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Abstract We design logic circuits based on the notion of

zero forcing on graphs; each gate of the circuits is a gadget

in which zero forcing is performed. We show that such

circuits can evaluate every monotone Boolean function. By

using two vertices to encode each logical bit, we obtain

universal computation. We also highlight a phenomenon of

‘‘back forcing’’ as a property of each function. Such a

phenomenon occurs in a circuit when the input of gates

which have been already used at a given time step is further

modified by a computation actually performed at a later

stage. Finally, we show that zero forcing can be also used

to implement reversible computation. The model intro-

duced here provides a potentially new tool in the analysis

of Boolean functions, with particular attention to monoto-

nicity. Moreover, in the light of applications of zero forcing

in quantum mechanics, the link with Boolean functions

may suggest a new directions in quantum control theory

and in the study of engineered quantum spin systems. It is

an open technical problem to verify whether there is a link

between zero forcing and computation with contact

circuits.

Keywords Zero forcing � Logic circuits � Adiabatic

quantum computation

1 Introduction

1.1 Preliminaries

We order the two elements of a set R ¼ f0; 1g such that

0\1. This extends to a partial ordering on the set Rn ¼
f0; 1gn

by comparing words coordinate-wise. Let x ¼
x1; . . .; xn and y ¼ y1; . . .; yn. Here, x � y means that xi� yi,

for every i ¼ 1; . . .; n. A Boolean function f : Rn �! R is

monotone when f xð Þ� f yð Þ if x � y, for every x; y 2 Rn.

Clearly, because of this, the symbol ‘‘�’’ has a different

meaning than majorization as a preorder of vectors.
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Counted by the Dedekind numbers, monotone Boolean

functions have an important role for proving lower bounds

of circuit complexity (see, e.g., Leeuwen 1990, Chapter

14.4). Remarkably, any function obtained by composition

of monotone Boolean functions is itself monotone.

Examples of monotone Boolean functions are the con-

junction AND and the disjunction OR. Indeed, every

monotone Boolean function can be realized by AND and

OR operations (but without NOT). Monotone Boolean

functions are important in applications, for example, in the

implementation of a class of non-linear digital filters called

stack filters (Astola et al. 1997), in voting schemes, reli-

ability theory, stability of hypergraphs, etc. Important

methods for obtaining non-trivial bounds on specific

monotone Boolean functions have been studied (see, e.g.,

the seminal work of Razborov 1985, and Alon and Bop-

pana 1986).

The central topic of this paper is a connection between

monotone Boolean function and zero forcing. The concept

of zero forcing on graphs is a recent idea that is part of a

program studying minimum ranks of matrices with specific

combinatorial constraints (American Institute of Mathe-

matics 2008). Zero forcing has been also called graph

infection and graph propagation in the areas related to

quantum dynamics and control theory of quantum

mechanical systems (Burgarth and Giovannetti 2007;

Severini 2008).

In quantum mechanics, zero forcing is a technique for

determining the algebraic controllability of a many-body

quantum system by operating on the particles of a proper

subsystem only. The technique is important because it does

not require the knowledge of the spectral properties of the

physical operator governing the system, but only topolog-

ical information about the interactions, i.e., the graph of the

interactions.

Notice that, in the context described here, the term ‘‘zero

forcing’’ seems to be unfortunate, because we are forcing

ones, not zeros. However, we keep the term given that this

is now the most commonly used in the literature. We will

skip alternative definitions of zero forcing. The interested

reader may see the references American Institute of

Mathematics (2008), Burgarth et al. (2009), Burgarth and

Giovannetti (2007).

For the purpose of formally describing zero forcing, we

first need to define a color-change rule: if G ¼ ðV;EÞ is a

graph with each vertex colored either white or black, u is a

black vertex of G, and exactly one neighbor v of u is white,

then change the color of v to black. Given a coloring of G,

the final coloring is the result of applying the color-change

rule until no more changes are possible. Of course, the final

coloring can include different vertices depending on the

initial configuration. A zero forcing set for G is a set Z �
V Gð Þ such that if the elements of Z are initially colored

black and the elements of VðGÞnZ are colored white, the

final coloring of G is all black.

