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ABSTRACT

Automated image processing is a critical and often rate-limiting step in a high-content screening 
(HCS)  workflow.  An  imaging  -  statistical  framework  is  described here  with  emphasis  on 
segmentation  to  identify  novel  selective  pharmacological  inducers  of  autophagy.  We  screen  a 
human  alveolar  cancer  cell  line  and  evaluate  the  images  both  by  local  adaptive  and  global 
segmentation.  Region  growing segmentation  is  compared  with  histogram-derived  segmentation, 
where the latter allows a sporadic-pattern foreground, achieving pixel-level precision. Single-cell 
phenotypic features are measured and reduced after assay quality control check. Hit compounds 
selected by machine-learning correspond well to the subjective threshold-based hits determined by 
an expert analysis.  Histogram-derived  segmentation shows robustness  against  image noise,  that 
adversely affects region growing segmentation.

Key words: autophagy, image processing, cellular high-content screening, phenotypic assay, MDC, 
LC3, HCS

INTRODUCTION

High content screening derived images contain vast amounts of data. The automated extraction of 
useful and decision supporting data from these images  often represents a significant bottleneck in 
the  HCS  pipeline.  The  translation  of  phenotypic  images  into  quantitative  information of  how 
compounds  affect subcellular  structures,  for  example,  can benefit  from automated imaging and 
statistical methods that allow an unbiased interpretation of screening results.

The ultimate objective of any HCS screen is  the  selection of  compounds that  may be effective 
against diseases. Cancer, Alzheimer's disease and Huntington's disease are thought to affect millions 
of  individuals  worldwide1,2.  These diseases  are  linked  to  autophagy,  making  it  an  emerging 
therapeutic target  in  drug discovery.  Autophagy is  a  highly regulated,  homeostatic, intracellular 
catabolic mechanism by which eukaryotes degrade superfluous or faulty organelles and long-lived 
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proteins3. Being an evolutionarily highly conserved process, autophagy-specific genes  have  been 
characterized in distant species ranging from yeast to human4. Macroautophagy (henceforth referred 
to  as  autophagy)  is  one  of  the  three  primary  autophagy  forms  besides  microautophagy  and 
chaperone-mediated  autophagy.  The  process  of  autophagy  may  be  upregulated  during  both 
extracellular stress conditions such as starvation, infection, hypoxia, heat or drug treatment, as well 
as  intracellular  stress  conditions  including  the  accumulation  of  protein  aggregate,  misfolded 
proteins or defective organelles5. The process involves a series of steps, including the formation and 
expansion (vesicle elongation) of an isolation membrane (phagophore) which then fuses to form 
autophagosomes (also known as autophagic vacuoles, AV), which in turn fuse with lysosomes to 
form an autolysosome where the cytoplasmic material is sequestered and then degraded6. 

Autophagosomal  activation  can  lead  to  cell  death  through  excessive  self-digestion,  thus  many 
anticancer  agents  have  autophagy  inducing  capability.  In  addition,  cell  growth  is  negatively 
regulated by autophagy, in which may slow down tumour growth7.

High-content screening (HCS) for autophagy activators is still limited, despite an emerging research 
interest. A recent high-content cellular image analysis study identified eight autophagic cell death 
inducer compounds8 and a cell-based functional screening revealed three genes inducing high levels 
of  autophagosome  formation  when  overexpressed9.  Upon  induction  of  autophagy,  both  studies 
exploited the localization of microtubule-associated protein light chain 3 (LC3) fused with  green 
fluorescent protein (GFP) to the autophagosomal membrane10. Increased levels of autophagy are 
phenotypically  indicated  by  the  increased  number,  size  and/or  fluorescent  intensity  of 
autophagosomes that can also aggregate around the nuclear membrane. Cellular systems expressing 
LC3-GFP are considered  as  being more specific  to  indicate  autophagy,  though emission is  not 
steady through the process, because late stage AVs emit a weaker fluorescent signal than early stage 
AVs. There are several alternative methods for measuring autophagosomal induction, with no clear 
consensus as to which is the most appropriate to use. The fluorescent dye monodansylcadaverine 
(MDC) accumulates in autophagic compartments11,  thus it  is suitable to mark the generation of 
autolysosomes12. It is considered rather unspecific due to staining not only the acidic autophagic 
vesicles, but also numerous other acidic organelles of the cell13. Notwithstanding, coupled with a 
confocal  microscopy system rather  than  that  of  widefield,  MDC staining  can  be  a  satisfactory 
indicator of autophagy activation. It fits well into a high-throughput phenotypic screening strategy, 
where the response from a simpler and cost-effective MDC-based primary assay can be confirmed 
by a secondary assay using immunofluorescent LC3B antibody marker.

