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Abstract 
 

Immune senescence is associated with a predisposition to infections, poor vaccination 

responses and early mortality in older individuals. Furthermore, evidence that chronic 

cytomegalovirus (CMV) infection is a key driver of immune senescence is becoming 

increasingly recognised. This thesis aimed to investigate the hypothesis that large CD8+ T 

cell expansions (TCEs) caused by chronic CMV infection during ageing may be 

instrumental in this association.  

 

Data presented here shows CMV-specific CD8+ TCEs that accumulate during ageing are 

predominately of the CD45RA+ memory phenotype. However, these cells exhibit low Ki-

67 positivity and low Bcl-2 levels directly ex-vivo, in addition to poor proliferation and 

low telomerase activity in response to activation. This indicates they are not 

accumulating through increased proliferation or resistance to cell-death, and may 

represent a population close to senescence. These CMV-specific CD8+CD45RA+ memory 

T cells were also found to display a lower functional avidity for peptide, with higher 

activation threshold compared with CMV-specific CD8+CD45RO+ T cells. Furthermore, IL-

15 was shown to cause CMV-specific CD8+CD45RO+ memory T cells to proliferate and re-

express CD45RA in-vitro; adding to existing evidence indicating a role for IL-15 in the 

homeostatic, rather than antigenic, driven generation of CD8+CD45RA+ memory T cells 

from a CD45RO+ memory T cell pool.  
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The possible impact of these CMV-specific TCEs during ageing is highlighted by the 

finding that old CMV positive individuals had significantly shorter T cell telomere lengths 

than old CMV negative individuals. Therefore, the accumulation of TCEs is likely to 

impact the CD8 compartment of healthy individuals in two ways; by restricting immune 

space and also lowering the overall telomere length of the compartment through the 

accumulation of highly differentiated CD8+ TCEs. Both of these have been shown to 

increase susceptibility to infection. This study therefore provides further evidence for 

the detrimental effects of CMV infection and its role in driving immune senescence. 
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1 Introduction  
 

Medical advances during the 20th century have contributed to the extension of life-

expectancy by a staggering 30 years in western countries, with developing countries 

showing the most rapid gains (Kirkwood, 2008, Christensen et al., 2009). However, 

predictions that 40% of the population in Europe and America will be over 60 years of 

age by 2050 (Lutz et al., 1997) raises concerns of how public healthcare systems will 

cope with an increasingly aged population (Christensen et al., 2009). The incidence of 

age associated illnesses is predicted to become increasingly common, putting pressure 

on healthcare systems and resources (Adhikari et al., 2010). Longer life expectancy also 

presents a new challenge to the immune system, as it must continue to protect for 

many more years than our ancestors required. A lifetime of antigenic burden may 

complicate a variety of clinical conditions in the upper limits of life expectancy 

(Franceschi et al., 2007, Soderberg-Naucler, 2006). Now more than ever, it is important 

to identify these age-related changes and determine their influence on the quality and 

duration of life.  

 

1.1 Ageing 

Ageing is characterised by the declining ability to respond to stress, increased 

homeostatic imbalance, and increased risk of age associated diseases, with the 

inevitable consequence being death. However, the exact mechanisms of ageing remain 

insufficiently understood. 
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1.1.1 Theories of ageing 

Generally, theories of ageing fall into one of two categories: programmed or stochastic 

theories. Programmed theories propose ageing is due to changes in gene expression, 

which control maintenance, repair and defence responses, and is advantageous to the 

species as a whole, rather than the individual, by having a finite lifespan (Ljubuncic and 

Reznick, 2009). Stochastic theories propose the lifelong accumulation of a wide variety 

of molecular and cellular damage causes ageing (Kirkwood, 2008), which are 

summarised in table 1.1. However, this categorisation of theories has been questioned 

(Rattan, 2006), and ageing is now generally regarded to result from multiple causes.  

 

DNA damage RNA damage Protein damage Membrane damage 

Copying/repair errors Transcription errors Misfolding Oxidation 

Telomere shortening Aberrant slicing Synthesis error  

Mitochondrial mutations  Post-translational error  

Viral gene disruption  Aberrant aggregation  

Epigenetic modifications  Impaired catabolism  

Table 1-1. Examples of cellular damage that may contribute to ageing (Adapted from(Kirkwood, 2008). 

 

The evolutionary aspects of ageing have also been hotly debated. Darwin’s theory of 

natural selection is based on the concept that random and heritable variations of 

biological traits will lead to the reproduction of those who are preferentially fit to 

survive in the environment. However, as Peter Medawar formalised in his mutation 

accumulation theory - the force of natural selection weakens with increasing age 

through ‘real hazards of mortality’ (predation, disease, accidents); therefore if a ‘genetic 

disaster’ occurs later in life, its effects may be completely unimportant (Medawar 1946).  
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1.1.2 Measuring cellular ageing – Telomere length 

Research into cellular senescence has long attracted both popular and scientific interest. 

The dominant view of the early 20th century was that cells could grow indefinitely, 

highlighted in Alexis Carrel’s publication ‘on the permanent life of tissues outside the 

organism’ (Carrel, 1912). It was not until 1962, that Leonard Hayflick challenged the 

dogma by showing that normal cells had a limited capacity for replication - since termed 

‘the Hayflick limit’ (Hayflick, 1965), and also referred to as replicative senescence. The 

sensing mechanism that limits this lifespan is the telomere.  Telomeres are composed of 

the simple sequence TTAGGG, which is repeated many hundreds to thousands of times 

at the chromosome ends (Hodes et al., 2002). 50-100 base pairs of this telomeric DNA 

are lost per cell division due to the inability of DNA polymerase to fully replicate the 

ends of chromosomes. With increasing divisions, a decrease in telomere length results; 

eventually leading to DNA instability and apoptosis, or cell-arrest through p53 (Rufer et 

al., 1999). Indeed, a hallmark of senescent cells is the diminished ability to respond to 

cellular stress and overall physical and oxidative stress (Effros et al., 2005). Telomere 

length can therefore be indicative of the residual replicative capacity of the cell, making 

it an important biomarker in the context of senescence. Most importantly, mounting 

evidence suggests short telomeres in lymphocytes are a risk factor for mortality in 

cardiovascular disease, Hepatitis C infection, and age-related diseases such as 

Alzheimer’s disease (Samani et al., 2001, Calado and Young, 2009, Brouilette et al., 

2007, Brouilette et al., 2003). One study has also correlated short telomeres with an 

eight fold increase in susceptibility to death by infection (Cawthon et al., 2003). 
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1.1.3 Telomerase 

Telomere attrition can be suppressed by the enzyme telomerase, a ribonucleoprotein 

complex that adds back the telomeric repeat sequence directly to the single stranded 

telomeric overhang (Akbar and Vukmanovic-Stejic, 2007). Lymphocytes are among a 

small number of somatic cells that can up-regulate telomerase, which compensates for 

telomere attrition (Hiyama et al., 1995, Weng et al., 1996). This suggests an important 

role in the preservation of immune memory (Hodes et al., 2002, Beverley, 2010). 

However, repeated stimulation can eventually lead to loss of telomerase activity in 

lymphocytes (Plunkett et al., 2007, Henson et al., 2009, Lobetti-Bodoni et al., 2010, 

Hodes et al., 2002). Telomerase therefore represents a possible target for the reversion 

of age-related damage, which has already been demonstrated in mouse studies 

(Jaskelioff et al., 2011).  Dysfunctions of telomerase can also lead to malignancy, with 

current estimates suggesting 85% of tumour cells are the result of telomerase up-

regulation (Cesare and Reddel, 2010). The significance of telomerase was recognized by 

awarding the 2009 Nobel Prize of Physiology and Medicine to its discoverers: Elizabeth 

Blackburn, Carol Greider and Jack Szostak.  

 

1.1.4 Ageing and infectious disease susceptibility 

Age-associated susceptibility to a variety of pathogens including pneumonia, meningitis, 

sepsis, urinary tract infections, influenza, and Respiratory Syncytial Virus have been 

documented (Gorina et al., 2008, Fry et al., 2005, Akbar et al., 2004, Nikolich-Zugich, 

2008). Viral reactivation is also more common in old individuals; the best example being 
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Varicella-Zoster Virus (VZV) (LaGuardia and Gilden, 2001), but there are also reports of 

Epstein-Barr virus (EBV) and cytomegalovirus (CMV) reactivations (Scott et al. 

1994;(McVoy and Adler, 1989). Furthermore, novel pathogens in particular, are known 

to cause greater disease severity in the old; Severe Acute Respiratory Syndrome (SARS) 

was rarely fatal in the young, but caused >50% mortality in the old (Donnelly et al., 

2003). Also, West Nile Virus, an emerging virus in the US, showed 80% of adult 

infections under 50 experienced an asymptomatic infection, with <1% developing 

severe disease, whereas lethality was 10 fold higher in the over 50’s, and a staggering 

40-50 times higher in the over 70’s (Chowers et al., 2001, Mostashari et al., 2001, 

O'Leary et al., 2004). Individuals with premature ageing syndromes such as Dyskeritosis 

congenita, who mimic many age-related changes to the immune system seen in the old, 

are also more susceptible to infections (Sedgwick & Boder, 1991).  

1.1.5 Ageing of the immune system – Immune senescence 

The extent of immunological memory to a previous pathogenic challenge is remarkable, 

and can persist for a lifetime without re-challenge. This is exemplified by the fact that 

90% of those given the smallpox vaccine up to 75 years ago, still maintain immunity 

(Hammarlund et al., 2003). However the immune system undergoes significant changes 

during ageing, including a major reduction in T cell generation through thymic 

involution, and senescence of the memory pool through repeated homeostatic 

proliferation. Poor vaccination responses are also commonplace in the old, highlighted 

by the fact that seasonal influenza vaccine has an efficacy of just 30-40% in the over 65’s 
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(Kovaiou et al., 2007, McElhaney and Dutz, 2008, Seder et al., 2008, Weinberger et al., 

2008). Such age-associated impairments of the immune system, collectively called 

immune senescence, are therefore thought to contribute to the increased incidence in 

age-associated susceptibility to infection.  

 

1.2 T cells  

Before discussing the impact of ageing on T cells (section 1.4), an overview of T cells will 

be given. This section outlines: what T cells are and how they are generated; how T cells 

are activated; the generation of effector and memory T cells; the maintenance of T cell 

numbers; and what constitutes a quality T cell response.   

 

1.2.1 T cell generation  

T cells are generated from bone marrow derived haematopoietic progenitors, but 

undergo selection and maturation in the thymus (Kindt et al., 2007). Haematopoietic 

progenitors enter the thymus from the blood (Schwarz and Bhandoola, 2006), and 

undergo extensive cell division within the thymus, to generate a large population of 

immature thymocytes (Kindt et al., 2007). Immature thymocytes each make a distinct T 

cell receptor (TCR), by a process of random gene rearrangement (Kruisbeek, 1993). TCR 

recognizes antigen only when presented by major histocompatibility complex (MHC) 

molecules, on antigen presenting cells (APCs)(Kindt et al., 2007). Thymocytes undergo a 

selection procedure by interaction with APCs in the thymus. Positive selection selects 

for T cells capable of interacting with self MHC presented by thymic stromal cells 
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(Kruisbeek, 1993). Only those thymocytes interacting with adequate affinity for self 

antigen and MHC receive a survival signal and are positively selected, whereas those 

with insufficient affinity die by apoptosis (Starr et al., 2003). The two main subsets of T 

cell are the CD4+ and CD8+ T cell, which recognize antigen presented by MHC class II and 

MHC class I respectively. The fate of a thymocyte as a CD4+ or CD8+ T cell is dependent 

on whether they are presented self peptide by MHC II or MHC I respectively, during 

positive selection (Starr et al., 2003). Thymocytes which survive positive selection then 

migrate towards the thymic medulla, at which point they are again presented with self 

antigen in complex with MHC by APCs including dendritic cells and macrophages. 

Thymocytes that interact too strongly at this point undergo apoptosis by a process of 

negative selection. The vast majority of thymocytes will die at this stage (Starr et al., 

2003). Therefore, only interactions with intermediate reactivity survive selection, and 

are exported into the periphery as recent thymic emigrants, which mature post 

thymically to form naïve T cells (Shortman et al., 1990). This results in a naive T cell 

repertoire that is sufficiently diverse and reactive towards a vast array of foreign 

antigens, but is also non-reactive to self antigens (Nikolich-Zugich et al., 2004).    

 

1.2.2 TCR structure 

The TCR is a heterodimer composed of two different protein chains: 95% of T cells 

display the αβ heterodimer and 5% the γδ heterodimer (Kindt et al., 2007). Each chain 

of the TCR is a member of the immunoglobulin superfamily; consisting one N-terminal 

immunoglobulin (Ig) variable (V) domain (binding MHC and presented antigen, pMHC) 
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and one Ig constant (C) domain (a trans-membrane spanning region and a short 

cytoplasmic tail at the C terminal end involved with intracellular cell signalling events) 

(Rudolph et al., 2006). αβ TCR diversification mainly occurs in the thymus, by stochastic 

recombination of non-contiguous gene segments, with further diversity enhanced by 

imprecise joining of nicked segments, addition of non-germline nucleotides by DNA-

repair machinery, and pairing of different α and β segments (Nikolich-Zugich, 2008). 

Binding of the variable domain to pMHC is largely dependent on the complementarity 

determining regions (CDRs). There are 3 CDRs on each vB protein chain, with CDR3 

showing the greatest diversification (Kindt et al., 2007). Diversification results in the T 

cell repertoire i.e. a pool of T cells specific for a vast array of antigens. Once activated, a 

naïve T cell will proliferate and differentiate into effector or memory T cells, which 

generate immune responses against cells infected by pathogen or altered self 

(cancerous) cells - referred to as cell-mediated immunity. 

1.2.3 T cell activation 

The activation of naive CD4+ and CD8+ T cells are generally similar, and are initiated by 

co-ordinated signalling from two main sources: the interaction of TCR with processed 

antigen presented by MHC on the APC, and co-stimulatory molecule signalling (Smith-

Garvin et al., 2009). It is also the role of various accessory and adhesion molecules to 

stabilise and sustain this interaction, and for cytokines to direct the responses during 

and following activation (Kindt et al., 2007).  
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1.2.3.1 Antigen presenting cells 

As all cells express either MHC class I or II, strictly speaking they are all antigen 

presenting cells (APCs). However, by definition, those cells displaying MHC class I only 

are referred to as target cells (for CD8+ T cells) and those displaying MHC class II (to CD4+ 

T cells) are APCs (Kindt et al., 2007). Although a variety of cells may act as APCs, three 

types are classified as professional APCs: dendritic cells (DCs), macrophages, and B cells. 

Non-professional APCs are cells induced to express MHC class II and co-stimulatory 

molecules transiently during an inflammatory response, and include fibroblasts in the 

skin, glial cells in the brain, pancreatic β cells, and various epithelial and endothelial cells 

(Nickoloff and Turka, 1994). DCs are among the most effective APCs, as they 

constitutively express high levels of MHC class II and co-stimulatory molecules. DCs can 

further be divided on the basis of their anatomical location, phenotype and function as 

depicted in table 1.2. 

 

 Plasmacytoid DCs Myeloid DCs Langerhans cells Interstitial DCs 

Location Blood Blood Epidermis Dermis and other 

tissues 

Phenotype CD11c
–
CD1a

+
 

CD1c
–
CD123

high
 

CD304
+
 

CD11c
+
CD1a

+
 

CD1c
+
CD123

low
 

CD304
–
 

CD11c
+
CD1a

+
 

CD207
+
 

CD11c
+
CD1a

–
 

CD68
+
  

coagulation 

factor XIII A 

chain 

T cell priming Yes Yes Yes Yes 

B cell activation Yes Yes Weak Yes 

IFN-α production High Yes Yes Yes 

Table 1-2. Subsets of human dendritic cells (adapted from(Lambotin et al., 2010). 
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DCs will initially exist as immature DCs; unable to activate T cells as they lack the 

requisite molecules such as CD40, CD54, and CD86 (Banchereau and Steinman, 1998). 

However, these cells are efficient at capturing antigen, and can take up particles or 

microbes by a variety of methods, including: phagocytosis, pinocytosis, c-type lectin 

receptors and pattern recognition receptors (PPRs) such as toll-like receptors (TLRs) 

(Banchereau and Steinman, 1998, Lambotin et al., 2010). Antigen capture triggers full 

maturation and mobility of the DC to T cell rich areas of the lymph nodes, during which 

time antigen is processed and displayed together with MHC, on the surface of the DC 

(Banchereau and Steinman, 1998). DCs migrate to lymphoid tissues such as the spleen 

and lymph nodes, where they complete their maturation and release chemokines to 

attract circulating T cells and B cells (Adema et al., 1997).  

 

1.2.3.2 T cell interaction with APC 

The interaction between the TCR complex on the surface of the T cell and antigen 

presented with MHC on the APC is a highly specific one. However, other molecules 

strengthen this interaction, including the co-receptors CD4 and CD8 that bind to 

conserved regions on MHC class II and class I respectively. These co-receptors prolong 

engagement and recruit essential molecules inside the cell which are involved in 

signalling (Rudolph et al., 2006). The TCR also associates with CD3 on the surface of the 

T cell, forming a TCR-CD3 complex. The CD3 accessory molecule participates in signal 

transduction following interaction of the TCR with antigen, but does not itself influence 

antigen binding (Smith-Garvin et al., 2009). 
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1.2.3.3 Co-stimulation 

Signalling solely through the TCR results in a non-responsive state known as anergy, 

therefore co-stimulation is required for productive activation (Smith-Garvin et al., 2009). 

Co-stimulation may be provided by various molecules, but two families of receptors, the 

CD28 receptor family and the tumour necrosis factor (TNF) receptor family, are key 

players in providing co-stimulation. Various studies have shown the importance of 

CD28, which binds CD80 and CD86 on APC’s, in promoting T cell proliferation, survival, 

metabolism and cytokine production (reviewed in(Acuto and Michel, 2003). The TNF 

receptor family includes CD27, CD40, 4-1BB and OX-40. CD27 for example, binds CD70 

on APCs, and is important in the generation, survival, maintenance, and quality of a T 

cell response (Duttagupta et al., 2009). 

 
1.2.3.4 T cell signalling events following activation 

The first step of intracellular signalling following TCR ligation is the activation of src (lck 

and fyn) protein tyrosine kinases (PTKs), which leads to the phosphorlyation of 

immunoreceptor tyrosine-based activation motifs (ITAMs) on the cytoplasmic tails of 

CD3 (van der Merwe and Dushek, 2011). This triggers the recruitment of ZAP-70 and 

subsequent cascade of phosphorylation events (Smith-Garvin et al., 2009). Among such 

events are the activation of phospholipase C γ-1 (PLCγ-1) dependent pathways, 

including Ca2+ and Diacylglycerol (DAG) induced responses, cytoskeletal rearrangement 

and integrin activation pathways (van der Merwe and Dushek, 2011). Co-stimulatory 

molecules such as CD28 also act to augment these responses (Acuto and Michel, 2003). 
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1.2.4 Generation of effector and memory T cells 

Upon successful activation, the T cell will undergo rounds of repeated division 2-3 times 

per day for 4-5 days, enhanced by an increase in IL-2 levels, generating a progeny of T 

cell effector clones. Naive CD8+ T cells become cytotoxic effector cells, targeting 

intracellular pathogens and altered self cells; whereas CD4+ T cells largely provide 

effector cytokine help to CD8+ T cell and B cell responses (Kindt et al., 2007). On 

resolution of the infection, the vast majority of the expanded population of effector T 

cell clones are removed, and a population of memory CD4+ and CD8+ T cells are formed, 

providing protection in the event of re-challenge.  

1.2.5 Redressing the balance after resolution of infection 

Following the successful clearance of a pathogen, up to 95% of the expanded T cell 

clones are removed, as they no longer benefit the host and may produce large amounts 

of potentially detrimental cytokines (Krammer et al., 2007). At the same time, 

immunological memory must be formed in the event antigen is re-encountered. A T 

cell’s fate will be determined both by the survival signals it receives (through TCR, co-

stimulatory molecules, adhesion molecules and cytokines) and the apoptotic signals it 

receives (Adams and Cory, 1998). Caspases are the executioners of apoptosis, a family of 

proteases having a major role in regulating most mechanisms of apoptotic cell death, 

including extrinsic cell-death-receptor-dependent apoptosis and intrinsic mitochondria-

dependent apoptosis (Krammer et al., 2007). These two pathways have different origins 

of initiation, but can converge downstream of activation at the point of caspase release. 
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1.2.5.1 The extrinsic apoptotic pathway 

The extrinsic apoptotic pathway is initiated by ligation of the cell-death receptors 

containing ‘death domains’ on the surface of cells. These include TNF receptor, CD95 

(FasL or apo-1), TNF related apoptosis inducing ligand receptor (TRAIL) 1 and TRAIL 2, 

and death receptor 3 (DR3) or DR6 (Ashkenazi and Dixit, 1998). Pro-apoptotic signals are 

delivered by these receptors through a death inducing signalling complex (DISC) 

formation on the plasma membrane e.g. CD95 triggering by CD95L, results in the 

formation of the CD95 DISC. This initiates downstream caspase activation leading to 

apoptosis of the T cell. 

 

1.2.5.2 The intrinsic apoptotic pathway 

The intrinsic apoptotic pathway differs from the extrinsic apoptotic pathway in that it is 

regulated by the balance of pro- and anti-apoptotic signals predominately from the B 

cell lymphoma 2 (Bcl-2) family (Adams and Cory, 1998, Aggarwal and Gupta, 1998, Chao 

and Korsmeyer, 1998). A number of BCl-2 family members have been discovered and 

are summarised in table 1.3. The intrinsic apoptotic pathway involves mitochondrial 

permeabilisation, causing the release of mitochondrial contents including cytochrome C. 

Together with apoptotic-protease activating factor 1 (APAF-1), this initiates  

apoptosome formation and caspase release, leading to the destruction of the cell 

through apoptosis (Adams and Cory, 1998, Chao and Korsmeyer, 1998). 
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Pro-apoptotic Anti-apoptotic 

Bax (Oltvai et al., 1993) Bcl-2 (Chao and Korsmeyer, 1998) 

Bak (Chittenden et al., 1995) Bcl-XL (Boise et al., 1993) 

Bad (Yang et al., 1995) Mcl-1 (Zhou et al., 1997) 

Bcl-XS (Boise et al., 1993) Bcl-w (Gibson et al., 1996) 

Bik (Boyd et al., 1995) A1 (Lin et al., 1996) 

Bid (Wang et al., 1996)  

Table 1-3. Members of the BCl-2 family involved in apoptosis (with references). 

 

1.2.6 Differentiation pathways of effector and memory T cells 

It remains unclear whether effector or memory T cells arise independently from each 

other or if they are the same cells at various stages of differentiation. The two main 

models proposed for the differentiation of T cells are the linear and divergent pathways 

(figure 1.1). As their name’s suggest, the linear pathway proposes a direct lineage from 

naive to effector, then to memory, T cells (Opferman et al., 1999, Sallusto et al., 1999) 

whereas the divergent pathway proposes effector and memory cells are generated as 

daughter cells from one cell (Chang et al., 2007, Manjunath et al., 2001). Evidence exists 

to support both models, and are reviewed elsewhere (Kalia et al., 2010), however a few 

lines of evidence will be mentioned here. Support of a linear differentiation pathway 

comes from studies using lymphocytic choriomeningitis virus (LCMV) infection, which 

shows memory CD8+ T cells develop from a greatly expanded population of effector 

CD8+ T cells (Kaech et al., 2002, Murali-Krishna et al., 1998). Additionally, adoptive 

transfer experiments have shown memory CD4+ T cells can be generated from antigen 

activated effector CD4+ T cells in-vivo (Garcia et al., 1999). Support for a divergent 
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pathway comes from elegant experiments by Change et al., in which they showed 

activated naive T cells exhibit unequal partitioning of proteins that mediate cell 

signalling and cell fate, leading to asymmetrical division of the two daughter cells, which 

are differentially fated phenotypically and functionally to become effector or memory T 

cells (Chang et al., 2007).  

 

 

 

 

 

Figure 1-1. Models of T cell differentiation pathways. 
Two models proposing the differentiation pathway of T cells are shown. The linear pathway (top) 
proposes a direct lineage from naive to effector then to memory T cells, whereas the divergent pathway 
(bottom) proposes effector and memory cells are generated as daughter cells at the same time from one 
single cell.  
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1.2.7 The identification of T cells using pMHC multimeric complexes 

HLA-peptide multimeric complexes allow for the direct ex-vivo visualization of antigen-

specific T cells by flow cytometry (Klenerman et al., 2002, Ogg and McMichael, 1998, 

Altman and Davis, 2003). Specific peptide is engineered and folded in the presence of 

MHC to construct single pMHC monomers. These pMHC monomers are therefore 

recognized by T cells specific for that peptide. The TCR-pMHC interaction is rather weak 

however, therefore single pMHC monomers are biotinylated (using Bir A enzyme) then 

conjugated (using streptavidin) together as four, five or more multimeric units to 

generate tetramers, pentamers or streptamers respectively. These provide multiple 

TCR-pMHC interactions which increases the chance of binding, and therefore of staining, 

the T cell of interest (figure 1.2a). Although, it is currently believed three (or even two) 

pMHC monomer complexes are sufficient for staining (Wooldridge et al., 2009). 

Multimers are usually fluorescently labeled during streptavidin conjugation to facilitate 

T cell identification by flow cytometry  (Altman and Davis, 2003). 

 
1.2.7.1 Affinity vs. Avidity 

The terms affinity and avidity are often used interchangeably, however they are distinct 

(Stone et al., 2009). Affinity is defined as the strength of the interaction between one 

ligand and its receptor e.g. TCR affinity for peptide presented by MHC (pMHC). TCR 

affinity for peptide is determined during T cell generation (section 1.2.2). Avidity is 

defined as the sum strength of multiple interactions e.g. TCR binding to pMHC is 

strengthened by additional interactions between the T cell and APC (Smith-Garvin et al., 

2009). These include: co-receptor binding e.g. CD4 and CD8 bind conserved region of 
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MHC; co-stimulatory molecules e.g. CD27 and CD28 on T cells interact with CD70 and 

CD80/CD86 on APCs; adhesion molecules e.g. LFA-1 on T cell bind cellular adhesion 

molecules on APCs (Smith-Garvin et al., 2009, Stone et al., 2009) 

 

1.2.7.2 Identifying high avidity T cells using mutated tetramers  
 

T cells recognising the same antigen presented by MHC can vary in their sensitivity by 

several orders of magnitude (Alexander-Miller, 2000, Alexander-Miller et al., 1996, 

Walker et al., 2010). Furthermore, it has been shown that high-avidity CD8+ T cells are 

the most efficient at eliminating viruses (Alexander-Miller et al., 1996, Almeida et al., 

2007, Derby et al., 2001). Although, one study has shown that low-avidity CD8+ T cells 

may be more beneficial in chronic infections (Harari et al., 2007), necessitating further 

investigation into the role of T cell avidity in immune control during acute and chronic 

viral infections. High avidity T cell populations may be identified experimentally by 

stimulating T cells with titrating amounts of peptide, and identifying cells responding at 

the lowest concentrations as the high avidity T cells (Almeida et al., 2007, Harari et al., 

2007, Villacres et al., 2003). In the present study, specially engineered ‘CD8null’ 

tetramers were used that contain a mutation in the α3 domain (D227K/T228A) of the 

conserved MHC binding site (Walker et al., 2010, Melenhorst et al., 2008). This mutation 

weakens CD8 co-receptor binding to MHC class I that normally stabilises the peptide-

TCR interaction. Therefore, CD8+ T cells binding mutated tetramer are less reliant upon 

CD8, and have higher avidity for peptide. A high avidity population can therefore be 

identified and compared with the normal population which binds regular, un-mutated 

tetramer (figure 1.2). 
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(A) 

 

(B) 

 

Figure 1-2.  Antigen-specific CD8
+
 T cell staining using normal or mutated (CD8null) tetramers. 

(A) Normal tetramers are composed of four MHC class I monomers engineered to present a specific 
peptide recognised by a specific CD8

+
 T cell. As with regular MHC class I molecules, these contain the α-3 

binding domain which interacts with CD8 co-receptor for stabilisation. In this example, the TCR has low 
affinity to pMHC. When monomers are conjugated to a fluorescently labelled streptavidin molecule via 
biotin, tetramers are formed (tetramerisation). This creates multiple interactions which are strong and 
most CD8

+
 T cells specific for that antigen are stained with the aid of CD8. (B) Mutated (CD8null) 

tetramers are composed of the same antigen-specific MHC class I monomers, but contain an α-3 binding 
domain mutation (D227K/T228A) which results in an inability to bind CD8. Therefore, as shown in this 
example, only T cells with high affinity TCRs will bind the tetramer without CD8 help. Either the normal or 
CD8null tetramer binding populations can then be identified by flow-cytometry. 
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1.3 T cell subpopulations 

T cells are commonly classified into subpopulations, based on their phenotypic and 

functional characteristics. These give an insight into the role of the T cell, or its relative 

point at various stages of differentiation, which reflect changes in expression of genes 

controlling cell cycle, survival, effector functions and migration.  

