequence 

submission, a single iteration PSI-BLAST search (of a pfilt filtered version of the 

UniProt sequence database) would be carried out, using a BLOSUM62 matrix, gap-

penalties of -11 and -1, and an E-value threshold of 0.001.  The input sequence 

would also be filtered for low complexity, using SEG, prior to the BLAST search.  

The resulting MSA would then be automatically processed in accordance with the 

methods described in the relevant branches of the flowchart.  In particular, the 

methods of most importance for a production system would be those of: (i) the 

optimally performing func-MB method; (ii) the novel SVM prediction method; and 

(iii) to provide a comparison, the original BLAST search results.  Until further 

benchmarking has been carried out on the SVM method, it is the func-MB alignment 

re-scoring results that provide the most informative and reliable predictive results for 

specific enzyme function.  Detailed descriptions of the steps necessary for generating 

a specific enzyme prediction for both of these methods are provided in section 6.5 

and figure 6.1. 

An interactive analysis of the prediction results would be provided to the user, with 

links to the UniProt sequence database and the key parameters associated with each 

of the functional re-scoring methods highlighted.  This would include the BLAST 

search results, the generated MSA and the fSDRs used for the sub-alignment re-

scoring in each of the func-MB and SVM methods (along with the associated 

Spearman-rank order coefficients and SVM classifier results).  In order for the 

system to make a high quality, reliable, specific function prediction a majority 

(ideally, 90% or greater) of sequences, with the same specific enzyme function, 
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should be observed in the top 10 ranking positions.  As shown in chapter 4 (figure 

4.9 and table 4.6), when using the optimal func-MB re-scoring methods the 

benchmark top-hit accuracy of a correct specific enzyme function assignment is 

between 76.7% and 76.9%.   Also, if the “top-hit” sequence has the same specific 

functional class as this majority group, the system would attach greater confidence to 

the prediction.  A further test of the quality of the prediction should be provided by 

comparing the results from the func-MB and the SVM methods.  If they agree the 

user would be able to take more confidence from the prediction.  In addition to the 

prediction of function for individual sequences, this system could also be tailored 

towards a high-throughput analysis and genome-wide annotation of specific enzyme 

functional class. 

6.7 Overall Conclusions 

The aim of this thesis was the investigation of computational methods for improving 

the prediction of the specific molecular function of protein sequences.  Due to the 

increasing disparity between the numbers of proteins deposited in sequence 

databases and those with high quality functional annotations, it was important that 

these methods were fully automated.  In approaching this, a benchmark set of 

functionally well-annotated enzyme sequences were defined and a series of 

associated BLAST generated multiple sequence alignments generated.  Three main 

areas of research were undertaken in this work, which each investigated alternative, 

but related, approaches to the problem. 

The first approach used non-standard amino acid substitution matrices to 

functionally re-score the sequences within the BLAST alignments.  This showed that 

it is possible to obtain improved levels of specific functional classification by using 

the PAM30 substitution matrix to re-calculate the similarity between the sequences 

identified by BLAST and the query sequence.  Following on from this simple 

approach, it was shown that the use of methods, designed to automatically identify 

subsets of function specificity determining residues, are able to provide a further 

improvement to the level of correct functional classification.   

The disadvantage of these “fSDR-based” methods was their inherent reliance on the 

prior knowledge of the specific functional classes of the aligned sequences.  To 

counter this, a novel method, which used an SVM classifier to predict function 
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specificity determining residues in multiple sequence alignments, was developed.  

Using thorough cross-validation, it was shown that this predictor was performing 

much better than random.  Further, the detailed analysis of three well-studied 

enzyme examples showed that, in two thirds of the examples, the SVM method gave 

specific functional classification results comparable to the earlier fSDR methods.  

This was a particularly important result, because it showed that the SVM method, 

which does not require prior knowledge of the functional classes of the aligned 

sequences, can be favourably compared to those methods which do.   

This was particularly advantageous for a fully automated method of this type, where 

the number and diversity of the pre-existing, specific functional annotations may be 

limited.  Further work is still required to obtain a thorough benchmark of the 

predictive performance of the SVM classifier, when compared to the other method, 

however these results were very encouraging and they successfully fulfilled the key 

aim of this thesis. 
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Chapter 7 Further Work 

 

This chapter details some additional avenues of study that could be explored to 

improve on and provide comparative analysis to the methods of enzyme functional 

analysis, presented in this thesis.  Where applicable, the proposed suggestions for 

further work are described within separate sections that are structured according to 

the thesis chapter in which the additional analysis is most closely related.  This is not 

an exhaustive list of further work and it is not known to what extent the proposed 

work would impact on the current results.  It is, however, expected that the following 

analyses would improve upon the work presented so far and would be 

complementary to the work presented in this thesis.  

7.1 Chapter 3 – The Use of Alternative Amino Acid 

Substitution Matrices for Rescoring the Functional 

Similarity of Enzyme Sequences 

The work presented in chapter 3 looked at using non-standard amino acid 

substitution matrices for rescoring the functional similarity of enzyme sequences.  

Two main sets of amino acid substitution matrices were investigated in this analysis, 

the BLOSUM and the PAM series of matrices.  Also, these were compared to the use 

of a residue identity based matrix – the IDENTITY matrix.  Below are some further 

suggestions as to which additional types of substitution matrices could be added to 

this analysis, as well as ways in which to carry out a more detailed analysis of the 

alignment re-scoring parameters used. 

7.1.1 Investigation of Additional Substitution Matrices 

7.1.1.1 JTT-PAM-N Matrices 

The alignment re-scoring analysis in this chapter could be extended by comparing 

the results obtained from using the PAM-N series of matrices with the updated JTT-

PAM-N matrices (Jones et al., 1992).  These matrices use a similar evolutionary 

model to the “original” Dayhoff form of PAM matrices for matrix generation, but 

use a larger and updated dataset.  The main reason for including these types of 

matrices in the analysis is that they should provide a good comparison between the 
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two types of PAM matrices to see if there are comparable trends in the prediction 

accuracies between the two. 