Besides specificity, selectivity is crucial throughout hit selection process: we want to distinguish 
true autophagic inducer compounds from those that increase the level of autophagic degradation 
indirectly by cellular toxicity8. 

Automated  fluorescent  confocal  microscopy  coupled  with  increased  computational  power  has 
dramatically enhanced the rate of image acquisition and analysis of the multispectral data derived 
from them.  A typical  workflow starts  with  image preprocessing  to  improve  the  quality  of  raw 
images, followed by image segmentation, which is a step where fluorescent regions of interest are 
separated  from the  background.  Segmentation  is  a  critical  component  of  the  image  processing 
system, errors at this phase profoundly influence hit selection. A decline in segmentation accuracy 
may lead to reduced segmentation performance as such an event discredits all numerical metrics 
derived from it. In contrast with the blob-like nucleus, region growing segmentation strategy is not 
optimal for the (usually) punctate AV structures and may not be able to distinguish between AV and 
background noise14. The need for precise segmentation of a sparsely stained AV region together with 
the need of spectral crosstalk (bleed-through) correction, requires a multi cluster-based segmenting 
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algorithm  as  well  as  source  code  level  customization.  As  this capability  is  not  available  in 
commercial image analysis software, we are incorporating it into a customizable open-source image 
analysis applications, ImageJ15.
 We combine this image analysis with a well-established statistical and analytical tool, R16 (http://r-
project.org),  an extensively used open-source platform for exploratory data analysis,  descriptive 
statistics, assay quality control17,18 and performance determination as well as for significance tests, 
as well as a commercial data visualization application SpotFire (Somerville, Massachusetts, United 
States).  A statistical-method based  feature selection is  used to  eliminate  irrelevant  or unhelpful 
numerical descriptors, followed by machine learning based hit selection. Hit compounds  selected 
from the  primary screen  are  then  confirmed in  secondary screens. The  initial  quantitative  and 
automated processing of the images and derived data largely contributes to an unbiased hit selection 
of hits from such phenotypic assays, in contrast to prevailing subjective methods based mostly on 
expert curation and analysis19,20.

The objective of this paper is to outline a simple image analysis - statistical framework, that can be 
applied readily  to  a  high-content  cellular  screen of  cancer  cell  lines to identify novel  selective 
pharmacological inducers of autophagy in compound libraries.

MATERIALS

Compounds for autophagy phenotypic screen

We used the LOPAC1280 compound library (Sigma-Aldrich) as our test compounds; trifluoperazine 
dihydrocholoride  (Sigma-Aldrich)  as  our  positive  control;  and  Dimethylsulphoxide  (DMSO) 
(Sigma-Aldrich) as our negative control.

METHODS

Cell culture and cell plating

Human alveolar carcinoma A549 (lung epithelial cancer) cells were seeded into 96-well transparent, 
flat-bottom plates (Greiner)  at  a density of 5000 cells per well  in DMEM containing 4% Fetal 
bovine serum (Hyclone). The cells were then incubated with library compounds at 5 concentrations 
(10uM, 2uM, 0.4uM, 0.08uM, 0.016uM) for 48 hours. 

Primary assay using MDC staining

The live cells were stained with monodansylcadaverine (MDC) as follows. 100 μl staining medium 
containing 100 μM MDC was added to all wells and incubated for 40 minutes at 37oC. Excess MDC 
was then washed off with PBS on the Bio-Tek EL-405, followed by the addition of 100 μl of warm 
DMEM. The plate was then read immediately on the ImageXpress Ultra. Cell nuclei were then 
stained with 3 μM Hoechst 33342 (Invitrogen).

Secondary assay using LC3B staining

A549  cells  were  fixed  in  4%  paraformaldehyde  for  10  min  at  room  temperature  and  then 
permeabilised with 0.1% Triton X-100 for a further 10 min. The fixed cells were then blocked with 
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3% BSA for 30min. To stain for LC3B, we incubated the cells with anti-LC3B rabbit polyclonal 
antibody at 1:2000 dilution (Novus, #NB600) and subsequently labelled it with 1:2000 dilution of 
anti-rabbit AlexaFluor546 secondary antibody (Invitrogen) for visualisation. Cell nuclei were then 
stained with 3 μM Hoechst 33342 (Invitrogen).

Fluorescent Image Acquisition

Images  of  the  microwells  (4  fields  per  well)  were  acquired  by ImageXpress  Ultra  (Molecular 
Devices)  system  using  20x  objective.  Subsequent  images  were  analyzed  using  ImageJ 
(http://rsb.info.nih.gov/ij/ NIH  1997-2009)  application.  The  segmenting  and  feature  extracting 
algorithm identified nuclear objects through Hoechst 33342 (HO342)  dye interaction with DNA, 
and autophagosomes through MDC staining intensities. 