1.3.1 Defining T cell subpopulations 

T cells subpopulations are based on various criteria, so it is important to understand 

which markers are commonly used for classification and why. 

1.3.1.1 CD45R isoform expression 

CD45R, also called the common leukocyte antigen, was the first and prototypic 

receptor-like protein tyrosine phosphatase to be identified (Thomas, 1989). It consists of 

an intracellular domain, a transmembrane region and an extracellular domain, which 

exists in different isoforms; CD45RA being the largest and CD45RO the smallest isoforms 

(Hermiston et al., 2003). CD45R is expressed on all haematopoietic cells and covers up 

to 10% of the cell surface, making it one of the most abundant cell surface glycoproteins 

(Thomas, 1989). Its ligand has yet to be identified, but the main intracellular targets of 

CD45 phosphatase activity are the Src-family kinases (predominately p56Lck and p59Fyn in 

the T cell) which initiate signal transduction upon TCR engagement (McNeill et al., 

2007). Experiments using monoclonal antibodies revealed expression of the higher 

molecular weight isoform, CD45RA, was indicative of naïve T cells, and the subsequent 
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shift in expression to the lower molecular weight isoform, CD45RO, following activation 

was indicative of an antigen experienced T cell (Akbar et al., 1988).  

1.3.1.2 CD27 and CD28 co-stimulatory molecule expression 

CD27 and CD28 were described previously as important co-stimulatory molecules in T 

cell activation (section 1.2.3.3). However, these molecules are also useful markers for 

defining T cell subpopulations; as their expression is down-regulated in response to 

repeated stimulation, and therefore indicative of T cells at various stages of 

differentiation (Appay et al., 2002, Azuma et al., 1993, Hamann et al., 1997). This is 

exemplified by the fact that long term culture of T cells result in the entire population 

eventually becoming CD28- (Effros et al., 1994). Interestingly, CD4+ T cells differentiate 

and lose the expression of CD27 first and then CD28, whereas CD8+ T cells show CD28 

then CD27 down-regulation (Appay et al., 2002, Khan et al., 2002b). This may reflect 

preferential use of either co-stimulatory pathway.  

1.3.1.3 Homing and adhesion molecule expression 

Lymphocytes continually circulate in the blood and lymph in surveillance of foreign 

antigen. Different subpopulations of T cells will also migrate differentially to various 

tissues. Naive T cells for example, are unable to mount an immune response until 

activation, and therefore do not require homing to inflammatory sites. Instead they 

need to interact with DC’s in secondary lymphoid tissues. The route of trafficking by a T 

cell is determined by the homing (or trafficking) receptors on its surface.  
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Some homing receptors recognise specific vascular addressins expressed by the high 

endothelial venules’ (HEV’s) of different secondary lymphoid tissues, thus promoting 

migration into the secondary lymphoid tissue. Others homing receptors interact with 

vascular addressins on endothelium at sites of inflammation, therefore promoting 

peripheral migration.  There are multiple receptors involved in the homing of T cells 

(Woodland and Kohlmeier, 2009), but some commonly used for classification include 

CD62L (l-selectin) and CCR7. CCR7 is a chemotactic receptor, belonging to the G-protein 

coupled receptor family, which binds CCL19 and CCL21, directing migration to the 

lymphoid tissues (Woodland and Kohlmeier, 2009). CD62L is an adhesion molecule, 

which, in addition to CCR7, is required for the migration of T cells to the lymph nodes 

(Butcher and Picker, 1996). Naive T cells therefore express CCR7 and CD62L. 

 

1.3.2 Central memory (TCM) and effector memory (TEM) cells 

By dividing the antigen experienced CD45RO+ memory CD4+ or CD8+ T cells further by 

CCR7 expression, two main subpopulations were found to have distinct functional 

properties (Sallusto et al., 1999). T cells lacking CCR7, rapidly respond to antigen by 

producing effector cytokines, including IFN-γ, IL-4, IL-5, and perforin. These cells were 

termed effector memory T cells (TEM) as they migrate to inflamed tissues, using the 

alternate receptors CCR1, CCR3 and CCR5. T cells expressing CCR7 were termed central 

memory T cells (TCM), as they lacked immediate effector function and had low activation 

threshold, but could home to the lymph nodes for efficient DC communication 

(Lanzavecchia and Sallusto, 2005, Wherry et al., 2003). Furthermore, CD62L expression 
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is found to largely overlap with CCR7 expression (Sallusto et al., 1999) and is therefore 

sometimes used in place of CCR7. By using radioactive isotope labelling of proliferating 

cells in-vivo, the turnover rate of CD4+ naïve, TEM, and TCM cells were determined as 1 

year, 15 days and 48 days respectively (Macallan et al., 2004). This highlights that TEM in 

particular, are short lived effectors that may require continual replenishment.  

1.3.3 CD45RA+ Memory (TEMRA) cells 

The switch from a naive CD45RA+ to a memory CD45RO+ T cell is reversible, and a 

population of the memory pool may comprise these CD45RA+ memory T cells. These can 

be identified by tetramers, confirming their specificity for antigen (Appay and Rowland-

Jones, 2004, van Leeuwen et al., 2002, Faint et al., 2001). They are delineated from 

naive T cells by their lack of expression of CD27 and CCR7; in which case they are termed 

TEMRA cells (Hamann et al., 1999b, Sallusto et al., 2004, van Leeuwen et al., 2002). 

Compared to naïve CD45RA expressing T cells, TEMRA cells show signs of repeated 

stimulation i.e. low expression of the co-stimulatory molecules CD27 and CD28, 

indicative of repeated cell division (Wills et al., 2002), and express various effector-like 

markers (van Leeuwen et al., 2002, Wills et al., 2002).  

 

It was initially proposed that TEMRA cells were terminally differentiated (Champagne et 

al., 2001). However, evidence now suggests that TEMRA cells may instead represent a 

stable population within the T cell memory pool. In-vitro studies have shown that 

stimulated CMV-specific and EBV-specific CD8+ TEMRA cells can undergo significant clonal 
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expansion, up-regulate CD45RO expression, secrete perforin and IFN-γ, and show direct 

ex-vivo cytotoxicity (van Leeuwen et al., 2002, Faint et al., 2001, Wills et al., 2002). 

Although lacking CD27 and CD28 expression, stimulated CMV-specific TEMRA cells can 

increase expression of CD137 (4-1BB), CD278 (ICOS) and homing receptors CCR5 and 

CXCR3 (Waller et al., 2007). The significance of this is apparent when CD137L treated 

TEMRA cells are given CD137L blocking antibody and a subsequent drop in proliferation 

(40-60%) is observed compared to controls (CD137L treated, no blocking antibody), an 

effect not observed with CD80, CD86 or CD275 (Waller et al., 2007). This suggests highly 

differentiated TEMRA cells could be using other co-stimulatory signalling pathways 

besides the classical CD27/CD28 co-stimulatory pathways. 

1.3.4 Subpopulation consensus issues 

The simultaneous measurement of a variety of markers enables the distinction of a 

multitude of T cell subpopulations. However, there is yet to be a consensus on which 

subpopulation classification system is best to use (Appay et al., 2008). This can cause 

confusion and difficulty when comparing results between research groups. In this thesis, 

subpopulations of T cells will be defined by the markers CD45RA and CD27, as based on 

work performed in our lab and others (Dunne et al., 2005, Hamann et al., 1997, Libri et 

al., 2011, van Lier et al., 2003). In our experience, delineating on the basis of CD27 

expression gives a clearer dissection of the four subpopulations, compared with CCR7. 

CD27 is also more relevant to the present study, in terms of ageing and differentiation, 

rather than CCR7, which is indicative of homing properties. Furthermore, CD27 re-
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expression does not occur on CD27 negative memory T cell populations (Hintzen et al., 

1993) whereas CCR7 re-expression following antigenic stimulation has been reported 

(Schwendemann et al., 2005, van Leeuwen et al., 2005). However, there is considerable 

homology between CD27 and CCR7 or CD62L expression (Sallusto et al., 2004, Sallusto 

et al., 1999, Appay et al., 2008, Fierro et al., 2008), meaning a fair comparison is 

possible, as summarised in table 1.4. 

 

 

 

Table 1-4. Phenotypic markers defining T cell subpopulations. 
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1.4 The impact of ageing on T cells 

Immune senescence can impact the innate immune response (discussed later in section 

1.5), however it is the defects in T cell immunity that are the most marked and best 

documented (Nikolich-Zugich, 2008). These defects can occur at a single-cell or cell 

population level and will be discussed here.  

1.4.1 Decreased naive T cell production during ageing 

The progressive involution of the thymus during ageing leads to decreasing production 

of naive T cells. Involution begins approximately one year after birth, and by middle-age 

most parenchymal tissue is replaced by fat, although functional thymic tissue remains at 

least into the sixth decade of life (Linton and Dorshkind, 2004). Although the exact 

mechanism for thymic involution remains poorly understood, the cause may be a loss or 

disruption of interaction between developing thymocytes and the supportive thymic 

stoma (Lynch et al., 2009). With involution of the thymus comes a decrease in recent 

thymic emigrants (RTE), which may put pressure on homeostatic mechanisms needed to 

sustain a diverse naive T cell repertoire through ageing (Nikolich-Zugich, 2008). 

1.4.2 Increased naive T cell turnover during ageing 

Compared with memory T cells, naive T cells rarely undergo division, instead being 

homeostatically maintained by weak TCR triggering and cytokines (Boyman et al., 2009). 

However, experiments with aged rhesus macaques have shown naive T cells have 

significantly higher rates of turnover, with no subsequent increase in numbers (Cicin-
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Sain et al., 2010). Furthermore, in humans, CD4+ T cell homeostatic proliferation was 

seen to double in the over 70’s (Naylor et al., 2005). This suggests naive T cells may be 

under added pressure to survive during old age, and risk being lost through senescence. 

1.4.3 Expansion of memory T cells with ageing 

The older the individual becomes the more pathogens they are likely to have 

encountered, and hence the more memory T cells they have generated. However, there 

are large clonal expansions of T cells specific for a restricted number of epitopes, 

especially within the CD8+ T cell compartment, reported in ageing mice and humans 

(Callahan et al., 1993, Posnett et al., 1994, Ku et al., 1997, Schwab et al., 1997). Current 

evidence suggests these non-malignant expansions are the result of chronic pathogen 

stimulation by viruses, including Cytomegalovirus (further discussed in section 1.6). 

1.4.4 Age-related restriction of the TCR repertoire 

The compounding effect of decreased naive T cell numbers and accumulation of 

memory T cells during ageing is thought to shrink the overall diversity of the T cell pool 

by old age (Nikolich-Zugich et al., 2004, Naylor et al., 2005, Ahmed et al., 2009). 

Observations of TCR diversity during ageing suggests it remains constant in youth, but 

later in life TCR vβ usage becomes uneven and reduction of CDR3 diversity occurs 

(Vargas et al., 2001, Schwab et al., 1997). This could have consequences, as a diverse T 

cell repertoire is essential for mounting immune responses to new pathogens. Indeed, 

increased susceptibility to new infections is a hallmark of age-related immune decline 
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(section 1.1.4). Although direct evidence for this is lacking in humans, experiments in 

animal models show a restricted TCR diversity can result in impaired immunity to viruses 

(Messaoudi et al., 2004, Yager et al., 2008, Cicin-Sain et al., 2010). 

1.4.5 Inverted CD4:CD8 ratio 

The normal CD4:CD8 ratio in adults is usually around 2:1, in cord blood for comparison it 

is higher at around 3:1 (Brzezinska, 2005). Interestingly, inversion of the CD4/CD8 ratio 

alone was predictive of survival rate in a UK sample of old people (Huppert et al., 2003) 

and predictive of individuals with poor T cell proliferative responses to mitogens (Peres 

et al., 2003). Inverted CD4:CD8 have also been reported in some older individuals in care 

homes (Cretel et al., 2010) and those experiencing high levels of job stress (Bosch et al., 

2009), an association which became stronger with increased age.  

1.4.6 Down-regulation of CD27 and CD28 expression 

CD27 and CD28 are co-stimulatory molecules found on the surface on T cells (section 

1.3.1.2). Virtually all T cells in umbilical cord blood express CD27 and CD28 (Azuma et al., 

1992, Brzezinska, 2005). However, the fraction of CD4+ and CD8+ T cells expressing CD27 

and/or CD28 significantly decreases during ageing (Boucher et al., 1998, Nijhuis et al., 

1994, Fagnoni et al., 1996, Fletcher et al., 2005, Wikby et al., 2005, Kovaiou et al., 2005, 

Posnett et al., 1994). These CD27-CD28- T cells represent a population which have 

undergone repeated stimulation, as they have shorter telomere lengths relative to 

CD27+CD28+ T cells (Monteiro et al., 1996, Fletcher et al., 2005, Soares et al., 2004) and 
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show defective telomerase activity (Plunkett et al., 2007). CD27/CD28 expression also 

gradually decreases during long-term in-vitro T cell culturing (Brzezinska, 2005, Effros et 

al., 1994), which seems to confirm those findings in-vivo.  

 

1.4.7 T cell defects at a cellular level 

T cells in old individuals have been associated with a variety of functional defects. One 

of the first to be documented was low IL-2 production upon activation (Gillis et al., 1981, 

Chen et al., 1986), but has since been extended to include low activation-induced IFN-γ 

production (Murasko and Goonewardene, 1990), impaired activation (Schindowski et 

al., 2002), and signalling defects through lipid rafts (Larbi et al., 2010). Studies in mice 

have also shown ageing results in declining activation of a range of substrates including 

tyrosine phosphorylation of CD3 ζ-chains and various kinase activities (Miller et al., 

1997). 

 

1.4.8 T cell senescence vs. exhaustion  

Repeated proliferation and/or stimulation of T cells throughout life can result in T cell 

senescence or exhaustion. However, although these terms are often used 

interchangeably, there is evidence to suggest they may be distinct processes (Akbar and 

Henson, 2011). Generally, either process can be divided into 3 phases; each phase on 

course to a different pathway (figure 1.3). 
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Figure 1-3. The 3 phases of senescence versus exhaustion (adapted from(Akbar and Henson, 2011) 

 

Cellular senescence can be induced (phase 1) either by telomere erosion or DNA 

damage, caused by reactive oxygen species (ROS), chromatin perturbation and 

activation of stress pathways in response to growth factor deprivation (Campisi and 

d'Adda di Fagagna, 2007, d'Adda di Fagagna, 2008, Passos and Von Zglinicki, 2006). 

These telomere-dependent, and telomere-independent, inducers of senescence lead to 

phase 2: the DNA damage response (DDR), which involves the recruitment of DNA repair 

proteins (Akbar and Henson, 2011, Campisi and d'Adda di Fagagna, 2007). This causes 

temporary growth arrest, however, if the DNA damage cannot be repaired, cell cycling 

ceases and a permanent state of senescence (phase 3) is reached (Campisi and d'Adda 

di Fagagna, 2007, d'Adda di Fagagna, 2008). A well characterised marker of T cell 

senescence is CD57 a.k.a HNK-1, a terminally sulfated glycan carbohydrate epitope 
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(glycoepitope) that was first described in 1981 on human natural killer (HNK) cells (Abo 

and Balch, 1981). CD57 is associated with high susceptibility to activation-induced cell 

death and an inability to undergo cell division (Focosi et al., 2010), a proliferative defect 

which cannot be overcome by cytokine help (Kern et al., 1996). Another marker of 

senescence is killer-cell lectin-like receptor G-1 (KLRG-1). KLRG-1+ cells are unable to 

undergo clonal expansion following activation (Voehringer et al., 2002), due in part to 

KLRG-1 inducing defective Akt phosphorylation and proliferation (Henson et al., 2009).  

 

T cell exhaustion is defined by the progressive loss of function and is induced (phase 1) 

by high antigenic load, such as during chronic viral infection or cancer (Akbar and 

Henson, 2011). Under conditions of high antigenic load, T cells are driven further to 

differentiation and begin to express inhibitory receptors (phase 2). Signalling through 

these receptors can lead to decreased cytotoxic capacity, decreased cytokine 

production and eventually growth arrest (phase 3). A well characterised inhibitory 

receptor is programmed death receptor 1 (PD-1); a member of the CD28 receptor family 

that has been shown to be highly expressed on CD8+ T cells during chronic infection 

(Barber et al., 2006, Blackburn et al., 2009). Importantly, blocking PD-1 has been shown 

to restore T cell function in mice and humans (Barber et al., 2006, Lages et al., 2010, 

Nakamoto et al., 2009, Trautmann et al., 2006). Other inhibitory receptors shown to 

induce T cell exhaustion include cytotoxic T lymphocyte antigen 4 (CTLA4), T cell 

immunoglobulin domain and mucin domain protein 3 (TIM3), and lymphocyte activation 

gene 3 (LAG3) (Blackburn et al., 2009, Sakuishi et al., 2010, Wherry et al., 2007).   
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1.4.9 The immune risk phenotype (IRP) 

The age-related changes to T cells described thus far are therefore important 

biomarkers indicative of immune ageing. How these biomarkers are associated with 

age-related susceptibility to infections and poor vaccination responses have therefore 

been investigated. One such investigation is the ongoing Swedish OCTO and NONA 

longitudinal studies (Wikby et al., 2005, Wikby et al., 2002, Wikby et al., 2006), which 

measure various immunological parameters in the very old (80+ and 90+ years of age 

respectively) to determine their impact on life expectancy. Upon conclusion of the 

study, a set of parameters defining an immune risk phenotype (IRP) were proposed, and 

those individuals within the IRP had decreased survival rates of up to 4 years compared 

to those outside the IRP. Furthermore, follow up studies have shown groups of long 

lived individuals over 100 years of age are frequently outside the IRP (Strindhall et al., 

2007, Derhovanessian et al., 2010). Many of the significant associations identified in the 

studies were found to relate to T cells (table 1.5). The significant association with 

cytomegalovirus seropositivity will be discussed further in section 1.6. 

 

Immune Risk Phenotype 

CD4:CD8 ratio <1 

Poor T cell proliferative responses 

CD28↓ 

CD57↑ 

KLR-G1↑ 

IL-2↓ 

IFN-γ↓ 

CMV
pos

 

Table 1-5. Parameters of the IRP (adapted from(Pawelec et al., 2004) 
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1.5 The impact of ageing on other components of the immune system 

 
1.5.1 The innate immunity and immune senescence 

Innate immunity comprises four types of defence: the anatomical, physiological, 

phagocytic and inflammatory barriers. Anatomical barriers include the skin and mucous 

membranes. Physiological barriers include temperature e.g. Fever (inhibits pathogen 

growth), pH (e.g. stomach acid), lysozymes (cleave bacterial cell walls) and interferon 

(induces antiviral state in surrounding uninfected cells). Phagocytic barriers including 

blood monocytes, neutrophils and tissue macrophages, which internalize, digest and kill 

whole microorganisms. Finally there are inflammatory barriers: tissue damage causes 

local leakage of vascular fluid, containing serum proteins with antimicrobial activity, and 

inflammatory mediators which recruit phagocytic cells into the area.  

 

In comparison to the lymphoid progenitors, there is no decrease in the numbers of 

myeloid progenitors during ageing which give rise to many of the cells involved in innate 

immunity (Beerman et al., 2010). In fact, there are reports suggesting increased 

numbers and hyper-activity of these cells in the old (Gomez et al., 2008, Kovacs et al., 

2009, Shaw et al., 2010). Instead, ‘innate immune senescence’ usually reflects 

dysregulation. For example, decreased TNF-α production by dermal macrophages 

impairs T cell migration during immune responses to Candida in old skin, whereas ex-

vivo, macrophages function properly (Agius et al., 2009). This demonstrated 

dysregulation of macrophages in the tissue environment, rather than impaired function.  
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1.5.2 B cells and immune senescence 

B cells are generated and mature within the bone marrow. A mature B cell leaves the 

bone marrow expressing membrane-bound immunoglobulin (mIg) with a single 

antigenic specificity. The mIg associates with the disulphide linked heterodimer Ig-α/Ig-β 

which is involved in cell signalling, to collectively form the B cell receptor or BCR (Kindt 

et al., 2007). When a naïve B cell encounters antigen specific for its BCR, it divides 

rapidly, differentiating by a process of affinity maturation for antigen, class switching, 

and formation of effector (plasma) and memory B cells. Plasma cells produce and 

secrete antibody in large amounts which attach to pathogens initiating their destruction 

or facilitating their removal by phagocytes. Plasma B cells die after a few days, however 

memory B cells have much longer lifespan and continue to express the bound BCR and 

patrol the organism in the event of re-challenge.  

 

Although total B cell numbers do not decline with age (Weksler and Szabo, 2000), the 

memory B cell compartment increases with age and shows decreased CD27 co-

stimulatory molecule expression (Colonna-Romano et al., 2003), in a similar manner to T 

cells. Furthermore, B cells from older individuals are stimulated 70% less efficiently than 

B cells from young individuals (Aydar et al., 2002). However, It is believed that many of 

these age-related impairments in B cell activation result from a lack of T cell help, and 

the change in the cytokine environment with ageing (Weiskopf et al., 2009).  
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1.6 Cytomegalovirus  

Cytomegalovirus (CMV) is associated with driving T cells to greater differentiation 

(Akbar and Fletcher, 2005, Appay et al., 2002, Fletcher et al., 2005, Khan et al., 2002b, 

Pawelec et al., 2004). CMV seropositivity was also found to be a significant factor in the 

immune risk phenotype (IRP), a cluster of immune parameters associated with 

decreased survival in the very old (section 1.4.9). This section describes CMV and 

evidence linking CMV with immune senescence.  

1.6.1 Discovery of CMV 

As far back as 1881, descriptions of large “protozoan like” cells in the kidneys of still-

born babies were reported (Ribbert, 1904). With the advent of advanced cell culture 

techniques, the virus causing these cytomegalic cells with intranuclear inclusions was 

isolated, and hence named Cytomegalovirus (Craig et al., 1957).  

1.6.2 Seroprevalence of CMV 

CMV is shed in bodily fluids, resulting in infection of others through close contact 

(Hanshaw et al., 1968). Seroprevalence is approximately 50-90%, with the majority of 

the population being infected by adulthood; highlighted by a one per cent cumulative 

rise in chance of infection per year of age (Griffiths, 1997). The rate of infection is also 

highly influenced by geographical location and socio-economic status (Ho, 2008). The 

success of the virus is highlighted by the incidence of CMV seropositivity being so 

ubiquitous it reaches even the most isolated tribal communities (Black et al., 1974).   
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1.6.3 CMV pathology 

Upon acute infection of a healthy host, symptoms are rare, but may include 

mononucleosis (Taylor, 2003). The virus then establishes a life-long chronic yet sub-

clinical infection, entering a state of latency, when infectious virions are undetectable 

(Sinclair, 2008). In immune-compromised individuals however, CMV is a major cause of 

morbidity and mortality, with various pathological manifestations. In AIDS patients for 

example, CMV disease commonly presents as retinitis or enteritis (Harari et al., 2004). In 

organ transplant recipients, CMV is the most common viral infection: causing fever, 

hepatosplenomegaly, myalgias, leukopenia and thrombocytopenia with or without 

specific organ dysfunction (Emery, 2001). This can indirectly affect the host’s immune 

response, leading to acute rejection, graft loss, and onset of other opportunistic 

infections (Strippoli et al., 2006). Primary CMV infection is also the leading cause of birth 

defects and developmental disabilities (Hyde et al., 2010). 

1.6.4 Latency 

CMV belongs to a family of viruses of the genus herpesviridae, from the greek herpein, 

meaning “to creep” - in reference to the latent, recurring infection typical of this group 

of viruses. CMV is part of the subfamily betaherpesvirinae, which establishes latency 

predominately in monocytes, as compared with the alphaherpesvirinae herpes-simplex 

virus (HSV) and varicella-zoster virus (VZV) or the gammaherpesvirinae EBV, which 

establish latency predominately in neuronal cells and B cells respectively (Sinclair, 2008).  

However, many other cell types are permissive for CMV infection in-vivo; including 
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epithelial cells, endothelial cells, granulocytes and lymphocytes (Emery, 2001, Sinclair 

and Sissons, 2006, Revello and Gerna, 2010), creating a potentially large reservoir of 

latent virus. Evidence suggests latent CMV virus in monocytes may become reactivated 

during differentiation into macrophages (Soderberg-Naucler et al., 1997, Soderberg-

Naucler et al., 1998). CMV may also disseminate throughout the body as a result of 

adhesion molecule interaction between leukocytes and infected endothelial cells, 

creating fusion points for virion transmission (Revello and Gerna, 2010). 

1.6.5 Is CMV reactivating in healthy individuals? 

CMV related pathology in otherwise healthy individuals has been reported (McVoy and 

Adler, 1989), although reports are seldom, indicating CMV infection is kept under 

control. Analysis for the presence of CMV DNA in the monocytes of old volunteers 

however revealed 56% had detectable CMV DNA, with significantly higher percentages 

of CMV-pp65 specific CD8+ T cells than those without detectable CMV DNA (Leng et al., 

2011). CMV IgM titers were also found to be negative for all subjects, indicating that 

recent primary CMV infection was unlikely and reactivation therefore the cause. CMV 

may also be reactivating at other sites of the body, including the kidneys, as CMV can be 

detected in the urine of older CMV positive individuals (Stowe et al., 2007). 

Furthermore, ‘abortive reactivations’ occur frequently for herpesviruses such as EBV 

and CMV (Kurz et al., 1999, Laichalk and Thorley-Lawson, 2005). In this process, viruses 

start gene replication within the cell but abort before generation of infectious virus. 

Frequent abortive reactivation result in repetitive immune stimulation (Virgin et al., 
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2009) and may account for an expansion of clones without detection of CMV in the 

blood or appearance of CMV associated symptoms.  

1.6.6 Immune responses to CMV  

CMV elicits a strong immune response in-vivo, triggering early B cell production of CMV-

specific neutralising antibodies targeting surface glycoprotein B (gB/UL55) (Emery, 

2000). Immunisation with CMV-specific gB induces neutralising antibody responses 

which can protect animals from an otherwise lethal CMV infection (Schleiss, 2008). 

Evidence also suggests Natural killer (NK) cells are important in immune responses to 

CMV. Neonatal mice are rendered susceptible to lethal infection if NK cells ablated 

(Brown et al., 2001, Polic et al., 1998). In humans, CMV-related disease during organ 

transplantation is correlated with poor NK cell protection (Gandhi and Khanna, 2004, 

Quinnan et al., 1982). However, it is the cell-mediated branch of the immune response, 

in particular CD8+ T cells, which control CMV replication most efficiently (Moss and 

Khan, 2004, Gandhi and Khanna, 2004, Harari et al., 2004). CD8+ T cells can target a 

broad range of CMV peptides, but the major targets are the pp65 matrix protein (UL83) 

and the immediate-early (IE) genes (Sylwester et al., 2005, Emery, 2000, Kern et al., 

2000, Khan et al., 2002a).  

1.6.7 CMV immune evasion strategies  

CMV is a DNA virus with a large genome encoding over 200 genes (Chee et al., 1990, 

Emery, 2001). It has co-existed with eukaryotic cells for millions of years (Maffei et al., 
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2008) and this is exemplified by the vast array of immune evasion strategies it has 

developed (Wiertz et al., 1997, Emery, 2001). Many of these disrupt antigen processing 

and presentation within CMV infected cells, thereby avoiding recognition by patrolling 

immune cells. Some CMV genes devoted to immune evasion and their mechanisms of 

action are summarised in table 1.6.  

 

HCMV gene Immune evasion strategy 

US2/US11 Destroy newly synthesized MHC class I molecules 

US3 Retains MHC class I molecule in endoplasmic reticulum 

US6 Blocks peptide transport by transporter associated with antigen (TAP) 

US28 Acts as promiscuous chemokine receptor 

UL18 MHC class I homolog. Acts as a decoy for natural killer (NK) cells 

UL83 (pp65) Phosphorlyates immediate early  (IE) protein leading to IE presentation being 

suppressed, due to lack of processing by proteasome 

Table 1-6. HCMV genes involved in immune evasion 
Abbreviations: unique short (US) and unique long (UL). 