7.1.1.2 Enzyme Specific Matrices 

A further approach could be the use of an “enzyme specific” substitution matrix for 

functionally re-scoring the aligned sequences.  This would be done by applying the 

PAM model for matrix generation to the enzyme sequences gathered from Swiss-

Prot.  During the matrix calculation, amino acid mutations should only be considered 

between protein sequences with the same specific function.  This would then provide 

a measure of the mutational probabilities for each of the amino acid types when 

enzyme functional constraints are in place. 

7.1.2 Further Analysis of Gap Scoring Parameters 

A further area of study, related to the analysis carried out in chapter 3, is the 

optimisation of the parameters used for scoring gaps when re-scoring the aligned 

sequences.  The analysis presented in this chapter currently uses two methods for 

scoring the gap opening (gopen) and gap extension (gextend) parameters.  They are: (i) 

the “un-gapped” gap scoring model, which scores all residue alignments to gaps as 0; 

and (ii) the “gapped” scoring model, which uses the same gap scoring penalties as 

those used in the BLAST sequence database search to generate the MSAs for each of 

the datasets analysed. 

It is known that when aligning sequences, the optimal gap penalties can be sensitive 

to the particular amino acid substitution matrices that are used for the alignment 

scoring (Frommlet et al., 2004; Reese and Pearson, 2002).  This is of particular 

importance for the pair-wise sequence alignments that are carried during a database 

search (such as BLAST) for sequence similarity.  Although the analysis of the 

sequence alignment re-scoring, carried out in chapter 3, does not involve the re-

alignment of any of the sequences it may still benefit from using gap parameters that 

are optimised to the particular matrix used in the alignment re-scoring.  To do this, it 

is proposed that a grid-based, optimisation procedure could be carried out to provide 

an assessment of the effects, on the alignment re-scoring results, of a series of 

alternative pairs of gap opening and gap extension parameters.  Therefore, this 

approach would build upon the results shown in chapter 3, by allowing the 
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identification of an optimal pair of gap scoring parameters for each amino acid 

substitution matrix, as measured by their ability to correctly assign the specific 

enzyme function to the query sequence. 

7.2 Chapter 4 – Identification of Function Specificity 

Determining Residues 

This chapter of the thesis looked at two methods (func-MB and profile-HMM) for the 

automatic identification and scoring of function specificity determining residues 

(fSDRs) in enzymes.  These residues were then ranked and subsets of them were 

used to functionally re-score the aligned enzyme sequences.  The functional re-

scoring performance of these methods was also compared to selected alignment re-

scoring results from the alternative amino acid substitution matrix studies, carried 

out in chapter 3, as well as to random models for sequence and aligned residue 

subset selection.  Below are suggestions for further studies that could be used to 

enhance the identification of functionally determining residues and also improve the 

subsequent functional alignment re-scoring of the aligned sequences. 

7.2.1 Analysis of Additional Methods for the Identification of fSDRs 

There are a number of published methods for the identification of functional 

specificity determining residues in protein sequences, a number of which were 

discussed in detail in the literature review provided in chapter 1.  Although it would 

be prohibitively time consuming to carry out a thorough comparison between all of 

these methods and of the resulting functional alignment re-scoring results obtained 

from the identified functional residues, it may be beneficial to expand the benchmark 

analysis carried out in this thesis.  An additional method for this purpose is proposed 

below, for the identification of aligned columns containing specificity determining 

residues.   

7.2.1.1 “Unsupervised” Method for fSDR Identification 

To complement the “supervised” fSDR identification methods (i.e., those that 

require functional information as input) described in chapter 4, an “unsupervised” 

method could also be studied.  One example of this is the MB-method, described by 

del sol Mesa et al. (2003), which only uses overall sequence, rather than functional, 

similarity measures to calculate correlation scores.  It is not expected that this type of 
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method will perform as well as the supervised ones, but it may provide useful 

additional information.  For example, Pazos et al. (2006) suggest using the 

“supervised” methods when the sequence phylogeny does not agree with the 

functional classification.  Therefore, it may be that for examples where the columns 

identified by the supervised and unsupervised methods are the same, the sequence 

phylogeny will closely follow the functional grouping, and vice versa for examples 

where the identified columns do not agree. 

Additionally, the MB-method for identifying functional residues would provide an 

additional comparison to the later results obtained in this thesis from using SVM 

classification.  This is because neither of these methods requires any functional 

information associated with the aligned sequences, prior to the identification of the 

specificity determining residues.  The appropriate benchmark for comparing the 

performance of these two methods would be through an analysis of their functional 

re-scoring performances.  This could be assessed with both the “top-hit” and 

functional enrichment score based assessment methods. 

7.2.2 Re-alignment of the Protein Sequences 

In the analysis carried out in this thesis all of the multiple sequence alignments are 

obtained directly from a PSI-BLAST sequence database search, which are generated 

from a concatenation of pair-wise sequence alignments to the query sequence.  

Because of this, they are not “true” multiple sequence alignments and therefore may 

not be the optimal alignment when considering all of the sequences.  Taking this into 

consideration, it may be beneficial to use an additional multiple sequence alignment 

application (such as: CLUSTAL-W (Larkin et al., 2007); MAFFT (Katoh et al., 

2002); or MUSCLE (Edgar, 2004)) to optimally re-align the BLAST identified 

sequence homologs.  A disadvantage to this process would be the additional 

computation time required for the multiple alignments.   

A major aim of this thesis was the investigation of the performance of 

computationally efficient methods for improving the functionally specific 

classification of enzyme sequences.  Therefore, it is suggested that PSI-BLAST 

generated sequence alignments should remain as an integral part of the system, due 

to their computationally efficient generation.  Rather, the sequence re-alignment 

procedure would be used for producing more refined input to the methods for 
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scoring and identifying the benchmark set of fSDRs.  It would then be possible to 

identify the residues in the query sequence that were deemed to be functionally 

determining, which could be used to extract the corresponding aligned columns of 

residues from the PSI-BLAST generated alignments.  Finally, these aligned columns 

of functionally specific residues would then be used to train the SVM classifier.  