In linear algebraic terms, zero forcing is related to cer-

tain minimum rank/maximum nullity problems of matrices

associated to graphs (see American Institute of Mathe-

matics 2008). As it usually happens for rank related

questions, minimizing the size of zero forcing sets is a

difficult combinatorial optimization problem, which turns

out to be hard whose solution is hard even to approximate.

(The PhD thesis of Aazami 2008, presents a detailed

analysis.)

1.2 Results

In the next section, we prove that zero forcing on graphs

realizes all monotone Boolean functions, and highlight

some simple related facts. The connection between zero

forcing and circuits is obtained by associating a graph to

each logic gate. We will show that the functions AND and

OR are indeed easily realized by two different gadgets with

a few vertices. This is not the first work observing that

monotone Boolean functions can be realized in a combi-

natorial setting. For example, Demaine et al. (2012) have

used the movements of a collections of simple interlocked

polygons for the same purpose. Realizing general Boolean

functions, or even some special classes, in non-standard

computational models, has the potential of uncovering new

mathematical ideas. These may help in practice for refor-

mulating optimization problems, and more abstractly to

establish lower bounds and to quantify resources. On the

other side, we know that zero forcing can be directly used

in the laboratory to optimize control operations on spin

systems. For this reason, observing that the associated

dynamical process is a computational primitive can be

important to introduce parameters to quantify complexity

of the physical evolution. With this aspects in mind, links

between zero forcing and the abstract notion of computa-

tion are useful.

In Sect. 3, we describe the phenomenon of back forcing

in the circuit. The phenomenon occurs when the color-

change rule acts to modify the color of a vertex which has

been already used during the computation. In some cases,

back forcing implies that the information about the output

of a Boolean circuit can be read not just by looking at the

color of a target vertex corresponding to the final output of

the process, but at the color of the vertices in certain

intermediate or initial gadgets. The idea opens a simple but

intriguing scenario consisting of many parties that perform

computation in a distributed way: each party holds a subset

of the gates and is able to read certain information about

the input of other parties, since the color of its gates may

have been modified by back forcing. Back forcing can be

avoided by including some extra gadget acting as a filter.
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While we will not explore this idea in detail, we do believe

that it is interesting and that it deserves further attention.

In Sect. 4, we show that zero forcing becomes universal,

i.e., it can realize any Boolean function, if we apply a

proper encoding. Specifically the dual rail encoding, where

two vertices are assigned to each logical bit, is a method to

construct the NOT gate and therefore to obtain universal

computation. In this way, we can implement reversible

computation. It is interesting to remark that while the

dynamics of zero forcing is irreversible, the ‘‘higher level’’

process can also be used in a reversible manner. Conclu-

sions are in Sect. 5.

2 Main result

For the sake of completeness, let us recall the behaviour of

the logic gates/functions AND and OR: AND outputs 1 if

and only if the input is ð1; 1Þ; OR outputs 0 if and only if

the input is ð0; 0Þ. In our model, logical bits correspond to

specific vertices of a graph. Conventionally, the logical

value 0 is a white vertex; 1 is a black vertex. Once provided

the relevant definitions in the previous section, our main

result is easy to prove:

Theorem 1 Zero forcing realizes all monotone Boolean

functions.

Proof It is sufficient to show that zero forcing realizes the

functions AND and OR.

Claim 1 The gate AND is realized by the gadget GAND

with vertices f1; 2; 3g and edges ff1; 2g; f1; 3g; f2; 3gg,
where 1 and 2 are the input vertices and 3 is the output

vertex, containing the result and being able to propagate

the color. All vertices are initially colored white. An

illustration of the gadget GAND is in Fig. 1.

Proof of Claim 1 If no action is taken then the final

coloring of the gadget is white. If we color vertex 1 black

then the final coloring is all white but for vertex 1. The same

holds for vertex 2. However, if we color vertex 1 and vertex

2 black then the color-change rule implies that vertex 3 is

black at step 2. In fact, f1; 2g is a zero forcing set for GAND.

Claim 2 The gate OR is realized by the gadget GOR

with vertices f1; 2; 3; 4g and edges

ff1; 3g; f1; 4g; f2; 3g; f2; 4gg, where 1 and 2 are the

input vertices. The output vertex is vertex 4. Vertex 3 is

initially colored black. See Fig. 2.