1.6.8 CMV and the immune risk phenotype 

One hundred per cent of those in the immune risk phenotype (IRP) group in the NONA 

study were CMV positive versus eighty four per cent in the non-IRP group (Wikby et al., 

2002). The role of CMV as a causal factor in the IRP may be due to the accumulation of 

CMV-specific CD8+ T cell expansions (TCEs) which the virus elicits (see 1.6.10). These 

could contribute to the skewing of the CD4:CD8 ratio, a parameter in IRP and itself a 

predictor of early mortality in the old (Huppert et al., 2003). Furthermore, there is a 

decrease in naïve CD8 T cells in the old, but it is the increase of effector memory T cells 

that cause the inflated CD8 numbers (Pawelec et al., 2006a). A decrease in the 

expression of the co-stimulatory molecules CD27 and CD28, and increased CD57 
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expression, on T cells are also biomarkers of the IRP, and incidentally also linked to CMV 

driven differentiation and senescence in T cells. This will be discussed in more detail in 

the following sections.  

1.6.9 CMV-specific T cell differentiation 

MHC class I tetramers have been particularly useful in studying virus-specific CD8+ T cell 

populations during the progress of infection, and different virus specific CD8+ T cells 

display varying degrees of differentiation. For example, Influenza-A-specific memory 

CD8+ T cells show an early differentiation phenotype; reflecting the acute nature and 

clearance of an Influenza infection (Appay et al., 2002). CMV-specific CD8+ T cells 

however, show the most differentiated phenotype of all virus-specific CD8+ T cells, 

exhibiting low CD27 and CD28, indicative of repeated activation (Appay et al., 2002, 

Klenerman and Hill, 2005, Koch et al., 2007, van Lier et al., 2003, Wills et al., 2002).  

 

Many factors associated with a particular virus may influence the state of differentiation 

of the CD8+ T cells targeting it, including antigenic load and presentation, viral 

persistence and location, and the influence of viral immune escape mechanisms (Appay 

and Rowland-Jones, 2004). Indeed, CMV devotes multiple genes to immune evasion, as 

discussed earlier. The obvious reason for such a differentiated phenotype is that CMV-

specific T cells are encountering antigen more frequently. This may be due to the 

cellular tropism of the virus e.g. HSV resides in neuronal cells and may therefore not be 

seen as frequently by T cells as is CMV is, which is present in various cell types, including 
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epithelial and endothelial cells (Revello and Gerna, 2010, Sinclair, 2008). CMV effects 

are not limited to CD8+ T cells, as CD8+ T cells also require the help of CMV-specific CD4+ 

T cells, which are also found in high numbers in healthy CMV seropositive individuals 

and similarly show a highly differentiated phenotype (Koch et al., 2006, Fletcher et al., 

2005).  

1.6.10 CMV-specific CD8+ T cell clonal expansions  

Large CMV-specific T cell expansions (TCEs) are found within CMV positive individuals, 

and persist for a lifetime (Harari et al., 2004). These TCEs seem highly restrictive, using 

only one or two vβ gene segments (Khan et al., 2002b, Wallace et al., 2011, Karrer et al., 

2003). They are found in both the CD4+ and CD8+ T cell compartments, accounting for up 

to 50% of the entire repertoire in older CMV positive individuals (Harari et al., 2004, 

Looney et al., 1999, Wikby et al., 2002). Furthermore, these TCEs are predominately 

CD28− and CD57+ T cells indicating they have undergone repeated stimulation and are 

close to senescence (Khan et al., 2002b, Weekes et al., 1999, Wills et al., 1999). 

 

1.6.11 Are CMV-specific T cell expansions useful? 

It could be argued that expanded CMV-specific T cell clones have protective qualities, as 

severe CMV disease is rarely seen in the immune-competent host (Effros et al., 2005). 

However, rare reports of CMV disease in healthy individuals have been documented 

(Crowley et al., 2002, Eddleston et al., 1997, Wreghitt et al., 2003). It has also been 

suggested that highly differentiated T cells may have a suppressive function, as donor 
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specific CD8+CD28− T cells are often found in the blood of people with successful, stable, 

transplants, and are absent in those with acute rejection (Colovai et al., 2003, Liu et al., 

1998). However, a suppressive role may also explain their association with relatively 

poor responses of the old to influenza vaccination (Effros et al., 2005, Song et al., 2010). 

Furthermore, older individuals have higher numbers of CD8+ T cells specific for CMV, but 

these have been shown to have significantly decreased secretion of IFN-γ and IL-10 

when compared to those in the young (Ouyang et al., 2004, Khan et al., 2004). This 

questions the benefit of having an expanded CMV-specific T cell population. 

1.6.12 The Impact of T cell expansions 

Age-related susceptibility to infection and increased incidences in reactivation of latent 

microorganisms have been documented in the old (section 1.1.4). T cells specific for 

viruses that are infrequently occurring e.g. vaccinia or influenza, or those less accessible 

to lymphocytes e.g. latent HSV may be at risk of being lost from the T cell pool through 

age-dependent changes (section 1.4). One theory is TCEs may cause the squeezing out 

of other T cell specificities through competition for space and growth factors (Akbar et 

al., 2004, Ouyang et al., 2004). A number of reports support this ‘immune space theory’. 

In mice, those with TCEs have poor responses to HSV challenge, with greater disease 

severity than those without TCEs (Messaoudi et al., 2004). In rhesus monkeys, those 

with TCEs had poor vaccine responses to Vaccinia, compared to those without TCEs 

(Cicin-Sain et al., 2010). 
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1.6.13 CMV, inflammation and the Inflamm-ageing hypothesis 

The inflamm-ageing hypothesis proposes that immune senescence is associated with 

chronic inflammation, driven by chronic antigenic load (Franceschi et al., 2000, De 

Martinis et al., 2005). CMV is therefore an obvious candidate in this hypothesis, and 

evidence to support the involvement of CMV in exacerbating inflammation is abundant 

(Freeman, 2009, Schmaltz et al., 2005, Simanek et al., 2011, Soderberg-Naucler, 2006, 

Wikby et al., 2006). Active CMV replication has also been found at sites of inflammation, 

including atherosclerotic plaques, vascular lesions of coronary transplant vasculopathy, 

and during inflammatory bowel disease (IBS), arthritis, Sjögren’s Syndrome, Hashimoto’s 

thyroiditis, and systemic lupus erythematosus  (Freeman, 2009, Soderberg-Naucler, 

2006). One of the most frequently reported associations is between CMV and increased 

risk of mortality from cardiovascular disease (Simanek et al., 2011, Roberts et al., 2010, 

Blankenberg et al., 2001). Although, whether CMV causes inflammation or is simply a 

bystander to inflammation is difficult to determine. To illustrate this point, the 

reactivation of latent CMV within monocytes can be initiated by the differentiation of 

monocytes to macrophages as a result of inflammatory mediators including TNF-α and 

IFN-γ (Sinclair, 2008, Soderberg-Naucler, 2006).  
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1.7 Aims 

Evidence suggests CMV may accelerate immune senescence, and it is hypothesised the 

accumulation of CMV-specific CD8+ T cell expansions (TCEs) during ageing may be 

instrumental in this association. The purpose of this thesis was to address this 

hypothesis. The specific aims of this project were to: 

 

1. Phenotypically characterise CD8+ and CMV-specific CD8+ TCEs according to age. 

2. Investigate the impact of CMV infection on the rate of telomere length attrition 

during ageing. 

3. Investigate how CMV-specific CD8+ TCEs may be generated. 

4. Investigate the functional quality of CMV-specific TCEs with ageing. 
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2 General Materials and Methods 
 

2.1 Donors  

 
2.1.1 Donors and Blood sample collection 

Whole blood (between 10-80ml) was collected in standard heparinised tubes from 

healthy volunteers. Where data is stratified by age, young is defined as donors between 

18-35 years and old donors between 65-95 years. All samples were obtained according 

to the ethical committee of the Royal Free and University College Medical School. 

Donors did not have any co-morbidity and were not on any immunosuppressive drugs, 

they also retained physical mobility and lifestyle independence. 

2.1.2 PBMC isolation 

Whole blood was collected in standard heparinised tubes and diluted 1:1 with Hanks 

Balanced Salt Solution (HBSS, Life Technologies, Paisley, UK). 20ml of Ficoll (Amersham 

Biosciences. Uppsala, Sweden) was added to a 50ml tube and 25 ml of the whole 

blood/HBSS mix was gently layered on top of the Ficoll surface. These tubes were then 

centrifuged for 20 minutes at 800xg without any break. Subsequently, the white PMBC 

layer formed was then extracted carefully with a pasteurette and placed into a new 50 

ml tube. This was filled to the 50ml mark with HBSS and centrifuged for 10 minutes at 

650xg with the break at position 2. Supernatant was decanted and cell pellet washed 

again with 50mls of HBSS for 10min at 350xg. Supernatant was then discarded and 

PBMC pellet re-suspend in complete medium (RPMI, 100 IU Penicillin, 100 μg/ml 
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streptomycin, 2mM L-glutamine, and 10% foetal calf serum (FCS) [Life Technologies]) 

and centrifuged for 5 minutes at 650xg. Finally the supernatant was discarded and an 

appropriate volume of complete medium added for counting. 

2.1.3 Determination of donor CMV status 

The CMV status of donors was obtained by stimulation of freshly isolated PBMCs 

(section 2.1.2) with a CMV viral lysate preparation (Fletcher et al., 2005). CMV viral 

lysate was prepared by infecting human embroyonic lung fibroblasts with the Towne 

strain of CMV at multiplicity of infection of 2. After 5 days, infected cells were lysed by 

freeze-thaw cycles. Upon production of the viral lysate, and when a new batch was 

prepared, a titrating stimulation was performed to determine peak IFN-γ production 

and therefore the volume of lysate used for stimulation.  

 

For the stimulation, three sterile polypropylene tubes each containing 1x106 PBMCs 

were prepared. To these were added either a Staphylococcal Enterotoxin B (SEB) lysate 

(SEB; Sigma-Aldrich, Dorset, UK) for a positive control, a CMV lysate, or an un-stimulated 

control as a guide for delineating positive and negative populations. All tubes were then 

placed at 37°C for 2hrs at which point Brefeldin A was added and samples left for a 

further 12 hrs. Brefeldin A is a fungal metabolite that enhances the staining of 

intracellular cytokines by interfering with the vesicular transport of cytokines from the 

rough ER to the golgi complex. This prevents their secretion in antigen activated T cells 

and instead makes their identification possible. The cells were then surface stained with 
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anti-CD4, and then intracellularly stained with anti-IFN-γ, as described in section 2.2.3. 

Uninfected cell lysates did not induce any IFN-γ secretion and there was significant 

concordance between an IFN-γ+ response and seropositivity obtained from routine 

hospital IgG titres (Fletcher et al., 2005). 

 

2.1.4 Viable Cell Count 

Cell suspensions were diluted 1:1 with 0.4% trypan blue (Sigma) and 8μl was inserted 

beneath the cover slip on an improved Neubauer chamber (Weber Scientific, UK 

Materials) and total cell counts estimated from the mean of 3 grid sample counts. Dead 

cells were stained blue and were therefore excluded from the counts. 

2.1.5 Cryopreservation of PBMCs.  

Cells were frozen at 107/ml/cryo-vial. After centrifuging cells for 5 mins @650xg and 

removing all medium, 0.5ml of FCS was added to cell pellet, which was re-suspended 

and then added to a 1ml cryo-vial and placed in the fridge for 10 minutes. 0.5ml of 

freezing mix (20% dimehtylsulphoxide [DMSO] in FCS) was added to the 0.5ml cryo-vial 

containing cells, mixed gently and left in fridge for 20 minutes. Cells were stored inside a 

passive freezer (MR. FROSTY by Nalgene) containing isopropyl alcohol and then placed 

at –80oC overnight. Finally, the cryo-vials were transferred to liquid nitrogen for long-

term storage. Frozen PBMCs were thawed quickly by exposing to warm medium then 

being diluted with warm medium and centrifuged immediately for 5 mins @650xg. 
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2.2 Flow Cytometric Analysis 

The details and concentrations of the antibodies used in the following sections are 

summarised in table 2.1: 

 
 

Antigen Source Clone Isotype Concentration 

CD8-FITC BD SK1 mIgG1 10 

CD8-PerCP BD SK1 mIgG1 10 

CD27-FITC BD M-T271 mIgG1 10 

CD27-PE BD M-T271 mIgG1 10 

CD27-APC eBiosciences O323 mIgG1 5 

Ki67-FITC BD B56 mIgG1 10 

Bcl-2-FITC BD B56 mIgG1 12 

HLA-A2-PE AbD Serotec BB7.2 mIgG1 10 

HLA-B7-FITC AbD Serotec BB7.1 mIgG1 10 

IFNγ-FITC Cedarlane B27 mIgG2b 1 

CD45RA-APC Invitrogen MEM-56 mIgG2b 5 

CD45RA-PE-Cy7 BD L48 mIgG1 3 

CD45RO-APC Invitrogen MEM-56 mIgG2b 5 

CD4-Biotin Immunotech 13B8.2 mIgG1 1 

Table 2-1. Details and concentrations of antibodies used 
Concentrations shown are amount added (μl) per 100μl of 10

6
 resuspended cells  

 

2.2.1 Surface staining PBMCs 

Following PBMC isolation (section 2.1.2), cell phenotype was analysed by flow-

cytometry using a combination of antibodies. Staining was conducted for 30mins at 4°C 

and washed in PBS (650xg for 5min). Samples were then fixed with 2% 

paraformaldehyde and acquired on either the BD FACs Calibur or BD LSR/LSRII using cell 

quest or DIVA software respectively. 
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2.2.2 Tetramer staining 

Tetramer staining was conducted on Human leukocyte Antigen (HLA) matched donor 

PBMCs with either HLA-A*02 or HLA-B*07 positive individuals using tetramers loaded 

with CMVpp65 NLVPMVATV or TPRVTGGGAM peptide respectively (a gift from 

P.Klenerman, Oxford University). PBMCs were isolated (as discussed in section 2.1.2) 

and cells suspended in approx. 106 cells per 100μl. 1μl of tetramer was added per tube 

and incubated at 37°C for 20mins, then washed in PBS (650xg for 5min). Cells were then 

surface stained with CD8-PerCP and any other antibodies indicated and/or 

intracellularly stained in accordance with protocols in sections 2.2.1or 2.2.3 respectively.  

2.2.3 Intracellular staining 

Intracellular staining for the detection of IFN-γ was performed using the caltag fixation 

and permeabilisation kit (Caltag Laboratories, Paisley, UK). Approximately 106 cells were 

suspended in 100μl of PBSA (PBS containing 1% bovine serum albumin, BSA) in a FACS 

tube. Cells were surface stained with anti-CD4 antibody at 4 C in the dark for 30mins. 

Cells were then washed in PBSA by centrifuge at 650xg for 5min, wash discarded and 

cells resuspended in 100μl solution A and incubated at room temperature for 15 mins. 

Cells were then washed in PBSA by centrifuge at 650xg for 5min, wash discarded and 

cells resuspended in 100μl solution B containing 1μl IFN-γ APC and incubated at room 

temperature for 15 mins. This was followed by one final wash in PBSA by centrifuge at 

650xg for 5min, and finally resuspended in 300μl 2% PF for FACs analysis. 
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2.2.4 Intranuclear staining 

Ki-67, γ-H2AX and Bcl-2 staining was performed using the intranuclear Miltenyi FoxP3 

Buffer Staining kit (Miltenyi Biotec, Surrey, UK). Approximately 106 cells were suspended 

in 100μl of a suitable medium in a FACS tube. If the donor was a CMV positive HLA 

match tetramer staining was first conducted (section 2.2.2). If they were not, or 

following tetramer staining cells were then surface stained with anti-CD8, anti-CD27 and 

anti-CD45RA at 4 C in the dark for 30mins. Cells are then washed in 1ml cold PBS by 

centrifuge at 650xg for 5min and resuspended in 1ml Fix/Perm solution (mix 

concentrate and diluent 1:3) and incubated at 4 C in the dark for 30mins. Cells are then 

washed in 1ml PBS by centrifuge at 650xg for 5min, wash discarded and 3ml Perm buffer 

added (dilute 1 in 10 in distilled water). The tubes were vortexed centrifuged at 650xg 

for 5min to pellet cells. This wash was repeated with 1ml Perm buffer/tube and excess 

liquid from the tubes blotted using tissue. Antibodies for Ki67-FITC, γ-H2AX-FITC or BCl2-

FITC were then added to the relevant tubes together with isotype controls and 

incubated at 4 C, in the dark for 30mins. Following incubation, cells are washed in 1ml 

Perm buffer twice and finally resuspended in 300μl 2% PF for FACs analysis. Positive 

populations are identified by gating on relevant isotype controls (table 2.1). 

 

2.3 Isolation and sorting of populations from PBMCs 

 
2.3.1 Negative selection of CD8+ T cells using MACS isolation kit. 

Magnetic Cell Sorting (MACS, Miltenyi Biotec, Surrey, UK) allows the purification of cell 

subsets from complex cell mixtures. MACS Buffer (1 x PBS containing 0.5% BSA (5g/litre, 
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stored in cold room) and 2mM EDTA (4ml of 0.5M stock) was first prepared then filtered 

and degassed (in 50ml aliquots) before use and kept at 4 C or on ice. Degassing took 

approximately 10 minutes from room temp or 30 minutes from 4 C. PBMCs were 

extracted from whole blood (as described in 2.1.2) then washed in MACS buffer by 

centrifuge @1800rpm for 5mins. Subsequently, the supernatant was decanted 

completely and the cell pellet resuspended in 40 l buffer per 107 cells. 10 l biotin-

Antibody cocktail was added per 107 cells then mixed and incubated for 10mins at 4 C. 

30 l buffer per 107 cells and 20 l anti-biotin beads per 107 cells were then added, mixed 

well and incubated for 15mins at 4 C. Cells were then washed with 1ml MACS buffer 

and supernatant decanted completely. Cell pellet was then resuspended in 500 l MACS 

buffer per 108 cells (500 l if less cells). Appropriate column size was selected (MS 

selected for max number of labelled cells being 107 or LS for maximum number of 

labelled cells being 108) and placed in the magnetic field of the MACS separator. The 

column was prepared by washing with either 3ml (LS) or 500 l (MS) of buffer. The cell 

suspension was applied onto the column and effluent collected, these were the 

unlabelled cells, representing the enriched CD4+ or CD8+ T cell fraction. Finally, the 

column was washed with 3 x 3ml (LS) or 3 x 500 l (MS) and the total effluent collected. 

An aliquot was removed at this point to check cell purity. Cells retained on the column 

can be used as APC. In this event the column was removed from the magnet and placed 

in a suitable collection tube, followed by pipetting either 5ml (LS) or 1ml (MS) of buffer 

onto the column and immediately flushing out the cells by firmly applying the plunger 

supplied with the column. 
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2.4 Measurement of telomere length and telomerase activity 

 
2.4.1 Telomere length via Flow-FISH 

PBMCs were stained using CD4-biotin (Immunotech) and streptavidin-Cy3 (Cedarlane 

Laboratories) or combinations of CD8-FITC, CD45RO-FITC (BD Biosciences), CD8-Q565, 

CD45RA-Q605 (invitrogen) then fixed with BS3 (Pierce). Cells were washed once in 

hybridization buffer (70% formamide, 20 mM Tris, 150 mM NaCl, and 1% BSA) and then 

incubated at 82°C for 10 min with 0.75 µg/ml Cy5-conjugated telomeric (CCCTAA) 

peptide nucleic acid probe (Applied Biosystems). After rapid cooling on ice, the samples 

were hybridized for 1 h at room temperature in the dark, washed twice each in 

posthybridization buffer (70% formamide, 10 mM Tris, 150 mM NaCl, 0.1% BSA, and 

0.1% Tween 20) and PBSA, and analyzed by flow cytometry.  

 

Samples were analyzed with and without probe to control for differences in background 

fluorescence between samples. To ensure consistency of the results between 

experiments, two cryopreserved PBMC samples with known telomere fluorescence were 

used as standards. Results were obtained as median fluorescence intensity values, which 

could then be converted to telomere length in kilobases using a standard curve. The 

standard curve was constructed using 30 samples of varying telomere length analyzed 

both by flow-FISH and telomeric restriction fragment (TRF) analysis.  
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2.4.2 Measuring telomere length in CMVpp65-specific cells 

To measure telomere length of CMVpp65-specific CD8+ T cells, a modified form of the 

Flow-FISH technique (section 2.4.1) was used; phenotyping was performed using 

CMVpp65-specific biotin labelled pentamer (Proimmune) according to manufacturers 

guidelines, then a second layer staining with streptavidin-Q800 (Invitrogen) in 

combination with CD45RA-Q605, CD8-FITC or CD45RO-FITC. Cells were then fixed with 

BS3 (Pierce) and the protocol detailed in section 2.4.1, post BS3 staining, was then 

continued. 

2.4.3 Measuring telomerase activity – the TRAP assay 

Sorted cell populations (2 x 105 cells) were activated with either OKT3 (0.5μg/ml) or 

CMV peptide (2pg/ml) plus irradiated autologous APCs for 4 days. Following activation 

an aliquot of 104 cells were stained for Ki67 positivity. The remaining cells were 

centrifuged (650xg for 5min) to pellet, any medium aspirated and snap-frozen (using 

liquid nitrogen). Telomerase activity was determined using the telomeric repeat 

amplification protocol (TRAP; TRAPeze telomerase detection kit; Serologicals) as 

previously described (Plunkett et al., 2007). Briefly, cell extracts were obtained by 

treating pellets with lysis buffer. Subsequently, PCR was performed with samples 

adjusted to 500 Ki67+ T cells per reaction (Reed et al., 2004). Telomeric elongation was 

performed using a *γ-P32] ATP-end-labelled telomerase substrate (TS) primer. These 

samples were then amplified by PCR amplification, using 25 to 28 cycles of 30s at 94°C 

and 30s at 59°C. The PCR products were run on a 12% polyacrylamide gel (Sigma-
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Aldrich) that was then exposed to an autoradiography film (Hyperfilm MP, Amersham). 

Telomerase activity was calculated as a ratio between the optical density of the 

telomeric repeat bands and one of the internal standard band.  

2.5 Functional analysis 

 
2.5.1 CD8+ T cell subpopulation multiparametric flow cytometry 

Multiparametric flow cytometry on total CD8+ T cells was conducted at the Brighton and 

Sussex Medical School (BSMS) in collaboration with Professor Kern. The expression of 

the functional markers CD40L, IFN-γ, IL-2 and TNF-α by CD8+ CD45RA/CD27 T cell 

subpopulations was assessed following stimulation of total PBMCs with OKT3 (0.5μg/ml) 

in the presence of brefeldin A for 16 hours. Boolean gating analysis was used to 

determine polyfunctionality of each CD8+ T cell subpopulation (Harari et al., 2007). 

 

2.5.2 Activation responses of CD45RA vs. CD45RO CMV-specific CD8+ T cells 

A CD8+ fraction was collected by negative MACs selection (detailed in section 2.3.1). The 

non-CD8 fraction was retained for use as APCs; half of which were pulsed with medium 

containing CMVpp65 NLVPMVATV (NLV) peptide (Proimmune) for 1hr at 37C and the 

other half of cells with medium only, before both populations were then irradiated. 

Meanwhile the CD8+ subset was stained with CD45RA-APC (Caltag) and CD45RO-FITC 

(Dako) and sorted to give CD45RA and CD45RO subpopulations of greater than 95% 

purity using a BD FACS Aria. 200,000 cells of each population were then placed in sterile 

FACs tubes and irradiated APCs added back at cell ratios of 2:1, 1:1, 1:2, and 1:4. 
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Additionally APCs not pulsed with NLV were added at 1:1, and an un-stimulated control 

(cells plus medium only) was also included. After 2hr incubation at 37°C, BFA was added 

and cells incubated for a further 4hrs. Following stimulation, PBMCs were then stained 

intracellularly with IFNγ Pe-Cy7 (BD Biosciences) as described previously in section 2.3.3. 

2.5.3 Polyfunctionality of normal vs. high avidity CMV-specific CD8+ T cells 

Polyfunctional response of CMVpp65-specific CD8+ T cells was performed by staining 

whole PBMCs first with either normal or mutated (null) tetramer and CD107a for 2hrs at 

37°C. This was followed by the addition of pp65 peptide at concentrations of 0, 0.001, 

0.01, 0.1 and 1ug/ml in the presence of Monensin and Brefeldin A for a further 4 hours 

at 37°C. Following stimulation, PBMCs were then stained intracellularly with IFNγ Pe-Cy7 

and TNF-α APC (BD Biosciences) as described in section 2.2.3.  

2.6 IL-15 experiments 

 
2.6.1 CD45RA re-expression experiments 

PBMCs were isolated (section 2.1.2) then a CD8 positive fraction was collected by 

magnetic bead separation (MACS) as previously described (2.2.1). One of two reversion 

experiments was then conducted to investigate CD45RA re-expression: 1) using four 

CD8+ T cell subpopulation determined by CD45RA and CD27 and 2) using two CMV-

specific CD8+ T cell subpopulations determined by CD45RA and CD45RO. For the first 

experiment CD8+ T cells were stained with CD45RA-APC (Caltag) and CD27-FITC (BD 

biosciences) and sorted using a BD FACs Aria to yield the four CD8+ T cell 
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subpopulations: CD45RA+CD27+; CD45RA+CD27-; CD45RA-CD27+, and CD45RA-CD27-. For 

the second experiment CD8+ T cells were stained with CD45RA-APC (Caltag) and sorted 

using a BD FACs Aria to yield a CD45RA negative fraction. Each subpopulation was 

individually cultured with IL-15 (10U) in a 96 well round bottom plate at a concentration 

of 100,000 cells per well for up to 21 days. On days 0, 1, 4, 9, 14 and 21 (depending on 

cell numbers) post IL-15 addition, one well of cells was harvested and viable cell 

numbers counted to determine cell expansion. Cells were then stained as outlined (2.2.1 

and 2.2.2) for total CD8+ T cell subpopulations (CD45RA and CD27) or CMV-specific CD8+ 

T cell subpopulations (CD45RA and CD45RO). 

2.6.2 Measuring IL-15 mRNA following treatment with CMV lysate or IFN-α 

The mRNA level of IL-15 was measured in total PBMCs before (directly ex-vivo) and after 

4hrs, 24hrs, 48hrs, and 72hrs of culture in the presence of the lysate from CMV-infected 

cells (1:10 of stock solution of 0.64mg/ml). Additionally, mRNA levels of IL-15 were also 

measured in total PBMCs before (directly ex-vivo) and after 4, 24 and 48 hours of culture 

in the presence of different concentration of IFN-α (Alpha 2a, 11100-1 from PBL 

Interferon source) ranging from 100U/ml to 1000 U/ml. Total RNA was purified with 

RNeasy columns (Qiagen). Reverse transcription was performed with random primers 

using the MuLVRT reverse transcriptase (Invitrogen) to generate cDNA. The mRNA level 

of IL-15 was then determined using cDNA by real-time quantitative PCR (RT-qPCR) on an 

ABI PRISM 7500, with TaqMan Gene Expression Master Mix according to manufacturer 

protocol (Applied Biosystems), with the TaqMan primers for IL-15 primers 
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(Hs99999039_m1). The housekeeping 18S mRNA was amplified from the same cDNA 

reaction mixture using the TaqMan primers for human 18S (Hs03928985_g1*). Each 

sample was run in triplicate and target mRNA level was expressed as a ratio to the level 

of 18S to control for differing levels of cDNA in each sample.  

2.7 Statistical Analysis 

 
Graph Pad Prism v5 was used to construct all graphs, dot plots and bar charts. The 

D'Agostino-Pearson omnibus K2 normality test was used to determine if data fitted a 

Gaussian (normal) distribution. Statistical significance was evaluated using the Student’s 

t test if data followed a normal distribution and if data was also paired it was assessed 

using a Student’s paired t test. Unpaired non-parametric data was evaluated using a 

Mann-Whitney U test, with a Wilcoxon matched paired test used if data points 

represented paired observations. All t tests performed were as two-tailed unless 

otherwise stated. All p-values ≤0.05 were regarded as significant. 
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3 Phenotyping CD8+ and CMV-specific CD8+ T cells according 
to age 

 

3.1 Introduction 

Longitudinal studies measuring various immunological parameters in the very old have 

revealed a group of biomarkers defining an immune risk phenotype (IRP) that is 

associated with a decreased survival rate in the very old (section 1.4.9). Cytomegalovirus 

(CMV) seropositivity was one of the significant factors identified. It has been proposed 

that this could be due to CMV infected individuals having large and persistent CMV-

specific T cell expansions (TCEs), which may contribute to the inversion of the CD4/CD8 

ratio and acceleration of T cell differentiation. CMV has therefore been identified as a 

key factor in driving immune senescence of the T cell pool (discussed in section 1.6).  