Fluorescent Image Analysis

A range  of  computational  tools,  image  processing  and  statistical  softwares  are  available  for 
phenotypic profiling of compounds' bioactivity at individual organelle, cell, cell subpopulation or 
microtiter well level. In the initial exploratory phase of the high-content cellular imaging work, the 
IN  Cell  Investigator  (IN  Cell  Developer  Toolbox,  GE  Healthcare)  commercially  available 
application facilitated the set-up of a  region growing-based imaging pipeline in a  user friendly 
manner and served as a benchmark imaging tool. 

Image segmentation is a critical point of imaging pipeline where histogram-derived techniques are 
commonly  used.  These  methods  choose  a  brightness  threshold  (θ)  by  either  maximizing  the 
variance between pixel intensities associated with the foreground and background or minimizing the 
intra-class variance of foreground/background objects. The Isodata algorithm21 is a representative of 
the former approach, and the K-means clustering algorithm for the latter.

We use the fast, built-in ImageJ implementation of Isodata algorithm to segment an image region 
into one foreground region and one background region by observing on the images that only one 
foreground  and  one  background  class  exists  there.  The  Isodata  algorithm  initializes  the 
segmentation by dividing the maximal dynamic range of the image into two parts, representing 
foreground  and  background.  Then  the  sample  mean  brightness  of  the  foreground  (mf,0)  and 
background (mb,0) pixels are calculated,  and a new  θ1 is  calculated by averaging the two mean 
values. Based on this new θ1 value, the process is iterated until idempotence to result θk 22.

In those cases when images showed the existence of multiple foreground or background classes, we 
segmented those images with K-means clustering23,24 algorithm. Given the fixed number of clusters 
based on a priori assumptions, K-means is a simple unsupervised learning algorithm to place pixels 
into clusters whose centroid brightnesses from each other locate as far as possible25. The objective 
of  the  K-means  segmentation  algorithm  is  to  minimize  the  total  intra-cluster  pixel  brightness 
variance. Although the algorithm is theoretically considered to be sensitive to the randomly chosen 
pixels at initialization, it results satisfactory segmentation in our practical application, using Jarek 
Sacha's K-means clustering plugin implementation under ImageJ.

Cell proliferation measurement requires the precise identification of nucleus number in each well, 
though the spatial staining variability in HO342 staining leads a mixed population of weakly and 
strongly  fluorescent  nuclei.  Imaging  techniques  can  compensate  variations  in  staining  quality. 
Segmentation methods can be applied on an image either globally or locally. However the whole 
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image level  (global)  use of  a  segmentation  algorithm with  a  global  θ can  not  compensate  the 
defiency of weak and strong staining accounted for the protocol or tissue type. In general, a global 
segmentation method can be effective when working with uniformly fluorescent foreground pixels 
over uniformly dark background pixels with no spatial changes.

In our case, segmentation with a global  θ can correctly segment strongly fluorescent nuclei, but 
leads to false negatives by missing the randomly located weakly stained nuclei. Histogram-derived 
segmentation  techniques  using  any  single  global  θ causes  false  negative  pixels  and/or  false 
positives, if the global range of θ is spanned towards darker values. Spectral bleed-through is the 
other factor that hinders the global application of a single-threshold segmentation. Both HO342 and 
MDC dyes are excited on the same wavelength (360 nm), and given some overlap between the 
broad emission spectra of both dyes, it is inevitable that some fluorescence emission from the MDC 
staining is detected in the nuclear fluorescence (HO342-optimized) channel (Ch1) as shown in Fig. 
2a and vice versa in the autophagosomal channel (Ch2). This causes MDC-origin staining to appear 
on nuclear channel (AV bleed-through) that are brighter than weakly stained nuclei especially in 
positive controls and wells containing higher compound concentrations.

For assay quality control we use three well established QC metrics: coefficient of variation (CV), Z' 
factor and signal to background (SB) ratio.
Coefficient of variation is calculated as in Eq. (1) to measure the precision relative to the mean 
values calculated for c- as minimum and c+ as maximum signals.

 [1]  

where μ is the mean, σ is the standard deviation of the assay signal in terms of AV fluorescence or 
cell number. 

In the consequent plate uniformity analysis Z' (Eq. 2), values are calculated for total and mean AV 
intensities of the control wells. Z' takes into account the c- and c+ variability, and the dynamic range 
of the assay too, and is therefore an invaluable and widely used QC measure.