This is important, because it ensures that the classifier is trained and validated using 

the same information (from PSI-BLAST multiple sequence alignments) that would 

also be used as the input to the SVMs in the final functional classification system.    

7.2.3 Further Analysis of Gap Scoring Parameters 

7.2.3.1 Gap Scoring in the Sequence Alignments 

The experimental analysis provided in chapter 4 only investigates the effects of 

using a single value, of 0, when scoring the alignments of amino acids to gaps.  

Additional analysis, similar to that suggested above for the alignment re-scoring 

experiments that use alternative amino acid substitution matrices, in chapter 3 of the 

thesis, could also be carried out for the gap scoring parameters used for the sub-

alignment re-scoring.  However, due to the general nature of these sub-alignments, it 

would not be possible to extend this analysis to one which investigates the change in 

the gap opening (gopen) and gap extension (gextend) parameters.  This is because the 

aligned residues in the sub-alignments are not necessarily from consecutive residues 

in the aligned sequences; meaning that the use of a gap scoring method, such as 

equation 3.1, which incorporates the length of consecutive gap residues in a 

sequence alignment, would not be valid for non-consecutive sub-alignments of 

residues.  Therefore, a range of single values could be used to score the pair-wise 

alignment of gap residues to amino acids, in the extracted sequence sub-alignments. 

7.2.3.2 Gap Scoring in the Amino Acid Similarity Matrices of the func-MB 

Method 

For the func-MB method of fSDR identification, it is possible to carry out an 

additional set of analyses into the use of different scores to assess the effects of gap 

residues in the sequence alignments.  The description of the func-MB method stated 

that the calculation of the Spearman rank-order correlation coefficient is based upon 

the comparison between two matrices of similarity: the residue similarity and 
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functional similarity matrices.  It is the amino acid residue similarity matrix that is of 

interest for this proposed additional gap scoring analysis.  In this thesis, when 

scoring the similarity between amino acids and gaps in the alignments a single score 

of 0 has been used in the amino acid similarity matrices.  It may, however, be of 

interest to systematically assess the effects of changing this “gap-residue” similarity 

measure on the subsequent alignment re-scoring performance.  

7.2.4 The Use of Alternative Amino Acid Substitution Matrices 

Following on from the above section, it is also possible to systematically vary the 

amino acid substitution matrices used in both the sub-alignment re-scoring and the 

calculation of the amino acid similarity matrices (in the func-MB method).  Careful 

consideration would need to be given to the optimisation of the alternative amino 

acid substitution matrices and the different gap scoring parameters; because it is 

expected that optimal parameter of one would be closely dependent on the other.   

7.2.5 Pre-filtering of the Multiple Sequence Alignments 

Prior to applying the fSDR scoring and identification methods, it may be beneficial 

to apply a number of filtering steps to improve the quality of the aligned sequence 

data.  These could take on either a “sequence based” or a “functional class based” 

form, each of which would lead to differences in their application.  

An example of a “sequence based” form of alignment pre-filtering is the removal of 

sequences that have a pair-wise alignment overlap, with the query sequence, that is 

less than a defined percentage threshold.  This would be considered “sequence 

based” because its application would not require any additional information other 

than that present in the aligned sequences.  The application of this particular 

sequence filter would be the removal of sequences with potentially poor alignments 

and also any potential false positive homologous sequences.  This would be applied 

to the MSAs used for both the identification of the fSDRs extracted in the definition 

of the benchmark SVM training datasets, as well as to the input MSAs to the SVM-

based functional classification system.  A potential problem with this “percentage 

overlap” method of alignment filtering is that it may discard important alignments to 

a functionally relevant domain, which is part of a longer aligned homologous 

protein. 
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Another method of sequence alignment filtering, which is based upon the specific 

functional classes of the aligned protein sequences, could be used to improve the 

quality of the input alignment data for the fSDR identification methods used to 

define the benchmark datasets for SVM training.  The proposed method for this 

“functional class based” sequence filtering would look at the effects of removing 

sequences that do not share particular levels of the EC classification hierarchy.  For 

example, it may be possible to improve the identification of specific functional 

residues through the use of sequence alignments that only contain sequences that 

share the same first three levels of the EC functional classification hierarchy, with 

the query sequence.  The reasoning behind this is that the resulting sequence 

alignments will only contain information that is associated with the most specific 

functional differences in the sequences and may therefore improve the scoring of the 

fSDR identification methods. 

A disadvantage of this method may be the reduction in both functional and sequence 

diversity in the resulting alignments used as input for the subsequent fSDR scoring 

and identification methods.  Also, it is not intended that this method of sequence 

alignment filtering would be used to pre-filter the alignments of the final SVM-based 

classification of functionally unknown query sequences. This is because the 

unknown function of the query sequence makes the functional class based filtering 

step impossible. 

7.3 Chapter 5 – Towards the Identification of Functional 

Specificity Determining Residues Using Support 

Vector Machines 

This section discusses suggested improvements and alternative methods of 

investigation for the SVM studies presented in chapter 5. The key areas identified 

for potential improvement and additional study, are: the definition of the benchmark 

dataset of fSDRs; the parameters used in the machine learning classification method; 

and a benchmark assessment of the use of the SVM predicted residues to 

functionally re-score the aligned sequence.  
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7.3.1 Optimisation of the Functional Enrichment Score and the 

Definition of the Benchmark Dataset of fSDRs 

7.3.1.1 Investigation of Additional colgap_percent Thresholds 

There are a number of alternative ways in which the benchmark dataset of fSDRs, 

used to train and validate the SVM classifiers, could be defined.  One modification to 

the process of dataset definition has already been discussed in detail at the end of 

chapter 5, in section 5.3.4.  Briefly, the method of dataset definition currently used 

in chapter 5 uses only a single colgap_percent threshold, to pre-filter aligned 

columns of amino acids with particular levels of gaps in the alignments, prior to 

applying the func-MB method of fSDR identification.  As discussed, in section 5.3.4, 

it would be of interest to extend this analysis to include a more thorough analysis of 

the functional enrichment scores obtained from using the func-MB method with a 

series of different colgap_percent thresholds.  This in turn would lead to an 

alternative benchmark dataset of fSDRs for training and validating the SVM 

classifiers. 