 

3.2 Aims 

The aim of this chapter was two-fold; to investigate how CMV influences the natural 

age-related changes seen within the CD8 compartment, and secondly, to uncover how 

CMV-specific TCEs may accumulate. This was achieved by phenotyping CD8+ T cells and 

CMV-specific CD8+ T cells directly ex-vivo from a cohort of healthy donors over a wide 

age range. Phenotyping determined the differentiation status of CD8+ T cells by the 

expression of CD45RA and CD27; giving the four distinct CD8+ T cell subpopulations (as 

described in section 1.3). The frequency of these subpopulations, their relative rate of 

proliferation and relative susceptibility to apoptosis was investigated in all donors and 
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stratified on the basis of age and CMV status, to uncover any statistically significant 

associations.  

 

3.3 Results 

 
3.3.1 Selecting suitable donors and steps for phenotypic analysis 

Figure 3.1 outlines the selection process for donors. Further information can be found in 

the materials and methods section in chapter 2. Briefly, healthy donor volunteers were 

first recruited according to an exclusion criterion: all subjects were mobile, did not have 

any cognitive impairment, were not suffering from acute or chronic illness, and were not 

on medication known to affect the immune system. Fresh PBMCs from these healthy 

individuals were isolated and stimulated overnight with CMV lysate to identify those 

that were CMV positive (figure 3.2A). Those who were CMV positive were further 

screened to determine their suitability for CMV-specific CD8+ T cell analysis using 

tetramers. The tetramers chosen for use in this thesis were specific for the pp65 matrix 

protein of CMV. CMVpp65 was chosen as it is readily targeted by the immune system 

and is considered the most immunodominant of the CMV epitopes (Kern et al., 2002, 

Moss and Khan, 2004, Wills et al., 1996). Individuals who were HLA-A*02 or HLA-B*07 

positive (the most common European alleles) were therefore selected as suitable for 

staining with the NLVPMVATV (NLV) or TPRVTGGGAM (TPR) CMVpp65-specific 

tetramers respectively (figure 3.2B).  
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Figure 3-1. Donor selection process 
Healthy donor volunteers are recruited and those not meeting the healthy criteria excluded. An initial 
blood sample is taken and fresh PBMCs isolated and stimulated overnight with CMV lysate, to determine 
CMV status. Those that are CMV positive are further screened for HLA-A*02 or HLA-B*07 match, using 
antibodies specific for these two antigens, in combination with CD8. HLA-A*02 or HLA-B*07 matched 
donors are therefore suitable for subsequent analysis using NLVPMVATV (NLV) or TPRVTGGGAM (TPR) 
CMVpp65-specific tetramers respectively. 
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(A) 

 
 (B) 

 

 
 
Figure 3-2. CMV positive screening and selection for tetramer analysis  
(A) CMV positivity was determined by stimulating total PBMCs with either CMV lysate, an S.E.B positive 
control and un-stimulated (U.S) negative control. Following stimulation PBMCs were stained with CD4 and 
IFN-γ antibodies. A CMV positive donor (top) shows IFN-γ

+
 cell numbers above background (U.S) 

compared with a CMV negative individual (bottom). Both donors show IFN-γ
+
 cells to S.E.B. (B) individuals 

suitable for tetramer analysis were HLA-A*02 or HLA-B*07 matches and subsequently used for staining 
with NLV or TPR tetramers respectively. 
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3.3.2 Investigating the differentiation status of CD8+ T cells 

A larger number of highly differentiated CD8+ T cells have been reported in older 

humans (Effros et al., 2005, Akbar and Fletcher, 2005) and CMV-specific CD8+ T cells 

show a high degree of differentiation compared with most other virus-specific CD8+ T 

cells (Appay et al., 2002). Therefore the impact of age and CMV serostatus was 

investigated on the CD8+ T cell subpopulations in our healthy donors.  

 

3.3.2.1 Differentiation of CD8+ T cells by CD45RA and CD27 expression 

Donor PBMCs were stained with antibodies to CD8, CD45RA and CD27 to identify the 

four CD8+ T cell subpopulations as discussed in section 1.3: 

 

CD45RA+CD27+  =  Naive (TN)  

CD45RA-CD27+  =  Central Memory (TCM)  

CD45RA-CD27-  =  Effector Memory (TEM)  

CD45RA+CD27-  =  Effector Memory CD45RA re-expressing (TEMRA)  

 

A representative example of how these subpopulations were identified is shown in 

figure 3.3. Briefly, CD8+ T cell subpopulations were identified first by plotting size 

(forward scatter, FSC) versus granularity (side scatter, SSC) to identify the live 

lymphocyte population (L) from monocytes (M), highly granular cells (G) and cellular 

debris (D). Upon gating on live lymphocytes a CD8high subset was then identified, 

separating it from CD4+ T cells, B cells and natural killer (NK) cells (Trimble et al., 2000). 

Finally the CD8+ T cell compartment was dissected via CD45RA and CD27 expression to 

identify the four CD8+ T cell subpopulations of interest. 
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Figure 3-3. Gating method to identify CD8
+
 T cell subpopulations from PBMCs 

See text for details. Arrows displayed within the FACs plot analysis on the four subpopulations (right) 
denote possible differentiation pathways. Abbreviations: live lymphocytes (L); Granulocytes (G); 
Monocytes (M); Dead cells (D); Naive (TN); Central Memory (TCM); Effector Memory (TEM); and Effector 
Memory CD45RA re-expressing (TEMRA). 
 

3.3.2.2 CD8+ T cell subpopulation profiles by age group 

Representative examples of healthy donor CD8+ T cell subpopulation profiles in the 

three defined age groups: young (<35 years old); middle (35 to 65 years old) and old 

(>65 years old) are shown in figure 3.4. CD8+ T cells in young individuals showed a 

predominately early differentiated profile i.e. CD45RA+CD27+ phenotype, compared 

with old individuals which showed a predominately late differentiated profile i.e. 

CD45RA+CD27- phenotype. 

 

 

Figure 3-4. Representative density plots of CD8
+
 T cell subpopulation profiles by age group 

Density plots of healthy donor CD8 differentiation profiles as based on CD45RA and CD27 expression. 
Numbers in quadrants represent the percentage of the relevant subpopulation within total CD8

+
 T cell 

compartment. Young individuals are defined as under 35 and old individuals as over 65years of age. 
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3.3.2.3 Age-related differentiation of CD8+ T cells 

The frequency of each subpopulation, as a percentage of the total CD8 compartment, 

was recorded for all donors (figures 3.5–3.8). In total, 125 healthy donors aged between 

22 to 95 were analysed, with a CMV seropositivity rate of 73%. This CMV seroprevalence 

rate is consistent with reports (Cannon et al., 2010).  

 

A line of best fit was generated by linear regression analysis and the correlation 

assessed by Pearson and Spearman rank (GraphPad Prism) for each CD8+ T cell 

subpopulation. The CD45RA+CD27+ (Naive, TN) subpopulation (figure 3.5A) was found to 

significantly decrease with age (p<0.0001, R2=0.588) whereas there was no significant 

age-related change observed with the CD45RA-CD27+ (Central Memory, TCM) 

subpopulation (figure 3.6A). However, the late differentiated CD45RA-CD27- (Effector 

Memory, TEM) and CD45RA+CD27- (Effector Memory CD45RA re-expressing, TEMRA) 

subpopulations (figures 3.7A & 3.8A respectively) significantly increased with age 

(p=0.0014, R2=0.798 and p<0.0001, R2=0.350 respectively).  

 

3.3.2.4 CMV accelerates age-related differentiation of CD8+ T cells 

To investigate the influence of age and CMV seropositivity as statistically independent 

factors upon CD8+ T cell subpopulations, data was further analysed in two ways: firstly 

by dividing the data into either the young or old age group and on the basis of CMV 

serostatus, and secondly by performing multiple linear regression analysis.  
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When dividing data into young (<35) or old (>65) age groups and on the basis of CMV 

serostatus, CMV+ young individuals had significantly less CD8+ TN cells than CMV- young 

individuals (p=0.0007, figure 3.5B). Both CMV+ groups also had significantly more CD8+ 

TEMRA cells compared with the CMV- groups (young p=0.001 and old p=0.002, figure 

3.8B).  

 

Multiple linear regression analysis was performed by SPSS software and revealed a 

highly significant relationship between the decrease in CD8+ TN cells and increase in 

CD8+ TEMRA cells with either age or CMV serostatus as independent factors (p<0.0001, 

figures 3.5C and 3.8C). There was also significant increases in CD8+ TEM cells with age or 

CMV serostatus (p=0.04 and p=0.007 respectively, figure 3.7C) and a significant 

decrease in CD8+ TCM cells with CMV serostatus (p=0.01, figure 3.6C), but not with age.  

 

Overall, results showed both age and CMV serostatus significantly impacts the CD8+ T 

cell compartment. However, the most significant changes were a decrease in CD8+ TN 

cells and an increase in the highly differentiated CD8+ TEMRA cells. 
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TN 
 

(A) 

 
(B) 

 
(C) 
 

 
 

 

 
unstandardized  

coefficient 
P-value 

95.0% CI 

lower limit upper limit 

Age -0.59 <0.0001 -0.7 -0.49 

CMV status -15.62 <0.0001 -21.46 -9.77 

 
 
 
Figure 3-5. Distribution of naive (CD45RA

+
CD27

+
) CD8

+
 T cells and the impact of age and CMV 

serostatus.  
(A) Pooled data showing the distribution of Naive (CD45RA

+
CD27

+
) CD8

+
 T cells defined as a percentage of 

the total CD8
+
 T cell compartment within all donors (125) as stratified by age. One dot represents one 

donor and line of best fit shown. (B) The same data shown by age group and CMV status, donors shown: 
CMV-(Y)=19; CMV+(Y)=15; CMV-(O)=7; CMV-(Y)=60 (C) Table showing the un-standardized coefficient, 
significance and 95% confidence interval from the output of SPSS software for Naive CD8

+
 T cells. Unit of 

age is equal to 1 year. *<0.05;**<0.005;***<0.0005. 
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TCM 
 
(A) 

 
(B) 

 
(C) 
 
 

 
unstandardized  

coefficient 
P-value 

95.0% CI 

lower limit upper limit 

Age -0.03 0.52 -0.12 0.06 

CMV status -6.18 0.01 -10.86 -1.49 

 
 

 

Figure 3-6. Distribution of central memory (CD45RA
-
CD27

+
) CD8

+
 T cells and the impact of age and CMV 

serostatus.  
(A) Pooled data showing the distribution of central memory (CD45RA

+
CD27

+
) CD8

+
 T cells defined as a 

percentage of the total CD8
+
 T cell compartment within all donors (125) as stratified by age. One dot 

represents one donor and line of best fit shown. (B) The same data shown by age group and CMV status. 
Donors shown: CMV-(Y)=19; CMV+(Y)=15; CMV-(O)=7; CMV-(Y)=60 (C) Table showing the un-standardized 
coefficient, significance and 95% confidence interval from the output of SPSS software for central memory 
CD8

+
 T cells. Unit of age is equal to 1 year. *<0.05;**<0.005;***<0.0005. 
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TEM 
 
(A) 

 
(B) 

 
(C) 
 

 
unstandardized  

coefficient 
P-value 

95.0% CI 

lower limit upper limit 

Age 0.125 0.04 0.005 0.24 

CMV status 9.05 0.007 2.58 15.53 

 
 

 

Figure 3-7. Distribution of effector memory (CD45RA
-
CD27

-
) CD8

+
 T cells and the impact of age and CMV 

serostatus.  
(A) Pooled data showing the distribution of effector memory (CD45RA

-
CD27

-
) CD8

+
 T cells defined as a 

percentage of the total CD8
+
 T cell compartment within all donors (125) as stratified by age. One dot 

represents one donor and line of best fit shown. (B) The same data shown by age group and CMV status. 
Donors shown: CMV-(Y)=19; CMV+(Y)=15; CMV-(O)=7; CMV-(Y)=60 (C) Table showing the un-standardized 
coefficient, significance and 95% confidence interval from the output of SPSS software for effector 
memory CD8

+
 T cells. Unit of age is equal to 1 year. *<0.05;**<0.005;***<0.0005. 
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TEMRA 

 
 (A) 

 
(B) 

 
(C) 
 

 
unstandardized  

coefficient 
P-value 

95.0% CI 

lower limit upper limit 

Age 0.385 <0.0001 0.27 0.5 

CMV status 14.77 <0.0001 8.43 21.11 

 
 

 

Figure 3-8. Distribution of effector memory CD45RA re-expressing (CD45RA
+
CD27

-
) CD8

+
 T cells and the 

impact of age and CMV serostatus.  
(A) Pooled data showing the distribution of effector memory CD45RA re-expressing (CD45RA

+
CD27

-
) CD8

+
 

T cells defined as a percentage of the total CD8
+
 T cell compartment within all donors (125) as stratified by 

age. One dot represents one donor and line of best fit shown. (B) The same data shown by age group and 
CMV status. Donors shown: CMV-(Y)=19; CMV+(Y)=15; CMV-(O)=7; CMV-(Y)=60.  (C) Table showing the 
un-standardized coefficient, significance and 95% confidence interval from the output of SPSS software 
for effector memory CD45RA re-expressing CD8

+
 T cells. Unit of age is equal to 1 year. 

*<0.05;**<0.005;***<0.0005.. 
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3.3.3 CMV-specific CD8+ T cell expansion during ageing 

In the last section, a significant increase in CD8+ TEMRA cells with both age and CMV was 

revealed. However, it is unclear if it is the CMV-specific CD8+ TEMRA cells that largely 

account for the expansion of this subpopulation within CMV positive individuals. 

Therefore, the size and phenotype of the CMV-specific CD8+ T cell population was 

investigated. 

3.3.3.1 CMV-specific CD8+ T cells expands during ageing 

The CMVpp65-specific CD8+ T cell population has been reported to expand during 

ageing (Khan et al., 2002b, Koch et al., 2007). To verify this in our healthy cohort, all 

CMV positive donors suitable for analysis by tetramer staining were first identified (as 

discussed in 3.3.1). In total, 70 donors were suitable and the CMVpp65-specific 

compartment calculated as a percentage of their total CD8+ T cell compartment. Figure 

3.9A shows representative examples of the CMVpp65-specific CD8+ T cell population 

found within old versus young CMV positive individuals. Older CMV positive individuals 

were found to contain larger CMVpp65-specific CD8+ T cell expansions, being up to 28% 

of total CD8s, compared with younger CMV positive individuals. This was highlighted 

when data was pooled, and a significant positive correlation between donor age and 

size of the CMVpp65-specific compartment was revealed in total donors (p=0.002, 

R2=0.157, figure 3.9B), HLA-A*02+ donors targeting the NLV-specific epitope of 

CMVpp65 (p=0.028, R2=0.134, figure 3.9B) or HLA-B*07+ donors targeting the TPR-

specific epitope of CMVpp65 (p=0.019, R2=0.227, figure 3.9B).  
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(A)                                                                           

 
 

(B) 

 
 

(C)                                                                                       (D) 

 
 

Figure 3-9. The CMVpp65-specific CD8
+
 T cell population expands with age 

(A) Representative example of the CMVpp65-specific population identified by tetramer (NLV shown). 
Pooled data showing the size of the CMVpp65-specific population as a percentage of total CD8

+
 T cells is 

shown for total (B) from 70 donors and separately as NLV-specific population only (C) from 36 donors or 
TPR-specific population only (C) from 24 donors as stratified by age. One dot represents one donor and 
significant correlations are represented by asterisks; *<0.05;**<0.005;***<0.0005.. 
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3.3.3.2 CMV-specific CD8+ TEMRA cells dominate in older individuals 

The CMVpp65-specific population was analysed for the expression of CD45RA and CD27 

(figure 3.10). Older individuals frequently showed more highly differentiated CD8+ 

CMVpp65-specific T cell populations compared with younger individuals (figure 3.10A). 

When data was pooled, CD8+ CMVpp65-specific TEMRA cells occupied a significantly 

higher percentage of the CMV-specific compartment in the old age group compared 

with the young age group (p=0.004, figure 3.10B). Conversely, CD8+ CMVpp65-specific 

TCM and TEM cells occupied a significantly lower percentage of the population in the old 

age group compared with the young age group (p=0.002 and 0.025 respectively).  

 

To investigate further whether this represented significant expansions of the CD8+ CMV-

specific TEMRA cells in the old, the relative size of each CMV-specific CD8+ T cell 

subpopulation was calculated as a percentage of total CD8+ T cell subpopulation, and of 

total CD8+ T cells, and compared by age group (figure 3.11 & 3.12 respectively). Both 

CMV-specific TEMRA and TN cells occupied a significantly larger proportion of total TEMRA 

and TN cells in older individuals compared with younger individuals (p=0.009 and 

p=0.0005 respectively) with no significant increase in TCM or TEM cells (figure 3.11). 

Furthermore, relative to total CD8+ T cells, both CMV-specific TEMRA and TN cells were 

significantly higher in older individuals compared with younger individuals (p=0.0006 

and p=0.008 respectively) with no significant increase in TCM or TEM cells (figure 3.12). 

Overall, results showed CD8+ CMVpp65-specific TEMRA cells dominated the CMVpp65-

specific CD8+ T cell compartment in older individuals. 
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(A) 
 

 
 
(B) 
 
 

 
 

 
 
Figure 3-10. Differentiation status of CMVpp65-specific CD8

+
 T cells in young and old donors.  

(A) Representative density plots of healthy donor CMV-specific CD8
+
 T cell differentiation on the basis of 

CD45RA and CD27 expression in young versus old age groups. Donor numbers shown are 12 young and 14 
old. Numbers in quadrants represent percentage of the subpopulation within the total CMV-specific CD8

+
 

T cell compartment. (B) Pooled data showing the distribution of subpopulations defined as a percentage 
of the total CMVpp65-specific CD8

+
 T cell compartment by age group. One dot represents one donor. 

Significant correlations represented by asterisks; *<0.05;**<0.005;***<0.0005. 
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Figure 3-11. Relative size of each CMVpp65-specific CD8
+
 T subpopulation as a percentage of total CD8+ 

T cell subpopulation in young and old donors. 
Pooled data showing the distribution of each CMV-specific T cell subpopulation as a percentage of the 
total CD8

+
 T cell subpopulation compartment by age group. Donor numbers shown are 12 young and 14 

old. One dot represents one donor. Significant correlations represented by asterisks; 
*<0.05;**<0.005;***<0.0005. 
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Figure 3-12. Relative size of CMVpp65-specific CD8
+
 T subpopulations as a percentage of total CD8+ T 

cells in young and old donors. 
Pooled data showing the distribution of subpopulations defined as a percentage of the total CD8

+
 T cell 

compartment by age group. Donor numbers shown are 12 young and 14 old. One dot represents one 
donor. Significant correlations represented by asterisks; *<0.05;**<0.005;***<0.0005. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

92 

 

3.3.4 Investigating the rate of proliferation by CD8+ TEMRA cells 

The simplest explanation for the expansion of CD8+ TEMRA cells would be an increase in 

their rate of proliferation relative to the other CD8+ T cell subpopulations. Therefore the 

proliferative rates of CD8+ and CMV-specific CD8+ T cell subpopulations were 

investigated. 

3.3.4.1 Using Ki-67 expression as a marker for proliferation 

Ki-67 protein is present during all active phases of the cell cycle (G1, S, G2 and mitosis) 

but is absent during cell resting (G0) and its expression is believed to be an absolute 

requirement for the progression to cell division (Scholzen and Gerdes, 2000). This makes 

the detection of Ki-67 antigen an excellent indicator of recent proliferative activity, and 

has been used extensively for such purposes (Kirik et al., 2009, Endl et al., 1997, 

Urruticoechea et al., 2005, Velu et al., 2009, Scholzen and Gerdes, 2000, Miles et al., 

2007, Roos et al., 2000, Wallace et al., 2010). 

 

If CD8+ TEMRA cells, and in particular CMVpp65-specific CD8+ TEMRA cells, are proliferating 

at a high rate, this may be reflected by increased levels of Ki-67 protein present within 

this TEMRA cells, relative to the other CD8+ T cell subpopulations. Intracellular staining for 

Ki-67 was therefore performed on donor PBMCs directly ex-vivo, without stimulation, in 

order to provide a ‘snap-shot’ indicative of the proliferative activity of each CD8+ T cell 

subpopulation in-vivo. 
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3.3.4.2 CD8+ TEMRA cells show low Ki-67 

Both the CD8+ and CMVpp65-specific CD8+ T cell subpopulations were analysed for the 

expression of Ki-67, as shown in the representative FACs plot analysis in figure 3.13. Ki-

67 positivity was analysed in total CD8+ and CMVpp65-specific CD8+ T cell 

subpopulations within 55 and 12 donors respectively (figures 3.14 & 3.15). When 

comparing overall Ki-67 positivity of the total CD8+ T cell compartment in individuals on 

the basis of their age and CMV serostatus (figure 3.14A) there was no significant 

difference between CMV positive and CMV negative individuals in either age group. 

However, there were increased Ki-67 levels in CD8+ T cells in the old CMV positive 

compared with young CMV positive age group. Additionally, no significant difference 

was observed for Ki-67 levels in total CD8+ T cells and total CMVpp65-specific CD8+ T 

cells within the same individuals, from a group of 12 donors (figure 3.14B). When 

comparing at the subpopulation level, Ki-67 levels were highest in the TCM and TEM 

subpopulations but relatively low in TEMRA cells in both the CD8+ (figure 3.15A) and 

CMVpp65-specific CD8+ T cell subpopulations (figure 3.15B). Finally, further stratification 

of the Ki-67 data for each subpopulation by age and CMV status failed to reveal any 

significant associations (not shown).  

 

Overall, results showed CD8+ CMVpp65-specific T cells had low levels of Ki-67 positivity 

directly ex-vivo. Furthermore, CMV-specific CD8+ TEMRA cells did not show increased Ki-

67 levels over other subpopulations.  
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Figure 3-13. Representative example of Ki67 staining directly ex-vivo in one individual 
Representative FACs plot analysis of Ki-67 positivity in CD8

+
 (top) and CMVpp65-specific CD8

+
 (bottom) T 

cell subpopulations within the same individual. Numbers represent percentage positivity as indicated in 
quadrant. Gating is determined by using manufacturer supplied Ki-67 FITC IgG1 isotype control as shown. 
Example shown is representative of 12 donors.                 
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 (A)                                                   
 

 
 

 
(B) 
 

 
 

 
 
 
Figure 3-14.  Ki-67 within total CD8

+
 and CMVpp65-specific CD8

+
 T cells 

(A) Ki-67 positivity of total CD8
+
 T cells by age group and CMV serostatus. Donor numbers shown: CMV-

(Y)=8; CMV+(Y)=11;CMV-(O)=5;CMV+(O)=22. (B) Ki-67 positivity of total CD8
+
 versus total CMVpp65-

specific CD8
+
 T cells within 12 of the same individuals. One dot represents one donor. 

*<0.05;**<0.005;***<0.0005. 
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(A)                                                   
 

 
 
(B) 
 

 
 

 

Figure 3-15. Ki-67 within CD8
+
 and CMVpp65-specific CD8

+
 T cell subpopulations  

(A) Pooled data showing Ki-67 positivity of CD8
+
 T cell subpopulations. 55 donors tested. (B) Pooled data 

showing Ki-67 positivity within each CMVpp65-specific CD8
+
 T cell subpopulation. 12 donors tested. One 

dot represents one donor. *<0.05;**<0.005;***<0.0005. 
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3.3.5 Apoptosis resistance of CD8+ and CMVpp65-specific CD8+ T cells  

In the last section CD8+ TEMRA cells showed low levels of Ki-67 protein, indicating they are 

not undergoing or have not recently undergone proliferation. However, this 

subpopulation could instead be accumulating through a resistance to apoptosis. 

Apoptosis is a useful way of purging the clonally expanded memory CD8+ T cells 

following the clearance of an infection (Krammer et al., 2007), as discussed in section 

1.2.4. However, the reason why CMV-specific TCEs are not deleted but instead remain a 

stable population is not fully understood. The next step therefore was to compare the 

relative susceptibility to apoptosis exhibited by each subpopulation directly ex-vivo to 

uncover if CD8+ TEMRA cells, in particular confer a resistance to apoptosis. 

3.3.5.1 Bcl-2 expression as an indicator of susceptibility to apoptosis 

Bcl-2 is an anti-apoptotic protein which has been shown to induce pro-survival 

properties within T cells (Adams and Cory, 1998). Abnormally high levels of Bcl-2 within 

cells is associated with malignancy and a resistance to apoptosis (Cotter, 2009) whereas 

low level Bcl-2 expression is associated with cell death and a pro-apoptotic state (Chao 

and Korsmeyer, 1998). There are other indicators of cell death, associated with pro-

apoptotic or anti-apoptotic properties (as discussed in section 1.2.4), however the 

expression of Bcl-2 was chosen for analysis here as it is crucial for the survival of 

activated T cells (Scheel-Toellner et al., 2008) and has been used extensively elsewhere 

as a marker for T cell susceptibility to cell death (Aggarwal and Gupta, 1998, Doisne et 
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al., 2004, Libri et al., 2011, Miles et al., 2007, Salmon et al., 1994, Scheel-Toellner et al., 

2008, Schluns et al., 2000, Wallace et al., 2010). 

 

3.3.5.2 CD8+ TEMRA cells show little resistance to apoptosis 

Intracellular staining for Bcl-2 protein was performed on donor PBMCs directly ex-vivo. 

Both the CD8+ and CMVpp65-specific CD8+ T cell subpopulations were analysed for the 

expression of Bcl-2, as shown in the representative FACs plot analysis in figure 3.15. Bcl-

2 levels were analysed in total CD8+ and CMVpp65-specific CD8+ T cell subpopulations 

within 34 and 13 donors respectively (figures 3.16 & 3.17). When comparing Bcl-2 levels 

of the total CD8+ T cell compartment in individuals on the basis of their age group and 

CMV serostatus (figure 3.16A) no significant differences were uncovered. However, 

CMVpp65-specific CD8+ T cells did have significantly lower Bcl-2 levels than global CD8+ 

T cells when compared within the same individuals (p<0.0001; Figures 3.16B). Bcl-2 

expression was then compared in CD8+ (figure 3.17A) and CMVpp65-specific CD8+ 

(figure 3.17B) T cell subpopulations. Bcl-2 levels in CD8+ T cells decreased significantly 

from high to low in TN>TCM>TEM>TEMRA subpopulations respectively. In CMVpp65-specific 

CD8+ T cells, the TEM and TEMRA cells showed the lowest levels of BCl-2. 

 

Overall, the results showed that CD8+ and CMVpp65-specific CD8+ TEMRA cells are 

relatively susceptible to apoptosis compared to the other subpopulations, as based on 

Bcl-2 anti-apoptotic protein expression. Furthermore, CMV-specific CD8+ T cells showed 

significantly lower Bcl-2 expression than total CD8+ T cells within the same individuals. 
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Therefore, anti-apoptotic properties of CMV-specific CD8+ T cells, in particular the TEMRA 

cell subpopulation, are unlikely to be the cause for their persistence and expansion 

within the CD8 compartment.  

 

 

 
 
 

 
 
 
Figure 3-16. Bcl-2 staining directly ex-vivo 
Representative FACs plot analysis of Bcl-2 staining of CD8

+
 and CMVpp65-specific CD8

+
 T cell 

subpopulations within the same individual. BCl-2 levels are recorded following the adjustment of MFI to 
control sample MFI levels, in order to ensure consistency between acquisitions. Control sample MFI was 
determined by identifying a positive population gated against an IgG1 Isotype control. Numbers represent 
MFI in relevant histogram. Example shown is representative of 13 donors. 
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(A) 
  

 
 
 

(B) 
 

 
 
 
 

Figure 3-17. Bcl-2 levels in CD8
+
 and CMV-specific CD8

+
 T cells 

(A) Bcl-2 levels of total CD8
+
 T cells by age group and CMV serostatus. Donor numbers shown: CMV-(Y)=9; 

CMV+(Y)=12;CMV-(O)=5;CMV+(O)=9. (B) Bcl-2 levels of total CD8
+
 versus total CMVpp65-specific CD8

+
 T 

cells within 13 of the same individuals. One dot represents one donor. *<0.05;**<0.005;***<0.0005. 
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(A) 
  

 
 
(B) 
 
 

 
 
 
 

Figure 3-18.  Bcl-2 expression in CD8
+
 and CD8

+
 CMVpp65-specific T cell subpopulations  

(A) Pooled data showing Bcl-2 expression in CD8
+
 T cell subpopulations. 34 Donors analysed. (B) Pooled 

data showing Bcl-2 expression in CMVpp65-specific CD8
+
 T cell subpopulation. 13 donors analysed. One 

dot represents one donor. *<0.05;**<0.005;***<0.0005. 
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3.4 Discussion 

Data presented in this chapter highlights the impact of CMV infection upon global CD8 

populations within healthy individuals. CMV infection was found to exaggerate the 

natural age-related decrease in naive CD8+ T cells and increase in CD8+ TEMRA cells. This 

has recently been confirmed elsewhere (Chidrawar et al., 2009). Most importantly, 

results showed that as the CMV-specific CD8+ T cell pool expands with age, it becomes 

increasingly dominated by CMV-specific CD8+ TEMRA cells.  Therefore the aim of this 

chapter, to investigate how CMV-specific TCEs appear, became focused around this 

accumulating CMV-specific TEMRA subpopulation.  