 [2]

The signal to background (SB) ratio is expressed as SB =  μc+ /  μc- denoting the mean values of 
positive and negative controls respectively. 

Bioimage  processing  and  statistical  analysis  is  embedded  into  the  HCS workflow as  Figure  1 
shows. Subsequent to the HCS assay preparation and image acquisition, sub-images are defined 
through image preprocessing. Local segmentation is performed followed by validation. Quantitative 
data is measured in the frame of feature extraction followed by assessing the quality of the assay. 
Statistical evaluation requires the removal of irrelevant features, followed by the data visualization. 
Machine learning-based hit selection is the final stage of the workflow.
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FIG. 1. Overall workflow diagram.

RESULTS

Preprocessing

Our proposed imaging workflow addresses both problems caused by the spectral bleed-through and 
punctate AV foreground by decomposing the image into sub-images (influence zones). An influence 
zone represents an equally divided image partition approximating cell boundaries around one or a 
few nuclear  “seeds” that serves as predefined markers26.  An influence zone image is  generated 
based on the imaging pipeline presented on Figure  3 using a Ch1 image (Fig.  2a., representative 
selection). A strong smoothening with a 15 pixel window size median filter is applied to remove 
noise. This is followed by a histogram-based global thresholding, with a manually selected common 
θstack value applied for all images (a stack) acquired from a microtiter plate (Fig. 2b.). An optional 
size filter removes the small segmentation artifacts, and the binary hole filling algorithm reduces 
skeletonization  artifacts.  The  background  of  each  binary  image  is  then  thinned  using  the 
skeletonizing  algorithm27 (Fig.  2c.)  implemented  in  ImageJ,  resulting  a  grid  image  containing 
influence  zones.  A customized pruning algorithm based on Gabriel  Landini'  PruneAll  macro  is 
applied until idempotence to remove all branches of the binary skeleton, leaving only the closed 
loops (Fig. 2d.).
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FIG.  2. Generation of the influence zone binary image. (a) Weakly and strongly stained HO342 
fluorescent  A549  nuclei  in  the  nuclear  channel,  enclosed  with  MDC  originated  fluorescence 
emission. (b) Binary mask of the manual segmentation using  θstack value. Note the unconstrained 
contour, being adequate to generate influence zone. (c) Skeletonized background of image b, with 
branch artifacts indicated by the arrows. (d) The influence zone grids after pruning operation.

FIG. 3. Imaging pipeline of the proposed influence zone image generation.

Segmentation: Nuclear channel

Local  segmentation  is  designed  to  analyze  each  influence  zone  individually.  Assumptions  are 
chosen to be as permissive as possible. An influence zone on Ch1 is supposed to contain either one 
or more nuclei with optional autophagosomal bleed-through pixels forming weaker stained punctate 
regions than that of nuclei. Since HO342 derived fluorescent pixels appearence is assumed on Ch2, 
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therefore the nuclear pixels are blanked to zero in order to eliminate nuclear bleed-through.

FIG. 4. Imaging pipeline of the proposed local segmentation and feature extraction of nuclei.

As  shown  in  Figure  4,  the  next  module  of  the  imaging  pipepline  is  composed  of  image 
preprocessing, local segmentation and feature extraction of nuclei. The local region is extracted, 
that is a Ch1 region enclosed by the contour of the underlying influence zone is duplicated, and the 
copy is processed as a global image. Image preprocessing includes the application of a median filter 
that  removes the noise of the detector and the same time keeps structures and contours mostly 
intact. 

Segmentation is performed on the median filtered result image. K-means algorithm is used due to 
our observation  that multiple foreground and/or background clusters exist in each Ch1 influence 
zone.  Autophagosomal  bleed-through leads  to  multiple  background clusters,  where the  centroid 
brightness  value  of  AV bleed-through cluster  is  typically lower  then  that  of  a  strongly stained 
nuclei's and higher then that of the local background's. That observation results to set the fixed 
cluster number to three, indicating the local background, AV bleed-through and nuclear foreground 
clusters.

Current limitation of the pipeline is derived from the assumption that an influence zone contains 
multiple  nuclei,  with  similar  brightness,  thus  falling into the same cluster.  When the source of 
multiple foreground clusters is that of the HO342 staining variance, only those detected nuclei are 
clustered into the brightest centroid cluster. This limitation does not cause a systematic error, and 
the number of such influence zones was low. There is room for improvement at the speed of the 
imaging macro, currently images of 1-3 plates can be processed overnight by a PC equipped with an 
Intel Core 2 Extreme X9650 quad core 3GHz  CPU, 16 GB memory. Influence zone generation 
takes an additional hour per plate, however the process can be run parallel with other applications in 
a current multicore system.