7.3.1.2 Incorporation of the “top-hit” Assessment Method 

The benchmark dataset of fSDRs that are used for training and validating the SVM 

classifiers may be improved by the additional use of a “top-hit” based assessment 

method, in conjunction with the functional enrichment score based method, for their 

generation.  At present, the benchmark dataset of fSDRs, which was defined in 

chapter 5, uses an approach that selects the subset of fSDRs to include in the 

benchmark fSDR dataset via the optimisation of the functional enrichment scores 

obtained after re-scoring each of the MSAs.  This method currently uses a number of 

criteria to ensure that the there is a high level of “functionally correct” enzymes in 

the optimally re-scored alignments (such as: demanding that at least 9 out of the top 

10 ranking sequences after functional alignment re-scoring are the same “correct” 

specific function as the query sequence).  However, this procedure of optimising the 

functional enrichment score, to determine selection of the benchmark set of fSDRs, 

may be improved further by incorporating an additional selection criterion, which 

also requires that the “top-hit”, after sequence sub-alignment re-scoring, is 

functionally correct (i.e., the same as the query sequence).   
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The main benefit to this improved fSDR selection procedure would be that the SVM 

would be trained and validated on fSDR data that guarantees both a particular level 

of functional enrichment and a functionally correct “top-hit” sequence, after 

alignment re-scoring.  Therefore, it would add an additional level of confidence, to 

any specific functional classifications that are based upon the use of the SVM-based 

system of automatic function classification.  

7.3.2 SVM Analysis 

The final part of this thesis concentrated on the initial investigations that were made 

into the use of an SVM for the automatic identification of fSDRs.  There are a 

number of ways in which this analysis could be extended, such as: through the 

repeated analysis and comparison using the alternative methods for fSDR dataset 

definition, described above; and through the investigation of additional SVM 

learning parameters and features for data encoding.  

7.3.2.1 The Investigation of Additional Input Feature Vectors 

The results presented in chapter 5 are based upon the use of a limited number of 

input feature vectors to the SVMs.  To improve the way in which the functional 

specificity determining information is encoded from the aligned sequences it is 

expected that the use of additional input features would improve the classification 

performance of the SVM classifiers.  Without carrying out the SVM training and 

validation experiments it is not possible to determine which particular features will 

provide an improved predictive performance.  However, some of the features, 

mentioned below, have been used previously in machine learning approaches, 

involving data in the form of multiple sequence alignments, and may be of interest.  

Also discussed are suggested extensions to the input features already presented in the 

SVM classification studies of chapter 5. 

Additional Percentage Thresholds for the NumberOfAATypes Feature 

One extension to the features already used in the SVM analyses, of chapter 5, could 

be the use of alternative percentage thresholds of amino acid occurrence with the 

NumberOfAATypes feature.  A single threshold of 12% was used for this feature, 

however, it may be advantageous to analyse the effects of alternative thresholds on 

the performance of the SVM classifiers.  Also, the use of multiple percentage 
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thresholds, and therefore multiple additional SVM input features, may improve the 

SVM classification performance.  It is expected that this approach would provide 

additional information as to how the number of distinct amino acid types, in each 

aligned column of residues, varies as the threshold is altered and therefore provide a 

measure of the level of “signal noise” in the NumberOfAATypes features. 

Alternative Methods for Calculating the Amino Acid Composition   

The AA_composition feature, described in chapter 5, used a relatively simple method 

for calculating the fractional occurrence of each amino acid type contained within 

the aligned columns of the two classes of fSDR and non-fSDR residues.  A number 

of alternative methods could be investigated for encoding the amino acid 

composition information for input into the SVMs.  One such method is that of the 

PSIPRED application (Jones, 1999), which uses the position specific scoring 

matrices (PSSMs) generated from a PSI-BLAST database search.  PSSMs are 

generated as part of the iterative sequence search procedure of PSI-BLAST and they 

incorporate weighted calculations of the frequency of occurrence of certain amino 

acid types within the multiple alignments.  This weighting uses pseudo-counts and 

prior knowledge of common amino acid occurrences and mutations, which in turn 

incorporates evolutionary information into the sequence profiles of the aligned 

families of similar protein sequences.  Therefore, a PSSM based method may 

improve the encoding of the amino acid composition, in each of the aligned columns, 

through the incorporation of weighted, evolutionary based calculations into the SVM 

input features. 

Residue Conservation Score 

Previous studies that have used machine learning methods for the automated 

identification of CSA residues, from MSAs, have found the use of a sequence 

conservation score to be beneficial.  This aims to calculate the level of residue 

conservation within each aligned column and encode it within a score for use as an 

input feature into the SVMs.  There are a number of well-studied methods for 

calculating the positional conservation in protein sequence alignments, such as: the 

scorecons method (Valdar, 2002), used by Petrova and Wu (2006), Gutteridge et al. 

(2003) and Tang et al. (2008) for the classification of CSA residues; and also the 

AL2CO method, described by Pei and Grishin (2001).  The CSA residues are 
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generally found to be well conserved; therefore the level of residue conservation is 

expected to be a more informative feature of these residues that describe general 

catalytic properties, than those of the specificity determining residues of interest in 

this thesis.  However, the use of a conservation score may be found to be 

advantageous to the SVM classification of fSDRs and should be investigated. 