 

To induce and maintain such a large population of CMV-specific T cells, chronic 

stimulation by antigen is thought to be necessary, suggesting CMV could be reactivating 

continuously (van Leeuwen et al., 2002).  However, Ki-67 analysis indicated CMV-specific 

CD8+ T cells, and CMV-specific CD8+ TEMRA cells in particular, show low level proliferation, 

not an increase, as would be expected and commensurate with their accumulation. Ki-

67 is indicative of current or recent proliferation by cells based on the presence of Ki-67 

protein, so therefore has its limitations. Another way to investigate proliferation would 

be by using the Carboxyfluorescein succinimidyl ester (CFSE) assay, which directly 

identifies dividing cells and can be used in combination with flow cytometry (Parish, 

1999). However, results presented here are consistent with observations that during 

active CMV infection, CMV-specific CD8+ T cells exhibit high Ki-67 positivity, whereas in 

convalescence Ki-67 levels are found to be comparable to global CD8+ T cells, despite 
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the CMV-specific population persisting (Miles et al., 2007). The authors also found it was 

during convalescence that the CMV-specific CD45RA+ memory population appeared. 

Furthermore, others investigating CMV-specific CD8+ T cell turnover during 

convalescence, using in-vivo labelling with deuterated glucose, shown CMVpp65-specific 

CD8+ T cells have lower uptake of deuterated glucose than background CD8s (Wallace et 

al., 2010), indicative of reduced proliferation despite the population being observed to 

persist within donors over the time-points sampled. One possibility therefore is that 

following an initial burst of proliferation, effector CMV-specific CD8+ T cells that are 

CD45RO+ during primary infection cease dividing and undergo a switch back to the 

CD45RA+ phenotype. 

 

Once generated, are the CMV-specific CD8+ TCEs therefore persisting through a 

resistance to apoptosis? The argument for the requirement of antigen to maintain 

memory cells is contradicted by findings that virus-specific CD8+ T cells can persist 

indefinitely after being adoptively transferred to a virus-free host (Hou et al., 1994, Lau 

et al., 1994). CMV-specific TCEs and in particular CMV-specific CD8+ TEMRA cells may 

therefore persist through a resistance to apoptosis rather than induction by CMV 

antigen. This was tested by investigating the expression of anti-apoptotic molecule Bcl-

2. There were no significant differences in Bcl-2 levels in CD8+ T cells found on the basis 

of age and CMV in our cohort, despite reports on the contrary that Bcl-2 levels of CD8+ T 

cells are lower in older individuals (Aggarwal and Gupta, 1998). It has been shown 

previously that EBV-specific CD8+ TEMRA cells show a resistance to apoptosis through 
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increased Bcl-2 expression upon resolution of infectious mononucleosis (Dunne et al., 

2002). However, the relative levels of apoptosis resistance exhibited by CMV-specific 

CD8+ T cells in this study were significantly lower compared with the global CD8 

compartment. Furthermore, CD8+ TEMRA cells exhibited the lowest Bcl-2 levels of all 

CMV-specific CD8+ T cell subpopulations. These findings therefore do not support an 

increased resistance to apoptosis as a cause for their accumulation. However, the 

expression of other anti-apoptotic molecules besides Bcl-2 or a decrease in expression 

of pro-apoptotic molecules must be investigated to rule this out completely.  

 

One issue that arises when analyzing CD45RA/CD27 subpopulations of CMV-specific 

CD8+ T cells is whether the CD45RA+CD27+ ‘TN’ phenotype is actually a true naïve 

subpopulation. For example, the mean percentage of CD45RA+CD27+ TN cells within the 

CMVpp65-specific compartment was found to be approximately 20% (figure 3.10B), 

which would be high for an un-primed naïve CMVpp65-specific T cell population. 

Secondly, the high Bcl-2 levels seen in total CD45RA+CD27+ CD8+ T cells were not 

matched by CD45RA+CD27+ CMVpp65-specific CD8+ T cells. Furthermore, this population 

has lower CD27 expression compared with total CD45RA+CD27+ CD8+ T cells (not shown) 

in addition to low CCR7 and high LFA-1 expression (Faint et al., 2001). Taken together, 

this suggests CD45RA+CD27+ CMVpp65-specific CD8+ T cells are a primed memory 

population undergoing CD45RA re-expression. To a degree, this fits with observations 

during primary acute CMV infections that CMV-specific CD45RO+ memory CD8+ T cells 

dominate whereas in convalescence a significant CD45RA+ memory population appears 
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(Kuijpers et al., 2003, van de Berg et al., 2008, Wills et al., 2002). Indeed, results 

presented in this chapter showed CMV-specific ‘TN’ cells were found to increase in 

numbers commensurate with TEMRA cells, which may indicate these are a transitionary 

‘pseudo naive’ CD45RA re-expressing memory population.  

 

However, CMVpp65-specific CD8+ TEMRA cells were not sufficiently large enough to solely 

account for total CD8+ TEMRA cells, although the proportion of CMV-specific TEMRA and TN 

cells out of total CD8+ TEMRA and TN cells were significantly larger in older individuals. This 

means the shrinking TN population in older individuals likely contain a significant 

population of primed memory cells, including those specific for CMV. Furthermore, the 

finding that CMV seropositivity alone increases TEMRA cell numbers with age but CMV-

specific TEMRA cells in the old still occupy a significantly higher percentage of total TEMRA 

cells further highlights that CMV-specific TEMRA cells come to dominate in older 

individuals. Still, CD8+ TEMRA cells specific for other CMV proteins and other viral proteins 

are likely to contribute to the global increase in the CD8+ TEMRA population. For example,, 

CMV IE-1-specific CD8+ T cells can occupy up to 40% of the CD8 compartment and can 

show a high degree of CD45RA expression (Khan et al., 2010, Khan et al., 2002a).  

 

In conclusion, this chapter has confirmed a relationship between CMV, ageing and the 

changes within the CD8 compartment. The most prominent finding is that CD8+ TEMRA 

cells accumulate with age despite showing low levels of Ki-67 and Bcl-2. This suggests 

that CD8+ TEMRA cells may instead be generated from other CD8+ memory T cells which 
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have ceased to proliferate. This non-proliferative state can result from the exhaustion or 

senescence of the memory T cells that represent different pathways for T cell fate 

(section 1.4.8). This will therefore be explored further in the coming chapters, which will 

focus on how senescent CD8+ TEMRA cells are at the telomeric level. Furthermore, it will 

be investigated whether CMV positivity can impact negatively on the overall telomere 

length of an individual, as a result of the accumulation of these highly differentiated 

CD8+ T cells. 
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4 CMV infection and telomere length attrition during ageing 
 

4.1 Introduction  

Telomeres are instrumental in determining the lifespan of cells and can trigger a state of 

senescence when critically short (sections 1.1.2 & 1.4.8). Telomere length is therefore 

indicative of how close T cells are to senescence. Indeed, the telomere length of a T cell 

is predictive of its replicative capacity in-vitro (Plunkett et al., 2005). Naïve T cells have 

longer telomeres than memory T cells, and older individuals have shorter telomere 

lengths compared to the young (Akbar et al., 2004). However, there is a large variation 

between individuals of the same age (Rufer et al., 1999). This could be due to a variety 

of factors, including inter-individual genetic differences, cumulative oxidative damage, 

and chronic inflammatory environments (Valdes et al., 2005, Epel et al., 2004).   

 

The impact of antigenic burden throughout life may also be a factor that determines 

telomere length variation. However, this has not been extensively investigated. 

Repeated stimulation can eventually lead to loss of telomerase activity in highly 

differentiated CD8+CD27-CD28- memory T cells, which is linked to decreased Akt 

phosphorlyaltion (Plunkett et al., 2007, Henson et al., 2009). Chronic virus-specific CD8+ 

T cells also shown progressive telomere shortening (Plunkett et al., 2001), suggesting 

these memory cells are limited in their capacity to be maintained through proliferation.  
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4.2 Aims  

In the previous chapter, CMV serostatus was shown to have a significant impact on the 

CD8 compartment of healthy individuals, by accelerating the loss of TN and 

accumulation of highly differentiated CD8+ and CMV-specific CD8+ TEMRA cells. This may 

disrupt the ‘immune space’ by competitively squeezing out other T cells (Akbar and 

Fletcher, 2005, Franceschi et al., 2000, Nikolich-Zugich et al., 2004, Pawelec et al., 2005, 

Vasto et al., 2007). Furthermore, this may serve to simultaneously lower the overall 

telomere length of the T cell compartment, as a result of the accumulation of highly 

differentiated cells with shorter telomeres. This is important, as short telomeres have 

been associated with an increased risk of susceptibility to death by infection and various 

other conditions (as discussed in 1.1.2).   

 

The aim of this chapter therefore, was to determine whether CMV infection and CMV-

specific TCEs can impact telomere lengths in healthy individuals. Telomere lengths of 

lymphocyte subsets within our healthy cohort were measured to determine the 

significance of CMV serostatus on natural age-related telomere length attrition. The 

telomere lengths of CD8+ and CMV-specific CD8+ TEMRA cells were also investigated in 

relation to the other subpopulations, to determine the effect their accumulation has on 

the overall telomere length of individuals. Furthermore, defining the telomere length of 

these CD8+ TEMRA cells may help explain why they persist within the CD8 compartment, 

despite having a low proliferative and anti-apoptotic phenotype. 
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4.3 Results 

 
4.3.1 Measuring telomere lengths 

Telomere lengths can be measured using a variety of methods (reviewed in(Baird, 

2005). The technique used throughout this thesis is called flow cytometric fluorescence 

in-situ hybridization (flow-FISH) which was adapted in our lab from an original protocol 

by the Rufer group (Rufer et al., 1998, Faint et al., 2001, Reed et al., 2004). Flow-FISH 

uses peptide nucleic acid (PNA) probes, which specifically bind the hexameric repeats of 

telomeres during a hybridisation step. When these PNA probes are fluorescently 

labelled they therefore equate intensity of the signal with telomere length. When this 

procedure is coupled with flow cytometry, flow-FISH has the advantage over other 

techniques in its ability to analyse telomere lengths within single cell populations.  

 

Figure 4.1 outlines the analysis of telomere length using the flow-FISH technique. 

Further details can be found in materials and methods (section 2.4). A standard curve 

was generated previously in our lab by plotting the telomere length MFI against actual 

telomere length, as determined by telomeric restriction fragment (TRF) analysis, for 

healthy individuals over a wide age range (Fletcher et al., 2005, Reed et al., 2004). 

Therefore, telomere MFI readings, once converted using this standard curve, equated to 

estimations of real telomere lengths.  
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Figure 4-1. The Flow-FISH procedure 
The flow-FISH procedure is shown for CD4

+
 T cell telomere length analysis as an example. The process is 

broken down into 3 steps: 1. sample preparation - isolated PBMCs are cell surface stained with CD4 then 
fixed with BS3. They are then hybridised with the telomere probe using a heat step process. Confocal 
microscopy image shows CD4

+
 T cells (red) hybridised with a quantitative telomere PNA probe (blue), the 

intensity of which is equal to telomere length; 2. Acquisition and analysis – first the telomere MFI is 
adjusted to the control i.e. sample with known telomere length MFI. Once properly adjusted and 
compensated the other samples are acquired in triplicate. The mean MFI of the triplicates is calculated i.e. 
100 following FACs analysis. 3. Conversion - finally the mean MFI values are converted using a standard 
curve to estimate real telomere length, in this case MFI of 100 equates to 5.5kb telomere length.  
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4.3.2 CMV accelerates age-associated telomere attrition in T cells 

As discussed in section 1.6, evidence suggests it is the CD8 compartment that is most 

affected by CMV infection largely due to the CMV-specific CD8+ TCEs it induces. The first 

step therefore was to investigate the natural age-related attrition of telomeres within 

CD8+ T cells compared with the other lymphocyte subsets and to analyse any significant 

impact CMV may have on the rate of telomere attrition. Flow-FISH was therefore 

conducted on healthy donor PBMCs on the four cell subsets: total lymphocytes, CD4+ T 

cells, CD8+ T cells, and the remaining CD4-CD8- lymphocytes (predominately B cells).  

4.3.2.1 Telomere lengths in total lymphocytes 

The pooled data for telomere lengths in total lymphocytes is shown in figure 4.2. In total 

110 donors were analysed, 47% of which were CMV positive. The rate of total 

lymphocyte telomere attrition was found to be significantly correlated with age in both 

CMV positive (p<0.0001, r2 =0.615) and CMV negative individuals (p<0.0001, r2 =0.416) 

as depicted in figure 4.2A. However, the base pair per year (bpy) loss in CMV positive 

individuals was greater, equating to 61bpy compared with CMV negative individuals at 

46bpy. When data is further separated into old or young age groups and on the basis of 

CMV positivity (figure 4.2B); significantly shorter telomeres were found in CMV positive 

old individuals versus CMV negative old individuals (p=0.005). However, there was no 

significant difference between young CMV positive versus young CMV negative 

individuals. 
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4.3.2.2 Telomere lengths in CD4-CD8- lymphocytes 

The pooled data for telomere lengths of CD4-CD8- lymphocytes is shown in figure 4.3. In 

total 58 donors were analysed, of which 62% were CMV positive. The rate of CD4-CD8- 

telomere attrition was found to be significantly correlated with age in both CMV positive 

(p=0.0002, r2 =0.505) and CMV negative individuals (p=0.0015, r2 =0.260) as depicted in 

figure 4.3A. The base pair per year loss in CMV positive and CMV negative individuals 

was similar however at 46bpy and 43bpy respectively. When data is further separated into 

old or young age groups and on the basis of CMV positivity (figure 4.3B) no significant 

association was uncovered. 

4.3.2.3 Telomere lengths in CD4+T cells 

The pooled data for telomere lengths of CD4+ T cells is shown in figure 4.4. In total 110 

donors were analysed, 47% of which were CMV positive. The rate of CD4+ T cell 

telomere attrition was found to be significantly correlated with age in both CMV positive 

(p<0.0001, r2 =0.582) and CMV negative individuals (p<0.0001, r2 =0.410) as shown in 

figure 4.4A. The base pair per year loss in CMV positive individuals was greater, equating 

to 63bpy versus 48bpy in CMV negative individuals. Furthermore, when divided by age 

group and CMV positivity (figure 4.4B) CD4+ T cell telomeres were significantly shorter in 

CMV positive old versus CMV negative old individuals (p=0.011). There was no 

significant difference in telomere lengths between young CMV positive versus young 

CMV negative individuals  
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4.3.2.4 Telomere lengths in CD8+T cells 

The pooled data for telomere lengths of CD8+ T cells is shown in figure 4.5. In total 69 

donors were analysed, of which 57% were CMV positive. Telomere attrition was found 

to be most pronounced in CD8+ T cells relative to the other subsets analysed. Base pair 

loss was significantly correlated with age among the populations studied with both CMV 

positive (p<0.0001, r2=0.784) and CMV negative individuals (p<0.0001, r2=0.587) 

showing significant attrition with age (figure 4.5A). However, the base pair per year loss 

in CMV positive individuals was the most marked of all populations, equating to 94bpy 

versus 77bpy in CMV negative individuals. When the data was further divided into old or 

young categories and on the basis of CMV positivity (figure 4.5B) CD8+ T cells exhibit 

significantly shorter telomeres in CMV positive old versus CMV negative old (p=0.0004).  

 

Overall, results demonstrated the most significant telomere attrition was seen in the 

CD8+ T cell compartment. Furthermore, CMV positive individuals were associated with 

an accelerated rate of telomere shortening. The large CMV-specific TCEs which occupy 

the CD8 compartment in CMV seropositive individuals may lower the overall telomere 

length of the CD8 compartment as a whole, thus providing an explanation for this result. 

This could also account for the lack of significance in telomere length in the young age 

group on the basis of CMV positivity, as CMV-specific TCEs are smaller in CMV positive 

young versus CMV positive old individuals. Therefore, to investigate the impact of CMV 

on telomere lengths further it was necessary to look at telomere lengths within CD8+ 

and CMV-specific CD8+ T cell subpopulations. 
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(B) 

 

 

Figure 4-2. The impact of age and CMV serostatus on telomere lengths in total lymphocytes  
(A) Telomere lengths of total lymphocytes in 110 donors stratified by age and CMV status: open circles 
represent CMV negative individuals with the correlation shown by a solid line; closed circles represent 
CMV positive individuals with the correlation shown by a dashed line. The gradient is representative of 
base pair loss per year (bpy). (B) Donor telomere lengths stratified according to CMV status and age 
group; young (<35) and old (>65). Donor numbers: CMV-(Y)=29; CMV+(Y)=24; CMV-(O)=17; CMV+(O)=26. 
Significant differences only displayed by p values. 
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Figure 4-3. The impact of age and CMV serostatus on telomere lengths in CD4
-
CD8

-
 lymphocytes 

(A) Telomere lengths of CD4
-
CD8

-
 lymphocytes in 58 donors stratified by age and CMV status: open circles 

represent CMV negative individuals with the correlation shown by a solid line; closed circles represent 
CMV positive individuals with the correlation shown by a dashed line. The gradient is representative of 
base pair loss per year (bpy). (B) Donor telomere lengths stratified according to CMV status and age 
group; young (<35) and old (>65). Donor numbers: CMV-(Y)=19; CMV+(Y)=10; CMV-(O)=10; CMV+(O)=7. 
Significant differences only displayed by p values. 
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Figure 4-4. The impact of age and CMV serostatus on telomere lengths in CD4

+
 T cells 

(A) Telomere lengths of CD4
+
 T cells in 110 donors stratified by age and CMV status: open circles represent 

CMV negative individuals with the correlation shown by a solid line; closed circles represent CMV positive 
individuals with the correlation shown by a dashed line. The gradient is representative of base pair loss 
per year (bpy). (B) Donor telomere lengths stratified according to CMV status and age group; young (<35) 
and old (>65). Donor numbers: CMV-(Y)=30; CMV+(Y)=18; CMV-(O)=16; CMV+(O)=32. Significant 
differences only displayed by p values. 
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Figure 4-5. The impact of age and CMV serostatus on telomere lengths in CD4

+
 T cells 

(A) Telomere lengths of CD8+ T cells in 69 donors stratified by age and CMV status: open circles represent 
CMV negative individuals with the correlation shown by a solid line; closed circles represent CMV positive 
individuals with the correlation shown by a dashed line. The gradient is representative of base pair loss 
per year (bpy). (B) Donor telomere lengths stratified according to CMV status and age group; young (<35) 
and old (>65). Donor numbers: CMV-(Y)=23; CMV+(Y)=12; CMV-(O)=10; CMV+(O)=11. Significant 
differences only displayed by p values. 
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4.3.3 Using Quantum dot technology in the Flow-FISH assay  

Investigating telomere lengths in CD8+ T cell subpopulations and CMV-specific CD8+ T 

cell populations can be difficult using flow-FISH as the range of flurochromes that can be 

used to define populations are limited due to the denaturing effect of the telomere 

probe hybridization step (requiring a temperature of 82°C for 10mins). To overcome this 

problem it is often necessary to sort populations beforehand, requiring more blood, 

obtained fresh on the day, followed by the expensive and time consuming step of cell 

sorting. However, if more heat stable flurochromes are available it should be possible to 

expand the panel for use in flow-FISH and obviate the need for cell sorting and larger 

numbers of cells being required for analysis. To address this, I investigated the 

availability of more robust (heat-stable) antibody labels. Quantum dot (Qdot) labelled 

antibodies (from Invitrogen) have a novel design giving them improved structural 

stability over original flurochromes. I subsequently chose to test these in the flow-FISH 

assay. 

4.3.3.1 Qdots show superior heat stability during flow-FISH 

The first step was to test a selection of Qdots against original fluorochromes for thermal 

stability during the hybridisation step. Fluorescence intensities were recorded before 

and after treatment of the fluorochromes FITC, PE, PerCP, APC and Cy3 compared with 

those of Qdots 605, 705 and 800 after treatment as depicted in the histograms of figure 

4.6. Qdots were found to withstand the heat treatment very well compared with the 

traditional fluorochromes, sustaining original pre-treatment fluorescence levels.  
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Figure 4-6. Histograms depicting original fluorochromes versus Qdots 
Comparative analysis of flurochromes FITC, PE, PerCP, APC and Cy3 versus Qdots Q605, 705 and 800 pre-
heating (shaded histogram) and after hybridisation step (open histogram). Representative example of 3 
experiments. 
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Qdots could retain flurorescence after the heat hybridisation step, however, it is not just 

a drop in fluorescence intensity that may result from heat-treatment during the 

hybridisation step, but also a loss in percentage of identifiable population. To illustrate 

this point, we need to look at the identification of positively stained populations during 

FACs plot analysis (figure 4.7A). Here, it is shown that some fluorochomes, for example 

PerCP, denature significantly during hybridisation and result in no PerCP positive 

population being identifiable after treatment. Other fluorochromes, however, for 

example APC, partially survive the heat hybridisation step but this results in a 

considerable portion of the population identified by APC being lost upon analysis i.e. 

15% vs. 28% as illustrated in the FACs plots example. This can be particularly 

problematic in the analysis of telomere lengths in small cell numbers e.g. virus-specific 

CD8+ T cell populations. No such loss of population occurs when using Qdots however, 

as illustrated by identification with Q800 in the example. 

 

The percentage of population retained was therefore calculated in this way for each 

fluorochome versus Qdot label before and after heat treatment and data consolidated 

and summarised in the bar chart of figure 4.7B. Here, the mean of the three 

experiments as a percentage of the original MFI retained (relative to 100% pre-

treatment) is compared in the panel. As can be seen, Qdots show superior heat stability 

which results in the original population identified pre-treatment still being retained 

post-treatment.  
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(B) 
 

 
 
 
 

Figure 4-7.  The use of Quantum dot technology in the flow-FISH protocol  
(A) Comparison of FACs plot analysis used to determine positive populations using PerCP, APC or Qdot 
800. (B) Bar charts represent 3 individual experiments showing mean and SD of percentage of original 
signal retained. 
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Qdots were shown to have superior signal retention over the original flurochromes, 

making them an ideal addition to the flow-FISH assay. This meant the original 

fluorochrome panel could be expanded from three colours to five or more colours 

(based on a BD LSRI) as summarised in table 4.1:   

 

Original Flow-FISH Panel New Flow-FISH Panel 
FITC Q565 
Cy3 FITC 
Cy5 Q605 

 Q800 
 Cy5 

 
Table 4-1. Original vs. New Flow-FISH set-up on the BD LSR I 

 

4.3.4 Telomere lengths within CD8+ T cell subpopulations 

 

4.3.4.1 Telomere lengths within CD8+ T cell subpopulations 

In section 4.3.2, it was shown that CD8+ T cells were most affected by age associated 

telomere loss, and CMV positivity increased this rate of attrition. Since CMV may cause 

the accumulation of late differentiated CD8+ T cells which have shorter telomeres, the 

expanded flow-FISH protocol was used to analyse telomere lengths within CD8+ T cell 

subpopulations and stratify according to donor age and CMV serostatus. Previously 

fresh blood was needed and sorted prior to telomere analysis of populations requiring 

more than 2 colour stain, however, using Qdots in the flow-FISH protocol it was now 

possible to use frozen PBMCs for direct determination of telomere length analysis. It 

total, 26 frozen donor PBMCs were analysed in this way as shown in figure 4.8.  
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(B) 
 

 
 
 
 
 
 
Figure 4-8.  Using Qdots to investigate telomere lengths within CD8

+
 T cell subpopulations 

(A) Representative FACs plot analysis showing 4-colour flow-FISH using two Qdots (565, 605) and two 
regular flurochromes (Cy5 and FITC) in combination. (B) Pooled data of CD8

+
 T cell subpopulation 

telomere lengths. 26 donors shown. Significant differences displayed by * values. 
*<0.05;**<0.005;***<0.0005. 
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Figure 4.8A shows a representative example of the implemented of Qdots CD8-Q565 

and CD45RA-Q605 in the flow-FISH protocol to analyse telomere lengths in CD8+ T cell 

subpopulations. Figure 4.8B shows total CD8+ T cell subpopulation telomere lengths in 

26 donors. Telomere lengths were observed to shorten significantly, traversing from 

CD8+ TN to TCM (p<0.0001) then from TCM to TEM (p<0.0001) but then increase in length 

from TEM to CD8+ TEMRA cells (p=0.018). This implied that CD8+ TEMRA cells are not the 

most prone to telomere-dependent senescence of the memory subpopulations.  

 

4.3.4.2 Impact of CMV on CD8+ T cell subpopulation telomere lengths 

Data was further stratified on the basis of age or CMV serostatus (Figure 4.9). When 

telomere lengths are stratified according to age (figure 4.9A) those in the older age 

group had significantly shorter telomeres in each subpopulation compared with the 

young (TN Y vs. O p=0.040; TCM Y vs. O p=0.006; TEM Y vs. O p=0.008; TEMRA Y vs. O 

p=0.028;). When telomere lengths are stratified according to CMV serostatus (figure 

4.9B) although telomere lengths are shorter in CMV positive individuals, only the CD8+ 

TEMRA subpopulation is significantly shorter in CMV positive compared with CMV 

negative individuals (p=0.011). Results show the compounding effect of age and CMV on 

CD8+ T cell subpopulation telomere lengths. This indicates the accumulation of highly 

differentiated CD8+ T cells may contribute to the overall lowering of telomere length in 

total CD8+ T cells, but also shows that within these subpopulations there is also 

significant shortening by age. 
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Figure 4-9. Telomere lengths of CD8
+
 T cell subpopulations grouped by age and CMV status 

(A) Pooled data showing CD8
+
 T cell subpopulation telomere lengths by age group. 16 young and 7 old 

donors shown. (B) Pooled data showing CD8
+
 T cell subpopulation telomere lengths by CMV status. 10 

CMV negative and 11 CMV positive shown. Significant differences displayed by * values. 
*<0.05;**<0.005;***<0.0005. 
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4.3.5 Telomere lengths within CMV-specific CD8+ T cells 

 

4.3.5.1 Telomere lengths within CMV-specific CD8+ T cells 

With such large CMV-specific TCEs appearing with ageing, the telomere lengths of this 

population need to be investigated. Previously it has been problematic to determine 

telomere lengths of virus-specific CD8+ T cells using tetramers in flow-FISH, as the 

fluorochromes with which tetramers are engineered can be denatured during the heat 

hybridisation step. Sorting CMV-specific populations is theoretically possible, but 

difficult, as the populations can be small, especially in younger donors.  To overcome 

this problem, Qdot streptavidin conjugates were tested in combination with unlabelled 

biotinylated pentamer (supplied by Proimmune) in the flow-FISH assay. Pentamers were 

chosen over of tetramers purely for practical reasons: pentamers were available fully 

formed and unlabelled, whereas tetramers were tagged with PE as part of their 

tetramerisation step with streptavidin-PE and therefore Qdot streptavidin conjugates 

could not be used. A representative example of how Qdots and pentamers were used to 

identify CMV-specific CD8+ T cell telomere lengths is shown in figure 4.10A. FACs plot 

analysis illustrates staining before (top) and after (bottom) the telomere probe heat 

hybridisation step. The CMV-specific population of 0.96% of CD8+ T cells was 

successfully retained following the hybridisation step (0.9%) and telomere lengths 

successfully determined, as depicted by the relevant histograms. This was extended to a 

5 colour flow-FISH assay using CD8-Q565, Pentamer (NLV) – Q800, CD45RA-Q605 and 

CD45RO-APC and telomere probe-Cy5 to determine telomere lengths in total CD8, total 

CMV-specific and CD45RA+ and CD45RO+ CMV-specific populations (figure 4.10B). 
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Figure 4-10. Determining telomere lengths of CMV-specific CD8

+
 T cell subpopulations 

(A) Stability of tetramer staining before and after heat hybridisation step of the flow-FISH protocol as 
illustrated by FACs plot analysis. (B) The implementation of Qdots to perform 5 colour flow-FISH to 
determine telomere lengths within CMV-specific CD45RA and CD45RO memory populations. Values 
within histograms represent telomere length MFI of the relevant population. 
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Two subpopulations, CD45RA and CD45RO, as opposed to the four CD45RA/CD27 

subpopulations, were investigated to maximise the total number of CD45RA re-

expressing memory CMV-specific CD8+ T cells. This was predominately due to young 

individuals in particular often showing smaller CMV-specific TCEs. Furthermore, as the 

CMV-specific compartment was shown to become increasingly dominated by CD8+ TEMRA 

and ‘TN’ cells during ageing, the aim was to measure telomere lengths in all CD45RA re-

expressing memory versus all the CD45RO expressing memory CMVpp65-specific CD8+ T 

cells. This was to determine if CD45RA re-expression on CD8+ CMV-specific T cells was 

accompanied by shorter telomeres, commensurate with their accumulation.  