During  the  binarization  step,  the  3  clusters  such  as  μ1,  μ2,  μ3  are  classified  as  foreground  or 
background. The darkest cluster with the lowest centroid brightness value (μ3) is always classified 
as  local  background,  and  the  brightest  (μ1)  as  foreground i.e.  nucleus.  The  middle  cluster  (μ2) 
between those two can act  as either  nucleus or AV bleed-through depending on an empirically 
determined cluster centroid value. Since bitdepth of the images is 16, pixel intensity values range 
between zero and 216 -1 = 65535. In the following, θnuc is used as a threshold between strongly and 
weakly stained nuclei with a constant value such as θnuc = 10000. Practically μ2 is considered as a 
nuclear cluster and  μ1 >  θnuc and  μ2 >  θnuc. Furthermore  μ2 is considered as an AV bleed-through 
cluster if μ1 > θnuc and μ2 < θnuc.
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Ambiguity occurs when an influence zone contains a weakly stained nucleus (μ1 <  θnuc and  μ2 < 
θnuc).  In  such  cases,  the  centroids  of  nuclear  and  AV bleed-through  clusters  (if  applicable)  are 
similarly bright, and therefore it is not possible to separate them based on intensity. In the presence 
of an AV bleed-through there is a chance for false positive pixels if both  μ1 and  μ2   clusters are 
selected to be foregrounds.  In the absence of an AV bleed-through for false  negative pixels,  if 
cluster μ2  alone is selected to be foreground. Choosing a segmentation threshold as θ = (μ1 + μ2)/2 
results in a satisfying compromise when segmenting those influence zones.

Nuclear  segmentation  can  result  in  merged  nuclei  artifacts  when  nuclei  stained  with  similar 
fluorescence intensity are locate near each other in the same influence zone. A watershed algorithm 
is applied to separate such clumped nuclei if its circularity exceeds 0.63, an empirically determined 
value.

Feature extraction: Nuclear channel

Because the number of influence zones in an image do not always correlate with the number of 
nuclei, the nuclei  are counted based on a separate nuclear segmentation and binarization. Median 
area size of n = 4986 negative control (DMSO treated) nuclei are measured as ã = 150 μm2, σ = 71 
μm2.  A highly permissive empirical  size  threshold of 32  μm2 (= 200 pixel2)  is  applied,  smaller 
objects are not considered as nuclei and were filtered out. 

Morphology, intensity and texture-based nuclear features are extracted after nuclear segmentation in 
order to describe nuclei numerically. Basic shape descriptors such as area, circularity and Feret’s 
diameter  (syn.  caliper  length,  the  longest  distance  between  any  two  points  along  the  nuclear 
contour) are computed using built-in ImageJ measures. Several additional nuclear morphological 
features are also computed using Particles8 plugin (ver. 2.10) by Gabriel Landini28: breadth (the 
largest axis perpendicular to the Feret's diameter), area of the convex hull polygon,  radius of the 
minimal bounding circle,  to name a few. The complete list  is  available at  the author's  website. 
Particle coordinates are also extracted such as the binary blob's centroid and the center of mass 
based on the brightness-weighted centroid.  Intensity-based nuclear  features  include total,  mean, 
median, standard deviation of intensity.

For textural features extraction, the plugin – Gray Level Correlation Matrix Texture Analyzer is 
used (GLCM_Texture ver. 0.4 authored by Julio E. Cabrera), which calculates four standard texture 
features (Angular  Second Moment,  Contrast,  Correlation,  Inverse Difference Moment,  Entropy) 
from the co-occurrence matrices.

Segmentation: AV channel

The result of nuclear segmentation is used in the local segmentation of autophagosomes (Figure 5). 
The same influence zone is used to analyze Ch1 that was used to analyze the corresponding Ch2. It 
is assumed at preprocessing, that any pixel intesities located in the projected nuclear area on Ch2 
(other  than  background)  is  the  consequence  of  nuclear  bleed-through.  Therefore,  Ch2  pixels 
superimposed by the nuclear mask are blanked to zero intensity.
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FIG. 5. The proposed AV segmentation and feature extraction pipeline.

During AV segmentation, Ch2 influence zone pixels apart from the nuclear projection are classified 
into  two  groups:  local  background  and  AV.  This  binary  presumption  allows  us  to  use  the 
computationally fast Isodata algorithm. Distinct to region growing segmentation, that allocates (4- 
or 8-) connected pixels to a central seed (e.g. here the nucleus) to form a continuous region by 
possibly including background pixels, the histogram-based Isodata algorithm develops a sporadic-
pattern foreground presuming no connection between pixels, extracting more strictly the punctate 
AV structure. The thresholding is automatic and θ is calculated from the image histogram.