Residue Window Based Encoding of the SVM Input Features 

A further way in which the SVM classification could be improved is through the use 

of a “residue window” of input features.  This approach is proposed to take into 

account the properties of all the aligned residues within a window, w, of the 

particular aligned residue of interest.  This then leads to a total residue window size 

of 2*w+1, formed from the residues that are w positions “up” and “down” the query 

sequence from the “central” aligned residue of interest.  Two possible alternative 

approaches that could be used to encode this residue window based information, for 

SVM input, are: (i) the “feature averaging” method, used by Youn et al. (2008); and 

(ii) the “multiple feature vectors” method, used by the PSIPRED method (Jones, 

1999).  The “feature averaging” method uses the same number of input feature 

vectors, as when not using a residue window, but the information for each feature 

vector is calculated using an average of the properties for all of the aligned columns 

of amino acids contained within the sequence window.  In contrast, the “multiple 

feature vectors” method uses the same method for calculating the feature vectors as 

when not using a residue window, however, the total number of input feature vectors 

would be a multiple of the window size (i.e., if the number of input features for each 

column is f, then the number of SVM input feature vectors would be f*(2*w+1)).  

Both of these residue window methods may improve the ability of the SVM 

classifiers to differentiate between fSDR and non-fSDR columns of residues, by 

incorporating additional information from neighbouring sequence residues into the 

feature vectors. 

7.3.2.2 Additional SVM Optimisation and Assessment Strategies 

In conjunction with the alternative methods of SVM feature vector encoding, 

described above, additional methods for optimising the SVM learning parameters 

and assessing the performance of the classifiers could be used. 
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An improved method for optimising the parameters of the SVM learning kernels 

(i.e., the C parameter and the C and gamma parameters for the linear and RBF 

kernels, respectively) could use an additional, more fine-grained, approach to 

varying these parameters.  That is, once the optimal set of parameters have been 

identified using the parameters and cross-validation procedure described in chapter 

5; an additional grid-search of the kernel parameter space could then be undertaken 

to see if any smaller incremental variations, close to these parameters, could generate 

any further improvements in the classification.  

It was shown in the SVM classification results, in chapter 5, that there were a large 

number of false positive fSDR predictions being made, resulting in high false 

positive rates.  One possible cause of this is the inherent lack of a clear distinction 

between a significant proportion of the fSDR and non-fSDR classes.  This may 

manifest in the generation of a number of SVM classifications that are clearly 

scoring as positive or negative classes (i.e., the TPs and the FPs), but also a large 

number of examples with very similar SVM classification scores that do not allow a 

clear method of class differentiation.  For this type of outcome it may be beneficial 

to convert the scores from the SVM classification into a measure of the probability 

(i.e., a p-value) that the particular example is to be found in the positive or negative 

class.  This can be thought of as a way of incorporating a measure of the distance of 

each example from the optimally separating hyper-plane of the SVM.  A method for 

calculating probabilities of this form has been described by Platt (1999) and may, 

through the application of a probability threshold, provide a way to reduce the 

number of generated false positives and provide a confidence level for the SVM 

predictions.      

7.3.2.3 Assessment of the Functional Re-scoring Performance when using 

the fSDRs Identified with the SVM Classifiers 

One further stage of analysis that is important for assessing the performance of the 

SVM classifiers, when identifying fSDRs, is the subsequent ability to re-score the 

aligned sequences.  That is, using the potential fSDRs that have been identified by 

the SVM classifiers a sub-alignment of residues should be extracted and used to 

functionally re-score and re-rank the aligned sequences.  This was addressed to some 

extent, in chapter 5, when looking at the effect of functionally re-scoring the three 
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enzyme examples, using the SVM predicted residues.  The aim of this further 

analysis would be to provide a larger performance benchmark of the functional 

annotation accuracy obtained when using the SVM predicted fSDRs to re-score and 

classify specific enzyme function.  This method of assessing the performance of the 

SVM classifiers may result in the observation that a certain level of false positive 

classifications can be tolerated, without unduly affecting the functional re-scoring 

and subsequent functional assignment performance.     
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Appendix I – Dataset Statistics 

 

This appendix presents a more detailed description and summary statistics related to 

the EC class and sequence composition of selected datasets that have been 

investigated in the thesis.   

EC Class Distributions of the Dataset Query Sequences 

An analysis of the EC classes represented by the query sequences used to generate 

the datasets of MSAs analysed in the thesis is presented below. An overview of the 

frequency (figure A-1 (a)) and percentage (figure A-1 (b)) of occurrence of the six 

top-level EC classes, for four of the datasets (see section 2.4.2.7, section 3.2.1, table 

3.1 and section 5.2.6), is shown.  The four datasets are: (i) the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset (denoted as “BLOSUM62”); (ii) 

the All1stINCORRECT.tF.PAM160.E0.001 dataset (denoted as “PAM160”); (iii) the 

All1stINCORRECT.tF.PAM30.E0.001 dataset (denoted as “PAM30”); and (iv) the 

cross-validation dataset of MSAs used in the SVM analysis of chapter 5 (denoted as 

“SVM”).  Table A-1 lists the associated frequency and percentage of occurrence of 

the 6 general EC classes associated with the query sequences from these four 

datasets.  This analysis shows that the oxidoreductases (EC 1.-.-.-) and the 

transferases (EC 2.-.-.-) are the dominant top-level EC classes in all 4 of the datasets; 

associated with greater than 75% of query sequence representatives in the 

BLOSUM62, PAM160, and PAM30 BLAST generated MSAs; and 61.4% of those 

in the SVM dataset.  Except for the isomerases (EC 5.-.-.-), which only occurs once 

in the SVM and twice in the BLOSUM62 datasets, respectively.  Each of the other 

general EC classes are well represented in the datasets, therefore, showing a good 

overall coverage of general EC classes in these four datasets. 
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Figure A-1.  Overview of (a) the frequency and (b) the percentage of 

occurrence of top-level EC classes associated with the query sequences of the 

following four MSA datasets: (i) “BLOSUM62” - the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset; (ii) “PAM160” - the 

All1stINCORRECT.tF.PAM160.E0.001 dataset; (iii) “PAM30” - the 

All1stINCORRECT.tF.PAM30.E0.001 dataset; and (iv) “SVM” - the cross-

validation dataset of MSAs used in the SVM analysis of chapter 5. 