 

Figure 4.11 shows an analysis conducted on 6 young and 6 old HLA matched individuals. 

Significant longer telomere lengths were found in the CD45RA versus CD45RO 

CMVpp65-specific memory CD8+ T cells in both young and old age groups (both p=0.03). 

Furthermore, the telomere lengths in total CMVpp65-specific CD8+ T cell populations 

were significantly shorter in older subjects than in younger individuals (p=0.008). Results 

show that both CD8+ TEMRA cells and CMV-specific CD8+ CD45RA+ T cells do not have the 

shortest telomeres of all memory subpopulations. This also indicates they are not the 

most prone to telomere-dependent senescence and may attribute to their persistence, 

potentially being maintained in a telomere-independent manner. However, CD8+ TEMRA 

cell telomeres are still relatively short and likely to contribute to the impact of CMV on 

shortening telomeres through their accumulation within the CD8 compartment of CMV 

positive individuals. 
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Figure 4-11.  Telomere lengths of CD8
+
 CMVpp65-specific CD45RA and CD45RO memory subpopulations 

Total CMVpp65-specific and CMVpp65-specific CD45RA or CD45RO memory telomere lengths within 
young or old age groups. 6 young and 6 old donors shown. Significant differences displayed by *values. 
*<0.05;**<0.005;***<0.0005. 
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4.4 Discussion 

Mounting evidence highlights the detrimental association between relatively short 

telomeres and disease, as discussed in the introduction of this chapter. However, the 

effect of antigenic burden upon telomere lengths during healthy ageing is less well 

documented. Such a study has been presented in this chapter, concluding that CMV can 

significantly impact telomere lengths in healthy individuals.  

 

The results showed age-related telomere attrition to be most prominent in T cells, in 

particular CD8+ T cells, but not CD4-CD8- (mainly B cell) subsets. Furthermore, CMV 

positivity significantly affected the rate of telomere shortening, by increasing the 

average rate of base pair attrition per year and being associated with shorter telomere 

lengths in CMV positive old versus CMV negative old individuals. These findings fit to 

some degree with a recent study of patients with coronary heart disease (Spyridopoulos 

et al., 2009) which showed that CMV positive patients had significantly shorter CD8+ T 

cell telomeres than CMV negative patients, while no other cell type was affected by 

CMV status. But the present study serves to highlight how healthy individuals may also 

be affected by common persistent viral infections such as CMV. 

 

Indeed, the fact that CMV can lower an individual’s telomere length may negatively 

impact their predisposition to death by infection and a variety of diseases (Samani et al., 

2001, Calado and Young, 2009, Brouilette et al., 2007, Brouilette et al., 2003, Cawthon 

et al., 2003). The loss of virus-specific T cells through telomere-dependent senescence 
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could also compromise the individual’s immunity to that virus. This is further highlighted 

by low telomerase activity, the enzyme which adds back telomere repeats, being found 

in T cells specific for CMV and other chronic viral infections such as HIV, HCV and HBV 

(Bestilny et al., 2000, Fletcher et al., 2005, Satra et al., 2005). This suggests a common 

mechanism whereby persistent antigenic stimulation results in increased T cell turnover 

and telomere shortening within virus-specific T cells. 

 

An increase in CD8+ TEMRA cells with age and CMV was shown in the previous chapter; 

however results show these cells did not show the shortest telomere lengths of the 

memory subpopulations. This was especially prominent in the CMV-specific CD8+ 

compartment, wherein the CD45RA+ memory population had significantly longer 

telomeres than the CD45RO+ memory subpopulation. Indeed, this fits with similar 

observations seen with EBV-specific CD45RA re-expressing memory CD8+ T cells, which 

were shown to have longer telomeres than their CD45RO+ counterparts (Dunne et al., 

2002). This suggests that the effect of CMV infection in accelerating telomere attrition 

and reducing overall CD8 T cell telomere length may largely be due to the CD45RO+ 

subpopulations. However, it must be noted that all memory populations have shorter 

telomere lengths compared with naive so any increase in memory CD8+ T cells at the 

cost of naive CD8+ T cells will serve to shorten the overall telomere length. We have 

since published this in collaboration with another group, showing highly differentiated T 

cells correlate with shorter telomeres (van de Berg et al., 2010). This is further 

highlighted by the fact that despite TEMRA cells accumulating in the old CMV-specific 
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compartment, the CMV-specific compartment overall showed significantly shorter 

telomere lengths than in the young CMV-specific compartment, suggesting this 

population is driven closer to senescence during ageing.  

 

The next chapter will focus on how TEMRA cells may be generated in-vivo. To address this, 

the proliferative potential and telomerase activity of the CD8+ T cells subpopulations will 

be compared in-vitro. Furthermore, whether TEMRA cells can be maintained 

homeostatically by cytokine will also be investigated. 
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5 The generation of CMV-specific CD8+ T cell expansions 
during ageing 

 

5.1 Introduction 

In the present study CD8+ TEMRA cells have been shown to accumulate during ageing and 

are present at a significantly higher frequency in CMV positive individuals. This is despite 

CD8+ TEMRA cells being highly differentiated and showing signs of low turnover and high 

susceptibility to apoptosis when analysed directly ex-vivo which suggests they may be 

close to senescence. However, it has also been shown that CD8+ TEMRA cells have 

relatively long telomeres for a memory CD8+ T cell subpopulation, indicating they have 

residual capacity for replication which may explain their persistence and accumulation 

within the CD8+ T cell compartment. It is therefore possible that CD8+ TEMRA cells may be 

close to senescence through telomere-independent pathways. Indeed, cellular 

senescence can occur by telomere-independent mechanisms as the result of DNA 

damage caused by reactive oxygen species, ionizing radiation, chromatin perturbation 

and activation of p53 and stress pathways (Campisi and d'Adda di Fagagna, 2007, Passos 

and Von Zglinicki, 2006). This initiates a DNA damage response similar to telomere-

dependent senescence (d'Adda di Fagagna, 2008). 

 

It is also unclear whether CMV-specific CD8+ TEMRA cells are maintained by periodic CMV 

reactivation or generated in the absence of antigen by homeostatic signals. Indeed, the 

two are not mutually exclusive, as TEMRA cells could be generated from previously 
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antigen driven memory subpopulations which later undergo homeostatic CD45RA re-

expression. Evidence to support this hypothesis comes from studies with IL-15, a 

cytokine that is essential for CD8+ T cell memory survival (Tough et al., 2000). IL-15 was 

shown to generate CD8+ TEMRA cells from CD8+ TCM cells (Geginat et al., 2003) and also 

cause CD45RA re-expression on CD45RO+ EBV-specific CD8+ memory T cells (Dunne et 

al., 2005) in the absence of antigen in-vitro.  

 

As TEMRA cells are found predominately in older individuals and are also increased in 

those who are CMV positive, this suggests ageing and/or chronic CMV infection may 

cause changes in the cytokine milieu which favours their generation. Indeed, there is 

evidence to support this hypothesis. Previous data has shown that CMV stimulated 

plasmacytoid dendritic cells can produce high levels of IFN-α, which can lead to down-

regulation of co-stimulatory molecules and inhibition of telomerase activity in activated 

CD4+ T cells (Fletcher et al., 2005). This is significant as the antiviral effects of IFN-α can 

also lead to the secondary production of cytokines such as IL-2 and IL-15 (Tough et al., 

1996). In fact, acute viral infections i.e. HBV, Dengue virus, and Influenza virus were 

shown to trigger bystander activation and expansion of CMV-specific CD8+ T cells 

through IL-15 (Sandalova et al., 2010). Furthermore, elevated levels of pro-inflammatory 

cytokines including IFN-α and IL-15 have been reported during ageing (Gangemi et al., 

2005, Zhang et al., 2002, De Martinis et al., 2005, Franceschi et al., 2007). Therefore, 

chronic inflammation during ageing may lead to increased circulating IL-15 levels which 

drive the appearance of CD8+ TEMRA cells. 
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5.2 Aims 

The aim of this chapter is to determine how CD8+ TEMRA cells are generated. Low 

proliferative and low anti-apoptotic levels coupled with relatively long telomeres for a 

memory subpopulation suggests they could be approaching senescence by telomere-

independent pathways. To address this, the potential of CD8+ TEMRA cells to proliferate 

efficiently in response to activation will be investigated. Specifically, the level of 

proliferation and telomerase activity exhibited following activation will be determined in 

CD8+ TEMRA cells and compared with the other CD8+ T cell subpopulations. Senescence-

related DNA damage, whether resulting from telomere dependent or telomere 

independent DNA damage can be identified by molecules such as the histone protein 

γH2AX (Passos et al., 2010). Therefore the levels of γH2AX within CD8+ T cell 

subpopulations will also be determined.  

 

As discussed earlier, evidence suggests a role for IL-15 cytokine in the generation of 

CD8+ TEMRA cells. Therefore the proliferative and phenotypic changes of CMV-specific 

CD8+ T cells in response to IL-15 will be investigated. Additionally, whether CMV can 

cause increased IL-15 levels in-vitro will be assessed in order to question the mechanism 

whereby chronic CMV infection may influence the appearance of more CD8+ TEMRA cells 

through bystander proliferation in-vivo. 
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5.3 Results 

 
5.3.1 Proliferative responses of CD8+ T cell subpopulations to stimulus 

In chapter 3, CMV-specific CD8+ TEMRA cells showed low levels of proliferation on the 

basis of Ki-67 expression compared with other memory CD8+ T cell subpopulations when 

sampled directly ex-vivo. One possibility for the low proliferative capacity may be that 

CD8+ TEMRA cells are resting memory T cells that have not seen antigen recently. 

Alternatively, this may indicate CD8+ TEMRA cells are a senescent population that are un-

responsive to antigen. The first step therefore was to investigate if CD8+ TEMRA cells can 

proliferate efficiently when reactivated.  

5.3.1.1 CD8+ TEMRA cells show poor proliferative responses 

The proliferative responses of CD8+ T cell subpopulations to a broad stimulus were 

investigated. Donor PBMCs were first negatively selected for CD8+ T cells then further 

sorted by CD45RA and CD27 to give the four CD8+ T cell subpopulations of interest. Each 

subpopulation was then separately seeded at 100,000 cells and stimulated with anti-

CD3 by placing in OKT3 coated wells for a period of 4 days. The proliferative response 

(Ki-67 positivity) on day 4 was recorded for each CD8+ T cell subpopulation (figure 5.1A) 

as determined by the mean responses of 7 donors tested. CD8+ TEMRA cells showed 

significantly lower Ki-67 levels (with a mean of 21%) compared with other CD8+ T cell 

subpopulations (means all above 50%) indicating CD8+ TEMRA cells have poor proliferative 

responses to a broad activation in-vitro.   
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5.3.1.2 CMV-specific CD8+ TEMRA cells show poor proliferative responses 

Next, the proliferative responses of CD8+ CMVpp65-specific T cell subpopulations to 

CMVpp65 peptide were investigated. Donor PBMCs from a CMV positive individual were 

first selected for CD8+ T cells by negative magnetic bead selection and then further 

sorted on the basis of CD45RA and CD27 to give the four CD8+ T cell subpopulations of 

interest. Each subpopulation was then separately seeded at 100,000 cells per well and 

stimulated with CMVpp65 peptide for 4 days. The proliferative response (Ki-67 

positivity) was subsequently recorded for each CD8+ T cell subpopulation (figure 5.1B) as 

based on the mean responses of 5 individuals tested. CMV-specific CD8+ TN cells showed 

the highest Ki-67 levels (mean of 24%) with TCM showing the second highest response 

(mean of 13%) and both TEM and TEMRA subpopulations showing the lowest responses 

(mean of 10%). Results showed CMV-specific CD8+ T cells have a relatively poor 

response to CMVpp65-specific activation in-vitro, with CMV-specific CD8+ TEMRA cells 

showing among the lowest Ki-67 levels in response to activation of all subpopulations. 

 

Overall results showed that CD8+ and CMV-specific CD8+ TEMRA cells show poor 

proliferative responses to activation. This is consistent with Ki-67 positivity observed 

directly ex-vivo in chapter 3 and provides further support that CD8+ TEMRA cells may be 

close to senescence. 
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(A) 

 
(B) 

 

 

 
Figure 5-1. Proliferative responses of sorted CD8

+
 and CMV-specific CD8

+
 T cell subpopulations to 

stimulation 
CD8

+
 T cell subpopulations were sorted at >98% purity then stimulated separately in (A) OKT3 coated 

wells for 4 days at which Ki67 levels were recorded (mean of 7 experiments) or in (B) CMVpp65 peptide 
containing medium for 4 days at which Ki67 levels were recorded (mean of 5 experiments). Significant 
differences displayed by *values. *<0.05;**<0.005;***<0.0005. 
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5.3.2 Telomerase activity of CD8+ and CMV-specific CD8+ T cells 

The attrition of telomere length can be suppressed by the enzyme telomerase, which 

adds back telomeric repeats (Akbar and Vukmanovic-Stejic, 2007). However, it has been 

shown that repeated stimulation can eventually lead to the loss of telomerase activity in 

highly differentiated CD8+CD27-CD28- memory T cells (Plunkett et al., 2007, Henson et 

al., 2009). In the previous chapter CD8+ TEMRA cells and CMV-specific CD8+ CD45RA+ 

memory cells were shown to have significantly longer telomeres than CD8+ TEM cells or 

CMV-specific CD8+ CD45RO+ memory T cells respectively. This may indicate CD8+ TEMRA 

cells have relatively high telomerase activity that maintains the telomere length within 

these cells. Therefore, the activity of telomerase was compared in CD8+ and CMV-

specific CD8+ T cell subpopulations. 

 

5.3.2.1 Measuring telomerase activity using the TRAP assay 

The analysis of telomerase activity was conducted using the telomeric repeat 

amplification protocol (TRAP) assay, as described in materials and methods (section 

2.4.3). Briefly, cell extracts from stimulated cells were isolated and PCR was performed 

with samples adjusted to 500 Ki67+ T cells per reaction (Reed et al., 2004). Telomeric 

elongation was performed using a *γ-P32] ATP-end-labelled telomerase substrate (TS) 

primer and samples amplified by PCR. The PCR products were then run on a 

polyacrylamide gel which was subsequently exposed to an autoradiography film. 

Telomerase activity was then calculated as a ratio between the mean optical densities of 

the telomeric repeat bands and the internal standard control band.   
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5.3.2.2 CD8+ TEMRA cells show low level  telomerase activity 

Telomerase activity was measured in sorted CD8+ T cell subpopulations following 

stimulation with anti-CD3 and irradiated autologous APCs. A representative example of 

relative telomerase activity in one donor is shown by the autoradiography of a TRAP 

assay acrylamide gel (figure 5.2A). CD8+ TEMRA cells were found to have the lowest levels 

of telomerase activity of all CD8+ T cell subpopulations. Telomerase activity was 

calculated as mean telomerase activity per subpopulation from the consolidation of 5 

experiments (figure 5.2B).  

5.3.2.3 CMV-specific CD8+ TEMRA cells show low level  telomerase activity 

Telomerase activity was measured in sorted CD8+ T cell subpopulations from CMV 

positive individuals following stimulation with CMVpp65 peptide (2pg/ml) plus 

irradiated autologous APCs. A representative example of relative telomerase activity in 

one donor is illustrated by the autoradiography of a TRAP assay acrylamide gel in figure 

5.2C. CMV-specific CD8+ TEMRA cells were found to have the lowest levels of telomerase 

activity of all CD8+ T cell subpopulations, as highlighted by the mean telomerase activity 

per subpopulation determined from 3 experiments (figure 5.2D).  

 

Results showed that telomerase activity in both CD8+ and CMVpp65-specific CD8+ TEMRA 

cells were the lowest of all subpopulations, equating to a restriction in their ability to be 

maintained through subsequent division and indicative of a senescent subpopulation. 
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(A)                                                                               (C)                                         

 
 

(B)                                                                               (D)          
                                

 
 

 
Figure 5-2.  Telomerase levels in CD8

+
 and CMV-specific CD8

+
 T cell subpopulations  

Telomerase activity was determined using the TRAP assay. (A) Sorted CD8
+
 T cell subpopulations were 

stimulated with OKT3 and irradiated APCs for 4 days. Autoradiography of a TRAP assay 12% acrylamide gel 
from a representative example is shown. (B) Bar chart shows mean relative telomerase levels from five 
experiments. (C) Sorted CD8

+
 T cell subpopulations from CMV positive individuals were stimulated with 

CMVpp65 peptide and irradiated APCs for 4 days. Autoradiography of a TRAP assay 12% acrylamide gel 
from a representative example is shown. (D) Bar chart shows mean relative telomerase levels from three 
experiments. 
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5.3.2.4 CD8+ TEMRA cells show evidence of high DNA damage  

The low levels of telomerase activity found in CD8+ and CMV-specific CD8+ TEMRA cells 

indicate they are highly differentiated cells which have undergone repeated cellular 

proliferation and are close to senescence (Fletcher et al., 2005, Weng et al., 1996, 

Plunkett et al., 2007). However, the previous chapter showed CD8+ TEMRA cells exhibit 

relatively long telomere lengths for a memory subpopulation and most significantly 

CMV-specific CD8+ CD45RA+ memory T cells have significantly longer telomeres than 

CMV-specific CD8+ CD45RO+ memory T cells. This dichotomy suggests that rather than 

being lost through repeated stimulation, telomerase may be shut off or inhibited in CD8+ 

TEMRA cells. As discussed in the introduction of this chapter, cellular senescence can also 

occur by telomere-independent mechanisms as the result of DNA damage. One such 

indicator of DNA damage is γ-H2AX (Passos et al., 2010).  

 

The levels of γ-H2AX were analysed in the four CD8+ T cell subpopulations directly ex-

vivo (figure 5.3). CD8+ TEMRA cells exhibited significantly higher levels of γ-H2AX 

compared with the other subpopulations. This supports the hypothesis that CD8+ TEMRA 

cells may be close to telomere-independent senescence through the accumulation of 

DNA damage. These are preliminary results and are not sufficient in numbers to 

determine the influence of age or CMV serostatus as independent factors. Furthermore, 

γ-H2AX levels on CMV-specific CD8+ T cell subpopulations require investigation.  
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(A) 

 

(B) 

 
Figure 5-3. DNA damage levels as indicated by γ-H2AX expression on CD8+ T cell subpopulations 
(A) Representative histograms showing γ-H2AX levels in each subpopulation. Filled blue histogram 
represents sample and empty histogram IgG1-488 isotype control. (B) Pooled data from 8 individuals 
showing γ-H2AX levels of CD8

+
 T cell subpopulations. Standard error bars shown. 8 young individuals 

tested (4 CMV+/4 CMV-). *<0.05;**<0.005;***<0.0005. 
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5.3.3 Proliferative and phenotypic responses to IL-15 cytokine 

It has been shown previously that IL-15 can cause CD45RA re-expression on CD45RA 

negative CD8+ T cell memory populations in the absence of antigenic stimulation in-vitro 

(Dunne et al., 2005, Geginat et al., 2003). This suggests a mechanism by which CD8+ 

TEMRA cells may be generated in-vivo.  

 

The potential of IL-15 to cause CD45RA re-expression on CD45RA negative CD8+ and 

CMV-specific CD8+ T cells was therefore investigated. Figure 5.4 outlines the two 

experimental approaches used to investigate this. In the first experiment (figure 5.4A) 

the proliferative and phenotypic responses of the four CD8+ T cell subpopulations, as 

identified by CD45RA and CD27 expression, were sorted then cultured individually with 

one shot of 10U IL-15 cytokine. In the second experiment (figure 5.4B) the CD45RA 

negative fraction only was sorted from CD8+ T cells taken from a CMV positive individual 

then cultured with one shot of 10U IL-15 cytokine. In the second experiment the CMV-

specific population was identified by tetramer to analyse CMV-specific CD8+ T cell 

proliferation and CD45RA re-expression during IL-15 treatment.  
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                                      (A)                                                                            (B) 

 

 

Figure 5-4. Schematic of IL-15 reversion experiments  
IL-15 reversion experiments were conducted in one of two ways; as depicted by (A) for the four CD8

+
 T 

cell subpopulations and (B) for one CD45RA negative subpopulation.  
 
 
 
 
 
 
 
 
 
 



 

 

146 

 

5.3.3.1 IL-15 maintains the survival and proliferation of CD8+ T cells  

The ability of IL-15 to maintain the survival of memory CD8+ T subpopulations in the 

absence of antigen was tested. The four CD8+ T cell subpopulations were sorted and 

individually cultured with IL-15. The number of cells recovered at time-points indicated 

were recorded and expressed as a percentage of the initial seeded numbers (figure 

5.5A). CD8+ TCM and TEM cells proliferated efficiently in response to IL-15 treatment, 

reaching close to 350% of the original seeded cell numbers. Although CD8+ TEMRA cells 

initially proliferated slowly, by day 21 cell numbers were relatively high, at approx 260% 

of seeded numbers. CD8+ TN cells were less responsive to IL-15 and numbers by day 21 

were comparably lower than the other subpopulations. When not treated with IL-15, 

cell death was observed to occur within 4 days (not shown). Results confirm that IL-15 

can maintain the proliferation of memory CD8+ T cells in the absence of antigen. 

 

5.3.3.2 IL-15 causes CD45RA re-expression 

The expression of CD45RA and CD27 was also determined during IL-15 treatment. 

Samples of cells were taken at days 0, 1, 9, 14, and 21 then stained with antibodies to 

CD8, CD45RA and CD27. CD45RA re-expression was found to increase commensurate 

with days of IL-15 treatment on both CD8+ TCM and CD8+ TEM cells, resulting in 

approximately 60% and 45% CD45RA+ re-expression on these subpopulations 

respectively (figure 5.5B).  
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(A) 
 

 

 
 
 

(B) 
 
 

 
 

Figure 5-5. Proliferative and phenotypic responses of CD8
+
 T cell subpopulations to IL-15 treatment 

CD8
+
 T cell subpopulations were sorted on the basis of CD45RA and CD27 then cultured individually with 

IL-15 (10U). (A) The percentage survival of CD8
+
 T cell subpopulation nubers with time (in days) post IL-15 

treatment as determined by viable cell counting on days 0, 1, 9, 14 and 21. Percentage cell survival 
calculated based on original seeded numbers at day 0 (set to 100%). (B) FACs plot analysis showing 
CD45RA/CD27 phenotype of each CD8

+
 T cell subpopulation on days 0, 1, 9, 14 and 21. Numbers in 

quadrants represent percentages of total live cells. Experiment shown is representative of two. 
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5.3.3.3 IL-15 causes CMV-specific T cells to proliferate 

Next, the response of CMV-specific CD8+ T cell responses to IL-15 was investigated. 

Sorted CD45RA negative CD8+ T cells were obtained from CMV positive individuals who 

were HLA matched for analysis of the CMVpp65-specific CD8+ T cell population. CD45RA 

negative CD8+ T cells were seeded at 100,000 cells per well and cultured over 14 days 

with 10U of IL-15. At time-points 0, 1, 4 and 14 one well was harvested, viable cell 

numbers counted and total cells stained with CMVpp65-specific tetramer together with 

CD8, CD45RA and CD45RO antibodies. IL-15 was shown to cause the expansion of this 

CD45RA negative subpopulation to approximately 250% of its original seeded number 

by day 14 (figure 5.6A). This indicated that IL-15 can drive the expansion of CMV-specific 

CD8+ T cells efficiently in the absence of antigen. 

 

5.3.3.4 IL-15 causes CMV-specific T cell CD45RA re-expression 

Commensurate with the expansion of this population was the re-expression of CD45RA 

on CD45RA negative CMVpp65-specific CD8+ T cells. This is shown in the representative 

example FACs plot analysis of one individual (figure 5.6B). Here, the percentage of 

CD45RA re-expression is displayed in the relevant quadrant of total CD8+ T cells (top 

panel) and CMV-specific CD8+ T cells (bottom panel). Both of these populations showed 

increased expression of CD45RA by day 14 compared with initial levels at day 0, 

equating to 47% and 39% CD45RA positive population on total CD45RA negative CD8+ 

and CMV-specific CD8+ T cells respectively. Results of three experiments confirm 

CD45RA re-expression in response to IL-15 treatment in-vitro. 
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(A)                                            
                         

 
 
 (B) 
 
 

 
 
 

Figure 5-6. Homeostatic proliferation and CD45RA re-expression on CD8
+
 and CMVpp65-specific CD8

+
 

CD45RA negative T cells during IL-15 treatment 
(A) The percentage recovery of CD8

+
 CD45RA- T cells with time (in days) during IL-15 treatment, as 

determined using viable cell count from 100% at day 0 then subsequently at days 1, 4, and 14. (B) FACs 
plot analysis showing CD45RA re-expression on the sorted CD45RA negative population at days 0 to 14. 
Numbers represent percentages in quadrants. Experiment shown is representative of three. 



 

 

150 

 

5.3.3.5 CMV lysate and IFN-α increases production of IL-15 

Previous data has shown that CMV lysate stimulated plasmacytoid dendritic cells 

(pAPCs) can produce high levels of IFN-α (Fletcher et al., 2005). IFN-α may also cause the 

secondary production of IL-15 (Tough et al., 1996), which has been implicated in the 

generation of CD45RA re-expressing memory subpopulations, as shown in the previous 

section and elsewhere (Dunne et al., 2005, Geginat et al., 2003, Sandalova et al., 2010).  

 

Therefore, the potential of CMV to cause the production of IL-15 was investigated. IL-15 

mRNA levels were measured by RT-PCR in total PBMCs from CMV positive individuals, 

following the treatment of cells with either IFN-α or CMV lysate. In each case two 

experiments were conducted. For the first experiment, treating PBMCs with IFN-α for 4, 

24 and 48 hours (figure 5.7A) showed a 4 hour treatment yielded maximal production of 

IL-15 mRNA, with a 4.8 fold increase at a concentration of 500U/ml compared with no 

IFN-α treatment. This 4 hour treatment was then repeated on a different donor (figure 

5.7B) and a 3 fold increase in IL-15 mRNA was observed at a peak concentration of 

1000U/ml. Both results demonstrated that treatment with IFN-α resulted in increased 

production of IL-15 mRNA from baseline levels (i.e. no IFN-α treatment). When PBMCs 

were treated with CMV lysate for 24, 48 and 72hrs (figure 5.7C) a 24hr treatment 

yielded maximal production of IL-15 mRNA, with a 2 fold increase compared with no 

CMV lysate treatment.  This 24 hour treatment was then repeated on a different donor 

(figure 5.7D) and a 3.5 fold increase in IL-15 mRNA levels was observed. Results showed 

that CMV lysate can lead to increased levels of IL-15 mRNA in total PBMCs. 
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(A)                                                                             (B)                                                               

 
 
 
(C)                                                                            (D) 

 

 
 

Figure 5-7.  IL-15 production following the stimulation of total PBMCs with either IFN-α or CMV lysate 
The production of IL-15 mRNA was determined by RT-PCR following the treatment of total PBMCs with 
either IFN-α (A&B) or CMV lysate (C&D) for times and concentrations indicated.  
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5.4 Discussion 

The aim of this chapter was to investigate how CD8+ TEMRA cells may be generated. In 

conclusion, results suggest that this subpopulation may be accumulating through 

homeostatic-driven proliferation from previously generated CD8+ TCM or CD8+ TEM 

subpopulations. This is based on the low level proliferative responses and low 

telomerase activity exhibited by CD8+ TEMRA cells upon stimulation, and observations IL-

15 caused CD45RA re-expression on CD45RA negative CD8+ and CMV-specific CD8+ T 

cells. 

 

Low levels of telomerase activity found in CD8+ and CMV-specific CD8+ TEMRA cells 

indicates they are highly differentiated cells which have undergone repeated cellular 

proliferation, and are close to senescence (Fletcher et al., 2005, Weng et al., 1996, 

Plunkett et al., 2007). Indeed, this is consistent with findings of low Ki-67 and Bcl-2 

levels in CD8+ and CMV-specific CD8+ TEMRA cells directly ex-vivo (chapter 3). 

Furthermore, despite having relatively long telomeres for a memory subpopulation, 

CD8+ TEMRA cells showed high levels of DNA damage in the form of γ-H2AX histone 

protein expression. Overall, results suggest that CD8+ TEMRA cells may be close to 

senescence through telomere-independent mechanisms. Indeed, ongoing work is 

investigating p38, a mitogen activated protein kinase involved in stress related 

responses which can trigger apoptosis. Preliminary work (not shown) indicates that the 

inhibition of p38 through BIRB 796, an inhibitor of p38 signaling (Bagley et al., 2007) can 

enhance telomerase activity. 
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Work presented in this chapter also showed IL-15 can maintain the homeostatic 

proliferation of CMV-specific CD8+ memory T cells. This is in-line with reports that 

CD27/CD28 negative memory cells can be maintained efficiently by IL-15 cytokine (Chiu 

et al., 2006). Most importantly, IL-15 caused CD45RA re-expression on CMV-specific 

CD45RO+ CD8+ T cells, supporting similar findings with EBV-specific CD8+ T cells (Dunne 

et al., 2005) and total CD8+ TCM cells (Geginat et al., 2003). This identifies a key role for 

IL-15 in the generation of CD8+ TEMRA cells. 