Proof of Claim 2 If no action is taken then the final

coloring of the gadget is all white, but for vertex 3. If we color

vertex 1 black then the color-change rule implies that vertex

4 is black at step 2. The same holds for vertex 2 and for vertex

1 and vertex 2 together. In fact, f1; 3g; f2; 3g; f1; 2; 3g are

zero forcing sets for GOR, able to propagate the color for

inducing the next step of the computation.

It is important to observe that zero forcing does not

realize the function NOT, since when a vertex is colored

black, it can not change color anymore. The consequence is

that zero forcing does not realize universal computation

(any Boolean function can be implemented using AND,

OR and NOT gates) but monotone Boolean functions only.

This concludes the proof. h

It may be worth observing the following points:

• Notice that extra vertices forming delay lines may be

needed to assemble a circuit such that the output

produced by zero forcing in parallel gates is synchronous.

However, given our choice of gadgets, exactly 2 time

steps are required for output of zero forcing in GAND and

GOR. At time step 3 the color-change rule acts on the next

gate in the circuit. There is then a convenient distinction

between internal and external time: internal time refers to

the zero forcing steps inside the gadgets/gates; external

time refers to the time steps of the computation.

• The gadgets GAND and GOR have three and four vertices,

respectively. By inspection on all possible combinations

of white and black vertices for graphs with at most four

vertices, we can observe that we have chosen the

smallest possible gadgets, in terms of number of vertices

and edges, realizing the two functions. One might think

that the gate OR is realized also by the gadget with three

vertices in Fig. 3. Although the gadget implements the

OR correctly, it cannot be used as an initial or

intermediate gate of a circuit, since in this gadget the

color-change rule does not move forwards the output to

the next gate, but it halts at vertex 3. See Fig. 4.

• Let us consider the gadget GOR. If we color vertex 1

black then the color-change rule implies that vertex 4 is

Fig. 1 The gate for the function AND

Fig. 2 The gate for the function OR
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black at step 2. Suppose that vertex 2 is colored white at

step 1. At step 3 the gate has computed the OR function

in vertex 4 with input f0; 1g. At step 3 vertex 2 is also

colored black under the action of the color-change rule,

because this is the unique white neighbour of vertex 3.

This is necessary in order for the computation to

proceed using the output (black vertex 4). So, for all

inputs with output 1, the vertices of GOR are black after

two steps of the internal time. Such behaviour is

discussed in more detail in the next section.

• It is straightforward to realize the operation COPY. See

Fig. 5.

3 Back forcing

If each Boolean variable in the input of a circuit is set to 1,

then the vertices of the circuit that are initially colored

black form a zero forcing set. However, this is not the only

situation in which we have a zero forcing set. Figure 6

gives an example.

This is a circuit computing the Boolean function ðx1

AND x2Þ OR ðx3 AND x4Þ. The number in the vertices of

the figure specify the internal time step at which the vertex

is black; the vertices labeled by 1 are initially colored black.

The output of the circuit is 1 at step 4 and at step 6 of the

internal time the vertices encoding the input of the function

are all colored black. This can happen if and only if three of

the input vertices are colored white at internal time 1.

The phenomenon will be called back forcing, because it is

induced by the color-change rule acting backwards with

respect to the direction from input to output in the whole

circuit. The gadget GAND exhibits back forcing conditionally

on having input f0; 1g. The type of back forcing in GAND can

be called transmittal back forcing, because if something back

forces its output black then the gate transmits the back force,

i.e., it modifies the color of the output vertex in a gate used

previously. Figure 7 clarifies the dynamics.

The gadget GOR needs to force an input forward in order

to color black one of the output vertices adjacent to its

inputs and in another gate. In this sense, GOR does not have

Fig. 3 A gate for the function OR, where color-change rule does not

move the input forward

Fig. 4 The figure shows that an OR gate in which all vertices are

initially white does not move the input forward

Fig. 5 The gate for the function COPY

Fig. 6 A circuit computing the Boolean function ðx1 AND x2Þ OR ðx3

AND x4Þ. The circuit exhibits the phenomenon of back forcing

Fig. 7 The steps of back forcing
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transmittal back forcing. In other words, a gate at external

time t, can not back force its color into GOR at external time

t þ 1. In contrast, the circuit ðx1 AND x2Þ OR ðx3 AND x4Þ
can initiate back forcing as described above (when it an

intermediate element in the circuit).