If more than one nuclei are found in the same influence zone, the matching AV region is calculated 
for each nuclei separately to ensure one to one correspondence between an AV region and a nucleus. 
A region growing method is applied from the nuclear centroids that partitions the given influence 
zone into sub-zones corresponding to each nuclei. Histogram-based segmentation is then applied to 
those AV sub-zones.

Feature extraction: AV channel

The number and total area of pucta per influence zone are calculated. Intensity-based features are 
also calculated: minimum, maximum, standard deviation, mean, median and total intensity of the 
whole AV mask. 

Precision of the segmentation was validated visually by superimposing the nuclear and AV mask 
contours on the respective original image. Both the proposed and the region growing segmentation 
method distinguish a hit from nonhit as depicted in Figure 6c.
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FIG. 6 Validation of the proposed segmentation. Green contours of nuclear (a) and autophagosomal 
(b) binary mask are superimposed on the original images. Borders of influence zones are marked 
with red color. Separation of hit compounds (c) visualized by dose response curves of hit compound 
tamoxifen  citrate  (open  circles,  solid)  and  nonhit  compound  GW-9662  (filled  circles,  dotted) 
processed by the proposed segmentation, and the region growing segmentation (open boxes, dashed 
and filled trianges, dashdotted respectively).

Precise measurement of the number of nuclei is important to determine the toxicity of a compound. 
A ground truth image was created by manually segmenting a representative sample image in Ch1 
based on pixel intensities evaluated by a human expert. The Ch1 ground truth image contains 365 
nuclei   (=100%), the proposed segmentation results  401 nuclei  (110%) and the region growing 
segmentation  results  427  nuclei  (117%).  Even  though  the  proposed  method  shows  better 
performance, both segmentation methods measures the number of nuclei within the 20% error range 
that is used as a threshold to identify toxicity. 

The quantification of pixel level accuracy gives a numerical insight into the precision of the Ch2 AV 
segmentation.  Common  segmentation  performance  metrics29 are  used  for  quantification.  The 
measurement of true positive, false positive, true negative and false negative pixel numbers enables 
calculating  precision,  sensitivity,  (also  called  as  true  positive  rate  or  recall),  specificity,  false 
positive rate, and F-measure. Accurate segmentation is represented by 100% in case of precision, 
sensitivity,  specificity and F-measure, whereas the closer false positive rate value is to zero the 
better. 100% sensitivity of pixel level segmentation means that all AV real pixels are segmented as 
foreground pixels. The sensitivity was 71.5% for the proposed segmentation method, and 71.0% for 
the region growing segmentation.  The specificity measure was found 99.8% and 54.9% for the 
proposed and region growing methods respectively. The lower value of the latter was due to the 
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high number of false positive pixels (Fig. 7). For similar reason, the precision was found 98% for 
the proposed segmentation method, and 16% for the region growing segmentation. The F-measure 
values  were  calculated  as  82%  and  26%  for  the  proposed  and  region  growing  segmentation 
respectively.  The  false  positive  rate  was  0.2% and  45% for  the  proposed  and  region  growing 
segmentation respectively.

DISCUSSION

Segmentation of AV areas using either the region growing (Fig. 7b) or the histogram-derived (Fig. 
7c) method yields different results. By superimposing the contours of the two segmenting pipelines 
(Fig. 7d) on the original image (Fig. 7a), it becomes obvious  that the proposed pipeline segments 
the AV pixels only, while the region growing pipeline includes numerous background pixels as well. 
The proposed imaging pipeline demanded an extended early software development period, but it 
yielded  significant  advantages  in  segmentation  precision.  In  the  current  assay,  nuclear  bleed-
through is the most significant source of noise in the AV channel,  which can be eliminated by 
blanking the nuclear region. Since the cytoplasmic region (marked as orange in Fig.  7b) contains 
minimal  noise,  both  region  growing  and  histogram-derived  methods  yielded  similar  total  AV 
intensities. This feature enables us to use the two methods for validation purposes.

FIG.  7 Comparison  of  the  proposed  and  the  region  growing  pipelines.  (a)  Original  Ch2  AV 
fluorescence image of compound pimozide with 6.67 μM concentration. (b,c) Binary mask of image 
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a) segmented by the region growing (b) and the proposed (c) pipeline. (d) Binary mask contours of 
the region growing (orange) and the proposed pipeline (green) superimposed on the original image.

Quality Control

Following phenotypic feature extraction, the statistical analysis is carried out by serving two main 
purposes: (i) compute quality metrics of a plate and (ii) provide decision support for hit selection of 
the  screen.  We developed a  custom script  in  R language  for  statistical  analysis  (R Project  for 
Statistical Computing) and used TIBCO SpotFire (Somerville, Massachusetts, United States) for 
data visualization.