 

It is possible the persistence of CMV and other viruses may lead to increased levels of IL-

15 in-vivo and subsequently drive the generation of CD8+ TEMRA cells. IL-15 is produced 

by dendritic cells, monocytes and endothelial cells during and following viral infections 

(Oppenheimer-Marks et al., 1998, Waldmann, 2006). Furthermore, acute viral infections 

i.e. HBV, Dengue virus, and Influenza virus have been shown to trigger bystander 

activation and expansion of CMV-specific and EBV-specific CD8+ T cells through IL-15 

(Sandalova et al., 2010). It must also be remembered that CD8+ TEMRA cells are not just 

seen in CMV positive individuals but also in CMV negative individuals, but at significantly 

lower numbers. CMV negative individuals will be infected with other chronic viruses; on 

average a healthy individual is infected with 8-12 chronic viruses (Virgin et al., 2009). 

Therefore, it is possible that other viruses may also be causing bystander proliferation 

and generation of CD8+ TEMRA cells through IL-15 or related cytokines. Previous work has 

shown that CMV lysate can produce high levels of IFN-α through plasmacytoid dendritic 

cells (Fletcher et al., 2005). Results presented in this chapter show CMV lysate can also 
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increase IL-15 production in-vitro, although the main source is yet to be determined, as 

total PBMCs were stimulated and individual cell types not separated. However, taken 

together, evidence suggests that chronic infection may lead to increased IL-15 levels. 

 

Another possibility is that CMV-specific CD8+ T cells are more amenable to the effects of 

IL-15, and therefore more likely to undergo CD45RA reversion. One possibility is that 

CMV-specific CD8+ T cells have increased IL-15 receptor expression levels. The IL-15 

receptor is part of the common cytokine-receptor γ-chain family, sharing the γ-chain 

(CD132) with IL-2, IL-4, IL-7, IL-9 and IL-21, but is distinguished separately by the 

expression of IL-15Rα and IL-15Rβ (Waldmann, 2006, Khaled and Durum, 2002). The 

mechanism of signalling through IL-15 is still poorly understood however, as IL-15Rα can 

be found both directly on T cells or trans-presented to T cells by DCs or monocytes 

(Khaled and Durum, 2002, Ma et al., 2006, Waldmann, 2006, Geginat et al., 2003, Sauce 

et al., 2006). Therefore, T cells expressing higher levels of IL-15Rα or other constituents 

of the receptor (e.g. IL-15Rβ or CD132) may confer a higher affinity for soluble IL-15. 

Indeed, IL-15 is a limiting factor, and can determine the number of each type of 

lymphocyte with competitors dying through neglect (Khaled and Durum, 2002). 

Therefore, determining expression of IL-15R may be important in this context. 

Interestingly, age-related CD8+ T cell clonal expansions in mice show higher IL-15Rα 

compared with other CD8+ T cells (Messaoudi et al., 2006). In humans, CMV-specific 

CD8+ T cells retain high IL-15Rα expression following acute infection compared with 

EBV-specific CD8+ T cells following acute infection (Sauce et al., 2006). With such 
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complex mechanism of action, measuring IL-15Rα levels on T cells has proved difficult 

and variable, with reports of very low or absent expression on T cells (Geginat et al., 

2003, Sauce et al., 2006). Furthermore, attempts to determine IL-15Rα levels on CD8+ 

and CMV-specific CD8+ T cell subpopulations in this study have unfortunately been 

unsuccessful. 

 

The key findings of this chapter therefore are that CD8+ TEMRA cells may be generated 

from the previously proliferating memory subpopulations. CMV also has the potential to 

increase IL-15 in-vitro which may point to a role in the generation of CD8+ TEMRA cells in-

vivo. Longer telomeres coupled with low proliferative capability, low telomerase activity 

and low Bcl-2 levels indicates they may be a population which is close to senescence 

through telomere-independent mechanisms. The next chapter will therefore investigate 

if CD8+ TEMRA cells are also close to exhaustion i.e. whether or not they can exhibit 

efficient functional responses upon activation. 
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6 The functional quality of CMV-specific CD8+ T cells during 
ageing 

 

6.1 Introduction  

Dealing with a chronic viral infection presents a unique challenge to T cells, as they must 

control the infection over one’s lifetime in the face of possible T cell exhaustion. 

Therefore the importance of maintaining a quality immune response during a persistent 

infection is becoming increasingly recognised: bad prognoses with chronic infections 

such as Hepatitis C and HIV are associated with exhausted virus-specific T cells whereas 

favourable prognoses are associated with virus-specific T cells exhibiting broad 

polyfunctional responses upon activation (Betts et al., 2006, Effros, 2004, Golden-Mason 

et al., 2008, Jones et al., 2008, Kaufmann and Walker, 2008, Cellerai et al., 2011). 

Indeed, it is considered the more effector functions that constitute a T cell response the 

more protective the response will be (Makedonas and Betts, 2006, Seder et al., 2008). In 

the context of vaccination, poor polyfunctional responses to flu vaccine equate with 

poor protection, a problem frequently encountered when vaccinating the old (Kovaiou 

et al., 2007, McElhaney and Dutz, 2008, Seder et al., 2008, Weinberger et al., 2008).  

 

In addition to a broad polyfunctional response, the avidity of a virus-specific CD8+ T cell 

for antigen is also becoming increasingly recognised as an important factor in the 

control of infection. However whether high or low avidity T cells are most beneficial 

during a chronic infection is debateable. To highlight this, two studies investigating the 
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relationship between avidity of CD8+ T cells and disease progression in HIV (Almeida et 

al., 2007, Harari et al., 2007) both found a broad polyfunctional response was a 

signature of virus-specific CD8+ T cells in HIV non-progressors but one group identified 

these ‘superior’ cells as highly avid (Almeida et al., 2007) whereas the other group 

identified them as low avidity cells (Harari et al., 2007). Indeed, the hypothesis is 

plausible either way, as high avidity T cells will recognise viral antigen more efficiently 

than low avidity T cells but the former may become functionally exhausted as a result of 

more frequent activation during chronic infection. 

 

Does the accumulation of CMV-specific TCEs with ageing suggest a lack of control of 

chronic CMV infection later in life? The large numbers of CMV-specific CD8+ T cells in the 

old have been reported as being dysfunctional when compared with those in the young 

(Almanzar et al., 2005, Ouyang et al., 2003b) however there is little evidence of CMV 

reactivation in the old suggesting the virus is kept under control. One hypothesis is that 

CD8+ T cells that are most optimal against CMV but become exhausted, while the less 

optimal CD8+ T cells are consequently recruited, albeit in greater numbers, to control 

CMV. Evidence supporting this comes from observations of how healthy individuals 

control symptomatic primary CMV infections. In one study (Lidehall et al., 2005), by 

relating the number of CMV-specific CD8+ T cells found within donors to their total IFN-γ 

production recorded upon CMV stimulation, results showed individuals controlled 

infection by either mounting small highly efficient clones or compensating less efficient 

clones with increased cell numbers. In another study, by comparing CMV and EBV 
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responses in-vitro it was also shown that older individuals (>60) produced significantly 

lower IFNγ/virus-specific T cell ratios than those in the 40-60 age group (Khan et al., 

2004).  

6.2 Aims  

It has been proposed that CD8+ TEMRA cells may be an end-stage population as they show 

a high level of differentiation (Appay et al., 2002) and exhibit poor proliferative potential 

upon stimulation (Geginat et al., 2003). Indeed, previous chapters have confirmed that 

CD8+ TEMRA cells show low proliferation directly ex-vivo and in response to activation. 

Furthermore, results have shown that CD8+ TEMRA cells may be close to telomere-

independent senescence as they show a high susceptibility to apoptosis, low telomerase 

activity and high level DNA damage in the form of γH2AX expression.  

 

The aim of this chapter therefore was to question whether these accumulating CMV-

specific CD8+ TEMRA cells are also close to exhaustion, representing a less efficient 

population controlling CMV infection by a means of quantity over quality, or if they have 

maintained an ability to respond functionally upon activation. In order to address this 

question, the polyfunctional responses of CD8+ TEMRA cells to activation were compared 

with other CD8+ T cell subpopulations in both the global CD8+ and CMV-specific CD8+ T 

cell compartments. Furthermore, the avidity for antigen was investigated to determine 

whether this may impact the functional quality of the CD8+ T cell response and also 

whether donor age or CD8+ T cell phenotype influences this response. 
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6.3 Results  

 
6.3.1 CD8+ T cell subpopulation functional responses to activation 

Multiple functional markers are currently being used to identify quality T cells i.e. 

polyfunctional T cells which confer enhanced viral control (Casazza et al., 2006, Kirchner 

et al., 2008, Betts et al., 2006). It was therefore the aim to investigate the polyfunctional 

responses exhibited by CD8+ T cell subpopulations upon activation. 

 

6.3.1.1 CD8+ TEMRA cells show low frequency responses to activation 

Polyfunctional responses were measured by recording the simultaneous production of 

CD40L, IFN-γ, IL-2, and TNF-α of CD8+ T cell subpopulations following an anti-CD3 

stimulus. PBMCs from 27 young (18 CMV positive) and 12 old (9 CMV positive) donors 

were used for analysis. The frequency of responding cells i.e. cells responding with at 

least one cytokine was recorded for all cells as a percentage of the total subpopulation 

(figure 6.1A). CD8+ TEMRA cells had significantly lower numbers of responding cells 

compared with CD8+ TEM cells (p<0.0001) and CD8+ TCM cells (p=0.01). However, when 

analysing the polyfunctional profile of those responding cells (figure 6.1B) no significant 

difference in polyfunctionality was uncovered between the CD8+ T cell subpopulations. 

Furthermore, when data was divided on the basis of age and CMV seropositivity (not 

shown) no further significant differences were uncovered on the basis of their 

polyfunctional responses to activation. 
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(A) 
 

 
 

 
(B) 

 
 

 
 
 
 
 
 
Figure 6-1.  Analysing polyfunctional responses of CD8

+
 T cell subpopulations to activation  

Total PBMCs were stimulated by OKT3 and functional outputs determined by CD8
+
 T cell subpopulation. 

(A) Responding cells determined by production of at least one function by subpopulation. (B) 
Corresponding polyfunctional profile of responding cells represented by CD40L, IL-2, IFN-γ, and TNF-α 
readouts in any combinations of 4, 3, 2, or 1 function expressed. Numbers shown are the mean 
percentages from 27 young (18 CMV positive) and 12 old (9 CMV positive) donors. Significant correlations 
represented by asterisks; *<0.01;**<0.001;***<0.0001. 
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6.3.2 CMV-specific CD45RA vs. CD45RO functional responses  

In the previous section, CD8+ TEMRA cells showed low frequency responses to α-CD3 

stimulus compared with CD8+ TCM and TEM cells. Next, the CMV-specific response to 

activation was compared between CMV-specific CD45RA vs. CMV-specific CD45RO 

memory CD8+ T cells. IFN-γ production following CMVpp65 peptide pulsed APCs 

stimulation was used to determine the percentage of CMV reacting cells, as IFN-γ has 

been shown to be the best indicator of activation (Kirchner et al., 2008). The outline for 

this experiment is shown in figure 6.2. 

 
 
 

 

Figure 6-2. Outline for CMV-specific CD45RA vs. CD45RO CD8
+
 T cell activation experiments 
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6.3.2.1 CMV-specific CD45RA+ T cells show low frequency responses 

CD8+CD45RA+ and CD8+CD45RO+ pure populations were sorted from HLA-matched 

individuals with identifiable CD45RA and CD45RO CMVpp65-specific subpopulations 

(representative example figure 6.3A). These subpopulations were then separately 

stimulated with either non-pulsed or CMVpp65-pulsed irradiated autologous APCs at 

various cell to cell ratios. An un-stimulated control containing medium only was also 

included. Focusing on the response of a representative individual (figure 6.3B); 

stimulation by non-specific APCs resulted in no IFN-γ production by either CMV-specific 

CD45RA+ or CD45RO+ CD8+ T cell subpopulation when compared to the un-stimulated 

control. When stimulated with CMVpp65-pulsed APCs, IFN-γ was produced in a dose-

responsive manner commensurate with increased APCs cell numbers added. The 

response of CMV-specific CD45RO+ cells peaked at ≈30% IFN-γ+ at a ratio of 1:2 cells to 

CMV-specific APCs, with no additive effect at a ratio of 1:4. In comparison, CMV-specific 

CD45RA+ cells in the same individual showed lower IFN-γ production under the same 

conditions peaking at just ≈13% IFN-γ+ at the highest ratio of 1:4 cells.  

 

The results suggest the CMV-specific CD8+ CD45RA+ memory T cells show a lower 

functional response to activation with cognate CMV peptide compared with CD8+ CMV-

specific CD45RO+ memory T cells. 
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(A) 
 
 

 
 

 
(B) 
 

 
 

 
Figure 6-3.  Functional response of CMV-specific CD45RA vs. CD45RO memory CD8

+
 T cell populations 

(A) FACs plots illustrating CMV-specific CD45RA
+
 and CD45RO

+
 CD8

+
 T cell memory populations post 

sorting via FACs Aria. (B) These CMV-specific CD45RA
+
 and CD45RO

+
 CD8

+
 T cell memory populations  

were stimulated separately with un-pulsed APCs or increasing ratios of NLV-pulsed APCs and IFN-γ 
response recorded. U.S. represents the un-stimulated control (containing no APCs). This is a 
representative of two experiments. 
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6.3.3 Investigating CMV-specific CD8+ T cell avidity for antigen 

Lower functional responses to activation may be related to T cell avidity. The Virus-

specific T cell population consists a heterogeneous mixture of T cells bearing high or low 

affinity TCR for peptide (Villacres et al., 2003). As discussed in the introduction of this 

chapter, it is unclear whether high or low avidity T cells are most optimal at controlling 

chronic infection. Therefore, the identification of high avidity CD8+ T cells within the 

CMV-specific population was investigated on the basis of donor age and phenotype. 

 

6.3.3.1 Using mutated ‘CD8null’ tetramers to identify high avidity T cells 

As discussed in chapter 1 (section 1.2.6), high avidity virus-specific CD8+ T cells can be 

identified using mutated (CD8null) tetramers.  A high avidity population can therefore 

be identified and compared to the normal population binding regular un-mutated 

tetramer, as illustrated when staining using these two tetramers within the same donor 

(figure 6.4).  

 
 

Figure 6-4. Staining with normal versus mutated (CD8 Null) tetramers 
Representative FACs plot analysis showing PBMCs from one individual stained with either the normal 
(left) or CD8 null mutated (right) tetramers, which identify a normal or high affinity CD8

+
 T cell population 

respectively. Numbers shown represent total percentage of CD8
+
 T cells identified by relevant tetramer. 
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6.3.4 CMV-specific CD8+ T cell avidity and ageing 

The next step was to determine any influence of donor age on the avidity of the 

CMVpp65-specific CD8+ T cell population. If indeed ‘quantity over quality’ is a hallmark 

of the CD8+ T cell response to CMV in older individuals, those subjects with larger 

CMVpp65-specific CD8+ TCEs may have a smaller percentage of high avidity T cells 

compared with younger individuals, with smaller CMVpp65-specific CD8+ TCEs. This was 

therefore investigated.  

6.3.4.1 Low avidity NLV-specific CD8+ T cell populations in the old 

All donors who were an HLA-A*02 or HLA-B*07 match were stained with both normal 

and CD8null tetramers specific for NLV- or TPR-specific CMVpp65 peptide respectively, 

and the size of these populations recorded (figures 6.5A & 6.5B). The population binding 

CD8null tetramer was a fraction of that binding normal tetramer (0-100%), which varied 

between individuals. When dividing this data into young or old age groups and by NLV- 

or TPR-specific populations (figure 6.5C & 6.5D); the normal NLV population and CD8null 

NLV population was comparable in the young, whereas in the old, the CD8null NLV 

population was significantly lower (<0.01) than the normal NLV population. This pattern 

was not seen for the TPR population. Results suggest the NLV-specific CD8+ T cell 

population in old HLA-A*02+ individuals is of lower avidity than in the young.  
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 (A)                                                                                    (B) 

 
 
(C)                                                                      (D) 

 
 
 
Figure 6-5.  Frequency of normal and CD8null binding populations within donors 
Bar chart comparing normal and CD8null tetramer binding populations identified within donors. (A) total 
NLV-specific normal and high CD8null populations from 30 donors. (B) TPR-specific normal and CD8null 
populations from 20 donors. (C) NLV-specific normal and CD8null populations by age: 10 young and 16 old 
donors. (D) TPR-specific normal and CD8null populations by age: 4 young and 10 old donors. Significant 
differences represented by asterisks; *<0.01;**<0.001;***<0.0001. 
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6.3.5 The relationship between avidity and CD45RA re-expression 

The next step was to investigate any association between CD45RA re-expression and 

avidity within CMVpp65-specific CD8+ T cell populations.  

6.3.5.1 CD45RA expression is associated with low avidity 

Expression of CD45RA/CD45RO in the normal and high avidity CMVpp65-specific 

populations was compared within the same individuals. In the representative example 

of figure 6.6A; the characteristic CD45RA/CD45RO spread in the total normal CMVpp65-

specific population can be seen, with a predominately CD45RA+ (i.e. 73%) 

subpopulation. However, within the same individual, the high avidity CMVpp65-specific 

population is just 15% CD45RA+; the dominant subpopulation being CD45RO+ (i.e. 66%). 

When data on 40 individuals were pooled (figure 6.6B), a highly significant negative 

correlation was found between the percentage of the CD45RA+ memory subpopulation 

within the total CMVpp65-specific population and the percentage of the CMVpp65-

specific population being high avidity i.e. binding the null tetramer (p=0.0002, R2=0.30). 

The reverse was also true, i.e. a positive correlation when plotting the percentage of 

CD45RO+ memory in the total CMVpp65-specific population, against the percentage of 

CMVpp65-specific population being high avidity (not shown). Furthermore, when the 

data was divided into NLV or TPR specific CMVpp65 populations, it was NLV-specific 

response that seemed to drive this highly significant relationship (p<0.0001 R2=0.53, 

Figure 6.6C) and not the TPR-specific response (p=0.2727, R2=0.09, Figure 6.6D). 
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(A) 

 
 (B) 

 
 

(C)                                                                                 (D) 

 
 

Figure 6-6.  CD45RA
+
 memory CMVpp65-specific CD8

+
 T cells are associated with low avidity. 

(A) Representative example of staining in one individual with either the Normal or High affinity NLV-
specific tetramer with CD45RA and CD45RO. (B) Pooled data showing relationship between percentages 
CD45RA

+
 within total (NLV- or TPR-specific populations); 45 donors shown. (C) Pooled data showing 

relationship between percentages CD45RA
+
 within NLV-specific populations; 29 donors shown. (D) Pooled 

data showing relationship between percentages CD45RA
+
 within TPR-specific populations; 16 donors 

shown. Significant correlations represented by asterisks; *<0.01;**<0.001;***<0.0001. 
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Although the association between CD45RA expression and T cell avidity was seen in 

HLA-A*02 individuals, the correlation was not significant in HLA-B*07 individuals. 

However, some HLA-B*07 individuals had two separate populations upon staining with 

the normal tetramer (figure 6.7). When comparing the CD45RA/CD45RO phenotype of 

these two populations, the higher MFI population showed a predominately CD45RO+ 

phenotype and the lower MFI showed a predominately CD45RA+ phenotype. This 

suggests that these individuals may also have CD45RA re-expressing CMV-specific T cells 

that are associated with lower affinity on the basis of less binding of the tetramer 

equating to lower MFI. 

 

 

 
 

Figure 6-7.  Dual populations identified with TPR-specific tetramer show alternate phenotypes 
Representative example of staining in one individual with TPR-specific tetramer. From left to right, 
CD45RA/CD45RO expression is shown on each population of total TPR-specific, high MFI TPR-specific, and 
low MFI TPR-specific populations. Representative of at least 3 individuals.  
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6.3.6 Co-receptor availability on CD8+ and CMV-specific CD8+ T cells 

In order for CD8+ T cells to become activated, peptide must be presented to its TCR via 

the MHC class I molecules on the surface of the APC. To stabilise this interaction it is 

imperative there is adequate CD8 co-receptor availability on the T cell (Daniels and 

Jameson, 2000, Villacres et al., 2003). To investigate if CD8 co-receptor availability may 

determine T cell binding to the mutated (CD8null) tetramer observed by CD45RA+ 

subpopulations, the surface expression levels of CD8 co-receptor was analysed on both 

CD8+ and CMV-specific CD8+ T cell subpopulations (figures 6.8A & 6.8B respectively). No 

difference in CD8 levels was found between the memory subpopulations, indicating no 

subpopulation exhibited greater CD8 availability which may account for enhanced 

binding to the null tetramer.  

 

 

(A)                                                                               (B) 

 
Figure 6-8.  CD8 co-receptor expression in global CD8

+
 and CMV-specific CD8

+
 T cell subpopulations 

(A) CD8 levels within the CD8
+
 T cell subpopulations relative to total CD8 levels (set to 100%) from 10 

individuals. (B) Relative levels of CD8 in CD45RA
+
 and CD45RO

+
 CMV-specific populations relative to total 

CMV-specific CD8 levels (set to 100%) from 6 individuals. 
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6.3.6.1 CD8null tetramers identify T cells with superior polyfunctionality 

Polyfunctional responses by CMV-specific CD8+ T cells have been correlated with control 

of CMV viremia during organ transplantation (Gratama et al., 2001, Kirchner et al., 2008, 

Nebbia et al., 2008). Although CMV reactivation in healthy individuals is rare, older 

individuals have been associated with dysfunctional responses to CMV (Almanzar et al., 

2005, Ouyang et al., 2003b, Khan et al., 2004). Null tetramers identify a population of T 

cells with high affinity for antigen, however it is unclear whether this population also 

exhibits a superior functional response upon activation. It has been shown previously 

that CD8+ T cells recognising very low antigen concentrations i.e. high-avidity CD8+ T 

cells, are the most efficient at eliminating viruses (Alexander-Miller et al. 1996; Almeida 

et al. 2007; Derby et al. 2001). However, one study has shown that low-avidity CD8+ T 

cells may be more beneficial in controlling chronic infections (Harari et al. 2007).  

 

Whether high or low avidity CMV-specific CD8+ T cells show the superior functional 

responses were therefore investigated, as the association of T cell avidity between age 

and phenotype found in the last section may have functional consequences. The 

functional responses of normal and high avidity CMVpp65-specific populations to 

CMVpp65 peptide were compared to investigate this. IFN-γ, CD107a and TNF-α were 

used as functional indicators of their response to activation. The outline of this 

experiment is summarised in figure 6.9.  
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Figure 6-9. Normal vs. high avidity polyfunctionality comparison experiment 
Schematic summarising the experiment used to compare the polyfunctional read-out of CMV-specific high 
avidity versus total normal population. 
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Results comparing the polyfunctional responses of the normal vs. high avidity 

populations are shown in figure 6.10. A representative example of one donor response 

(figure 6.10A), shows with stimulation at the low CMVpp65 peptide concentration of 

0.001μg; the high avidity population (identified by CD8null tetramer) responded with 

greater production of all functional markers, relative to the normal population 

(identified by non-mutated tetramer), as depicted in the relevant histograms. When 

comparing functional responses over a peptide titration, the high avidity population 

produced elevated levels of each functional marker relative to the normal population at 

all concentrations tested (figure 6.10B). 

 

Despite inter-individual variations in responses, findings were consistent in three 

different donors. When comparing responses to stimulation with 0.1μg CMVpp65 

peptide, the high avidity population showed significantly higher expression of all 

functional markers (figure 6.10C). Results suggest that the high avidity population also 

exhibits superior polyfunctionality over the total normal population. Therefore, the use 

of CD8null tetramers gave a novel and efficient way of identifying CMVpp65-specific 

CD8+ T cells exhibiting high polyfunctionality within a given CMVpp65-specific CD8+ T cell 

population. 

 

 

 

 



 

 

174 

 

 (A) 

 

(B) 

 

(C) 

 

Figure 6-10.  CMVpp65-specific CD8
+
 T cell functional responses identified by avidity tetramers 

(A) Representative staining of one donor identifying the normal (top) or high avidity (bottom) 
CMVpp65specific populations by regular tetramer and CD8 Null tetramer respectively. Relative expression 
of IFNγ, CD107a and TNFα following stimulation with 0.001μg CMVpp65peptide is shown for each 
population by relevant histograms, as percentage positivity vs. isotype control. (B) Full titration showing 
functional readouts following the stimulation of normal or high affinity populations with CMVpp65 
peptide concentrations at 0μg, 0.001μg, 0.01μg, 0.1, and 1μg/ml. (C) Example comparison of functional 
output by either population following stimulation with 0.1μg CMVpp65 peptide for 3 donors. One-tailed 
paired T test used. Significant correlations represented by asterisks; *<0.01;**<0.001;***<0.0001. 
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6.4 Discussion 

The aim of this chapter was to investigate if CD8+ TEMRA cells represented an exhausted 

subpopulation within the CD8+ T cell compartment. The purpose was to specifically 

address whether CD8+ TEMRA cells can respond functionally upon activation. In 

conclusion, results showed both CD8+ and CMVpp65-specific TEMRA cells can exhibit a 

broad polyfunctional profile upon activation. However, they do so only when given a 

greater stimulus. Furthermore, evidence suggests it is a low avidity for antigen that may 

explain their higher requirement for activation. Therefore CMVpp65-specific TEMRA cells 

are associated with lower functional avidity. 

 

CD8+ TEMRA cells were found to react less efficiently to a broad antigenic stimulus relative 

to the other memory CD8+ T cells in terms of percentage of responding cells. This was 

further illustrated by the fact that CMV-specific CD45RA+ memory CD8+ T cells 

responded to CMV antigen less efficiently than CMV-specific CD45RO+ memory CD8+ T 

cells based on IFN-γ production. Work presented in this chapter showed that this is 

likely due to an association between CD45RA re-expression and low affinity TCR for 

antigen within this CMVpp65-specific CD8+ T cell subpopulation. It has been shown 

previously that some memory CD8+ T cells require greater CD8 help for activation than 

others (Price et al., 2005, Khan et al., 2010). However, CD8 co-receptor levels in the 

present study were found to be similar across all CD8+ and CMV-specific CD8+ T cell 

memory subpopulations regardless of CD45RA expression, suggesting this is not the 
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reason for the difference in activation in this instance. However CD8 antibody blocking 

experiments will be needed to confirm this. 

 

As discussed in the introduction of this chapter, debate surrounds whether a high or low 

avidity T cell response is most beneficial during a chronic viral infection (Almeida et al., 

2007, Harari et al., 2007). In the present study it was found that high avidity CD8+ T cells 

(as identified by binding CD8null tetramer) displayed the superior functional responses 

to CMV peptide. These observations are consistent with findings showing CMV-specific 

CD8+ T cells with high avidity express all effector functions upon activation ex-vivo 

compared with low avidity CD8+ T cells, which exhibited no ex-vivo cytotoxicity, secreted 

minimal IFN-γ, and did not recognise autologous infected targets (Villacres et al., 2003).  

 

So how do CD45RA re-expressing memory T cells accumulate if they show lower 

functional avidity? Usually during an immune response CD8+ T-cell clones that initially 

expand bear TCRs with a broad range of avidities for the same antigen and this is 

subsequently followed by a strong contraction of those T cells expressing low avidity 

TCR (Zehn et al). However, chronic CMV infection may lead to the exhaustion of CMV-

specific CD8+ T cells, as has been observed in older individuals (Ouyang et al., 2003b). 

Studies into antigen avidity during persistent CMV infection has found CD8 clonotypes 

exhibiting high antigen avidity were preferentially driven towards terminal 

differentiation compared with those of low antigen avidity (Price et al., 2005). 

Interestingly, the same authors also found low avidity clonotypes could co-exist 
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competitively with their high avidity counterparts. In the context of animal studies, it 

has been shown that mice receiving repeated challenges with Listeria monocytogenes 

(L.m.) can lead to L.m-specific CD8+ TEM cells becoming ablated and impaired while L.m-

specific CD8+ TCM cells remain unaffected (Huster et al., 2009). This further highlights 

how one CD8+ T cell memory subpopulation may be outlived by another during chronic 

infection. In this respect, CMV-specific cells with high functional avidity may be lost and 

replaced by CMV-specific cells with low functional avidity. Indeed, there is a finite 

‘immune space’ and this may result in competition between such T cells (Akbar and 

Fletcher, 2005, Franceschi et al., 2000, Pawelec et al., 2005, Vasto et al., 2007, Ku et al., 

2001).  