 

 
BLOSUM62 PAM160 PAM30 SVM 

EC class count % count % count % count % 

EC 1.-.-.- 1330 37.7 1258 40.6 881 41.8 117 32.8 

EC 2.-.-.- 1413 40.1 1248 40.3 876 41.5 102 28.6 

EC 3.-.-.- 265 7.5 205 6.6 161 7.6 53 14.8 

EC 4.-.-.- 159 4.5 97 3.1 12 0.5 40 11.2 

EC 5.-.-.- 2 0.06 0 0 0 0 1 0.28 

EC 6.-.-.- 358 10.2 292 9.4 180 8.5 44 12.3 

Total 3527 
 

3100 
 

2110 
 

357 
 Table A-1.  The frequency of occurrence (“count”) and the percentage (%) of 

top-level EC classes associated with the query sequences of the four MSA 

datasets shown in figure A-1. 

 

 

 

(a) (b) 
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A similar analysis was also carried out on the top-level EC classes of the query 

sequences representatives used to generate the 80%, 60% and 40% CD-HIT 

clustered subsets of MSAs, defined in section 3.3.5.  The frequency and percentage 

of EC class occurrence of these three “seqID” subsets is compared (in figure A-2 and 

table A-2) to the un-clustered (seqID=100%) 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset.   

 

 

Figure A-2.   Overview of (a) the frequency and (b) the percentage of 

occurrence of top-level EC classes associated with the CD-HIT query sequence 

representatives of four MSA subsets from the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset: (i) “seqID=100%” – no 

query sequence clustering; (ii) “seqID=80%” – 80% sequence clustering; (iii) 

“seqID=60%” – 60% sequence clustering; and (iv) “seqID=40%” – 40% 

sequence clustering. 

 

 
seqID=100% seqID=80% seqID=60% seqID=40% 

EC class count % count % count % count % 

EC 1.-.-.- 1330 37.7 700 32.8 354 25.4 147 20.4 
EC 2.-.-.- 1413 40.1 864 40.5 655 47.1 387 53.7 
EC 3.-.-.- 265 7.5 173 8.1 112 8.0 75 10.4 
EC 4.-.-.- 159 4.5 136 6.4 104 7.5 46 6.4 
EC 5.-.-.- 2 0.06 2 0.09 2 0.14 2 0.28 
EC 6.-.-.- 358 10.2 256 12.0 165 11.9 64 8.9 
Total 3527 

 
2131 

 
1392 

 
721 

 Table A-2.  The frequency of occurrence (“count”) and the percentage (%) of 

top-level EC classes associated with the query sequences of the MSA datasets 

shown in figure A-2. 

(a) (b) 
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Again, this analysis shows that the oxidoreductases and transferases are the dominant 

top-level EC classes in each of the datasets.  As the clustering becomes more 

stringent the percentage of EC 1.-.-.- examples decreases, from 37.7% in the 

seqID=100% subset, to 20.4% in the seqID=40% subset.  Whereas, the number of 

EC 2.-.-.- examples increases from 40.1% to 53.7% in the same subsets.  The other 4 

classes have a similar proportion of representation in each of the clustered subsets.  

A more detailed breakdown of the specific EC class distributions, at all four levels of 

EC classifications, is shown in figure A-3 and table A-3.  The concentric pie-chart, in 

figure A-3, shows the proportion of each of the four EC levels of classification 

represented by the query sequences of the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset (seqID=100%).  The six classes 

of the first EC level are in the centre, followed by the second and third levels, 

represented by the second and third outer rings, respectively.  The 107 fourth level 

EC class annotations associated with the query sequences in this dataset are 

represented and labelled on the outer ring of figure A-3.  To supplement the pie-

chart, table A-3 lists the associated frequency and percentage of occurrence of these 

107 EC classes.  Also listed in the table are the frequency and percentage of 

occurrences of these EC classes in the clustered datasets (seqID=80%, seqID=60%, 

and seqID=40%) and the 84 EC classes in the SVM dataset.  This analysis shows 

that, except for a small number of specific classes (i.e., EC 2.7.1.37 (non-specific 

serine/threonine protein kinase), EC 1.6.5.3 (NADH dehydrogenase), EC1.14.14.1 

(unspecific monooxygenase), EC 2.7.1.112 (protein-tyrosine kinase), EC 4.1.3.27 

(anthranilate synthase)), the majority of the EC classes represent much less than 5% 

of the total and therefore result in a fairly even distribution of specific EC classes 

within the datasets. 
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Figure A-3.  Concentric pie-chart showing the proportion of each EC level of 

classification represented by the query sequences of the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset (seqID=100%).  The first 