Quality control (QC) plays a crucial role in an assay performance evaluation in order to determine if 
we can identify a hit of an assay with confidence. AV fluorescence intensities of negative control 
(c-) and positive control (c+) wells are used to compute an overall plate quality. We use three well 
established QC metrics: coefficient of variation (CV), Z' factor and signal to background (SB) ratio.

CV values are calculated on cell number as well as total and mean AV intensity of negative and 
positive control wells. Great majority of the plate CV values fell  under CV < 0.15  using any 
segmentation method. Z' values of both total and mean AV intensities are found to be above our 
range of acceptance (Z' > 0.50) in our sample plate, with Z'AV mean = 0.59 and Z'AV total = 0.66. A high 
SB ratio (SB > 2) is required to evaluate the assay as screenable.  SB distributions of our assays 
ranged above that limit as it is shown in Figure 8.

FIG. 8 Quality control boxplots of signal to background ratio (SB) representing primary (MDC) and 
secondary (LC3) assays, segmented by histogram-based (IJ) and region growing (GE) methods. All 
assays by both methods spread above the acceptable SB > 2 range. The IJ and GE datasets shows 
significant difference (p-valueMDC = 0.0016 and p-valueLC3 = 0.0015).

Feature reduction

Throughout the feature collection phase of image processing, a set of 44 nuclear and AV features are 
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collected (intensity, morphology and texture-based) for each cell. The statistical correlation between 
these features is investigated by correlation analysis  and hierarchical clustering.  The results  are 
shown on a  heatmap with  a  dendrogram in  Figure  9.  The  analysis  revealed  several  groups  of 
features with strong correlations. The alignments of these groups are highly similar in the primary 
and secondary screens. Correlated nuclear morphology features form two large groups shown on the 
upper left and lower right parts of the primary assay correlation coefficient matrix. Nuclear intensity 
features (NucMin, NucMax, NucMean, NucMedian) and AV intensity features (CytoMin, CytoMax, 
CytoMean,  CytoMedian)  form  two  additional  groups  of  correlated  features.  Nuclear  textural 
features form two additional clusters. The minor and major axes of best fitted ellipse on a nucleus 
are correlated with the nuclear area and Feret's diameter.

FIG.  9 Heatmap  and dendrogram representation  of  primary screen  (left)  and  secondary screen 
(right)  correlation  coefficients  between  the  44  collected  features  using  R  statistical  software. 
Sample sizes: Nprimary = 1473461 cells, Nsecondary = 395017 cells.

Feature reduction is an important practical step in data mining, since irrelevant features “confuses” 
machine learning systems34.

To identify redundant, irrelevant features and reduce dimensionality, we use a correlation based 
feature selector  to  determine  the predictive  power of  each  feature.  Features  are  restricted by a 
correlation  based  feature  selecting  subset  evaluator30 algorithm  (CfsSubsetEval)  using  the 
implementation  of  Weka31 machine  learning  software.  It  provides  the  advantage  to  assess  the 
predictive  ability  of  each  feature  individually,  selecting  those  being  highly  correlated  with  the 
hit/nonhit  class but have low intercorrelation with other features. Best first approach is used to 
search  the  subset  of  features  that  performs  greedy hill  climbing  with  backtracing.  The  feature 
selection method above shows how many times each feature is selected during a 10-fold cross 
validation.  

Two features were selected by the above-mentioned algorithms: AVfold and Cytotox, both are present 
in 9 out of 10 folds of our cross-validation and hence the 9 (90%) entry in the primary assay and 
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80% (AVfold) 100% (Cytotox) in the secondary assay.  AVfold is a feature derived from MDC staining 
intensity. The AV median (CDM) of a well is calculated by the mean AV pixel intensities of each 
cell.  AVfold is calculated by dividing a compound's CDM by the median of the eight DMSO wells' 
CDM (= 100%).  Cytotox refers to compound toxicity where the cell number of a compound is 
divided by the mean cell numbers of eight DMSO wells (= 100%).

The  2  selected  features  AVfold and  Cytotox  are  the  dominant  features  with  trivial  biological 
interpretation,  both  in  the  primary  and  secondary  assay.  However,  other  features  can  also  be 
considered  to separate novel compounds based on either only the primary or the secondary assay 
10-fold cross validation. 
The standard deviation of nuclear area and AV mean intensity shows a 10 (100%) entry in the 
primary assay only as well as the mean, median and standard deviation of AV total intensity values 
per well has a 100% entry value in the secondary assay. The significance of these features are not 
consequent in the two assays even though those are intensity and area features, biologically related 
to the dominant features.