 

The functional avidity of CMVpp65-specific CD8+ TCEs was also analysed on the basis of 

donor age. Old HLA-A*02+ individuals showed a lower frequency of cells with high 

functional avidity compared with younger individuals. Furthermore, the percentage of 

CMVpp65-specific CD45RA+ memory cells was associated with a significantly lower 

functional avidity population within these individuals. Furthermore, on retrospective 

analysis, the old individual with a large CD8null binding NLV-specific population of 11.5% 

(figure 6.5C) was subsequently found to be 82% CD45RO+, which was consistent with 

the association of CD45RO expression and high affinity. However, the highly significant 

correlation between functional avidity and CD45RA expression was due to individuals 

who were HLA-A*02+ (targeting NLV peptide) although there was evidence for a similar 

association for those who were HLA-B*07+ (targeting TPR peptide) in certain individuals. 
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Such individuals showed dual staining with tetramer that led to the identification of two 

distinct populations exhibiting different CD45RA/CD45RO phenotype. Indeed, the 

identification of dual populations with tetramer has been shown elsewhere, and may 

represent populations with different TCR affinities (Moss and Khan, 2004).  

 

These results suggest different HLA-types may equate with different T cell functional 

avidity for antigen. Indeed, there are similar reports associating HLA type with T cell 

functional avidity during chronic viral infection (Almeida et al., 2007, Harari et al., 2007). 

Furthermore, it is known that susceptibility to various diseases can be dependent on 

HLA type (Blackwell et al., 2009, Burgner et al., 2006). Although CMV disease is rare in 

immune-competent individuals, HLA type can still influence the T cell response of these 

individuals (Hollsberg, 2002, Lacey et al., 2003). Indeed, a minimal number of CD8+ 

CMVpp65-specific T cells have been estimated to be needed for protection against CMV 

reactivation during organ transplantations (Aubert et al., 2001, Cwynarski et al., 2001). 

Interestingly, these numbers seem to differ on the basis of one’s HLA type (Giest et al., 

2010, Koehl et al., 2008). For example, HLA-B*3501/pp65-specific CD8+ T cells confer 

protection from CMV reactivation with significantly lower cell numbers than HLA-

A*0201/pp65-specific CD8+ T cells (Giest et al., 2010).  

 

Furthermore, individuals having both HLA-A*02 and HLA-B*07 alleles show preferential 

and dominant T cell numbers specific for the TPR epitope of CMVpp65 over the NLV 

epitope (Lacey et al., 2003)and our observations). In addition, while not tested in the 
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present study, these HLA-A*02/B*07 positive individuals show TPR-specific T cell 

responses with higher cytokine production and preferential expansion over their NLV-

specific T cell responses (Lacey et al., 2003). Interestingly, when stimulating with NLV 

peptide only (instead of overlapping pp65 peptide pool which would contain TPR 

peptide), NLV responses are comparable to those of HLA-A*02 single positive individuals 

(Lacey et al., 2003). This suggests, in the absence of immunodominant TPR stimulus, the 

NLV response can compensate. This is consistent with findings in this chapter, as it was 

shown TPR-specific T cells were uniformly high avidity T cells, which showed the greater 

production of cytokine compared with the total population. Immunodominance of HLA-

B*07+ restricted epitopes over HLA-A*02+ restricted epitopes has also been reported in 

EBV immune responses (Hollsberg, 2002). One possible mechanism for this 

immunodominance is enhanced peptide-MHC association and processing. Evidence 

supporting this shows different HLA-B44 subtypes processing the same epitope do so 

with different speeds of epitope assembly and transportation (Khanna et al., 1997).  

 

In conclusion, this chapter shows that CD8+ TEMRA cells retain polyfunctionality upon 

activation, suggesting they are not an exhausted population. However, it seems they 

require a higher degree of activation to display these functional properties, and whether 

CMV-specific CD45RA+ memory CD8+ T cells can reach the levels displayed by CMV-

specific CD45RO+ memory CD8+ T cells is questionable, and requires further 

investigation. Significantly, it seems that a lower avidity for antigen may be instrumental 

in this association.  
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7 General Discussion 

 
This thesis aimed to address the impact of one proposed driver of senescence, CMV 

infection, on age-related changes seen within the CD8+ T cell compartment. The results 

of this investigation will now be discussed in the light of current evidence to formulate a 

hypothesis on how CMV may impact immune senescence. 

7.1 CMV and the Immune Risk Phenotype 

The OCTO and NONA longitudinal studies (Wikby et al., 2005) identified CMV 

seropositivity as a significant factor within the immune risk phenotype (IRP), a cluster of 

immune parameters associated with a 2-4 year decreased survival rate. The expansion 

of highly differentiated CMV-specific CD8+ T cell memory populations may provide the 

link between CMV and the IRP (Pawelec et al., 2006a). Therefore, data presented here 

showing that the age-related accumulation of highly differentiated CD8+ TEMRA cells 

within the CD8+ T cell compartment is accelerated in CMV positive individuals is 

important. Indeed, some old individuals had >50% of their global CD8+ T cell population 

consisting of these CD8+ TEMRA cells, all of which were CMV positive. Furthermore, 

results have shown that CMV-specific CD8+ TEMRA cells dominate within CMV-specific 

CD8+ TCEs of older individuals. This is consistent with similar findings that CMVpp65-

specific CD8+ T cells in the elderly were predominantly CD45RA+ but in the young they 

were mostly CD45RO+ (Colonna-Romano et al., 2007). The increase in this highly 

differentiated CD8+ T cell population may serve to impact the CD4:CD8 ratio and lower 
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CD27/CD28 expression of the CD8+ T cell compartment, both of which are significant 

factors defining the IRP.  

 

The association between CMV seropositivity, the IRP and premature mortality is 

currently being disputed through the large Leiden longevity study (Maier et al. 

unpublished observations). Furthermore, one study showed a group of long-lived 

individuals with a 30% decreased mortality risk appeared to be more resistant to CMV 

infection, and even after CMV infection were less susceptible to the CMV related 

immune changes (Derhovanessian et al., 2010). Interestingly, this long-lived population 

did not show the age-related accumulation of CD45RA re-expressing memory T cells 

(Derhovanessian et al., 2010). Therefore, the impact of CMV may require further 

definition. Are some individuals more susceptible to CMV related changes? When 

considering the significance of CMV seropositivity on the IRP, it must be remembered 

that seroprevalence varies considerably depending on racial group and socioeconomic 

status (Dowd et al., 2009). Therefore, CMV seropositivity may be a restrictive biomarker, 

identifying only those who are more likely to have encountered other infections or 

complications, or even those who have less competent immune responses generally. 

This could this explain why CMV seropositivity is associated with increased incidences of 

cardiovascular disease, frailty, cognitive decline, depression, stress and anxiety (Simanek 

et al., 2011, Schmaltz et al., 2005, Strandberg et al., 2004, Phillips et al., 2008) but is 

negatively associated with wealth, education, and longevity (Dowd et al., 2009, Cannon 

et al., 2010, Bate et al., 2010).  
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One proposed mechanism for the detrimental impact of CMV infection during ageing is 

that large CMV-specific CD8+ TCEs may compete for survival niches that lead to the loss 

of T cells of other specificities (Akbar and Fletcher 2005; Moss and Khan 2004). The 

analysis of CMV-specific TCEs within individuals may therefore yield more appropriate 

information than just CMV seropositivity alone. Indeed, there has been much work 

characterising these CMV-specific TCEs (Gillespie et al., 2000, Kern et al., 1999, Khan et 

al., 2004, Moss and Khan, 2004, Nebbia et al., 2008, Ouyang et al., 2003a, Ouyang et al., 

2004, Pita-Lopez et al., 2009, Wills et al., 1996, Wills et al., 1999, Ouyang et al., 2003b). 

One key question is whether these represent senescent or exhausted T cells and if these 

fill up the immune space requiring a large share of survival signals. Indeed, CMV-specific 

T cells in older individuals show lower IFN-γ responses (Hadrup et al., 2006, Ouyang et 

al., 2002, Ouyang et al., 2004, Khan et al., 2004) indicative of exhaustion and higher 

KLRG-1 (Ouyang et al., 2003a) indicative of senescence.  

7.2 Senescence vs. exhaustion in TEMRA cells 

Results in this study showed CD8+ TEMRA cells are relatively prone to apoptosis through 

low Bcl-2 levels, and exhibit low proliferation both directly ex-vivo and in response to 

stimulation. In addition, low telomerase levels and high DNA damage through γH2AX 

expression was also found in this subpopulation. This collectively suggests CD8+ TEMRA 

cells are a senescent population. Similar results have also been observed with CD4+ 

TEMRA cells, which show low ki67, low Bcl-2 and low telomerase activity (Libri et al., 

2011). Relatively long telomere lengths for a memory population however, indicate they 

may be approaching senescence through a telomere-independent mechanism, having 
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undergone less rounds of cell division. Indeed, turnover studies using in-vivo deuterated 

glucose labelling, suggests CMV-specific CD8+ CD45RA+ memory T cells may persist 

through an extended lifespan rather than through an increase in proliferation (Wallace 

et al., 2004). In doing so, have they accumulated greater DNA damage? The high γH2AX 

expression found in results presented here suggests they have, although γH2AX 

expression in CMV-specific CD8+ T cells needs to be investigated also in or order to 

address this.  

 

p38 MAP kinase is one of the key molecules that regulates both telomere-dependent 

and telomere-independent senescence (Iwasa et al., 2003, Ono and Han, 2000). 

Recently in our group, it has been shown that CD4+ TEMRA cells express high levels of 

total and phosphorylated forms of p38 (Dimitri et al., submitted). Furthermore, the 

addition of BIRB 796, an inhibitor of p38 signaling (Bagley et al., 2007), resulted in 

enhanced cell recovery, reduced apoptosis and enhanced telomerase activity by up to 4 

fold (Dimitri et al., submitted). This suggests p38 regulates senescence-associated 

defects in T cells, specifically in CD4+ TEMRA cells. Preliminary results suggest similar 

findings in CD8+ TEMRA cells also, and work is ongoing. 

 

Evidence indicates CD8+ TEMRA cells are a senescent population, but are they exhausted? 

Exhaustion is defined by the progressive loss of T cell function, leading to the deletion of 

the exhausted cell. This develops when there is a high antigenic load and non-functional 

antigen-specific CD8+ T cells have been observed during HIV (Day et al., 2006), hepatitis 
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B virus (HBV) (Das et al., 2008) and hepatitis C virus (HCV) (Urbani et al., 2006, 

Nakamoto et al., 2009) infections. Exhausted T cells are subject to negative regulation 

by signaling through multiple inhibitory receptors that inhibit functional and 

proliferative responses (Blackburn et al., 2009). Exhaustion therefore is different from 

senescence in that it is initiated by signaling events and not through DNA damage 

responses as is found in senescent T cells (Akbar and Henson, 2011). Programmed cell 

death 1 (PD-1) has been shown to be the most highly expressed cell and best studied 

surface inhibitory receptor that regulates exhaustion in CD8+ T cells  (Day et al., 2006, 

Petrovas et al., 2006, Trautmann et al., 2006, Barber et al., 2006, Blackburn et al., 2009). 

PD-1 is expressed highly on highly differentiated T cells (Appay et al., 2008, Sauce et al., 

2007, Shen et al., 2010, Henson et al., 2008) and the expression of PD-1 on both CD4+ 

and CD8+ T cells has been associated with CMV disease and reactivation during 

transplantation (Gallez-Hawkins et al., 2009). Also during transplantation, PD-1 

expression on CMV-specific T cells was associated with poor functional responses and 

viremia in patients (Sester et al., 2008). Interestingly, expression of PD-1 is lower on 

CD8+ TEMRA cells compared with TEM cells (Appay et al., 2008, Sauce et al., 2007, Shen et 

al., 2010) suggesting CD8+ TEMRA cells are not the most exhausted of the memory CD8+ T 

cell populations according to this pathway. Indeed, high avidity CD45RO+ T cells could be 

induced to undergo apoptosis through more frequent antigenic stimulation, which 

would be reflected by higher PD-1 levels compared to TEMRA cells (Alexander-Miller et 

al., 1996). 
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Indeed, results presented here have shown that CD8+ and CMV-specific CD8+ TEMRA cells 

are capable of exhibiting broad polyfunctional responses, including IFN-γ, CD107a, and 

TNF-α, supporting evidence that they are not an exhausted population. CD4+ TEMRA cells, 

despite showing signs of senescence, have also been shown to retain polyfunctionality 

(Libri et al., 2011). However, results from this thesis showed the polyfunctional 

responses to activation were marked by a lower percentage of CD8+ TEMRA cells 

responding compared to the other memory CD8+ T cell subpopulations. Furthermore, 

the CMV-specific IFN-γ response to activation was significantly greater in CD45RO+ 

versus CD45RA+ CMV-specific CD8+ T cells.  

 

Work using mutated avidity tetramers also revealed that despite CMV-specific CD8+ T 

cells being able to mount polyfunctional responses, the high avidity population 

exhibited significantly greater numbers producing each functional marker compared 

with the low avidity population. This is important as CD45RA re-expression on CMV-

specific CD8+ T cells was associated with lower functional avidity. Therefore, evidence 

collectively suggests CMV-specific CD8+ TEMRA cells may be responding less efficiently 

than the CMV-specific population as a whole. This may explain how the accumulation of 

TEMRA cells within the CMV-specific compartment of old individuals could lead to an 

overall reduction (dysfunctional responses and senescence) of the CMV-specific 

compartment as a whole, compared with that in the young (Hadrup et al., 2006, Ouyang 

et al., 2003a, Ouyang et al., 2004, Khan et al., 2004). 
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7.3 Generation of TEMRA cells 

There is debate whether TEMRA cells are driven to proliferate by antigen or are 

homeostatically maintained by cytokine. Initial evidence suggesting they are driven by 

antigen came from TCR vβ repertoire screening, which showed TEMRA cells differed 

significantly from un-primed naive CD8+ T cells and often contained large clonal 

expansions (Hamann et al., 1999a). CD8+ TEMRA cells also have shorter telomere lengths 

than un-primed naive T cells (Faint et al., 2001, Hamann et al., 1999a), exhibit low 

expression of CD27/CD28, and display various effector type properties (Wills et al., 

2002, van Leeuwen et al., 2002), collectively indicating they have undergone repeated 

antigenic stimulation. However, the appearance of CMV-specific CD8+ TEMRA cells 

coincides with the resolution of primary CMV infection (Miles et al., 2007, Wills et al., 

1999, van de Berg et al., 2008) and also correlate with clearance of CMV from the blood 

of pregnant women with primary CMV infection (Lilleri et al., 2008). Interestingly, lower 

CMV-specific CD8+ TEMRA cell numbers in the few months post infection, also correlated 

with higher chances of transmission to the new born (Lilleri et al., 2008) suggesting 

active CMV infection was still occurring at this point. Altogether, this suggests that TEMRA 

cells may appear in the absence of active CMV infection. 

 

Data presented here shows TEMRA cells dominate the CMV-specific CD8+ T cell 

compartment later in life, which suggests they appear more frequently later in infection. 

The argument against cytokine driven, rather than antigen driven, proliferation of TEMRA 

cells is the prediction that cytokine would cause the expansion of all memory T cells 
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equally; however TCR screening of EBV-specific and CMV-specific CD8+ TCEs reveals 

preferentially expansion of certain clones (Iancu et al., 2009, Trautmann et al., 2005). 

Therefore, it is possible that TEMRA cells are generated from previously proliferating 

memory cells which are subsequently maintained by cytokine. In support of this 

hypothesis, IL-15 plus IL-7 was shown to cause the reversion of CD8+ T cells from a 

CD45RO+CCR7+ (TCM) to CD45RA+CCR7- (TEMRA) phenotype (Geginat et al., 2001) and IL-15 

treatment alone caused EBV-specific CD8+CD45RO+ T cells to revert back to a CD45RA+ 

phenotype in-vitro (Dunne et al., 2002). Further confirmation comes from data in the 

present study, showing CMV-specific CD8+CD45RO+ T cells can re-express CD45RA 

during IL-15 treatment.   

 

Older humans have increased serum levels of pro-inflammatory cytokines such as IL-6 

and TNF-α, which correlate with increased frailty and reduced life expectancy 

(Franceschi et al. 2007). Previous studies have shown that TNF-α can accelerate T cell 

differentiation in-vitro (Bryl et al. 2005) and inhibit telomerase activity in human CD8+ T 

cells (Parish et al. 2009). It has also been shown that CMV can lead to increased IFN-α 

levels, causing T cell differentiation and telomerase down-regulation in CD4+ T cells 

(Fletcher et al., 2005). Acute viral infections also have the potential to drive the 

bystander activation and proliferation of CMV and EBV specific CD8+ T cells  (Sandalova 

et al., 2010). Evidence therefore suggests the involvement of pro-inflammatory 

cytokines in the generation and activation of TEMRA cells. Indirect evidence for this is that 

anti-TNF-α therapy in patients with rheumatoid arthritis depletes CD8+ TEMRA cells (Bruns 
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et al. 2009). Furthermore, supporting the hypothesis that an inflammatory cytokine 

environment may lead to the accumulation of TEMRA cells come from results in this 

thesis, showing that both IFN-α and CMV lysate treatment can increase IL-15 mRNA 

levels in-vitro. Therefore a hypothesis for the generation of CMV-specific CD8+ TEMRA 

cells is proposed (figure 7.1). Based on results from this thesis and the evidence 

discussed so far, it is hypothesised that both CMV and ageing act synergistically to 

create an environment favouring the generation of CMV-specific CD8+ TEMRA cells from 

low avidity memory CD8+ T cell populations. 

 

 

 

Figure 7-1. Hypothesis for the generation of CMV-specific TEMRA cells during ageing 
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7.4 Mechanism and purpose for reversion 

 

What purpose does CD45RA re-expression serve? Differential expression of CD45 

isoforms have been reported to influence biological function and cell signalling events, 

however, experiments with CD45-defective cells show the addition of chimeric 

molecules containing only the intracellular CD45 PTPase domain was sufficient to 

restore TCR-CD3 mediated cell signalling (Volarevic et al., 1993). This questions the role 

of the CD45 glycoprotein extracellular domain. The immune synapse formed between a 

T cell and its APC allows sustained MHC-TCR interaction with subsequent downstream 

signalling for complete activation, the large size of CD45R relative to other participants 

of the IS led to proposals that it is excluded from the immune synapse (Penninger et al., 

2001). In support of this, CD45R was reportedly absent from membrane lipid rafts 

involved with signalling (Rodgers and Rose, 1996). However reversion to the larger 

CD45RA+ glycoprotein-rich isoform could still theoretically influence activation by APCs 

at the immune synapse, by creating a glycoprotein barrier absent during communication 

of CD45RO+ isoform expressing T cells with APC. Such a model compares the CD45RA 

isoform to a break or rheostat on the cell surface, preventing surplus activation. In fact, 

there is experimental evidence to support this in the form of the kinetic-segregation 

model (Choudhuri et al., 2005). In this respect TEMRA cells may be a ‘pseudo-naive’ 

population, requiring greater and/or longer stimulation for activation than required by 

the traditional memory cells. The association between CD45RA re-expression and low 

functional avidity on CMV-specific CD8+ T cells may reflect this. However, whether it is 

CD8+ T cells expressing low avidity that are preferentially re-expressing CD45RA or 
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whether the process of CD45RA re-expression mechanically causes lower avidity needs 

further investigation. However, experiments using mouse models have shown that a 

single cell can differentiate into either high or low avidity CD8+ T cells (Kroger and 

Alexander-Miller, 2007).  

7.5 The impact of CMV on telomere length 

The benefit of having longer telomere lengths in blood leukocytes is associated with 

better health (Terry et al., 2008) and more years of life (Njajou et al., 2009). The 

consequence of having short lymphocyte telomeres on the other hand is associated 

with an 8-fold increase in death from infectious diseases and a greater risk of heart 

disease (Cawthon et al., 2003, Spyridopoulos et al., 2009). Therefore, the finding that 

CMV infection in healthy individuals is associated with shorter telomeres is important 

and we have recently published this (van de Berg et al., 2010). The age-related attrition 

of telomeres was most prominent in CD8+ T cells and CMV positivity was shown to 

significantly increase the rate of telomere attrition in CD8+ T cells. Furthermore, the 

effect of CMV infection upon telomere length is less marked in the young age group, but 

highly significant in the old age group, suggesting both the decrease in naive cells 

(having relative long telomeres) and accumulation of memory cells (having relatively 

shorter telomeres) may be the root cause. Indeed, telomere lengths were longest in 

CD8+ TN cells and shorter in the memory populations, which was consistent with 

previous observations (Akbar and Vukmanovic-Stejic, 2007). However CD8+ TEMRA cell 

telomere lengths were not the shortest of the memory subpopulations but actually 

significantly longer than the CD8+ TEM cells, which is consistent with another report 
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(Plunkett et al., 2005). Furthermore CMV-specific TEMRA cells showed significantly longer 

telomeres than CMV-specific CD8+CD45RO+ T cells. Despite this, these populations 

represent T cells with significantly shorter telomere lengths compared with naive T cells, 

and these highly differentiated  cells correlate with shorter telomere lengths (van de 

Berg et al., 2010). Therefore, their accumulation contributes to lowering overall 

telomere length. 

7.6 Clinical relevance of the study 

The effective control of CMV in a clinical setting gives an insight into how CMV may be 

optimally controlled in healthy ageing individuals. In one study the absolute number of 

responding CMV-specific CD8+ T cells was inversely correlated to the amount of pre-

emptive ganciclovir treatment required following hematopoietic stem cell 

transplantation (Gratama et al., 2001), which suggests a minimal number of cells is 

required to confer protection. Indeed, evidence suggests a minimal number of CD8+ 

CMVpp65-specific T cells are needed for protection against CMV reactivation during 

organ transplantations (Aubert et al., 2001, Cwynarski et al., 2001) and these numbers 

have been found to differ on the basis of an individual’s HLA type (Giest et al., 2010, 

Koehl et al., 2008). However an adequate functional response also seems to be key in 

the control of CMV replication: In one study a significantly lower frequency of IFN-γ/IL-2 

multi-cytokine producing CD4+ and CD8+ T cells were found in liver transplant recipients 

experiencing CMV DNAemia compared to those not having CMV DNAemia (Nebbia et 

al., 2008). Furthermore, in a study of renal transplant recipients, poor control of CMV 

replication was linked to impairments in IFN-γ production by CMV-specific CD8+ T cells 
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which was associated with a 14-fold increased risk of progression to high level CMV 

replication (Mattes et al., 2008). Additionally, the authors highlighted a possible age-

associated decline in function as patients >40 years of age were more likely to progress 

to high level CMV infection.  CMV reactivation as defined by symptomatic CMV disease 

has also been associated with quality T cells showing high IFN-γ production versus those 

with symptomatic CMV reactivation which showed poor IFN-γ responses (Crough et al., 

2007).  

 

Therefore the identification of optimal CMV-specific CD8+ T cells with high functional 

avidity presents an opportunity for the selection of those T cells in a therapeutic 

scenario. Recently, what started as small scale trials using adoptive transfer of CMV-

specific CD4+ and CD8+ T cells for patients undergoing transplantation has spread due to 

promising preliminary results conferring protection from CMV reactivation (Feuchtinger 

et al., 2010, Kotton, 2010, Peggs et al., 2003, Schmitt et al., 2011, Emery et al., 2011). 

The engineering of TCRs specific for viral epitopes also presents a possible avenue for 

adoptive transfer of functionally optimal T cells (Perro et al., 2010).  The benefits of 

which have been shown in Hepatitis B virus (HBV) infection wherein polyfunctional HBV-

specific CD8+ T cells can be generated (Gehring et al., 2010); this offers the possibility of 

reconstituting the immune response which is found to be dysfunctional in some patients 

with chronic HBV infection. In a previous report high avidity CD8+ T cells were shown to 

express all effector functions upon activation ex-vivo compared with low avidity CD8+ T 

cells which exhibited no ex-vivo cytotoxicity, secreted minimal IFNγ and did not 
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recognise autologous infected targets (Villacres et al., 2003). This is confirmed in the 

present study, as the high avidity population also showed better activation and 

polyfunctional potential. Therefore, in addition to the polyfunctionality of a T cell, the 

functional avidity of a T cell may prove a defining attribute when selecting the most 

optimal T cells. 

 

Such criteria could also be applied to tackling the large CMV-specific TCEs found in older 

individuals. Indeed, the purging of large CMV-specific CD8+ TCEs from older individuals 

to ‘free up space’ has been proposed (Koch et al., 2006, Pawelec et al., 2006b). Many of 

the CD8+ T cells in the old have been reported as being dysfunctional when compared 

with those in the young (Almanzar et al., 2005, Ouyang et al., 2003b) and are believed to 

be disposable due to the lack of unique clonotypes contained within them (Weinberger 

et al., 2009). Furthermore CMV-specific CD8+ TCEs often express KLRG-1, a marker 

identifying cells unable to undergo further division (Ouyang et al., 2003a, Voehringer et 

al., 2002) and senescence marker CD57 (Kern et al., 1996). Therefore purging CMV-

specific CD8+ TCEs on the basis of KLRG-1/CD57 co-expression could be an option, while 

retaining a core of polyfunctional, long-lived CMV-specific memory T cells. The latter 

could be evaluated therefore on the basis of their functional avidity for antigen 

 

In addition, the senescent or exhausted cells may be reinvigorated through the blocking 

of markers including p38 (senescence) as well as PD-1 (exhaustion) in highly 

differentiated T cells (Henson et al., 2008, Akbar and Henson, 2011). An important 
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observation is that PD-1 signalling blockade can restore antigen-specific T cell responses 

(both proliferation and cytokine secretion) in LCMV-infected mice (Barber et al., 2006) 

and in humans with chronic viral infections (Day et al., 2006, Petrovas et al., 2006, 

Trautmann et al., 2006),  

 

Telomerase can slow senescence in cells through telomere elongation and therefore 

represents another possible target for intervention. Gene transduction with the catalytic 

component of telomerase (hTERT) was shown to result in telomere length stabilization 

and reduced expression of cyclin-dependent kinase inhibitors in in-vitro cell cultures 

(Effros et al., 2005). Furthermore telomerase reactivation has been successful in 

reversing the age-associated damage observed in aged mice (Jaskelioff et al., 2011). 

CMV-specific T cells with low telomerase levels could therefore benefit from such 

methods, however the risk of malignancy is ever present and like all potential therapies 

the benefits must outweigh the risks. Several diseases that are manifested by 

telomerase deficiencies may benefit from such therapy e.g. DKC, but the treatment of 

healthy individuals may be less justified. Although there are ongoing trials of a natural 

telomerase activator being used as part of a supplementary diet (Harley et al., 2011). 
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7.7 Future studies 

 

7.7.1 Generation of high vs. low avidity T cell populations 

Do low avidity CMV-specific CD8+ T cells preferentially revert to a CD45RA re-expressing 

phenotype in response to IL-15? This may be investigated by combining the use of 

mutated avidity tetramers and the IL-15 treatment experiments demonstrated in this 

thesis. 

 

7.7.2 Investigating other CMV antigens 

Work presented here has focused on CMVpp65-specific T cell responses, as CMVpp65 

has consistently been shown to illicit large T cell clonal expansions. However, T cell 

immune responses to CMV peptide pools has revealed a broad response, with CD8+ T 

cells targeting many different CMV peptides (Gandhi and Khanna, 2004). Therefore, 

extending analysis to include different CMV antigens may reveal more on the 

relationship between T cell functional avidity and phenotype. IE-1 in particular has been 

shown to elicit large T cell numbers, which can often exceed T cell numbers specific for 

pp65 (Khan et al., 2002a, Kern et al., 2000). Furthermore, IE-1-specific T cell responses 

correlate with protection from CMV infection (Bunde et al., 2005, Nickel et al., 2009). 

The question is, whether IE-1-specific T cells or T cells specific for other CMV antigens 

share the characteristics of pp65-specific CD8+ T cells, and if this is influenced by size of 

the population or donor age. 
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7.7.3 Alternate senescence pathways 

Are TEMRA cells undergoing a different form of senescence? Preliminary data suggests 

TEMRA cells show high levels of DNA damage and inhibiting these pathways can up-

regulate telomerase. Work will focus on investigating the CMV-specific compartment 

and what mechanisms may be involved and manipulated. 

 

7.7.4 Telomere length analysis using quantum dots.  

The application of quantum dots in the analysis of telomere lengths is currently being 

continued in lab. Future experiments aim to identify if CMV-specific CD8+ T cells that 

have critically short telomere lengths are also associated with loss of function or 

senescence.  Further characterisation of telomere lengths on the basis of avidity will 

also be addressed.  
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