EC level is in the centre.  The second and third levels are represented by the 

second and third outer rings, respectively.  The 107 fourth level EC class 

annotations associated with the query sequences in this dataset are represented 

and labelled on the outer ring. 
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EC 
seqID=100 seqID=80 seqID=60 seqID=40 SVM 

count % count % count % count % count % 
1.1.1.1 84 2.38 37 1.74 16 1.15 7 0.97 6 1.68 
1.1.1.8 2 0.06 1 0.05 1 0.07 1 0.14 0 0.00 
1.1.1.27 105 2.98 39 1.83 25 1.80 8 1.11 7 1.96 
1.1.1.37 120 3.40 65 3.05 41 2.95 10 1.39 11 3.08 
1.1.1.40 4 0.11 3 0.14 2 0.14 1 0.14 0 0.00 
1.1.1.41 2 0.06 1 0.05 1 0.07 0 0.00 0 0.00 
1.1.1.42 3 0.09 2 0.09 2 0.14 2 0.28 1 0.28 
1.1.1.85 12 0.34 9 0.42 5 0.36 3 0.42 2 0.56 
1.1.1.94 90 2.55 62 2.91 43 3.09 16 2.22 16 4.48 
1.1.1.100 4 0.11 2 0.09 2 0.14 2 0.28 1 0.28 
1.2.1.3 52 1.47 29 1.36 15 1.08 8 1.11 4 1.12 
1.2.1.8 8 0.23 4 0.19 2 0.14 1 0.14 1 0.28 
1.2.1.12 176 4.99 79 3.71 20 1.44 4 0.55 4 1.12 
1.2.4.1 7 0.20 5 0.23 3 0.22 2 0.28 2 0.56 
1.3.5.1 2 0.06 2 0.09 1 0.07 0 0.00 0 0.00 
1.3.99.1 13 0.37 10 0.47 6 0.43 4 0.55 1 0.28 
1.4.1.3 27 0.77 9 0.42 7 0.50 2 0.28 2 0.56 
1.4.1.4 26 0.74 16 0.75 8 0.57 2 0.28 1 0.28 
1.6.5.3 295 8.36 168 7.88 85 6.11 33 4.58 30 8.40 
1.6.99.5 28 0.79 24 1.13 19 1.36 14 1.94 4 1.12 
1.7.1.7 41 1.16 12 0.56 3 0.22 2 0.28 2 0.56 
1.8.1.4 2 0.06 2 0.09 1 0.07 1 0.14 1 0.28 
1.8.1.7 9 0.26 6 0.28 4 0.29 1 0.14 1 0.28 
1.8.1.9 5 0.14 3 0.14 3 0.22 3 0.42 2 0.56 
1.8.4.8 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
1.9.3.1 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
1.10.2.2 8 0.23 3 0.14 3 0.22 3 0.42 1 0.28 
1.14.14.1 202 5.73 104 4.88 33 2.37 14 1.94 14 3.92 
1.14.18.1 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
2.1.1.72 2 0.06 2 0.09 2 0.14 2 0.28 2 0.56 
2.1.1.113 5 0.14 5 0.23 5 0.36 5 0.69 4 1.12 
2.1.3.2 37 1.05 26 1.22 16 1.15 6 0.83 6 1.68 
2.2.1.1 10 0.28 7 0.33 3 0.22 2 0.28 2 0.56 
2.3.1.9 1 0.03 1 0.05 1 0.07 0 0.00 0 0.00 
2.3.1.12 27 0.77 23 1.08 18 1.29 10 1.39 8 2.24 
2.3.1.16 19 0.54 8 0.38 7 0.50 3 0.42 3 0.84 
2.3.1.47 3 0.09 3 0.14 3 0.22 2 0.28 2 0.56 
2.3.1.61 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
2.3.1.74 8 0.23 1 0.05 1 0.07 1 0.14 0 0.00 
2.3.3.13 84 2.38 57 2.67 35 2.51 6 0.83 5 1.40 
2.3.3.14 18 0.51 15 0.70 12 0.86 6 0.83 3 0.84 
2.4.1.16 9 0.26 9 0.42 7 0.50 5 0.69 5 1.40 
2.4.1.19 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
2.4.2.7 5 0.14 4 0.19 4 0.29 1 0.14 1 0.28 
2.4.2.10 25 0.71 20 0.94 16 1.15 5 0.69 5 1.40 
2.5.1.47 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
2.6.1.9 21 0.60 18 0.84 17 1.22 8 1.11 8 2.24 
2.6.1.11 41 1.16 31 1.45 28 2.01 8 1.11 7 1.96 
2.6.1.13 6 0.17 5 0.23 2 0.14 1 0.14 1 0.28 
2.6.1.42 3 0.09 2 0.09 2 0.14 1 0.14 1 0.28 
2.7.1.37 841 23.84 484 22.71 371 26.65 263 36.48 0 0.00 
2.7.1.48 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
2.7.1.112 145 4.11 70 3.28 52 3.74 30 4.16 26 7.28 
2.7.1.123 27 0.77 15 0.70 11 0.79 6 0.83 4 1.12 
2.7.1.137 3 0.09 3 0.14 3 0.22 3 0.42 0 0.00 
2.7.2.8 65 1.84 47 2.21 31 2.23 6 0.83 5 1.40 
2.7.3.2 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
2.7.3.3 2 0.06 2 0.09 2 0.14 1 0.14 1 0.28 
2.7.4.14 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
3.1.1.1 36 1.02 20 0.94 9 0.65 7 0.97 6 1.68 
3.1.1.3 5 0.14 3 0.14 2 0.14 2 0.28 2 0.56 
3.1.1.7 6 0.17 5 0.23 4 0.29 3 0.42 3 0.84 
3.1.3.18 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
3.1.3.48 5 0.14 3 0.14 3 0.22 2 0.28 0 0.00 
3.2.1.1 45 1.28 32 1.50 20 1.44 14 1.94 9 2.52 
3.2.1.4 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
3.2.1.8 3 0.09 3 0.14 3 0.22 3 0.42 0 0.00 
3.2.1.20 2 0.06 2 0.09 2 0.14 2 0.28 0 0.00 
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EC 
seqID=100 seqID=80 seqID=60 seqID=40 SVM 