Exploratory Data Analysis

The scatterplot of the two selected features (Figure  10) displays two visually distinct,  separated 
clusters of  c- and c+ data. Cytotox thresholds of 61.79% and 33.33% are suggested for primary and 
secondary screens respectively by inspecting the Cytotox histogram. No c- or c+ data is found with 
smaller Cytotox value.

Since outliers strongly affected the Support Vector Machine hyperplane calculation, we removed 
those c+ values.
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FIG.  10. Scatterplot of primary (upper left) and secondary (lower left) screen data forming two 
clusters of c- (blue) and c+ (red) by AVfold values on x axis and Cytotox [%] values on the y axis. 
Compound data is shown as purple dots. Compound values with Cytotox < 61.79% (primary) and 
33.33% (secondary) (brown dots) are considered as outliers by the histograms (right).

Hit selection

Supervised  classification  method  Support  Vector  Machine  (SVM)  was  used  for  automatic  hit 
selection because it was found to be superior in high-content cell identification32. We used the SVM 
implementation of the R-project (package e1071). The classifier was trained using the negative and 
positive controls. Outliers were removed from the training set in order to increase the reliability of 
the classification. To test our classifier we applied a 100-fold cross-validation with a test set fraction 
of c- and c+. The SVM using linear kernel with default settings (C = 1, γ = 0.5) resulted in a model 
(Figure 11) with total accuracy of  99.6%. The verification rate increased to 100% after removing c+ 

outliers.  No  further  SVM  parameter  optimization  seemed  necessary  due  to  the  high  correct 
classification rate.
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FIG. 11.  Scatterplot of the primary screen (left) and secondary screen (right) models calculated by 
Support Vector Machine classifier (linear kernel, C = 1, γ = 0.5) with c- (red dots in region “a”) and 
c+  (green dots in region “b”) data as training set. Crosses indicate support vectors.

The c+ component in the training dataset of the secondary screen shows a slight cytotoxicity by 
shifting the c+ cluster towards the lower Cytotox domain. Besides the highly accurate classification, 
the large margins between the two training clusters resulted in a higher number of automatically 
selected hits than that of the threshold-based selected hits.

Using SVM as a machine learning approach and the nuclear number ratio cutoff for hit selection, 
163 compounds were selected as hits, out of 1280 in the primary assay. Following the prevailing 
practice, a subjective, expert determined (threshold-based) hit-selection procedure was also carried 
out,  with  thresholds  AVfold >  2  and  Cytotox > 80%. The threshold-based  method suggested  97 
compounds with an overlap of 94 compounds (96%) of the 163 proposed by the machine learning 
method.

In the secondary assay 30 hits (100%) were suggested by the threshold-based method overlapping 
26 hits  (87%) selected  by  the  machine-learning-based  method. 4 threshold-based  selected 
compounds (13%) were not listed among the machine-learning selected hits. The machine-learning-
based method resulted 19 additional hits due to the more permissive Cytotox > 33.33% threshold.
Machine-learning based primary hits contained 21 compounds (70%) out of the 30 secondary assay 
hits suggested by the threshold-based method.

In conclusion, we have presented an image processing - high-content analytical pipeline, that is 
readily applicable for a  high-content cellular  screen to  identify novel  selective pharmacological 
inducers of autophagy in compound libraries. Two different image segmentation approaches were 
evaluated.  Histogram-derived segmentation algorithms such as K-means clustering  and Isodata-
allowed pixel-level precision at segmenting the sporadic pattern autophagosomes. Applying those 
algorithms locally enabled us to demonstrate a superior segmentation precision, however slower 
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speed was a limitation. The results of a region growing segmentation could be adversely affected by 
higher level of image noise.
The speed of the proposed imaging macro currently limits the processing to 1-3 plates by overnight, 
leaving a potential room of future improvement. Implementing the current macro in the form of an 
ImageJ plugin will give the opportunity to exploit more multicore functions.
Several 2 dimensional single-cell phenotypic features were collected, morphology-based, intensity 
and texture features as well. QC measures remained above our range of acceptance. 
To study the correlations between features, we applied data analysis techniques such as correlation 
analysis and hierarchical clustering. The features chosen for the actual hit selection were the same 
when chosen by CFS subset evaluator and the “expert user”.
 
Finally we applied SVM machine learning technique that recapitulated the histogram-derived image 
segmentation and algorithm methods run on the commercial software.
The hit selections obtained by the two methods were in very good agreement.The proposed pipeline 
can only be done with a robust HCS assay, where an expert user can decide on meaningful features 
to be extracted.
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