We can also slow down back forcing, by including

appropriate delay lines—for example, by adding extra

vertices in each gadget or between them. Alternatively, we

could consider delay lines directly embedded in the struc-

ture of the gadgets implementing the logical gates.

Also, back forcing can be avoided completely by

including the gadget in Fig. 8. The gadget acts as a filter. In

some sense, the filter can be understood as an electronic

diode allowing zero forcing only in one direction.

In relation to the circuit for the function ðx1 AND x2Þ
OR ðx3 AND x4Þ, it may be interesting to see that if there

are two parties each one choosing the input of one of the

two AND gates, and each one having access to only the

corresponding vertices, given the back forcing, the parties

can then learn the output of the circuit by looking at the

color of their vertices at the end of the computation, except

when a party chooses ð0; 0Þ (i.e., white, white).

4 Universality

Despite the fact that the color-change rule induces a non-

reversible process (black coloring cannot be undone) a

simple modification of the encoding strategy allows us to

implement universal, and hence also reversible, computa-

tion (see Drechsler and Wille 2011; Saeedi and Markov

2013; Vitanyi 2005 for detailed reviews on this topic).

The idea is to adopt a dual rail strategy, where two

vertices are employed to encode a single logical bit. Spe-

cifically, as shown in Fig. 9, in this scheme we associate

the logical bit 0 to a configuration in which (say) the first

vertex is colored in black while the second is kept white,

and the logical 1 to the opposite configuration (i.e. the first

vertex being left white and the second one being colored

black). With such encoding we can now design the gate

NOT by simply drawing a graph in which the nodes are

exchanged at the output (see Fig. 10). Also a dual rail AND

gate can be easily realized. Universal computation is hence

achieved by constructing a NAND gate via concatenation

of AND with NOT and by observing that the COPY gate

for the dual rail encoding is simply obtained by just

applying to both the nodes that form a bit the transforma-

tion of Fig. 5. Once universal computation has been

achieved, we can easily turn it into a reversible one, e.g., by

building a Toffoli gate (Toffoli 1980). This to remark that

even if zero forcing is an irreversible process, it can still be

used to induce a reversible computational dynamics.

5 Conclusions

We have shown that all monotone Boolean functions can

be realized by zero forcing in a graph constructed by

gluing together the copies of two types of subgraphs/

gadgets corresponding to the Boolean gates AND and OR.

We have briefly discussed the minimality of such gadgets

in terms of vertices and edges. Even we did not give a

formal proof, it seems evident that our gadgets are optimal

in this respect.

We have highlighted a phenomenon of ‘‘back forcing

action’’. Back forcing has an effect on the coloring of gates

already used, as a function of what has happened in the

‘‘future’’, i.e., at a later stage of the computation. Because

of the relation between zero forcing and minimum ranks,

the model described here is amenable to be studied with

linear algebraic tools, potentially suggesting a novel

direction in the analysis of monotone Boolean functions

and, speculating, the introduction of rank problems in

questions relevant to parametrized complexity.

Finally, we have shown that universal computation can

be obtained with zero forcing by simply adopting a dual

rail encoding.

Fig. 8 A gadget acting as a filter: its role is to avoid back forcing

Fig. 9 Physical bits for 0 and 1 in a dual rail encoding

Fig. 10 In a dual rail encoding the logical NOT can be implemented

by swapping the physical bits
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An open direction suggested by the paper is to under-

stand the link between zero forcing and the dynamics at the

basis of other unconventional models of computation, like,

for example, the billiard ball computer—introduced as a

model of reversible computing (Fredkin and Toffoli

1982)—, models involving geometric objects, and dominos

(Demaine et al. 2012). A more precise open technical

problem consists of verifying whether there is a link

between zero forcing and computation with contact circuits

(Red’kin 1979).

From a physics perspective, zero forcing sets describe

controlling, cooling, and symmetries of quantum sys-

tems—engineered spin systems like Heisenberg and AKLT

chains. While an application of monotone Boolean func-

tions in physics is not immediate, the connection that we

have highlighted is nonetheless interesting. For example,

can monotone Boolean functions be used to characterize

symmetries in quantum mechanics?
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Cvetković D, Fallat SM, Godsil C, Haemers W, Hogben L,

Mikkelson R, Narayan S, Pryporova O, Sciriha I, So W,
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