count % count % count % count % count % 
3.3.2.3 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
3.4.21.1 3 0.09 2 0.09 2 0.14 2 0.28 0 0.00 
3.4.21.4 56 1.59 34 1.60 17 1.22 7 0.97 6 1.68 
3.4.21.35 17 0.48 9 0.42 4 0.29 1 0.14 1 0.28 
3.4.22.15 2 0.06 2 0.09 2 0.14 2 0.28 0 0.00 
3.4.23.24 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
3.5.2.2 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
3.5.2.3 29 0.82 24 1.13 18 1.29 9 1.25 9 2.52 
3.5.3.1 2 0.06 2 0.09 1 0.07 1 0.14 1 0.28 
3.5.3.8 2 0.06 2 0.09 2 0.14 1 0.14 1 0.28 
3.5.3.11 7 0.20 5 0.23 3 0.22 3 0.42 3 0.84 
3.5.4.13 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
3.6.3.8 37 1.05 17 0.80 12 0.86 8 1.11 8 2.24 
3.6.3.25 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
3.6.3.29 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
4.1.3.27 81 2.30 64 3.00 55 3.95 23 3.19 21 5.88 
4.2.1.2 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
4.2.1.3 3 0.09 2 0.09 1 0.07 1 0.14 1 0.28 
4.2.1.33 48 1.36 44 2.06 23 1.65 7 0.97 5 1.40 
4.2.1.52 10 0.28 10 0.47 10 0.72 6 0.83 6 1.68 
4.3.2.2 10 0.28 9 0.42 8 0.57 2 0.28 1 0.28 
4.6.1.1 6 0.17 6 0.28 6 0.43 6 0.83 5 1.40 
5.1.3.2 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
5.4.2.2 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
6.1.1.4 140 3.97 95 4.46 60 4.31 22 3.05 13 3.64 
6.1.1.5 16 0.45 14 0.66 11 0.79 6 0.83 2 0.56 
6.1.1.9 7 0.20 6 0.28 6 0.43 4 0.55 0 0.00 
6.1.1.10 1 0.03 1 0.05 1 0.07 1 0.14 0 0.00 
6.1.1.12 20 0.57 14 0.66 10 0.72 4 0.55 3 0.84 
6.1.1.15 3 0.09 3 0.14 3 0.22 2 0.28 2 0.56 
6.1.1.17 19 0.54 15 0.70 13 0.93 5 0.69 5 1.40 
6.1.1.22 21 0.60 13 0.61 7 0.50 2 0.28 2 0.56 
6.2.1.3 6 0.17 4 0.19 2 0.14 2 0.28 1 0.28 
6.2.1.5 9 0.26 5 0.23 1 0.07 1 0.14 1 0.28 
6.3.1.5 4 0.11 4 0.19 3 0.22 2 0.28 2 0.56 
6.3.2.9 1 0.03 1 0.05 1 0.07 1 0.14 1 0.28 
6.3.5.2 12 0.34 9 0.42 7 0.50 2 0.28 2 0.56 
6.3.5.5 95 2.69 68 3.19 38 2.73 8 1.11 9 2.52 
6.4.1.1 4 0.11 4 0.19 2 0.14 2 0.28 1 0.28 

Table A-3.  The frequency of occurrence (“count”) and the percentage (%) of 

specific EC classes associated with the query sequences of the seqID=100%, 

seqID=80%, seqID=60% and seqID=40% MSA subsets of the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset and the “SVM” cross-

validation dataset of MSAs. 

 

 

 

 

 

 

 

 

 



285 

 

Analysis of the Sequence and Functional Class Composition 

of the MSA Datasets 

In the above section the analysis was based upon the EC class distributions of the 

enzyme query sequences that were used to generate the MSA datasets.  Here, an 

analysis is presented of some properties of the sequences that are contained within 

these MSAs.  The 3527 MSAs of the All1stINCORRECT.tF.BLOSUM62.E0.001 

dataset were used for this analysis.  This dataset was chosen because it is 

investigated in most detail throughout the thesis. 

To obtain an overview of the distribution of the numbers of sequences present in 

each of the constituent MSAs the histogram, shown in figure A-4, was constructed.  

The bin size used in this histogram was 5 (starting at 1 to 5, inclusive) and the minor 

grid-lines on the horizontal and vertical axes are 20 and 10, respectively.  This 

distribution shows a wide and reasonably well distributed number of sequences in 

each MSA (i.e., between 20 and 760), with the larger number of examples containing 

between 25 and 70 sequences and a maximum of 61-65 sequences. 

 

Figure A-4.  Histogram of the number of sequences in MSAs of the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset.   The bin size is 5. 

An analysis of the EC class distribution of the sequences in these 3527 MSAs is 

shown in figure A-5.  In particular, figure A-5 (a) shows a scatter plot of the number 

1-20 
21-40 
41-60 
61-80 

81-100 
101-120 
121-140 

141+ 



286 

 

of “correct” (i.e., the number of sequences matching the query sequence to all 4 

levels of EC specificity – “EC4”) and “incorrect” functional assignments in each 

MSA.  This data is also shown, in figure A-5 (b), as a histogram of the percentage of 

“correct” sequences in each of the MSAs.  These plots show the correlation and wide 

spread in the distribution of “correct” to “incorrect” functional sequence assignments 

within the MSAs of the dataset.  A comparison to this is provided in figure A-5 (c), 

which shows a comparable histogram when assessing the percentage of functionally 

“correct” sequences in each MSA using the less specific measure of the first 3 levels 

of EC classification (i.e., “EC3”).  This comparison clearly shows that when the 

level of specific functional measure is reduced from “EC4” to “EC3” the number of 

MSAs containing 100% “correct” sequences increases dramatically.  This trend is 

continued when decreasing the level functional specificity further to the first two and 

just the first level of EC classification (results not shown).  
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Figure A-5.  EC class distributions of the sequences in the MSAs of the 

All1stINCORRECT.tF.BLOSUM62.E0.001 dataset.  (a) Scatter plot of the 

number of “correct” (i.e., number of sequences matching the query sequence at 

all 4 EC levels) and “incorrect” sequences in each MSA.  (b) and (c) are 

histograms of  the percentage of “correct” sequences in each of the MSAs at 

“EC4” and “EC3” levels of functional specificity, respectively.  The bin size is 

1% in both. 
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